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Abstract 

PREDICTING A NEW QUATERNARY PHOTOCATALYST SUITABLE FOR PEC 

PROCESS TO PRODUCE HYDROGEN AND DETERMNATIONOF ITS 

STRUCTURAL, ELECTRONICS, AND OPTICAL PROPERTIES 

USING DENSITY FUNCTIONAL THEORY. 

 

Pranab Sarker, MS 

 

The University of Texas at Arlington, 2013 

 

Supervising Professor: Muhammad N. Huda   

Our present work represents a comprehensive theoretical and computational 

research in quest for predicting new photocatalysts suitable for photoelectrochemical 

process (PEC) to produce hydrogen by splitting water. We predict a new photocatalyst, 

         that exhibits some promising photocatalytic features seemed elusive to date. It 

is well known that all physical properties are calculated once ground state structure is 

known. However, knowing crystal structure is extremely challenging and was considered 

unpredictable before the material is synthesized. Our density functional theory (DFT) 

determines the crystal structure of          to be monoclinic which was later found 

energetically equivalent to its experimental counterpart. In addition to structure 

determination, we calculate the electronic and optical properties of          for the first 

time. Our calculated band gap is 1.43 eV that validates the approach to make band 

engineering successful by forming suitable complex oxides. The band structure 

calculation also reveals that          possesses indirect band gap. Moreover, density 

of states (DOS) calculation demonstrates a successful band gap reduction approach with 

respect to binary and ternary oxides such as     ,    ,        etc., where       orbital 



v 

plays a major role in band gap reduction. In addition, it explains why electron transition 

from valence band to conduction band is possible although both band edges are mostly 

dominated by   orbitals and     electron transition is forbidden. Finally, our optical 

calculation determines this material is optically anisotropic and has a high absorption rate 

that facilitates hydrogen production through photo-excitations. 
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Chapter 1 

Introduction 

The advancements of science and technology which govern the world economy, 

global climate, human life-style, and which enforce new cultures to be flourished in the 

society have a far-reaching impact on modern civilization. Needless to say, all cultural, 

scientific and technological advancements so far have been empowered by fossil fuels - 

oil, coal, and natural gas - directly or indirectly. It is well known that these fossil fuels, 

while combustion takes place, emit greenhouse gases in the atmosphere, most notably 

   , and consequently, have put our habitable earth into a vulnerable position. Hence it 

has been an imperative task and daunting challenge for scientific community to find out 

the alternates of fossil fuels which is carbon free and cost effective. Jules Verne, a 

prophetic visionary and often referred to as the "father of science fiction”, was one of the 

earliest people who conjectured water as a fuel of the future [1]. More than hundred years 

ago, he imagined to clean hydrogen fuels and wrote in his “The Mysterious Island” book: 

"Yes, my friends, I believe that water will someday be employed as fuel, that 

hydrogen and oxygen, which constitute it, used singly or together, will furnish an 

inexhaustible source of heat and light….I believe, then, that when the deposits of coal are 

exhausted, we shall heat and warm ourselves with water. Water will be the coal of the 

future." 

Jules Verne might have visualized hydrogen as clean energy convinced only by 

the abundance perspective of its source of origin, water. However, water as souce is not 

only inexhaustible but being splitted also can provide clean and renewable energy. 

Hydrogen which can be produce by water decomposition emits no     while burning 

unlike fossil fuels. 
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However, the paucity of hydrogen by itself in nature, at least terrestrially, limits it 

from being an alternate primary source of energy like fossil fuel. Therefore, other 

substances from which hydrogen can be extracted are needed. Water can be a primary 

of source of hydrogen production since it is abundant on earth. However, water splitting is 

not a spontaneous process. Energy is needed to provide externally to drive water splitting 

reaction, which in turn, must be inexhaustible, renewable, and carbon-free to keep 

hydrogen not only as clean fuel but also economically viable compared to fossil fuels. 

The ultimate goal to produce     with little or no green house gas emissions can 

be done in several ways [1]-     production from i) fossil fuels with     sequestration, ii) 

biomass gasification, iii) electrolysis of water using power generated by renewable 

energy sources such as wind turbines and solar cells, iv) nuclear power plant, and v) 

photoelectrochemical (PEC) water splitting using sunlight. The first way is still unproven 

technology whereas the second and third ways are technically viable but cost-prohibitive. 

Nuclear plants can generate    , which is potentially cost-effective, but have same 

drawbacks as in  any option involving nuclear power e.g. disposal problem, proliferation 

concerns and lack of public acceptance. The final PEC approach, which is both cost 

effective and eco-friendly, is yet to be successful because of lacking of a suitable 

photocatalyst. Therefore, producing     cheaply and at larger scale with little or no green 

house gas emissions still remains an elusive global. 

While other approaches have been abandoned due to either higher cost or 

environmental safety concerns, PEC has been envisioned as the most pragmatic 

approach and one of the “holy grail” technologies for hydrogen production  [1] [2]. A PEC 

system produces hydrogen through water decomposition using solar energy harnessed 

by the single semiconductor-based device immersed in a water-based solution. Since a 

suitable photocatalyst can convert solar energy to electrochemical energy directly for 
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splitting the water, PEC process gives us clean hydrogen plus oxygen. However, it is not 

so easy as it sounds good. The success of the PEC process solely depends on a suitable 

photocatalyst which have the following characteristics:  [1] [5] -    moderate band gap 

(              ) for driving water splitting reaction (       
 

 
     ΔE°         V , 

    suitable band edge positions with the water-splitting potentials,       higher stability in 

the aqueous solution,     higher optical absorptions efficiency, and    good charge 

carrier mobility. The latter three properties come into scenario once the first two criteria 

are satisfied. All of these characteristics alongside with low production cost, collectively, 

of a photocatalyst ensure the PEC process to be successful. However, it is well known 

that such a ‘magic’ material, in a simple or complex form, neither exists in nature nor has 

been engineered successfully so far. Binary metal oxides, although treated as better 

photocatalysts  [5] [6] [7] [8] [9] [10] due to higher stability in aqueous solution and low 

production cost, suffer from both larger band gap (      )  [11] and suitable band edge 

positions with the water-splitting potentials [15] hindering the PEC process being efficient. 

Both transition and post transition metal oxides have lower band gap, however, fail to 

fulfill the promises of PEC due to either poor carrier mobility or unfavorable indirect band 

gap   [12] [13]. 

It is possible to easily make 50,000 combinations of ternary oxides and almost 2 

million quaternary oxides out of all the materials available in the periodic table. Hence, 

predicting a new photocatalyst suitable for photoelectrochemical process, experimentally 

or theoretically, is very extremely challenging and arduous task. The way researchers 

have been developing new materials out of a large number of oxides throughout the 

millennia is an empirical approach, can be very time consuming and costly, strenuous, 

requiring a profound intuition of guessing possible chemical combinations, trials and 

errors,  and a stroke of luck [14]. Hence, it has been an imperative challenge in the 
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scientific community to develop a theoretical approach to make a successful prediction of 

new complex oxide before it is synthesized. Moderate band gap and suitable band edge 

positions, which are the two primary concerns in predicting a suitable photocatalyst, could 

be achieved successfully through bang gap engineering forming mutiternary complex 

oxides [7] [8] [9] [11] [15] [16]. Few successful multications oxides such as      , 

       ,        , and           [17] [18] [19] [20] [21] show a significant improvement 

both in band gap reduction and  band edge position or in either one with compared to 

binary oxides.                shows a little bit improvement of band gap reduction 

compared to                and high activity on    evolution. However, it cannot evolve 

   since conduction band contributed by  .    lies beneath the        redox potential. 

On the other hand, both                and                   have suitable band edge 

positions with respect to water redox potential compared to     but solar-to-hydrogen 

conversion is not observed at the satisfactory level due to larger band gaps. Among all, 

         exhibits most promising features such as reduced band gap (2.75 eV), 

suitable band edge position, higher stability in aqueous solution, and low production 

cost   [20] [21]. The addition of two cations-      and    - to     reduces its band gap 

keeping the position of conduction band above the        redox potential level intact 

The band gap reduction as in          was not successful by adding only one cation 

either    or    to    .      in          lowers the conduction band minimum through 

the coupling between      and      similar to that of in         [20] [21] It is noted that 

     plays a similar role in band gap reduction in       through the coupling between     

and     .  [11]. On the other hand,       in          uplifts the top of the valence 

band causing reduction in band gap. Moreover, the upward push by       relocates the 

conduction band above        redox potential level compared to     Nevertheless the 

combined effects of      and     were not enough to reduce the band gap below       . 
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Hence, we aim to predict a new quaternary metal oxide          bearing all the effects 

caused by      and     in mind. In         , more intense upward push contributed by 

    is expected having the previously mentioned      coupling with     and      at the 

bottom of the conduction band to reduce the band gap further. To our best knowledge, 

we, as first, design          theoretically and present comprehensive study of 

structural, electronic, mechanical, and optical properties using DFT including on-site 

Coulomb correlation term called U parameter.  

The calculation of all physical properties requires successful determination of the 

ground state crystal structure of the material being predicted. However, prediction of 

crystal structure was believed fundamentally impossible like predicting earthquake until 

2003 albeit the chemical composition or stoichiometry are known  [22]. With the advent of 

high efficient computers and advancement of computational physics, it is possible to 

predict stable atomic arrangement of a new material, without even being synthesized, 

quantitatively with minimal time and cost [14] [23] in the context of density functional 

theory (DFT) ab initio calculation. 

The goal of this paper is twofold: first is to predict the crystal structure of a multi-

cation oxide material (in this case a photocatalyst) with desirable properties by means of 

mineral database search and density functional theory (DFT) based relaxation. Secondly, 

the electronic properties of this predicted material will then be elaborated. 

Crystal structure prediction with desirable electronic properties 

 A successful determination of stable structure of a new material requires DFT 

optimization of all possible motif structures. We define these possible phase structures as 

‘Motif Structures’ of the predicted material. Motif structures are the well-known structures 

of those synthesized materials from which the unit cell of new compounds is possible to 

make. It is done by replacing ion(s) in the motif crystal structure by the equal number of 
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chemically similar ion(s) of the material to be predicted. The motif structures are selected 

through a comprehensive mineral database search considering topological symmetry, 

chemical and ionic radii proximity of atoms, coordination numbers, and oxidation states of 

the ions. An example of successful prediction of crystal structure through comprehensive 

mineral database search method is that of            [21] (see Appendix A), which is 

the better photocatalyst so far. The crystal structure of          was measured 

monoclinic             experimentally. However, our DFT energy optimization followed 

by a database search determines different monoclinic symmetry            , and this 

result was verified with the recent experiment. Apart from crystal structure determination, 

calculated band gap, suitable band edged positions, and optical absorption rate were in 

good agreement with the recent experiment as well. 

Our DFT+U electronic calculation predicts triclinic symmetry for ground state 

structure of          that is evolved from      . This ground state structure 

possesses an indirect band gap (1.43 eV) sufficient enough to drive water decomposition 

reaction through PEC process. In our work, we also study      as the parent structure in 

  based oxides, and       as the possible motif structure for          to observe the 

systematic transformations taken place while evolved from binary metal oxides to 

quaternary metal oxide. For optical absorption, it is necessary to consider contributions to 

the absorption properties from various electronic energy band processes such as 

intraband, interband. However, we restrict ourselves to the interband processes because 

intraband processes are less important to semiconductors  [24]. All the DFT and DFT+U 

calculations were performed with respect to a GGA functional  [25]  [26]. It is very 

important to describe the band gap and the positions of the band edges as precise as 

possible for the description of the photocatalytic or photo-electrochemical process [27]. 
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Our GGA calculation gives a better band gap for     over LDA  [28] compared 

with experimentally determined value. Hence, we prefer GGA over LDA in the present 

calculations, although overestimation of  the equilibrium volume enhancing interatomic 

separations compared with  experimentally measured value is a general feature of 

GGA [29].  

