
NUMERICAL INTEGRATION OF MATRIX RICCATI DIFFERENTIAL

EQUATIONS WITH SOLUTION SINGULARITIES

by

CHARLES K GARRETT

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT ARLINGTON

May 2013

Copyright c© by Charles K Garrett 2013

All Rights Reserved

To my wife Alissa and my parents:

William and Tammy Glaze, Charles and Rita Garrett, David and Shirley Grissom.

ACKNOWLEDGEMENTS

Who does one acknowledge for a lifetime of learning? Certainly my parents

were instrumental for always letting me be an odd child who enjoys reading technical

books. Also, my mother always took the time when moving to make certain we lived

in a good school district.

Many of my teachers were also instrumental. Of special importance were the

math club sponsors during the 6th grade in Hoover elementary school in Azle, TX

who made me realize my talent for mathematics. Then several teachers in my high

school, North Crowley High School, in Fort Worth, TX were instrumental in my

upbringing. Particularly my science teachers and band directors.

I owe my love of mathematics to the professors at Texas Christian University. I

did not know what field I wanted to major in, but the mathematics department there

swayed me. Finally, I am indebted to my advisor, Ren-Cang Li, for not only teaching

me, but for the contacts he has enabled me to establish.

Last but not least, I thank my wife Alissa for two reasons. The first is, if one

doesn’t thank their wife in a dissertation that could be bad. Second, when I get in

to work mode, I’m not always the most pleasant person to be around, but she always

took it well.

January 18, 2013

iv

ABSTRACT

NUMERICAL INTEGRATION OF MATRIX RICCATI DIFFERENTIAL

EQUATIONS WITH SOLUTION SINGULARITIES

Charles K Garrett, Ph.D.

The University of Texas at Arlington, 2013

Supervising Professor: Ren-Cang Li

A matrix Riccati differential equation (MRDE) is a quadratic ODE of the form

X ′ = A21 + A22X −XA11 −XA12X,

where X is a function of t with X : R −→ Rn×m and the Aij’s are constant or functions

of t with matrix sizes to respect the size of X. It is well known that MRDEs may

have singularities in their solution even if all the Aij are constant.

In this dissertation, several different ideas for the meaning of the solution of an

MRDE past a solution singularity are analyzed and it is shown how all these ideas are

related. Then, a class of numerical methods are given which respect all these ideas.

Finally, a robust numerical integration scheme is given based on these numerical

methods and several examples are shown to validate the numerical integration scheme.

v

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iv

ABSTRACT . v

LIST OF ILLUSTRATIONS . viii

LIST OF TABLES . x

Chapter Page

1. Introduction . 1

1.1 Introduction . 1

1.2 Applications . 2

1.2.1 Control Theory . 3

1.2.2 Linear Boundary Value Problems 4

2. Theory of Solution Singularities of MRDEs 7

2.1 Linear Transformation . 7

2.2 Flow on a Grassmannian . 10

2.3 Generalized Inverse Property . 11

2.3.1 Using the Generalized Inverse Property 14

2.4 Spacing of Singularities . 18

3. Theory of Numerical Solutions to MRDEs with Solution Singularities . . . 20

3.1 Using Radon’s Transformation . 20

3.1.1 Fixing the Problem of S−1 . 22

3.1.2 Example . 23

3.2 Möbius Schemes . 28

3.3 GIP Integrators . 29

vi

4. Numerical Implementation of GIP Integrators 32

4.0.1 Runge-Kutta Methods . 32

4.1 Embedded Runge-Kutta Methods . 35

4.1.1 Step Size Control . 36

4.1.2 Embedded Runge-Kutta Formulas 37

4.2 Global Error Estimation . 38

4.3 Computation of the Initial Timestep 39

4.4 The Algorithm . 40

5. Examples . 44

5.1 Example 1 . 44

5.2 Example 2 . 47

5.3 Example 3 . 52

5.4 Example 4 . 56

5.5 Example 5 . 59

REFERENCES . 62

BIOGRAPHICAL STATEMENT . 65

vii

LIST OF ILLUSTRATIONS

Figure Page

2.1 Using (CMRDE) to pass a singularity 15

3.1 X(t) computed using the Radon method 25

3.2 X(t) computed using the Radon inverse method 26

3.3 X(t) computed using the Radon QR method 26

3.4 Relative error using the three Radon methods 27

3.5 Condition number of S(t) using the Radon method 27

5.1 Example 1. Radon inverse method with DOPRI 45

5.2 Example 1. Radon inverse method with ESDIRK 46

5.3 Example 2. Radon inverse method with DOPRI 48

5.4 Example 2. Radon inverse method with ESDIRK 49

5.5 Example 2. Radon QR method with DOPRI 50

5.6 Example 2. Radon QR method with ESDIRK 51

5.8 Example 3. Radon inverse method with DOPRI 53

5.7 Example 3. Solution of (MRDE) . 54

5.9 Example 3. Radon inverse method with ESDIRK 55

5.10 Example 3. Radon QR method with DOPRI 55

5.11 Example 3. Radon QR method with ESDIRK 56

5.12 Example 4. Radon inverse method with DOPRI 57

5.13 Example 4. Radon inverse method with ESDIRK 57

5.14 Example 4. Radon QR method with DOPRI 58

5.15 Example 4. Radon QR method with ESDIRK 58

viii

5.16 Example 5. Radon inverse method with DOPRI 60

5.17 Example 5. Radon inverse method with ESDIRK 60

5.18 Example 5. Radon QR method with DOPRI 61

5.19 Example 5. Radon QR method with ESDIRK 61

ix

LIST OF TABLES

Table Page

5.1 Example 1 parameters . 44

5.2 Example 2 parameters . 47

5.3 Example 3 parameters . 53

5.4 Example 5 parameters . 59

x

CHAPTER 1

Introduction

1.1 Introduction

A matrix Riccati differential equation is an ordinary differential equation of the

type

X ′ = A21 + A22X −XA11 −XA12X, (MRDE)

where X : t ∈ R → Rn×m and A11, A12, A21, A22 are of size m ×m, m × n, n ×m,

n×n respectively and can be constant or functions of t. It will always be assumed in

this dissertation that A11, A12, A21, A22 are at least continuous functions of t. The

sizes of the Aij can also be deduced through the partitioning of the matrix A defined

as:

A :=

 A11 A12

A21 A22

 , (1.1)

where A21 has the same size as X and A is a square matrix of size (n+m)× (n+m).

The matrix A also plays a key role in solving MRDEs as will be seen later.

Matrix Riccati differential equations are named after Count Jacopo Francesco

Riccati [1, §3.2] who was looking at the differential equation satisfied by the slope of

the line from the origin to the point (p, q) where p and q satisfy the linear differential

equation  p

q


′

= A

 p

q

 . (1.2)

1

Then, letting w = q
p

w′ =
q′p− p′q

p2
(1.3)

=
(A21p+ A22q)p− (A11p+ A12q)q

p2
(1.4)

= A21 + A22w − A11w − A12w
2. (1.5)

Hence the slope w satisfies the scalar Riccati differential equation.

MRDEs are interesting in a purely mathematical setting as they generalize

linear ODEs and Sylvester ODEs

X ′ = A21 + A22X (Linear ODE)

X ′ = A21 + A22X −XA11, (Sylvester ODE)

and they are a class of quadratic differential equations. However MRDEs do not

comprise the entire set of quadratic differential equations except in the scalar case.

To see this, take a look at the quadratic factor in (MRDE) for the case when

X is a 2 by 1 column vector. Then A12 has the form A12 = (a b). Therefore,

XA12X =

ax21 + bx1x2

ax1x2 + bx22

 . (1.6)

This shows that the first entry of XA12X can never have a factor of x22. Thus it is

clear that MRDEs in general cannot encompass all quadratic differential equations.

1.2 Applications

Matrix Riccati differential equations arise in numerous fields such as Control

Theory [2, 3], linear boundary value problems for ODEs [4, 5, 6], and quantitative

finance [7] to name a few. A control theory example and linear boundary value

problem example will be shown in detail as these examples are the most common

examples for MRDEs.

2

1.2.1 Control Theory

This section will give a classic example from control theory following the deriva-

tion from [2]. The deterministic linear quadratic problem solves the “actuator-plant”

model. In this model there is a plant with the governing equation

x′(t) = f(x(t), u(t)), (1.7)

where x(t) = (x1(t), ..., xn(t)) is the plant state, and u(t) = (u1(t), ..., um(t)) is the

control variable.

The engineer knows what trajectory he would like the plant state to operate

on. We call this ideal state x0(t), u0(t) with x(t0) = x0(t0). Defining

δx(t) = x(t)− x0(t) (1.8)

δu(t) = u(t)− u0(t) (1.9)

and linearizing the plant state equation (1.7) about (x0, u0) via Taylor’s theorem, we

get

δx′(t) ≈ A0(t)δx(t) +B0(t)δu(t). (1.10)

The matrices A0 and B0 represent ∂f
∂x

and ∂f
∂u

respectively.

To have confidence in the linear approximation, one minimizes with respect to

u(t) the quadratic form

J0 = δx(T)TF0δx(T) +

∫ T

t0

(
δx(t)TQ0(t)δx(t) + δu(t)TR0(t)δu(t)

)
dt, (1.11)

where F0(t) and Q0(t) are symmetric positive semidefinite (or definite) and R0(t) is

symmetric positive definite. The functions Q0(t) and R0(t) are bounds of the second

derivatives which were truncated in the linearization of δx′(t). Thus the integral part

of the functional is used to minimize the error in the approximation of linearization.

The part not in the integral is there to ensure δx(T) stays near zero for T near t0.

