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ABSTRACT

POINT MODULES OVER REGULAR GRADED SKEW CLIFFORD ALGEBRAS

PADMINI PILLAY VEERAPEN, Ph.D.

The University of Texas at Arlington, 2012

Supervising Professor: Michaela Vancliff

In this thesis, I consider point modules over regular graded skew Clifford alge-

bras.

First, I define a notion of rank (called µ-rank) on noncommutative quadratic

forms. To every (commutative) quadratic form is associated a symmetric matrix, and

one has the standard notions of rank and determinant function defined on the matrix,

and, thus, on the quadratic form. In 2010, in [15], the notion of quadratic form was

extended to the noncommutative setting and a one-to-one correspondence was estab-

lished between these quadratic forms and certain matrices. Using this generalization,

I define a notion of rank (called µ-rank) for such noncommutative quadratic forms,

where n = 2 or 3. Since writing an arbitrary quadratic form as a sum of squares fails

in this context, my methods entail rewriting an arbitrary quadratic form as a sum
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of products. In so doing, I find analogs for 2× 2 minors and determinant of a 3× 3

matrix in this noncommutative setting.

Second, I use the µ-rank of a noncommutative quadratic form to determine the

point modules over regular graded skew Clifford algebras. Results of Vancliff, Van

Rompay and Willaert in 1998 ([16]) prove that point modules over a regular graded

Clifford algebra (GCA) are determined by (commutative) quadrics of rank at most

two that belong to the quadric system associated to the GCA. The results in this

thesis show that the results of [16] may be extended, with suitable modification, to

GSCAs. In particular, using the notion of µ-rank, the point modules over a regular

GSCA are determined by (noncommutative) quadrics of µ-rank at most two that

belong to the noncommutative quadric system associated to the GSCA.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

One of the main goals in research mathematics is to find methods that solve

equations. Considering all the modules over an algebra is a commonly used technique,

since it converts the problem of equation solving to a problem of classifying modules

over some algebra. Suppose we have m polynomial-style equations f1 = 0, ..., fm = 0

in N (possibly noncommuting) variables x1, ..., xN with coefficients in a field. If

A = k〈x1,...,xN 〉
〈f1,...,fm〉 , then there exists a bijection between the set of n×n matrix solutions

to the equations f1 = 0, ..., fm = 0 and the set of isomorphism classes of n-dimensional

left A-modules [6]. This result follows from the fact that any module action of an

algebra A on a module M induces an algebra homomorphism that maps the elements

of A onto linear transformations that act onM ; and conversely. In the case whereM is

finite-dimensional of dimension n, the linear transformations on M can be identified

with n × n matrices. The main objective in this thesis will be to consider certain

modules over certain algebras.

In the 1980s, many noncommutative algebras appeared from quantum physics

and many traditional algebraic techniques failed on these algebras. For instance,

in the 1980s, Sklyanin was interested in finding the solutions to a certain equation
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related to the quantum Yang-Baxter equation and the quantum inverse scattering

method. He found that certain algebras and their modules provided solutions to that

equation. These algebras, later dubbed Sklyanin algebras, were subsequently proved

to be regular algebras by Smith and Stafford in [14], as described below.

Indeed, the introduction of the notion of a noncommutative regular algebra

by M. Artin and W. Schelter in [1] in the mid 1980’s was motivated in part by the

emergence of the above-mentioned ‘new’ noncommutative algebras. A desire to find

a noncommutative algebraic geometry that would be as successful as commutative

algebraic geometry had been for commutative algebra also motivated this develop-

ment. We note that noncommutative regular algebras are viewed as noncommutative

analogs of polynomial algebras. The classification of the generic classes of regular

algebras was completed for algebras of global dimension three that are generated by

degree one elements in three seminal papers in the late 1980’s [1, 2, 3]. The main idea

behind this classification was introduced by Artin, Tate and Van den Bergh in [2]

and it involved using certain graded modules in place of geometric data, for example,

“point modules” in place of certain points and “line modules” in place of certain lines

[2, 3].

On employing their technique in the context of regular algebras A of global di-

mension three, Artin, Tate, and Van den Bergh showed that such algebras could be

associated to certain subschemes E (typically of dimension one) of P2 where points

in the scheme E parametrize certain A-modules called point modules. The technique
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involved the definition of a quantum analog of the projective plane P2. The classifica-

tion of regular algebras of global dimension four is still an open problem. As it stands

now, even quadratic regular algebras of global dimension four are still unclassified.

In 2010 [15], Cassidy and Vancliff introduced a quantized analog of a graded

Clifford algebra (GCA) called a graded skew Clifford algebra (GSCA). Given n ∈ N,

GSCAs provide a relatively ‘easy’ way of producing examples of quadratic regular

algebras of global dimension n. Moreover, in [15], several examples of GSCAs are

discussed that are candidates for generic regular algebras of global dimension four,

and in [12], the authors prove that almost all quadratic regular algebras of global

dimension three can be classified using GSCAs.

In light of these recent results, the main objective of this thesis are the results

of Chapter 5 where I generalize results in [16] for GCAs to GSCAs. To be able to do

so, a new notion of rank on the noncommutative quadratic forms of [15] needs to be

defined. Chapter 3 is devoted to the notion of rank for noncommutative quadratic

forms on two generators. The main result of that section is Proposition 3.5.7, which

relates the factoring of a quadratic form Q on two generators as a perfect square to a

noncommutative analog of the determinant of a 2× 2 matrix associated to Q. That

result motivates the definition of rank, in Definition 3.5.9, of a quadratic form on two

generators. Since our noncommutative setting depends on the entries in a certain

scalar matrix µ, the generalization of rank and determinant are called µ-rank and

µ-determinant, respectively.

3



The case of a notion of rank on quadratic forms on three generators is discussed

in Chapter 4, with the main results relating the writing of an arbitrary quadratic

form Q on three generators as a sum of products to analogs of the 2× 2 minors, and

determinant, of a 3 × 3 matrix associated to Q. In this chapter, the main result is

Theorem 4.1.3, and the definition of µ-rank of a quadratic form on three generators

is given in Definition 4.1.4.

To generalize results for GCAs to GSCAs in Chapter 5, I use the notion of

µ-rank defined in Chapters 3 and 4. In particular, in [16] the point modules over a

GCA are determined by (commutative) quadrics of rank at most two that belong to

the quadric system associated to the GCA. Theorem 5.3.11 generalizes these results

to GSCAs and noncommutative quadratic forms of µ-rank at most two. Moreover for

GCAs, if the number of matrices of rank one is greater than one, then the number

of left (respectively, right) point modules over A will be infinite [16]. In contrast, my

work in Example 5.3.13 shows that, with regard to GSCAs, if the number of matrices

of µ-rank one is greater than one, then the number of left (respectively, right) point

modules over A may be finite.

4



CHAPTER 2

PRELIMINARY DEFINITIONS AND CONCEPTS

2.1 Introduction

In this chapter, we present basic definitions that will be used throughout this

thesis. Moreover, throughout this thesis, k denotes an algebraically closed field such

that char(k) 6= 2, and M(n,k) denotes the vector space of n×n matrices with entries

in k. The notation T (V ) will denote the tensor algebra on the vector space V , and,

if C is any ring or vector space, then C× will denote the nonzero elements in C.

2.1.1 Graded Connected Algebras

2.1.1.1 Graded Algebras (c.f. [10])

A k-algebra A is said to be Z-graded if:

(1) A = ⊕i∈ZAi where Ai are vector spaces over k, and

(2) AiAj ⊂ Ai+j for all i, j.

For each i, Ai denotes the span of the homogeneous elements in A of degree i.

2.1.1.2 Graded Connected Algebras [2]

A graded k-algebra A is said to be connected if A0 = k.
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2.1.1.3 Examples of Graded Connected Algebras

(1) The polynomial ring on n generators, k[x1, ...., xn], where deg(xi) = 1 for all i.

Here, A0 = k and A1 = kx1 ⊕ kx2 ⊕ · · · ⊕ kxn.

(2) The free algebra k〈z1, ..., zn〉 on n generators where deg(zi) = 1 for all i.

(3) The k-algebra,

S =
k〈z1, ..., zn〉

〈zjzi − µijzizj : 1 ≤ i, j ≤ n〉
,

where deg(zi) = 1 for all i and µij ∈ k×, µii = 1, and µijµji = 1 for 1 ≤ i, j ≤ n.

2.1.1.4 Example of an Algebra that is not graded

The k-algebra,

A =
k〈x, y〉
〈x3 − y2〉

.

where deg(x) = 1 = deg(y). Since the relation x3−y2 is not homogeneous, this means

that A2 ∩ A3 6= {0}. This violates part (1) in Definition 2.1.1.1.

2.1.2 Hilbert series of a module (c.f. [3])

The Hilbert series of a graded Z-module or a Z-graded k-vector space M = ⊕Mn is

the formal series

hM(t) =
∑
n

(dimkMn)tn.

6



2.1.2.1 Example of Hilbert series

Suppose M is the commutative polynomial ring on n variables. Its Hilbert series is

hM(t) = 1 + nt+
n(n+ 1)

2
t2 +

n(n+ 1)(n+ 2)

3!
t3 + · · ·+

+
n(n+ 1)(n+ 2) · · · (2n− 1)

n!
tn + · · ·

=
1

(1− t)n

2.1.3 Definition of a Quadratic Algebra (c.f. [13])

A k-algebra A is quadratic if:

(1) A is Z-graded,

(2) the generators of A have degree 1, and

(3) the relations of A are homogeneous of degree two.

