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ABSTRACT 

 
DEVELOPMENT OF A MATHEMATICAL MODEL, VUMP (VINASSE UTILIZATION FOR  

METHANE PRODUCTION) 

 

 

Lucina Márcia-de-Mello Kuusisto, PhD 

 

The University of Texas at Arlington, 2013 

 

Supervising Professor: Melanie L. Sattler  

 Environmental pollution causes ongoing problems. Many countries are faced with the 

dilemma of finding alternative energy sources that are cost-effective and environmentally 

friendly. Biofuels have received much attention of late as potential alternative fuels. Although 

biofuels are indeed attractive energy sources, their manufacturing also brings environmental 

pollution. One of the most prominent biofuels is ethanol. In the US, the main feedstock for 

ethanol manufacturing is corn. In Brazil, as well as in some other countries, the main raw 

material is sugarcane. Although ethanol presents many advantages as a biofuel, including the 

fact that it is manufactured from renewable resources, there are several disadvantages 

associated with its waste disposal, including the uncontrolled disposal of ‘raw’ vinasse (or 

stillage) onto agricultural fields in some countries.    

   This work includes development of one treatment solution for the aforementioned 

problems. The main goal of this research is to develop a mathematical model for predicting 

methane production rates from the anaerobic digestion of ethanol vinasse. This model is named 

VUMP (Vinasse Utilization for Methane Production). The effects of six parameters (temperature 



 

v 

 

in the mesophilic range, COD, N, P, K, and S) on methane generation in a batch bioreactor 

have been studied.  

Methane generation vs. time was measured, and used to develop a multiple linear 

regression model for predicting methane generation rate as a function of the 6 parameters. 

VUMP model estimates were then compared with CH4 generation rates from actual vinasse.  
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CHAPTER 1 

INTRODUCTION 

1.1 Biofuels  

 Environmental pollution causes ongoing problems. Many countries are faced with the 

dilemma of finding alternative energy sources with reduced environmental impact. Biofuels are 

one potential solution. According to Earley et al (2009), the ethanol and biodiesel production 

increased from about 4.8 billion gallons in 2000 to about 21 billion gallons in 2008, in the world.  

 Biofuels are obtained from several feedstocks through different technologies. Currently, 

the primary feedstocks fall into three main categories of agricultural crops: 

1. Sugar crops, including sugar cane, sugar beets, and sweet sorghum; 

2. Starch crops, including corn, wheat, barley, cassava, and milo (grain sorghum);  

3. Oil seed crops, including rapeseed, canola, soybean, sunflower, and mustard. 

 Current emphasis is on advanced biofuels, which are high-energy liquid fuels made 

from non-feed, non-food feed stocks that can be sustainably grown. One of the best examples 

of this is a biofuel made from cellulose or plant fiber. Grasses, fast growing trees and even 

algae are being dedicated as energy crops with the idea of using them for fuel. More thorough 

studies are needed on the economic and environmental effects of producing these fuels in a 

commercial scale.  

Currently, the main biofuels being produced at a commercial scale are:  

 Corn-based, cane-based ethanol, and cellulose-based ethanol; 

 Biodiesel; 

 Biobutanol; 

 Biogas. 
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 Typically, when used for transportation, biofuels are blended into conventional fuel 

sources, such as gasoline and petroleum diesel. 

 Advantages of biofuels include the following:   

• Made from renewable resources, 

• Biodegradable, 

• Produced from domestic feedstocks, and thus able to help countries reduce dependence on 

foreign petroleum,  

• Potentially lower life-cycle emissions of traditional air pollutants, 

• Potentially lower life-cycle emissions of greenhouse gases. 

 Theoretically, an energy source with “zero-carbon” because many potential feedstocks, 

such as grasses and trees, store carbon in the soil and root systems. However, U.S. biofuel 

production depends on fossil fuel, which releases greenhouse gases, during several phases 

and operations, including:  

 When fertilizers and pesticides are manufactured, transported, and applied;  

 Running farm and refineries machinery;  

 Transporting biofuels;  

 Using biofuel blends with conventional gasoline and petroleum. 

 Other environmental concerns include: changing land use for feedstock cultivation, 

water supply demands, soil erosion, wildlife habitat and watershed misuse.  

 Currently, in the US, many policies promote the production and use of biofuels. 

According to Earley et al. (2009), the revised Renewable Fuel Standard (RFS) promotes 

blending of biofuels in conventional motor fuels. The RFS supports the production of 36 billion 

gallons of biofuels per year, derived from a mixture of conventional biofuels as well as second 

generation biofuels, by 2022. The RFS requires that the biofuels meet greenhouse gas 

reduction targets. When compare to fossil fuels the following life-cycle emissions reductions 

must be achieved: > 20% for corn ethanol; 50% for biodiesel and advanced biofuels; >60% for 
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cellulosic biofuels. Nevertheless, in view of the fact that the current capacity of the U.S. ethanol 

plants is approximately 12 billion gallons per year, another target of 15 billion gallons of 

renewable fuels to be produced by 2015 will probably be met mainly by corn ethanol from 

“grandfathered” industries, without much of the required emissions reductions (Earley et al, 

2009). 

1.2 Vinasse: Liquid Waste from Ethanol Production    

 A prominent biofuel in the world is ethanol. In the US, the main feedstock for ethanol 

manufacturing is corn. In Brazil, as well as in some other countries, the main raw material is 

sugarcane. Although ethanol presents many advantages as biofuel, there are several 

disadvantages with its production and waste disposal, including the uncontrolled disposal of 

‘raw’ vinasse onto the agricultural fields.   

 Vinasse is the effluent from the distillation columns of ethanol industries. Vinasse is also 

known as mosto, stillage, thin stillage, distillery wastewater, distillery spent wash, and distillery 

slops. The production of ethanol from biomass, whether from sugar crops (sugar beets, sugar 

cane, molasses, etc.), starch crops (corn, wheat, rice, cassava, etc.), dairy products (whey) or 

cellulosic materials (crop residues, herbaceous energy crops, bagasse, wood, or municipal solid 

waste), results in the production of vinasse (A.C. Wilkie et al., 2000). Almeida (1952) described 

vinasse as an organic liquid residue comprised of about 93% water, 5% organic matter (mainly 

unfermented sugars and other carbohydrates) and about 2% of inorganic dissolved solids. 

Vinasse is a viscous dark brown acidic liquid. Its pH is about 4.8, its temperature is about 107 

ºC and its smell goes from astringent to nauseating (Silva et al., 1981). Its BOD is high, ranging 

from 30 to 40 g/L (Polack et al., 1981), which is associated with the putrefaction process that 

takes place as soon as it is discharged, releasing foul gases that make its environment 

unbearable (Nadir et al., 1977). According to Glória (1975), some of these characteristics are 

related to the high content of residual sugar. Another problem with vinasse is its high water 

content (Goldemberg et al., 1980). Typically, an ethanol distillery produces 12 liters of vinasse 
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per liter of ethanol. Its solids content vary between 2 and 7%, if derived from sugarcane juice 

(Cortez and Pérez, 1997). Table 1.1 presents physical/chemical characteristics of Brazilian 

vinasse from ethanol produced from different feedstocks. Table 1.2 compares percent weight 

composition of vinasse from different countries.  

Table 1.1 Brazilian Vinasse Characteristics Resulting from Different Types of Broth  

Parameter Units Molasses

Cane 

juice

Mixture 

of 

molasses 

and juice

pH - 4.2-5.0 3.7-4.6 4.4-4.6

COD g O2/L 65 15.00-

33.00

45

Total solids g/L 81.5 23.7 52.7

Volatiles 

solids

g/L 60 20 40

Fixed solids g/L 21.5 3.7 12.7

Nitrogen g N/L 0.45-1.60 0.15-0.70 0.48-0.71

Phosphorous g P2O5/L 0.10-0.29 0.01-0.21 0.01-0.20

Potassium g K2O/L 3.74-7.83 1.20-2.10 3.34-4.60

Calcium  g CaO/L 0.45-5.18 0.13-1.54 1.33-4.57

Magnesium g MgO/L 0.42-1.52 0.20-0.49 0.58-0.70

Sulphates g SO4/L 6.4 0.60-0.76 3.70-3.73

Carbon g C/L 11.20-

22.9

5.70-

13.40

8.70-

12.10

C/N ratio - 16.00-

16.27

19.70-

21.07

16.40-

16.43

Organic 

Matter

g/L 63.4 19.5 38

Reducing 

sugars 

g/L 9.5 7.9 8.3

 
Source: Camhi, 1979 
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 Table 1.2 Comparative Vinasse Composition for Different Countries (% weight) 

Vinasse Total Organic

Origin Solids Solids

K P N Ca Mg Ash % %

Brazil Molasses 0.48 0.01 0.04 0.07 0.02 1.95 46.47 4.63

Brazil Juice 0.17 0.007 0.01 0.04 0.01 1.5 6.69 5.14

Australia Molasses 0.86 0.002 0.31 0.11 0.15 3.2 n.a. n.a.

Australia Molasses 1.05 0.012 0.18 0.2 0.13 n.a. 9 n.a.

India Molasses 0.4-1.2 0.5-1.5 0.1-0.12 n.a. n.a. n.a. 8-Jun n.a.

Louisiana Molasses 0.89 0.0001 0.015 0.014 0.006 5 n.a. n.a.

Source

Composition, wt %

 
Source: Cortez, L. et al., 1997, extracted from Polack et al., 1981 

  Vinasse contains potassium, traces of calcium and magnesium, which are among the 

main elements needed in fertilizers (Glória, 1975). Australia, Brazil and other countries have 

been applying untreated vinasse to fertilize sugarcane fields for many years (Korndorfer and 

Anderson, 1997). According to Turner et al. (2002), the irrigation of sugarcane fields with 

vinasse started in the 1920s. However, using vinasse for fertilizer generates water quality 

problems, due to its high COD, low pH, and high concentrations of various constituents. A better 

way of treating and disposing vinasse is needed. 

1.3 Research Purpose and Significance 

 Nowdays, solutions that convert industrial waste into products are important 

opportunities for recycling valuable substances and generating energy, as well as combating 

environmental pollution. This work presents a mathematical model for predicting methane 

production rates (k values) from the anaerobic digestion used to decrease the high organic 

content of vinasse. This model is named VUMP (Vinasse Utilization for Methane Production). 

The effects of six parameters (temperature, COD, N, P, K, and S) on methane generation in a 

batch bioreactor have been studied. Methane generation vs. time has been measured, and 

used to develop a multiple linear regression model for predicting methane generation as a 

function of the 6 parameters. Many researchers have developed k values for solid waste decay, 

but none for vinasse decomposition. Therefore, studies for estimating k values from the 
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anaerobic digestion of vinasse are needed, particularly as function of composition and 

temperature.   

 This research has the potential for broad impacts in many countries because it 

promotes treatment of vinasse, instead of disposed ‘in natura’ [as is] on agricultural fields. The 

model enables methane generation to be estimated from a variety of vinasse compositions. It 

will be the first such widely applicable model, to our knowledge.    
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CHAPTER 2 

LITERATURE REVIEW  

2.1 Ethanol Production  

 Although there are some differences in the processing of sugar, starch and lingo-

cellulosic feedstocks for ethanol production, many process aspects are the same (Wilkie et al., 

2000). As mentioned above, in Brazil, a major sugarcane-based ethanol producing country, the 

prevalent practice of uncontrolled disposal of ‘raw’ vinasse onto the agricultural fields is 

widespread. The statistics data show that the sugarcane industry represents roughly 22% of the 

total agricultural production in Brazil. Carvalho-Assan (2006) reported that, in 2003, the revenue 

generated by this type of industry was about US$ 2.4 billion.  Currently, Brazil produces 200 

billions of liters of alcohol per harvest. Current plans from the Brazilian Energy Ministry predict 

an increase of ethanol production. Barros de Mello (2008), commercial director of a prominent 

Brazilian Industry (COSAN), has stated recently that the production of ethanol in Brazil is 

expected to increase to 35 million cubic meters of ethanol per year by 2013. These figures 

reveal that there is an emerging necessity to increase the alternatives of treatment available for 

vinasse. 

 The juice (and sometimes molasses) is diluted, sent to fermentation tanks, and then 

inoculated with cream of yeast, in order to promote the fermentation process. The yeast 

decomposes the disaccharides and then the monosaccharides into alcohol and carbon dioxide. 

Sugar (sucrose) is transformed into alcohol, according to the Gay-Lussac simplified reaction:  

  C12H22O11 + H2O -> C6H12O6 + C6H12O6 

   C6H12O6 -> 2CO2 + 2CH3CH2OH + 23.5 kcal  

The generation of carbon dioxide is substantial. This is an exothermic reaction and secondary 

products are also formed such as higher alcohols, glycerol, and aldehydes. 
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2.2 Wastewater from Ethanol Production 

The sugar mills and the alcohol distilleries use an enormous amount of water in their 

processes. The classification of the wastewater from these industries is as follows: 

 First Group:  The wastewater in this group is derived from the washing of the sugarcane 

as it arrives from the fields; 

 Second Group: This industrial effluent is also called vinasse. This wastewater is derived 

from the distillation process. The vinasse is the effluent of main concern because of its 

overall physical, chemical and biological characteristics, as well as because of its 

enormous volume generated. Each liter of alcohol generates about 13 L of vinasse.  

 Third Group: This group contains the wastewater derived  from the other sources of 

effluent throughout the industry, such as the effluent generated from the evaporators; 

from the barometric columns; from the washing of equipment and floor; from the 

refrigeration processes; from the discharge of caldrons.    

2.3 Characterization of Vinasse  

Many researchers have studied the characteristics, in terms of its organic strength and 

nutrient content, of vinasse generated from several types of ethanol-producing feedstocks. 

Table 2.1 presents the characterization of vinasse from sugar beet molasses feedstocks. Table 

2.2 presents the characterization of vinasse from sugar cane juice and mixed cane juice/cane 

molasses feedstocks. Table 2.3 presents the characterization of vinasse from cane molasses 

feedstocks. Table 2.4 presents the characterization of vinasse from other sugar and starch 

feedstocks. Table 2.5 presents the characterization of vinasse from cellulosic feedstocks. Table 

2.6 presents a summary of the data published by the year 2000.  
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Table 2.1 Vinasse Characterization for Sugar Beet Molasses Feedstocks (values are calculated 

from data in literature sources)
a    

 

BOD N P K, Total S  

(COD, total, total, mg/L as SO4,

g/L) mg/L mg/L mg/L

Beet 

molasses 
11.8

27.5 

(55.5)
4750 Nd 5560 3500 4.3

Vlissidis 

and 

Zouboulis 

(1993)

Beet 

molasses
Nd

Nd 

(115.8)
56 175 Nd 1042 6.69

Boopathy 

and Tilche 

(1991)

Beet 

molasses
Nd 69.3 (147) 2700 222 14500 5800 5.5

Basu 

(1975)

Beet 

molasses
11.8 Nd (72) 7340 91 Nd 4520 Nd

Vlyssides 

et al. (1997)

Fresh 

beets + 

Molasses

11.3 38 (65) 3000 Nd Nd Nd 4.9

Holmes and 

Sane 

(1986)

Feedstock

Vinasse 

yield, L/L 

etOH

pH References

a 
Nd = no data 

Source: Wilkie et al., 2000 
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Table 2.2 Vinasse Characterization for Sugar Cane Juice and Mixed Cane Juice/Cane 

Molasses Feedstocks (values are calculated from data in literature sources)
a   

 

BOD N P K, Total S 

(COD, total, total, mg/L as SO4,

g/L) mg/L mg/L mg/L

Cane juice 20 12 (25) 400 200 800 Nd 3.5

van 

Haandel 

and 

Catunda 

(1994) 

Cane juice Nd 15 (22) 400 58 Nd 400 3.5
Driessen et 

al. (1994) 

Cane juice Nd 16.5 (33) 700 91 1742 760 3.7-4.6
Costa et al. 

(1986)

Barnes and 

Halbert, 

(1979)

Willington 

and Marten 

(1982)

Cane juice Nd 20 (Nd)  1190 329 2100 1470 3.9

Callander 

and Barford 

(1983)

Cane juice 

+ 

Molasses

Nd 19.8 (45) 710 87 3817 3730 4.4-4.6
Costa et al. 

(1986)

Cane juice 

+ 

Molasses

12.5 Nd (31.5) 370 24 420 420 3.9
Souza et 

al. (1992)

Nd 3.7-5.9Cane juice Nd 20 (Nd) Nd Nd Nd

Feedstock

Vinasse 

yield, L/L 

etOH

pH References

a 
Nd = no data     

Source: Wilkie et al., 2000 
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Table 2.3 Vinasse Characterization for Cane Molasses Feedstocks (values are calculated from 

data in literature sources)
a  

  

Vinasse BOD N P K, Total S 

yield, L/L (COD, total, total, mg/L as SO4, 

etOH g/L) mg/L mg/L mg/L

Cane 

molasses 
16 25.8 (48) 820 157 Nd Nd 4.4

de Menezes 

(1989) 

Cane 

molasses 
Nd 27 (88) 2000 Nd Nd 4000 4.3-4.6

Shrihari and 

Tare (1989)

Cane 

molasses 
Nd 30 (120) 1600 61 1920 4600 4.1

Harada et 

al. (1996)  

Cane 

molasses 
Nd 32 (Nd) 205 6.8 Nd Nd 4.6

Sahai et al. 

(1983)

Cane 

molasses 
Nd

35.7 

(77.7)
1780 168 8904 4360 4.2

Sheehan 

and 

Greenfield 

(1980) 

Cane 

molasses 
13-15 39 (100) 1030 33 7000 9500 3.4-4.5

Driessen et 

al. (1994) 

Cane 

molasses
Nd 40 (Nd) 345 38.8 Nd 69.5 4.4

Srivastava 

and Sahai 

(1985)

Cane 

molasses
Nd 40 (80) Nd 45 4013 Nd 4.5-5.0

Silverio et 

al. (1986) 

Cane 

molasses
12 45 (113) Nd Nd Nd Nd 4.8

Barnes and 

Halbert, 

Willington 

and Marten 

(1979)

Cane 

molasses
12 45 (130) 1000 130 Nd Nd 4.5 Yeoh (1997)

Cane 

molasses
Nd 48 (Nd) 382 10.4 Nd 67 4.1

Sahai et al. 

(1985)

Cane 

molasses
15 50 (108) Nd Nd 8298 4700 4.5

Lele et al. 

(1989)  

Cane 

molasses
20 60 (130) 2500 200 Nd 3000 4.8

Halbert and 

Barnes 

(1998)

Cane 

molasses
Nd 60 (98) 1200 1500 1200 5000 3.8-4.4

Goyal et al. 

(1996)

Cane 

molasses
Nd Nd (68.9) Nd Nd 4484 1640 4.72

Espinosa et 

al. (1995)

1610 127 6497 6400 4.2-5.0
Costa et al. 

(1986) 

Feedstock pH References

Cane 

molasses
Nd 25 (65)
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Table 2.3-Continued 

Cane 

molasses
10 Nd (75) 975 20 Nd Nd 4.4

Garcia Garcia et al. 