3

This finally brings us to the mathematical formulation of the problem. Given

δx′(t) = A0(t)δx(t) +B0(t)δu(t) (1.12)

and a fixed time interval t ∈ [t0, T], find δu(t) such that J0 in (1.11) is minimized.

The solution to this is

δu(t) = −G0(t)δx(t) (1.13)

where

G0(t) = R−10 (t)B′0(t)K0(t) (1.14)

and

K ′0 = −K0A0 − A′0K0 −Q0 +K0B0R
−1
0 B′0K0, K0(T) = F0. (1.15)

So solving the Riccati equation for K0 is the key to solving the “actuator-plant”

problem.

1.2.2 Linear Boundary Value Problems

Another common example where one encounters MRDEs is in solving linear

boundary value problems for ODEs. A linear boundary value problem with separated

boundary conditions takes the form

y′ = A(t)y + q(t), (1.16)

with boundary conditions

Bay(a) = β1, Bby(b) = β2, (1.17)

where A ∈ Rn×n, y ∈ Rn×1, Ba ∈ Rk×n, and Bb ∈ R(n−k)×n, and Ba and Bb have full

rank. Therefore, we can write

Ba =

(
Ca Da

)
, Bb =

(
Cb Db

)
, (1.18)

4

where Da and Cb are square and Da is non-singular. If Da is singular, then apply

a permutation to the ordering of the elements in y so that the corresponding Da is

nonsingular. This is possible since Ba has full rank.

1.2.2.1 Riccati Method

In this section, the Riccati method for solving linear boundary value problems

will be summarized. We follow the exposition in [4, §4.5]. To solve the linear boundary

value problem using the Riccati method, introduce the transformation Tw = y, where

T =

 Ik 0

R(t) In−k

 . (1.19)

Then y′ = T ′w + Tw′. Solving for w′ yields:

w′ = T−1(y′ − T ′w) (1.20)

= T−1(Ay + q − T ′w) (1.21)

= T−1(ATw + q − T ′w) (1.22)

= (T−1AT − T−1T ′)w + T−1q. (1.23)

Denote U = T−1AT − T−1T ′ and g = T−1q to get w′ = Uw + g. Writing U in

block matrix form, we have:

U =

 I 0

−R I


A11 A12

A21 A22


I 0

R I

−
 I 0

−R I


 0 0

R′ 0

 (1.24)

=

 A11 + A12R A12

A21 + A22R−RA11 −RA12R −RA12 + A22

−
 0 0

R′ 0

 . (1.25)

If we set R′ = A21 + A22R−RA11 −RA12R, then

U =

A11 + A12R A12

0 −RA12 + A22

 , (1.26)

5

and the ODE w′ = Uw + g partially decouples as

w′1 = (A11 + A12R)w1 + A12w2 + g1 (1.27)

w′2 = (−RA12 + A22)w2 + g2. (1.28)

The idea is then to solve (1.28) forward in time and then (1.27) backward in time

with an appropriate initial condition for the Riccati equation R(t).

6

CHAPTER 2

Theory of Solution Singularities of MRDEs

It is well known that singularities can occur in the solution of an MRDE in finite

time, even for constant coefficients. A simple example of this is the scalar Riccati

differential equation

x′ = 1 + x2, x(0) = 0. (2.1)

The solution is x(t) = tan(t) on t ∈ [0, π/2), which goes to infinity as t→ π/2.

Traditionally, in the theory of ODEs, this is where the solution ends. After all,

what would it mean for there to be a solution of x past t = π/2? Three ideas for

the meaning of x past a solution singularity will now be presented given the special

structure of MRDEs.

2.1 Linear Transformation

There is a special relationship between a certain linear ODE problem and

(MRDE). This relationship has been known since at least the 1920s by Radon [1,

§3.1] [8, §2.2].

Theorem 2.1.1. Consider the linear ODE

P ′ = AP, P (t) =

S(t)

T (t)

 , (2.2)

where A is from (1.1), S has size m×m and T has size n×m. If T (t0)S(t0)
−1 = X0

where X0 is the initial condition of (MRDE), then

X(t) = T (t)S(t)−1 (2.3)

7

where X(t) is the solution of (MRDE).

Proof. First, we will need an identity for (S−1)′. To get it, notice

0 = (SS−1)′ = S ′S−1 + S(S−1)′. (2.4)

Hence

(S−1)′ = −S−1S ′S−1. (2.5)

Next, if we expand the linear ODE in (2.2), we get

S ′ = A11S + A12T (2.6)

T ′ = A21S + A22T. (2.7)

Now, to prove the theorem, it will be shown that TS−1 satisfies (MRDE).

(TS−1)′ = T ′S−1 − TS−1S ′S−1 (2.8)

= (A21S + A22T)S−1 − TS−1(A11S + A12T)S−1 (2.9)

= A21 + A22(TS
−1)− (TS−1)A11 − (TS−1)A12(TS

−1) (2.10)

Since, TS−1 satisfies (MRDE) and T (t0)S(t0)
−1 = X0, we have X(t) = T (t)S(t)−1.

The formula (2.3) reveals when a singularity in the solution of an MRDE occurs.

A singularity in X can occur only if S(t) becomes singular. This is clear since if A(t)

is continuous, then it is well known [9] that P (t) exists and is finite on the interval

[t0,∞). Therefore, when S(t) is not singular, X(t) = T (t)S(t)−1 is clearly defined.

To recap, it was just shown that if X has a singularity at t, then S(t) is singular.

The converse is also true. I have not seen a proof of this in the literature, so I have

the following proof of this.

8

Theorem 2.1.2. Suppose det(S(t)) has only isolated zeros. The solution X to

(MRDE) with initial condition X(t0) = X0 has a singularity at t∗ if and only if S is

singular at t∗ for the linear ODE (2.2) with initial condition satisfying T (t0)S(t0)
−1 =

X0.

Proof. One direction of the theorem was already shown above, so only the other

direction will be proven here. Suppose S(t∗) is singular. Then S(t∗) has an eigenvector

corresponding to an eigenvalue of zero. Thus, there exists an invertible matrix R such

that S(t∗)R has all zeros in its first column. (To see this, put the eigenvector of S(t∗)

corresponding to zero in the first column of R and ensure the columns of R form a

basis.) Since R is an invertible matrix, we have

P̂ (t) = P (t)R =

S(t)R

T (t)R

 =

Ŝ(t)

T̂ (t)


with X = TS−1 = TRR−1S−1 = T̂ Ŝ−1. Also, it is trivial that P̂ solves the linear

ODE (2.2) with initial condition T̂ (t0)Ŝ(t0)
−1 = X0.

By construction Ŝ(t∗) has all zeros in its first column. Let Φ be the fundamental

solution of P ′ = AP with Φ(t0) = I. Then

Ŝ(t)

T̂ (t)

 = Φ(t)

Ŝ0

T̂0

. Let P1 denote the

first column of P and in general a subscript of 1 denote the first column of a matrix.

Since, X(t) = T̂ (t)Ŝ−1(t), we have X(t)Ŝ(t) = T̂ (t). Now assume by contradic-

tion that X does not have a singularity at t∗ or more rigorously,

lim
t→t∗
||X(t)||∞ <∞.

Then

T̂1(t
∗) = lim

t→t∗
X(t)Ŝ1(t) = lim

t→t∗
X(t)Ŝ1(t

∗) = 0,

9

since Ŝ1(t
∗) is a column of zeros. This implies T̂1(t

∗) is a column of zeros as well.

From this we get

0 =

Ŝ(t∗)

T̂ (t∗)


1

= Φ(t∗)

Ŝ0

T̂0


1

.

But Ŝ0 = S(t0)R is invertible because S(t0) and R are invertible. Hence, the first

column of Ŝ0 cannot be all zeros. This implies Φ(t∗) has an eigenvalue of 0, which

contradicts Φ being a fundamental solution of P ′ = AP . Thus

lim
t→t∗
||X(t)||∞ =∞,

and hence X has a singularity at t∗.

So, what does all this mean in the end? The linear ODE (2.2) can be solved

for t ∈ [t0,∞) even if (MRDE) has singularities. Hence, we have our first possible

definition of what it means to have a solution beyond a solution singularity of an

MRDE. Simply solve the linear ODE (2.2), and then use the transformation (2.3), to

get a solution to (MRDE) even past solution singularities.

2.2 Flow on a Grassmannian

In the paper by Schiff and Shnider [10], the solution of the Riccati equation

is viewed as a flow on the Grassmannian Gr(m,m + n). The idea of the paper is

that the flow on the Grassmannian is always defined, since the Grassmannian is a

differentiable compact manifold. But the solution to the Riccati equation is viewed in

one local coordinate system, and in this coordinate system a singularity may appear

even though the flow of the Riccati equation is still well defined.

Analytically, the solution of (MRDE) past a solution singularity becomes equiv-

alent to solving the linear ODE (2.2) and then transforming the solution via (2.3)

just as in the previous section, Section 2.1. Therefore, although there is no analytical

10

difference, the idea of the flow on the Grassmannian being always well defined gives a

geometric justification for using the analytical procedure from Section 2.1 to integrate

(MRDE) past solution singularities.

2.3 Generalized Inverse Property

Consider the case when the solution of an MRDE X is a square, invertible

matrix. Then

(X−1)′ = −X−1X ′X−1

= −X−1(A21 + A22X −XA11 −XA12X)X−1

= −X−1A21X
−1 −X−1A22 + A11X

−1 + A12.

