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ABSTRACT

SMOOTH QUANTILE PROCESSES FOR RIGHT CENSORED DATA

Katsuhiro Uechi, Ph.D.

The University of Texas at Arlington, 2013

Supervising Professor: Dr. Shan Sun-Mitchell

The development of an estimator of a quantile function Q(p) is discussed. The
smooth nonparametric estimator Qn(p) of a quantile function @(p) is defined as the so-
lution to Fy,(Qn(p)) = p, whereF,, is a smooth Kaplan-Meier estimator of an unknown
continuous distribution function F(z). The asymptotic properties of the smooth
quantile process, v/n(Qn(p) — Q(p)) , based on right censored lifetimes are studied.
The asymptotic properties of the bootstrap quantile process, v/n(Q*(p) — Q(p)) are
also investigated and shown to have the same limiting distribution as the smooth
quantile process. The bootstrap method to approximate the sampling distribution of
the smooth quantile process is used to construct simultaneous confidence bands for a
quantile function and the difference of two quantile functions. A Monte Carlo simula-
tion is conducted to assess the performance of these confidence bands by computing
the lengths and coverage probabilities of the bands. The optimum bandwidth is also

investigated.
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CHAPTER 1
INTRODUCTION

It is common that you often encounter right censored data in many statistical
areas such as survival analysis. Right censoring occurs when the actual data value is
unknown but is known to be above a certain value. In clinical trials, there are many
cases where the true survival time can not be observed due to the loss of a sampling
unit. For instance, the true survival time for a patient can not be recorded because
they move and become unable to participate in the study further, die from factors
unrelated to the study, or etc.

In this thesis, we study the asymptotic properties of the smooth quantile
process /n(Qn(p) — Q(p)) based on right censored data. The bootstrap method
which approximates the distributions of smooth quantile processes is investigated
and we use it to construct simultaneous confidence bands for quantile functions.

In section 2, we introduce the smooth quantile function estimators which we use
for our research applications and simulations. The main results and proofs are given in
sections 3 and 4. Later in section 4, we discuss an application of the developed results
to the construction of simultaneous confidence bands for the difference of two quantile
functions. These confidence bands are then used to test whether two distributions
F} and F5 belong to the same family with a location shift. In clinical trials, we often
want to compare two treatments and determine if there is a difference between them.
One may prefer to use parametric tests if the assumptions of normality, homogeneity
and others. But if these assumptions are violated, non-parametric tests may have

more advantages. They do, however, have various assumptions that must be met.



It is important not to be confused by not having the need to meet an assumption
of "normality” with the notion of "assumptionless.” One of the assumptions is that
samples are drawn from the same distribution family. And this application allows one
to check this assumption. In section 5, optimal bandwidths are studied. In section
6, we carry out a Monte Carlo simulation to assess the performance of the proposed

confidence bands.



CHAPTER 2
Smooth quantile estimators

Let X be the survival time of an individual with an unknown continuous
distribution function F(z) and its quantile function Q(p) = F~!(p) = inf{z | F(x) >
p}, 0 <p < 1. Let Xy,..., X, be i.i.d copies of X. X;’s may be right censored and
may not be observed. Let C' be the censoring time from another unknown distribution
G(z). If C,...,C, are i.i.d copies of C' and if X;’s and C;’s are independent, then we
observe {f(i,éi},i =1,...,n, where X; = min(X;,C;) and §; = I(X; < ;). §; =1
indicates that the survival time X; for the ith individual is observed and §; = 0
indicates that the value of X; is not observed but is known to be greater than Cj;.

The distribution function H(z) of X; is defined by
H(z)=1-(1—-F(2))(1—-G(x)) (2.1)

Kaplan and Meier [7] proposed the following product limit estimator of the survival

function 1 — F(z) based on the right censored data {X;,d;}, i =1,..,n.

(

1 0<z< Xy
1— Fn(x) = < Hf:_ll(nr_z—;_il)é(i) X(k—l) < S X(k)7 k= 2, ., (22)
0 X(n) <z,

\

where X(l), ...,X(n) are the ordered Xi’s and d;) is the indicator for X(i). Fn(x) is
called the Kaplan-Meier estimator, which is the most popular estimator used in the
study of survival function 1 — F(z). Sander [14] proposed an estimator of the quantile
function Q(p) by its natural estimator Q,(p) = inf{z | F,(z) > p} and proved its

week convergence. Cheng [2] obtained some asymptotic properties of Qn(p) and
3



Csorgo [3] discussed the strong approximation results for Q,(p). Padgett [12], Lio,
Padgett and Yu [8] and Lio, Padgett, and Thombs studied a kernel smooth quantile
estimator Qn(p) from right censored data, extending the complete sample results of
Yang [15].

Let {h = h,} be a bandwidth sequence of positive numbers so that h, — 0 as
n — oo, and let k£ be a probability density function. Then the kernel smoothed

quantile estimator is given by

= | COu(pk((t — p)/)dE, 0 < p < 1. (23)

An alternative smooth nonparametric estimator of a quantile function was studied
by Nadaraya[9] and was extended to the right censored data case by Padgett and
Thomas [10] and [11]. That is ,let F}, be the smooth Kaplan-Meier estimator of the

distribution function defined by

Fo(z)=h"" / h E,()k((z —t)/h)dt. (2.4)
0

Then the smooth nonparametric estimator Qn(p) of the quantile function is defined

as the solution to F,,(Q,(p)) = p. The solution can be found iteratively by various

numerical computational methods of locating roots of equations, such as bisection

method, secant method and Newton-Raphson method. The iterations should con-

verge rapidly if k and F are smooth and well behaved. We will use Q,,(p) thorough

out the thesis.