The layout of our work is as follows. In chapter 2, we present a brief description 

of the methodology-Density Functional Theory (DFT) – with little historical background 

and its computational scheme. We devote chapter 3 to the structural and electronic study 

of    . Chapter 4 is includes structural, electronic, and optical studies of      . The 

ways all the possible phases of          have been modeled alongside with the 

calculated structural, electronic, and optical properties are described in chapter 5. We 

leave the chapter 6 to summarize our findings for     ,      , and         . Finally, 

we propose some ideas and directions to make our future works more reliable and 

consistent with the experimental counterpart in Chapter 6 as well. Appendix A represents 

the structural, electronic, and optical properties of         . A brief study of structural, 

electronic, and optical aspects of      , a wolframite structure in the      family, is 

presented in Appendix B. 
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Chapter 2  

Methodology 

Density Functional Theory 

One of the basic problems in theoretical physics and chemistry is the description 

of the structure and dynamics of many-electron systems. Density functional theory (DFT) 

is an extremely successful quantum mechanical modeling method used in physics and 

chemistry to investigate the electronic structure (principally the ground state) of many-

body systems, in particular atoms, molecules, and the condensed phases. The main idea 

of DFT is to describe an interacting system of fermions via its density and not via its 

many-body wave function. For N electrons in a solid, which obey the Pauli principle and 

repulse each other via the Coulomb potential, the basic variable of the system depends 

only on three -- the spatial coordinates x, y, and z -- rather than 3N degrees of freedom. 

With this theory, the ground state properties of a many-electron system can be 

determined by using functionals, i.e. functions of another function, which in this case is 

the spatially dependent electron density,  [   ⃗ ]. Hence the name density functional 

theory comes from the use of functionals of the electron density. DFT is among the most 

popular and versatile methods available in condensed-matter physics, computational 

physics, and computational chemistry. Its applicability ranges from atoms, molecules and 

solids to nuclei and quantum and classical fluids. 

 

Historical Background 

Thomas and Fermi [30] [31] were the first  [32] to contemplate a model for the 

electron many-body problem based uniquely on the electron density    ⃗ . The basic idea 

of the theory is to find the energy of electrons in a spatially uniform potential as a function 

of density. Then one uses this function of the density locally even when the electrons are 
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in the presence of an external potential. The Thomas-Fermi energy functional is 

composed of three terms,  

 
    [ ]      [ ]  ∫   ⃗       ⃗   ⃗  

 

 
∬  ⃗  ⃗ 

     ⃗    ⃗  

| ⃗   ⃗ |
 

(2.1)  

The first term in Equation (2.1) is the electronic kinetic energy associated with a 

system of non-interacting electrons in a homogeneous electron gas. This form is obtained 

by integrating the kinetic energy density of a homogeneous electron gas   [33] [34]   [ ]  

 
    [ ]  ∫  [   ⃗ ]  ⃗ 

(2.2)  

where   [   ⃗ ]  is obtained by summing all of the free-electron energy states 

  
    

  
 up to the Fermi wave vector    [      ⃗ ]

 
 ⁄ . Finally, 

 
    [ ]  ∫

  

  

 

 
     

 
 ⁄     ⃗ 

 
 ⁄   ⃗  

(2.3)  

                     The second term is the classical electrostatic energy of attraction between 

the nuclei and the electrons, where       ⃗  is the static Coulomb potential arising from the 

nuclei, 

 
      ⃗   ∑

    

| ⃗   ⃗⃗ |

 

   

 
(2.4)  

Finally, the third term represents the electron-electron interactions of the system 

approximated by the classical Coulomb repulsion between electrons, known as the 

Hartree energy.  

To obtain the ground state density and energy of a system, the Thomas-Fermi 

energy functional must be minimized subject to the constraint that the number of 

electrons is conserved. This type of constrained minimization problem, which occurs 

frequently within many-body methods, can be performed using the technique of Lagrange 
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multipliers. In general terms, the minimization of a functional  [ ], subject to the 

constraint  [ ], leads to the following stationary condition,  

     [ ]    [ ]    (2.5)  

Where   is a constant known as the Lagrange multiplier. Minimizing the above 

equation leads to the solution of the corresponding Euler equation, 

   [ ]        [ ]      (2.6)  

 When Thomas-Fermi energy functional incorporates the exchange term of the 

following form, 

 
     ∫

 

 
( 
 

 
)

 
 ⁄

      ⃗ 
 

 ⁄   ⃗  
(2.7)  

the theory is called Thomas-Fermi-Dirac  [35]. 

 

Foundation of Density Functional Theory 

Due to the severe shortcomings of Thomas-Fermi method  [35] such as inability 

to predict molecular binding, failure to demonstrate the electrons’ distribution into different 

shells, better accuracy only for nearly uniform charge distribution etc., it was hard to be 

imagined that an exact theory could be based on the density. However, almost forty 

years later, Hohenberg and Kohn proved in a seminal paper [36] that this was indeed 

possible. In two remarkably powerful theorems they formally established the electron 

density as the central quantity describing electron interactions contained in a many-

electron wave function, and so devised the formally exact ground state method known as 

density functional theory (DFT). Hence, the starting point of any discussion of DFT is the 

Hohenberg-Kohn (HK) theorems. 
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Hohenberg-Kohn (HK) theorems 

The Hohenberg-Kohn theorems relate to any system consisting of electrons 

moving under the influence of an external potential        . Stated simply they are as 

follows: 

Theorem 1: The external potential         , and hence the total energy, is a 

unique functional of the electron density. In other words, the electron density determines 

the external potential (to within an additive constant) uniquely. 

 Proof:  

In the original Hohenberg-Kohn paper, this theorem is proven for densities with 

non-degenerate ground states [8]. This extension of this proof to degenerate ground 

states is also valid. The proof in both cases is elementary, and by contradiction. Let us 

first consider non-degenerate case. 

 

Non-degenerate Ground States 

Let us define the set of all external potentials            such that 

  

 {       
∣
∣
∣
∣
∣                               

              ∣               

                    
                      

} 

(2.8)  

for which Schrödinger equation 

  ̂ ∣         ∣     (2.9)  

 leads to a non-degenerate eigenstate ∣    . 

The set of all external potentials            leads to a set non-degenerate ground 

eigenstates ∣    ,   such that 

 

  

{
 

 
∣    

∣
∣
∣
∣
∣
∣
∣       ∣                                  

                  

 ∣   
      ∣     

                              }
 

 
 

(2.10)  
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And the set   of all ground state densities obtained from some element of    is 

defined as 

   {   ∣∣          ∣  ̂   ∣      ∣      } (2.11)  

Where,          ∣  ̂   ∣     

                =   ∑ ∫                
     ∣                    ∣    ∣  

Correspondence between the elements of   ,   and   can be thought as the 

following two maps (shown in Figure 2.1) 

                 A:      

 and          B:     

 

 

Figure 2.1. Correspondence between external potentials   , associated ground states 

     
 and ground state densities      

, in the case of non-degenerate ground states [37]. 

 
It is sufficient to show that map A and map B are unique in order to proof first 

Hohenberg-Kohn theorem in the non-degenerate case. 
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The proof of uniqueness for map A consists in demonstrating the validity of the 

following two statements: 

(i) For given         there exists only one ∣    in  , i.e. there is no         which 

is mapped onto two elements of  . This statement is trivial due to the restriction to non-

degenerate ground states. 

(ii) There is no ∣     which is simultaneously ground state for two different 

potentials         and   
       which differ by more than a constant. The standard proof of 

this statement is based on a reductio ad absurdum [37]. 

Let us assume that ∣     is simultaneously ground state for two different 

potential         and   
                     thus satisfies two Schrӧdinger equations, 

  ̂ ∣     [ ̂    ̂     ̂] ∣         ∣     (2.12)  

 

  ̂ ∣     [ ̂   ̂ 
     ̂] ∣         

 ∣     (2.13)  

 ̂= kinetic energy operator 

 
 ̂  ∑

       
 

  

 

   

 
(2.14)  

  ̂    is the operator that accounts the interaction of the particles with external 

sources characterized by a given, time independent potential         

   ̂    = ∑         
 
    ∫             ̂    (2.15)  

In practical applications         is given by 

 
 ̂     ∑∑

   
 

|     |

 

   

 

   

 

 

(2.16)  

Where    denotes the Cartesian coordinates of nucleus   and    denotes the 

position of electron   

 ̂= a particle-particle interaction operator 
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 =∑  (     )   
     

 

 
∑  (     )

 
          

 

(2.17)  

The basic DFT formalism is independent of the form of   keeping it same 

throughout discussion.  

The subtraction of Equation (2.12) and Equation (2.13) yields 

 [ ̂     ̂ 
   ] ∣      [     

 ] ∣     (2.18)  

The wavefunction                   does not vanish for all points   . Thus, one 

obtains 

 
∑[           

       ]

 

   

      
  

 

(2.19)  

Keeping N −1 of the    fixed, and letting the remaining position vary, Eq. (2.15) 

leads to a contradiction (as the right-hand side is constant, while         and   
       are 

assumed to differ by more than a constant). Consequently, the map A is unique: there is 

a one-to-one correspondence between the potential         and the resulting ground 

state∣      (up to some additive constant in        ). 

In order to demonstrate the uniqueness of B, one has to show that two different 

∣       cannot lead to the same ground state density   . The proof again relies on 

reductio ad absurdum. 

Assume that    is obtained from two different elements ∣     and ∣   
   of  . 

From the Ritz variational principle one then obtains an inequality for the ground state 

energy, 

       ∣  ̂ ∣           
 ∣  ̂ ∣   

   (2.20)  

 

           
 ∣  ̂ ∣   

   
 

(2.21)  
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Where  ̂ is the unique Hamiltonian leading to ∣     (due to the uniqueness of 

map A) and the strict inequality originates from the non-degeneracy ∣     and ∣   
   . 

After manipulation 

            
 ∣  ̂ ∣   

      
 ∣  ̂   ̂ ∣   

   (2.22)  

               

Or,         
     

 ∣ ( ̂    ̂   )  ( ̂   ̂ 
   ) ∣   

   (2.23)  

 

Or,             
     

 ∣    ̂      ̂ 
   ∣   

   (2.24)  

 

Or,               
     

 ∣    ̂      ̂ 
   ∣   

   (2.25)  

 

Or,         
     

 ∣  ∫              ̂   - 

∫      
         ̂

    ∣   
   

(2.26)  

 

Or, 
 

     
  ∫   [           

 ∣    ̂    ∣   
     

       

   
 ∣   ̂    ∣   

  ]  
 

(2.27)  

Using the multiplicative form of   ̂     Equation (2.15) and the assumption that 

both states lead to the same density   , one obtains 

Or,              

  
          

  ∫   [                
            ] 

(2.28)  

 

Or,        
 

        
  ∫        [           

       ]  

 

(2.29)  

Interchanging primed and unprimed quantities, 

 
  

      ∫        [ 
 
                ]  

 

(2.30)  

Upon addition of Eqs. (2.29) and (2.30), one ends up with a contradiction, 
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(2.31)  

One therefore concludes that the map B is also unique: there is a one-to-one 

correspondence between ∣     and   . 

Hence,     , ∣     and    determine each other uniquely. 

         ∣               ∣  ̂   ∣     

                                              
              unique (up to some constant in     ) 

 

(2.32)  

 

Theorem 2: The density that minimizes the total energy functional is the exact 

ground state density. If one find the functional  [ ], then the true ground state density 

     minimizes it  being subjected only to the constraint that 

 
∫           

 

For any positive definite trial density, 

   
            such that ∫             

  [  ]   [  
 ]         

   
 [ ]    

 

 

i.e., the ground state energy can be obtained variationally.  

Proof:  

Let    be the wavefunction associated with the correct ground state.          The 

variational principle asserts, 

    [    ] ∣  ̂   ̂   ̂   ∣   [    ]    

   
 [ 

    ] ∣  ̂   ̂   ̂   ∣   
 [ 

    ]   

 

(2.33)  

Define the functional 

  [ ]      [ ] ∣  ̂   ̂ ∣  [ ]   
 

(2.34)  
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The energy functional  [    ]  alluded to in the first Hohenberg-Kohn theorem 

can be written in terms of the external potential         in the following way, 

 
 [    ]   [ ]  ∫                

 

(2.35)  

These lead to 

 
 [     ]  ∫                

  [  
    ]   ∫             

     

 

(2.36)  

 

  [     ]   [  
    ]  

 
(2.37)  

Where,  

  [     ]     
 

  [    ] 

 

(2.38)  

Hence, the variational principle of the second Hohenberg-Kohn theorem is 

obtained. 