2.1.3.1 Examples of Quadratic Algebras

(1) The algebra S in Example 2.1.1.3.3 is quadratic.

(2) The k-algebra,

A =
k〈x, y〉
〈x2 − xy〉

,

where deg(x) = 1 = deg(y) is quadratic.

7



2.1.3.2 Examples of Algebras that are not Quadratic

The algebra,

A =
k〈x, y〉
〈x3 − y2〉

,

where deg(x) = 1 = deg(y) is not quadratic since the relation x3 − y2 is not homoge-

neous of degree two.

2.1.4 Definition of Global Dimension of a Graded Connected Algebra (c.f. [2])

A graded connected algebra A has global dimension d if every left A-module

and every right A-module has projective dimension at most d and at least one left

module and at least one right module has projective dimension equal to d.

2.1.5 Definition of Polynomial Growth of a Graded Algebra A (c.f. [2])

Suppose A is a Z-graded algebra such that A = ⊕i≥0Ai. The algebra A has polynomial

growth if dimkAn ≤ cnδ for some positive real numbers c and δ for all n.

2.1.6 Definition of Gorenstein [1]

A Z-graded algebra A, of finite global dimension, is Gorenstein if:

(i) the projective modules appearing in a minimal resolution of the left trivial mod-

ule Ak are finitely generated, and
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(ii) the transposed complex (or the “dual sequence”) obtained by applying the func-

tor M  M∗ = HomA(M,A) to a minimal resolution of Ak is a resolution of a

graded right module isomorphic to the right trivial module kA.

2.1.7 Definition of Regular Algebras [2]

Suppose A is a Z-graded algebra such that A = ⊕n≥0An and generated by A1. The

algebra A is regular of dimension d if it satisfies these conditions:

(i) has global dimension d,

(ii) has polynomial growth, and

(iii) is Gorenstein.

Sometimes a regular algebra is called Artin-Schelter regular or AS-regular.

2.1.7.1 Example of a Regular Algebra

The commutative polynomial algebra k[t1, t2] is a regular algebra. Applying the

functor Hom( ,k[t1, t2]) to the projective resolution

0 −→ k[t1, t2]
g−→ k[t1, t2]2

f−→ k[t1, t2] −→k[t1,t2] k −→ 0

where f and g are right multiplication by appropriate matrices, gives dual maps that

turn out to be left multiplication by the same matrices.

9



2.1.8 Definition of a Normal Element [10]

An element a of a ring R is a normal element if aR = Ra.

2.1.9 Definition of a Normalizing Sequence (Centralizing Sequence) [10]

A sequence a1, ..., an of elements of a ring R is called a normalizing sequence (respec-

tively, centralizing sequence) if:

(1) a1 is a normal (respectively, central) element of R,

(2) for each j ∈ {1, ..., n− 1} the image of aj+1 in R∑j
i=1 aiR

is a normal (respectively,

central) element, and

(3)
∑n

i=1 aiR 6= R.

2.1.9.1 Example of a normalizing sequence

Suppose S is as in Example 2.1.1.3.3 with n = 2 and suppose q1 = z1z2 and q2 =

z2
1 + λz2

2 where λ ∈ k. The sequence {q1, q2} is normalizing since q1 is normal in S

and q2 is normal in S/〈q1〉 since z1q2 = z3
1 = q2z1 and z2q2 = λz3

2 = q2z2.

2.1.10 Definition of a Graded Clifford Algebra [4, 5]

Let M1, ...,Mn ∈ M(n,k) denote symmetric matrices. A graded Clifford algebra

is the k-algebra C on degree-one generators x1, ..., xn and on degree-two generators

y1, ..., yn with defining relations given by the following:

(a) xixj + xjxi =
∑n

k=1(Mk)ijyk for all i, j = 1, ..., n, and

(b) yk is central for all k = 1, ..., n.
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2.1.11 Remark

There is a one-to-one correspondence between quadratic forms in n variables with

coefficients in k and symmetric matrices in M(n,k). Lemma 3.2.1 expounds on this

correspondence further.

2.1.12 Theorem [4, 5]

Let M1, ...,Mn be symmetric n × n matrices. The graded Clifford algebra C

associated to M1, ...,Mn is quadratic, Auslander-regular of global dimension n and

satisfies the Cohen-Macaulay property with Hilbert series 1
(1−t)n if and only if the

quadric system in Pn−1 determined by the Mk’s is base-point free. In this case, C is

noetherian and has no zero divisors.

2.1.12.1 Example

Let λ ∈ k, M1 = [ 2 λ
λ 0 ], M2 = [ 0 0

0 1 ], and let C be the graded Clifford algebra on

generators x1, x2, y1, y2 where deg(xi) = 1, and deg(yi) = 2 for all i. Using the

defining relations given in Definition 2.1.10(a), we have

2x2
2 = y2, x1x2 + x2x1 = λy1 = λx2

1, 2x2
1 = 2y1.

This implies that C � k〈x1,x2〉
〈x1x2+x2x1−λx21〉

. By Remark 2.1.11, we have a one-to-one

correspondence between M1 and the quadratic form q1 = 2(t21 + λt1t2) in commuting

variables t1, t2, and similarly, between M2 and q2 = t22. The quadrics corresponding

11



to q1 and q2 are {(0, 1), (λ,−1)} and {(1, 0)}, respectively, so they do not intersect.

By the previous theorem, this implies that C is regular and quadratic and thus

C ∼= k〈x1,x2〉
〈x1x2+x2x1−λx21〉

.
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CHAPTER 3

GENERALIZING THE NOTION OF RANK TO NONCOMMUTATIVE

QUADRATIC FORMS ON TWO GENERATORS

3.1 Introduction

In this chapter, we introduce a notion of rank, called µ-rank, on noncommu-

tative quadratic forms on two generators that generalizes the traditional notion of

rank from the commutative setting. As in the commutative setting, this new notion

of rank is based on the way a noncommutative quadratic form may be written as a

sum of products.

3.2 Commutative Quadratic Forms

First, we present standard definitions and results for completeness.

3.2.1 Lemma (c.f. [8])

Associated to a quadratic form, q, is a symmetric matrix A as follows. If x =

[x1 x2 ... xn]T , we have,

q(x1, ..., xn) =
n∑

i,j=1

i≤j

αijxixj = [ x1 ... ... ... xn ]A


x1
...
...
...
xn

 , αij ∈ k,

13



where

A =



α11
1
2
α12

1
2
α13 ... ... 1

2
α1n

1
2
α12 α22

1
2
α23 ... ...

...

1
2
α13

1
2
α23 α33 ... ...

...
...

...
... ... ...

...
...

...
... ... ...

...
1
2
α1n ... ... ... ... αnn


.

Proof. The result follows from multiplying out the matrix product.

An example of this lemma is given below where q is a commutative quadratic form

on three generators and A is a 3× 3 symmetric matrix.

3.2.2 Example

Let

q = 3x2 + 4xy + y2 + 5yz + 8z2 ∈ k[x, y, z].

By Lemma 3.2.1,

q =

[
x y z

]


3 2 0

2 1 5
2

0 5
2

8




x

y

z

 .

Upon multiplication, this gives

3x2 + 2yx+ 2xy + y2 +
5

2
zy +

5

2
yz + 8z2 = 3x2 + 4xy + y2 + 5yz + 8z2 = q.

Lemma 3.2.1 shows the one-to-one correspondence between quadratic forms in n

variables with coefficients in k and symmetric matrices in M(n,k). Since k is an

14



algebraically closed field, symmetric matrices can be diagonalized by a change of

basis and the associated quadratic forms can be written in a particularly nice way as

shown in the proposition that follows.

3.2.3 Proposition (c.f. [8])

Given a quadratic form q ∈ k[x1, ..., xn], there exists a basis {X1, ..., Xn} for kx1 ⊕

... ⊕ kxn such that q = X2
1 + X2

2 + ... + X2
m, where 1 ≤ m ≤ n. In particular, the

symmetric matrix associated to q, with respect to {X1, ..., Xn}, is the diagonal matrix



1

. . .

1

0

. . .

0



where only the first m rows are nonzero.

Proof. This is a more detailed version of Harris’ proof in [8].

15



If q = 0, then m = 0 and the result holds. So, suppose q 6= 0. We define a bilinear

form b : kn × kn → k by

b(v, w) =
q(v + w)− q(v)− q(w)

2
,

and choose a basis e1, ..., en for kn as follows. Firstly, since q 6= 0, we may choose

e1 ∈ kn such that q(e1) = 1. We choose e2 ∈ kn such that b(e1, e2) = 0 and q(e2) = 1,

and e3 ∈ kn such that b(e1, e3) = b(e2, e3) = 0 and q(e3) = 1 and so on. In this way,

we obtain {e1, ..., em}, where m is determined as follows:

b(ei, em) = 0 for 1 ≤ i ≤ m− 1, q(em) = 1,

and

q(w) = 0 for all w ∈ W = (ke1 + ...+ kem)⊥ ⊂ kn,

that is,

q(w) = 0 for all w ∈ kn such that b(ei, w) = 0 for 1 ≤ i ≤ m.