Making the substitution U = X−1 and rearranging terms, we get a new MRDE, which

will be called the complementary MRDE

U ′ = A12 + A11U − UA22 − UA21U. (CMRDE)

Just as the MRDE was defined by the matrix A in (1.1), the CMRDE is defined by

Ac :=

A22 A21

A12 A11

 , (2.11)

which is equal to

Ac = KTAK where K =

 0 Im

In 0

 . (2.12)

Even if X is not square, (CMRDE) still makes sense. A generalized inverse

property was proposed by Li and Kahan [11]. As there are several definitions of a

generalized inverse, in this document we will define a generalized inverse as follows.

Definition 2.3.1. A generalized inverse of a matrix A is a matrix B such that either

BA = I or AB = I.

11

A few notes should be made about this definition. Suppose A from the definition

above has size n×m.

• For A to have a generalized inverse, A must have full rank.

• If n = m and A has full rank, then there is only one generalized inverse which

is A−1.

• If n > m and A has full rank, then there are infinitely many generalized inverses

all of which are left inverses only, i.e. BA = I but there is no B such that

AB = I.

• If n < m and A has full rank, then there are infinitely many generalized inverses

all of which are right inverses only, i.e. AB = I but there is no B such that

BA = I.

Going back to the generalized inverse property for MRDEs proposed by Li and

Kahan, the following theorem will be given with two proofs, since the proof methods

are very different. The first proof is by Li and Kahan from [11] and the second proof

is by me.

Theorem 2.3.2. If U0X0 = I (or X0U0 = I), and if the solutions X(t) to (MRDE)

and U(t) to (CMRDE) have no singularities in some interval I = [t0, T], then

U(t)X(t) = I (or X(t)U(t) = I, respectively) on I.

Proof. If U0X0 = I, then (UX) = I solves the following initial value problem for

(UX):

(UX)′ = (A12 − UA22 + A11U − UA21U)X + U(A21 −XA11 + A22X −XA12X)

= A12X − (UX)A12X + A11(UX)− (UX)A11 − UA21(UX) + UA21

= [I − (UX)]A21X + A11[(UX)− I]− [(UX)− I]A11 − UA21[(UX)− I].

Since (UX) = I is an equilibrium point and (U0X0) = I, we have (UX) = I on the

entire interval I.

12

This second proof uses the linear transformation from Section 2.1.

Proof. Let A be the matrix associated with (MRDE) and KTAK the matrix associ-

ated with (CMRDE). Then the associated linear systems of (MRDE) and (CMRDE)

respectively are

P ′ = AP, P0 =

Im
X0

 (2.13)

Q′ = KTAKQ, Q0 =

In
U0

 . (2.14)

Then

P = ΦP0 (2.15)

Q = ΦcQ0, (2.16)

where Φ and Φc are the fundamental matrix solutions for the previous linear ODEs

(2.13), (2.14).

First, notice that Φc = KTΦK. This can be seen from I = Φ0 = KTΦ0K and

by showing that KTΦK satisfies (2.14):

(KTΦK)′ = KTΦ′K

= KTAΦK

= KTAK(KTΦK).

So Q = ΦcQ0 = KTΦKQ0. Break Φ up into four blocks just as A in (1.1) is

broken into four blocks. Then

P =

S
T

 =

Φ11 Φ12

Φ21 Φ22


 I

X0

 , (2.17)

13

and therefore

X = TS−1 = (Φ21 + Φ22X0)(Φ11 + Φ12X0)
−1. (2.18)

Similarly

U = (Φ12 + Φ11U0)(Φ22 + Φ21U0)
−1. (2.19)

Thus

UX = (Φ12 + Φ11U0)(Φ22 + Φ21U0)
−1(Φ21 + Φ22X0)(Φ11 + Φ12X0)

−1

= (Φ12 + Φ11U0)X0(Φ11 + Φ12X0)
−1

= (Φ12X0 + Φ11)(Φ11 + Φ12X0)
−1

= I.

The step with (Φ22 + Φ21U0)
−1(Φ21 + Φ22X0) = X0 was not shown. To see this

just notice (Φ21 + Φ22X0) = (Φ22 + Φ21U0)X0.

2.3.1 Using the Generalized Inverse Property

The idea proposed by Li and Kahan for the solution of an MRDE past a solution

singularity is thus. Suppose there is a singularity at X(t∗). If X is square, one can

consider “theoretically” solving the CMRDE for U = X−1. If U does not have

a singularity in a neighborhood of t∗, then one switches to solving for U in this

neighborhood, and then switches back to X after the singularity.

If X is not square, we need to be a bit more careful. First, suppose t∗ ∈ I =

[t∗−a, t∗+ b], and X has a singularity only at t∗ in I. Also suppose X has size n×m

where n > m (the case n < m is similar). Then we consider the family of generalized

inverses at t = t∗ − a

U = {U : UX(t∗ − a) = I}.

14

Figure 2.1. A figure denoting the idea of going to (CMRDE) if (MRDE) has a
singularity.

Then, we could “theoretically” solve (CMRDE) an infinite number of times using

the family of Us in U as initial values. Assuming this infinity of solutions has no

singularities in I, then we have an infinite family of solutions to (CMRDE) for time

t∗ + b. Then if this family of solutions at t∗ + b has enough information, one can

reconstruct X after the singularity t∗. Of course, Li and Kahan did not propose

to solve for an infinite family of CMRDEs, but rather to use numerical methods

which respect the generalized inverse property. The idea being that such methods

are equivalent to solving either the MRDE or CMRDE.

However, there is also the issue of: “How many generalized inverses does it take

to define X?” This idea was made more precise by the following lemma from Li and

Kahan in [11].

Lemma 2.3.3. Suppose the n × m matrix X has full row rank, and let U = {U :

XU = I}. If X̂U = I for all U in a nonempty relatively open set of U, then X̂ = X,

or in other words, X is uniquely determined by a nonempty relatively open set in the

collection of its right generalized inverses.

15

I have also created a concept for the size of the set of Us needed to reconstruct

X. Although I am not certain of its usefulness for the ideas here, it may be of some

theoretical value to others. First, I need a technical lemma.

Lemma 2.3.4. Let X ∈ Cn×m be of full rank with n < m. Then U = {U ∈

Cm×n|XU = I} is nonempty. Let V = {V ∈ Cm×n|XV = 0}. Then ∀U0 ∈ U we have

U = V + U0. Furthermore, V is a subspace of Cm×n with dimV = n(m− n).

Proof. First, since X has full rank, it is trivial that U is nonempty. Now, suppose

U0 ∈ U . If U ∈ U then U = (U −U0) +U0 ∈ V +U0 since X(U −U0) = I − I = 0. If

V ∈ V then V + U0 ∈ U since X(V + U0) = 0 + I = I. Hence U = V + U0.

Let V1 and V2 be in V . Then X(αV1 +βV2) = αXV1 +βXV2 = 0, which implies

αV1 + βV2 ∈ V . So V is a subspace of Cm×n. Now V = ker(X) where X is the linear

map from Cm×n to Cn×n. This linear map is equivalent to the linear map X̃ from

Cnm×1 to Cn2×1 via

XA ∼ X̃Ã =



X 0 · · · 0

0 X · · · 0

...
...

. . .
...

0 0 · · · X





A1

A2

...

An


, (2.20)

where Ak denotes the kth column of the matrix A. X can be written in Jordan form

as X = PJP−1, so

X̃ =



P 0 · · · 0

0 P · · · 0

...
...

. . .
...

0 0 · · · P





J 0 · · · 0

0 J · · · 0

...
...

. . .
...

0 0 · · · J





P−1 0 · · · 0

0 P−1 · · · 0

...
...

. . .
...

0 0 · · · P−1


(2.21)

And now it is easy to see that dim ker(X̃) = n dim ker(J) = n dim ker(X) = n(m−n)

where X is viewed as a linear map of column vectors.

16

Theorem 2.3.5. Let X ∈ Cn×m with n < m. Suppose U ′ is a nonempty set of

generalized inverses of X. Let U0 ∈ U ′ and let V ′ = U ′ − U0 so that ∀V ∈ V ′,

XV = 0. If V ′ is a subspace of Cm×n with dimV ′ = n(m− n) then V = V ′ and X is

uniquely determined by U ′.

Proof. Since there exists U0 such that XU0 = I, we know X has full rank. From the

previous lemma, we know dimV = n(m− n) = dimV ′. Hence V ′ = V .

To see X is unique, notice that V ′ = ker(X) where X is the linear transfor-

mation from Cm×n to Cn×n. Let B1, B2, . . . , Bn(m−n) be a basis of V ′. Now, define

C1, C2, . . . , Cn2 in the following way.

• C1 = B1 but replace the first column of B1 with the first column of U0.

• C2 = B1 but replace the first column of B1 with the second column of U0.

• ...

• Cn = B1 but replace the first column of B1 with the last column of U0.

• Cn+1 = B1 but replace the second column of B1 with the first column of U0.

• ...

• Cn2 = B1 but replace the last column of B1 with the last column of U0.

Let α1, . . . , αn2 be scalars. Then,

X(α1C1 + . . .+ αn2Cn2) =



α1 αn+1 . . . αn2−n+1

α2 αn+2 . . . αn2−n+2

...
...

. . .
...

αn α2n . . . αn2


. (2.22)

Notice, the matrix above is zero if and only if α1 = . . . = αn2 = 0. Hence α1C1 + . . .+

αn2Cn2 = 0 if and only if α1 = . . . = αn2 = 0 which implies C1, C2, . . . , Cn2 are linearly

independent. C1, C2, . . . , Cn2 are also clearly independent from B1, B2, . . . , Bn(m−n).

17

Therefore, these two sets of matrices define a basis of X. Hence X is uniquely

determined by U ′.