CHAPTER 3

Asymptotic Results of Smooth Quantile Processes
3.1 Assumptions and Definitions
We now give our main theorem and proof of weak convergence of Qn(p)
We assume the following conditions:

C1. k is a continuous density function with compact support [—¢, ¢],for

some constant c.
C2. h — 0 and \/nh — 0 as n — oco.
C3. F(x) is continuous and has a bounded density function f(x).

C4. 1p < 7¢ < 00, where 7y = sup{t : H(t) < 1} for any distribution
function H (z).

Gaussian processes
A stochastic process is defined as a collection of random variables X (¢),t € T,

defined on a common probability space, where 7' is a subset of (—oo, 00). A stochastic

process is called a Gaussian process if every finite linear combination of the random

variables X (t), t € T, is normally distributed.

The Wiener processes

A stochastic process W(t), —oo < t < oo is called the Wiener process with
parameter o if the following properties are satisfied:
(1). W(0) = 0.

(2). W(t) — W(s) has a normal distribution with mean 0 and



variance o2(t — s) for s < t.

(3). W(ta) — W(t1), W(ts) — W(ta),.... W(t,) — W(t,—1) are

independent for t; <ty < ... <t,.

Let Dla,b] be the space of functions on an interval [a,b] that are right con-
tinuous and with left limits, equipped with the Skorohod topology. The notation Rt
will be used for week convergence in a Skorohod space. Let y(s) = (1 — F(s))(1 —
G(s—)),A(s) = f(s)/(1 — F(s)), i.e., the hazard function and B(s) be a Wiener pro-
cess.

Let

Z(x) = (1= F(z)) /Ox(A(S)/y(S))I/QdB(S)- (3.1)
It is shown by Gill that n(F(z) — F(z)) 2 Z(z) in D[a,b],0 < a < b < 7p.
In the following section, we show an analogous result for smoothed estimator of the

distribution function.

3.2 Main Results

Theorem 1 Under C1—C4, for0 < a < b < 7, /n(Fy(z) — F(z)) A Z(x) in Dla, b
as n — oo.

proof : Let Fy(z) = h™" [° F(t)k((x —t)/h)dt.

Note that

V(E,(z) = F(z)) = Va(F,(x) — Fy(x) + Fy(z) — F(x)) (3.2)
= Vn(Fu(x) = Fo(x)) + Vn(Fo(x) — F(z)). (3:3)
We show that the first term of equation (3.3) converges to Z(x) in D|0,b] and the

second term is O(y/nh),i.e., it converges to 0 as n — oo.
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For all x such that 0 < a <z <b < 7p, let @ > 0 be such that b + a < 77. Then

under condition C1,
Vi(Fu(z) — Fy(w)) = \/ﬁ( / (R — 1)/h)de

— /OO Rt F(t)k((x — t)/h)dt)

(3.4)

A

_ Jin! / T(Ea(t) - FO)k((x — 0)/h)dt (3.5)
b+a .
e / V(En(t) = F(O)k((z — t)/R)dt

o

+v/nh™! / (E,(t) — F(t)k((x — t)/h)dL.

(3.6)

The second term of equation (3.6)can be shown equal to 0 as follows. By condition

C1,
Vvnh™ /boo (E,(t) — F(t)k((x — t)/h)dt < 2¢/nh™" /boo k((x —t)/h)dt  (3.7)
m H}b}i
= 2\/5/_ k(u)du (3.8)
< 2\/5/_C k(u)du (3.9)
=0 (3.10)

Since /n(E,(t) — F(t) 2 Z(t) for t € [a, b], the first term in equation (3.6) converges
in distribution to h~* Ob+a Z(t)k((x—t)/h)dt. Sowe now show that b= [~ Z(t)k((z—

t)/h)dt — Z(x) uniformly in [a, b] with probability 1.

Note that



h‘1/0 " 2k — 1) /R)dt — Z () = / Z(@ — hu)k(w)du — Z(x)  (3.11)

ae—(b+a)
_ /_ c (Z(x ~ hu) — Z(x)) Fw)du.  (3.12)

Since Z(x) is continuous, Z(x — hu) — Z(x) converges to zero uniformly in x € [a, b]

with probability 1. Thus [ <Z(x — hu) — Z(x)) k(u)du =5 0 for z € [0,b]. We have

shown that v/n(F,(z) — Fy(z)) A Z(x) in Dla,b].

Next, we show that supy<, .. v | Fo(z) — F(z) |[= O(y/nh).

Vi | Fy(x) = F(z) | = v/n|h™ /OOO F()k((z —t)/h)dt — F(x) (3.13)
— / Zh Flz — hu)k(u)du — F(z) (3.14)

Ash— 0, 2/h> c. So
v /_ Zh Flz — hu)k(u)dt — F(z)| = v /_ <F(q; ~ hu) — F(@) F(u)du| (3.15)

< \/ﬁ/_ | Pz — hu) — Fz) | k(u)du  (3.16)
i [ 15O | ik, €€ (o~ huo

(3.17)
—iih | £©)] [ uktu)d (318)
< an | (€ | /_ 2ek(u)du (3.19)
=2c| f(§) | Vnh (3.20)

By condition C3, f is bounded. Thus \/n | Fo(z) — F(z) |— 0 with bound \/nh as

n — oo. And this completes the proof of theorem 1.