We will show that {e1, ..., em} is linearly independent. Suppose there exists

α1, ..., αm ∈ k such that
∑m

i=1 αiei = 0. It follows that, for all j = 1, ..., n,

0 = b(ej,
m∑
i=1

αiei) = αjb(ej, ej) = αjq(ej) = αj.

16



Thus, {e1, ..., em} is linearly independent.

We can extend {e1, ..., em} to a basis B = {e1, ..., em, em+1, ..., en} for kn where

{em+1, ..., en} is an arbitrary basis forW . Let {X1, ..., Xn} be the basis of kx1⊕...⊕kxn

that is dual to B. The above conditions on the elements of B imply that, with respect

to {X1, ..., Xn}, q = X2
1 +X2

2 + ...+X2
m.

The rank of a matrix is one of the most fundamental features of a matrix, so

one might ask how it influences properties of the quadratic form. This motivates the

following definition and proposition.

3.3 Rank on Commutative Quadratic Forms

3.3.1 Definition (c.f. [9])

The rank of a quadratic form q is defined to be the rank of any symmetric matrix

associated to q.

By Proposition 3.2.3, Definition 3.3.1 is well defined since the rank of a matrix is

invariant under change of basis.

Remark. We can prove the following well-known result using Proposition 3.2.3, but

we use a method that will be useful for noncommutative quadratic forms.
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3.3.2 Proposition

If q is a quadratic form on two generators x1, x2, then q = L1L2 where L1, L2 ∈

kx1 ⊕ kx2. Moreover, if A is any symmetric matrix associated to q, we have

0 6= L1 6= L2 6= 0 ⇔ rk(q) = 2 ⇔ detA 6= 0 where L1, L2 are linearly independent.

0 6= L1 = L2 ⇔ rk(q) = 1 ⇔ detA = 0 and A 6= 0

0 = L1 = L2 ⇔ rk(q) = 0 ⇔ A = 0,

where detA is the determinant of A.

Proof. Write x1 = x and x2 = y and suppose q = ax2 + 2bxy + cy2 ∈ k[x, y], where

a, b, c ∈ k. By Proposition 3.2.3, we may write the matrix A associated to q as

A = [ a bb c ], where detA = ac− b2 is the determinant of A.

Case 1: If a = 0, then q = (2bx+ cy)y = L1L2, where L2 ∈ k×y.

• If b 6= 0, then rk(q) = 2 and 0 6= L1 6= L2 6= 0.

• If b = 0, then rk(q) ≤ 1 and q = cy2 = (
√
cy)2 = L2

1, where L1 = (
√
cy) = L2.

Case 2: If a 6= 0, then the quadratic formula implies that

q =
1√
a

[ax+ (b+
√
b2 − ac)y] · 1√

a
[ax+ (b−

√
b2 − ac)y].

18



Let L1 = 1√
a
[ax+ (b+

√
b2 − ac)y] and let L2 = 1√

a
[ax+ (b−

√
b2 − ac)y].

• 0 6= L1 6= L2 6= 0 if and only if b2 6= ac and this holds if and only if rk(q) = 2.

• L1 = L2 6= 0, then b2 = ac so rk(q) = 1 (a 6= 0) and L1 = 1√
a
(ax+ by) = L2. �

By Proposition 3.3.2 and Definition 3.3.1, it follows that if n ≥ 3, then there is a

choice of variables x1, x2, x3 such that

rk(q) = 3 ⇔ q = x2
1 + x2

2 + x2
3 = XY + Z2, where X, Y, Z ∈ kx1 ⊕ kx2 ⊕ kx3

where X, Y, Z are linearly independent.

rk(q) = 2 ⇔ q = x2
1 + x2

2 = L1L2, (as in Proposition 3.3.2)

where L1, L2 are linearly independent.

rk(q) = 1 ⇔ q = x2
1

Next, we explore quadratic forms in a noncommutative setting.

3.4 Noncommutative Quadratic Forms

In [15], the notion of quadratic form is extended to the noncommutative setting and

a one-to-one correspondence is established between such noncommutative quadratic

forms and certain matrices. In this section, we first describe the noncommutative

quadratic forms in [15] and the matrices associated to them, and suggest a notion

of rank for noncommutative quadratic forms defined on two generators. This new

notion of rank, which we call µ-rank, is based on writing the quadratic form as a sum

of products and generalizes the notion of rank on commutative quadratic forms.
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The following definition sets the stage for the noncommutative setting where

our noncommutative quadratic forms “live”.

3.4.1 Definition [15]

Let µij ∈ k× where µii = 1, µijµji = 1 for 1 ≤ i, j ≤ n. Let S denote the k-algebra

on generators z1, ..., zn with defining relations

zjzi = µijzizj, for 1 ≤ i, j ≤ n;

that is,

S =
k〈z1, ..., zn〉

〈zjzi − µijzizj : 1 ≤ i, j ≤ n〉
.

The algebra S is a Z-graded k-algebra, and S may be constructed iteratively from k

using n−1 Ore extensions and so S is an iterated Ore extension of k. Such an algebra

S is sometimes called a skew polynomial ring as in [15] and [7]. In this context, we

use Si to denote the span of the homogeneous elements of S of degree i.

We note that elements of degree two in S2 are called quadratic forms [15].

Next, we present a lemma and a definition that generalize, for noncommuta-

tive quadratic forms, the correspondence between commutative quadratic forms and

symmetric matrices and so allow us to work with noncommutative quadratic forms

the same way we do with commutative ones.
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3.4.2 Lemma (See discussion before Lemma 1.3 in [15])

If q(z1, ..., zn) =
n∑

i,j=1

i≤j

αijzizj in S, αij ∈ k,

then

q = [ z1 ... ... ... zn ]M


z1
...
...
...
zn


where

M =



α11
1
2
α12

1
2
α13 ... ... 1

2
α1n

1
2
µ21α12 α22

1
2
α23 ... ...

...

1
2
µ31α13

1
2
µ32α23 α33 ... ...

...
...

...
... ... ...

...
...

...
... ... ...

...
1
2
µn1α1n ... ... ... ... αnn


.

3.4.3 Definition [15, Definition 1.2]

Let µ = (µij) ∈ M(n,k) where µijµji = 1 for all i 6= j. A matrix M ∈ M(n,k) is

called µ-symmetric if Mij = µijMji for 1 ≤ i, j ≤ n.

We use Mµ(n,k) to denote the set of all µ-symmetric matrices in M(n,k).

Remarks. If µij = 1 for all i, j, then a µ-symmetric matrix is a symmetric matrix,

and if µij = −1 for all i, j, then a µ-symmetric matrix is a skew-symmetric matrix

since char(k) 6= 2.
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The following example is an illustration of the above lemma with q being a non-

commutative quadratic form on three generators and M being a 3 × 3 µ-symmetric

matrix.

3.4.4 Example

Let

q = 3z2
1 + 4z1z2 + z2

2 + 5z2z3 + 8z2
3 ∈ S2.

By Lemma 3.4.2,

q =

[
z1 z2 z3

]


3 2 0

2µ21 1 5
2

0 5
2
µ32 8




z1

z2

z3

 .

Upon multiplication, we obtain

q = 3z2
1 + 2µ21z2z1 + 2z1z2 + z2

2 +
5

2
µ32z3z2 +

5

2
z2z3 + 8z2

3

= 3z2
1 + 2z1z2 + 2z1z2 + z2

2 +
5

2
z2z3 +

5

2
z2z3 + 8z2

3 ,

using the relations defining S; this yields

q = 3z2
1 + 4z1z2 + z2

2 + 5z2z3 + 8z2
3 .
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We will now explore a new notion of rank, called µ-rank, on noncommutative

quadratic forms. The notion of µ-rank takes into account some technical problems

discussed below.

3.5 Rank on Noncommutative Quadratic Forms

If q ∈ S2 is a noncommutative quadratic form, then a direct generalization using a

sum of squares leads to problems (see Example 3.5.1 below) depending on the choice of

the µij and so, in general, such a generalization is inappropriate for noncommutative

quadratic forms.

Below, we present two examples that illustrate two technical issues that arise

for noncommutative quadratic forms.

3.5.1 Example

Suppose n = 2, µ12 = −1 and Q = z2
1 + 2bz1z2 + cz2

2 , where b, c ∈ k. If b 6= 0,

then Q 6=
∑m

i=1 X
2
i for any m ∈ N, where Xi ∈ S1 for all i. Moreover, if b = 0, then

Q = z2
1 + cz2

2 = (z1 + αz2)2, where α ∈ k, α2 = c. Hence, if b 6= 0, then a sum of

squares is not possible; whereas if b = 0, then a sum of square terms is possible but

the number of such terms is not unique if c is nonzero.

The next example highlights that an element of S2 can factor as a perfect square

and also as a product of linearly independent elements. We note that this is unique

to noncommutative quadratic forms.
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3.5.2 Example

Let Q = z2
1 +6z1z2+4z2

2 ∈ S2 and let µ12 = 2. Using the relations for S as in Definition

3.4.1, Q = z2
1 + 2z1z2 + 2z2z1 + 4z2

2 = (z1 + 2z2)2 and Q = (z1 + z2)(z1 + 4z2).