Li and Kahan tried to give a continuity argument that if one starts close enough

to the singularity, the family of Us will not contain a singularity in a neighborhood

of t∗ and there will be enough information to recreate X from the Us. The following

counterexample shows this is not true.

Let

X =

x11 x12

x21 x22


solve the MRDE

X ′ = I +X2,

where x11, x12, x21, x22 are scalar functions of t. Consider the initial conditions

x21(0) = x12(0) = 0 x11(0) = 1 x22(0) = −1.

The solution to this system is

X(t) =

tan(t+ π
4
) 0

0 tan(t− π
4
)

 .

But

lim
t→π/4−

X(t) =

∞ 0

0 0

 and lim
t→π/4−

X−1(t) =

0 0

0 ∞

 .

This shows that when X has a singularity at some time t∗, the solution to (CMRDE),

X−1, may also have a singularity at t∗.

2.4 Spacing of Singularities

Under certain conditions, it can be shown that in a finite interval, there are

only a finite number of singularities to the solution of (MRDE).

18

Theorem 2.4.1. Assume A(t) in (1.1) is analytic on a closed finite interval I. Then

there are at most a finite number of singularities in the solution of (MRDE) on I.

Proof. Since each entry of P (t) from (2.2) is analytic, we know that each entry of

S(t) is analytic. The determinant function is comprised of a finite number of multi-

plications, additions, and subtractions of the entries of S(t). Thus detS(t) is analytic

as well.

But every analytic function has the property that it is either zero everywhere,

or that it has isolated zeros. Since S(t0) must be invertible, we have detS(t0) 6= 0.

Hence, detS(t) must have only isolated zeros. Given that X has singularities only

when detS has zeros, we have that X has isolated singularities. Hence in a finite

interval, X has a finite number of singularities in its solution.

19

CHAPTER 3

Theory of Numerical Solutions to MRDEs with Solution Singularities

Three theoretical ideas were discussed in the last chapter about the theoretical

meaning of a solution past a singularity of an MRDE. In this chapter, we go through

those theoretical ideas and give an analysis of numerical solutions to (MRDE) re-

specting each idea.

3.1 Using Radon’s Transformation

From the last chapter, the first and simplest theory to solve an MRDE past

solution singularities is simply to solve the linear ODE P ′ = AP (2.2) and then apply

the Radon transformation X = TS−1 (2.3).

This idea naturally yields a numerical method. Approximate the solution of

the linear ODE (2.2) with a standard numerical method, and then apply the trans-

formation (2.3). Unfortunately, this is not always stable when P is a matrix with

more than one column.

For instance, if A is symmetric with largest eigenvalue λ1 and corresponding

eigenvector v1 with all other eigenvalues smaller than λ1, then all the columns of P

will converge to a multiple of v1 (assuming each column of P0 is not orthogonal to

v1). To be exact, when I say a vector converges to a multiple of some other vector, I

mean the angle between the vectors approaches zero or for this case

lim
t→∞

vT1 Pk(t)

|v1||Pk(t)|
= 1, (3.1)

where Pk is the kth column of P and | · | represents the 2-norm.

20

This occurs because, if A is symmetric, then A has an orthogonal basis of

eigenvectors and hence can be diagonalized as

A = V DV −1. (3.2)

Therefore the solution to P ′ = AP is

P = V eD(t−t0)V −1P0. (3.3)

Each column of P can be written as

Pk(t0) = α1kv1 + . . .+ αNkvN , (3.4)

where N = (n+m) which implies

Pk(t) = α1ke
λ1(t−t0)v1 + . . .+ αNke

λN (t−t0)vN . (3.5)

Assuming that

• λ1 > λj for all j 6= 1

• α1k 6= 0 for all k

• ||vk||2 = 1 for all k

then

vT1 Pk(t)

|v1||Pk(t)|
=

α1ke
λ1(t−t0)√

α2
1ke

2λ1(t−t0) + . . .+ α2
Nke

2λN (t−t0)
−→ 1. (3.6)

Now we know that P ’s columns approach a multiple of v1. Then we attempt

to find S(t)−1 where S is defined in (2.2). But the columns of S will all be close to

a multiple of the same vector. Hence S will become “nearly” singular, cond(S) will

grow large, and the computation for S−1 will become unstable as t −→∞.

21

3.1.1 Fixing the Problem of S−1

It is possible to amend the procedure above to take care of the instability in S.

Using the previous method, which will be called Radon’s method here, for computing

the solution of (MRDE), we have the following idea:

X0 → P0 =

 I

X0

→ P1 → P2 → . . .→ Pn =

Sn
Tn

→ Xn = TnS
−1
n

(Radon Method)

where Pk → Pk+1 means using some numerical method to compute Pk+1 ≈ P (tk+1)

given the initial condition Pk ≈ P (tk). As stated before, cond(Sn) may be large

making this method unstable.

By Theorem 2.1.1, we know that X(tk) = T (tk)S(tk)
−1. So if we have an

approximation of the linear system Pk at time tk, we have that Pk and PkR where R

is a square invertible matrix yield the same solution to (MRDE). To see this, notice

the approximation to X(tk) is

Xk = TkS
−1
k (3.7)

and using PkR =

SkR
TkR

 yields the solution

(TkR)(SkR)−1 = TkRR
−1S−1k = TkS

−1
k = Xk. (3.8)

Now the question becomes, what value of R should be used? If R = S−1k ,

then PkR =

 I

Xk

, making the top square matrix of PkR as well conditioned as

possible. Another possibility is to use a ‘skinny’ QR decomposition. With this,

we have Pk = QR where Q ∈ R(n+m)×m (or Q ∈ C(n+m)×m) with QTQ = I (or

Q∗Q = I) and R is a square upper triangular matrix. Then Q = PkR
−1 is used.

The merit in this transformation is that if the MRDE has a singularity near tk, then

22

the QR decomposition will not give large numbers for the solution of PkR
−1, but

PkS
−1
k =

 I

Xk

 will give large numbers.

Hence, we have the two modified Radon Methods as shown below.

X0 → P0 → P1 → P1S
−1
1 → P2 → P2S

−1
2 → . . .→ Pn → Xn = TnS

−1
n

(Radon Inverse Method)

X0 → P0 → Q0 → P1 → Q1 → P2 → Q2 → . . .→ Pn → Xn = TnS
−1
n

(Radon QR Method)

The Qk in (Radon QR Method) is the Q in the skinny QR decomposition of Pk.

3.1.2 Example

An example of all three Radon methods will be given. The example uses the

matrix A = V DV −1, where A defines the MRDE as in (2.2), V is a random 4 by 4

matrix created by Matlab’s rand(4) function and D is a diagonal matrix with entries

4, 1, 1, and 1. Note, in this example A is not symmetric. The initial condition is

X0 = 02 and we will use P0 =

I2
02

 as the initial condition for P .

The numerical method used to approximate the solution to the linear ODE at

each time step is the explicit Euler method for simplicity

P n+1 = (I + ∆tA)P n. (3.9)

To solve for the associated solution of the MRDE, we have the three following meth-

ods. The first method is the “Radon Method”.

t = t0

P = [I; X0]

while t < tf

23

P = (I + dt * A) * P

t = t + dt

end while

X = P(3:4,:) * P(1:2,:)^(-1)

The second method is the “Radon Inverse Method”.

t = t0

X = X0

while t < tf

P = [I; X]

P = (I + dt * A) * P

X = P(3:4,:) * P(1:2,:)^(-1)

t = t + dt

end while

The third method is the “Radon QR Method”.

t = t0

P = [I; X0]

while t < tf

Q = skinny_qr(P)

P = Q

P = (I + dt * A) * P

t = t + dt

end while

X = P(3:4,:) * P(1:2,:)^(-1)

24

0 5 10
−0.1

−0.05

0

0.05

0.1

t

X
11

0 5 10
0

0.2

0.4

0.6

0.8

t

X
12

0 5 10
−0.02

−0.01

0

0.01

0.02

t

X
21

0 5 10
0

0.05

0.1

0.15

0.2

t

X
22

Figure 3.1. X(t) computed using the Radon method.

The pseudo code uses the notation [I;X] to mean

 I

X

, the notation P (3 : 4, :)

to mean the 3rd and 4th rows of P , and the notation P (1 : 2, :) to mean the 1st and

2nd rows of P .

The numerical instabilities in using the plain Radon method are evident when

viewing the computed solution for X(t) in Figure 3.1 as well as when viewing the

plot of the relative error in Figure 3.4. Also as predicted by the theory, the condition

number of S(t) becomes huge as t increases when using the plain Radon method as

shown in Figure 3.5. This numerical instability does not seem to occur however for

the Radon inverse method and Radon QR method as shown in Figures 3.2, 3.3 of the

computed solutions and Figure 3.4 of the relative error.

25

0 5 10
0

0.01

0.02

0.03

0.04

0.05

t

X
11

0 5 10
0

0.2

0.4

0.6

0.8

t

X
12

0 5 10
0

0.005

0.01

0.015

t

X
21

0 5 10
0

0.05

0.1

0.15

0.2

t

X
22

Figure 3.2. X(t) computed using the Radon inverse method.

0 5 10
0

0.01

0.02

0.03

0.04

0.05

t

X
11

0 5 10
0

0.2

0.4

0.6

0.8

t

X
12

0 5 10
0

0.005

0.01

0.015

t

X
21

0 5 10
0

0.05

0.1

0.15

0.2

t

X
22

Figure 3.3. X(t) computed using the Radon QR method.