(1985) 

Cane 

molasses
Nd Nd (100) 2500 300 1750 700 4.6-5.1

Sanchez Riera et al. 

(1985)

Cane 

molasses
13 Nd (22.5) 1192 247 Nd Nd 5.2 Cho (1983)

Cane 

molasses
Nd 27.5 (65) 750 Nd 10370 Nd 4.2-4.5

Sen and Bhaskaran 

(1962)

Damodara Rao and

Viraraghavan (1985) 

Cane 

molasses 
Nd Nd (24.6) 812 29 1980 607 4.17 Casarini et al. (1987)

Szendrey (1983), 

Szendrey (1983)  

and Dorion (1984) 

Cane 

molasses, 

(stored) 

Nd
27.5 

(64.0) 
1300 Nd Nd 2800 4.5-5.5 de Bazua et al. (1991)

Cane Nd Nd (66) Nd Nd Nd Nd 4.5 Calzada et al. (1991)

molasses

Nd

Nd 1135 Nd 5070 4200 3.5-3.7

Cane 

molasses 

(rum)

42 (105) 1450 100 Nd 4000 4.0-5.0

Cane 

molasses
41 (118)

 
a 
Nd = no data. 

Source: Wilkie et al., 2000 
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Table 2.4 Vinasse Characterization for Other Sugar and Starch Feedstocks (values are 

calculated from data in literature sources)
a 
          

BOD N P K, Total S  

(COD, total, total, mg/L as SO4,

g/L) mg/L mg/L mg/L

Agave

 tequilana

(tequila)

Apple/pear Nd 22 (48.9) 380 62 Nd Nd 3.4
Robertiello 

(1982)

Banana Nd Nd (53.7) 1530 150 3830 Nd Nd
Hammond 

et al. (1996)

Barley spirits

(shochu)

Barley and sweet

potato

Cassava 16
31.4 

(81.1)
650 124 Nd Nd 3.5

de 

Menezes 

(1989) 

Cherry (morello) Nd Nd (80.0) Nd Nd Nd 34 3.5-4.0
Stadlbauer 

et al. (1992)

Cherry/raspberry Nd Nd (60) Nd Nd Nd 1975 2.7-2.9
Stadlbauer 

et al. (1992)

Corn (thin stillage) Nd
26.9 

(64.5) 
755 1170 Nd Nd 3.3-4.0

Ganapathi 

(1984)

Corn (thin stillage) Nd
43.1 

(59.4) 
546 228 Nd 299 Nd

Dahab and 

Young 

(1981)

Figs Nd
20.4 

(35.4) 
880 170 Nd 900 3.6

Vlissidis 

and 

Zouboulis 

(1993)

Grapes (cognac) Nd Nd (26) Nd Nd 800 Nd 3.0-3.2
Henry et al. 

(1988) 

Grapes (wine) Nd Nd (30) 450 65 Nd 250 3.5-4
Driessen et 

al. (1994)

Pear Nd Nd (47.5) Nd Nd Nd 157 3.4-3.8
Stadlbauer 

et al. (1992)

Grapes (wine) Nd Nd (40) Nd 130 Nd Nd 3.8
Borja et al. 

(1993)

Feedstock

Vinasse 

yield, L/L 

etOH

pH References

10 Nd (66.3) Nd Nd 290 880 3.4
Ilangovan et 

al. (1997)

1.5 83 (97) 6000 Nd Nd Nd 3.7-4.1 
Kitamura et 

al. (1996)

4.2
Shin et al. 

(1992)
Nd Nd (29.5) Nd 9.1 Nd 1370
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Table 2.4-Continued 

Grapes (wine) Nd
16.3 

(27.5)
650 Nd Nd 120 4.2

Vlissidis 

and 

Zouboulis 

(1993)

Potato Nd Nd (52.0) 2100 Nd Nd Nd 4.8
Temper et 

al. (1985)

Potato Nd Nd (39.0) 1000 430 4000 Nd Nd

Wulfert and 

Weiland 

(1985)

Milo (thin stillage) Nd
34.9 

(75.7)
Nd 1280 Nd Nd 2.5-4.0

Stover et al, 

(1984) 

Ganapathi 

(1984)

Milo (thin stillage) Nd
40.4 

(45.5) 
Nd Nd Nd Nd 4.1

Hunter 

(1988)

Raisins Nd 30 (57.5) 750 220 Nd 480 3.2

Vlissidis 

and 

Zouboulis 

(1993)

Raisins (raki) Nd Nd (14.0) 250 50 Nd Nd 3.9
Eremektar 

et al. (1999)

Raspberry Nd Nd (70.0) Nd Nd Nd 37 2.9-3.8
Stadlbauer 

et al.(1992)

Yang and 

Tung, 

Yang (1996)

Rice spirits 

(shochu)
1.5 84 (Nd) Nd 389 Nd Nd 4.26

Kida et al. 

(1995)

Sweet sorghum 16
46.0 

(79.9)
800 1990 Nd Nd 4.5

de 

Menezes 

(1989)

Wheat (shochu) Nd
25.9 

(50.1)
1500 170 Nd Nd 4.6

Nagano et 

al. (1992)

Whey 1.7 5.4 (Nd) Nd Nd Nd Nd Nd
Barry 

(1982)

Whey

Nd (0.21 

L/kg 

Feddstock)

15 (Nd) Nd Nd Nd Nd Nd
Singh et al. 

(1983)

Nd 3.5
Rice spirits 

(shochu)
Nd 25 (50.9) Nd 129 Nd

 
a 
Nd=no data. 

Source: A.C. Wilkie et al., 2000 
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Table 2.5 Vinasse Characterization for Cellulosic Feedstocks (values are calculated from data 

in literature sources)
a 
         

BOD N P K, Total S 

(COD, total, total, mg/L as SO4, 

g/L) mg/L mg/L mg/L

Eucalyptus/DA Nd Nd (22.5) 200 40 Nd 260-360 5.8-6.3
Good et al. 

(1982)

Hardwood/TS-

DA 
Nd Nd (19.1) 2800 74 Nd 900 Nd

Strickland 

et al. (1986)

Hardwood 

(willow)/

SE-Enz

Mixed 

(herbaceous)/

nd

Mixed 

(biomass)/nd 
Nd 46.8 (119) Nd Nd Nd 61.7 Nd

CH2M Hillb 

(1991)

Mixed 

(softwood)/nd 
Nd

26.7 

(72.0)
Nd Nd Nd 58.9 Nd

CH2M Hillb 

(1991)

MSW/TS-DA-

SF 
Nd

32.1 

(72.0)
140 Nd Nd Nd 5.5

Broder 

(1999)

MSW/Nd Nd 20.9 (61) Nd Nd Nd 599 Nd
Larsson et 

al. (1997)

Pinus 

radiata/DA-SF 
16.7

13.2 

(25.5)
95.3 10.3 38.5 600 4.5-5.0

LFTB 

(1985), 

Callander et 

al. (1986)

RDF/CA Nd 37.7 (104) 13760 14 Nd Nd 5
Broder 

(1999)

RDF/DA Nd 31.1 (110) 2100 0.68 Nd Nd 5.9
Broder 

(1999)

RDF/TS-DA-SF Nd Nd (38.1) Nd Nd Nd Nd 5.5

Broder and 

Henson 

(1993)

RDF/Nd 6.7 6.5 (Nd) Nd Nd Nd Nd Nd
DiNovo et 

al.

Softwood 

(spruce and

pine)/SE-Enz

Nd
Larsson et 

al. (1997)
Nd

12.8 

(26.5)
Nd Nd Nd Nd

Nd
Larsson et 

al. (1997)

Nd 56.2 (140) Nd Nd Nd 60.2 Nd
CH2M Hillb 

(1991)

Feedstock

Vinasse 

yield, L/L 

etOH

pH References

Nd
19.8 

(33.3)
Nd Nd Nd Nd
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Table 2.5 - Continued 

Timothy 

grass/AFEX
15-Jun Nd (26) 1100 Nd Nd Nd Nd

Belkacemi 

et al. (1997)
 

a 
Nd = no data; AFEX=Ammonia freeze explosion; CA=Concentrated acid; DA=Dilute acid; 

MSW=Municipal solid waste; 
RDF = Refuse derived fuel; SE=Steam explosion; SE-Enz=Steam explosion and enzymatic 

hydrolysis; SF=Saccharomyces fermentation; TS=Two stage. 
b 
CH2M HILL (1991) values are predicted estimates. 

Source: A.C. Wilkie et al., 2000 
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Table 2.6 Summary of Vinasse Characterization for Beet Molasses, Cane Juice, Cane 

Molasses, and Cellulosic Feedstocks
a  

 
 
      

Vinasse BOD COD COD/ N, P, K, Total S 

Yield g/L g/L BOD Total, Total, mg/L as SO4,

L/L etOH mg/L mg/L mg/L

Beet 

molasses

Avg. 11.6 44.9 1.95 3569 163 10030 3716 5.35 5.35

Std. dev. 0.3 21.7 0.21 2694 66 6322 2015 1.02 1.02

n 3 3 5 3 5 3 2 4 4

Cane Juice  

Avg. 16.3 16.7 30.4 1.96 628 130 1952 1356 4.04

Std. dev. 5.3 3.4 8.2 0.35 316 110 1151 1396 0.49

n 2 5 6 4 6 6 5 5 7

Cane

molasses

Avg. 14 39 84.9 2.49 1229 187 5124 3478 4.46

Std. dev. 3.3 10.8 30.6 0.57 639 350 3102 2517 0.35

n 7 19 22 16 20 17 12 16 25

Cellulosic

Avg. 11.1 27.6 61.3 2.49 2787 28 39 651 5.35

Std. dev. 4.14 15.2 40 0.54 4554 30 nd 122 0.53

n 4 11 15 10 8 5 1 6 7

Feedstock pH

a
Nd = no data; std dev = standard deviation; n = number of literature values used. 

Source: A.C. Wilkie et al., 2000 

2.4 Treatment Alternatives for Vinasse 

In order to choose an appropriate wastewater treatment method, one must consider 

whether the wastewater is domestic or industrial. For industrial wastewater, one must consider 

what type of industry generates the wastewater. Other considerations should be determined, 

such as the quality and quantity of the wastewater being discharged, the geographic and 

climatic conditions of the location, as well as the cost-benefit evaluation. In addition, the 

designer needs to determine the quality of the water body in the vicinity that will be receiving the 

treated wastewater, as well as the final purpose that the treated wastewater or sludge would 

serve. Moreover, the environmental rules and regulations need to be applied for designing 

purposes.  
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Generally, the following wastewater treatment methods are utilized: physical; 

physicochemical; and biological methods. Alpina (2005) lists the main levels of wastewater 

treatment as:  

• Primary: Removal of large material, floating material and the sediment.  

• Secondary: Degradation of the carbonic compounds and removal of the biological sludge.  

• Tertiary: Removal of nutrients, of non-biodegradable material, and of the sludge, followed 

by disinfection.  

Luksenberg et al. (1980) presented the following alternatives for treating vinasse: 

physicochemical treatment; reverse osmosis; evaporation; incineration; industrial recycling; 

wetlands; stabilization lagoons; trickling filters; manufacturing of biomass; anaerobic digestion; 

irrigation of sugarcane fields. Other vinasse treatment studies include: aerobic processes in 

ponds (Springer & Goissis, 1988); wetlands (Kerner & Rochard, 2004); sequential batch with 

activated sludge (Torrijos & Moleta, 1997).  

Wilkie et al. (2000) presented a thorough review of different types of vinasse treatment, 

which included:  

(1) Physical/mechanical separation: Removal and recovery of suspended solids containing 

yeast and other materials. This option is widely used in the United States for the corn-based 

vinasse. The separated solids are dried and sold as animal feed, known as dried distillers grains 

(DDG). However, this process is not feasible for sugar crops and cellulosic crops due to the 

high water content in the vinasse generated by these crops. Other types of treatment 

technologies may be applied, following the physical separation, such as evaporation and/or 

membrane separation, anaerobic digestion, and single cell protein production.  

(2) Evaporation and membrane separation: The stillage is concentrated in multi-effect 

evaporators. However, the amount of energy required to evaporate the stillage (equivalent to 

10% of the energy content of the ethanol) is a major disadvantage of this process. The 

concentration of vinasse may also be accomplished by membrane separation. Permeate is 
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recovered for recycling in cooking and mashing. However, membrane fouling is a major 

disadvantage of this process. Additionally, organic compounds with low molecular weight pass 

through the membranes, thus decreasing the potential for 100% water recycling in the ethanol 

production process.  

(3) Single cell protein: In the single cell protein production, a second aerobic culture is employed 

to remove residual sugars and soluble proteins and lower the COD and nutrient content. 

According to Srivastave (2008), the advantages of this method include: the microorganisms 

multiply at a high rate, the dry mass has a high protein content, less area is needed for this type 

of technology, carbon sources can be found in a variety of raw materials, and it does not 

depend on weather conditions. The main disadvantage of this method is its high cost. 

(4) Algae as well as other bioproducts production: The production of algae for nitrogen and 

phosphorus removal in surface water resources has been studied. Furthermore, studies have 

been made on the utilization of vinasse to produce practical biological products, such as 

enzymes, chitosan, astaxanthin, plant hormones and the biopolymers, alternan and pullulan. 

The main advantage of algae production includes the fact that algae requires carbon dioxide to 

grow, thus contributing to lower CO2 levels in its surroundings. On the other hand, from the life 

cycle analysis point of view, the production of algae requires more energy and water than other 

biofuel sources. In addition, the production of algae requires the utilization of fertilizer, thus 

contributing to the eutrophication of lakes and other water systems by the fertilizer-

contaminated runoff.   

(5) Calcium magnesium acetate production: Vinasse may also be utilized to produce organic 

acids. Calcium magnesium acetate (CMA), as well as potassium acetate, may be used for 

deicing roads and bridges, during the winter in North America, as they are less corrosive and 

produce less environmental damage than sodium chloride (NaCl). CMA may be produced 

through the fermentation of carbohydrates by Clostridium thermoaceticum. The precipitation 
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and recovery of the organic acids are the subsequent stages. Acetic acid is one of the main 

products.   

(6) Color removal: There are several physico-chemical and biological processes for color 

removal from wastewater. The traditional coagulation and flocculation process is a convenient 

and easy method. Typically, the coagulants are salts of a strong acid and a weak base. 

Typically, Al2(OH)3 is the base utilized. The main disadvantage is the fact that, according to 

Souza et al (2013), recent studies have reported a correlation between the onset of Alzheimer’s 

disease and the utilization of aluminum salts in water treatment.   

(7) Thermal and electrochemical processes: Research on the use of thermal direct wet air 

oxidation of vinasse followed by char recovery and incineration for steam production has shown 

to recover more energy than vinasse evaporation followed by syrup incineration. In addition, 

research has shown that the supercritical water oxidation of vinasse, using H2O2 at elevated 

temperatures of 673±773 K, results in a rapid reduction of organic strength. Another process 

researched was the electrochemical treatment of vinasse using NaCl. This treatment resulted in 

chlorine and other oxidants production, which destructively oxidized the COD. However, at this 

time, these processes are not considered economical treatment methods for vinasse.  

(8) Anaerobic treatment of vinasse: This process is the subject of this research will be 

discussed in more detail in another section.  

Pérez et al. (1998) investigated and developed the basic technology of on-site disposal 

of vinasse by combustion. His research consisted of determining heating values, composition, 

and flame characteristics through combustion tests. Initially, he used only vinasse with different 

solid concentrations and, later, he used emulsions of vinasse and #6-fuel oil. He stated that the 

purpose of his research was to evaluate the technical feasibility of vinasse combustion via 

atomization. He derived his conclusions from two different perspectives: (1) Rheological; and (2) 

Combustion. (1) From the rheological perspective, he stated that for both categories of his trials, 

i.e., the vinasse by itself and the emulsions of vinasse combined with #6-fuel oil, had rheological 
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behavior close to the #6-fuel oil alone, when tested in the Brookfield Rotary Viscometer. After 

the right temperature and shear rate were obtained, he did not have any problems obtaining 

atomization and combustion. He used vinasse with the solids concentration below 50% for the 

combustion tests. (2) From the combustion perspective, he stated that the combustion of the 

emulsions prepared with vinasse plus #6-fuel oil is feasible in the range from 95% of #6-fuel oil 

and 5% of vinasse to 50% of #6-fuel oil to 50% of vinasse.  He stated that, beyond that range, 

the flame was unstable and not compact. He found out that the best results were obtained when 

95 to 75% #6 fuel oil were used together with 5 to 25% of vinasse. The drawbacks he listed 

included: a) The energy needed for the vinasse pre-evaporation was quite high; b) When 

concentrating to up to 75% of solids, the foaming in the evaporators was another problem; c) 

The crystallization of salts in the syrup causes difficulties with the operation of certain 

appurtenances.  

Goncalves (2006) performed research for the treatment of the vinasse by utilizing 

coagulation and flocculation and the factorial planning technique. She evaluated several 

variables, specially, the COD removal. Then, she developed a statistical model representing the 

process, neglecting the variables of less significance. The model demonstrated that the COD 

removal varied as a function of the pH and mixing parameters. The best results were achieved 

when calcium oxide and ferrous sulfate were used, with the pH values of 12.41; the removal 

efficiencies were 52 and 44%, respectively. She observed that the resulting sludge could be 

used as a fertilizer because it was rich in nutrient content. She concluded that the statistical 

planning technique was very useful in the evaluation of the efficiency of the COD removal, even 

with the simultaneous variation of more than one variable, in addition to enabling evaluation of 

the possible interactions among the variables. She recommended a study about the financial 

feasibility of that type of treatment on an industrial scale.  

Fernández et al. (2001) used activated carbon and natural zeolite as support materials 

in their research for vinasse treatment in an anaerobic fluidized bed reactor. He stated that, in 
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Cuba, the vinasse is a very strong pollutant. In addition to its high organic load, it has a high 

content of sulfates. In his research, when he applied the anaerobic technology, most of the 

biodegradable organic matter turned into biogas, especially methane. The problem he had was 

the unwanted concentration of sulfides, which was above 1%. In his work, he developed two 

experiments with anaerobic fluidized bed reactors (AFBR), using raw materials easily available 

in Cuba as support media: (1) activated carbon and (2) natural zeolite. The purpose of his 

research was to achieve high removal rates for the organic matter, while maintaining the 

concentrations of sulfides and ammonium within the permissible ranges. In his research, the 

reactors were operated during 120 days. His experiment achieved an organic loading rate of 10 

kg COD/m
3
 day, with COD removal above 70%. The methane production was 2 L/d. He stated 

that the activated carbon and natural zeolite, used as support materials in the anaerobic 

fluidized bed reactors, showed good results for waste removal.  

2.5 Anaerobic Digestion of Vinasse 

In anaerobic degradation of vinasse, microorganisms are used to degrade the organic 

matter in the fluid in the absence of oxygen. Bacteria, rotifers, and protozoa are the main 

microorganisms used by this method. After digestion, the following are produced: a clearer 

liquid, sludge, and methane gas.  