We will, now, generalize Proposition 3.3.2 which concerns rank in the commu-

tative case.

3.5.3 Remark

As was shown in [2], if the point modules of S are parametrized by Pn−1, then

S is a twist (in the sense of [3, §8]) of the polynomial ring by a graded degree-zero

automorphism τ ∈ Aut(R) (see Definition 3.5.4 below). This case occurs if and only

if µik = µijµjk for all i, j, k. This is the situation throughout Chapter 3, since the

assumption that n = 2 causes the point modules of S to be parametrized by P1.

3.5.4 Definition [3, §8]

Let B =
⊕

m≥0Bm be a quadratic algebra and let φ be a graded degree-zero

automorphism of B. The twist Bφ of B by φ is the vector space
⊕

m≥0Bm with a

new multiplication ∗ defined as follows: if x, y ∈ B1, then x ∗ y = xφ(y), where the

right-hand side is computed using the original multiplication in B.

For the rest of this chapter, we denote multiplication in S by ∗ and the action

of τ by rτ = τ(r) for all r ∈ R. By [11, Lemma 5.6], we may choose τ to be given by

τ(z1) = µ12z1 and τ(z2) = z2. (∗)
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3.5.5 Lemma

If Q ∈ S2 is a quadratic form on two variables, then Q factors in at most two distinct

ways.

Proof. Suppose Q = r1 ∗ r2 = r3 ∗ r4 = r5 ∗ r6 in S, where ri ∈ S1 for all i. Using τ

given above in (∗), it follows that Q = r1r
τ
2 = r3r

τ
4 = r5r

τ
6 in R. However, in R, the

element Q factors in at most two distinct ways, so, without loss of generality, we may

assume r5 ∈ k×r3 and r6 ∈ k×r4. Hence, in S, Q factors in at most two ways.

For the rest of this chapter, we will be concerned with a quadratic form az1 ∗

z1 + 2bz1 ∗ z2 + cz2 ∗ z2 ∈ S2, where a, b, c ∈ k. As explained in Lemma 3.4.2, to such

a quadratic form is associated a µ-symmetric matrix M =
[

a b
µ21b c

]
. It will be useful

to use an analog of the determinant function on M in the next result.

3.5.6 Definition

Let D : Mµ(2, k)→ k be given by

D(M) = 4b2 − (1 + µ12)2ac, where M =
[

a b
µ21b c

]
;

we call D(M) the µ-determinant of M .

We remark that if S = R, that is, if µ12 = 1, then D(M) = −4 det(M).

25



3.5.7 Proposition

Let Q = az1 ∗ z1 + 2bz1 ∗ z2 + cz2 ∗ z2 ∈ S×2 , where a, b, c ∈ k, be a quadratic

form with associated µ-symmetric matrix M ∈Mµ(2, k).

(a) There exists L1, L2 ∈ S1 such that Q = L1 ∗ L2 in S.

(b) There exists L ∈ S1 such that Q = L ∗ L in S if and only if D(M) = 0.

(c) The element Q factors uniquely, up to a nonzero scalar multiple, in S if and only

if b2 = µ12ac.

Proof. Viewing Q ∈ R, we have Q = aµ12z
2
1 + 2bz1z2 + cz2

2 .

(a) Since Q factors in R, we have Q = r1r2, where ri ∈ R1 = S1 for all i. Thus, in S,

Q = r1 ∗ τ−1(r2), which proves (a).

(b) If Q = r ∗ r in S, for some r ∈ S1, then

Q = rrτ = µ12α
2
1z

2
1 + (1 + µ12)α1α2z1z2 + α2

2z
2
2

in R, where r = α1z1 + α2z2 for some α1, α2 ∈ k. Comparing coefficients, it follows

that this situation occurs if and only if 2b = (1 +µ12)α1α2, where α2
1 = a and α2

2 = c.

Hence, Q = r ∗ r for some r ∈ S1 implies that D(M) = 0. Conversely, if D(M) = 0,

then 2b = (1 + µ12)β, where β ∈ k and β2 = ac. If also ac = 0, then (b) follows;

whereas if ac 6= 0, then we may choose α1, α2 ∈ k such that α2
1 = a and α2 = β/α1,

which implies that Q = r ∗ r in S, where r = α1z1 + α2z2.
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(c) A quadratic form factors uniquely in S if and only if it factors uniquely in R,

and the latter occurs if and only if the discriminant is zero. Since the discriminant of

aµ12z
2
1 + 2bz1z2 + cz2

2 ∈ R2 belongs to k×(b2 − µ12ac), the result follows.

Below, we consider quadratic forms that factor uniquely. Such quadratic forms are

especially useful when working on examples such as the ones in Theorem 5.3.11 in

Chapter 5.

3.5.8 Corollary

Let Q be as in Proposition 3.5.7.

(a) Suppose Q does not factor uniquely. If ac = 0, then Q ∈ 〈zi〉 for some i ∈ {1, 2};

whereas if ac 6= 0, then

Q =

(
z1 +

cz2

b+H

)
∗ (a z1 + [b+H] z2 ) ,

where H2 = b2 − µ12ac.

(b) Suppose Q factors uniquely, up to a nonzero scalar multiple, in S. If b = 0, then

Q ∈ k×z2
i for some i ∈ {1, 2}; whereas if b 6= 0, then

Q = b−1(bz1 + cz2) ∗ (az1 + bz2).
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Proof. (a) If ac = 0, the result in (a) clearly holds. If ac 6= 0, we may write Q =

a−1(az1+αz2)∗(az1+βz2), where α, β ∈ k×. Comparing coefficients, we find ac = αβ

and 2b = β + µ12α. Solving for β yields β = b + H, where H2 = b2 − µ12ac. Since

α = ac/(b+H), part (a) follows.

(b) By Proposition 3.5.7(c), b2 = µ12ac. Thus, if b = 0, the result in (b) clearly holds.

If b 6= 0, then ac 6= 0, so part (a) applies with H = 0.

Proposition 3.5.7 suggests the following generalization of the rank of a quadratic

form on two generators.

3.5.9 Definition

Let Q = az1 ∗ z1 + 2bz1 ∗ z2 + cz2 ∗ z2 ∈ S2, where a, b, c ∈ k, let M ∈ Mµ(2, k) be

the µ-symmetric matrix associated to Q and let D : Mµ(2, k) → k be defined as in

Definition 3.5.6. If n = 2, we define µ-rank : S2 → N as follows:

(a) if Q = 0, we define µ-rank(Q) = 0;

(b) if Q 6= 0 and D(M) = 0, we define µ-rank(Q) = 1;

(c) if D(M) 6= 0, we define µ-rank(Q) = 2.

3.5.10 Example

If Q is the quadratic form in Example 3.5.2, then µ-rank(Q) = 1.
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CHAPTER 4

GENERALIZING THE NOTION OF RANK TO NONCOMMUTATIVE

QUADRATIC FORMS ON THREE GENERATORS

4.1 Introduction

In this chapter, we explore further the notion of rank on noncommutative

quadratic forms, and extend the results of the previous chapter concerning µ-rank

of quadratic forms on two generators to quadratic forms on three generators. The

main result of this chapter is Theorem 4.1.3, which uses analogs of the determinant

and minors of a 3 × 3 matrix to describe factoring properties of a quadratic form.

The definition of µ-rank of a noncommutative quadratic form on three generators is

given in Definition 4.1.4.

Since n = 3 throughout this chapter, the methods of Chapter 3 cannot be em-

ployed directly since the algebra S, where n ≥ 3, need not be a twist of a polynomial

ring. In this chapter, we henceforth use juxtaposition to denote the multiplication in

S.

The next result generalizes for noncommutative quadratic forms the fact that

any commutative quadratic form on three generators can be written as the sum of a

product of two linearly independent elements of S1 and the square of a third linearly

independent element of S1.
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4.1.1 Theorem

If Q = az2
1 + bz2

2 + cz2
3 + 2dz1z2 + 2ez1z3 + 2fz2z3 ∈ S2, where a, . . . , f ∈ k, is a

quadratic form, then Q = L1L2 + L2
3 for some L1, L2, L3 ∈ S1.

Proof. If a = b = c = e = 0, then the result clearly holds. Moreover, if a = b = c =

0 6= e, then

Q = (z1 + αz2)(dz2 + ez3)− αdz2
2 ,

where α ∈ k and αe = f . Hence, by symmetry, it suffices to prove the result in the

case a 6= 0. Thus, we henceforth assume that a = 1.

If µ12 6= −1 6= µ13, then

Q = Q′ +

(
z1 +

2d

1 + µ12

z2 +
2e

1 + µ13

z3

)2

,

where Q′ ∈ kz2
2 + kz2

3 + kz2z3. Applying Theorem 3.5.7(a) to Q′ implies the result in

this case.

Suppose µ12 = −1 6= µ13. If c 6= 0 or e 6= 0, then there exists δ ∈ k such that

δ2 = c and 2e 6= (1 + µ13)δ. In this case,

Q = (z1 + γz2 + δz3)2 + (z1 + αz2)(2dz2 + βz3),
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where α, . . . , δ ∈ k satisfy

δ2 = c, γ2 = b− 2dα, β = 2e− (1 + µ13)δ 6= 0 and (1 + µ23)γδ + αβ = 2f.