Corollary 1 /nE,(0) % 0 as n — oo.

proof :Let x = 0, then theorem 1 becomes

Va(E,(0) — F(0)) 2 Z(0).

in D[a,b] as n — oco. F(0) = 0 since x is survival time, i.e., x > 0. And

So we have /nF,(0) 20 asn — co. Thus VnF,(0) Lo,

Theorem 2 Let 0 < § < 1. Suppose that f(Q(p)) is continuous and positive on the
interval [0, 3). Then, under C1 — C4,
Vi(Qu(p) = Q(p) = Z(Qp))/f(Q(p)) in DI, 5] asn — oo.

proof :

Let b be such that 3 < F(b) — € for some € > 0. Let F°(z) = F,(z) — F,(0). Then
F9(x) is non-decreasing and £°(0) = 0. Now consider a process v/n(FO(x) — F(z)).
By Theorem 1 and Corollary 1, it is easily seen that /n(F°(z) — F(z)) A Z(x) in
Dia,b]. Then by Theorem 1 of Doss and Gill [4], we have

sup | Va(FY (o) - <>>+WM B0 (321

0<p<F(b)—e f(Q(p))
Note that ﬁg_l(p) = Qn(p + F,(0)). So (3.21) becomes

1% 0. (3.22)



By the definition of F9(z), we have

= VnE,(Q(p)) — VnF,(0) — VnF(Q(p))

By Corollary 1, Theorem 1, and (3.24) above, we see that

Thus,

Vp € [0, F(b)].

(3.23)

(3.24)

(3.25)

(3.26)

Now, since, for each n, Qn(p) is increasing on [0, 1], Q. is differentiable almost every-

where. And since Q’,(p) < oo almost everywhere on [0, 1] for each n, there exists M

such that sup, | Q' (p) |< M Vn. Then we have, Ve > 0,

P(| Qu(p + F,(0)) — Qu(p) |> €) = P(| Qu(c) || F(0) |> ¢)
< P(M | E,(0) |> ¢)

= P(| Fu(0) [> ¢/M)

20 (Corollaryl)

By (3.30), (3.22) becomes

e — Q) —p
ngglﬁb)_elx/ﬁ(%(p) Q(p)) +v/n OW)

Theorem 2 now follows from Theorem 1.
10
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CHAPTER 4
APPLICATION OF SMOOTH QUANTILE PROCESSES

4.1 Efron’s Bootstrap

A re-sampling method known as Efron’s bootstrap (or simply the boot-
strap) was introduced by Brad Efron. It is a computer-intensive method to approx-
imate the sampling distribution of any statistic of interest. Bootstrap samples are
samples of size n drawn at random from the original data set of size n with replace-

ment.

4.2 Simultaneous Confidence Bnads

Let (X7, 0%),i = 1,2,...,n be bootstrap replicates of the original right
censored data (X;,8;),i = 1,2,...,n Let F; (x) be the Kaplan-Meier estimator based
on a bootstrap sample and F*(z) the bootstrap smoothed Kaplan-Meier estimator of

F(z). And let Q*(p) be the bootstrap smoothed estimator of the quantile function

Q(p). Here we show analogous results for bootstrap samples.

Theorem 3 Under C1 — C4, for 0 < a < b < 7, /n(F*(z) — F,(x)) A Z(x) in

n

Dla,b] as n — oc.

11



VA(F; (@) - F(a)) = ﬁ( | n ok - 0= [T R ok - t>/h>dt)
(4.1)
=t [T (E ) = Eu)k((e )/ (12)
= [V - B0k - D/
vt [CE ) - B0k - o/
(4.3)

The second term of equation (4.3) can be shown to be equal to 0 as follows. By

condition C'1,

o0

Vnh™! /b h | E*(t) — F(t) | k((x —t)/h)dt < 2¢/nh™" / k((z —t)/h)dt  (4.4)

b

_ wﬁ/_h k() du (4.5)
SN / k(w)du (4.6)
0 (@7

12



By theorem 2.1 of Akritas [1], /n(F*(z) — F,(x)) A Z(x) in Dla,b]. Then we see

that

Vi(Ey (@ = hu) = Fy(x — hu)) = v/a(E; (@) = ()| 50 (4.9)

lim lim sup
n—o0 6—0 le—y|<5

This implies that the term (4.8) = 0,(1). Also we have

z
h

/ VI(E; (@) = Fy(@)k(u)du = Va(F (x) = Fy () / kudu — (4.10)

z—b

h

B Z(z) (4.11)

This completes the proof of theorem 3.

Theorem 4 Let 0 < 8 < 1. Suppose that f(Q(p)) is continuous and positive on the

interval [0, ). Then, under C1 — C4, Vi(Q;(p) — Qu(p) = Z(Qp)/1(Q(p)) in
DJ0, 5] as n — 0.
proof : The proof of theorem 4 is done in a similar manner to the proof of the main

theorem, by using theorem 3 with theorem 2 of Doss and Gill (1991).

Now, applying theorem 4, a (1 — «)100% simultaneous confidence band for quantile

function Q(p) over an interval I C [0, 1) is given by

(Qn(p) — ¢/V/n, Qu(p) + ¢/V/n) (4.12)

where ¢ is a value such that

P(vnsupper | Qr,(p) = Qu(p) IS ¢ [ {Xi,0}1) # 1~ a (4.13)

13



4.3 Hypothesis Testing

Next, we construct a simultaneous confidence band for the difference
between two quantile functions to test whether two distributions F; and F, belong
to the same distribution family f = {F(z — 0) | § € O}, where F is an unknown
continuous distribution. First, we consider the following null-hypothesis.
Hél) : F1 and F; are members of a distribution family F ,i.e. there exist 6; and 6, € ©
such that F; = F(z — 6;) and Fy, = F(z — 6,).

Let Q1(p) and Q2(p) be the corresponding quantile functions to F; and Fy € F,
respectively. Then note that Q1(p) = 6; + Q(p) and Qa(p) = 02 + Q(p). Thus, we
have the following equivalent hypothesis to H(()l).

Hy: Q1(p) — Qa(p) =01 — 02 =0V 0 < p <1, where 6 is some constant in O.