The most intriguing feature of this proof is that the functional  [ ] is universal for 

all system of   particles and does not depend upon the external potential         i.e., if 

one could minmizes this functional with respect to ground state density, it would solve all 

many-body problems for all external potentials        . The possibility to determine the 

ground state density of a many-particle system is given by a variational equation 

  

  
{ [ ]   (∫          )} ∣          

   

 

(2.39)  

 

  

  
{ [ ]  ∫                (∫          )} ∣          

   
 

(2.40)  

 

   [ ]

  
∣          

           
(2.41)  
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Where,      [ ]      [ ] ∣  ̂   ̂ ∣  [ ]                   

 

We can identify the constant µ as the chemical potential of the system, since 

  
  [ ]

  
. One adds to it any particular set of nuclei, in the form of the external potential 

       , and then has only to find the function      that minimizes it in order to solve the 

full complexities of Schrodinger’s equation. The exact density is such that it makes the 

functional derivative of    exactly equal to the negative of the external potential (up to a 

constant). If we had an adequate approximation to  [ ] for our purposes, it would be 

possible to solve the equation for  [ ] directly. Unfortuntely, no adequate approximation 

is available for   [ ] 

 

Computational Techniques 

For many body system the Hohenberg-Kohn theorems states that knowledge of 

the ground state density is sufficient to determine all ground state observables. In 

addition, the ground state energy functional  [ ] allows the determination of the ground 

state density itself via the variational equation discussed in the previous section. Although 

the Hohenberg-Kohn theorems are extremely powerful, do not give any hint concerning 

the explicit form of  [ ]  (or  [ ]) and therefore, do not offer a way of computing the 

ground-state density of a system in practice. About one year after the seminal DFT paper 

Hohenberg and Kohn devised a simple method for carrying-out DFT calculations that 

retains the exact nature of DFT and replaces the many-body problem by an exactly 

equivalent set of self-consistent one-electron equations. This method is described next. 
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The Kohn-Sham (KS) Energy Functional 

Unfortunately, the Hohenberg-Kohn theorem provides no guidance as to the form 

of  [ ], and therefore the utility of DFT depends on the discovery of sufficiently accurate 

approximations. In order to do this, the unknown functional,  [ ], is rewritten as the 

Hartree total energy plus another, but presumably smaller, unknown functional, called the 

exchange-correlation      functional,    [ ]. The Kohn-Sham (KS) total-energy 

functional for a set of doubly occupied electronic states    can be written as 

  [    ]    [ ]     [ ]    [ ]     [ ]     [ ] 
 

(2.42)  

Here   [ ] denotes the single particle kinetic energy,    [ ] is the Coulomb 

interaction energy between electrons and nuclei,    [ ] arises from the interaction of the 

nuclei with each other, and   [ ] is Hartee component of the electron-electron energy 

with density , 

 
  [ ]  

  

 
∫

         

|    |
          

 

(2.43)  

including self-interaction energy of the electrons. Where      is the electron 

density given by 

       ∑|     |
 

 

 

 

(2.44)  

As mentioned,    [ ] is an unknown functional. 

            Only the minimum value of Kohn-Sham (KS) energy functional has 

physical meaning. At the minimum, Kohn-Sham (KS) energy functional is equal to the 

ground-state energy of the system of electrons with the ions in positions {  }. 

 

Kohn-Sham (KS) Equations 

It is necessary to determine the set of wave functions    that minimize the Kohn-

Sham (KS) energy functional. These are given [10] by self-consistent solutions to the 
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Kohn-Sham (KS) equations [38] which represent a mapping of the interacting many-

electron system onto a system of non-interacting moving in an effective potential due to 

all other electrons. Kohn-Sham system is simply a fictitious system of non-interacting 

electrons, chosen to have the same density as the physical system. Then its wave 

functions are given by 

 
[
  

  
       ]            

(2.45)  

This is a single-electron equations where    is the wave function of electronic 

state  ,    is the Kohn-Sham eigenvalue, and      is the effective potential due to     

electrons in the Kohn-Sham system, 

                            

 

(2.46)  

The celebrated Kohn-Sham (KS) equations resulting from insertion of 

 
[
  

  
                        ]           

 

(2.47)  

               
 

(2.48)  

have to be solved in a s elf-consistent fashion. Where     is the Hamiltonian for 

a Kohn-Sham system, 

 
    

  

  
                         

 

(2.49)  

Here,         is the total electron-ion potential,       is the Hartee potential of 

electrons given by 

 
        ∫

     

|    |
       

 

(2.50)  

and the exchange-correlation potential,       , is given formally by the functional 

derivative 

 
       

       

     
 

 

(2.51)  
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The Kohn-Sham (KS) equations must be solved self-consistently i.e., a  density 

must be found such that it yields an effective potential that when inserted into the 

Schrodinger-like equations yields wavefunctions that reproduce it . A flow chart that 

depicts the self-consistent solutions of KS equations is shown in Figure 2.2. Thus, 

instead of having to solve a many-body Schrodinger equation, using DFT we have the far 

easier problem of determining the solution to a series of single particle equations, along 

with a self-consistency requirement . The sum of the single-particle Kohn-Sham 

eigenvalues does not give the total electronic energy because this overcounts the effect 

of electron-electron interaction in the Hartee energy and in the exchange-correlation 

energy. 

 

Figure 2.2 Flow-chart depicting a generic Kohn-Sham calculation. 

 

The Exchange Correlation Energy-LDA and GGA 

If the exchange-correlation energy functional were known exactly, taking the 

functional derivative with respect to the density would produce an exchange-correlation 
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potential that included the effects of exchange and correlation exactly. No analytical form 

has yet been identified and therefore, an approximation must be used. The Hohenberg-

Khon theorem provides some motivation for using approximate methods to describe the 

exchange-correlation energy as a function of electron density. The simplest method of 

describing the exchange-correlation energy of an electronic system is to use the local-

density approximation [28]. 

 

Local Density Approximation (LDA) 

In the local-density approximation the exchange-correlation energy of an 

electronic system is constructed by assuming that the exchange-correlation energy per 

electron at a point   in the electron gas,       , is equal to the exchange-correlation 

energy per electron in a homogeneous electron gas that has the same density as the 

electron gas at point  . In the LDA,         is written as  

    [    ]   ∫               
    

 

(2.52)  

and 

        

     
 

 [             ]

     
 

 

(2.53)  

with           
   [    ]. 

where     
   [    ] is approximated by a  local function of the density, usually that 

which reproduces the known energy of the uniform electron gas. The local-density 

approximation assumes that the exchange-correlation energy functional is purely local 

and, in principle, ignores corrections to the exchange-correlation energy at a point   due 

to nearby inhomogeneities in the electron density.  

A straightforward generalization of the LDA to include electron spin is local spin-

density approximation (LSDA) 
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   [     ]  ∫                

   

 

(2.54)  

 

Generalized Gradient Approximation (GGA) 

Generalized gradient approximations (GGAs), where the local gradient as well as 

the density is used in order to incorporate more information about the electron gas in 

question, favor density inhomogeneity more than LSDA does. In GGA,           is 

replaced by          |     |  to take the account of inhomogeneity for a slowly varying 

density. Generalized gradient approximations (GGA)  [25]  [26] has the following form:\ 

    [     ]  ∫                        
    

 

(2.55)  

 

In comparison with LDA and LSDA, GGAs have many 

advantages [25] [39] [40] [41] [42] [43] [44] [45]. For example, GGAs significantly improve 

the ground state properties of light atoms and molecules, clusters and solids composed 

of them. Unlike the LSDA the correct bcc ground state of    is obtained through GGAs. 

Structural properties are generally improved, although GGAs sometimes lead to 

overcorrection of the LDA errors in lattice parameters. 

 

DFT+U 

In solid, both   – and   -states have tendency to retain their atomic character 

while the valence   - and  -states tend to form bands. Both LDA and GGA descriptions 

for   - and  -states are well agreement with the experimental observations. However, it 

has been a common practice that both LDA and GGA can not predict the behavior of 

highly localized and  atomic-like   – and   – states accurately in many compounds 

especially which contain rare-earth or late transition metal elements  [37]. For many 
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transition metal oxides, where a sizeable  band gap is observed experimentally, both LDA 

and GGA predict metallic ground states and itinerant   –states or underestimate the band 

gap significantly. These descrepencies are inherited in the calculation primarily due to the 

lack of proper treatment of the self-interaction correction (SIC) of the electrons [47]. The 

improper treatments of band gap and   or   –states can be improved by a decomposition 

of the complete Hilbert space into two subsystems, following the Anderson model [46]: (i) 

the localized   -or   -states for which a more explicit, orbital-dependent treatment of all 

Coulomb effects is required, and (ii) the   - and  -states which are well described by the 

LDA (or GGA). The technical implementation of this concept in DFT is the LDA (or 

GGA)+ U method where U is known as  Hubbard parameter [47]  [48] [49] [50] . For its 

derivation the only assumption required is that the   -or   -states are localized within 

well-separated atomic spheres, so that the bulk states are well represented by a 

superposition of the corresponding atomic states only. The Hubbard parameter   is 

defined as  [51] 

                          
 

(2.56)  

i.e., the Coulomb energy cost to place the two electrons at the same site. In all 

model Hamiltonians the U parameter is treated as a constant which only depends on the 

type of atom and its environment in the crystal through the screening (or renormalization) 

effects but not on the configuration of the localized electrons. The new functional [48] 

is  [51] [52]:  

 
 

            [    ]     [{  
  }]     [{   }] 

 

(2.57)  

where   
   are the atomic-orbital occupations for the atom   experiencing the 

“Hubbard correction” term,      [ ] is a standard approximate DFT functional,   [  
  ] is 

Hubbard correction term, and the last term in the above equation    [{   }] is called the 

“double counting” term subtracted explicitly to avoid the double counting of energy 
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contribution of these orbitals included in   [{  
  }]  and, in some average way, in 

     [    ] (LDA or GGA functionals). The DFT + U functional introduced in the above 

eqution contains only a minimal set of on-site interaction parameters that takes account 

the effect only associated to on-site Coulomb repulsion  and therefore, neglect the proper 

treatment of magnetic (exchange) interaction. These effects can be compensated, or 

alternatively  can be mimicked redefining the   parameter as          [53] where   

denotes the Stoner exchange parameter. Taking both on-site Coulomb and proper 

magnetic (exchange) interactions into the consideration the total energy functional of 

DFT+ U can be written as  [54] 

             [    ]    [{    
  }]  

 

(2.58)  

 

Where   [{    
  }]  is the simplified form of the Hubbard correction to the energy 

functional [27] [54] 

   [{    
  }]     [{    

 }]     [{   }] 
 

 
  

 
∑∑  

       
   

    

              

             
      

 

(2.59)  

In the above equation,    is the Coulomb repulsion parameter on atomic site   . 

This is how the new functional    [{    
  }] compensates the known deficiencies of LDA 

or GGA for atomic systems. However, the price is paid appeared obvious in the above 

equation that   [{    
  }] favors only partial occupation of the localized orbitals and 

vanishes for fully occupied       or completely empty       orbitals. This is the basic 

physical effect built in the DFT + U functional.  
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Projector Augmented Wave (PAW) Method 

In order to solve the electronic structure problem within the DFT formalism, the 

Kohn-Sham equations are to be solved in some efficient numerical way. The key problem 

is to expand electron orbitals used to express the single particle density in K-S equation 

in terms of any converged basis set that accounts different behavior of wave functions of 

real materials in different regions of space. Atomic wave functions of real materials, which 

are the eigenstates of the atomic Hamiltonian and are all mutually orthogonal to each 

other, are fairly smooth in the bonding region, however, oscillates rapidly close to the 

nucleus owing to the large attractive potential of the nucleus. In order to maintain the 

orthogonal property of atomic wave functions, which is required by the exclusion 

principle, the valence wave functions oscillate rapidly in the core region since the core 

wave functions are well localized around the nucleus. This arises difficulty in solving K-S 

equations within the DFT formalism numerically to describe the bonding region to a high 

degree of accuracy while accounting for the large variations in the atom center requiring 

a very large basis set, or a very fine mesh. Numerous methods have been developed to 

solve the resulting single particle K-S equation treating core and valence electrons in a 

different way, possibly obtaining numerical advantages. 