However, if c = 0 = e, then Q = (z1 + εz2)2 − 2z2(dz1 − fz3), where ε ∈ k, ε2 = b.

Similarly, if µ12 6= −1 = µ13.

It remains to consider µ12 = −1 = µ13. If e 6= 0, then there exist solutions α,

β, γ ∈ k to the equations

α2 + 2dγ = b, β2 = c and (1 + µ23)αβ + 2eγ = 2f,

so that

Q = (z1 + αz2 + βz3)2 + 2(z1 + γz2)(dz2 + ez3).

On the other hand, if e = 0, then Q = (z1 + δz3)2 + (2dz1 + bz2 + 2µ32fz3)z2, where

δ ∈ k, δ2 = c.

The next step is to generalize Theorem 3.5.7 and Definition 3.5.9 to the three-

generator case. To do so, we now introduce analogs of the determinant and 2 × 2

minors of a 3× 3 matrix.

4.1.2 Definition

Let M =
[

a d e
µ21d b f
µ31e µ32f c

]
∈ Mµ(3,k) and, for 1 ≤ i ≤ 8, define the functions Di :

Mµ(3, k)→ k by
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D1(M) = 4d2 − (1 + µ12)2ab,

D2(M) = 4e2 − (1 + µ13)2ac,

D3(M) = 4f 2 − (1 + µ23)2bc,

D4(M) = 2(1 + µ23)de− (1 + µ12)(1 + µ13)af,

D5(M) = 2(1 + µ12)ef − (1 + µ13)(1 + µ23)cd,

D6(M) = 2(1 + µ13)df − (1 + µ12)(1 + µ23)be,

D7(M) = (µ23cd
2 − 2def + be2)(µ13µ21cd

2 − 2def + µ12µ23µ31be
2),

D8(M) = µ21(d+X)(e− Y ) + µ23µ31(d−X)(e+ Y )− 2af ,

where X2 = d2 − µ12ab and Y 2 = e2 − µ13ac. We call D1, . . . , D6 the 2 × 2 µ-

minors of M . The functions D7 and D8 will play a role analogous to that of the

determinant of M and so could be called the µ-determinants of M , even though D8

is not a polynomial in the entries of M . (Attempting to convert D8 to a polynomial

leads to unwieldy polynomials such as the one given after Theorem 4.1.3.)

Using our µ-determinants as defined in Definition 4.1.2, we will now prove

results regarding the way a noncommutative quadratic form “factors”.

4.1.3 Theorem

Let Q = az2
1 + bz2

2 + cz2
3 + 2dz1z2 + 2ez1z3 + 2fz2z3 ∈ S2, where a, . . . , f ∈ k,

and let M ∈Mµ(3, k) be the µ-symmetric matrix associated to Q.

(a) There exists L ∈ S1 such that Q = L2 if and only if Di(M) = 0 for all i = 1, . . . , 6.
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(b) (i) If a = 0, then there exists L1, L2 ∈ S1 such that Q = L1L2 if and only if

D7(M) = 0;

(ii) if a 6= 0, then there exists L1, L2 ∈ S1 such that Q = L1L2 if and only

if D8(M) = 0 for some X and Y satisfying X2 = d2 − µ12ab and Y 2 =

e2 − µ13ac.

Proof. By Proposition 4.1.1, Q = L1L2 + L2
3 for some L1, L2, L3 ∈ S1.

(a) Suppose there exist α1, α2, α3 ∈ k such that Q = (α1z1 + α2z2 + α3z3)2.

Comparing coefficients, it follows that

(i) 2d = (1 + µ12)α1α2, (iv) a = α2
1,

(ii) 2e = (1 + µ13)α1α3, (v) b = α2
2,

(iii) 2f = (1 + µ23)α2α3, (vi) c = α2
3,

so Di(M) = 0 for i = 1, 2, 3. Moreover, from equations (i)-(iv), we have

4de(1 + µ23) = (2d)(2e)(1 + µ23)

= (1 + µ12)(1 + µ13)(1 + µ23)α2
1α2α3

= (1 + µ12)(1 + µ13)2af,

so D4(M) = 0. By symmetry, Di(M) = 0 for i = 5, 6.

Conversely, suppose that Di(M) = 0 for all i = 1, . . . , 6. If a = 0, then

d = 0 = e, since D1(M) = 0 = D2(M). In this case, Q ∈ kz2
2 + kz2

3 + kz2z3, so
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Proposition 3.5.7(b) applies to Q (since D3(M) = 0), and so Q = L2, where L ∈ S1.

Thus, to complete the proof of (a), we may assume a 6= 0.

Since Di(M) = 0 for i = 1, 2, 3, there exist w1, w2, w3 ∈ k such that

2d = (1 + µ12)w1, 2e = (1 + µ13)w2, 2f = (1 + µ23)w3, (vii)

where w2
1 = ab, w2

2 = ac, w2
3 = bc. Since a 6= 0, let Q′ = a−1(az1 +w1z2 +w2z3)2 ∈ S2.

By (vii), it follows that

Q′ = az2
1 + bz2

2 + cz2
3 + 2dz1z2 + 2ez1z3 + a−1(1 + µ23)w1w2z2z3.

If (1 + µ23)bc = 0, then Q′ = Q and (a) follows. If µ12 = −1, then w1 may be chosen

so that Q′ = Q; similarly for w2 if µ13 = −1. Hence, we may assume

(1 + µ12)(1 + µ13)(1 + µ23)bc 6= 0. (viii)

Moreover,

(1 + µ12)(1 + µ13)(1 + µ23)w1w2 = 4de(1 + µ23), using (vii)

= 2(1 + µ12)(1 + µ13)af, as D4(M) = 0

= (1 + µ12)(1 + µ13)(1 + µ23)aw3, using (vii).

34



Thus, since (viii) holds, w1w2 = aw3, from which it follows that Q′ = Q, which

completes the proof of (a).

(b)(i) Suppose a = 0. If also d = 0, then, by Proposition 3.5.7(a), Q factors

if and only if be = 0, and the latter holds if and only if D7(M) = 0. Since a similar

argument applies if instead a = 0 = e, we may assume de 6= 0. Let Q1, Q2 ∈ S2 be

given by

Q1 = 2[z1 + (2d)−1bz2 + (2e)−1cz3][dz2 + ez3]

= bz2
2 + cz2

3 + 2dz1z2 + 2ez1z3 + (bed−1 + cdµ23e
−1)z2z3,

Q2 = 2[dµ21z2 + eµ31z3][z1 + bµ12(2d)−1z2 + cµ13(2e)−1z3]

= bz2
2 + cz2

3 + 2dz1z2 + 2ez1z3 + [beµ12µ23(dµ13)−1 + cdµ13(eµ12)−1]z2z3.

If Q factors, then the coefficients of z2
2 , z2

3 , z1z2 and z1z3 of Q imply that Q = Q1

or Q = Q2. By comparing the coefficients of z2z3 in each case, we find D7(M) = 0.

Conversely, if D7(M) = 0, then Q = Q1 or Q = Q2, so Q factors.

(b)(ii) Suppose a 6= 0 and that Q factors. We may write

Q = a−1(az1 + α2z2 + α3z3)(az1 + β2z2 + β3z3),
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for some α2, α3, β2, β3 ∈ k. Comparing coefficients, we have

ab = α2β2, 2d = β2 + µ12α2, 2e = β3 + µ13α3, (ix)

ac = α3β3, 2af = α2β3 + µ23α3β2. (x)

Equations (ix) imply that ab = α2(2d − µ12α2), and so α2 = µ21(d + X), where

X2 = d2 − µ12ab. Similarly, α3 = µ31(e+ Y ), where Y 2 = e2 − µ13ac.

From the second equation in (x), it follows that

2af = α2(2e− µ13α3) + µ23α3(2d− µ12α2)

= µ21(d+X)(e− Y ) + µ23µ31(d−X)(e+ Y ),

where X and Y are as above. Hence, D8(M) = 0 for some X and Y such that

X2 = d2 − µ12ab and Y 2 = e2 − µ13ac.

Conversely, suppose a 6= 0 and that D8(M) = 0 for some X and Y satisfying

X2 = d2 − µ12ab and Y 2 = e2 − µ13ac. Let Q′ ∈ S2, where

Q′ = a−1[az1 + µ21(d+X)z2 + µ31(e+ Y )z3][az1 + (d−X)z2 + (e− Y )z3]

= az2
1 + bz2

2 + cz2
3 + 2dz1z2 + 2ez1z3+

+a−1[µ21(d+X)(e− Y ) + µ23µ31(e+ Y )(d−X)]z2z3.

The last coefficient equals 2f , since D8(M) = 0, and so Q′ = Q, which completes the

proof of (b)(ii).
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We remark that, in Theorem 4.1.3(b)(ii), converting the equation D8(M) = 0

to a polynomial equation yields, at best, a user-unfriendly polynomial equation of

degree six:

0 = (µ13 + µ12µ23)4a2b2c2 + 64µ12µ13µ23d
2e2f 2+

+16(µ2
12µ

2
13a

2f 4 + µ2
12µ

2
23b

2e4 + µ2
13µ

2
23c

2d4)+

+16(µ2
13 + µ2

12µ
2
23)(µ12abe

2f 2 + µ13acd
2f 2 + µ23bcd

2e2)+

−32(µ13 + µ12µ23)(µ12µ13adef
3 + µ12µ23bde

3f + µ13µ23cd
3ef)+

−8(µ13 + µ12µ23)2(µ12µ13a
2bcf 2 + µ12µ23ab

2ce2 + µ13µ23abc
2d2)+

−8(µ3
13 − 5µ12µ

2
13µ23 − 5µ2

12µ13µ
2
23 + µ3

12µ
3
23)abcdef.