26

0 2 4 6 8 10 12
10

−10

10
−5

10
0

Relative Error (Radon Method)

t

0 2 4 6 8 10 12
10

−20

10
−10

10
0

Relative Error (Radon Inverse Method)

t

0 2 4 6 8 10 12
10

−20

10
−10

10
0

Relative Error (Radon QR Method)

t

Figure 3.4. Relative error using the three Radon methods.

0 2 4 6 8 10 12
10

0

10
2

10
4

10
6

10
8

10
10

10
12

10
14

10
16

Condition Number of S(t) for the Radon Method

t

Figure 3.5. Condition number of S(t) using the Radon method.

27

3.2 Möbius Schemes

In the paper by Schiff and Shnider [10], a set of methods called Möbius Schemes

was used to integrate past solution singularities of MRDEs. The scheme uses the one-

step method:

Xi+1 =
[
Â21 + Â22Xi

] [
Â11 + Â12Xi

]−1
, (3.10)

where

Â11 = I + hA11 + o(h),

Â12 = hA12 + o(h),

Â21 = hA21 + o(h),

Â22 = I + hA22 + o(h).

Now, it will be shown how any Radon inverse method based on a one step numerical

method is a Möbius Scheme.

Almost any one-step numerical method to solve P ′ = AP can be described [12]

as

α1P1 + α0P0 = hφ(P1, P0, t0, h), (3.11)

where α1 = 1. For the method to be consistent, we must have

1. α0 + α1 = 0,

2. P ′(t0) = φ(P0, P0, t0, 0).

The first consistency criterion requires α0 = −1. The second requires φ(P0, P0, t0, 0) =

A(t0)P0. Assuming φ is a continuous function of the 1st and 4th parameters and

assuming y is continuous, we have

lim
h→0

φ(P1, P0, t0, h) = φ(P0, P0, t0, 0) = A(t0)P0, (3.12)

or equivalently

hφ(P1, P0, t0, h) = ÂP0, (3.13)

28

where Â = hA(t0) + o(h). Putting all of this together yields

P1 = P0 + ÂP0 = (I + Â)P0 =

I + Â11 Â12

Â21 I + Â22


 I

X0

 . (3.14)

Then using the Radon transformation (2.3) we get exactly (3.10).

3.3 GIP Integrators

Following the order of the last chapter, we still have to look at methods pre-

serving the generalized inverse property. Suppose we have a numerical method of the

form:

Xi+1 = F(Xi, A, ti, h). (3.15)

Definition 3.3.1. A GIP integrator is defined as any method F which has the fol-

lowing property. If XiUi = I (or UiXi = I) then Xi+1Ui+1 = I (or Ui+1Xi+1 = I)

where Xi+1 = F(Xi, A, ti, h) and Ui+1 = F(Ui, K
TAK, ti, h).

The generalized inverse property is an important property of MRDEs and hence

we wish to preserve this property numerically. The following theorem gives a condition

under which a Radon method using a one-step numerical method to solve an MRDE

is a GIP integrator.

Theorem 3.3.2. Suppose a one-step numerical method to solve the linear system

(2.2) is of the form

Q = P + hf(A)P, (3.16)

where P ≈ P (ti), Q ≈ P (ti + h), and f is some function of A satisfying f(A(t)) =

A(t) + o(1). If

f(KTAK) = KTf(A)K, (3.17)

then the one-step numerical method (3.16) yields a GIP Integrator.

29

Proof. First, note that the definition of f yields the most general type of one-step

method for a linear ODE as discussed in the previous section. Now, let B = f(A)

and partition B in the same way as A is partitioned in (1.1). Denote X = P2P
−1
1 and

Z = Q2Q
−1
1 , where P =

P1

P2

, Q =

Q1

Q2

, and P1 and Q1 are square matrices.

The approximate solution to the MRDE is given by

Z = Q2Q
−1
1 (3.18)

= (P2 + hB21P1 + hB22P2)(P1 + hB11P1 + hB12P2)
−1 (3.19)

= (P2 + hB21P1 + hB22P2)P
−1
1 P1(P1 + hB11P1 + hB12P2)

−1 (3.20)

= (X + hB21 + hB22X)(I + hB11 + hB12X)−1. (3.21)

Consider Q̂ = P̂ + hf(KTAK)P̂ to solve the complementary MRDE where U =

P̂2P̂
−1
1 and W = Q̂2Q̂

−1
1 . Using the assumption f(KTAK) = KTf(A)K, we have

Q̂ = P̂ + hKTf(A)KP̂ . The approximate solution to (CMRDE) is given by (using

the same logic as above)

W = (U + hB12 + hB11U)(I + hB22 + hB21U)−1. (3.22)

For the numerical scheme to be a GIP integrator, we must have ZW = I when

XU = I. But notice, if XU = I then

(I + hB11 + hB12X)U = (U + hB11U + hB12). (3.23)

So

ZW = (X + hB21 + hB22X)U(I + hB22 + hB21U)−1 (3.24)

= (I + hB21U + hB22)(I + hB22 + hB21U)−1 (3.25)

= I. (3.26)

30

It turns out that almost all one-step numerical methods that one naturally

creates are GIP Integrators. For instance, if f(A) consists of multiplications, ad-

ditions, and derivatives of A evaluated at different points, which is the case for all

the examples in Schiff and Shnider [10], Li and Kahan [11], and this paper, then

f(KTAK) = KTf(A)K. Therefore, since it is a simple matter to numerically pre-

serve the generalized inverse property, all numerical methods in this document will

be GIP integrators.

31

CHAPTER 4

Numerical Implementation of GIP Integrators

In this chapter, it will be shown that embedded Runge-Kutta methods can be

used to solve MRDEs to get good local error estimates for time stepping criteria.

Also, a posteriori global error estimates will be derived. These methods may even be

made into a black box solution for solving MRDEs.

4.0.1 Runge-Kutta Methods

A general s-stage Runge-Kutta method [13, 14, 15, 12] for y′ = f(t, y) is defined

by

ki = f

(
t+ γih,y + h

s∑
j=1

αijkj

)
, i = 1, 2, . . . , s (4.1)

Y = y + h
s∑
i=1

βiki (4.2)

where y ≈ y(t), Y ≈ y(t + h), and γi =
∑s

j=1 αij for i = 1, 2, . . . , s. Conveniently,

Runge-Kutta methods are identified as a Butcher array:

γ1 α11 α12 · · · α1s

γ2 α21 α22 · · · α2s

...
...

...
...

γs αs1 αs2 · · · αss

β1 β2 · · · βs

. (4.3)

Theorem 4.0.3. A Radon method with any Runge-Kutta method as its one-step

numerical solver is a GIP integrator.

32

Proof. To prove this, we will use Theorem 3.3.2. In particular, we need to know how

to cast Runge-Kutta methods into the framework of Q = P + f(A)P for the ODE

P ′ = AP as in Theorem 3.3.2 where P ≈ P (t) and Q ≈ P (t+ h).

First, let Bi = A(t+ γih). We have for i = 1, 2, . . . , s

ki = Bi

(
P + h

s∑
j=1

αijkj

)
⇒ ki − hBi

s∑
j=1

αijkj = BiP. (4.4)

Together for all i, they lead to
I − h



α11B1 α12B1 · · · α1sB1

α21B2 α22B2 · · · α2sB2

...
...

...

αs1Bs αs2Bs · · · αssBs







k1

k2

...

ks


=



B1

B2

...

Bs


P. (4.5)

Denote the BIG coefficient matrix in brackets by C, and let F = (BT
1 , B

T
2 , . . . , B

T
s)T .

Then 

k1

k2

...

ks


= C−1FP (4.6)

and hence

Q =
[
I + h(β1I, β2I, . . . , βsI)C−1F

]
P. (4.7)

Therefore,

f(A) = (β1I, β2I, . . . , βsI)C−1F. (4.8)

33

Then setting C̃ = diag(KT , KT , . . . , KT)Cdiag(K,K, . . . ,K) and

F̃ = diag(KT , KT , . . . , KT)FK yields:

f(KTAK) = (β1I, β2I, . . . , βsI)C̃−1F̃ (4.9)

= (β1K
T , β2K

T , . . . , βsK
T)C−1FK (4.10)

= KT (β1I, β2I, . . . , βsI)C−1FK (4.11)

= KTf(A)K. (4.12)

The requirements of Theorem 3.3.2 are satisfied and the proof is finished.

Therefore all the classic Runge-Kutta methods are GIP integrators. A few

examples of these are the explicit and implicit Euler methods:

0 0

1
,

1 1

1
,

the implicit trapezoidal and midpoint rules:

0 0 0

1 1/2 1/2

1/2 1/2

,
1/2 1/2

1
,

and the classical Runge-Kutta method of order 4:

0 0

1/2 1/2 0

1/2 0 1/2 0

1 0 0 1 0

1/6 1/3 1/3 1/6

.

34

4.1 Embedded Runge-Kutta Methods

In this era of numerically approximating ODEs, it is common to use embedded

Runge-Kutta methods. In fact, one of the most famous methods, ode45, from the

Matlab suite of ODE methods, is an embedded Runge-Kutta method. The idea

behind such methods is to create 2 approximations to the ODE at each time step,

one of which is higher order than the other. Then subtract the two approximations

to estimate the local error.

To be more explicit, the ODE

x′ = f(t, x) (4.13)

will be approximated. An s-stage embedded Runge-Kutta method uses an extended

Butcher array

γ1 α11 α12 · · · α1s

γ2 α21 α22 · · · α2s

...
...

...
...

γs αs1 αs2 · · · αss

β1 β2 · · · βs

β̂1 β̂2 · · · β̂s

or more succinctly

γ A

β

β̂

.