In other words, if Hy is true, then it is equivalent to show F; and F; are from the
same distribution family. We develop a method to establish a confidence band such
that Hy (equivalently Hél) ) is not rejected if 6 is within the confidence band for any
p € (0,1).

Let {X;,0;}7 and {Y;,}" be samples of n and m right censored data. Let
le(p) and ng(p) be the K-M smooth quantile estimates from the first and the
second samples, respectively. and let Q’{n(p) and Q§m(p) be the bootstrap esti-

mates. Suppose n/m — p as n,m — oo. Then by theorem 4, the distribution of

VI (Q1.(p) — Q1(p)) — /1 /m/m(Qam(p) — Qa2(p)) can be estimated by the distribu-

tion of v/n(Q%,,(p) — Q1.a(p)) — v/n/my/m(Q} . (p) — Qa,m(p)) conditional on the two
data sets {X;,8;}7 and {Y;,~;}7". Therefore, a 90 % simultaneous confidence band

for Q1(p) — Q2(p) over an interval I C [0, 1) is given by

(@1 (p) — Q2,m(p) £ d/V/n), (4.14)

14



where d is a value such that

P(vnsupyer | (Q1,,(0)=Q5,(0) = (Qua(0)=Qom(p) I< d | { X5, 637, {Yis w}) = 9.
(4.15)

4.4 Example

In this section, we provide an example of testing the hypothesis Hy in
section 4.3. The data are from a randomized CTE brain tumor clinical trial [13]. This
is a trial of BCNU impregnated implantable polymer for the treatment of recurrent
malignant tumor in the brain. 222 patients were randomized with equal probability to
receive either BCNU polymer or placebo polymer, implanted in the cavity remaining
after surgical resection of recurrent tumors. We test the hypothesis that the group
receiving BCNU and the group receiving the placebo belong to the same location
distribution family. We construct a 90% confidence band for the difference of two
quantile functions using the formulas (19) and (20). The confidence band in figure
4.1 shows the existence of a constant 6 in Hy within the band. Thus we conclude that

these two samples are drawn from the same location family.

15



up
30 7]

20 7

0.2 0.3 0.4 0.5 0.6 0.7 0.8

Figure 4.1. Confidence band for the difference between the two quantile functions.
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CHAPTER 5
BANDWIDTH CONSIDERARION

Determining an appropriate value for the bandwidth A plays an important role
in constructing confidence bands since coverage probabilities and lengths of bands
depend on h as well as n. A bandwidth selection method for a point estimator of
Q(p) to choose the best value of h for computing the quantile estimator Q,(p) has
been proposed by Padgett and Thombs [11]. They choose h* to be the bandwidth if
it minimizes the bootstrap estimate of the mean squared error, M S E*(Qn, h), which
is defined as follows.

First, let Qf; (p) denote the quantile estimate obtained from the ith bootstrap sample,

1=1,2,..., B. Then the bootstrap estimate of variance is defined by

B

Vart(Qulr)) = 53 D120 - G0, 5.1)

where Q7 (p) = & S Q¥ (p). The bootstrap estimate of bias is

n

Bias*(Qn(p)) = Q4(p) — Qn(p), (5.2)

where Qn(p) is the Kaplan Meier estimate obtained from the original data. So for

some fixed p and h, the bootstrap estimate of the mean squared error is given by

MSE*(Qu(p), h) = Var*(Qu(p)) + [Bias"(Qn(p))]*. (5.3)

17



Now, to construct confidence bands over an interval p € I, we need to select a
bandwidth to minimize a ”global” mean squared error, so called the mean integrated

squared error (MISE). The bootstrap estimate of MISE is given by

MISE*(Qu(p),h) = [ MSE*(Qu(p), hw(p)dp

pel

J
~ > MSE (Qn(p;), h)w(ps) 45,

where w(p) is a weight function. p; < py < ... < py is a partition of the interval I and
Ajy=p; — pj—1. The selection of h* is the value minimizing MISE,(Q,(p),h). Once
h* is selected, a simultaneous confidence band for Q(p), p € I can be constructed

based on Q*(p) which are obtained using h*.

18



CHAPTER 6
SIMULATION STUDIES

6.1 Performance of the Confidence Bands
In this chapter, we carry out a Monte Carlo simulations to assess the
performance of the proposed confidence bands using the smoothed quantile estimates.
We compare the coverage probabilities and lengths of the confidence bands computed
from the smoothed and non-smoothed quantile estimates.
First, we construct the original right censored sample of size n. The survival

times are generated from the exponential distribution with mean 1,

0 ifx<0
F(x) = (6.1)

1—e™ ifx>0.

The censoring times are generated from the exponential distribution with mean 7/3,

0 fx <0
G(z) = (6.2)

1—e /T ifx > 0.
The kernel density function used here is called the Epanechnikov kernel and defined

by

K(u) = A§L<1 — u2)1{‘u‘<1}. (63)

From the original sample of size n, we generate 1000 bootstrap samples. The Kaplan-
Meier estimator, Fn(:v) and bootstrap K-M estimators, F;’j(x),j =1,..,1000 are cal-

culated based on the original right censored sample and bootstrap samples, respec-

19



tively. The smooth K-M estimator, F’n(x), and smooth bootstrap K-M estimators,
F;j(x),j = 1,...,1000, can be calculated by using the formulae (2.2) in Padgett and
Thombs [11]. The smooth estimator Q,(p) of the quantile function is the solution
of F(Q,(p)) = p and all of the smooth quantile estimates for the original and 1000
bootstrap samples were found by applying the Newton method. Once all the smooth

quantile estimates are computed, we find the value of ¢;, defined by

¢j = Vnsup | Qf, ;y(p) — Qn(p) |

pel

V7 =1,..,1000, where , in our simulations, I = .25(.01).75 and then construct
an ascending ordered set, {c(1),c(2), ..., ¢(1000)}. To construct a 90 % confidence band
for Q(z) over [.25,.75], we use ¢ = c(go0) as the estimate of c in (4.13) .