The anaerobic digestion encompasses the following stages: (i) Hydrolysis of the large 

molecules by the bacteria; (ii) Acidogenesis: The acidogenic bacteria convert sugars and amino 

acids into CO2, H2, NH3, and other organic acids; (iii) The acetogenic bacteria convert carboxylic 

acids into simpler organic acids, acetic acid, as well as more CO2, H2, and NH3. (iv) Then, the 

methanogen microbes produce CH4 and more CO2.  

The following chemical reaction represents hydrolysis of a simple sugar glucose, as an 

example (Saikkonen, 2006):  

2 C6H12O6 + H2O               2 CH3COOH + 2 CO2 + 4 H2 



 

 23 

With the formation of acetic acid, carbon dioxide and hydrogen, methane is, then, 

formed by the two following pathways: 

2 CH3COOH                     2 CH4 + 2 CO2  

4 H 2 + CO2                        CH4 + 2 H2O 

 Table 2.7 shows that, generally, the acetogenic biochemical reactions are 

thermodynamically unfavorable (ΔG0> 0) in standard conditions.  

Table 2.7 Important Reactions in Anaerobic Processes  

Oxidation Reactions Δ Go, kJ   

Propionate → acetate CH3CH2COO - + 3H2O → CH3COO - + H+ + HCO3 + H2 76.1

Butirate → acetate CH3CH2CH2COO -  + 2 H2O → 2 CH3COO -  + H+ + 2 H2 48.1

Ethanol → acetate CH3CH2OH + H2O → CH3COO - + H+  + 2 H2 9.6

Acetate → methane CH3COO -  + H2O → HCO3 
-  + CH4 -31

Reduction

HCO3 
- → acetate 2 HCO3 

- + 4 H2 + H+ → CH3COO- + 4 H2O -104.6

HCO3 
- → methane HCO3 

- + 4 H2 + H → CH4 + 3 H2O -135.6
 

Source: EEA, 2005; Salomon, 2007 

The chemical reactions, represented on Table 2.7, demonstrate the following: if the 

chemical species on the right side of the arrow are present in concentrations indicated by the 

reaction, the reaction forms chemical species on the left (reverse). As methanogenesis depends 

on the availability of acetate, it is important to balance the acetogenic reactions and shift the 

direction of the reaction to the right. This can be achieved by the continuous removal of H2 from 

the reaction of electrons recipients (Salomon, 2007).   

Satyawali et al. (2007) reviewed the existing status and advances of various treatment 

methods. He stated that anaerobic treatment was the most attractive primary treatment due to 

the BOD removal rate being over 80%, in addition to the energy recovery in the form of biogas. 
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His work focused on various: (1) biological methods, and (2) physicochemical methods such as 

adsorption, coagulation/precipitation, oxidation, and membrane filtration.  

Ribas (2006) has stated that the anaerobic reactors have shown to be a promising 

alternative because they accomplish a high rate of organic load removal and produce biogas. 

Additionally, this type of treatment has already been tested and used in many countries to treat 

the effluent from alcohol industries (Ribas, 2006).  

Wilkie et al. (2000) advocated the advantages of the anaerobic digestion because of its 

effective reduction of the organic load and because it produces biogas. He concluded that the 

thermophilic anaerobic digestion of the vinasse could be achieved in smaller reactors than 

conventional aerobic treatment, because of higher loading rates. Ahring et al. (1991) concluded 

that the organic load introduced to a thermophilic anaerobic reactor may be above 30 kg 

COD/m
3
-day. In addition, anaerobic digestion produces less sludge than the conventional 

aerobic treatment (Speece, 1996). According to Vazzoler (1997), the thermophilic anaerobic 

digestion of the vinasse presents a higher rate of biogas production than mesophilic digestion. 

Several authors, including Wiegant et al. (1986), Souza et al. (1992), Vlissidis & Zouboulis 

(1993), Driessen et al. (1994), and Harada et al. (1996), have evaluated the thermophilic 

anaerobic digestion of the vinasse in an upflow anaerobic sludge blanket (UASB) reactor, 

because this type of treatment presented the best performance.  

2.6 Anaerobic Reactor Designs 

 Anaerobic treatment uses reactors which are designed to hold the wastewater for a 

specific interval, the detention time. These reactors enable the composition and the 

concentration changes. In the United States, there are several types of anaerobic digesters 

being used for methane production and recovery. The most common are: plug flow, complete 

mix, and covered lagoons.  

The plug flow digester is a flow-through tank with complete mixing perpendicular to the 

flow direction but theoretically no mixing in the direction of flow. Generally, the plug flow digester 



 

 25 

is a long trough, built below ground, and the cover may be either airtight and inflatable or a hard 

top type. Plug-flow digesters operate within the mesophilic temperature range (35-40 °C or 95-

103 °F). Usually, high-strength waste requires a hydraulic retention time (HRT) of 20 days, 

depending on the waste characteristics (Lusk, 1999 as referred by Saikkonen, 2006).  

A complete mix digester is a tank with complete mixing that theoretically leads to 

uniform concentrations everywhere in the tank. The digester is designed for methane production 

and recovery, and connected to a separate waste storage facility.  

A covered anaerobic lagoon is a lagoon with constant volume, designed for biogas 

production and recovery connected to a separate waste storage facility, where the total solids 

concentration in the influent waste is less than 2% (Wilkie, 2005 as referred by Saikkonen, 

2006). The operating volume of the lagoon is designed based on the daily volatile solids (VS) 

loading rate per 1,000 ft
3
/ day or the minimum hydraulic retention time needed for methane 

production, whichever is greater. 

Carvalho-Assan (2006) evaluated the performance of vinasse aerobic digestion using 

rotating discs or bio-discs. The efficiency of COD and of BOD removal increased with time, as 

the thickness of the bio film increased and at a hydraulic detention time of 3.5 days. However, 

the bio-discs did not accomplish much in the effort of raising the pH. Another downside of the 

treatment with bio-discs is that the treatment showed variation in the volatile suspended solids 

values. 

The popular upflow anaerobic sludge blanket (UASB) reactor was developed in the late 

seventies by Prof. Gatze Lettinga, the Wageningen University the Netherlands. This type of 

reactor has been used mainly for treating the wastewater from the following types of industry: 

sugar refining, breweries, distilleries and fermentation, food, pulp and paper. The technology of 

the UASB reactor is very effective and economical. This type of digester displays the following 

main features (Lettinga et al., 1980):  
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(1)  The upward flow regime of the wastewater at the entrance of the apparatus. The 

wastewater enters the tank from the base and it is directed upwards and passes through a 

layer of sludge.  

(2)  The upward motion of the gas bubbles causes additional collisions between the particles. 

The anaerobic biochemical reactions produce a biogas containing CH4 and CO2. These 

bubbles provide additional opportunities for the mixing of the substrate. Therefore, 

mechanical parts are not necessary for stirring.  

(3)  The higher setting velocities of the granules formed by the selected type of microorganisms. 

The anaerobic microorganisms promote the formation of granules. The approximate 

diameters of these granules are between 0.5 and 2 mm. The anaerobic microorganisms 

decompose the organic matter present in the wastewater.  

(4)  A three-phase separator, at the top of the reactor, facilitates the separation between the 

gas, solid, and liquid phases (gas-solids-liquid, or GSL, separator). Typically, the three-

phase separator comprises of a funnel-like gas cap. The baffles inside the tank deflect the 

gas into the opening of the gas cap. The gas cap conveys the flow of the bio gas into a 

settler, right above it. The supernatant flows through the weirs.  

Figure 2.1 displays a schematic diagram of an UASB reactor (Ghangrekar, 2008). 

    

Figure 2.1 Schematic Diagram of an UASB Reactor (Ghangrekar, 2008) 
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The design of an UASB reactor is dependent upon the average COD concentration of 

the raw vinasse. Generally, for temperature between 15 and 35 degrees C, the Organic Loading 

Rate should be between 1.5 to 18 kg COD /(m
3
 d) (Lettinga and Hulshoff, 1980). The volume of 

the reactor is dependent on the Organic Loading Rate (OLR) (Ghangrekar, 2008):  

Volume = (Flow Rate x COD concentration) /OLR 

Ghangrekar (2008) points out that the GSL separator is better designed when the 

Solids (microbe) Retention Time (SRT) should be between 50 to 100 days, thus facilitating the 

treatment with a short liquid waste Hydraulic Residence Time (HRT). Generally, the sludge 

blanket occupies 20 to 30% of the total volume and the GSL separator occupies 15 to 30% of 

the total volume. The volume of biogas produced varies in accordance to the content of 

biodegradable organic matter of the vinasse.  

Riera et al. (1985) utilized a 100-liter-UASB reactor for the digestion of vinasse in 

Argentina and achieved COD removal rates above 75% and good sludge precipitation.  

Driessen et al. (1994) conducted a study on the vinasse digestion using UASB, with 

data collected from representatives in Brazil, India, Venezuela and the Netherlands. They 

showed the importance of the correct choice of parameters for each type of treated effluent for 

different geographic locations. The rate of COD removal varied between 65 and 95%, with 

feeding rates up to 22 kg/m
3
 day.  

In 1981, the IPT (Institute for Technological Research of São Paulo, Brazil) conducted 

an experiment in Penedo Agro Distillery (PAISA), in Penedo, Brazil, which investigated the 

anaerobic digestion of vinasse at 32° C, utilizing two UASB reactors with 11 and 24 m
3
. The 

results included an average biogas production of 13.1 liters per liter of vinasse, with 65% CH4. 

In addition, with a retention time of 1.5 days, the COD removal rate accomplished was 95% 

(CNI, 1982). Figure 2.2 presents the framework with typical values of vinasse anaerobic 

digestion from an ethanol distillery producing 120,000 liters of ethanol per day.  



 

 28 

                                                      

Anaerobic 
Digester
V = 2500 m3

pH = 3.5-4.0
COD = 25 g/l
BOD = 11 g/l

T = 30-40 C

HRT = 1.7 days
Organic load = 15 kg
COD/m3.day

Supernatant 
f  = 1500 m3/day
T = 30 - 35 C

pH = 6.8 – 7.2
COD = 6 g/l
BOD = 0.65 g/l

Lagoon or 
Thermal 
Stabilization 

Tank

Distillery

Gas 
Treatment

Biogas
15,000 m3/day
60% CH4

40% CO2

Supernatant 
Concentration

Vinasse 
f  = 1500 m 3/day
T = 90 C

pH = 3.5-4.0
COD = 25 g/l
BOD = 11

  

Figure 2.2 Flowchart Example of Vinasse Biodigestion on an Industrial Scale (IPT, 1990)  

 According to De Paula et al. (2008), the treatment capacity of the conventional UASB 

reactor is low and limited by the retention capacity of the anaerobic sludge inside the reactor. In 

order to increase the contact time of the sludge, an expansion or fluidization of the granular 

sludge bed has been added to the original design. This more modern concept is named 

Expanded Granular Sludge Bed (EGSB). De Paula et al. (2008) rationalized that the 

optimization of the conventional UASB reactor may be accomplished by increasing the 

height/diameter ratio and by recycling a portion of the treated effluent. Among the various 

designs of EGSB reactors, the Internal Circulation (IC) reactor is preferred. The IC reactor is 

based on the installation of two UASB reactors. De Paula et al. (2008) point out that the main 

advantage of the IC reactor is the segregation of the biogas in one of the sections inside the 
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reactor. Its main disadvantage is that it takes approximately one year to get the sludge 

acclimated with the vinasse, before treatment is applied.  

2.7 Biogas Composition    

 Biogas consists mainly of methane (CH4) and carbon dioxide (CO2), smaller amounts of 

nitrogen (N2), water vapor, hydrogen sulfide (H2S) and ammonia (NH3). Table 2.8 presents the 

typical biogas composition. Table 2.9 presents other relevant characteristics of the biogas. 

Table 2.10 presents a more detailed description of the typical biogas composition. 

Table 2.8 Typical Biogas Composition in % (CENBIO, 2003) 

Methane (CH4) Carbon Dioxide (CO2) Oxygen (O2) + 
nitrogen (N2)       

Moisture (H2O) 

66.5% 30.5% 0.5% 2.5% 

Source: Coelho et al (2006) 

 

Table 2.9 Some Biogas Characteristics (CENBIO, 2003 and SABESP, 2001) 

Relative Density 0.86 at 15 C 101.325 kPa 

Pressure 250 mm water column 

Source: Coelho et al (2006) 

 

Table 2.10 Detailed Typical Biogas Composition 

 Component  Typical Analysis (%)  

Methane  50-60  

Carbon Dioxide  38-48  

Trace Components  2  

Trace Components  

Moisture    

Hydrogen Sulfide (H2S) 134 ppm or 0.01% 

Hydrogen with Halo-carbons  

Volatile Organic Carbons (VOCs)  

Source: Wilson (2005), Coelho et al. (2006) 

 

2.8 Biogas Utilization 

 Generally speaking, biogas may be used directly for heating or cooling, or in household 

appliances; used for generation of electricity; or upgraded and used as motor vehicle fuel. There 
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are several technologies for converting the chemical energy contained in the biogas into a 

useful type of energy. Internal combustion engines, including gas turbines, are the technologies 

most frequently used for this type of energy conversion (Coelho et al., 2006). The biogas is 

burned, or combined with oxygen, which releases heat energy that had been stored in the 

chemical bonds of the methane. The expansion of the high-temperature/high-pressure gases 

applies direct force to a piston, turbine blade, or nozzle, thus transforming chemical energy into 

useful mechanical energy. In a gas turbine, the mechanical energy of the turbine turns a 

generator, which produces electricity.  

In order to use biogas in diesel engines, having ignition by compression, it is necessary, 

in addition to the mixture of air and biogas, to inject a quantity of diesel fuel to start the 

combustion. These motors are robust and generate greater power. In addition, these motors 

can operate with biogas having CO2 concentrations of up to 45% (Pinto, 1999).  

2.9 Biogas Purification 

Before its utilization, it is important to treat the biogas. The degree to which the gas 

must be processed depends on the intended use for the biogas. Using the gas in a boiler or in 

an internal combustion engine requires minimal gas processing. Other applications such as 

using the gas to power a fuel cell or upgrading the biogas to natural gas quality require more 

rigorous processing (Saikkonen, 2006).  

The main problems posed by the biogas impurities include:   

 CO2: inert gas that lowers the biogas calorific value. This means that biogas of a certain 

energy content occupies more space, which is particularly an issue in the case of motor 

vehicles. Anders (2005) suggests that the methane content has to be increased to at 

least 96–97 % for motor vehicle applications. However, some engines, such as micro-

turbines, are designed to operate with CO2 levels between 30% and 50% (Coelho et al., 

2006).  

http://en.wikipedia.org/wiki/Temperature
http://en.wikipedia.org/wiki/Pressure
http://en.wikipedia.org/wiki/Force
http://en.wikipedia.org/wiki/Piston
http://en.wikipedia.org/wiki/Propulsive_nozzle
http://en.wikipedia.org/wiki/Energy
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 Moisture: It can compromise the proper functioning of the internal parts of the engine 

(nozzles, combustion chamber, turbine palettes), and reduce the biogas calorific value;  

 Hydrogen sulfide (H2S): It is corrosive and can also undermine the proper functioning of 

the internal parts of engines. Most anaerobic digesters produce a biogas that contains 

between 0.3 and 2% H2S (Costa et al, 2001);  

 Presence of air: reduces the biogas calorific value;  

  Typically, the purification of biogas consists of removing the majority of the 

contaminants, except much of CO2, thus producing a gas with medium calorific value 

(4000kcal/kg to 6000 kcal / kg) that feeds some adapted  equipment (CENBIO, 2000). Moisture 

may be removed from the biogas through coalescing filters and refrigeration dryers. Due to the 

H2S affinity with iron oxide, H2S removal may be accomplished by simply making the biogas 

flow through an iron sponge. Higher temperatures will increase the absorption efficiency of the 

hydrogen sulfide (Pinto, 1999). Another way of removing H2S is by directing the biogas flow 

through an activated carbon filter (Coelho et al., 2006).  

 In view of the fact that CO2 is acidic, it may be absorbed by alkaline solutions, such as 

calcium or sodium hydroxide, or calcium or potassium carbonate. These chemical reactions 

yield carbonates and bicarbonates possessing different solubility indexes. Another method for 

removing CO2 is by making it flow through cool pure water, which is an ancient process that 

uses water as an adsorbent. Due to Henry's law, the equilibrium pressure of CO2 dissolved in 

water is a direct function of temperature, i.e., the hot water holds less quantity of CO2, 

compared to cold water (Nogueira, 1986).  

 The techniques usually employed for the purification of biogas are shown in Table 2.11. 
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Table 2.11 Techniques for Removal of Impurities from Biogas 

Impurity General Description Details 

Moisture Adsorption 
 
 
 
Absorption 
 
 
Cooling to 2°C 

Silica gel                                                                       
Molecular Sieve                                                                        
Alumina 
 
Ethylene glycol 
(temperature -6.7 ° C) 
Selexol 
 

Hydrocarbons Adsorption 
 
Absorption 
 
 
 
 
 
Combination 

Activated carbon                
 
Light oil 
Ethylene Glycol 
Selexol 
(Temperature between -
6.7° C and -33.9° C) 
 
Cooling with ethylene 
glycol and activated 
Carbon adsorption 

CO2 and H2S Absorption 
 
 
 
 
 
 
 
 
 
 
 
 
Adsorption 
 
 
Membrane separation 

Organic Solvents 
Selexol                                                   
Fluorine 
Rectisol                                                      
Solutions of alkali salts 
Potassium at high 
temperature 
Alkanolamines 
Mono, di - tri - ethanol 
amine                          De-
glicolamina 
Ucarsol-CR 
 
Molecular Sieves 
Activated Carbon 
 
Hollow fiber membrane 

Siloxina Adsorption Activated Carbon 

Source: Alves (2000) and CAPSTONE (2001) 

 

2.10 Storage of Purified Biogas 

 The storage of purified biogas presents a major challenge: it does not liquefy at low 

pressure and ambient temperature. This biogas characteristic demands large reservoirs for 

storage. According to Pinto (1999), there are three forms of methane storage, as shown in 
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Table 2.12. In the first, the liquefaction is achieved cryogenically, in which methane is stored in 

the liquid state in thermally insulated cylinders, at a temperature of -161 ° C. Another storage 

method is to apply high pressure in order to compress the methane in the vessel, while still in 

the gaseous state. The third methane storage alternative is to maintain the methane also in the 

gaseous state, but adsorbed onto activated carbon. This third process is relatively simple and 

lower cost than the other two.  