Theorem 4.1.3 suggests the following generalization of µ-rank in Definition 3.5.9 to

the three-generator case.

4.1.4 Definition

Let Q = az2
1 + bz2

2 + cz2
3 + 2dz1z2 + 2ez1z3 + 2fz2z3 ∈ S2, where a, . . . , f ∈ k, with

a = 0 or 1, let M ∈ Mµ(3, k) be the µ-symmetric matrix associated to Q and let

Di : Mµ(3, k) → k, for i = 1, . . . , 8, be defined as in Definition 4.1.2. If n = 3, we

define the function µ-rank : S2 → N as follows:

(a) if Q = 0, we define µ-rank(Q) = 0;
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(b) if Q 6= 0 and if Di(M) = 0 for all i = 1, . . . , 6, we define µ-rank(Q) = 1;

(c) if Di(M) 6= 0 for some i = 1, . . . , 6 and if

(1− a)D7(M) + aD8(M) = 0,

we define µ-rank(Q) = 2;

(d) if (1− a)D7(M) + aD8(M) 6= 0, we define µ-rank(Q) = 3.

The following example uses Definition 4.1.4 above for the µ-rank of a noncommutative

quadratic form on three generators. In this example, Q factors both as a perfect

square and as a product of linearly independent ‘factors’; nevertheless, according to

our definition, the µ-rank of Q is one.

4.1.5 Example

If Q = (2z1 +z2 +8z3)2 = (2µ12z1 +z2 +8z3)(2µ21z1 +z2 +8z3), where µ12 = µ13,

then µ-rank(Q) = 1, by Definition 4.1.4 and Theorem 4.1.3(a).

4.1.6 Corollary

Let n = 3.

(a) If Q ∈ S×2 , then µ-rank(Q) ≤ 2 if and only if Q = L1L2 for some L1, L2 ∈ S×1 .

(b) If Q ∈ S×2 , then µ-rank(Q) = 1 if and only if Q = L2 for some L ∈ S×1 .

Proof. The result follows from Theorem 4.1.3. �
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The following result gives simplified versions of D7 and D8 in the special case

where S is a twist of the polynomial ring (see Remark 3.5.3).

4.1.7 Corollary

Let n = 3. If S is a twist of the polynomial ring by an automorphism (see Re-

mark 3.5.3), then

D7(M) = (µ23cd
2 − 2def + be2)2 and D8(M) = 2[µ21(de−XY )− af ],

where X2 = d2 − µ12ab and Y 2 = e2 − µ13ac.

Proof. By Remark 3.5.3, µ13 = µ12µ23, and so the above definition of D7(M) follows.

For D8(M), since µ13 = µ12µ23, using notation as in Definition 4.1.2, we have

D8(M) = µ21(d+X)(e− Y ) + µ21(d−X)(e+ Y )− 2af

= µ21de− µ21dY + µ21Xe− µ21XY +

+ µ21de+ µ21dY − µ21Xe− µ21XY − 2af

= 2[µ21(de−XY )− af ]. �

The results in this chapter suggest that generalizing the notion of rank to

quadratic forms on four or more generators is likely to be very computation heavy.

However, in the spirit of Corollary 4.1.6, one could define µ-rank one, respectively
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µ-rank two, of a (noncommutative) quadratic form on n generators for any n ∈ N by

using factoring as follows.

4.1.8 Definition

Let S be as in Definition 5.2.1, where n is an arbitrary positive integer, and let Q ∈ S2.

(a) If Q = 0, we define µ-rank(Q) = 0.

(b) If Q = L2 for some L ∈ S×1 , we define µ-rank(Q) = 1.

(c) If Q 6= L2 for any L ∈ S×1 , but Q = L1L2 where L1, L2 ∈ S×1 , we define

µ-rank(Q) = 2.
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CHAPTER 5

POINT MODULES OVER GRADED SKEW CLIFFORD ALGEBRAS

5.1 Introduction

In this chapter, the notion of µ-rank defined in the previous two chapters, Chapters 3

and 4, is used to show that point modules over certain AS-regular algebras are related

to noncommutative quadrics in the sense of Definition 5.2.6. Moreover, the definition

of a graded skew Clifford algebra (GSCA) from [15], and other relevant definitions

and results are given. The goal in this chapter is to be able to count the number

of point modules over a regular GSCA when the number of point modules is finite.

Indeed, our main objective is to generalize to GSCAs results given in [16] that were

applicable to graded Clifford algebras.

5.2 Graded Skew Clifford Algebras

For {i, j} ⊂ {1, ..., n}, let µij ∈ k× satisfy the property that µijµji = 1 for i 6= j.

We write µ = (µij) ∈ M(n,k). As in [15], we write S for the quadratic k-algebra

on generators z1, . . . , zn with defining relations zjzi = µijzizj for all i, j = 1, 2, ..., n,

where µii = 1 for all i. We set U ⊂ T (S1)2 to be the span of the defining relations of

S and write V = S∗1 and z = (z1, . . . , zn)T .
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5.2.1 Definition [15, §1.2]

(a) With µ and S as above, a quadratic form Q is any element of S2.

(b) A matrix M ∈ M(n, k) is called µ-symmetric if Mij = µijMji for all i, j =

1, . . . , n.

Henceforth, we assume µii = 1 for all i, and write Mµ(n, k) for the vector

space of µ-symmetric n× n matrices with entries in k. By [15], there is a one-to-one

correspondence between elements of Mµ(n, k) and S2 via M 7→ zTMz ∈ S.

5.2.2 Notation

Let τ : P(Mµ(n,k))→ P(S2) be defined by τ(M) = zTMz.

5.2.3 Remark

Henceforth, we fix M1, . . . ,Mn ∈ Mµ(n,k), and for each k we fix representa-

tives qk = τ(Mk). By [15, Lemma 1.3], {qk}nk=1 is linearly independent in S if and

only if {Mk}nk=1 is linearly independent. This correspondence mirrors the correspon-

dence between symmetric matrices and commutative quadratic forms. The following

definition generalizes that given in Definition 2.1.10.

5.2.4 Definition [15]

A graded skew Clifford algebra A = A(µ,M1, . . . ,Mn) associated to µ and M1, . . . , Mn

is a graded k-algebra on degree-one generators x1, . . . , xn and on degree-two generators

y1, . . . , yn with defining relations given by:
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(a) xixj + µijxjxi =
n∑
k=1

(Mk)ijyk for all i, j = 1, . . . , n, and

(b) the existence of a normalizing sequence {y′1, . . . , y′n} that spans ky1 + · · ·+ kyn.

5.2.5 Remark

If A is a graded skew Clifford algebra, then [15, Lemma 1.13] implies that yi ∈ (A1)2

for all i = 1, ..., n if and only if M1, ...,Mn are linearly independent. Thus, hereafter,

we assume that M1, ..,Mn are linearly independent. By [15], the degree of the defining

relations of A and certain homological properties of A are tied to certain geometric

data associated to A as follows.

5.2.6 Definition [15]

(a) Let V(U) ⊂ P((S1)∗) × P((S1)∗) denote the zero locus of U . For any q ∈ S×2 ,

we call the zero locus of q in V(U) the quadric associated to q, and denote it by

V
U

(q); in other words, V
U

(q) = V(kq̂ +U) = V(q̂)∩ V(U), where q̂ is any lift of

q to T (S1)2. The span of elements Q1, . . . , Qm in S2 will be called the quadric

system associated to Q1, . . . , Qm

(b) If a quadric system is given by a normalizing sequence in S, then it is called a

normalizing quadric system.

(c) We call a point (a, b) ∈ V(U) a base point of the quadric system associated to

Q1, . . . , Qm ∈ S2 if (a, b) ∈ V
U

(Qk) for all k = 1, . . . ,m. We say such a quadric

system is base-point free if
m⋂
k=1

V
U

(Qk) is empty.
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5.2.6.1 Example

Let q1 = z1z2, q2 = z2
1 + λz2

2 , S be as above and λ ∈ k×. From Example 2.1.9.1,

we know that {q1, q2} is a normalizing quadric system. We evaluate V(U) as follows:

for ((a1, a2), (b1, b2)) ∈ P1 × P1, consider (z2z1 − µ12z1z2)((a1, a2), (b1, b2)) = 0 which

implies a2b1 − µ12a1b2 = 0. Next, we evaluate z1z2((a1, a2), (b1, b2)) = 0 and this

implies that a1b2 = 0. Thus, V
U

(q1) = {((0, 1), (0, 1)), ((1, 0), (1, 0))} ⊆ P1 × P1.

Similarly, V
U

(q2) ⊆ {((0, 1), (1, 0)), ((λ, a2), (−a2, 1)) : a2 ∈ k}. Hence, V
U

(q1) ∩

V
U

(q2) = ∅, so {q1, q2} is base-point free.