One common approach is to use frozen-core approximation that treats core 

states are invariant in the different chemical environments. Pseudopotential, which 

exploits frozen-core approximation, replaces the strong ionic potential experienced by 

core electrons with an effective, smooth and weaker potential. This pseudopotential acts 

on a set of pseudo wave functions rather true valence wave functions in such a way to 

reproduce the true effect on the valence electrons outside the core region. This 

approximation allows one to solve Kohn-Sham equations only for the valence electrons 

reducing computational cost, however, makes harder to calculate properties that rely on 
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the core region e.g., electric field gradients, hyperfine parameters, etc. Another major 

drawback is that the procedure to generate good pseudopotentials is not well controlled. 

Another approach is the so called class of “all-electron” methods (AE), in which 

the strong ionic potential in core region is no longer replaced with an effective, smooth 

and weaker potential. Hence, full information about real wave functions in the core region 

is available compared to pseudopotential approach. One of the most important of such 

methods is the Augmented-Plane-Wave method (APW)  [55] [56], in which the space is 

partitioned in two regions: a spherical one around each atom in which the wavefunction is 

expanded onto a local basis in order to reproduce the great variations, and an interstitial 

region in which another basis is chosen (plane waves for instance) and connected to the 

first local basis. A modification of APW which provides a flexible and accurate band 

structure method is known as Liner-APW (LAPW) [37]. 

The projector augmented wave method (PAW)  [57] is a technique used in ab 

initio electronic structure calculations. It is a generalization of the pseudopotential and 

linear augmented-plane-wave methods, and allows for density functional theory 

calculations to be performed with greater computational efficiency. It is an all electrons 

(AE) method for ab-initio molecular dynamics that provides the full wave functions that 

are not directly accessible with the pseudopotential approach, and the potential is 

determined properly from the full charge densities. PAW avoids transferability problems 

of pseudopotentials and provides theoretical basis for pseudopotentials. Like APW (or 

LAPW), PAW method transforms the rapidly oscillating wavefunctions in the core region 

into smooth wavefunctions which are more computationally convenient. 

The historical context of electronic structure method is shown in Figure 2.3 

(Augmented-plane-wave (APW) method [55] [56], Korringa-Kohn-Rostocker method 

(KKR) [58] [59] norm-conserving pseudopotential [60], LMTO [61] [62] LAPW [63]). 



 

28 

 

 

Figure 2.3 Historical context of electronic structure method [57]. 

 
(a) 

 

 
(b) 

 

Figure 2.4 Schematic representation of Projector Augmented Wave (PAW) method. 

 
Formalism 

The trick in PAW method is to divide the wave functions into two parts: i) a 

partial-wave expansion within an atom-centered sphere and ii) envelope functions 

outside the spheres. The partial waves are the solution of radial Schrödinger equation 

times spherical harmonics for the isolated atom and exhibits orthogonally to the core 
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states if needed. On other hand, the envelope function is expanded into plane waves or 

some other convenient basis set. However, both envelope function and partial-wave 

expansions are continuous at boundary of the sphere.  

In PAW method, a linear transformation operator  ̂ maps the physically relevant 

AE wave functions, which are orthogonal to the core states, onto the computationally 

convenient Pseudo (PS) wave functions or vice versa. The PS wave functions will be 

identified with the envelop functions of the linear method [63] or the Pseudopotential 

approach. This approach is somewhat reminiscent of a change from the Schrödinger 

picture to the Heisenberg picture.  

Linear transformation from pseudo wave functions to AE wave functions 

 | ⟩   ̂|  
  ⟩ (2.60)  

where   is a quantum state label, consisting of a band index and possibly a spin 

and  -vector index.  The linear transformation operator 

  ̂     ̂  
 

(2.61)  

where  ̂  is non-zero only within some spherical augmentation region    

enclosing atom   and unity outside this region where AE and PS wave functions coincide 

with each other. The augmentation spherical regions are chosen such a way that there is 

no overlap between the spheres. Around each atom, it is useful to expand the pseudo 

wave function into pseudo partial waves: 

                                  |  
  ⟩  ∑    

 |   
    ⟩   within    

 

(2.62)  

The corresponding AE wave function is of the form 

 | ⟩   ̂|  
  ⟩  

 

(2.63)  

 

 | ⟩   ̂ ∑    
 |   

    ⟩    

 

(2.64)  
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 | ⟩  ∑    
 |   

 ⟩   within    
 

(2.65)  

with    
  same as in pseudo partial wave expansions. Hence, we can express the 

AE wave function as 

 | ⟩  (   ̂ ) |  
  

⟩  |  
  

⟩   ̂ |  
  

⟩ 
 

 |  
  ⟩  ( ̂   )|∑   

 |   
    ⟩

  

 

 

 |  
  

⟩  ∑   
 |   

 ⟩

  

 ∑   
 |   

    
⟩

  

 

 

(2.66)  

where the expansion coefficients for the partial wave expansions have to be 

determined. Because the operator  ̂ is linear, the coefficients    
  are linear functions of 

pseudo wave functions and thus, can be written as an inner product with a set of so-

called projector functions, |  
  ⟩  

    
  ⟨  

  |    
    ⟩ 

 

(2.67)  

where  ⟨  
  |   

    ⟩      and ∑ |   
    ⟩⟨  

  |     

The most general form for the projector functions is 

 |  
  ⟩   ∑({⟨  |   

    ⟩})
  

  

 

⟨  | 

 

(2.68)  

where |  ⟩  form an arbitrary, linearly independent set of functions. The projector 

functions are localized within    if the functions |  ⟩  are localized. The final form of the 

linear transformation operator can be written as  

  ̂    ∑ |   
 ⟩  |   

    ⟩ 
  

⟨  
  

| 

 

(2.69)  

which allows one to obtain AE Kohn-Sham wave function as 

 | ⟩  |  
  

⟩  ∑ |   
 ⟩  |   

    
⟩ 

  

⟨  
  

|  
  

⟩ 

 

(2.70)  
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explicitly separating the extended-space and the atom-centered contributions. A 

schematic representation of PAW method is shown in Figure 2.4. The first term can be 

evaluated on a plane wav or any convenient basis set, while the last two terms are 

evaluated on fine radial grids.  

In summary, PAW transformation has three properties:  

i) Projector functions are localized inside the augmentation spheres i.e., 

  
                    

ii) AE orbitals and pseudo orbitals are equal outside the augmentation  

spheres 

    
     

    
        

 

(2.71)  

iii) Projector functions are orthogonal to pseudo orbitals, i.e., ⟨  
  |   

    ⟩  

    

The partial waves    
 , which are used as an atomic basis for the all-electron 

wavefunctions within the augmentation sphere,  are constructed as radial solutions of the 

Schrodinger equation for the isolated atom. 

 

Approximations 

Like other electronic structure methods some approximations are needed to 

make PAW method a practical scheme within the DFT formalism. These approximations 

are: 

 Frozen Core 

The frozen core approximation assumes that the core states are invariant 

under the different chemical environments and   localized in the 

augmentation spheres. No projector functions are needed to define for the 

core states. 
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 Finite number of projectors 

The number of projector functions is obviously finite. 

Typically two projectors per angular momentum are used. 

 

 Truncated angular momentum expansions 

 

 Overlapping augmentation spheres 

 

Expectation Values in PAW 

we can obtain physical quantities, represented as the expectation value (A) of 

some operator A, from the PS wave functions |  
  ⟩ either directly as ⟨ | | ⟩ after 

transformation to the true AE wave functions | ⟩   ̂|  
  

⟩ or as the expectation value 

〈 〉  ⟨  
  |   |  

  ⟩ of PS operator       ̂
 
   ̂ in the Hilbert space of the PS wave 

functions. Similarly we can evaluate the total energy directly as a functional of the PS 

wave functions. The ground-state PS wave functions can be obtained from 

   [ ̂|  
  ⟩]

 ⟨  
  

|
    ̂   ̂|  

  
⟩ 

(2.72)  

 

Expectation values in PAW 

Total energy:     
  

 ∑    
      

    
  

 
 (2.73)  

 

Electron density:        
      ∑[  

            
          ] (2.74)  
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Periodic Supercell Approximation 

Although Kohn-Sham equations reduce the interacting many-electron 

Schrödinger equation into an effective single-problem, however, solving infinite number of 

non-interacting Schrödinger equation with infinite basis set computationally is formidable 

task. This cumbersome task can be simplified performing calculation on the periodic 

supercell approximation and applying Bloch’s theorem to the electronic wave functions. 

 

Bloch’s Theorem  

Bloch’s theorem states that in a periodic solid each electronic wave function can 

be written as the product of a periodic unit cell part and a wave like part, 

             
     

 

(2.75)  

 

where       periodic unit cell part i.e.,               .       can be expanded 

using a discrete basis set of plane waves such as 

       ∑      
     

 

 

 

(2.76)  

where   are the reciprocal lattice vectors defined by         for all   where   is 

a lattice vector of the crystal and m is an integer. 

Hence, each electronic wave function can be written as 

       ∑        
         

 

 

 

(2.77)  

or equivalently  

         ∑        
             

 

 

 

(2.78)  
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               ∑        
               

 

 

 

(2.79)  

 

                                           
     

 

(2.80)  

 

                      
 

(2.81)  

Imposing periodic boundary condition envisioning the lattice (Figure 2.5) to be in 

the form of a closed N-atom ring, one must have 

 

Figure 2.5 A closed N-atom ring. 

                  (2.82)  

 

which in turn requires 

           
 

(2.83)  

 

Or, 
  

   

  
                       

 

 
 

 

(2.84)  

Bloch’s representation with periodic boundary condition points out that the 

number of occupied electronic states is finite, at each k-point, even for infinite periodic 

systems. This advantage turns out the problem of computing an infinite number of wave 

functions to one of computing finite number wave functions at infinite number of k-points. 

Moreover, states with similar   vector are identical which allows one to replace electronic 

wave functions over a region of   space by the wave functions at a single   point. In that 

case, only finite number of appropriate sampled set of k-points is required inside the first 
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Brilluoin zone to calculate the electronic potential and therefore determine the total 

energy of the solid. This advantage reduces computational cost significantly.  

 

Plane Wave Basis Sets 

According Bloch’s theorem it is possible to expand an electronic wave function at 

each   point interms of a discrete plane wave basis set. In quantum mechanics, an 

electronic wave function belongs to an infinite-dimensional Hilbert space. Thus in 

principle, given an electronic wave function      , an infinite number of basis plane 

waves is required in order to reproduce it. However, the infinite number of plane wave 

basis set can be reduced considering only the plane waves which have kinetic energies 

less than a particular cutoff energy i.e., 
  

  
|   |      . This choice of a particular 

cutoff energy     , which produces a finite basis set, is reasonable since the coefficients 

       in Bloch’s theorem (equation) with smaller kinetic energies are typically more 

important than those with higher kinetic energies. With plane wave basis set KS 

equations take following simpler form 

 
∑[

  

  
|   |                 ]

  

                  

 

(2.85)  

In this form, kinetic energy is diagonal, and effective potential is expressed in 

Fourier space. The number of elements in Hamiltonian matrix is limited by the choice of  

    .  

The salient features of a plane-wave basis are: 

1. Only      is needed to control the convergence of the result.   

2. Orthonormality and no dependence on atomic positions, i.e. no basis-set 

superposition error and Pulay forces. 
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3. Very efficient to compute integrals and derivatives in reciprocal space which 

makes the calculation of  the matrix elements of the Hamiltonian easier and faster. 