Table 2.12 Methane Storage Alternatives 

Type                                                           Storage Features 

 Pressure (atm) Temp. (° C)       Density (kg/m
3
)      Energy (kJ/L)  

 

Liquefaction 2 161 1.0 22300 

High 
pressure 

200 ambient 6.5 9800  
 

Adsorption 20 ambient 7.0 2640 

Source: Lucas, 1990 

 

2.11 Case Study: Biogas Production from the Anaerobic Digestion of Vinasse 

In 1984, CODISTL, a manufacturer of industrial equipment, that had bought the Dutch 

UASB reactor technology, namely METHAX BIOPAQ, installed this type of digester at two 

different locations, the São Luís Sugar Mill and the St. John Distillery, in Brazil. The capacity of 

the St. John Distillery is 300 m
3
 of alcohol per day, producing 300 million liters of vinasse. The 

vinasse anaerobic digestion plant remained in operation until the end of 1997. The nominal 

vinasse processing was 1500 m
3
 /day, with an effective load of about 1000 m

3
/day, 85% COD 

removal and mesophilic (35° C) operating temperatures. The effluent was used as fertilizer in 

the sugarcane fields. A gas tank was installed and collected 600 Nm
3
 of biogas, which had a 

content of 70% methane. Then, the biogas was purified to 98% methane, compressed to 220 

atm and stored in 400 Nm
3 

cylinders. Table 2.13 shows results of biogas production. The 

average total production, considering the entire operating time, was 4274 Nm
3
/day.  
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Table 2.13 Biogas Production from Anaerobic Digestion of Vinasse at the St. John Distillery 

Harvest  Duration 
(days) 

Biogas 
Production, 
60% CH4 (Nm

3
)           

Methane 
Production,  
98% CH4 (Nm

3
)      

Avg. 
Methane 
Production, 
CH4 
(Nm

3
/day) 

86/87 197 319282 234704 1191 

87/88 197 918514 593544 3012 

88/89 169 1112453 687274 4067 

89/90 176 1032683 656374 3729 

90/91 213 1751904 1035200 4860 

91/92 196 1848320 1126181 5743 

92/93 207 2371946 1488396 7190 

93/94 186 1778486 1085053 5834 

94/95 204 1228496 804665 3944 

95/96 147 514798 337502 2296 

Source: Barbeli, 1998  
 

2.12 Novel Research: Methane Generation Rates from Vinasse   

 Many researchers have developed k values for solid waste decay, but none for vinasse 

decomposition. Therefore, studies for estimating k values for the anaerobic digestion of vinasse 

are needed, particularly as function of composition and temperature.  
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CHAPTER 3 

MATERIALS AND METHODS   

3.1 Introduction  

 The main purpose of this research was to develop a model, VUMP (Vinasse Utilization 

for Methane Production), for predicting methane generation rates from ethanol-distillery vinasse. 

The methodology for this research encompassed the following steps: 

Step #1: Vinasse composition experimental design development to study the effect of Chemical 

Oxygen Demand (COD), nitrogen (N), phosphorus (P), potassium (K), sulfur (S), and 

temperature on methane generation.   

Step #2: Setting up laboratory-scale bioreactors. 

This stage encompassed selecting the bioreactors with their fitted appurtenances, designing 

and setting up air tight laboratory-scale bioreactors, connected to gas collecting devices. 

Step #3: Operating and monitoring laboratory-scale bioreactors. This stage included the 

preparation of various batches, each batch having a different vinasse composition/temperature 

combination, and measuring parameters such as biogas volume, percentage of methane (CH4), 

carbon dioxide (CO2) and oxygen (O2) in the biogas.   

Step #4: Analysis and Development of the VUMP model. A comprehensive multiple linear 

regression (MLR) model was developed to predict first-order methane generation rate constants 

as functions of temperature and vinasse composition i.e., COD, N, P, K, and S.  

3.2. Vinasse Composition Experimental Design Development and Preparation  

The primary vinasse constituents of environmental interest are Chemical Oxygen 

Demand, nitrogen, phosphorous, potassium, and sulfate. All are present at substantial 

concentrations in vinasse, and are water quality parameters of interest.  
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 Initially, we wanted to develop a model that could estimate methane generation for 

vinasse from any feedstock; we thus developed an experimental design regarding vinasse 

composition with this in mind. A review paper on anaerobic treatment of vinasse, published by 

Wilkie et al. (2000), assimilated information from dozens of studies of composition of vinasse 

from a wide variety of feedstocks. From this paper, we determined the maximum, minimum, and 

intermediate values of the vinasse constituents of interest: Chemical Oxygen Demand (COD), 

nitrogen (N), phosphorus (P), potassium (K), sulfur (S). We wanted our experimental design to 

cover the ranges of these constituent values, from minimum to maximum, given in Wilkie’s 

paper; then, our methane generation model would be applicable to any vinasse of any 

composition from any feedstock. However, maximum ammonia, potassium, and sulfate were 

limited to levels that previous studies have been shown to be toxic to the methanogens, as 

shown in Table 3.1. The resulting experimental design, a strength 2 orthogonal array (V. Chen, 

2011), is shown in Appendix A. The resulting 18 batches, representing 18 synthetic vinasse 

compositions, to be run at 3 temperatures (30, 35, and 40C), are also shown in Appendix A. 

 Table 3.1 Compounds Affecting Methane Production: Toxic Substance Concentration 

(adapted from OLGPB, 1976)    

 

 

 

 

 

 
  

Constituent Maximum Recommended 

Concentration  

Ammonia (NH3) 1500-3000 mg/L 

Calcium (Ca) 2500-4500 mg/L 

Chromium (Cr) 200 mg/L 

Copper (Cu) 100 mg/L 

Cyanide (CN
--
) <25 mg/L 

Magnesium (Mg) 1000-1500 mg/L 

Nickel (Ni) 200-500 mg/L 

Potassium (K) 2500-4500 mg/L 

Sodium (Na) 3500-5500 mg/L 

Sodium chloride (NaCl) 40,000 ppm (~40 mg/L) 

Sulfate (SO4 
2-

) 5000 ppm (~5mg/L) 

Oxygen  
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Initial experimental runs were conducted using the experimental design shown in Appendix A. 

Unfortunately, only 3 of 18 batches produced significant methane. The vinasse compositions 

may have contained unsuitable constituent combinations of COD, N, P, K, and S; for example: 

the following formula, run at 40°C, did not produce any biogas: (COD= 2.6; N= 0.550; P= 0.007; 

K= 0.400; S= 0.034)g/Liter of vinasse. An example of another formula, run at 30°C, that did not 

produce any biogas was the following: (COD= 147; N= 1.200; P= 0.007; K= 0.400; S= 1.470)g/L 

of vinasse.     

 The initial experimental design was thus abandoned. The actual experimental design 

used is shown in Table 3.2. Runs were conducted using the 4 compositions from the original 

design that had produced significant methane. Each of the 4 compositions, as shown in Table 

3.2, was operated at 3 mesophilic temperatures (30, 35, and 40°C), for a total of 12 runs. 

Table 3.2 Final Experimental Design of Vinasse Composition 

Composition 
Number 

Vinasse Composition                                    

(g of constituents per L of vinasse) 

 COD N P K S 

 C6H12O6 NH3 H3PO4 KOH CaSO4 

1 2.6 0.06 0.007 0.039 0.034 

4 75 1.2 0.09 1.742 0.034 

9 147 0.55 0.09 0.039 0.58 

12 75 1.2 0.007 0.039 0.58 

 
 The synthetic vinasse was prepared using glucose, ammonia, phosphoric acid, 

potassium hydroxide, and calcium sulfate as sources of COD, N, P, K, and S, respectively. 

First, the glucose was weighed and dissolved in deionized water. The Chemical Oxygen 

Demand was estimated by calculating the amount (in g/L) of glucose consumed in an oxidation 

reaction, represented as follows:  

                                          C6H12O6 + 6O2 → 6CO2 + 6H2O 

Then, separately, the other constituents were combined. Then, the pH was checked and 

adjusted with either HCl or NaOH. The adjusted pH was between 7.0 and 8.4. Then, a buffer 

solution was added, within the range of 4.5 and 5.5 g of sodium bicarbonate (NaHCO3)/L of 
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vinasse (depending on the initial pH, and how much NaOH had been used during the pH 

adjustment). Afterwards, anaerobic-digested sewage sludge was added (10-15% of the total 

solution volume, according to Espinoza-Escalante et al., 2008), collected from the City of Fort 

Worth Village Creek Wastewater Treatment Plant, to inoculate each bioreactor with an initial 

supply of microbes. Trace mineral solution (TMS) was added to each batch, as shown in Table 

3.3, to ensure that microbes had sufficient minor nutrients. The initial trace mineral solution 

composition was taken from the Revised Anaerobic Mineral Medium (RAMM) (Shelton and 

Tiedje, 1984), and modified for use with vinasse. Then, the volume was completed to 6 liters of 

solution with deionized water, and the pH was checked and adjusted again. 

Table 3.3 Trace Mineral Solution Composition, Modified for vinasse  

Mineral Salt Concentration (mg/L) 

Calcium Chloride (CaCl2.2H2O) 75 

Magnesium Chloride (MgCl2.6H2O) 100 

Ferrous Chloride (FeCl2.4H2O) 20 

Trace Metals  

Manganese (ii) Chloride (MnCl2.4H2O) 0.5 

Boric Acid (H3BO3) 0.05 

Zinc Chloride (ZnCl2) 0.05 

Cupper Chloride (CuCl2) 0.03 

Cobalt Chloride (CoCl2. 6 H2O) 0.5 

Nickel Chloride (NiCl2 . 6 H2O) 0.05 

 
 

3.3 Reactor Experimental Set-Up 

A total of 3 6-L lab-scale anaerobic digesters, as shown in Figure 3.1 (VWR part 

#22877-082), were assembled. The 6-L reactors had one threaded cap with a circular opening. 

A septum was installed in the threaded cap opening of each reactor to allow insertion of a 

syringe. The purpose of the syringe was two-fold: (1) Draw vinasse samples for pH monitoring 

and (2) insert 3 mL of 5N NaOH solution to adjust the vinasse pH, if needed.   
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Figure 3.1 ProCulture® Glass Spinner Reactor with Angled Side Arms 

All joints were tightly fitted with Teflon® tape and sealed with plenty of 100% silicon 

DAP® sealant. After these joints were tightly fitted and sealed, the sealant was allowed to dry 

for at least 5 hours. Then, tests were performed for air leakage, i.e., pressure testing through a 

manometer, searching for bubbles in soap solution, as well as searching for bubbles while 

dipping the entire system in water. The pressure testing was conducted was by connecting our 

system to an U‐tube manometer for 1 or 2 days.  If the head difference was observed to be 

between 0.5 and 3 inches, then we concluded that the system was air-tight. If more leakage 

was observed, then more sealant was applied.          

 Each reactor was connected to an air-tight gas-collecting bag (22-L Cali-5-Bond™ Bag, 

Calibrated Instruments, Inc.), as shown in Figure 3.2. Each reactor was then filled with synthetic 

vinasse, re-sealed, and placed in the constant-temperature room. The reactors were located in 

a constant temperature room with the thermostat set at these specific temperatures. During two 

months, initial experiments were conducted at 50, 55, and 60°C, in the thermophilic range, since 

methane generation rates are higher for the thermophilic range. However, low amounts of 

methane were generated; it was thought that this could have been due to the fact that the 

sludge had not been adapted to the thermophilic range. Thus, subsequent experiments were 

conducted in the mesophilic range (30, 35, and 40°C).   
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Figure 3.2 Experiment Setup 

 

3.4 Analytical Methods for Biogas Measurements 

 The biogas volume was measured daily by pumping the gas out of the collection bag 

through a standard air-grab sampler (SKC Air-check pump, model 224‐44XR), which pumped 

the biogas at 1.0 L/min, and was connected to a calibrator (Bios Defender 510M), as shown in 

Figure 3.3. During the gas pumping period, the time needed to empty the gas bag was 

recorded. A LANDTEC-GEM 2000 PLUS with infrared gas analyzer (3% accuracy), shown in 

Figure 3.4, was used to measure the concentrations of methane, carbon dioxide, and oxygen in 

percent volume, and hydrogen sulfide and carbon monoxide in parts per million. LANDTEC 

measurements of methane have previously been compared to those from an SRI gas 

chromatograph, and found to be within 7% of the GC readings (Karanjekar, 2012).  
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Figure 3.3 SKC Pump and Calibrator Used for Gas Volume Measurements 
(Source: Karanjekar, 2012) 

 

 

Figure 3.4 Landtec GEM 2000 Used for Gas Composition Measurements  
(Source: Karanjekar, 2012) 

 The amount of biogas generated depended on each specific formulation. If a specific 

synthetic vinasse formulation generated any biogas at all, then, most of the time, the following 

pattern was observed: During the initial 12 hours, there was no biogas in the bags. Then, after 

12 hours, there was some biogas in the bags, which had to be changed. Occasionally, there 

was biogas generation after 5 days. In addition to different quantities, each formulation 

produced biogas at different intervals. Some batches stopped generating biogas after 3 days, 

while others stopped after 5 to 8 days. As the synthetic vinasse digestion progressed, the rate 

of gas production decreased and the frequency of biogas measurement was reduced 

accordingly. Gas production rate was reported at STP. 

 

 



 

 42 

3.5 Data Analyses  

 Methane production was recorded versus time for each vinasse formula. Cumulative 

methane volume can be estimated using the following equation:  

V = Lo(1-e
-kt

)                                                       (3-1) 

where, 

V= Cumulative volume of methane per liter of vinasse (mL/L), 

Lo = Ultimate methane potential (mL/L), 

k = first-order methane generation rate constant (day
-1

), 

t = time (days). 

Rearranging Eq. 3-1 and taking the natural log of both sides gives: 

                                            ln(1-V/Lo) = -kt                 

If ln(1-V/Lo) is plotted vs. time, the negative value of the slope gives k. Lo was estimated from 

the horizontal asymptote of the plots of ln(1-V/Lo) vs. time. When the plot did not clearly reach 

an asymptote, the value of Lo was chosen which gave the largest R
2
 value for a regression line 

fit to ln(1-V/Lo) vs. time. 

Using the k values, a multiple linear regression model was developed to estimate k as a 

function of the 5 chemical components of vinasse, along with mesophilic temperature, as shown 

in Eq. 3.3: 

k = 0 + 1COD + 2N + 3P + 4K + 5S + 6T +                              (3.3) 

where,  

k = methane generation rate constant (day 
‐1

); 

’s = parameters to be determined through multiple linear regression, using lab data;  

COD = Chemical Oxygen Demand concentration (g/L);  

N = nitrogen concentration (g/L);  

P = phosphorus concentration (g/L);  

K = potassium concentration (g/L);  
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S = sulfur concentration (g/L);  

T = temperature in the mesophilic range (K);  

 = error uncertainty, modeled as a random variable 
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CHAPTER 4 

RESULTS AND DISCUSSION  

4.1 Introduction 

 This chapter presents the results of this research experiments. The initial portion of this 

chapter presents the volume of methane generated from the anaerobic digestion of different 

formulations of synthetic vinasse in lab-scale reactors operated at 3 temperatures in the 

mesophilic range (30, 35, and 40º C). The final portion of this chapter presents specific 

information about modeling the ultimate methane potential (L0) and the methane generation rate 

constant (k).    

4.2 Experimental Results 

 The methane volume generated from the best-methane-yielding formulas, identified in 

preliminary runs, as described in Ch. 3, ranged between 30 and 78 mL per Liter of vinasse. The 

best methane-yielding formulations were: formulas #1, #4, #9, and #12. The formulation 

numbers and compositions are summarized in Table 4.1.  

Table 4.1 Independent Variable Parameters for Formulations #s 1, 4, 9, and 12  

  Synthetic Vinasse Composition                                    

  (g of constituents per L of vinasse)  

Formula COD N P K S as 
SO4 

1 2.6 0.06 0.007 0.039 0.034 

4 75 1.2 0.09 1.742 0.034 

9 147 0.55 0.09 0.039 0.58 

12 75 1.2 0.007 0.039 0.58 

 

 During anaerobic decomposition, there are four phases, which are: (i) the aerobic 

phase; (ii) acidogenesis (acid formation); (iii) methanogenesis (methane formation); and (iv) 
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decelerating methane phase. During the aerobic phase, the biogas generated was, mainly, 

carbon dioxide and other gases (H2S, CO, H2, and nitrogen compounds).  

 The acidogenic phase presented many challenges to this research. It was observed 

that the vinasse pH started dropping, drastically, approximately 4 hours after the preparation of 

each batch. Then, after those 4 hours, the pH had to be adjusted. The vinasse samples were 

collected by inserting a syringe through the septa, which had been installed in one of the 

mouths of the reactors (please refer to Chapter 3, Figure 3.3). Then, the samples were obtained 

and the pH was measured. Once the pH decreased to below 5.5, then 5 mL of a 5N sodium 

hydroxide solution would be added to the vinasse, also through a syringe. Then, the pH was 

checked again and increments of 3mL of 5N NaOH solution were added until the pH reached 

the range between 6.0 and 8.0. The syringe was inserted through the septa, which had been 

installed in one of the mouths of the reactor. The pH was measured and adjusted daily. Then, 

the pH stabilized in a range between 6.0 and 8.0 for the remainder of the decomposition 

duration. Each batch lasted between 5 and 10 days.  Figure 4.1 shows the results of the pH 

variation from Formula #12 at 40°C.   

 

Figure 4.1 Daily pH Variation from Formula #12 at 40°C 
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4.2.1 Daily Methane Generation 

4.2.1.1 Formula #1 

  Figures 4.2 – 4.4 show the daily methane volume, at STP, per Liter of vinasse (mL/L), 

generated from Formula #1 at 30, 35, and 40°C, respectively.   

 

Figure 4.2: Daily Methane Generation from Formula #1 at 30°C   

 As shown in Figure 4.2, the methanogenesis started on Day 3. As discussed in Ch. 2, 

the aerobic and acidogenesis phases that precede the methanogenesis phase can take some 

time. After Day #3, methanogenesis continued at a low pace, generating a very small quantity of 

methane during the next few days; due to the low COD concentration, the methanogens did not 

have enough food to grow to significant numbers to start generating substantial volumes of 

methane. However, on the 9
th
 day, there was a sudden increase of methane level. After the 9

th
 

day, the batch stopped generating biogas altogether.  

 As shown in Figure 4.3, the batch operated at 35°C took less time to start generating 

methane (beginning on Day #2). This was to be expected, since increased temperatures 

increase rates of microbial activity. This batch then continued generating methane, at a slightly 

higher pace than at 30°C, generating a small quantity of methane during the next few days of 
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decomposition. The pH had to be adjusted more often than it had been required at 30°C. The 

peak methane volume occurred on Day #6, sooner than it had happened for 30°C. Again, this is 

not surprising, since increased temperatures increase microbial activity. The height of the peak, 

however, was lower than that for 30°C. After the 6th day, the batch stopped generating biogas 

altogether. 

 

Figure 4.3 Daily Methane Generation from Formula #1 at 35°C 

 

 

Figure 4.4 Daily Methane Generation from Formula #1 at 40°C 
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 As shown in Figure 4.4, the batch operated at 40°C took less time to start generating 

methane (beginning on Day 1); the higher temperature was thus observed to accelerate 

methane production due to increased rates of microbial activity. Following Day 4, the methane 

generation dropped on the following day. The pH had to be adjusted more frequently than it had 

been required at 30°C. It is interesting to notice that the peak methane volume occurred on Day 

#4. In addition, the height of the peak was lower than for the lower temperature batches. The 

reason for this is not clear. After 5 days, the batch stopped generating biogas altogether. This 

was one day sooner than for the 35°C batch, which again is consistent with greater microbial 

activity depleting the glucose faster. 