5.2.7 Theorem [15]

For all k = 1, . . . , n, let Mk and qk be as in Remark 5.2.3. A graded skew Clifford

algebra A = A(µ,M1, . . . ,Mn) is a quadratic, Auslander-regular algebra of global

dimension n that satisfies the Cohen-Macaulay property with Hilbert series 1/(1− t)n

if and only if the quadric system associated to {q1, . . . , qn} is normalizing and base-

point free; in this case, A is a noetherian Artin-Schelter regular domain and is unique

up to isomorphism.

5.2.8 Remark

(a) Henceforth, we assume that the quadric system associated to {q1, . . . , qn} is nor-

malizing and base-point free. By Theorem 5.2.7, this assumption allows us to

write A = T (V )/〈W 〉 where W ⊆ (T (V ))2. Thus, W⊥ = {v ∈ T (V ∗)2 :

v(w) = 0 for all w ∈ W}, and so the Koszul dual of A equals T (V ∗)/〈W⊥〉 =
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S/〈q1, ..., qn〉. In this setting, {x1, ..., xn} is the dual basis in V to {z1, ..., zn} and

we write
∑

i,j αijm(xixj + µijxjxi) for the defining relations of A where αijm ∈ k,

for all i, j,m, and 1 ≤ m ≤ n(n−1)
2

.

(b) By [15, Lemma 5.1] and its proof, the set of pure tensors in P(W⊥), that is,

{a ⊗ b ∈ P(W⊥) : a, b ∈ T (V ∗)1}, is in one-to-one correspondence with the zero

locus, in P(V ∗)× P(V ∗), of W given by

Γ = {(a, b) ∈ P(V ∗)× P(V ∗) : w(a, b) = 0 for all w ∈ W}.

To see this in detail, let w =
∑n

i,j βijxi ⊗ xj ∈ W , where βij ∈ k for all i, j, and

let a = (a1, ..., an) ∈ P(V ∗) = Pn−1, b = (b1, ..., bn) ∈ P(V ∗) = Pn−1. So,

w

(
n∑
k,l

akblzk ⊗ zl

)
=

n∑
i,j

βijaibjxi(zi)xj(zj) =
n∑
i,j

βijaibj = w((a, b)).

We will now make more precise the connection between points in the zero locus of W

and certain quadratic forms.

5.2.9 Lemma

If a, b ∈ S×1 , then the quadratic form ab ∈ P (
∑n

i=1 kqi) if and only if (a, b) ∈ Γ.

Proof. We note first that ab 6= 0 in S, since if ab were zero in S, then either a or b

would be a zero divisor in S, which is a contradiction since S is a domain. Suppose

ab ∈ P (
∑n

i=1 kqi). By Remark 5.2.8(a), this implies that a ⊗ b ∈ W⊥, that is,
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w(a ⊗ b) = 0 for all w ∈ W and Remark 5.2.8 (b) implies that w((a, b)) = 0 for all

w ∈ W . Thus, (a, b) ∈ Γ.

Suppose now that w((a, b)) = 0. By Remark 5.2.8(b), this implies that w(a ⊗

b) = 0 for all w ∈ W which implies that a ⊗ b ∈ W⊥. Since S is a domain, we have

ab 6= 0 in S, so ab ∈ P (
∑n

i=1 kqi), as desired. �

5.3 Point Modules over Graded Skew Clifford Algebras

In this section, we prove results that relate point modules over graded skew

Clifford algebras, as defined in Section 5.2.4, to noncommutative quadrics in the sense

of Definition 5.2.6. In particular, we use our notion of µ-rank in Definition 4.1.8 of

Chapter 4 on noncommutative quadratic forms to extend results in [16] about graded

Clifford algebras (GCAs) to GSCAs, with our main result being Theorem 5.3.11.

Although the overall approach and some of the proofs in this section are influenced

by those in [16], many of the proofs involve new arguments.

In Chapters 3 and 4, a notion of µ-rank of a noncommutative quadratic form on

n generators was defined, where n = 2 or 3. In Definition 4.1.8, the property of having

µ-rank at most two is defined for a quadratic form on n generators for any arbitrary

positive integer n. Moreover, if M ∈ P(Mµ(n, k)) and if µ-rank(τ(M)) ≤ 2, where τ

is given in Notation 5.2.2, then we define µ-rank(M) to be the µ-rank of τ(M).
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5.3.1 Remark

In contrast to the commutative setting, there exist noncommutative quadratic

forms q where 0 6= q = L2 = L1L2, with L,L1, L2 ∈ S1 and L1, L2 linearly indepen-

dent. For example, let n = 2 = µ12 and q = (z1 + 2z2)2 = (z1 + z2)(z1 + 4z2).

We now define a map Φ that will play a role similar to that played by the map

φ in [16, §1].

5.3.2 Definition

Let a, b ∈ Pn−1, with a = (a1, . . . , an), b = (b1, . . . , bn), where ai, bi ∈ k for all i. We

define Φ : Pn−1 × Pn−1 → P(Mµ(n, k)) by

(a, b) 7→ (aibj + µijajbi) for all i, j = 1, . . . , n.

5.3.3 Remark

With a, b as in Definition 5.3.2, let q ∈ S2 be the quadratic form

q =

(
n∑
i=1

aizi

)(
n∑
i=1

bizi

)
∈ P(S2),

so µ-rank(q) ≤ 2. However, using the relations of S, we find

q =
n∑
i=1

aibiz
2
i +

n∑
i,j=1

i<j

(aibj + µijajbi) zizj.
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It follows that q = τ(M), where M = (aibj + µijajbi), so M ∈ k×Φ(a, b). Hence,

µ-rank(Φ(a, b)) ≤ 2 for all a, b ∈ Pn−1.

5.3.4 Proposition

Im(Φ) = {X ∈ P(Mµ(n,k)) : µ-rank(X) ≤ 2}.

Proof. By the preceding discussion, Im(Φ) ⊆ {X ∈ P(Mµ(n,k)) : µ-rank(X) ≤ 2}.

Conversely, let X be a nonzero µ-symmetric matrix of µ-rank at most two. Since

X is µ-symmetric, τ(X) = q ∈ S×2 , and, since µ-rank(X) ≤ 2, q = ab for some

a =
∑n

i=1 aizi, b =
∑n

i=1 bizi ∈ S
×
1 where ai, bj ∈ k for all i, j. By Remark 5.3.3, this

implies that X = Φ((ai), (bj)) ∈ P(Mµ(n,k)). �

5.3.5 Remark

Recall the notation in Remark 5.2.8, and suppose (a, b) ∈ P(S1) × P(S1). By

our assumption in Remark 5.2.8(a), the point (a, b) ∈ Γ if and only if
∑

i,j αijm(aibj+

µijajbi) = 0 for all m, where a = (ai), b = (bj); that is, if and only if the µ-symmetric

matrix Φ(a, b) is a zero of
∑

i,j αijmXij for all m, where Xij is the ij’th coordinate

function on M(n, k).

5.3.6 Proposition

With the assumption in Remark 5.2.8(a),

Im(Φ|Γ) =

{
M ∈ P

( n∑
k=1

kMk

)
: µ-rank(M) ≤ 2

}
.
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Proof. Let H = {M ∈ P
(∑n

k=1 kMk

)
: µ-rank(M) ≤ 2} and let M ∈ H. Since M

is µ-symmetric of µ-rank at most two, there exists (a, b) ∈ Pn−1 × Pn−1 such that

Φ(a, b) = M , by Proposition 5.3.4. Thus, by Lemma 5.2.9, (a, b) ∈ Γ, so H ⊆

Im(Φ|Γ).

For the converse, our argument follows that of [16, Proposition 1.5]. Let M =

(aij) ∈ Im(Φ|Γ). So, by Proposition 5.3.4, µ-rank(M) ≤ 2 and, by Remark 5.3.5,∑n
i,j=1 αijmaij = 0 for all m. We will prove M =

∑n
k=1 βkMk, where β1, . . . , βn ∈ k

are defined as follows. By Remark 5.2.5, for each k ∈ {1, . . . , n}, yk ∈ (A1)2, so

yk =
∑n

i,j=1 γijkYij, where Yij = xixj + µijxjxi and γijk ∈ k for all i, j, k. For

each k = 1, . . . , n, we define βk ∈ k by βk =
∑n

i,j=1 γijkaij. By Remark 5.2.8(a),∑n
i,j=1 αijmYij = 0 in A for all m, and, by Definition 5.2.4(a), (Yij) =

∑n
k=1Mkyk.

Since the behavior of the Yij is mirrored by the aij, it follows that (Yij)|(β1,...,βn) =

(aij) = M , since (Yij)|(y1,...,yn) = (Yij). Hence,

n∑
k=1

βkMk =
n∑
k=1

Mkyk|(β1,...,βn) = (Yij)|(β1,...,βn) = M,

as desired. It follows that M ∈ H and so Im(Φ|Γ) ⊆ H. �

To use the map Φ to count the point modules over a regular GSCA, we need to

determine which (noncommutative) quadratic forms factor uniquely. Theorem 5.3.7

shows that a quadratic form can be factored in at most two distinct ways.
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5.3.7 Theorem

A quadratic form can be factored in at most two distinct ways up to a nonzero scalar

multiple.