Assume we have computed an approximation of the ODE (4.13), xk ≈ x(tk). To

use the extended Butcher array, one does two approximations. The only difference

between the approximations is the use of either β or β̂. Both methods use the same

matrix A and the same vector γ. The idea behind this is to minimize the number of

35

function evaluations of f . Another way to see this is that the ki’s from (4.1) for both

methods are the same.

Using these two methods will give two approximations to x(tk+1) which will be

denoted xk+1 and x̂k+1. The first method using β has local truncation error p + 1

and the second method using β̂ has local truncation error p. Subtracting the two

approximations then gives an approximation of the local error

x̂k+1 − xk+1 = (local error of x̂k+1) +O(hp+1). (4.14)

Although we have a local error estimate for the lower order method, the higher order

method is always taken in this paper as the approximation to the ODE as it is usually

more accurate.

4.1.1 Step Size Control

We can use the local error approximation (4.14) for automatic step size control

as detailed in [15, §II.4]. The local error will be approximated as above by

err = ||x̂k+1 − xk+1||F (4.15)

where || · ||F denotes the Frobenius norm. Then, we need a tolerance criteria for the

error. The tolerance criteria used in the code for this paper is tol = ||T ||F where

T = ones(size(xk+1))atol + |xk+1|rtol, (4.16)

ones(size(...)) gives a matrix of 1’s of the size of the input matrix, max and | · | are

evaluated entry-wise for the given matrix, and atol/rtol are the absolute and relative

tolerances.

Assuming h is small enough so that err ≈ Chp+1, we want to find hnew such

that when hnew is used in the next step, err ≈ tol. A simple approximation yields

hnew ≈ h(tol/err)1/(p+1). (4.17)

36

To add a little “wiggle room” to this since all of this relies on approximations, we mul-

tiply the right hand side by the factor 0.8. Also, to ensure we do not increase/decrease

h by too large a factor, we also ensure h cannot change size by more than a factor of

2. Finally, this gives the time stepping control criteria used in all the codes for this

paper

hnew = hmin(2,max(0.5, 0.8(tol/err)1/(p+1))). (4.18)

4.1.2 Embedded Runge-Kutta Formulas

Two embedded Runge-Kutta formulas are used for the examples to be shown.

The first is the Dormand and Prince 4(5) method (DOPRI) which was created in the

paper by the authors Dormand and Prince in [16] and may also be found in [12, 15].

The method uses embedded explicit Runge-Kutta formulas of orders 4 and 5. This

method is used for two reasons.

• This Dormand and Prince 4(5) method minimizes the principal local error con-

stant for the order 5 method. This helps to ensure that the local error estimate

is an overestimate as opposed to an underestimate. The Fehlberg 4(5) method

is also a widely used method, but it minimizes the principal local error constant

for the order 4 method which can underestimate the local error and cause many

time step rejections in the code.

• Matlab uses the Dormand and Prince 4(5) method for ode45 [17] which is one

of the most used and hence well-tested and robust ODE solvers.

37

The Dormand and Prince 4(5) method is given by the following Butcher array.

0

1
5

1
5

3
10

3
40

9
40

4
5

44
45

−56
15

32
9

8
9

19372
6561

−25360
2187

64448
6561

−212
729

1 9017
3168

−355
33

46732
5247

49
176

− 5103
18656

1 35
384

0 500
1113

125
192

−2187
6784

11
84

β 35
384

0 500
1113

125
192

−2187
6784

11
84

β̂ 5179
57600

0 7571
16695

393
640

− 92097
339200

187
2100

1
40

.

(β is associated with the order 5 method and β̂ is associated with the order 4 method.)

The other embedded Runge-Kutta method used is an embedded singly diag-

onally implicit Runge-Kutta (ESDIRK) method of order 4/5 developed by Kværnø

[18]. An ESDIRK method has the property that A in the Butcher tableau is lower

triangular with all the diagonal elements equal and nonzero. The purpose of having

such a method is for stiff ODE problems. The ESDIRK method developed by Kværnø

is not a true ESDIRK method as α11 = 0. The Butcher array for this method is very

long and hence not referenced here.

4.2 Global Error Estimation

Although very few ODE codes employ global error estimation, I believe it is es-

sential. Hence the code uses a simple global error estimation as described by Shampine

and Watts in [19]. The idea is very simple and will not be described at length here,

but only a synopsis will be given.

38

Two integrations are done simultaneously giving two answers Xn and X̃n. Xn

is computed normally using the time step controls of the embedded Runge Kutta

formulas. X̃n is computed by then taking two steps of half the size to get a more

accurate global answer. Written in diagram form:

Xn −→ Pn −→ Pn+1 −→ Xn+1 (4.19)

and

X̃n −→ P̃n −→ P̃n+1/2 −→ P̃n+1 −→ X̃n+1. (4.20)

The global error for Xn is then computed as

global error = Xn − X̃n. (4.21)

4.3 Computation of the Initial Timestep

During the numerical approximation of (MRDE), we have a current time step

h except for when the algorithm begins. I have constructed a crude algorithm to

construct an initial time step which will always give an accepted local error versus

the tolerance. The algorithm is expensive as far as initial time step algorithms are

concerned, but I wanted to ensure that rejected step sizes during the main algorithm

would not be due to a bad initial value of h.

The initial step size is computed by first using a crude approximation for h as

given by ‘Phase 1’ in the paper by Gladwell, Shampine, and Brankin [20]. Then, the

algorithm checks to see if this h gives a satisfactory local error. If not, h is halved

until a satisfactory local error is obtained. The algorithm for this is given below.

Input Variables:

A, t0, tf, P0, atol, rtol, solver

39

% Phase 1

tol = norm(atol * ones(size(P0)) + rtol * abs(P0), ’fro’);

h = min(.1 * abs(tf - t0), tol^(1/5) / norm(A(t0) * P0, ’fro’));

% Find h which gives a sufficient local error.

while 1

[Q, Q_hat] = solver_1step(f, t0, P0, h);

tol = norm(atol * ones(size(Q)) + abs(Q) * rtol, ’fro’);

err = norm(Q - Q_hat, ’fro’);

if err < 0.8 * tol

break;

h = h / 2;

end

return h

4.4 The Algorithm

We now have all the technical details covered to give the algorithm to be used

to solve (MRDE).

Input variables:

rtol, atol, solver, use_qr, t0, x0, A(t), tlast

% Initialize output variables.

T = t0;

X(1) = x0;

X2(1) = x0;

accept = 0;

40

reject = 0;

P = [I; x0];

P2 = P;

h = .1;

i = 1;

facmax = 2;

facmin = .5;

fac = .8;

rejected_last_time = 0;

[m n] = size(P);

LOOP

% This makes sure we don’t solve for a point past tlast.

if T + h > tlast

h = tlast - T;

end

% Integrate one step of the ODE.

[Q, Q_hat] = solver_1step(A(t), T, P, h);

% Local Error and Tolerance

E = atol * ones(size(Q)) + abs(Q) * rtol;

nu = norm(Q - Q_hat, ’fro’) / norm(E, ’fro’);

% If error is acceptable, update all variables.

if nu <= 1

41

X(i+1) = Q(n+1:m,:) * Q(1:n,:)^(-1);

if(use_qr)

P = skinny_qr(Q);

else

P = [I; X(i+1)];

% More accurate answer.

Q = solver_1step(A(t), T, P2, h/2);

Q = solver_1step(A(t), T + h/2, Q, h/2);

X2(i+1) = Q(n+1:m,:) * Q(1:n,:)^(-1);

if(use_qr)

P2 = skinny_qr(Q);

else

P2 = [I; X2(i+1)];

T = T + h;

i = i + 1;

accept = accept + 1;

% If we got the last point, stop the algorithm.

if T >= tlast * (1 - eps)

break LOOP;

else

reject = reject + 1;

rejected_last_time = 2;

42

% Change step size.

if rejected_last_time > 0

facmax = 1;

rejected_last_time = rejected_last_time - 1;

else

facmax = 2;

h = h * min(facmax, max(facmin, fac * nu^(-1/5)));

END LOOP

% Return data.

return X, X2, accept, reject

43

CHAPTER 5

Examples

In the upcoming examples there are a few options that can be set. In particular,

for each example, one may use QR or inverse Radon methods and one may use the

DOPRI or ESDIRK methods for the one-step numerical ODE solver. No time step

rejections occurred in the code, so only the number of time steps taken is shown.

Finally, it should be noted that all errors given are relative errors.

5.1 Example 1

This is a 1-dimensional example due to Li and Kahan in [11]. It is

x′ = t+ x2, x(0) = 0. (5.1)

The exact solution to this MRDE is

√
t
J2/3(2t

3/2/3)

J−1/3(2t3/2/3)
(5.2)

where Jα is a Bessel function of the first kind. The following settings were used.

Table 5.1. Example 1 parameters

Relative Tolerance 10−6

Absolute Tolerance 10−12

t0 0
tend 10

Since no difference was seen between using the QR and inverse Radon methods,

only the inverse Radon method is shown here.

44

0 1 2 3 4 5 6 7 8 9 10
−100

−80

−60

−40

−20

0

20

40

60

80

100

t

Solution of MRDE

Approx Solution

True Solution

0 1 2 3 4 5 6 7 8 9 10
10

−15

10
−10

10
−5

10
0

t

Global Error

0 1 2 3 4 5 6 7 8 9 10

0.9844

0.9846

0.9848

0.985

0.9852

Ratio of Approximate Global Error vs Global Error

t

Figure 5.1. Example 1. Radon inverse method with DOPRI. Number of timesteps:
102. The graphs from top to bottom depict: the solution of the MRDE, the relative
global error, and the ratio of approximate relative global error vs actual relative global
error.