 It can be observed that the methane generation from Formula #1 was significantly 

influenced by the temperature. It was observed that the duration of the lag phase (before 

methane production started) was longer at 30°C than at 40°C. These batches contained the 

same amount of glucose; since microbial activity was greater at 40°C, the microbes used all of 

the glucose sooner. 

4.2.1.2 Formula #4 

Figures 4.5 – 4.7 show the daily methane volume, at STP, per Liter of vinasse (mL/L), 

generated from Formula #4 at 30, 35, and 40°C, respectively.   

 

  Figure 4.5 Daily Methane Generation from Formula #4 at 30°C   
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 For Formula #4, all batches started generating methane on Day #1. The batch operated 

at 30°C generated the lowest volume on Day #1 (less than 2 mL/L), the 35°C batch generated 

an intermediate amount (around 2.3 mL/L), and the 40°C batch generated the most (around 2.5 

mL/L). This indicates a faster start to methane production with higher temperature, which is 

consistent with increased microbial activity. 

 

Figure 4.6 Daily Methane Generation from Formula #4 at 35°C 

 

 

Figure 4.7 Daily Methane Generation from Formula #4 at 40°C  
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 The 30, 35, and 40°C batches reached peak methane volume on Days #5, #2, and #2, 

respectively. The height of the peak was lowest for 30°C and highest for 40°C. The 30, 35, and 

40°C batches stopped generating methane on Days #8, 8, and 6, respectively.  

4.2.1.3 Formula #9 

Figures 4.8 – 4.10 show the daily methane volume, at STP, per Liter of vinasse (mL/L), 

generated from Formula #9 at 30, 35, and 40°C, respectively.   

 

 Figure 4.8 Daily Methane Generation from Formula #9 at 30°C 

 For Formula #9, all batches started generating methane on Day #1. The batch 

operated at 30°C generated the lowest volume on Day #1 (around 1.3 mL/L), and the 40°C 

batch generated the most (around 3 mL/L). This indicates a faster start to methane production 

with higher temperature, which is consistent with increased microbial activity. The plots from 

Formula #9 at 30 and 35°C display two peaks. For both batches, the peaks occur on Days #3 

and #5. The 40°C batch had only one peak, and it was reached on the second day of anaerobic 

decomposition. The peak heights were lowest for the 30°C batch, and highest for the 40°C 

batch. The 30, 35, and 40°C batches stopped generating methane on Days #7, 7, and 6, 

respectively. This again is generally consistent with the trend of increased temperature 

accelerating methane production. 
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Figure 4.9 Daily Methane Generation from Formula #9 at 35°C 

 

 

Figure 4.10 Daily Methane Generation from Formula #9 at 40°C 
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4.2.1.4 Formula #12 

Figures 4.11 – 4.13 show the daily methane volume, at STP, per Liter of vinasse 

(mL/L), generated from Formula #12 at 30, 35, and 40°C, respectively.   

 

Figure 4.11 Daily Methane Generation from Formula #12 at 30°C 

 

 

Figure 4.12 Daily Methane Generation from Formula #12 at 35°C 
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Figure 4.13 Daily Methane Generation from Formula #12 at 40°C 

For Formula #12, the 35 and 40°C batches started generating methane on Day #1. This 

indicates a faster start to methane production with higher temperature, which is consistent with 

increased microbial activity. The plot from Formula #12 at 35°C displayed three peaks. The 

plots for the 30 and 40°C batches displayed two peaks. The earliest peak occurred on Day #2 

for the 40°C batch, and on Day #3 for the 30 and 35°C batches. The highest peak for the 30 

and 35°C batches occurred on Day #5; the highest peak for the 40°C batch occurred on the 

second day of decomposition. The dates of peak occurrence are generally consistent with the 

trend of increased temperature accelerating methane production. The highest peak for 40°C 

was higher than the highest peaks for the batches at 30°C and 35°C. The 30, 35, and 40°C 

batches stopped generating methane on Days #8, 8, and 7, respectively.   
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4.2.2 Cumulative Methane Generation 

Figure 4.14 compares the cumulative methane volume at STP per Liter of vinasse 

(mL/L) generated from all formulas decomposed at 30°C.  

 

Figure 4.14: Comparison of the Cumulative Methane Volume, Generated from All Formulas at 
30°C  

 
  As shown in Figure 4.14, Formulas #4 and #9 began generating methane on Day #1; 

the other two formulas did not. At 30°C, Formula #1 generated the highest ultimate methane 

volume. The total quantity of methane produced would be anticipated to be a function of the 

COD value of the formula. Since Formula #1 had the lowest COD value, its generating the 

highest quantity of methane was very surprising. The high methane volumes associated with 

Formula #1 may be attributed to the fact that the quantity of ammonia, which had been added to 

the vinasse solution as the nitrogen source, was within the recommended range. High 

concentrations of ammonia can inhibit the methanogenic activities. Table 3.1 shows the 

maximum recommended concentration of ammonia. All the constituents in Formula #1 had the 

minimum values reported by Wilkie et al. (2000). The low quantity of H3PO4 resulted in less 

need for NaOH to keep the pH in the optimum range of 7-8.0, meaning less potential sodium 

toxicity for microbes. On the other hand, the lower quantities of KOH resulted in no need to 
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decrease the pH with HCl. This reduced potential chloride toxicity for the methanogenic 

microorganisms. The small quantity of sulfur also meant less potential sulfate toxicity. 

 The fact that Formula #9, which had twice as much glucose as Formulas #4 and #12 

(147 g/L vs. 75 g/L), did not generate exceptionally high volumes of methane was also 

unexpected. One explanation for these results may be due to the fact that the higher quantity of 

glucose, added as the COD source, enabled the uncontrollable multiplication of several different 

microbiological species, which may have consumed the methanogens at a faster pace. Another 

reason for the mediocre methane volumes from Formula #9 may be due to the fact that the 

carboxylic acids, produced by the increased microbiological activities, caused the pH to drop to 

below the recommended range. Formula #4 generated more cumulative methane than Formula 

#12 at all temperatures. Although Formulas #4 and #12 had the same COD quantities, the 

quantities of phosphorus and potassium were higher for Formula #4. Perhaps the higher 

quantity of phosphorous and potassium had a better nutrition value than that from Formula #12.   

 Figure 4.15 compares the cumulative methane volume at STP per Liter of vinasse 

(mL/L) generated from all formulas decomposed at 35°C. Similar to 30°C, Formulas #4 and #9 

began generating methane on Day #1; the other two formulas did not. During the runs at 35°C, 

Formula #1 did not generate as much methane as it had been generating at 30°C. This may 

have been due to methanogens for Formula #1 functioning more optimally at 30°C. The ultimate 

methane production (asymptotic cumulative value) for the other 3 formulas was comparable 

(only slightly higher) than for 30°C. This is to be expected, since the change in temperature 

would be anticipated to affect how fast the methane is produced, but not the total quantity 

produced.  
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Figure 4.15: Comparison of the Cumulative Methane Volume, Generated from All Formulas at 
35°C 

     

 Figure 4.16 compares the cumulative methane volume, at STP, per Liter of vinasse 

(mL/L), generated from all formulas decomposed at 40°C. Formulas #4 and #9 began 

generating gas on Day #1. During the runs at 40°C, Formula #9 had the highest ultimate 

methane potential, which was approximately 52mL CH4/L vinasse. This was slightly higher than 

the ultimate methane potential for Formula #9 for 35°C. Similarly, the ultimate methane potential 

for Formulas #4 and #12 were slightly higher than their potentials at 35°C. The ultimate 

methane potential for Formula #1, however, was substantially lower than its value for 30°C. The 

reason for this is unknown. 
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Figure 4.16: Comparison of the Cumulative Methane Volume, Generated from All Formulas at 
40°C 

 

 An interesting observation was the fact that all formulas had their shortest duration at 

40°C. As expected, the higher temperature promoted rapid microbiological activities as well as 

rapid nutrient consumption.  

 Figures 4.17-4.20 compare directly the cumulative methane volumes at the 3 different 

temperatures for each of the vinasse formulas.  
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Figure 4.17: Comparison of the Cumulative Methane Volume, Generated from Formula #1 at 3 
Temperatures  

 
  

 

Figure 4.18: Comparison of the Cumulative Methane Volume, Generated from Formula #4 at 3 
Temperatures 
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Figure 4.19: Comparison of the Cumulative Methane Volume, Generated from Formula #9 at 3 
Temperatures 

 
 

 

Figure 4.20: Comparison of the Cumulative Methane Volume, Generated from Formula #12 at 3 
Temperatures 

 

 As shown in Figure 4.17, the cumulative methane volume generated by Formula #1 

varied between 19.02 mL/L of vinasse for 40°C and 71.3 mL/L of vinasse for 30°C. As stated 
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previously, this large difference was surprising, and the reasons for it are not clear, unless the 

methanogens for Formula #1 functioned better at 30°C. The cumulative methane volume 

generated by Formula #4 hovered around 43 mL/L of vinasse at all three temperatures. The 

cumulative methane volume generated by Formula #9 varied between 45.5 mL/L of vinasse 

(35°C) and 52 mL/L of vinasse (40°C). At 30°C, the cumulative methane volume generated by 

Formula #9 was about 47.4 mL/L of vinasse. The cumulative methane volume generated by 

Formula #12 varied between 21.75 mL/L of vinasse (30°C) and 39.15 mL/L of vinasse (40°C). 

As shown in Figure 4.20, Formula #12 at 40°C did not generate similar cumulative methane 

volume as it had generated at 30 and 35°C. This difference in the total volume generated by 

the same formula was probably due to operational difficulties in maintaining the pH within the 

recommended range for the methanogens.  

4.3 Computations to Determine the Methane Generation Rate Constant (k) 

4.3.1 Lag Phase  

 During the lag phase, the microorganisms become acclimatized to the wastewater, 

hydrolyzing the matter and converting the larger substances into smaller and simpler 

substrates. According to Karanjekar (2012), during the calculations to determine the methane 

generation rate constant (k) from solid waste, the lag phase needs to be eliminated while curve 

fitting the data. However, for this research, in view of the fact that the duration of the entire 

synthetic vinasse decomposition process lasted only between five to 10 days, it was decided 

that the whole duration of the vinasse decomposition process would be included in the 

computations of the k value for each batch. In addition, the lag phase from the decomposition of 

vinasse lasted, often, only a few hours (in only one batch, the lag phase lasted 2 days). Formula 

#1 at 30°C produced the longest lag phase, which lasted 2 days. At 35°C, the lag phase of the 

same Formula (#1), lasted one day. Formula #12 had a lag phase of one day, during its 

decomposition at 35°C. The fact that Formula #1 had lag phases of one to two days at lower 

temperatures may be due to its low carbon content. However, the same reasoning does not 
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explain the fact that Formula #12 had such a slow start at 30°C. Maybe the explanation for the 

slow performance of Formula #12 lies in the fact that it had fewer hydroxide ions in its solution 

than Formula #4, although they both had the same quantity of sugar. In addition, Formula #12 

had more sulfates than Formula #4.   

4.3.2 Linear Regression  

 Linear regression to determine k values for each experiment was performed using MS 

Excel software. Plots of ln(1-V/Lo) versus time were drawn for each batch. The k value of each 

batch was the slope from each equation. As explained previously, V represented the cumulative 

volume of methane per Liter of vinasse, generated from each formula (mL/L), and Lo 

represented the ultimate methane potential (mL/L) of each batch. In this study, Lo was the 

asymptote of the curve, which was determined visually.  

 The biochemical reactions in the batches from Formula #1 at 30 and 35°C were such 

that the curves drawn from their cumulative volume versus time did not follow a first-order 

equation curve. Therefore, the k values of these formulas were not included in this model. 

Figures 4.2 and 4.3 show the results from Formula #1 at 30 and 35°C. Table 5.1 in the next 

chapter shows the k values used in this model. The k values are of similar order of magnitude 

as those developed from solid waste in lab-scale reactors (Karanjekar, 2012). This indicates 

that vinasse would produce methane at rates sufficient for use.  
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CHAPTER 5 

MODEL DEVELOPMENT: MULTIPLE-LINEAR REGRESSION 

5.1 Introduction 
 

Using the collected data, a mathematical model (the VUMP Model) was developed to 

predict the methane generation rate constant, commonly known as k, for vinasse. The multiple 

linear regression (MLR) equation for predicting k values used 6 predictor variables, as shown in 

Eq. 5.1: 

k = 0 + 1COD + 2N + 3P + 4K + 5S + 6T +                                    (5.1) 

where,  

k = methane generation rate, in terms of first order decomposition constant (day
-1

); 

’s = parameters to be determined through multiple linear regression, using lab data;  

COD = Chemical Oxygen Demand concentration (g/L);  

N = Nitrogen concentration (g/L);  

P = Phosphorus concentration (g/L);  

K = Potassium concentration (g/L);  

S = Sulfur concentration (g/L);   

T = Temperature of vinasse, in the mesophilic range (K);  

 = error uncertainty, modeled as a random variable.  

5.2 Multiple Linear Regression Analyses: Statistical Modeling to Develop VUMP    

The main software tool utilized in this study was statistical regression software, SAS® 

(Statistical Analysis System). According to Rodriguez, 2004, SAS has a complete data access, 

management, analyses and presentation system. SAS allows easy storage and efficient 

retrieval of a large array of data from varying sources. It can be used to collect and manipulate 
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large statistical analyses on data and create time-based comparisons, trend analyses, and 

predictions.   

 The raw data used for developing the MLR equation is presented in Table 5.1 
 

Table 5.1 Raw Data for Developing the MLR Equation 

 

 
                      
 A matrix scatter plot was generated showing the relationship of each of these variables 

with every other, in a 7x7 plot-matrix. These plots are presented in Figure 5.1. The plots of the 

first row are basically the XY scatter plots. The response vs. predictor and predictor vs. 

predictor matrix plots are used for evaluating the overall appropriateness of a MLR form. Figure 

5.1 shows an increasing linear trend between k and COD, k and phosphorous, and k and 

temperature. The plot between k and nitrogen shows a concave curve trend.    

 

 

 

 

 

Computed  
k value 

COD N P K S Temperature 

 

Formula # 

day    -1  g/L  
vinasse 

g/L  
vinasse 

g/L  
vinasse 

g/L  
vinasse 

g/L  
vinasse 

K 

0.67 2.6 0.06 0.007 0.039 0.034 313 1 

0.56 75 1.2 0.09 1.742 0.034 303 4 

0.57 75 1.2 0.09 1.742 0.034 308 4 

0.79 75 1.2 0.09 1.742 0.034 313 4 

0.7 147 0.55 0.09 0.039 0.58 303 9 

0.74 147 0.55 0.09 0.039 0.58 308 9 

0.88 147 0.55 0.09 0.039 0.58 313 9 

0.52 75 1.2 0.007 0.039 0.58 303 12 

0.61 75 1.2 0.007 0.039 0.58 308 12 

0.62 75 1.2 0.007 0.039 0.58 313 12 
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Figure 5.1 Response vs. Predictor and Predictor vs. Predictor Matrix Plot 

 SAS computed pair-wise correlations between response-predictor and predictor-

predictor. The simple statistics are presented in Table 5.2, and the correlation matrix is 

presented in Table 5.3. The purpose of the correlation analysis is to quantify the linear 

association between two variables.  
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Table 5.2 SAS Output: Simple statistics of the Variables  

 
 

Table 5.3 Pearson's Correlation Coefficients  

kvalue COD N P K S Temp

1 0.49362 -0.49701 0.46477 -0.15883 0.14095 0.57742

0.1471 0.1439 0.1759 0.6612 0.6977 0.0805

0.49362 1 -0.07763 0.61237 -0.21721 0.61237 -0.24133

0.1471 0.8312 0.0598 0.5466 0.0598 0.5018

-0.49701 -0.07763 1 -0.0488 0.50379 -0.0488 -0.24915

0.1439 0.8312 0.8935 0.1376 0.8935 0.4876

0.46477 0.61237 -0.0488 1 0.53452 -0.25 -0.14744

0.1759 0.0598 0.8935 0.1114 0.486 0.6844

-0.15883 -0.21721 0.50379 0.53452 1 -0.80178 -0.07881

0.6612 0.5466 0.1376 0.1114 0.0053 0.8287

0.14095 0.61237 -0.0488 -0.25 -0.80178 1 -0.14744

0.6977 0.0598 0.8935 0.486 0.0053 0.6844

0.57742 -0.24133 -0.24915 -0.14744 -0.07881 -0.14744 1

0.0805 0.5018 0.4876 0.6844 0.8287 0.6844

N

P

K

S

Temp

Pearson Correlation Coefficients, N = 10

Prob > |r| under H0: Rho=0

kvalue

COD

 

 

The Pearson’s correlation coefficient (r) ranges from ‐1 to +1. The high magnitude 

values of r are an indication of strong linear relationships between the pair of variables. When r 

is nearly zero, it means that there is little correlation between the variables. It can be observed 

on Table 5.3 that k value and Temperature were highly correlated, with a correlation coefficient 

Variable N Mean Std Dev Sum Minimum 

Maximum 

 

k 10 0.666 0.11296 6.66 0.52 0.88 

COD 10 89.36 45.6212 893.6 2.6 147 

N 10 0.891 0.42325 8.91 0.06 1.2 

P 10 0.0568 0.04286 0.568 0.007 0.09 

K 10 0.5499 0.82263 5.499 0.039 1.742 

S 10 0.3616 0.28195 3.616 0.034 0.58 

Temp 10 308.5 4.37798 3085 303 313 

Simple Statistics 
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of 0.577. The correlation coefficients of k value and Nitrogen, and k value and COD were 0.497 

and 0.494, respectively.    

 The presence of a non‐zero value between predictor variables indicates the presence of 

multicollinearity between the predictors, which can adversely affect the analysis. If, however, r  

< |0.7|, it can be assumed that the multicollinearity problems are not very serious. Table 5.3 

shows that the correlations between COD and Nitrogen, Nitrogen and Phosphorus, Nitrogen 

and Sulfur, Potassium and Sulfur, and Temperature and Potassium have numeric values 

greater than |0.7|. Therefore, these variables exhibit multicollinearity that should be further 

investigated. Due to the mixture design of this experiment, multicollinearity of the data was 

unavoidable. Using the collected data, the initial equation had the following form:   

k = 0 + 1COD + 2N + 3P + 4K + 5S + 6T +                                     

 SAS was used to calculate the least square estimators. Table 5.4 presents a summary 

of the calculation results. The calculations presented the following preliminary fitted regression 

function:   

k = -4.6543 + 0.00117COD - 0.0757N + 0.68273P + 0K + 0S + 0.017T   

 Table 5.4 displays the SAS output of the preliminary model parameter estimates.  

Table 5.4 Preliminary Parameter Estimates   

Paramet

er Standard Variance

Estimate Error Inflation

Intercept B -4.6543 1.37287 -3.39 0.0195 4.43556 0

COD B 0.00117 0.00051 2.3 0.07 0.02798 1.68496

N B -0.0757 0.04409 -1.72 0.1467 0.02431 1.08959

P B 0.68273 0.52762 1.29 0.2522 0.00482 1.6

K 0 0 . . . . .