To assess the performance of the bootstrapping method, we carry out 1000
simulations and calculate the coverage probabilities. The coverage probability for
all 1000 simulations of size n and a specific value of bandwidth h can be calculated
by calculating the relative frequency of all the one thousand 90 % confidence bands
defined in (4.12) containing Q(p) for p € I. The average length of the confidence
bands for a given pair of n and h is determined as the mean value of 2¢/4/n for all
simulations.

The coverage probabilities and average lengths of the 90 % simultaneous con-
fidence bands for the quantile function Q(p) = F~(p) = —log(1 — p) over p € I for
sample sizes n = 50, 100, 150, 200 and 300 are reported in tables 6.1 and 6.2 below.

For tables 6.1 and 6.2, their first columns show the coverage probabilities and
average lengths of the confidence bands for non-smoothed method. For the smoothed
method, the results are shown for the bandwidths h = .10(.10).80. We see from table

6.1 that, for a given n, the coverage probabilities of the smoothed method are closer
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to the nominal level of .90 than those of non-smoothed method for all bandwidths. As
h increases, the coverage probabilities are generally decreasing. Similarly, it is seen
from table 6.2 that for any n, the average lengths of bands are shorter than those
of non-smoothed method. And the average lengths decrease as the sample size n or
bandwidth A increases.

Fighre 6.1 is a demonstration of the simultaneous confidence bands of the quan-
tile function over p € [.25,.75] using the smooth and non-smooth estimates with
n = 300 and A = .36. The solid line is the true quantile function. The dotted lines
are the smooth quantile estimate and the confidence band. And stepped lines are the

non-smooth estimate and the confidence band.

Table 6.1. Coverage probabilities of 90 % simultaneous confidence bands for Q(p) ,
0.25 <p<0.75
with 1000 replicates, using smoothing and non-smoothing bootstrap methods

n\h | non-smooth smooth

0.1 02 03 0.4 05 06 07 08
50 947 936 919 907 897  .891 .888 .896 .890
100 942 935 925 915 906 898 .896 .893 .891
150 947 937 924 918 910 905 908 903 .903
200 941 937 926 914 911 905 902 895 .881
300 942 935 922 914 907 894 894 878 .863

6.2 Optimum Bandwidth Selection

We simulated the data from the same exponential distributions as in sec-
tion 6.1. For simplicity, the weight function for the computation of MSE*(Q,(p), h) is
chosen to be w(p;) = 1 over the partition p; = .25(.01).75. The values of MISE*(Q,(p), h)

was computed by the formula in Chapter 5 for the bandwifth A = 0(.01)1 with 1000
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Table 6.2. Average lengths of 90 % simultaneous confidence bands for Q(p) , 0.25 <

p <0.75

with 1000 replicates, using smoothing and non-smoothing bootstrap methods
n\h | non-smooth smooth

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

50 1.4393 1.3708 1.2893 1.2120 1.1480 1.0863 1.0321 0.9842 0.9423
100 0.9295 0.8763 0.8274 0.7756 0.7308 0.6939 0.6641 0.6396 0.6191
150 0.7359 0.6942 0.6499 0.6090 0.5754 0.5490 0.5283 0.5109 0.4958
200 0.6176 0.5854 0.5445 0.5100 0.4834 0.4637 0.4480 0.4350 0.4235
300 0.4910 0.4638 0.4315 0.4056 0.3868 0.3728 0.3616 0.3520 0.3432

Survival Time

Probability

Figure 6.1. Quantile estimates and 90 % simultaneous confidence bands for exponen-

tial survival times .
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bootstrap samples. The optimum bandwidth A* which minimizes M I SE*(Qn(p), h)
is given for each of the samples of size n = 50, 100, 150, 200, 300,500 and 1000 in

table 6.3. We find that as the size n of the sample increases, h* decreases as well as

MISE*(Qn(p), h).

Table 6.3. Bootstrap selections of smooth bandwidth A* minimizing
MISE*(Q.(p), h) for
0.25 < p < 0.75 for a single right censored sample.

n 20 100 150 200 300 500 1000

h* .88 .59 .60 45 .36 .36 .25

MISE*(Q.(p),h*) | .020914 .006516 .005074 .003402 .002623 .001814 .000859
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APPENDIX A

SAS Code
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In this chapter, the SAS codes, which were used in the simulation studies, are
presented.
Coverage probabilities and average lengths of confidence bands
libname saslib ’ /sasoutputs/’ ;
% let nsam=1; ** this must be equal to 1;
% let nnsam=1001; ** number of samples to generate - must be at least 2.
% let nnnsam= & nnsam-1; ** number of bootstrap samples, which is 1000;
% let nsize=200; ** sample size n;
% let seed1=5129589; ** seed for initial sample;
% let seed2=7200117; ** seed for bootstrap samples;
% let ntri=1000; ** number of trials;
% let numqt=>51; ** number of quantiles, i.e., .25(.01).75;

% let h=.2; **bandwidth h;

Kk ok okk ok sk skook sk okok ok skokook sk skok sk kok sk kokosk sk skok sk kok skokok kot skok skokok skokokoskoskokosk skokokeskokoskokoskokok skokokeskokoskokoskokok

This macro generates a sample of size n from each of

two exponential distributions.

One contains true life-times and the other contains censoring times.