Despite these computational friendly features, plane wave basis sets have some 

drawbacks, especially for isolated systems, where the large number of plane waves is 

required. A large number of plane waves for a well-converged calculation increases 

computational cost. Plane waves, in fact, cannot take advantage of the vacuum to reduce 

the size of the basis. In order to conveniently reduce     , smooth pseudopotentials must 

be employed. Furthermore efficient parallelization is problematic due to the mathematics 

of delocalized plane waves. The required Fourier transforms are actually very difficult to 

parallelize. 

 

Computational Details 

The present calculations were performed within the framework of the standard 

frozen-core projector augmented-wave (PAW) [57] method using DFT as implemented in 

Vienna ab initio simulation package (VASP 4.6) [64]  [65] code. In the PAW method, a 

non-linear core-correction is not necessary because it is an all-electron-like method. 

Exchange and correlation potential were treated in the generalized gradient 

approximation (GGA) as parameterized by Perdew-Burke-Ernzerhof (PBE) [25] [66]. The 

PBE functional does not contain any empirically optimized parameters, and hence works 

better on a wide range of elements. It is well known that underestimation of electron 

localization is a major failure of both DFT-LDA and DFT-GGA calculations, in particular, 

for systems with localized   and   electrons [67] [68] [69]. This failure manifests the 

general trend of DFT to underestimate the band gap and to produce incorrect metallic 

solutions for some    based metal oxides. In order to correct this shortcoming, we 

employ an on-site Coulomb correlation through the Hubbard-based U correction 
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parameter [67]  [48]  [52] in the calculations. In the present work, we have used U=7eV 

that externally provides Coulomb correlation of 7eV to       orbital. To compensate 

extra magnetic effect caused by U parameter Stoner exchange parameter        was 

used The basis sets were expanded  with plane-waves with a kinetic energy cut-off of 

400 eV, and the BZ integrations were performed using the second-order Methfessel-

Paxton method [70]. However, density-of-states (DOS) plots were generated with the 

tetrahedron method [71]. The ion positions and volumes were always relaxed without any 

symmetry constraint to allow the internal geometry and the shape of the lattice to change 

freely and until the force on each of the ion was 0.01 eV/Å or less. 

In the present work, we have studied the optical absorption as one of the most 

important optical property in PEC hydrogen production. In treating a solid, it is necessary 

to consider contributions to the absorption from various electronic energy band processes 

such as intraband, interband. However, we restrict ourselves to the interband processes 

because intraband processes are less important to semiconductors [24].  

 

Optical absorption  

All the semiconductors have a fundamental absorption edge in the near-infrared, 

visible or ultraviolet spectral region. The absorption edge is caused while electrons 

absorbing photon make an interband transition from an occupied state in the valence 

band to an unoccupied state in the conduction band. The probability of interband 

transition across the band gap in semiconductor is governed by a parameter called 

absorption coefficient, which is given by [24] [72] [73] 

 
     

        

 
 

 

 



 

38 

Where   is the frequency of absorbed light,   be the speed of light, and        

is the extinction coefficients which are directly related to the diagonal components of  

frequency dependent complex dielectric tensors,      and have the following 

expression [72] [73] [74]: 

 
       

 

√ 
[{        
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 ⁄        ]
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Once the ground state was determined, frequency dependent dielectric matrix 

had been evaluated using VASP 5.2. which calculates directly  [75] imaginary part using 

the equation : 
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and real part with the usual Kramers-Kronig transformation: 

 
            

 

 
 ∫

[        
  ]  

         

 

 

    

 

 

where P denotes the principle value and   is the complex shift. 

It is necessary to have enough  -points to have all the distinct peaks in 

absorption curve at different energies while absorption takes place beyond the threshold 

energy. Moreover, enough empty conduction bands and a large number of grid points in 

DOS are required in the optical properties calculations. We have used different 

Monkhorst–Pack  -point samplings and different number of empty conduction bands for 

different structure which were enough to utilize the maximum efficiency of our available 
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computing facility. The number of empty conduction bands were taken for       and 

        . However, 2000 grid points in DOS were used to obtain more accurate results 

in all cases. The value of small complex shift η was taken 0.1 in the Kramers-Kronig 

transformation. 

 All computations were performed using the High  Performance 

Computing Facility (HPCF) at the University of Texas at Arlington. For visualization and 

the X-ray diffraction (XRD) of the crystal structures, VESTA (Visualization for Electronic 

and Structural Analysis) [76] [77] was used.  
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Chapter 3  

Tungsten Oxide (   ) 

Introduction 

Tungsten (VI) oxide, also known as tungsten trioxide or tungstic anhydride,    , 

is obtained as an intermediate in the recovery of tungsten from its minerals [78].     is 

one of the most important, highly pure intermediates for the production of other tungsten 

compounds and tungsten metal powder. It is one of the photocatalysts that is sensitive to 

visible light  [79] [80] and shows high    activity. However, it does not show any activity 

for    evolution under any light irradiation because of the lower position of      

conduction bands in     with respect to  the        potential level  [20]. 

The structure of     is best described as a three dimensional network of corner 

sharing     octahedra. The connectivity of this network is identical to the cubic      

structure (Figure 3.1a) and the      perovskite structure where   cations are missing 

and   is replaced by   (Figure 3.1b). However, the symmetry of     is lowered from the 

ideal      structure by two distortions: tilting of     octahedra and displacement of 

tungsten from the center of its octahedron. Variations of these distortions at different 

temperatures give rise to several phase transitions. Hence, the structure of pure     

crystal is temperature dependent and belongs to five different phases between absolute 

zero and its melting point at 1700 K [22] [81]  [82] [83]. These are tetragonal or   phase, 

orthorhombic or   phase, monoclinic room-temperature (RT) or   phase, triclinic or 

  phase, and monoclinic low-temperature (LT) or   phase.  When the temperature is 

decreased from the melting point, the hierarchy of polymorphism of     adopts the  
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(a) 

 

(b) 

Figure 3.1 (a) Perspective view of the cubic structure of     , drawn as corner-linked 
     octahedra; (b) the idealized cubic      perovskite structure  [84]. 
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following sequence:   phase      phase      phase     phase   phase. 

Tetragonal (  phase)     itself exists in three different phases at three different 

temperatures [85]. The different phases and symmetry possessed by     at different 

temperatures are presented in Table 3.1. The simplified cubic structure of ideal     is 

shown in Figure 3.2. Tetragonal phases        and   ̅    at high temperatures are the 

Table 3.1 Known Polymorphs of Tungsten Trioxide. 

Crystal Phase Crystal 

System 

Space 

Group 

Z Temperature Range 

(° ) 

 

       

Tetragonal 

       2 1170-1700  [86] 

       2 1100-1170  [85] 

  ̅    4 730-1100  [87] 

      Orthorhombic      8 600-730  [88] 

      Monoclinic       8 290-600  [89]  

      Triclinic   ̅ 8 230-290  [90] [91] 

      Monoclinic    4 0-230  [92] 

 

subgroups of another tetragonal phase       ;.        corresponds with   ̅    via 

an  -point transition  [85]. Although        and   ̅    have different unit cell formula, 

but  the cell volumes are same in both cases [88] [87]. Apart from temperature 

dependence     also adopts monoclinic structure (     ) at high pressure from 1.2 kbar 

to 47 kbar [93]. However, monoclinic room-temperature (RT) or       represents the 

thermodynamically most stable phase among all. Hence, we choose       for our 

present work and following subsections in this chapter belong to only this phase. 
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(a) 

 

(b) 

Figure 3.2 The structure of    . (a) The ideal cubic structure of     and (b) The     
octahedra. The alternating     and   layers are also indicated. 
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Monoclinic Room-Temperature (RT) or       

Monoclinic room-temperature (RT) or       exists from 17  to 300   [81] 

and possess                    symmetry a with direct band gap 2.7 eV [27] . It 

exhibits the basic structural characteristics, i.e.,   forms corner-sharing     octahedra 

with corner-sharing six   atoms. It can be viewed as a distorted cubic     structure- 

three-dimensional array of slightly distorted corner-shared     in a nearly cubic 

arrangement. This structure can also be considered as consisting of       like 

chains, where the chains are connected across the   atoms, as seen in Figure 3.1. The 

smallest monoclinic unit cell of     consists of 8   atoms and 24   atoms and contains 

eight tilted     octahedra. 

 

Computational Details 

The optimization of monoclinic room-temperature (RT) or       was done 

using       Monkhorst–Pack [94]  -point sampling; however, a more refined        -

point sampling was used for density-of-states (DOS) calculation. For optical absorption 

calculation, we have used        -point sampling. The number of empty bands taken in 

the conduction band was 400. All the calculations of     were performed in the context 

of DFT-GGA. 

 

Results 

a.Structural Properties 

Figure 3.3 represents the optimized unit cell of monoclinic room-temperature 

(RT) or      . The octahedra shown in Figure 3.3a are more tilted than 

experimental [90], LDA [95], or previous GGA  [81] results, however, the size of each 

octahedron is almost identical in all cases. Unlike the general tendency of GGA, our 
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calculation produces a lower equilibrium volume compared to LDA and experimentally 

measured value, even smaller than the previous GGA calculations. The difference in 

previous GGA and our GGA can be attributed to the different parameterizations and 

implementation of different potential methods. In the previous GGA case [81], which was 

parameterized by Perdew and Zunger, incorporated ultrasoft pseudopotential whereas 

our GGA was parameterized by Perdew-Burke-Ernzerhof (PBE) incorporating projector 

augmented method (PAW). The difference in equilibrium volumes merely corresponds to 

the difference in the interactions between the octahedra, i.e., the different ‘‘angular 

potentials’’ [81]. The comparison between experimental value, LDA, and GGA is shown in 

Table 3.2. As in the literature  [81], a splitting into long and short bonds with different 

magnitude along a, b, and c directions is also evident in our case (Table 3.3). Few     

bonds along   (     ) and        ) directions are strongly elongated than that of along   

(     ) direction. The X-ray diffraction (XRD) pattern of our optimized monoclinic RT     

is shown in Figure. 3.4, and is in good agreement with experimental XRD [96]. 

Table 3.2 A comparison between experimental and DFT results for      . 

Crystal Lattice Constants     Lattice Angles (°) Volume 

     

Band Gap 

     a b c       

 

  

     

Exp. [90]  7.306 7.540 7.692 90 90.88 90 423.69 2.7 

DFT+LDA [95] 7.381 7.472 7.633 90 90.6 90 420.94 1.31 

DFT+GGA  [81] 7.55 7.62 7.83 90 90.2 90 450.46 0.90 

DFT+GGA 7.265 7.472 7.492 90 91.99 90 406.45 1.845 
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(a)                                                                  ( b) 

Figure 3.3 Optimized unit cell of monoclinic RT     viewed in two different styles: (a) 
Polyhedral and (b) ball and stick. 

 

 
 

Figure 3.4 X-diffraction (XRD) pattern of monoclinic RT or      . 
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Table 3.3 Different     bond lengths for      . (*) indicates negative direction. 