S 0 0 . . . . .

Temp 1 0.017 0.00438 3.88 0.0116 0.04335 1.15

Parameter Estimates

Variable DF t Value Pr > |t| Type I SS
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 The 0 values for DF for K and S are due to the mixture structure design which directly 

relates the K and S variables to the other predictors via mixture formulas. For the initial 

experimental design (refer to Appendix A), the mixture of all Formulas sums to 1 (or 100%). The 

repetition of the "Best-Methane-Producing" Formulas (refer to Table 4,1) yielded the k values 

used in this model. The preliminary model had the following form:   

k = 0 + 1COD + 2N + 3P + 4T +                      

 SAS was used to calculate the least square estimators. Table 5.5 presents a summary 

of the calculation results.   

Table 5.5 Parameter Estimated for the Preliminary Fitted Regression Function  

Paramet

er Standard Variance

Estimate Error Inflation

Intercept 1 -4.65428 1.37287 -3.39 0.0195 4.43556 0

COD 1 0.00117 0.00051 2.3 0.07 0.02798 1.68496

N 1 -0.07568 0.04409 -1.72 0.1467 0.02431 1.08959

P 1 0.68273 0.52762 1.29 0.2522 0.00482 1.6

Temp 1 0.017 0.00438 3.88 0.0116 0.04335 1.15

Parameter Estimates

Variable DF t Value Pr > |t| Type I SS

 
 

 The calculations presented the following fitted regression function: 
 

k = -4.65428 + 0.00117COD - 0.07568N + 0.68273P + 0.01700T  
 

 In order to find out if the model is significant, an F test was performed. The ANOVA 

calculations, presented in Table 5.6, show that F* = 8.73 and the investigation of F(0.1, 4, 5) = 

3.52. In view of the fact that F* = 8.73 > F(0.1, 4, 5) = 3.52, we may conclude that this model is 

significant. This model p-value = 0.0177 < α = 0.05, which also indicates that this model is 

significant to a 95% level of confidence.  
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Table 5.6 Analysis of Variance 

Model 8.73 0.0177

Error

Corrected Total

Dependent Mean 0.666 Adj R-Sq 0.7746

Coeff Var 8.05324

9 0.11484

Root MSE 0.05363 R- Square 0.8748

4 0.10046 0.02511

5 0.01438 0.00288

Analysis of Variance

Source DF

Sum of Mean

F Value Pr > FSquares Square

 

 

 5.2.1 Model Assumptions 

 In order to verify if the preliminary model satisfies regression model assumptions, a 

residual analysis is performed. This verification is achieved by checking if the following 

assumptions are satisfied:  

a) The current model form is reasonable (no curvature)  

b) The residuals are normally distributed  

c) The residuals have constant variance  

d) The residuals are uncorrelated  

e) There are no outliers  

f) The predictors are not highly correlated with each other  

These assumptions are tested as described below.   

 5.2.1.1 Reasonability of Model Form 

 In order to assess the reasonableness of the current model form, the following plots are 

displayed. Each plot represents the residuals versus each of the variables. Figure 5.2 

represents the variation of the residuals with each of the predictive variables. 
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Figure 5.2 Variation of Residuals with each Predictive Variable 

  

 After performing a sight analysis of the plots, it was concluded that the model is 

adequate in respect of form because no curvature was identified in the plots.   

Conclusion: Since there is no curvature in the plots, shown in Figure 5.2, the current 

MLR model form is acceptable.  

 5.2.1.2 Normally Distributed Residuals   

In order to test whether the residuals are normally distributed or not, one may first take 

a look at the residuals versus normal scores plot. This plot is also known as the Normal 

Probability Plot (NPP). The SAS output for normal probability plot is shown in Figure 5.3. After 

that, a hypothesis test on normality is conducted.  
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Figure 5.3 Normal Probability Plot (NPP): Residuals versus Normal Scores   

  

 In Figure 5.3, one can see that the NPP does not display much curvature. Therefore, 

from visual analysis, the following conclusion is reached: The residuals are almost normally 

distributed.  

 The Normality Test 

 The normality test was performed. The null and alternate hypotheses are:  

 H0: Normality is OK.  

 H1: Normality is violated.  

 The correlation between residuals and normal scores is shown on table 5.7. The 

correlation coefficient, ρ = 1.0. The cut-off value for α = 0.10, c(α, n) = c(0.10,10) = 0.952 Since 

the calculated ρ = 1.0 is greater than the cut-off value of c(0.10,10) = 0.952, we fail to reject the 

null hypothesis and conclude that normality is OK.  
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Table 5.7 SAS Output for Normality Test  

Variable N Mean Std Dev Sum Minimum Maximum

initial_residual 10 2.00E-07 0.03998 2.00E-06 -0.07 0.065

initial e_normal 10 0.5 0.01594 5.00001 0.4721 0.52591

Simple Statistics

initial_residual initial e_normal

1 1

<.0001

1 1

<.0001

Pearson Correlation Coefficients, N = 10

Prob > |r| under H0: Rho=0

initial_residual

initial e_normal  

 

 5.2.1.3 Constant Variance of Residuals   

 In order to make a decision about this assumption, the residual analysis was 

conducted. A linear regression model assumes that the errors have constant variance. 

Therefore, the plot of the residuals versus the predicted k value should present randomly 

scattered dots. When such plot displays a funnel shape, it means that the errors have non-

constant variance.  

 Figure 5.4 represents the residuals versus the predicted values of methane generation 

rate constant.  
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Figure 5.4 Residuals versus Predicted k values 

  

 After performing a sight analysis of the plot on Figure 5.4, no funnel shape was 

observed, which means that this model exhibits constant variance.   

 Modified Levene Test  for Constant Variance: 

 In order to detect non-constant variance, the Modified Levene Test was conducted. In 

order to perform the Modified Levene Test, the data is divided into two groups, based on the 

fitted values. For this model, the number of observations in each group was equal to 5. In this 

case, the dividing point was the median value of k value, the predicted methane generation rate, 

0.666 (median k value). The points with predicted k greater than 0.666 were placed in group 1, 

and the points with predicted k less than the median value were placed in group 2. The absolute 

deviations of residuals around the medians were calculated for each group. The Modified–

Levene test was performed through SAS by using the two-sample t‐test. Table 5.8 shows the 

output of the Modified Levene Test.  
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Table 5.8 SAS Output of Modified Levene Test  

Pr > |t|

0.9241

0.9244

Method

Folded F 4 4 1.89 0.5538

Satterthwaite Unequal 7.3104 -0.1

Equality of Variances

Num DF Den DF F Value Pr > F

Method Variances DF t Value

Pooled Equal 8 -0.1

 

 

 For H0: Variances of the two groups are equal, the Pr > F = 0.5538.  Since the p-value > 

 = 0.05, we fail to reject the null hypothesis and conclude that the variances in two groups are 

equal.  Now an analysis is performed by looking for the “Equal” case in T test. For the “Equal” 

case, Table 5.18 shows that Pr > |t|=0.9241. This, again, is greater than the value of  = 0.1 

(and even when  = 0.05). Therefore, we, again, fail to reject the null hypothesis and conclude 

that the two groups of absolute deviations have the same mean. This translates to a validation 

of the constant error variance assumption for the linear regression model. 

 Conclusion: The constant error variance assumption is satisfied.   

 5.2.1.4 Uncorrelated Residuals  

 A multiple linear regression model requires that the errors be uncorrelated or 

independent from each other. In order to check if the residuals are serially uncorrelated, a time 

series plot is used. If an increasing or decreasing trend in the time series plot is identified, it 

indicates that the errors are serially correlated. In this research, all the reactors were operated 

independently from each other, and the k values were computed from these reactors. 

Therefore, the k values were not expected to be correlated and time series plots were not 

plotted.  

 5.2.1.5 Diagnostics (Outlier, Leverage, Variance Inflation) 

 Leverage values (X-outlier): The x-outliers are identified by performing a visual 

assessment of the diagonal elements of H, hii, (also known as the leverage values). In order to 

determine if a specific hii should be considered large, the following guideline was used: If hii > 
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2hbar = 2p/n, then, it is considered large. For these calculations, p = number of parameters in 

the model, and n = total number of observations. This model cutoff value (2p/n) = (2*5/10) = 1.0. 

Looking at the values, shown in Table 5.9, it can be seen that Observation #1 has the leverage 

value = 1.0, which is exactly at the limit of this model cutoff value of 1.0. Therefore it has been 

concluded that Observation #1 may not be considered to be an x-outlier, and it has been 

decided that Observation #1 is going to remain in this model because it seemed to be barely 

influential.    

 Bonferroni Outlier Test (Y-Outlier): The Studentized Deleted Residuals (ti) are shown 

in the Table 5.9 as “RStudent.” The guideline for the Bonferroni Outlier Test is: If |ti| > t(1-α/2n; 

n-p-1), then observation i is a y-outlier. This model cutoff values for the Bonferroni Outlier Test 

were, t(1-α/2n; n-p-1) = t(0.995; 4) = 4.604, at α = 0.1. Based on the results, shown on Table 

5.9, there is no y-outlier in this dataset.  

Table 5.9 Diagnostics to Test for Outliers, Leverage and Influence of Outliers 

Obs Residual Cook d Hat Hii R Student Diffits

1 4.55E-15 . 1 . .

2 0.005 0.003476 0.5 0.118125 0.118125

3 -0.07 0.255504 0.333333 -2.04453 -1.4457

4 0.065 0.587486 0.5 2.386761 2.386761

5 0.011667 0.018926 0.5 0.277787 0.277787

6 -0.03333 0.057937 0.333333 -0.72405 -0.51198

7 0.021667 0.065276 0.5 0.528525 0.528525

8 0.021667 0.065276 0.5 0.528525 0.528525

9 0.026667 0.03708 0.333333 0.566039 0.40025

10 -0.04833 0.324836 0.5 -1.38726 -1.38726  

 

 Variance Inflation: In order to check for variance inflation, the Variance Inflation factor 

(VIF) values need to be checked. The decision rule is: 
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If 1
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VIF
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p

k

>> 1 and max (VIF)k > 10,  then there is serious multicollinearity. Moreover, 

we need to avoid any model with any (VIF)k > 5. 

 The VIF values of this model are presented in Table 5.5. The average VIF = 

(1.68496+1.08959+1.60000+1.15000)/4 = 1.381138, which is not much greater than 1. In 

addition, none of the individual VIF values is greater than 5.  

Conclusion: There is no serious multicollinearity issue in this model.  

5.2.1.6 Correlation of Predictor Variables       

The correlation matrix was presented in Table 5.3. For the secondary model (after the 

exclusion of the parameters representing potassium and sulfur), there are two correlation 

values greater than the absolute value of |0.7|. These values indicate correlation among the 

following variables: COD and Nitrogen, and Nitrogen and Phosphorus. The values for the 

correlation between COD and Nitrogen (0.8312), and between Nitrogen and Phosphorus 

(0.8935) are greater than |0.7|. Therefore, the multicollinearity among these variables needs to 

be investigated. However, in view of the fact that the correlation coefficients are not much 

greater than the absolute value of |0.7|, it has been concluded that the multicollinearity among 

these variables does not pose a serious issue.   

Conclusion: The predictor variables are not highly correlated.  

5.2.1.7 Decision About The Model Assumptions:  

From the above analysis, it has been concluded that all the model assumptions are 

reasonably satisfied for this model. Therefore, we accept this secondary model as this 

research model and conduct further analysis of this model.  

 5.2.2 Exploration of Interaction Terms 

 The interactions terms are the results of the multiplication of two predictor variables. Six 

possible interaction terms were considered in this research. These predictors are named as 

follows:  x1 (= COD), x2 (= Nitrogen), x3 (= Phosphorus), and x4 (= Temperature). The 6 



 

 76 

interaction terms are: x1x2, x1x3, x1x4, x2x3, x2x4, x3x4. These interactions may explain some 

of the variability in the response that may not have been explained by the current model.  

However, only a few of these interaction terms may be helpful for improving model fit.  

 5.2.2.1 Interaction Plots 

In order to decide whether the addition of these interactions to this model is meaningful 

or not, an examination of the partial regression plots can be conducted. Another method for 

detecting interaction is by plotting the standardized interaction term against the residuals. This 

is done by first standardizing the predictors. Standardization is a procedure where each value 

is  centered to zero and scaled to have a variance of one. This process is useful for numerical 

stability. If a linear trend is observed in the residuals vs. standardized interaction term plot, 

then that interaction term may be helpful to the MLR model. If, however, the dots are randomly 

scattered, then the interaction term will not be helpful. Figures 5.5 through 5.10 display the 

residuals vs. standardized interaction plots.  

 

 

    Figure 5.5 Residuals versus Standardized (CODxN) 
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Figure 5.6 Residuals versus Standardized (CODxP) 

 

 

Figure 5.7 Residuals versus Standardized (CODxTemp) 
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Figure 5.8 Residuals versus Standardized (NxP) 

 
 

 

Figure 5.9 Residuals versus Standardized (NxTemp) 

 



 

 79 

 

Figure 5.10 Residuals versus Standardized (PxTemp) 

  

 Figures 5.5 through 5.10 show that all interaction terms display some kind of a linear 

trend with the residuals. Therefore, all six interaction terms (Stdn(CODxN), Stdn(CODxP), 

Stdn(CODxTemp), Stdn(NxP), Stdn(NxTemp), as well as Stdn(PxTemp)) were considered 

further for addition this model.  

 5.2.2.2 Correlations of the Added Interactions 

In view of the fact that it was decided to include all six interaction terms in this model, it 

is important to look at how they correlate with the other parameters in the model. Table 5.10 

shows the correlation coefficients of the interaction terms with the predictor variables. 
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Table 5.10 Correlation Coefficients of the Interaction Terms with the Predictive 
Variables 

 

kvalue COD N P Temp
Stdn(CODx

N)

Stdn(CODx

P)

Stdn(CODx

Temp)
Stdn(NxP)

Stdn(Nx

Temp)

Stdn(Px

Temp)

1 0.49362 -0.49701 0.46477 0.57742 -0.16871 0.32344 0.07786 -0.02451 0.16398 0.17811

0.1471 0.1439 0.1759 0.0805 0.6413 0.362 0.8307 0.9464 0.6508 0.6225

0.49362 1 -0.07763 0.61237 -0.24133 -0.84305 -0.08802 0.36337 -0.69718 0.50844 0.2232

0.1471 0.8312 0.0598 0.5018 0.0022 0.8089 0.302 0.025 0.1335 0.5354

-0.49701 -0.07763 1 -0.0488 -0.24915 -0.47076 -0.93216 0.50877 -0.38882 0.39497 0.31291

0.1439 0.8312 0.8935 0.4876 0.1697 <.0001 0.1332 0.2668 0.2586 0.3787

0.46477 0.61237 -0.0488 1 -0.14744 -0.51558 -0.30912 0.22183 0.01843 0.3108 0.06056

0.1759 0.0598 0.8935 0.6844 0.1272 0.3848 0.5379 0.9597 0.3821 0.868

0.57742 -0.24133 -0.24915 -0.14744 1 0.34796 0.27431 -0.03873 0.28763 -0.04 -0.0238

0.0805 0.5018 0.4876 0.6844 0.3245 0.4431 0.9154 0.4203 0.9127 0.9479

-0.16871 -0.84305 -0.47076 -0.51558 0.34796 1 0.58076 -0.59601 0.82671 -0.663 -0.3663

0.6413 0.0022 0.1697 0.1272 0.3245 0.0783 0.069 0.0032 0.0367 0.2978

0.32344 -0.08802 -0.93216 -0.30912 0.27431 0.58076 1 -0.53926 0.29733 -0.4552 -0.3006

0.362 0.8089 <.0001 0.3848 0.4431 0.0783 0.1077 0.4041 0.1862 0.3988

0.07786 0.36337 0.50877 0.22183 -0.03873 -0.59601 -0.53926 1 -0.49263 -0.0561 0.6161

0.8307 0.302 0.1332 0.5379 0.9154 0.069 0.1077 0.148 0.8778 0.0579

-0.02451 -0.69718 -0.38882 0.01843 0.28763 0.82671 0.29733 -0.49263 1 -0.5481 -0.3567

0.9464 0.025 0.2668 0.9597 0.4203 0.0032 0.4041 0.148 0.101 0.3117

0.16398 0.50844 0.39497 0.3108 -0.03996 -0.66301 -0.45517 -0.05605 -0.54808 1 -0.0358

0.6508 0.1335 0.2586 0.3821 0.9127 0.0367 0.1862 0.8778 0.101 0.9218

0.17811 0.2232 0.31291 0.06056 -0.02381 -0.36632 -0.30056 0.6161 -0.35665 -0.0358 1

0.6225 0.5354 0.3787 0.868 0.9479 0.2978 0.3988 0.0579 0.3117 0.9218
Stdn(PxTemp)

Temp

Stdn(CODxN)

Stdn(CODxP)

Stdn(CODxTemp)

Stdn(NxP)

Stdn(NxTemp)

Pearson Correlation Coefficients, N = 10

Prob > |r| under H0: Rho=0

kvalue

COD

N

P

 
 

 The presence of interaction terms in a model usually induces high multicollinearity. 

Table 5.10 shows that the following predictors were highly correlated with the added interaction 

terms: COD and Stdn(CODxN); COD and Stdn(CODxP); N and Stdn(CODxP); P and 

Stdn(NxP);  P and Stdn(PxTemp); Temp and Stdn(CODxTemp); Temp and Stdn(NxTemp);  

Temp and Stdn(PxTemp); Stdn(CODxN) and StdnCODxTemp; Std(CODxTemp and 

Stdn(NxTemp); as well as Stdn(NxTemp) and Stdn(PxTemp). This indicated that there may be 

serious multicollinearity if all these terms are included in the model. High multicollinearity in the 

relationships should be avoided because it can complicate the MLR analysis. Extremely high 

multicollinearity signifies that two or more predictors are explaining the same variation in the 

response variable, causing numerical problems in the computations of least squares, used to 

estimate the parameters of the model. These numerical problems can cause an inability to 

precisely determine the estimated parameters, i.e., the variance of the least squares estimators 
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is inflated. Therefore, the concern for all these multicollinearity issues contributed to the 

exclusion of all these terms from the Final Chosen Model, which is presented through the 

selection process of the Final Chosen Model in the next section, Section 5.2.3.   

 5.2.3 Model Search  

The model search is a procedure for identifying potential good models. Three 

algorithms were used to search for the best model: Best Subset Regression, Backward 

Elimination, and Stepwise Regression (Forward and Backward).  

The following ten predictor variables were considered: Chemical Oxygen Demand 

(COD), Nitrogen (N), Phosphorus (P), Temperature (TEMP), Stdn(CODxN), Stdn(CODxP), 

Stdn(CODxTemp), Stdn(NxP), Stdn(NxTemp), as well as Stdn(PxTemp).  