SRRk skosk sk sk sk skookoskoskosk sk sk skoskoskoskoskosk sk sk skoskoskoskoskosk sk sk skokoskoskoskosk sk skoskokoskoskok sk sk skoskoskoskoskok sk skoskokoskoskoskokoskoskoskokoskoskoskok,
Y%macro picksampone;

K generate nsam samples of size nsize from F(x)and nsam samples of size nsize
from G(c);

call streaminit(&seedl);

data one;

isam=0; ** sample index;

do trial=1 to &ntri;
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do i=1 to &nsize; ** observation index within the sample;
x=rand('EXPONENTIAL’); ** life times;
cen=rand("WEIBULL’/1,7/3); ** censoring times;
x _ tilda=min(x,cen); ** right censored data;
delta=(x <= cen); ** delta=1 if life time is observed, 0 if censored,;
output;

end;

end;

proc sort data=one;

by trial x _ tilda;

% mend picksampone;

% macro samps;
data keeponel;
set one;
isam=1;
keep trial isam x _ tilda delta;

% do iisam=2 % to & nnnsam; ** Duplicating the original sample;
data keepone & iisam; ** Generating many sets in the do loop;
set keeponel;
isam= &iisam;

% end;
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data keepall;
set
% do iisam=1 % to & nnnsam;
keepone & iisam

% end;

proc sort data=keepall;

by trial isam x _ tilda;

Y%omend samps;

>k oK 3Kk kR ok ok sk sk sk sk ok skok skook ok ok sk sk sk sk sk skokskokook kook sk sk sk sk kokokoskook sk sk sk sk sk sk sk okokoskokook skosk sk skosk sk kokokokokosk ko kk

This macro generates bootstrap samples from the original sample.

stk st ok st ok sk st ok st st ok st ook stk sk st ok skt ok stk sk stk sk st sk skstosk stk sk ok sk stk skstosk stk ok sk stk skostok stk ok sk ok ok
)

Y%omacro pickallsamps;

data one;
set one;

Y%osamps

proc surveyselect data=keepall
method = urs
sampsize = & nsize
seed= & seed?2
out=bstrapl;
strata trial isam ;
run;
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data bstrap;
set bstrapl;
do i = 1 to numberhits;
output; ** outputs each datum numberhits times;

end;

data keepone;
set one bstrap;

keep trial isam x _ tilda delta numberhits;

proc sort data=keepone;
by trial isam x _ tilda;

Y%mend pickallsamps;

>k ok 3Kk kR ok ok sk sk sk sk ok skok skook ok ok sk sk sk ok sk oskokok kook sk ok sk sk sk sk skokok ok ok sk sk sk sk sk okoskokokokoskook skoskoskoskokokokoskokk

This macro computes Non-smoothed K-M estimates of F.

Kook stk sk skl sk skok sk skoskosk sk stk skokokoskoskokosk sk skok skokokoskoskokokoskokokoskokokokoskokokoskokokoskoskokokoskoroskoskoskokoskoskok
’

Y%omacro f_hat;
proc transpose data=keepone out=xout prefix=xo;
var x _ tilda;

by trial isam;

proc transpose data=keepone out=dout prefix=do;
var delta;

by trial isam;
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proc transpose data=keepone out=sout prefix=so;
var x_ tilda;

by trial isam;

data transdata;
merge xout dout sout;

by trial isam;

data fvalue;
set transdata;
array xo(*) xol-xo &nsize;
array do(*) dol-do &nsize;
array so(*) sol-so &nsize;
do j=1 to &nsize;
if(so(j) le xol) then do;
f1=1;
end;
else do;
do k=2 to &nsize;
if(xo(k-1) 1t so(j) and so(j) le xo(k)) then do;
p=1
do i=1 to k-1;
p=p*((&nsize - 1) /(&nsize -
i+1))**do(i);
end;

f1=p;
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end;
end;
end;
if(xo(&nsize) < so(j)) then f1=0;
f _hat=1-f1;
x=50(j);

delta=do(j);

output;
end;

keep trial isam f _ hat x delta;

data work.stuff;
set fvalue;
by trial isam x;
if first.x;
run;

Y%omendf _hat;

KRk >fskook sk koo sk okok ok skoskook sk kok sk kok sk skokok sk kok skokokosk sk skok sk kokosk sk skok sk skok sk kokosk skokok sk kok sk skokosk skokok skokokskokokoskoskokok skokokskokokokskok

This macro finds K-M estimates of the quantiles.
And these quantile estimates are used as the initial values of the newton method to
compute

the smoothed K-M estimates.

>k ok kK ok ok ok ok sk sk sk sk ok okokoskok sk ok sk sk sk sk sk skoskoskokook skook sk sk sk sk koskokokokoskook sk sk sk sk sk okokoskoskok skosk sk skosk sk koskokoskok sk sk skosk skosk kokokokokoskoskok sk skokkok,
’
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%macro km_quant;
proc transpose data=work.stuff out=fout prefix=fo;
var f _ hat;

by trial isam;

proc transpose data=work.stuff out=gout prefix=go;
var X;

by trial isam;

proc transpose data=work.stuff out=delout prefix=del;
var delta;

by trial isam;

data stepl;
merge fout;

by trial isam;

data step2;
set stepl;
array fo(*) fol-fo & nsize;

do i=2 to & nsize;

f _ km=fo(i);
output;
end;

keep trial isam f _ km,;

data step3;

do i=1 to & ntri;
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do j=1 to & nnsam;
trial=i;
isam=j-1;
f _ km=1;
output;
end;
end;

keep trial isam f _ km;

data step4;
set step2 step3;

if f _ km ne .;

proc sort data=step4;

by trial isam f _ km;

proc transpose data=step4 out=kmout prefix=kmo;
var f _ km;

by trial isam;

data f _ value;
merge fout kmout gout delout;

by trial isam;