Bonds Distances (Å) Bonds Distances (Å) 

       1.89739 ( )        1.95053 ( ) 

   1.91727 (  )    1.86965 (  ) 

   1.79975 ( )     1.79931(  ) 

    2.07592 (  )     2.07401( ) 

    2.08550 (  )     2.08770 ( ) 

    1.80244 ( )     1.80089 (  ) 

       1.89703 (  )        1.95049 (  ) 

   1.91737 ( )    1.86957 ( ) 

    1.79956 (  )     1.79942 ( ) 

    2.07609 ( )     2.07399 (  ) 

    2.08543 ( )     2.08773 (  ) 

    1.80258 (  )     1.80089 ( ) 

       1.91919 ( )        1.86914 ( ) 

   1.89756 (  )    1.94807 (  ) 

    2.07729 (  )     2.07515 ( ) 

    1.80604 ( )     1.80557 (  ) 

    1.79558 ( )     1.79543 (  ) 

    2.08257 (  )     2.08860 ( ) 

       1.91881 (  )        1.86911 (  ) 

   1.89776 ( )    1.94797 ( ) 

    2.07739 ( )    2.07509 (  ) 

    1.80588 (  )     1.80578 ( ) 

    1.79575 (  )     1.79521 ( ) 

    2.08216 ( )     2.8905 (  ) 

 
b. Electronic Properties 

The electronic band structure for       is presented in Figure 3.5. which 

shows that       is a direct semiconductor with band gap 1.845 eV along    . This 
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band gap is smaller than the experimental band gap by an amount 0.855 eV although 

had a better agreement compared to any previous DFT formalism. Our calculated band 

gap is most consistent with the recent literature  [97] where 1.74 eV indirect band gap 

was found for       using FP-LAPW in DFT-GGA. Our DFT–GGA band structure 

possesses almost same features like LDA [95], however, the marked difference is higher 

band gap than LDA, even higher than the previous GGA calculation  [81]. The significant 

increment of band gap can be attributed to use of PAW method in GGA parameterized by 

PBE that might have demonstrated extra push caused by valence band towards the 

conduction band. The top of the valance band is more dispersive than that of LDA. 

Valence bands are less closely packed compared to LDA. 

 

Figure 3.5 DFT-GGA electronic band structure of      . 
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(a) 

 

(b) 

Figure 3.6 DFT- GGA a) Total and b) Partial density of states (DOS) of      . 
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Figure 3.6 shows the total and local DOS for       which have same overall 

feature as LDA  [95] except a valley around at -0.5 eV is missing in GGA. Like LDA 

Figure 3.6(b) also shows that, the valence band of     is dominated by      bands, 

while its conduction band consists of      character as one would as expected for a 

metal-oxide semiconductor. This typical feature in metal oxide facilitate favorable     

optical transition in    . 

 

c. Optical Absorption 

 

Figure 3.7 Optical absorption spectrum for DFT-GGA optimized    . 

Figure 3.7 represents optical absorption spectrum monoclinic RT     optimized 

by DFT-GGA. The optical band gap is found         which is higher than calculated band 

gap. This absorption spectrum tells that the shortest distance transition i.e., transition 

between the top of the valence band and the bottom of the conduction band is forbidden. 

This DFT-GGA absorption is very much consistent with DFT-LDA  
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Chapter 4  

Copper Tungsten (     ) 

Introduction 

Coppor tungstate,       or cuproscheelite [98], a n-type semiconductor with an 

indirect band gap 2.3 eV [99], crystallizes in a triclinic structure with symmetry   ̅  [100]. 

Crystalline       results from the reactions [101]: 

                  
 ⁄                  

                        

In the structure of      , both    and   surrounded by six oxygen atoms form 

     and     octahedra  [100] [102]. These two different octahedra connected by edge 

sharing form infinite zigzag chains. The      octahedra possess two different kinds of 

connections between them in the structure of      , which lead to alternating 

antiferromagnetic interactions along the chains [33]. Copper tungstate becomes 

antiferromagnetically ordered below 23.0 K [103]. The magnetic unit cell is the double of 

the unit (a,b,c) along ‘a’ direction and identical to that of        [104]. Although       

is triclinic, its structure is topologically related to that of monoclinic wolframite (    

 )  [99] [103].      octahedra present a Jahn-Teller (JT) distortion to remove the 

degeneracy of         orbitals. This distortion elongate the octahedron causing 

reduction in the  symmetry from monoclinic to triclinic [99] [101].     octahedra are more 

tilted compared to wolframite. The deviation of   from   ° reflects the symmetry lowering 

and hence, the Jahn-Teller (JT) distortion. In the triclinic structure of      , there are 

four distinct oxygen atoms (refer here as           and   ) which occupy four different 

sites whereas monoclinic wolframite has only two distinct oxygen atoms (refer here as 

  , and   ) occupying two different sites. The structural, electronic, and optical 
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properties of      , which is a wolfarmite structure in      family, are presented in 

Appendix B to compare with      . 

 

Computational Details 

The optimization of       was done using       Monkhorst–Pack [94]  -

point sampling in both DFT and DFT+U cases, however, a more refined         K-point 

sampling was used for density-of-states (DOS) calculation. We have used     

  Monkhorst–Pack  -point sampling for optical calculations of the ground state       in 

both DFT and DFT+U that was the maximum efficiency of our current computing facility 

at the University of Texas at Arlington. The number of empty bands used in both DFT-

GGA and DFT+U-GGA case was 300. 

 

Results 

a. Structural Properties 

For our present work, we optimize four possible magnetic configurations:    spin-

unrestricted,     spin-restricted, and      two possible antiferromagnetic (AFM) 

arrangements- for triclinic (  ̅) and wolfarmite (     )      . We choose the wolfarmite 

structure to optimize because of its topological proximity with triclinic (  ̅)      . The 

two possible antiferromagnetic (AFM) arrangements considered here are:       with 

different spins along ‘a’ direction referred as AFM1 and     electrons with the same spins 

along ‘a’ direction referred as AFM2 from now. Our optimization process determines that 

      adopts AFM2 triclinic phase as ground state in both DFT- GGA and DFT-GGA +U 

cases. The optimized energy and volume comparison between different structures are 

presented Table 4.1. In each magnetic phase, wolfarmite had the higher energy than that 

of triclinic one. On other hand, spin restricted configuration had the highest energy 
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(             ) compared to gound state among all triclinic magnetic phases. For this 

reason, DFT-GGA +U optimization was restricted to only three triclinic magnetic phases: 

spin-unrestricted, AFM1 and AFM2. The DFT-GGA +U optimizes AFM2 triclinic        

with lattice parameters              Å,             Å,             Å,    91.4936°, 

         °, and    84.3218°. These values are in good agreement with the 

literatures  [50] [51] [102] [100] [105] [98] [106]. A comparison of energies, volumes, and 

lattice parameters between DFT-GGA, DFT+U-GGA and experimental results for triclinic 

      are shown in Table 4.2.  

Table 4.1 DFT-GGA optimized energies and volumes of different structures for.      . 

Magnetic phase Structure DFT 

Energy (eV) Volume (  ) 

Spin-Unrestricted Triclinic  -92.406 131.29 

Wolframite -92.298 128.56 

Spin-Restricted Triclinic -92.324 131.07 

Wolframite -92.171 127.93 

AFM1 Triclinic -92.428 131.39 

Wolframite -92.178 128.06 

AFM2 Triclinic -92.481 131.47 

Wolframite -92.262 128.22 
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(a) 

 

(b) 

Figure 4.1 The two different models of DFT+U-GGA optimized structures for AFM2-
       are shown in a) ball-and-stick and b) polyhedral, respectively ‘   and ‘   refer 

here spin up and spin down, respectively. 
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Figure 4.2 X-ray diffraction pattern for DFT+U-GGA optimized AFM2-     .  

 
Table 4.2 A comparison of energies, volumes, and lattice parameters between DFT-

GGA, DFT+U-GGA and experimental results for triclinic      . 

 Magnetic 
Phase 

Energy 
(eV) 
 

Volume 

(  ) 
 

Lattice Constants ( ) 
 

Lattice Angles (°) 
 

a b c   
 

  
 

  
 

DFT Spin-

unrestricted 

-92.406 131.29 4.642 5.822 4.888 91.79 92.06 -92.41 

AFM1 -92.428 131.40 4.641 5.832 4.886 91.76 92.11 -92.43 

AFM2 -92.481 131.47 4.639 5.832 4.892 92.02 92.06 -92.48 

DFT+U Spin-

unrestricted 

-88.367 131.37 4.652 5.809 4.888 91.53 91.83 84.36 

AFM1 -88.366 131.41 4.650 5.815 4.887 91.51 91.84 84.33 

AFM2 -88.378 131.42 4.653 5.809 4.888 91.49 91.77 84.33 

Exp. AFM1   4.703 5.839 4.878 91.67 92.45 82.81 
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In AFM2 configuration, as shown in Figure 4.1a, all the    atoms in a single layer 

along ‘a’-axis have same spins and produce local magnetic moment along that layer 

which differ with the literatures  [103]  [106]. However, four planar      have shorter 

distances (~2 Å) than two axial      distances (2.26-2.36  Å)- is an excellent 

agreement with the experimental result [99]. The rest of the structural features remain 

same in both DFT+U-GGA and experimental cases. The XRD, as shown in Figure 4.2, 

shows a good agreement with the experimental XRD [99] as well. 

b. Electronic Properties 

Our DFT-GGA electronic band structure calculation produces a very narrow but 

finite gap           for AFM2-      . This finite band gap was also observed with 

almost twice as of our value inm the literature  [106], however, was unnoticed in 

literatures  [99] [107] [108]. Two empty bands which are seen right after Fermi level for 

AFM       shown in Figure 4.3a, were also unperceived in the 

literatures  [99] [107] [108]. These empty bands next to Fermi level often raise an issue of 

the credibility of conventional DFT calculation giving an incorrect band gap for highly 

localized    states cotaining metal oxides. DFT+U-GGA calculation, as shown in Figure 

4.3b, opens up a gap (0.707 eV), however, too small to be compared with experimental 

band gap. The overall feature of band structure in DFT+U-GGA calculation remains same 

compared to DFT-GGA. M. V. Lalić et al.  [109] in their recent work showed that band 

gap problem could be successfully tackled with the use of a modified Becke-Johnson 

(mBJ) exchange potential. Although their result had a better agreement with the 

experiment but could not present the rationales of       shift by an amount 1.5 eV 

towards      which is highly unlikely for strongly localized orbital like    3d. We leave 

this band gap issue for future work since       is not the primary focus for the present  
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(a) 

 

(b) 

Figure 4.3 Electronic band structure calculation of triclinic AFM2-     . (a) with DFT-
GGA and (b) with DFT+U-GGA. 



 

58 

work. In Figure 4.3b, we see that indirect band gap (eV) located along    . The 

valence band along     is very flat suggesting higher effective mass of holes, along 

other symmetry points bands are more or less dispersive. The conduction band is divided 

into two regions. The first region contains only two bands which are  dispersive 

throughout the all symmetry points. On the other hand, conduction bands of the second 

region are flat along    , and    , however, dispersive along the other symmetry 

points. 

DFT+U-GGA total and partial DOS plot of AFM1 triclinic       are presented in 

Figure 4.4a and Figure 4.4b, respectively. Figure 4.4b depicts the contribution of one 

atom from each species. From Figure 4.4b, the contribution at the top of valence band 

(VB) comes from the hybridization of      with      . Both       and      dominant 

almost equally in DFT+U-GGA case. Since the no of   atoms are four times than that of 

   atoms per unit cell, the top of the valence band in total DOS plot (Figure 4.4a) is likely 

to be   orbital dominated. In contrary,       dominance is a way prominent than      in 

DFT-GGA (Figure 4.5b). Both      and      contributions around the valence band 

edge are very small like    . On the other hand, bottom of the conduction band of first 

region is composed of     ,     , and       orbitals (with the dominance of the latter). 

The next higher unoccupied conduction band which is shifted by almost 0.9 eV with 

respect of DFT+-GGA calculation (Figure 4.5b) are mostly      and      dominated. 

This      dominated higher conduction band resembles with the bottom of conduction 

band for insulating solution in the literature [59]. All of our DFT+U-GGA findings for AFM2 

triclinic       are in agreement with the literature  [106]. DFT-GGA  
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(a) 

 

(b) 

Figure 4.4 (a) Total and (b) partial density of states (DOS) of DFT+U-GGA AFM2-     . 
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(a) 

 

(b) 

Figure 4.5 (a) Total and (b) Partial density of states (DOS) of DFT-GGA AFM1-     . 
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c. Optical Absorption 

Figure 4.6a and 4.6b portray the optical absorption spectrum of AFM       

optimized in DFT-GGA and DFT+U-GGA schemes, respectively. Two absorption peaks , 

one is smaller than the other, in both cases. The DFT-GGA absorption spectrum exhibits 

the first peak at around 0.5 eV and the onset of the absorption is found at around     . 