 5.2.3.1 Stepwise Regression  

 Stepwise regression uses backward elimination and forward selection. The variables 

are added or deleted using the p‐value to test the hypothesis: H0: βk= 0. The predictors are 

either removed (if p > αout) or added (if p < αin), depending on the predictor p-value. Table 5.11 

displays the SAS output for the stepwise regression. In this model, the αin and αout were set at 

0.1. The best model suggested by stepwise regression method had three variables.  
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Table 5.11 Stepwise Regression 

Stepwise Selection: Step1   

Sum of Mean

Squares Square

Model 1 0.03829 0.03829 4 0.0805

Error 8 0.07655 0.00957

Corrected Total 9 0.11484

Paramet

er Standard

Estimate Error

Intercept -3.9302 2.29789 0.02799 2.93 0.1256

Temp 0.0149 0.00745 0.03829 4 0.0805

Source DF F Value Pr > F

Variable

Type II S

S F Value Pr > F

Variable Temp Entered: R-

Square = 0.3334 and C(p) = 16.7754

Analysis of Variance

 
Bounds on condition number: 1,1 

 
Stepwise Selection: Step2   

Variable COD Entered: R-Square = 0.7588 and C(p) = 4.2398 

Sum of Mean

Squares Square

Model 2 0.08715 0.04357 11.01 0.0069

Error 7 0.02769 0.00396

Corrected Total 9 0.11484

Paramet

er Standard

Estimate Error

Intercept -5.37 1.53333 0.04853 12.27 0.01

COD 0.00166 0.00047 0.04886 12.35 0.0098

Temp 0.01908 0.00493 0.05916 14.95 0.0062

Variable

Type II S

S F Value Pr > F

Analysis of Variance

Source DF F Value Pr > F

 
Bounds on condition number: 1.0618, 4.2474 

All variables left in the model are significant at the 0.1000 level. 
No other variable met the 0.1000 significance level for entry into the model 
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Table 5.11-Continued   

Variable Variable Number Partial Model

Entered

Remove

d Vars In R-Square R-Square

1 Temp 1 0.3334 0.3334 16.7754 4 0.0805

2 COD 2 0.4254 0.7588 4.2398 12.35 0.0098

3 3 0.1073 0.8661 2.574 4.81 0.0708

Step C(p) F Value Pr > F

Stdn(NxP)

Summary of Stepwise Selection

 

 

 5.2.3.2 Backward Deletion or Elimination    

 The regression in the backward deletion or elimination method is conducted by 

including all possible variables, then eliminating the predictor variables one by one, if they are 

not significant at the specified confidence level. In this study, the cut-off value of α is 0.1. 

Initially, ten predictor variables were considered in the model. From the regression equation 

obtained from the entire model, p‐values were calculated for testing the following hypotheses: 

H0: βk = 0, H1: βk ≠ 0. Then, the predictor variable with largest p‐value (if p was greater than α = 

0.1) was removed. The remaining parameters were regressed again, until all the remaining 

predictor variables were significant at α = 0.1. Table 5.12 displays the last five iterations. Table 

5.13 shows the summary of the backward elimination method. A model with three predictor 

variables was chosen by the backward elimination method, which is the same model as the one 

selected by the stepwise method.  
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Table 5.12 Last Five Iterations of the Backward Elimination Method 
 

Backward Elimination: Step 7 
Variable Stdn(CODxP) Removed: R-Square = 0.8328 and C(p) = 3.7124 

Sum of Mean

Squares Square

Model 3 0.09564 0.03188 9.96 0.0096

Error 6 0.0192 0.0032

Corrected Total9 0.11484

Parameter Standard

Estimate Error

Intercept -4.65051 1.44797 0.03301 10.32 0.0183

COD 0.00156 0.000431 0.04208 13.15 0.011

N -0.07577 0.0465 0.00849 2.65 0.1544

Temp 0.017 0.00462 0.04335 13.55 0.0103

Variable Type II SS F Value Pr > F

Analysis of Variance

Source DF F Value Pr > F

 

 
Backward Elimination: Step 8 

Variable Stdn(NxP) Entered: R-Square = 0.8748 and C(p) = 4.2793 
Note: The variable which previously had small tolerance is now allowed to enter after removal of

 some variables from the model.  

Sum of Mean

Squares Square

Model 4 0.10046 0.02511 8.73 0.0177

Error 5 0.01438 0.00288

Corrected Total9 0.11484

Analysis of Variance

Source DF F Value Pr > F
 

 

Bounds on condition number: 3.1591, 35.211 

 

 

Parameter Standard 

Estimate Error 

Intercept -4.74626 1.37486 0.03428 11.92 0.0182 

COD 0.00222 0.000653 0.03327 11.57 0.0192 

N -0.03248 0.05535 0.00099 0.34 0.5829 

Temp 0.017 0.00438 0.04335 15.07 0.0116 

Stdn(NxP) 0.04008 0.03098 0.00482 1.67 0.2522 

Variable Type II SS F Value Pr > F 
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Table 5.12-Continued  
Backward Elimination: Step 9 

 

Bounds on condition number: 2.0048, 15.154 
 

Backward Elimination: Step 10 
Variable Stdn(CODxN) Entered: R-Square = 0.8748 and C(p) = 4.2793 

Note: The variable which previously had small tolerance is now allowed to enter after removal of
 some variables from the model.  

 

Bounds on condition number: 5.8998, 54.813 
 
 
 

Sum of Mean 

Squares Square 

Model 3 0.09947 0.03316 12.94 0.005 

Error 6 0.01537 0.00256 

Corrected Total 9 0.11484 

Parameter Standard 

Estimate Error 

Intercept -4.96822 1.24749 0.04064 15.86 0.0073 

COD 0.00243 0.000517 0.05663 22.1 0.0033 

Temp 0.01757 0.00403 0.04866 18.99 0.0048 

Stdn(NxP) 0.05107 0.02329 0.01232 4.81 0.0708 

Source DF F Value Pr > F 

Variable Type II SS F Value Pr > F 

Variable N Removed: R-Square = 0.8661 and C(p) = 2.5740 

Analysis of Variance 
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Table 5.12-Continued  
Backward Elimination: Step 11 

Variable Stdn(CODxN) Removed: R-Square = 0.8661 and C(p) = 2.5740 

 

Bounds on condition number: 2.0048, 15.154 
All variables left in the model are significant at the 0.1000 level. 

 

Table 5.13 Summary of Backward Elimination 

Variable Variable Number Partial Model

Entered Removed Vars In R-Square R-Square

1 Stdn(CODxTemp) 5 0.0054 0.9068 5.186 0.19 0.6954

2 Stdn(NxTemp) 6 0.0054 0.9122 7 0.19 0.6954

3 Stdn(NxTemp) 5 0.0054 0.9068 5.186 0.19 0.6954

4 Stdn(PxTemp) 4 0.032 0.8748 4.2793 1.37 0.3064

5 P 3 0.0419 0.8328 3.7124 1.67 0.2522

6 Stdn(CODxP) 4 0.0419 0.8748 4.2793 1.67 0.2522

7 Stdn(CODxP) 3 0.0419 0.8328 3.7124 1.67 0.2522

8 Stdn(NxP) 4 0.0419 0.8748 4.2793 1.67 0.2522

9 N 3 0.0086 0.8661 2.574 0.34 0.5829

10 Stdn(CODxN) 4 0.0086 0.8748 4.2793 0.34 0.5829

11 Stdn(CODxN) 3 0.0086 0.8661 2.574 0.34 0.5829

Summary of Backward Elimination

Step C(p) F Value Pr > F

 

 

 

 

Sum of Mean 

Squares Square 

Model 3 0.09947 0.03316 12.94 0.005 

Error 6 0.01537 0.00256 

Corrected Total 9 0.11484 

Parameter Standard 

Estimate Error 

Intercept -4.96822 1.24749 0.04064 15.86 0.0073 

COD 0.00243 0.000517 0.05663 22.1 0.0033 

Temp 0.01757 0.00403 0.04866 18.99 0.0048 

Stdn(NxP) 0.05107 0.02329 0.01232 4.81 0.0708 

Analysis of Variance 

Source DF F Value Pr > F 

Variable Type II SS F Value Pr > F 
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 5.2.3.3 Best Subset Method for MLR Model Search 

 This method provides the specified number of best models with one or more variables. 

The following criteria were used for selecting the best models: (i) R
2
, the coefficient of 

determination, should be high. R
2 

is used to describe how well a particular model fits the data. 

Usually, R
2 

does not decrease as the number of predictors increases. A model having as many 

predictors as possible may lead to a potentially inaccurate model. The best decision is to have 

the smallest model with a high R
2
. (ii) Adjusted R

2
 should also be high. Adjusted coefficient of 

determination (Adj RSq) penalizes the addition of useless variables. Therefore, the best 

decision is to have the smallest model with a high adjusted R
2
. (iii) Mallows' Cp value should be 

small or close to the number of parameters in the model. If the model has no bias or if it has all 

the significant parameters included in it, the Cp value should be small; (iv) Akaike Information 

Criterion (AIC) and Schwarz Bayesian Criterion (SBC) should be small. AIC and SBC measure 

the relative goodness of fit for the model. Table 5.14 displays the results of the best subsets 

method.  
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Table 5.14 Best Subsets Method Results 

1 27.19480 0.02850 -0.09300 -40.95680 -40.35159 Stdn(CODxN)

1 27.24850 0.02690 -0.09470 -40.94060 -40.33541 Stdn(NxTemp)

1 19.84200 0.24370 0.14910 -43.46070 -42.85551 COD

1 16.77540 0.33340 0.25010 -44.72390 -44.11870 Temp

2 21.67600 0.24850 0.03380 -41.52510 -40.61735 COD Stdn(PxTemp)

2 21.49320 0.25390 0.04070 -41.59660 -40.68880 COD Stdn(NxTemp)

2 15.05010 0.44240 0.28310 -44.51000 -43.60221 COD Stdn(NxP)

2 15.08140 0.44150 0.28200 -44.49360 -43.58581 N P

2 4.23980 0.75880 0.68990 -52.89100 -51.98323 COD Temp

3 2.57400 0.86610 0.79920 -56.77680 -55.56645 COD Temp Stdn(NxP)

3 3.71240 0.83280 0.74920 -54.55430 -53.34396 COD Temp Stdn(CODxN)

3 3.71240 0.83280 0.74920 -54.55430 -53.34396 COD N Temp

3 3.71240 0.83280 0.74920 -54.55430 -53.34396 N Temp Stdn(CODxN)

4 3.79200 0.88900 0.80020 -56.65160 -55.13870 COD Temp Stdn(NxP) Stdn(PxTemp)

4 4.27930 0.87480 0.77460 -55.44270 -53.92978 COD Temp Stdn(CODxN) Stdn(CODxP)

4 4.27930 0.87480 0.77460 -55.44270 -53.92978 COD P Temp Stdn(NxP)

4 4.27930 0.87480 0.77460 -55.44270 -53.92978 COD Temp Stdn(CODxN) Stdn(NxP)

4 4.27930 0.87480 0.77460 -55.44270 -53.92978 COD N Temp Stdn(NxP)

5 5.18600 0.90680 0.79020 -56.39320 -54.57767 COD P Temp Stdn(NxP) Stdn(PxTemp)

5 5.18600 0.90680 0.79020 -56.39320 -54.57767 COD Temp Stdn(CODxN) Stdn(NxP) Stdn(PxTemp)

5 5.18600 0.90680 0.79020 -56.39320 -54.57767 COD Temp Stdn(CODxP) Stdn(NxP) Stdn(PxTemp)

5 5.18600 0.90680 0.79020 -56.39320 -54.57767 COD Temp Stdn(CODxN) Stdn(CODxP) Stdn(PxTemp)

5 5.18600 0.90680 0.79020 -56.39320 -54.57767 COD P Temp Stdn(CODxN) Stdn(PxTemp)

5 5.18600 0.90680 0.79020 -56.39320 -54.57767 COD N Temp Stdn(CODxP) Stdn(PxTemp)

5 5.18600 0.90680 0.79020 -56.39320 -54.57767 COD N P Temp Stdn(PxTemp)

6 7.00000 0.91220 0.73660 -54.99460 -52.87647 COD Temp Stdn(CODxP) Stdn(CODxTemp) Stdn(NxTemp) Stdn(PxTemp)

6 7.00000 0.91220 0.73660 -54.99460 -52.87647 P Temp Stdn(CODxTemp) Stdn(NxP) Stdn(NxTemp) Stdn(PxTemp)

6 7.00000 0.91220 0.73660 -54.99460 -52.87647 COD Temp Stdn(CODxTemp) Stdn(NxP) Stdn(NxTemp) Stdn(PxTemp)

6 7.00000 0.91220 0.73660 -54.99460 -52.87647 COD N Temp Stdn(CODxTemp) Stdn(NxP) Stdn(PxTemp)

6 7.00000 0.91220 0.73660 -54.99460 -52.87647 COD P Temp Stdn(CODxN) Stdn(CODxTemp) Stdn(PxTemp)

Number 

in Model 

Adjusted 

R-Square
C(p) R-Square AIC SBC Variables in Model

 

 

 From Table 5.14, it can be seen how  Adjusted R
2
 jumps up from the 2-predictor to the 

3-predictor models. This indicates that, in this study, the  2-predictor models are  clearly inferior. 

In addition, Table 5.14 shows that the highest Adjusted R
2
 drops from the 4-predictor to the 5-

predictor models, indicating that the models with 5 or more predictors have useless predictors, 

so these models were eliminated from consideration. 

 5.2.3.4 Best Model Selection 

 Based on all three selection methods mentioned above, the models in Table 5.15 were 

considered.  
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Table 5.15 Models considered from the Best Subsets Method  

A 3 2.57400 0.86610 0.79920 -56.77680 -55.56645 COD Temp Stdn(NxP)

B 4 3.79200 0.88900 0.80020 -56.65160 -55.13870 COD Temp Stdn(NxP) Stdn(PxTemp)

Variables in ModelModel 
Number 

of Var. in 

Model 

Adjusted 

R-Square
C(p) R-Square AIC SBC

 

 

After the analyses of the results from the Model Selection Processes, the Model A was 

selected because it most closely met all the previously described criteria. In addition, Model A 

was the model selected by both selection methods Stepwise and Backward Deletion.  

5.3 The Final Model 

 The following equation represents the selected final model. 

k = - 4.96822 + 0.00243COD + 0.01757T + 0.05107(N x P)   

where,   

k = methane generation rate constant, in terms of first order decomposition constant (day
-1

); 

COD = Chemical Oxygen Demand concentration (g/L);  

N = Nitrogen concentration (g/L);  

P = Phosphorus concentration (g/L);  

T = Temperature in the mesophilic range (K);  

 The parameter estimates of the selected model are presented on Table 5.16. All 

predictor terms in the model were significant at α = 0.1 level (p-values were less than 

significance level). All the variance inflation factors were less than five, indicating that there was 

not much serious multicollinearity. As discussed earlier, the parameters representing sulfur and 

potassium were excluded from this model because these parameters were inducing biased 

results. This model shows that the k values increase with COD, temperature, and the interaction 

between nitrogen and phosphorus.    
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Table 5.16 Parameter Estimates for the Final Model 

Parameter Standard Variance

Estimate Error Inflation

Intercept 1 -4.96822 1.24749 -3.98 0.0073 4.43556 0

COD 1 0.00243 0.000517 4.7 0.0033 0.02798 1.95265

Temp 1 0.01757 0.00403 4.36 0.0048 0.05916 1.09405

Stdn(NxP) 1 0.05107 0.02329 2.19 0.0708 0.01232 2.00478

Parameter Estimates

Variable DF t Value Pr > |t| Type I SS

 

  

 The ANOVA table for the selected model is presented on Table 5.17. Table 5.18 shows 

the results of simple statistics calculations. Pearson Correlation Coefficients are shown on 

Table 5.20.  

Table 5.17 ANOVA Table for the Selected Model 

Sum of Mean

Squares Square

Model 3 0.09947 0.03316 12.94 0.005

Error 6 0.01537 0.00256

Corrected Total 9 0.11484

Analysis of Variance

Source DF F Value Pr > F

 
Root MSE 0.05062 R-Square 0.8661

Dependent Mean 0.666 Adj R-Sq 0.7992

Coeff Var 7.60046
 

 

Table 5.18 Final Model Simple Statistics Calculations Results   

Variable N Mean Std Dev Sum Minimum Maximum

kvalue 10 0.666 0.11296 6.66 0.52 0.88

COD 10 89.36 45.62122 893.6 2.6 147

Temp 10 308.5 4.37798 3085 303 313

Stdn(NxP) 10 -0.0439 1.02583 -0.4392 -0.8483 2.28122

Simple Statistics
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Table 5.19 Pearson Correlation Coefficients 

kvalue COD Temp Stdn(NxP)

1 0.49362 0.57742 -0.02451

0.1471 0.0805 0.9464

0.49362 1 -0.24133 -0.69718

0.1471 0.5018 0.025

0.57742 -0.24133 1 0.28763

0.0805 0.5018 0.4203

-0.02451 -0.69718 0.28763 1

0.9464 0.025 0.4203

COD

Temp

Stdn(NxP)

Pearson Correlation Coefficients, N = 10

Prob > |r| under H0: Rho=0

kvalue

 

 

 Table 5.19 shows that there is correlation between the k value and the standardized 

interaction of Nitrogen with Phosphorus because their Pearson Correlation Coefficient numeric 

value 0f 0.9464 is greater than |0.7|. Therefore, these variables exhibit multicollinearity. Most of 

the other correlation coefficients were non‐zero, which indicated that there was some correlation 

between all predictors and response variables. As previously discussed, due to the mixture 

design of this experiment, some multicollinearity of the data was unavoidable  

 5.3.1 Reasonability of Model Form 

 In order to view the current model form, the following plots are displayed. Each plot 

represents the residuals versus each of the variables. Figure 5.11 represents the variation of 

the residuals with each of the predictive variables.  

 After performing a sight analysis of the plots, it was concluded that the model is 

adequate in respect of form because no curvature was identified in the plots.   

Conclusion: Since there is no curvature in the plots, shown in Figure 5.11, the current 

MLR model form is acceptable.  
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Figure 5.11 Final Model Residuals versus Predictive Variables 

 

 5.3.2 Normally Distributed Residuals   

In order to test whether the residuals are normally distributed or not, one may, first, take 

a look at the residuals versus normal scores plot. This plot is also known as the Normal 

Probability Plot (NPP). The SAS output for normal probability plot is shown in Figure 5.12. After 

that, a hypothesis test on normality is conducted.  
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Figure 5.12 Final Model Normal Probability Plot 

 In the Figure 5.12, one can see that the NPP does not display much curvature. 

Therefore, from visual analysis, the following conclusion is reached: The residuals are almost 

normally distributed. In view of the fact that normality is desired, but not required, this issue 

does not pose as a severe violation.      

 The Normality Test 

 The normality test was performed. The null and alternate hypotheses are:  

 H0: Normality is OK.  

 H1: Normality is violated.  