data stepb;
set f _ value;

array go(*) gol-go &nsize;
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array del(*) dell-del &nsize;
array fo(*) fol-fo &nsize;
array kmo(*) kmol-kmo &nsize;

do i=1 to &nsize;

x=go(i);

if kmo(i)=. then delete;

else do;

f _ km=kmo(i);

end;

if fo(i)=. then delete;

else do;
f _ km2=fo(i);
end;

jump=kmo(i)-fo(i); ** Jump size of F _ hat at Xi _ tilde;
delta=del(i);
output;

end;

keep trial isam f _ km f _ km2 x jump delta ;

data work.stuff2;
set stepd;
by trial isam f _ km;

if first.f _ km;

run;
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proc transpose data=work.stuff2 out=kout prefix=Kko;
var f _ km;

by trial isam;

proc transpose data=work.stuff2 out=zout prefix=zo;
var Xx;

by trial isam;

data stepb6;
merge kout zout;

by trial isam;

data quantile;
set stepb;
array ko(*) kol-ko&nsize;
array zo(*) zol-zo&nsize;
do p=.25 to .75 by .01;
fm=100000;
do 1=1 to &nsize;
if (ko(1) ge p) then do;
if (ko(1) le fm) then do;
fm=ko(1);
qt_est=zo(l);
f hat=ko(l);
prob=p;
end;
end;
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end;
output;
end;
keep trial isam prob f_hat qt_est;
proc datasets library=work;
save stuff2 quantile zout;
run;

Y%mend km_quant;

>k >k 3Kk kR ok ok sk ok ok sk ok okokoskook sk ok sk sk sk sk sk skokoskok sk sk ok sk sk sk sk sk oskoskokosk sk sk sk sk sk sk skokoskok skosk sk sk sk sk sk skokoskok sk ok sk sk sk sk skokoskokokokoskosk sk

The derivative of F _ tilda, which is computed by the formula in a paper

by Padgett and Thombs (1988)

>k >k sk ok ok ok ok ok Sk sk ok sk ok sk skoskok ok ok Sk sk sk sk sk sk sk skokook ok ok sk sk sk sk skoskoskoskookookook sk sk sk sk skoskokokokokookook sk skosk sk skokokokokokook skoskoskoskoskokoskokokokk
)

Y%macro derivative;
t=x;
derivative=0;
do i=1 to &nsize;
y=abs(t-zo(i));
if y 1t &h then do;
Ker=(1,/&h)*5jo(i)*(3/4)* (1-((t-z0(i)) /&ch)*2);
end;
else do;
ker=0;
end;

if ker=. then do;
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derivative = derivative;
end;
else do;
derivative=derivative+ker;
end;

end;

Y%omend,;

>k oK 3Kk ok ok ok ok sk sk ok sk ok skok skok sk ok sk sk sk sk sk oskokoskoskosk skosk sk sk sk sk ok oskokoskoskoskosk sk sk sk sk kokoskokoskok skoskoskoskokokokoskok

Smooth K-M estimator

>k ok kK kR ok ok sk ok ok ok ok okok skook ok ok sk sk sk ok skok skokookook sk sk sk sk sk oskokokokook skoskosk skosk sk ok okokokokoskoskoskoskoskokoskokokokok
)

Y%macro f_tilde;
t=x;
f_tilde=0;
do j=1 to &nsize;
if t le zo(j)-&h then do; sjw=0; end;
if zo(j)-&h 1t t 1t zo(j)+&h then do;
sjw=jo(j)*((-1/4)*((t-z0(j)) /&h)**3+(3/4)*((t-
20(j))/&h)+.5);
end;
if zo(j)+&h le t then do; sjw=jo(j); end;
if sjw=. then do; f_tilde=f_tilde; end;
else do; f_tilde=f_tilde+sjw; end;

end;
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Y%omend;
Y%macro f_tilde2;
t=x;
f tilde2=0;
do j=1 to &nsize;
if t le zo(j)-&h then do; sjw=0; end;
if zo(j)-&h 1t t 1t zo(j)+&h then do;
S0 H((-L/4)*((t-70(1)) /&ch) **3-+(3/4)*((t-
20(3))/&h)+.5);
end;
if zo(j)+&h le t then do; sjw=jo(j); end;
if sjw=. then do; f_tilde2=f tilde2; end;
else do; f_tilde2=f tilde2+sjw; end;
end;

%mend;

>Rk kK ok sk sk ok sk sk sk sk ok oskokoskosk sk sk sk sk sk sk skoskokoskoskosk sk sk sk sk sk skoskoskokoskosk sk sk sk sk sk skoskokoskokoskosk sk sk sk sk kokokoskoskoskoskoskoskoskokokokoskosk

Computing smooth quantle estimates

>k >k 3Kk ok ok ok ok sk sk ok sk ok oskokoskosk sk ok sk sk sk sk sk kokoskokosk sk sk sk sk sk sk sk oskokoskosk sk sk sk sk sk sk skokoskokoskosk skosk sk skoskoskokoskokoskoskoskoskoskoskkokokok,
)

Y%macro smoothqtestimate;
proc transpose data=work.stuff2 out=jout prefix=jo;
var jump;

by trial isam;
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proc transpose data=quantile out=prout prefix=pro;
var prob;
by trial isam;
proc transpose data=quantile out=qout prefix=qo;
var qt _ est;
by trial isam;
data stepT;
merge jout zout prout qout;
data smoothqt;
set stepT;
array jo(*) jol-jo & nsize;
array zo(*) zol-zo & mnsize;
array pro(*) prol-pro & numqt;
array qo(*) qol-qo & numgqt;
do mm=1 to & numqt;
x=qo(mm);
p=pro(mm);
do jjj=1 to 20;
%derivative
% f _tilde
d=(f _ tilde-p)/derivative;
x=x-d;
% f _tilde2;
if abs(d) < .000000000000001 then do; jjj=20; end;
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end;
output;
end;
keep trial isam d x jjj p f _ tilde2;