On the other hand, the first peak in DFT+U-GGA absorption spectrum is observed at 3 

eV shifted by 2.5 eV with respect to DFT-GGA counterpart. The onset of absorption takes 

place at around 2.1 eV which does not correspond to electronic band gap in DFT+U-

GGA. Both these shifts compared to DFT-GGA happen due to U=7 eV parameter 

employed to       which splits bands (mostly      ) populated around Fermi level and 

pushes the empty       bands up. Since top of the valence band and bottom of the 

conduction band are dominated by       and     , respectively and     transition is 

forbidden, the origin of the both peaks in both DFT-GGA and DFT+U-GGA cases can be 

attributed to the electron transfer from occupied   stats to empty   or states occupied   

stats to empty   states. In DFT-GGA (Figure 4.5b),      contributions are observed just 

below the top of the valence band. Hence, the small peak observed at 0.5 eV in DFT-

GGA corresponds to transition from occupied      bands to unoccupied       bands. On 

the contrary, top of the valence band in DFT+U-GGA (Figure 4.4b) is contributed 

singnificantly by      The smaller peak observed at around      in DFT+U-GGA 

corresponds the transition from top of the valence band to the bottom of higher 

unoccupied conduction band dominated by     . Another peak is observed at 4.5(4) eV 

in DFT+U-GGA (DFT-GGA) absorption spectrum is attributed to the electron transfer 

from occupied      states below the top of the valence band to unoccupied conduction 

     states or from the top the valence band to higher unoccupied  
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(a)  

 

(b) 

Figure 4.6 Optical absorption sepectrum for AFM2-     : a) DFT-GGA and b) DFT+U-
GGA optimizations., respectively. 
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     states in the conduction band This absorption peak observed almost at the 

same location in both DFT-GGA and DFT+U-GGA cases since neither      nor      are 

affected substaintially by U parameter. 
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Chapter 5   

Copper Bismuth Double Tungstate            

Introduction 

Copper Bismuth Double Tungstate or           is the least  known and 

investigated compound in the double-tungstate family. The crystal structure was 

determined to be triclinic [100]. Moreover, it was claimed that the crystal structure of this 

material was related to both the triclinic            and the monoclinic            

and took a middle position between the          and          type. Our DFT+U 

optimization determines that the crystal structure of this material resembles most with 

          . The determination of crystal structure using DFT+U-GGA was convincing 

enough that led us to calculate photocatalytic physical properties such as band gap, 

density of states, absorption, and cohesive energy with respect to optimized  theoretical 

structure rather than experimental counterpart. It is noted that these physical properties  

were calculated for the first time which are yet to be measured . In the beging of our 

work, we are completely unaware of the pre-existence of this material. Our work was 

started off with a theoretical perspective to predict a suitable photocatalyst and had been 

evolved through a completely different pathway than experimental approach. We didn’t 

use any experimental precursors to model the unit cells of         . Our DFT+U 

optimized structure was evolved from       with    addition whereas       ,    , 

and       precursors were accommodated to synthesize it.  

 

Crystal Structure Modeling 

In our present work, the evolution of          crystal structure was done by 

comprehensive database searching to find suitable motif structures. Motif structures are 

the well-known structures of those synthesized materials from which the unit cell of new 
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compounds is possible to make. It is done by replacing ion(s) in the motif crystal structure 

by the equal number of chemically similar ion(s) of the material to predict. The first 

outcome of our database search was      . In our case, the first          unit cell 

was formed by substituting two    atoms in AFM-      unit cell          by two    

atoms, so that we had equal number of    and    per unit cell, making          an 

alloy rather than    doped      . The possible different arrangements of     and    

were also taken. The second outcome was      structures in 

                                            family. We replace     atoms 

in      by one    and one   , respectively to form         . Then, the unit cells were 

made double, to have all possible arrangements of    and   . The final outcome was to 

replace both   and   in        by    and    or only   in         by   . Each of our 

unit cells of          contains 24 atoms.  

To determine the ground state structure of         , we optimize both spin-

unrestricted and antiferromagnetic electronic configurations of different possible crystal 

structures and configurations as mentioned above. The choices were made on several 

rationales rather than random. Since          is evolved from triclinic (  ̅)      , we, 

first of all, optimize triclinic (  ̅) structure for         . We choose three different triclinic 

(  ̅) unit cells differed by only lattice angles. In first case, we keep the optimized atomic 

coordinates and lattice parameters of ground state       intact to form the unit cell of 

        . Hence we name it as pristine-triclinic-        . In second case,          

unit cell was formed using the same   ̅ symmetric atomic coordinates and lattice 

constants of ground state       with         °. This structure is longer 

possesses pure triclinic symmetry and is exposed to orthorhombic modification. Hence, 

we name it ortho-triclinic-        . Like the second one, the third triclinic unit cell 

differed only in      and   which were chosen arbitrarily. The different sets of         are 
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   °    °    ° ,     °   °   ° , and    °   °    ° , respectively. The reason to choose 

three different triclinic unit cells is to optimize       with presence of    under more 

degrees of freedom. We could have extended degrees of freedom including arbitrariness 

of lattice constants, however, restricted ourselves to that of  lattice angles only.  

Next, we optimize monoclinic wolframite (     ) , as it is topologically related to 

that of triclinic       [99]. It is well known that compounds in      family crystallize in 

different structures according to the cationic radii and belong to tetragonal scheelite 

structure (   
 ⁄
) for            [110]. As atom   in      is replaced by both    and   , 

which have cationic radii             ,  and             , respectively, to form 

        , the scheelite structure was also optimized. Since the cationic radii      and 

      are different for the same position ‘A’, it is likely for          would belong to any 

of the distorted scheelite structure. Hence, we optimize all possible phase structures from 

scheelite (               )  [111] [112] [113] [114]  [115] as well. Although        

   structures are distorted from scheelite, we eliminate those due to the lack of required 

  coordinations in the structure. We optimize          structures those are derived 

from        family such as         ,         ,         ,              

        ,         , and          because of similar stoichiometry. The 

optimization process also encompasses all possible combinations of    and    in the 

         unit cells. In addition to mineral database structures’ optimization, we optimize 

a possible structure for          generated by StructurePredictor  [14] [116] as well. 

 

Computational Details 

        -point samplings were used to relax the ions in DFT-GGA and 

DFT+U-GGA optimizations for         . All DOS calculations for DFT-GGA and 
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DFT+U-GGA were done with maximum possible higher  -points which are        and 

       , respectively. The        -point sampling was used in optical absorption 

calculation. This sampling was the maximum efficiency of our available computing facility 

for optical absorption calculation. The number of empty conduction bands taken for 

         were 350. 

 

Results 

Our DFT+U-GGA calculation optimizes spin-unrestricted ortho-triclinic 

configuration as the possible ground state structure for         . Although theoretical 

structure have the lowest energy, the energy difference (          V) with the 

experimental counterpart is so minimal that it could be the possible to have degenerate 

ground state structures of         . Therefore, we proceed our work with respect to our 

predicted structure and following discussions are based on that. Both DFT-GGA and 

DFT+U-GGA optimized energies and volumes, respectively for all possible structures of 

         are shown in Table 5.1. U parameter was applied to only those structures 

which had energies -94 eV per primitive cell or lower than that in DFT-GGA optimization.  

 

a. Structural properties 

DFT+U-GGA calculation optimizes ortho-triclinic structure as possible ground 

state structure with lattice parameters           ,           ,          ,        °, 

       °, and        °. The lattice constants agree well with the experimental 

counterpart, however, lattice angles differ significantly. Hence, the shapes of unit cells of 

two structures turn out to be different shown in Figure 5.1. The unit cell of our predicted 

structure has almost rectangular shape while the unit cell of experimental adopts 

parallelogram shape. However, the cross-sections of atomic arrangements of both 
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Table 5.1 Optimized engeries and volumes for diffent motif structures of      2 8 

  

 

Motif Structures 

Energy  

(DFT-

GGA) 

   

Volume 

(DFT-

GGA) 

   

Energy 

(DFT+U-

GGA) 

   

Volume 

(DFT+U-

GGA) 

   

 

 

 

 

         

 

 

 

 

 

  

                                      -94.441 151.07 -92.063 151.56 

 

 

     

Wolframite -94.437 150.90 -92.059 151.40 

Scheelite -93.848 152.12   

Fergusonite -93.730 151.17   

Raspite -94.105 162.21 -91.642 162.56 

Alumotantite -93.393 147.29   

 

 

 

       

         -94.438 150.99 -92.059 151.43 

         -94.432 150.80 -92.060 151.48 

         -94.433 150.84 -92.060 151.46 

         -94.486 156.80 -91.702 156.44 

           -94.426 150.64 -92.056 151.32 

         -94.388 154.33 -91.972 154.09 

         -94.428 150.68 -92.055 151.30 

StructurePredictor  -94.126 146.02 -91.699 147.07 

 

structures look similar. Although our predicted structure is derived from orthorhombic 

modification of triclinic structure, adopts triclinic symmetry. The lattice angles   and   

vary by fraction of a degree, and this fractional difference can be neglected in all practical 

aspects; the optimized structure then reduces to monoclinic structure. The possible 

ground state structure for          is shown in Figure 5.2. In Figure 5.2, both    and   

form      and     octahedra, respectively similar to experimental structure. Unlike    

and  , each    atom form      tetrahedra rather than      as in      . Like predicted  
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structure each    atom has also four nearest neighbors, however, does not enclose any 

volume rather it forms a plane (see Figure 5.1) spanned by four   . This discrepancy can 

be attributed to the tilt of the unit cell of the experimental structure which forces four    

surrounding each    atom to be laid symmetrically on the same plane. All the polyhedra 

formed by   ,  , and    being connected with each other by corner sharing oxygens 

form a zigzag layered structure.      distances, which are on the average ~2.09 Å, 

almost remain same in different directions contrary to that in      . Four different 

       angles are observed in each      tetrahedra which are on the average 

     °,       °,    °, and      °. Hence, like      octahedra in      ,      tetrahedra 

in         . The interatomic distances between   ,  , and   are presented in Table 

5.2 

Table 5.2 Interatomic distances for DFT+U-GGA optimized          

Bonds Distances     Bonds Distances     
          1.81391           1.81386 

     2.09108      1.97477 

     1.97479      2.09102 

      1.81000       1.81014 

      2.21356       1.87995 

      1.87995       2.21360 

          1.81020           1.81006 

     2.21363      1.87998 

     1.87994      2.21360 

     1.81380       1.81388 

      2.09098       1.97480 

      1.97478       2.09111 

           2.39061            2.39080 

     2.31704      2.31655 

     2.29844      2.29876 

     2.39076       2.39045 

      2.31679       2.31726 

      2.29872       2.29841 

           2.06841            2.06843 

     2.09160      2.09167 

      2.06840      2.06846 

      2.09167       2.09158 
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(a) 

 

(b) 
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(c) 

 

(d) 

 

Figure 5.1 Crystal structures of          supercell (192 atoms). Figure (a) and (b) show 
ball-and-stick models for DFT+U-GGA optimized and experimental structures, 
respectively. Polyhedral models for DFT+U-GGA optimized and experimental structures 
are shown in Figure (c) and (d), respectively. 
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(a) 

 

Figure 5.2 DFT+U-GGA optimized crystal structure of          (24 atoms) is shown in 
ball-and-stick model (left) and polyhedral model (right). 
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          V  

(a) 

 

          V  

(b) 

Figure 5.3 X-Ray diffraction (XRD) patterns for         : DFT+U-GGA optimized 
structure (a) and experimental structure (b). The total enegry differences are shown 
bellow the XRD plots of corresponding structures are taken with respect to lowest energy 
structure. 
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Figure 5.3 shows X-Ray diffraction (XRD) patterns for both DFT+U-GGA 

optimized and experimental structures for          The engery differences with respect 

to lowest energy are shown under the XRD patterns of corresponding structures. Both 

theoretical and experimental XRDs have many features in common. Like experimental 

XRD, the large peaks in theoretical XRD are also observed, however, are less in number, 

seemed two or more peaks being merged with each other form a single peak, and shifted 

by few angles on the right side. This shifting trend is even higher for the peaks at smaller 

angles. The peaks between   ° to   ° are similar to experimental counterpart, and 

shifting trend is very minimal. All the dissimilarities observed between two structures 

reftlect differences in the shape of unit cells and     . 