Proof. Let q ∈ S×2 . If q cannot be factored, then the result is trivially true. Hence,

we may assume

q =

(
n∑
i=1

βizi

)(
n∑
i=1

β′izi

)
,

where βi, β
′
i ∈ k for all i. If n = 2, then the result follows from Lemma 3.5.5.

Hereafter, suppose that n ≥ 3 and that the result holds for n− 1 generators.

Case I. Suppose βiβ
′
i 6= 0 for some i. Without loss of generality, we may assume

that i = n and that βn = 1 = β′n. Suppose q factors in the following three ways:

q = (a+ zn)(a′ + zn) = (b+ zn)(b′ + zn) = (c+ zn)(c′ + zn),

where a, a′, b, b′, c, c′ ∈
∑n−1

k=1 kzk. Let q̄ denote the image of q in S/〈zn〉; clearly,

q̄ = aa′ = bb′ = cc′. The induction hypothesis implies that q̄ factors in at most two

distinct ways up to a nonzero scalar multiple. Thus, without loss of generality, we

may assume that c = b and c′ = b′. It follows that q factors in at most two distinct

ways up to a nonzero scalar multiple.

Case II. Suppose βiβ
′
i = 0 for all i, so q =

∑
i<j δijzizj where δij ∈ k for all i, j.

We may assume, without loss of generality, that there exists k ∈ {1, . . . , n} such that
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βi = 0 for all i > k and β′i = 0 for all i ≤ k. By the induction hypothesis, we may

also assume that βi 6= 0 for all i ≤ k and β′i 6= 0 for all i > k.

If q ∈ 〈zi〉 for some i, we may assume i = n and so k = n − 1. It follows that

q = azn = znb, where a, b ∈
∑n−1

i=1 kzi. If q = znb
′, where b′ ∈ S1, then b = b′ since S

is a domain; similarly, if q = a′zn. Moreover, the image of q in the domain S/〈zn〉 is

zero, so if also q = cd, where c, d ∈ S1, then c ∈ kzn or d ∈ kzn, so q factors in at

most two distinct ways up to a nonzero scalar multiple.

Suppose q /∈ 〈zi〉 for all i = 1, . . . , n, and let q̄ denote the image of q in S/〈zn〉.

By the induction hypothesis, q̄ factors in at most two distinct ways up to a nonzero

scalar multiple, so we may assume q̄ = ab = cd, where c, d ∈
∑n−1

i=1 kzi and a =∑k
i=1 βizi and b =

∑n−1
i=k+1 β

′
izi. Lifting to S, we have

q = a(b+ β′nzn) and q = c(d+ αzn) or (c+ γzn)d,

where α, γ ∈ k×, and these are the only ways q can factor in S. Hence, if q factors

in three distinct ways in S, then β′nazn = αczn = γznd, since ab = cd. It follows that

c = β′nα
−1a, since S is a domain, and b = β′nα

−1d, since S/〈zn〉 is a domain, and so

a(b + β′nzn) is a nonzero scalar multiple of c(d + αzn) and γ has a unique solution.

Thus, q factors in at most two distinct ways up to a nonzero scalar multiple. �

We next need one last technical result before generalizing (most of) [16, Theo-

rem 1.7] from the setting of GCAs to the setting of GSCAs.
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5.3.8 Lemma

Let ∆µ denote the points (a, b) ∈ Pn−1×Pn−1 such that (τ ◦Φ)(a, b) factors uniquely

(up to nonzero scalar multiple). The restriction of τ ◦ Φ to (Pn−1 × Pn−1)\∆µ has

degree two and is unramified, whereas τ ◦ Φ|∆µ is one-to-one.

Proof. The result is an immediate consequence of Theorem 5.3.7 and the definition

of ∆µ. �

The next result generalizes (most of) [16, Theorem 1.7], which we now state for

comparison.

5.3.9 Theorem [16, Theorem 1.7]

Let C denote a GCA determined by symmetric matrices N1, . . . , Nn ∈M(n, k)

and let Q denote the corresponding quadric system in Pn−1. If Q has no base points,

then the number of isomorphism classes of left (respectively, right) point modules

over C is equal to 2r2 + r1 ∈ N ∪ {0,∞}, where rj denotes the number of matrices

in P
(∑n

k=1 kNk

)
that have rank j. If the number of left (respectively, right) point

modules is finite, then r1 ∈ {0, 1}.

5.3.10 Remark

In the setting of GCAs, if M is a symmetric matrix, then τ(M) is a commutative

quadratic form where S, in this case, is commutative; thus, if a, b ∈ S×1 are linearly

independent, then we view q = ab = ba as two different ways to factor q in S. It
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follows that a symmetric matrix M has rank j, where j = 1 or 2, if and only if τ(M)

factors in j distinct ways, up to a nonzero scalar multiple. In light of this, the next

result is clearly a generalization of the first part of Theorem 5.3.9.

5.3.11 Theorem

If the quadric system {q1, . . . , qn} associated to the GSCA, A, is normalizing

and base-point free, then the number of isomorphism classes of left (respectively,

right) point modules over A is equal to 2f2 + f1 ∈ N ∪ {0, ∞}, where fj denotes

the number of matrices M in P
(∑n

k=1 kMk

)
such that µ-rank(M) ≤ 2 and such that

τ(M) factors in j distinct ways (up to a nonzero scalar multiple).

Proof. Using the notation from Remark 5.2.8, by [2], the hypotheses on A imply that

the set of isomorphism classes of left (respectively, right) point modules over A is in

bijection with Γ. Hence, the result follows from Lemma 5.2.9, Proposition 5.3.6 and

Lemma 5.3.8. �

The last part of Theorem 5.3.9 appears not to extend to the setting of GSCAs.

More precisely, the proof of the last part of Theorem 5.3.9 uses the correspondence

between rank and factoring described in Remark 5.3.10. Given Remark 5.3.1, the

obvious counterpart in the setting of GSCAs is either f1 ∈ {0, 1} or the number

of elements of µ-rank one being at most one. However, the following two examples

demonstrate that both these properties are unsuitable for generalizing the last part

of Theorem 5.3.9 to the setting of GSCAs.
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5.3.12 Example

Take n = 4 and let

µ12 = µ13 = µ14 = −µ23 = µ24 = µ34 = 1,

q1 = z2
4 , q2 = z2z3, q3 = (z1 + z2)(z1 + z4),

q4 = b2z2
1 − a2z2

2 + z2
3 + 2bz1z3,

where a, b ∈ k× and a2 6= b2. Since the quadric system is normalizing and base-point

free, the corresponding GSCA, A, is quadratic and regular of global dimension four

(by Theorem 5.2.7), and is the k-algebra on generators x1, . . . , x4 with defining rela-

tions:

x1x2 + x2x1 = x2
1 − b2x2

3, x1x3 + x3x1 = 2bx2
3,

x1x4 + x4x1 = x2
1 − b2x2

3, x3x4 + x4x3 = 0,

x2x4 + x4x2 = x2
1 − b2x2

3, x2
2 + a2x2

3 = 0,

and has exactly eleven point modules. In this example, A is a GCA, but the algebra

S has been chosen to be noncommutative (via the choice of µ23). Here, P
(∑4

k=1 kqk
)

contains three elements that factor uniquely, namely

q1, q4 + 2aq2 and q4 − 2aq2.
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(To see that q4 + 2aq2 factors uniquely, we note that the only way it can factor

is as q4 + 2aq2 = (bz1 + αz2 + z3)(bz1 + βz2 + z3), for some α, β ∈ k, since its

image factors uniquely in S/〈z2〉; solving for α, β yields only one solution: α = a,

β = −a. Similarly, for q4 − 2aq2.) Hence, A has a finite number of point modules,

yet f1 = 3 > 1.

In the previous example, if, instead, one takes µ23 = 1, so that S is now

commutative (as in [16]), then the quadric system contains only one element of rank

one (up to nonzero scalar multiple), which agrees with Theorem 5.3.9.

5.3.13 Example

For our second example, we consider a GSCA in [15, §5.3] with n = 4, where

q1 = z1z2, q2 = z2
3 , q3 = z2

1 − z2z4, q4 = z2
2 + z2

4 − z2z3,

µ23 = 1 = −µ34, (µ14)2 = µ24 = −1, µ13 = −µ14,

so the quadric system is normalizing and base-point free. By Theorem 5.2.7, the

corresponding GSCA, A, is quadratic and regular of global dimension four, and is the

k-algebra on generators x1, . . . , x4 with defining relations:

x1x3 = µ14x3x1, x3x4 = x4x3, x2x3 + x3x2 = −x2
4,

x1x4 = −µ14x4x1, x2
4 = x2

2, x2x4 − x4x2 = −x2
1,
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and has exactly five nonisomorphic point modules, two of which correspond to q1 =

z1z2 = z2z1. The other three point modules correspond to two quadratic forms in

P
(∑4

k=1 kqk
)

that have µ-rank one, namely

q2 = z2
3 and q2 + 4q4 = (z2 −

z3

2
+ z4)2 = (−z2 +

z3

2
+ z4)2,

where the latter quadratic form clearly factors in two distinct ways. Hence, A has

a finite number of point modules even though two distinct elements of P
(∑4

k=1 kqk
)

have µ-rank one.
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