45

0 1 2 3 4 5 6 7 8 9 10
−100

−80

−60

−40

−20

0

20

40

60

80

100

t

Solution of MRDE

Approx Solution

True Solution

0 1 2 3 4 5 6 7 8 9 10
10

−15

10
−10

10
−5

10
0

t

Global Error

0 1 2 3 4 5 6 7 8 9 10

0.96

0.98

1

Ratio of Approximate Global Error vs Global Error

t

Figure 5.2. Example 1. Radon inverse method with ESDIRK. Number of timesteps:
82. The graphs from top to bottom depict: the solution of the MRDE, the relative
global error, and the ratio of approximate relative global error vs actual relative global
error.

46

5.2 Example 2

This example comes from Choi and Laub in [21]. It is the MRDE

X ′ = k2In −X2, X(0) = X0, (5.3)

where k is a constant scalar and n may be any positive integer.

Choi and Laub show that if M2 = aIn, a 6= 0, then

etM = cosh(
√
at)In +

1√
a

sinh(
√
at)M. (5.4)

This is used to show that the solution to (5.3) is

X(t) = (k sinh(kt)In + cosh(kt)X0)(cosh(kt)In +
1

k
sinh(kt)X0)

−1. (5.5)

Therefore if X0 is diagonalizable as X0 = SΛS−1 where Λ = diag(λ1, . . . , λn), then

X(t) = Sdiag

{
k sinh(kt) + λi cosh(kt)

cosh(kt) + λi
k

sinh(kt)
, i = 1, . . . , n

}
S−1. (5.6)

For the results shown, n = 2, S is a random 2 by 2 matrix created by rand(2)

in Matlab, Λ = diag(−2k,−3k), and k = 10. The other set parameters were as

follows.

Table 5.2. Example 2 parameters

Relative Tolerance 10−6

Absolute Tolerance 10−12

t0 0
tend 2

The same data as shown for example 1 is shown for this example except both

the QR and inverse Radon methods are shown. You may also notice that the errors

seem erratic starting near t = 1.2. This occurs because the relative error is near the

machine precision.

47

0 0.05 0.1 0.15 0.2
−200

−100

0

100

200

t

X
11

0 0.05 0.1 0.15 0.2
−200

−100

0

100

200

t

X
12

0 0.05 0.1 0.15 0.2
−200

−100

0

100

200

t

X
21

0 0.05 0.1 0.15 0.2
−200

−100

0

100

200

t

X
22

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
10

−20

10
−15

10
−10

10
−5

t

Global Error

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5

2

t

Ratio of Approximate Global Error vs Global Error

Figure 5.3. Example 2. Radon inverse method with DOPRI. Number of timesteps:
92. The top four graphs depict the solution of the MRDE. The other two graphs from
top to bottom depict the relative global error and the ratio of approximate relative
global error vs actual relative global error.

48

0 0.05 0.1 0.15 0.2
−200

−100

0

100

200

t

X
11

0 0.05 0.1 0.15 0.2
−200

−100

0

100

200

t

X
12

0 0.05 0.1 0.15 0.2
−200

−100

0

100

200

t

X
21

0 0.05 0.1 0.15 0.2
−200

−100

0

100

200

t

X
22

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
10

−20

10
−15

10
−10

10
−5

t

Global Error

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

2

4

6

t

Ratio of Approximate Global Error vs Global Error

Figure 5.4. Example 2. Radon inverse method with ESDIRK. Number of timesteps:
79. The top four graphs depict the solution of the MRDE. The other two graphs from
top to bottom depict the relative global error and the ratio of approximate relative
global error vs actual relative global error.

49

0 0.05 0.1 0.15 0.2
−200

−100

0

100

200

t

X
11

0 0.05 0.1 0.15 0.2
−200

−100

0

100

200

t

X
12

0 0.05 0.1 0.15 0.2
−200

−100

0

100

200

t

X
21

0 0.05 0.1 0.15 0.2
−200

−100

0

100

200

t

X
22

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
10

−20

10
−15

10
−10

10
−5

t

Global Error

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5

2

2.5

t

Ratio of Approximate Global Error vs Global Error

Figure 5.5. Example 2. Radon QR method with DOPRI. Number of timesteps: 90.
The top four graphs depict the solution of the MRDE. The other two graphs from
top to bottom depict the relative global error and the ratio of approximate relative
global error vs actual relative global error.

50

0 0.05 0.1 0.15 0.2
−200

−100

0

100

200

t

X
11

0 0.05 0.1 0.15 0.2
−200

−100

0

100

200

t

X
12

0 0.05 0.1 0.15 0.2
−200

−100

0

100

200

t

X
21

0 0.05 0.1 0.15 0.2
−200

−100

0

100

200

t

X
22

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
10

−20

10
−15

10
−10

10
−5

t

Global Error

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

1

2

3

4

5

t

Ratio of Approximate Global Error vs Global Error

Figure 5.6. Example 2. Radon QR method with ESDIRK. Number of timesteps: 76.
The top four graphs depict the solution of the MRDE. The other two graphs from
top to bottom depict the relative global error and the ratio of approximate relative
global error vs actual relative global error.

51

5.3 Example 3

This example comes from the paper by Sorine and Winternitz in [22] and is the

first example with A(t) non-constant. The example is for X ∈ R3×3, with (MRDE)

defined by:

A11(t) = −AT22(t) =


.5 −1 0

1 .5 −.5 cos(2t)

−.5 sin(2t) −1 0

 , (5.7)

A12(t) =


1 2 1

2 4 2

1 2 1 + .5 sin(2t)

 , (5.8)

A21(t) =


e−t/2 0 0

0 e−t/2 0

0 0 1

 . (5.9)

Sorine and Winternitz used two initial conditions:

X1(0) =


−1 0.1 0.1

0.3 −0.8 0.1

0.3 0.3 −0.6

 and X2(0) =


−1.01 0.1 0.1

0.3 −0.81 0.1

0.3 0.3 −0.61

 (5.10)

Even though the difference betweenX1(0) andX2(0) is small, the solution of (MRDE)

has no singularities for initial condition X1(0), but contains a singularity for t ≈ 0.8

for initial condition X2(0) as shown in Figure 5.7. Since we are mainly concerned

with MRDEs containing singularities, only graphs of data for X2 are shown after-

wards. Since the true solution is not known, only the approximated global error is

given in the figures. Also, step sizes in t are given for this example. The following

parameters were used for the graphs.

52

Table 5.3. Example 3 parameters

Relative Tolerance 10−8

Absolute Tolerance 10−16

t0 0
tend 2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−500

−400

−300

−200

−100

0

100

200

300

400

t

X2(t)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
10

−20

10
−15

10
−10

10
−5

t

Approximate Global Error

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.01

0.02

0.03

0.04

0.05

Step Sizes

t

Figure 5.8. Example 3. Radon inverse method with DOPRI for X2(t). Number
of timesteps: 53. The left graph depicts the numerical solution of the MRDE. The
right graphs depict the approximate relative global error (top) and the step sizes used
(bottom).

53

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−1.5

−1

−0.5

0

0.5

1

1.5

2

t

X1(t)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−500

−400

−300

−200

−100

0

100

200

300

400

t

X2(t)

Figure 5.7. Example 3. Solution of (MRDE) using initial conditions X1(0) (top) and
X2(0) (bottom).

54

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−40

−30

−20

−10

0

10

20

30

40

t

X2(t)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
10

−15

10
−10

10
−5

t

Approximate Global Error

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.02

0.04

0.06

Step Sizes

t

Figure 5.9. Example 3. Radon inverse method with ESDIRK for X2(t). Number
of timesteps: 44. The left graph depicts the numerical solution of the MRDE. The
right graphs depict the approximate relative global error (top) and the step sizes used
(bottom).

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−200

−150

−100

−50

0

50

100

150

t

X2(t)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
10

−15

10
−10

10
−5

t

Approximate Global Error

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.01

0.02

0.03

0.04

0.05

Step Sizes

t

Figure 5.10. Example 3. Radon QR method with DOPRI for X2(t). Number of
timesteps: 50. The left graph depicts the numerical solution of the MRDE. The right
graphs depict the approximate relative global error (top) and the step sizes used
(bottom).

55

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−20

−15

−10

−5

0

5

10

15

20

t

X2(t)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
10

−15

10
−10

10
−5

t

Approximate Global Error

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.02

0.04

0.06

Step Sizes

t

Figure 5.11. Example 3. Radon QR method with ESDIRK for X2(t). Number of
timesteps: 42. The left graph depicts the numerical solution of the MRDE. The right
graphs depict the approximate relative global error (top) and the step sizes used
(bottom).

5.4 Example 4

This example is the same as example 3, except a nonsquare initial condition was

propose by Ren-Cang Li, which still gives singularities in the solution to (MRDE).

The purpose of this example is to show that the MRDE need not be square for the

algorithms to work.

The initial condition is:

X(0) =

−1.0 0.1 0.1 0.0

0.3 −0.8 0.1 0.0

 . (5.11)

All parameters were kept the same as in Example 3.

56

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−25

−20

−15

−10

−5

0

5

10

15

20

25

t

X(t)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
10

−15

10
−10

10
−5

t

Approximate Global Error

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.01

0.02

0.03

0.04

0.05

Step Sizes

t

Figure 5.12. Example 4. Radon inverse method with DOPRI. Number of timesteps:
49. The left graph depicts the numerical solution of the MRDE. The right graphs
depict the approximate relative global error (top) and the step sizes used (bottom).