 

Cohesive energy 

The cohesive energy is a measure of cohesion of atoms in solid aggregates 

manifesting the thermal stability of solids. Hence, the cohesive energy is the solid state 

analog of the atomization energy or the energy needed to break a solid apart into isolated 

atoms i.e., 

                 ∑   
        

  

 

where    represents the different atoms that constitute the solid. It is well known, 

all stable arrangements of atoms in solids are such that the potential energy is minimum. 

The cohesive energy, which corresponds to the attractive part of the potential energy, 

tells that lower the cohesive energy, more the cohesion of atoms, and higher the thermal 

stability of the solids.  

Our calculated cohesive energy per atom for DFT+U-GGA optimized          

was           which is lower than that of                       This indicates that 
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         has even higer stability than         . The calculated cohesive energies of 

     ,       ,          , and          are shown in Table. 5.3 

Table 5.3 Cohesive energies of few different metal oxides. 

Compound Cohesive Energy 
per atom (eV) 

Compound Cohesive Energy 
per atom (eV) 

      -4.367          -2.476 

AFM-       -2.721          -2.547 

 

b. Electronic properties 

Figure 5.4 shows the DFT+U-GGA optimized band structure of ortho-triclinic 

         calculated along the special symmetry points in the Brillouin zone. Several 

aspects of this band structure are noted. Firstly, the band structure calculation predicts 

that          has an indirect band gap 1.43 eV between V and R symmetry points. Due 

to the lack of symmetry about the Brillouin zone center, the  -point does not contribute 

either to the valence band maximum or to the conduction band minimum. The 

conductions bands along   to X are less dispersive indicating higher effective mass of 

electrons. However, the conduction bands along other symmetry points are dispersive. 

The valence bands along all symmetry points except along V to R are less dispersive 

suggesting higher effective mass of holes in these regions. The valence bands around -1 

ev contributed mostly by    3d orbitals, which are very localized.  

Figure 5.5 represents density of states (DOS) calculations for for DFT+U-GGA 

optimized         . In Figure 5.5b,       being hybridized with       dominates the top 

of valence band. This hybridization causes an uplift of VB that reduces band gap 

compared to    . The      , which was found as an anti-bonding contribution at the top 

of the valence band for       [11] does not contribute here at all in the upper region of 

the valence band. The contributions of       and      around the band edges are similar 
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to that of the monoclinic     parent structure. The most contribution at bottom of the 

conduction band comes from     . Like      ,        , and          [11]  [20] [21] 

      lowers the conduction minima through the coupling between      ,       ,and  

    . Moreover,       pushes       mid gap states downward which are found in 

     . Those       mid gap states are hybridized at Fermi level and hence, no longer 

observed in         . Even though the       and       orbital contributions are small 

around both the band edges, their presence would facilitate favorable     optical 

transitions. 

 

Figure 5.4 Electronic band structure of DFT+U-GGA optimized          
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(a) 

 

 
(b) 

Figure 5.5 Density of states (DOS) plot for DFT+U-GGA optimized         : total (a) 
and partial (b). 
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c. Optical absorption 

Figure 5.6 represents the optical absorption spectrum for DFT+U-GGA optimized 

structure for         . The absorption is not isotropic. The optical band gap is  1.5 eV 

which corresponds to band gap in the electronic band structure calculation. Hence, the 

contribution to the first peak in absorption curve comes due to the electron transition from 

the occupied topmost valence band to unoccupied conduction bands. Since     

transition is forbidden and       contribution is very small at the top of the valence band, 

optical absorption can be attributed to the transition of      electrons from the top of the 

valence band to the conduction band. The steep absorption curve indicates that electron 

transition starts immediately and at a higher rate once electrons absorb energy around 

1.5 ev. The long tail of the absorption curve verifies the indirect nature of calculated band 

gap. 

 

Figure 5.6 Absorption spectrum for DFT+U-GGA optimized         . 
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Chapter 6  

Conclusion and Future Directions 

Conclusion 

In our work, we have been successful to predict a photocatalyst with moderate 

band gap and improved photocatalytic properties compared to         . Although two 

different precursors in theoretical and experimental procedures, respectively were used 

to form         , had negligible amount of energy difference (          V) which is 

quite exceptional in the history of predicting the crystal structure of a new material. This 

result validates and bolsters the credibility, necessity, and methodology of predicting 

crystal structure using DFT with the help of mineral database search. To our best 

knowledge, no other crystal structure prediction done through solely the theoretical 

pathway was so convincing as our work. This negligible amount of energy difference 

indicates that DFT+U-GGA optimized structure is a strong candidate to be the possible 

ground state structure of         . The structure is found to have triclinic  symmetry. In 

our optimized structure,   was found to form      octahedra layer like    . On the  

other hand,     was found to form      rather than       as in      .  

Our calculated band gap was 1.43 eV- a significant amount of band gap 

reduction compared to          (1.96 eV). The dispersive conduction bands predict 

higher mobility of electrons,  even than         . The DOS calculations confirmed the 

top of VB is dominated  by       like       while the bottom of  CB is dominated by 

both      and      , similar to      based oxides. These combined effects reduced 

the band gap significantly compared to         . Hence, our work provides another 

successful example of band gap reduction forming multications based metal-oxides.    

addition to       removes the       mid gap states found in      . Hence, we find 

absorption is one step process and the curve is very steep similar to         . Little 
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contributions from   orbitals around the band edges facilitate this absorption through 

favoerable     optical transition. Hence, it is expected to have similar higher absorption 

rate like         . The cohesive energy of           was found lower than that of 

          which manifests higher stability of          than that of           We 

could not verify all our findings  because the sole literature available for          

encompasses only structural aspect.  

The band edge positions with respect to water splitting potentials were not 

calculated in our work. As       in          secures suitable band edge positions with 

respect to redox/oxidation potentials uplifting the conduction band, the similar or even 

more upward push by       in          is expected. And this expectation would not be 

metaphysical at all since        has higher energy than      .  

If our predicted material can be synthesized at low production cost like 

        , 15% or above solar-to-hydrogen conversion efficiency through PEC process 

will be no longer an elusive goal. If the measured band gap is found higher than 2.2 eV in 

future, the targeted 15% solar-to-hydrogen conversion the efficiency will be retarded. In 

that situation, we need to predict another better photocatalyst. This can be done using 

the similar pathway- addition of multications to binary metal oxides- that has been 

followed to reduce band gap in         . Our successful prediction for          

portrays that    based double tungstates may be suitable candidates for PEC process if 

   orbital based materials are selected to replace   in        .  Moreover, it is 

necessary to select those elements in periodic table which are not rare on the earth and 

have low price value on the market while predicting a suitable photocatalyst. 

In conclusion, if our prediction becomes successful, commercialization of 

hydrogen as fuel will be a matter of time. The whole world will be able to reduce     

emission significantly and stop global warming in short period of time. If it is not, our 
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present work still provides a useful information for designing and synthesizing a new 

material for PEC in the solar-to-hydrogen production technology to be efficient in the near 

future. 

Future Directions 

Both GGA and LDA including Hubbard corrections (U parameter) predict the 

bottom of conduction band is       contributed which is inconsistent with the 

experimental result. Furthermore, calculated band is very narrow in both GGA and LDA 

schemes, even with U parameter. However, both higher band gap (2.3 eV) and      

dominated conduction band edge were measured experimentally for AFM      . The 

lower band gap problem has been resolved partially using modified Becke-Johnson 

(mBJ) exchange potential in [109] but       contributed conduction band edge persists. 

The contradiction between theory and experiment should be resolved. In future, we 

intend to solve band gap and band edge contribution issue for AFM      . Furthermore, 

performance of a photocatalyst highly depends on its band gap. Hence, it is extremely 

essential to calculate the band gap as accurate as possible. However, underestimation of 

band gap is a typical feature in standard DFT. Although U parameter employed to highly 

localized orbitals improves DFT result, does not guarantee the band gap to be consistent 

with experimental counterpart. Since the electronic description is more accurate while 

DFT incorporates hybrid functionals, all our future DFT calculations can accomplished 

using hybrid functionals. In addition, we have allowed only one motif structures of 

         to have three angular degrees of freedom in the optimization process. To 

enhance the probability of crystal structure prediction more accurate, more crystalline 

degrees of freedom (lattice parameters and atomic positions) for all possible motif 

structures can be incorporated in our future optimizations. 

 



 

82 

. 

Appendix A 

Silver Bismuth Dobule Tungstate (        ) 
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         belongs to wolframite ( S. G. No. 13, Z=2) structure. In this structure, each W 

atom is coordinated to six   atoms, forming octahedral     structural units (Figure A.1). Two 

distinct oxygen atoms (referred to as    and   ) occupy two different sites in this structure: type 

   is connected to one tungsten atom with a shorter bond length and to two     atoms with 

larger bond lengths. On the other hand, Type    is bonded to two different   atoms and to one 

     atom. Thus, the overall structure is made up of hexagonally close-packed oxygens with 

certain octahedral sites occupied by      and   cations. The X-ray diffraction pattern for DFT-

GGA optimized          is shown in Figure A.2. 

 

 

Figure A.1 Crystal Structure of DFT optimized         . 

Figure A.3 shows the band structure of the wolframite          structure calculated 

along the special symmetry points in the Brillouin zone. The fundamental band gap of 

          was found to be an indirect gap of 1.96 eV, where the conduction band minimum 

occurs between the D and Z points. The minimum direct gap of 2.02 eV occurs in between the 

Y and E points. Both of these gaps are smaller than the experimentally measured band gaps 

of~2.75 eV . However, this underestimation of energy band gaps is generally a typical feature of 

DFT calculations. 
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Figure A.2 X-ray diffraction (XRD) pattern for DFT-GGA optimized         . 

 

Figure A.3 Electronic band structure of DFT optimized         . 
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Figure A.4 Partial density of states (p-DOS) plot of DFT optimized         . 

 
Figure A.4 shows the partial density-of-states (p-DOS) plot for         . From this 

plot, it is clearly seen that the upper part of the valence band is dominated by contribution from 

     . In         , the valence band is “modulated” by presence of the       level. This is 

also responsible for the uplift of the valence band edge compared to the     case. As for the 

conduction band,      was found at the conduction band minimum, though the lower part of 

the conduction band is dominated by     levels. Even though the      and       orbital 

contributions are small around both the band edges, their presence would facilitate favorable 

    optical transitions. The optical absorption spectrum of          is shown in Figure A.5. 
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Figure A.5 Absorption spectrum for DFT optimized         . 

In Figure A.5 the optical band gap is found 2.02 eV which corresponds to the calculated 

direct electronic band gap. The long tail of the absoption curve verifies that the fundamental 

band gap is indirect.  
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Appendix B 

Zinc Tungstate (     )  
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Zinc Tungstate (     ) crystallizes to wolframite structure (     ).with direct band gap 

(3.3 eV) [117]. The lattice parameters are:           ,           ,           , and   

     °. In      , both   .and   form      and .     octahedra, respectively. These 

octahedra are connected by edge sharing. There are two   atoms that occupy two different 

sites. The DFT-GGA optimized structures and the corresponding XRD, electronic band 

structure, partial DOS plot and optical absorption spectrum are shown in B.1, B.2, B.3, B.4, and 

B.5, respectively. 

 
  

                                (a)                                                                              (b) 

Figure B.1 Crystal structure of DFT-GGA optimized      : (a) ball-and-stick model and (b) 
polyhedral Model 
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Figure B.2 X-Ray diffraction (XRD) pattern of DFT optimized      . 

 
Figure B.3 Electronic band strucutre of DFT optimized      . 
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Figure B.4 Partial density of states (p-DOS) of DFT optimized      . 

 
 

Figure B.5 Absorption spectrum for DFT optimized      . 
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