 The correlation between residuals and normal scores is shown on table 5.20. The 

correlation coefficient, ρ = 1.0. The cut off value for  α = 0.10, c(α, n) = c(0.10,10) = 0.952. Since 

the calculated ρ = 1.0 is greater than the cut off value of c(0.10,10) = 0.952, we fail to reject the 

null hypothesis and conclude that normality is OK.  
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Table 5.20: SAS Output for Normality Test  

Variable N Mean Std Dev Sum Minimum Maximum

e 10 1.00E-11 0.04133 1.00E-10 -0.0835 0.04872

e_normal 10 0.5 0.01648 5.00004 0.46675 0.51943

Simple Statistics

 

e e_normal

1 1

<.0001

1 1

<.0001e_normal

Pearson Correlation Coefficients, N = 10

Prob > |r| under H0: Rho=0

e

 

  

 5.3.3 Constant Variance of Residuals   

 In order to make a decision about this assumption, the residual analysis was 

conducted. A regression-based model assumes that the errors have constant variance. 

Therefore, the plot of the residuals versus the predicted k value should present randomly 

scattered dots. When such plot displays a funnel shape, it means that the residuals have non-

constant variance.  

 Figure 5.13 represents the residuals versus the predicted values of methane generation 

rate.  
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Figure 5.13 Final Model Residuals versus the Predicted k Values 

 After performing a sight analysis of the plot on Figure 5.13, no funnel shape was 

observed, which means that this model exhibits constant variance.    

 Modified Levene Test  for Constant Variance: 

 In order to detect non-constant variance, the Modified Levene Test was conducted. In 

order to perform the Modified Levene Test, the data is divided into two groups, based on the 

fitted values. For this model, the number of observations in each group was equal to 5. In this 

case, the dividing point was the median value of k value, the predicted methane generation rate, 

0.666 (mean k value). The points with k value greater than 0.666 were placed in group 1, and 

the points with k value less than the median value were placed in group 2. The absolute 

deviations of residuals around the medians were calculated for each group. The Modified–

Levene test was performed through SAS by using the two-sample t‐test. Table 5.21 shows the 

output of the Modified Levene Test.  

 

 



 

 96 

Table 5.21 SAS Output of the Final Model Modified Levene Test  

The TTEST Procedure  
Variable:  AbsoluteGroupd_FinalModel  

MeanFinalPred_k Method Mean Std Dev

0.666 0.0511 0.00749 0.0947 0.0351 0.021 0.1009

0.6661 0.0551 0.00126 0.109 0.0434 0.026 0.1246

Diff (1-2) Pooled -0.00402 -0.0616 0.0535 0.0395 0.0267 0.0756

Diff (1-2) Satterthwaite -0.00402 -0.062 0.054

95% CL Mean 95% CL Std Dev

 
Method Variances DF t Value Pr > |t|

Pooled Equal 8 -0.16 0.8762

Satterthwaite Unequal 7.6684 -0.16 0.8763
 

Method Num DF Den DF F Value Pr > F

Folded F 4 4 1.53 0.6926

Equality of Variances

 
 

 For H0: Variances of the two groups are equal, the Pr > F = 0.6926.  

 Since the p-value >  = 0.10, we fail to reject the null hypothesis and conclude that the 

variances in two groups are equal. 

 Now an analysis is performed by looking for the “Equal” case in T test. For the “Equal” 

case, Table 5.21 shows that Pr > |t| = 0.8762. This, again, is greater than the value of  = 0.10 

(and even when  = 0.05). Therefore, we, again, fail to reject the null hypothesis and conclude 

that the variance is constant.  

 Conclusion: The constant error variance assumption is satisfied.   

 5.3.4 Uncorrelated Residuals  

 The analysis of a Multi Linear Regression model requires that the errors be 

uncorrelated or independent from each other. In order to check if the residuals are uncorrelated, 

a time series plot is used. If an increasing or decreasing trend in the time series plot is 

identified, it indicates that the errors are correlated. In this research, all the reactors were 

operated independently from each other, and the k values were computed from these reactors. 



 

 97 

Therefore, the k values were not expected to be correlated and time series plots were not 

plotted.  

 5.3.5 Diagnostics (Outlier, Leverage, Variance Inflation) 

 Leverage values (X-outlier): The x-outliers are identified by performing a visual 

assessment of the diagonal elements of H, Hii, (also known as the Leverage Values). In order to 

determine if a specific Hii should be considered large, the following guideline was used: If Hii  > 

2hbar = 2p/n, then, it is considered large. For these calculations, p = number of parameters in 

the model, and n = total number of observations. This model cutoff value (2p/n) = (2*4/10) = 0.8. 

Looking at the values, shown in Table 5.22, it can be seen that Observation #1 has the highest 

the leverage value of 0.7081, which is lower than this model cutoff value of 0.8. Therefore, it has 

been concluded that this model has no x-outliers.     

 Bonferroni Outlier Test (Y-Outlier): The Studentized Deleted Residuals (ti) are shown 

in the Table 5.22 as “RStudent”. The guideline for the Bonferroni Outlier Test is: If |t i| > t(1-α/2n; 

n-p-1), then observation i is a y-outlier. This model cutoff values for the Bonferroni Outlier Test 

were, t(1-α/2n; n-p-1) = t(0.995; 5) = 4.032, at α = 0.1. Based on the results, shown on table 

5.23, there is no y-outlier in this dataset.  

 Table 5.22 presents the diagnostics to test for outliers, leverage and influence of 

outliers. 

Table 5.22: Final Model Diagnostics to Test for Outliers, Leverage, and Influence of Outliers  

Obs Residual_k2 Cook d_k2 Hat Hii_k2 RStudent_k2 Dffits_k2

1 0.01700 0.23442 0.70810 0.58676 0.91389

2 -0.00562 0.00315 0.38621 -0.12949 -0.10271

3 -0.08345 0.14194 0.15069 -2.39048 -1.00692

4 0.04872 0.09126 0.23228 1.12181 0.61706

5 0.02020 0.05162 0.42648 0.49255 0.42475

6 -0.02763 0.04577 0.30054 -0.61824 -0.40525

7 0.02453 0.11175 0.49171 0.64591 0.63529

8 0.02658 0.11924 0.47559 0.69309 0.66004

9 0.02875 0.05891 0.32895 0.65991 0.46203

10 -0.04908 0.46854 0.49943 -1.50956 -1.50784  
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 Variance Inflation: In order to check for variance inflation, the Variance Inflation factor 

(VIF) values need to be checked. The decision rule is: 

If 1

)(
1

1










p

VIF
VIF

k

p

k

>> 1 and max (VIF)k > 10,  then there is serious multicollinearity. Moreover, 

we need to avoid any model with any (VIF)k > 5. 

 The VIF values of this model are presented in Table 5.16 The average VIF = 

(1.95265+1.09405+2.00478)/3 = 1.684, which is not much greater than 1. In addition, none of 

the individual VIF values is greater than 5.  

Conclusion: There is no serious multicollinearity issue in this model.  

5.4 Evaluation of the Selected Model 

From the above analysis, it has been concluded that all the model assumptions are 

reasonably satisfied for this model. Therefore, we accept this model as this research selected 

model, VUMP.  

 After examining the ANOVA Table, Table 5.17, the following conclusions can be 

reached:  

o Total sum of squares, SSTO: This is the sum of explained and unexplained variability 

(SSR+SSE), and has a degree of freedom n-1. As found from the ANOVA table, SSTO = 

0.11484. The model Degree of Freedom = 3.  

o Regression sum of squares, SSR: This is the total variability in the methane generation 

rate that is explained by this model. As found from the ANOVA table, SSR = 0.09947.  

o Error sum of squares, SSE: This is the unexplained variability in the model. As found 

from the ANOVA table, SSE = 0.01537.  

o Mean square for regression, MSR: This is the SSR divided by its degrees of freedom. In 

this model, MSR = 0.03316.  
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o Mean square for error, MSE: This is the SSE divided by its degree of freedom. In this 

model, MSE = 0.00256. MSE is an unbiased estimator of the variance (σ
2
) of the original 

random error term, εi. 

o The F* value: This is a value used to interpret if the regression is significant. It is 

actually the ratio of MSR to MSE. In case of this model it is 12.94. The fact that the F* value is 

reasonably greater than 1 indicates that the mean variability of the methane generation rate, 

explained by the model, is greater than the mean unexplained variability. It also indicates that 

the regression is significant.  

o The Final Model p-value = 0.005, which is significant at the 0.10 level (and even when 

 = 0.05).  

o Explained Variability:  

 As seen from the ANOVA table, the values for the coefficient of determination, R
2 

and 

the Adjusted R
2
, Ra

2
, are 0.8661 and 0.7992, respectively. Since these two values are not 

greatly apart, this means that all the variables play a role in explaining the model. Additionally, 

the R
2 

value of 0.8661 means that 86.61% of the variability of k value was explained by the 

predictors in this model.   

 Conclusion: This study presents a Multiple Linear Regression Model that satisfies all 

the assumptions of MLR. This model was tested to be strongly significant and it explained 

86.61% of the variability of the methane generation rate from the decomposition of synthetic 

vinasse.  

5.5 Validation of the VUMP Model  

 5.5.1 Estimation of kcalculated   

 A hybrid solution of real vinasse mixed with glucose was used to validate the model. 

The real vinasse was obtained from the White Energy Ethanol Distillery. The vinasse solution 

had the following composition: COD = 3.171g/L; N = 0.0662g/L; P = 0.2887g/L. The hybrid 
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vinasse solution was decomposed at 35°C. The VUMP model was used to compute the k 

value.   

 The following equation represents the VUMP model. 

k = - 4.96822 + 0.00243COD + 0.01757T + 0.05107(N x P)   

where,   

k = methane generation rate constant, in terms of first order decomposition constant (day
-1

); 

COD = Chemical Oxygen Demand concentration (g/L) = 3.171g/L;  

N = Nitrogen concentration (g/L) = 0.0662g/L;  

P = Phosphorus concentration (g/L) = 0.2887g/L;  

T = Temperature in the mesophilic range (K) = 308 K  

Substituting the numerical values into the above equation,  

kcalculated = 0.452 per day.     

 5.5.2 Estimation of kactual  

 The daily methane volume was obtained from the real vinasse hybrid solution, as 

discussed in the previous section. The methane content reached as high as 71%. The 

mathematical approach used to estimate kactual was the following: 

 Methane production was recorded versus time for the real (actual) vinasse formula. 

Cumulative methane volume was estimated using the following equation:  

V = Lo(1-e
-kt

)                                                       (3-1) 

where, 

V= Cumulative volume of methane per liter of vinasse (mL/L), 

Lo = Ultimate methane potential (mL/L) = 475.317 mL/L of vinasse,  

k = first-order methane generation rate constant (day
-1

), 

t = time (days). 

Rearranging Eq. 3-1 and taking the natural log of both sides gives: 

                                            ln(1-V/Lo) = -kt                 
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 If ln(1-V/Lo) is plotted vs. time, the negative value of the slope gives k. Lo was estimated 

from the horizontal asymptote of the plots of ln(1-V/Lo) vs. time. When the plot did not clearly 

reach an asymptote, the value of Lo was chosen which gave the largest R
2
 value for a 

regression line fit to ln(1-V/Lo) vs. time. Figure 5.15 displays the plot of real vinasse data versus 

time. After these calculations, it was determined that kactual = 0.378/day. The calculated and 

actual k values agreed fairly well. Figures 5.15, 5.16, and 5.17 display the methane generation 

pattern exhibited by the anaerobic decomposition of real (actual) vinasse.   

 

Figure 5.14 Daily Methane Generation from Actual Vinasse at 35°C   

 

 

Figure 5.15 Cumulative CH4 Volume from Actual Vinasse at 35°C   
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Figure 5.16 Graphical Representation of kactual Determination         
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CHAPTER 6  

CONCLUSIONS AND RECOMMENDATIONS  

 Currently, treatment solutions that convert industrial wastewater into co-products are 

important opportunities for recycling valuable substances and generating energy, as well as 

combating environmental pollution. This work presents a viable treatment solution for ethanol 

distillery wastewater, as well as the development of a mathematical model for predicting 

methane generation rates from the anaerobic digestion of vinasse. This model is named VUMP 

(Vinasse Utilization for Methane Production). The effects of six parameters (temperature, COD, 

N, P, K, and S) on methane generation in batch-type bioreactors have been studied. Methane 

generation vs. time has been measured, and used to develop a multiple linear regression model 

for predicting methane generation as a function of the 6 parameters.  

 This research has the potential for broad impacts in many countries because it 

promotes treatment of vinasse, instead of disposed ‘in natura’ [as is] on agricultural fields. The 

model enables methane generation to be estimated from a variety of vinasse compositions. It 

will be the first such widely applicable model, to our knowledge.    

 Initially, a strength 2 orthogonal array experimental design (V. Chen, 2011) was used 

for the laboratory scale setup. The resulting 18 batches, representing 18 synthetic vinasse 

compositions, to be run at 3 temperatures were then subject to anaerobic decomposition. After 

collecting the data from each of those 18 batches, 4 of the best methane-producing formulations 

were repeated at three different temperatures (30, 35, and 40°C). The results from the selected 

best methane-producing formulations were then used in the development of a multi linear 

regression equation for estimating the methane generation rate from synthetic vinasse.  

6.1 Summary and Conclusions 

 The results from this research can be summarized as follows:  
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o Formula #1 at 30°C generated the highest percent of methane, when compared to all the 

other batches. The high methane volumes associated with Formula #1 may be attributed to 

the fact that the quantity of ammonia, which had been added to the vinasse solution as the 

nitrogen source, was within the recommended range. High concentrations of ammonia can 

inhibit the methanogenic activities. All the constituents in Formula #1 had the minimum 

values reported by Wilkie et al. (2000). The low quantity of H3PO4 resulted in less need for 

NaOH to keep the pH in the optimum range of 7-8.0, meaning less potential sodium toxicity 

for microbes. On the other hand, the lower quantities of KOH resulted in no need to 

decrease the pH with HCl. This reduced potential chloride toxicity for the methanogenic 

microorganisms. The small quantity of sulfur also meant less potential sulfate toxicity.  

o For Formula #4, all batches started generating methane on Day #1. The batch operated at 

30°C generated the lowest volume on Day #1 and the 40°C batch generated the most. This 

indicates a faster start to methane production with higher temperature, which is consistent 

with increased microbial activity.  

o Formula #9, which had the highest quantity of glucose, did not generate exceptionally high 

volumes of methane. One explanation for these results may be due to the fact that the 

higher quantity of glucose, added as COD source, enabled the uncontrollable multiplication 

of several other different microbiological species, which may have reproduced at a faster 

rate than the methanogens, thus competing for the food and, perhaps, consuming the 

methanogens. Another reason for the mediocre methane volumes from Formula #9 may be 

due to the fact that the carboxylic acids, produced by the increased microbiological 

activities, caused the pH to drop to below the recommended range for the survival of the 

methanogens.  

o The plots from Formula #12 (COD = 75g/L) displayed two, three, and two peaks, when 

decomposed at 30, 35, and 40°C, respectively. The presence of multiple peaks may be due 
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to different quantities of the carbon source being consumed at different rates, and, perhaps, 

due to changes in pH affecting microbial activities.   

o The ultimate methane production (asymptotic cumulative value) for Formulas #4, 9, and 12, 

when decomposed at 35°C, were comparable (only slightly higher) than at 30°C. This is to 

be expected, since the change in temperature would be anticipated to affect how fast the 

methane is produced, but not the total quantity produced.  

o Using the collected data, a multiple linear regression (MLR) equation for predicting the first-

order decay constant, k, from vinasse, was developed. The best model was selected using 

the following model selection algorithms: backward elimination, stepwise regression, and 

the best subsets. All parameter were significant at α = 0.1. The selected model had an 

adjusted R
2 
of 0.8661. The following equation represents the selected model.  

k = - 4.96822 + 0.00243COD + 0.01757T + 0.05107(N x P)   

where,   

k = methane generation rate constant, in terms of first order decomposition constant (day
-1

); 

COD = Chemical Oxygen Demand concentration (g/L);  

N = Nitrogen concentration (g/L);  

P = Phosphorus concentration (g/L);  

T = Temperature in the mesophilic range (K);  

This model shows that the k values increase with COD, temperature, and the interaction 

between nitrogen and phosphorus.   

o The rate constants are high enough that anaerobic treatment of vinasse seems viable for 

commercial production of methane, with scaled-up testing.  

6.2 Recommendations for Future Studies 

 Future studies recommendations for estimating the methane generation rate from 

vinasse decomposition include the following: 
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o In order to test the VUMP Model's effectiveness in predicting methane generation rates 

from synthetic vinasse, the validation of this model is recommended. The dataset used for 

this model validation should originate from the decomposition of varying quantities of COD, 

N, P, K, S, and temperature.  

o Utilize reactors containing automatic pH adjustment devices for the decomposition of 

vinasse may improve the prediction efficiency of this model.  
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Table A.1 Strength 2 Orthogonal Array  

Run Reactor Temp COD N P K S

1 0 0 0 0 0 0 0

2 1 1 1 1 1 1 0

3 2 2 2 2 2 2 0

4 0 0 1 2 1 2 0

5 1 1 2 0 2 0 0

6 2 2 0 1 0 1 0

7 0 1 0 2 2 1 1

8 1 2 1 0 0 2 1

9 2 0 2 1 1 0 1

10 0 2 2 0 1 1 1

11 1 0 0 1 2 2 1

12 2 1 1 2 0 0 1

13 0 1 2 1 0 2 2

14 1 2 0 2 1 0 2

15 2 0 1 0 2 1 2

16 0 2 1 1 2 0 2

17 1 0 2 2 0 1 2

18 2 1 0 0 1 2 2  
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Table A.2 Organization of the Initial Experimental Design, Based on the Set Temperature   

Temp

(°C)

COD, N, P, K, S, 

C6H12O6 NH3 H3PO4 KOH CaSO4

30 2.6 0.06 0.007 0.039 0.034 25 A 1st

30 2.6 0.55 0.7 1.742 0.58 26 B 1st

30 147 0.55 0.09 0.039 0.58 27 C 1st

30 75 1.2 0.09 1.742 0.034 4 A 2nd

30 147 1.2 0.007 0.4 1.47 17 B 2nd  

30 75 0.06 0.7 0.4 1.47 15 C 2nd 

35 2.6 1.2 0.7 0.4 0.58 7 A 3rd 

35 75 0.55 0.09 0.4 0.034 2 B 3rd 

35 75 1.2 0.007 0.039 0.58 12 C 3rd 

35 147 0.55 0.007 1.742 1.47 13 A 4th 

35 147 0.06 0.7 0.039 0.034 5 B 4th 

35 2.6 0.06 0.09 1.742 1.47 18 C 4th 

40 75 0.55 0.7 0.039 1.47 16 A 5th 

40 2.6 1.2 0.09 0.039 1.47 14 B 5th 

40 147 1.2 0.7 1.742 0.034 3 C 5th 

40 147 0.06 0.09 0.4 0.58 10 A 6th 

40 75 0.06 0.007 1.742 0.58 8 B 6th 

40 2.6 0.55 0.007 0.4 0.034 6 C 6th 

30 A 7th

35 A 8th 

40 A 9th 

Actual Vinasse

Actual Vinasse

Synthetic Vinasse Composition                                   

(g of constituents per L of vinasse) 
Run

R
e
a
c
to

r 
la

b
e
l

P
e
ri
o
d

Actual Vinasse 
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