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−15

−10

−5

0

5

10

15

t

X(t)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
10

−15

10
−10

10
−5

t

Approximate Global Error

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.02

0.04

0.06

Step Sizes

t

Figure 5.13. Example 4. Radon inverse method with ESDIRK. Number of timesteps:
42. The left graph depicts the numerical solution of the MRDE. The right graphs
depict the approximate relative global error (top) and the step sizes used (bottom).

57

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−25

−20

−15

−10

−5

0

5

10

15

20

25

t

X(t)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
10

−15

10
−10

10
−5

t

Approximate Global Error

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.01

0.02

0.03

0.04

0.05

Step Sizes

t

Figure 5.14. Example 4. Radon QR method with DOPRI. Number of timesteps: 49.
The left graph depicts the numerical solution of the MRDE. The right graphs depict
the approximate relative global error (top) and the step sizes used (bottom).

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−15

−10

−5

0

5

10

15

t

X(t)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
10

−15

10
−10

10
−5

t

Approximate Global Error

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.02

0.04

0.06

Step Sizes

t

Figure 5.15. Example 4. Radon QR method with ESDIRK. Number of timesteps:
41. The left graph depicts the numerical solution of the MRDE. The right graphs
depict the approximate relative global error (top) and the step sizes used (bottom).

58

5.5 Example 5

This example was found in the paper by Dieci [23] where numerous MRDE

examples were tested using a different algorithm. As Dieci was not attempting to

solve MRDEs with singularities in the solution, this example does not have a solution

singularity. Rather this example is a stiff ODE problem to highlight the use of

ESDIRK over DOPRI for stiff problems. The MRDE is defined by:

A(t) =



−t
2ε

0 1
ε

0

0 0 0 1
ε

1
2

1 0 t
2ε

0 1 0 0


, (5.12)

where 0 < ε� 1 and X(−1) = 0.

The parameters used for the solver were:

Table 5.4. Example 5 parameters

Relative Tolerance 10−4

Absolute Tolerance 10−8

ε 0.001
t0 −1
tend 5

Notice that after t = 0, the ESDIRK method is able to use much larger step

sizes than the DOPRI method because of the stiffness of the problem.

59

−1 0 1 2 3 4 5
−0.5

0

0.5

1

1.5

2

2.5

3

t

X(t)

−1 0 1 2 3 4 5
10

−15

10
−10

10
−5

10
0

t

Approximate Global Error

−1 0 1 2 3 4 5
0

0.005

0.01

0.015

0.02

Step Sizes

t

Figure 5.16. Example 5. Radon inverse method with DOPRI. Number of timesteps:
2412. The left graph depicts the numerical solution of the MRDE. The right graphs
depict the approximate relative global error (top) and the step sizes used (bottom).

−1 0 1 2 3 4 5
−0.5

0

0.5

1

1.5

2

2.5

3

t

X(t)

−1 0 1 2 3 4 5
10

−10

10
−8

10
−6

10
−4

t

Approximate Global Error

−1 0 1 2 3 4 5
0

0.005

0.01

0.015

0.02

0.025

Step Sizes

t

Figure 5.17. Example 5. Radon inverse method with ESDIRK. Number of timesteps:
607. The left graph depicts the numerical solution of the MRDE. The right graphs
depict the approximate relative global error (top) and the step sizes used (bottom).

60

−1 0 1 2 3 4 5
−0.5

0

0.5

1

1.5

2

2.5

3

t

X(t)

−1 0 1 2 3 4 5
10

−15

10
−10

10
−5

10
0

t

Approximate Global Error

−1 0 1 2 3 4 5
0

0.005

0.01

0.015

0.02

Step Sizes

t

Figure 5.18. Example 5. Radon QR method with DOPRI. Number of timesteps:
2425. The left graph depicts the numerical solution of the MRDE. The right graphs
depict the approximate relative global error (top) and the step sizes used (bottom).

−1 0 1 2 3 4 5
−0.5

0

0.5

1

1.5

2

2.5

t

X(t)

−1 0 1 2 3 4 5
10

−10

10
−8

10
−6

10
−4

t

Approximate Global Error

−1 0 1 2 3 4 5
0

0.005

0.01

0.015

0.02

0.025

Step Sizes

t

Figure 5.19. Example 5. Radon QR method with ESDIRK. Number of timesteps:
612. The left graph depicts the numerical solution of the MRDE. The right graphs
depict the approximate relative global error (top) and the step sizes used (bottom).

61

REFERENCES

[1] H. Abou-Kandil, G. Freiling, V. Ionescu, and G. Jank, Matrix Riccati Equations

in Control and Systems Theory. Berlin: Birkhäuser Verlag, 2003.

[2] M. Athans, “The role and use of the stochastic linear-quadratic-gaussian problem

in control system design,” IEEE Transactions on Automatic Control, vol. AC-16,

p. 6, 1971.

[3] F. L. Lewis, Optimal Control. John Wiley & Sons, 1986.

[4] U. M. Ascher, R. M. Mattheij, and R. D. Russell, Numerical Solution of Bound-

ary Value Problems for Ordinary Differential Equations. Englewood Cliffs, NJ:

Prentice-Hall, 1988.

[5] L. Dieci, M. R. Osborne, and R. D. Russell, “A Riccati transformation method

for solving linear BVPs. I: Theoretical aspects,” SIAM J. Numer. Anal., vol. 25,

no. 5, pp. 1055–1073, 1988.

[6] ——, “A Riccati transformation method for solving linear BVPs. II: Computa-

tional aspects,” SIAM J. Numer. Anal., vol. 25, no. 5, pp. 1074–1092, 1988.

[7] J. Fonseca, M. Grasselli, and C. Tebaldi, “Option pricing when correlations

are stochastic: an analytical framework,” Review of Derivatives Research,

vol. 10, pp. 151–180, 2007, 10.1007/s11147-008-9018-x. [Online]. Available:

http://dx.doi.org/10.1007/s11147-008-9018-x

[8] W. T. Reid, Riccati Differential Equations. New York: Academic Press, 1972.

[9] E. A. Coddington and N. Levinson, Theory of Ordinary Differential Equations,

Reprint. Malabar, Florida: Krieger Publishing Company, 1984.

62

[10] J. Schiff and S. Shnider, “A natural approach to the numerical integration of

Riccati differential equations,” SIAM J. Numer. Anal., vol. 36, no. 5, pp. 1392–

1413, 1999.

[11] R.-C. Li and W. Kahan, “A family of anadromic numerical methods for ma-

trix Riccati differential equations,” Math. Comp., vol. 81, no. 277, pp. 233–265,

January 2012.

[12] J. D. Lambert, Numerical Methods for Ordinary Differential Systems. New

York: John Wiley & Sons, 1991.

[13] J. C. Butcher, Numerical Methods For Ordinary Differential Equations, 2nd ed.

West Sussex, England: Wiley, 2008.

[14] E. Hairer, C. Lubich, and G. Wanner, Geometric Numerical Integration:

Structure-Preserving Algorithms for Ordinary Differential Equations, 2nd ed.,

ser. Springer Series in Computational Mathematics. Berlin: Springer, 2006,

no. 31.

[15] E. Hairer, S. P. Nørsett, and G. Wanner, Solving Ordinary Differential Equations

I, 2nd ed. New York: Springer-Verlag, 1993.

[16] J. R. Dormand and P. J. Prince, “A family of embedded Runge-Kutta formulae,”

J. Comput. Appl. Math., vol. 6, no. 1, pp. 19 – 26, 1980.

[17] L. F. Shampine and M. W. Reichel, “The MATLAB ODE suite,” SIAM J. Sci.

Comput., vol. 18, pp. 1–22, January 1997.

[18] A. Kværnø, “Singly diagonally implicit runge-kutta methods with an explicit

first stage,” BIT, vol. 44, no. 1, pp. 489–502, 2004.

[19] L. F. Shampine and H. A. Watts, “Global error estimates for ordinary differential

equations,” ACM Transactions on Mathematical Software, vol. 2, no. 2, pp. 172–

186, June 1976. [Online]. Available: http://doi.acm.org/10.1145/355681.355687

63

[20] I. Gladwell, L. Shampine, and R. Brankin, “Automatic selection of the

initial step size for an ode solver,” Journal of Computational and Applied

Mathematics, vol. 18, no. 2, pp. 175 – 192, 1987. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/037704278790015X

[21] C. H. Choi and A. J. Laub, “Constructing Riccati differential equations with

known analytic solutions for numerical experiments,” IEEE Trans. Automat.

Control, vol. 35, pp. 437–439, 1990.

[22] M. Sorine and P. Winternitz, “Superposition laws for solutions of differential ma-

trix Riccati equations arising in control theory,” IEEE Trans. Automat. Control,

vol. AC-30, pp. 266–272, 1985.

[23] L. Dieci, “Numerical integration of the differential Riccati equation and some

related issues,” SIAM J. Numer. Anal., vol. 29, no. 3, pp. 781–815, 1992.

64

BIOGRAPHICAL STATEMENT

I was born in Ardmore, OK on October 26, 1982. I was raised in Fort Worth,

TX for a majority of my life. I went to Texas Christian University and obtained a

BS in Mathematics and a minor in Computer Science. After that, I went to Purdue

University where I obtained an MS in Mathematics. Then I worked at Howell Instru-

ments for two years in Fort Worth, TX as a software engineer. Finally, I went to the

University of Texas at Arlington where I am getting a PhD in mathematics.

My current research interests include computational science, numerical analysis,

and high performance computing. I am also interested in teaching problem solving

to students of all ages. I find I still have a lot to learn about classical mathematics

developed hundreds of years ago that even high school students can understand. I

also enjoy playing music. Specifically, I play trumpet and piano. I also enjoy dancing,

especially swing dancing.

65