% mend;

Kook ok ok koo ok skook ok >kok ok skokook sk skok sk kok sk sk okook sk skok sk skok sk skok ok sk skok skokok skoskoskok sk skok skoskokosk skokok sk skok sk skokeok skokok sk skoko sk skokok skokokoskokokeskoskokosk sk

This macro computes the suprimum difference between original quantile estimates
and
bootstrap quantile estimates.
************************************************************************************;
Y%macro qtdif ference;
data bestquant;
set smoothqt;
data originalquant;
set bestquant;
if isam = 0;
rename x = quantile;
data bootstrapquant;
set bestquant;
if isam = 0 then delete;
% do iisam=1 % to &nnnsam;
data originalquant &iisam; ** Generating many sets in the do loop;

set originalquant;
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isam=&iisam;
% end;
data duplicatingoriginal;
set
% do iisam=1 % to &nnnsam;
originalquant & iisam /*no semicolon here*/
% end;
; ** this semicolon is for set;
proc sort data=duplicatingoriginal;
by trial;
proc transpose data=duplicatingoriginal out=pout prefix=po;
var quantile;
by trial isam;
proc transpose data=duplicatingoriginal out=ftilout prefix=ftilo;
var f _ tilde2;
by trial isam;
proc transpose data=bootstrapquant out=ppout prefix=ppo;
var x;
by trial isam;
proc transpose data=bootstrapquant out=fftilout prefix=fttilo;
var f _ tilde2;
by trial isam;
data supremum;
merge pout ppout ftilout fftilout;
array po(*) pol-po &numgt;

array ftilo(*) ftilo1-ftilo &numqt;
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array ppo(*) ppol-ppo &numgt;
array fftilo(*) fftilo1-fftilo &numqt;
p=.20;
do i=1 to &numgqgt by 1;
p=p+.05;
originalqt=po(i);
bootqt=ppo(i);
quantdiff=abs(ppo(i)-po(i));
output;
end;
keep trial i isam p quantdiff originalqt bootqt;
data supremum?2;
set supremum;
proc sort data=supremum?2;
by trial isam quantdiff; ** by sorting the set, it is easier to spot the largest
quantdiffs;
run;
proc transpose data=supremum?2 out=ddout prefix=qdif;
var quantdiff;
by trial isam;
data findingc;
merge ddout;
array qdif(*) qdifl-qdif &numqt;
do i= &numgt;
sup _ q - diff=qdif(i);
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output;
end;
keep trial isam sup _ q_ diff;

Y%omend,;

Y%opicksampone
%opickallsamps

%f _hat

Y%okm_quant
%smoothqtestimate

%qtdif ference

** Outputs quantile estimates from the initial samples;
saslib.originalqt;
set originalquant;
** Outputs all the suprimum quantile differences between the initial sample and each
of the bootstrap sample;
data saslib.qtdiff;
set findingc;

run;

% let p _ cent=.9; * Pth percentile;
% let ntri=1000; ** number of trials;

% let nsam=1000; ** number of bootstrap samples for each trial;
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% let nsize=200; ** size of each sample;

% let numqt=>51; ** number of quantiles;

Y%macro findC:;
data one;
set saslib.qtdiff;
proc sort data=one;
by trial sup _ q _ diff;
proc transpose data=one out=qout prefix=qo;
var sup _ q _ diff;
by trial;
data two;
set one nobs=setsize;
merge qout;
by trial;
data three;
set two;
array qo(*) qol-qo &nsam;
PxNSAM= & p _ cent® &nsam;
int=int(PxNSAM);
dec=PxNSAM-int;
do i=1 to &ntri;
if dec = 0 then ¢ = ( &nsize ** .5) * (qo(int)+ qo(int+1))/2;
else do;

¢ = (& nsize ** .5) * qo(int+1);
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end;
end;
data four;
set three;
keep trial c;

%mend findC,

>3k Kk ok sk sk ok sk sk sk sk koskokoskosk sk sk sk sk sk sk skokoskoskoskosk skosk sk sk skokokoskokosk sk skosk skok kokoskokoskosk sk

This macro finds the average of C’s
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’

Y%macro findaverageC
proc transpose data=three out=cout prefix=co;
var c;
data five;
merge cout;
array co(*) col-co &ntri;
average _ of - C = mean(of col-co &ntri);
keep average _ of _ ¢;

%mend findaverageC;

% findC

% findaverageC'
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** Outputs all C’s from 1000 trials;
data saslib.cvalue;
set four;
** Outputs the average value of the 1000 C’s;
data saslib.aveCn;
set five;

run;

Y%omacro constructingsets;
data one;
set saslib.originalqt;
keep trial c f _ tilda;
proc sort data=one;
by trial f _ tilda;
run;
data truequant;
do p=.25 to .75 by .05;
true _ quant=quantile("EXPO’ p);
trial=1;
output;
end;
% do itri=1 % to &ntri;
data truequant &itri;

set truequant;
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trial= & itri;
% end;
data keepall;
set
% do itri=1 % to &ntri;
truequant &itri
% end;
proc sort data=keepall;
by trial true _ quant;

Y%mend constructingsets;

>k >k kK kR ok ok Sk sk ok sk ok sk sk skook ok ok ok sk sk sk sk sk oskskokookookook sk sk sk sk sk oskoskokokookook sk sk sk sk kokokokokokoskok skoskkok

Finding the supremum difference between the estimated

quantiles and true quantiles.
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Y%omacro supdif f;

proc transpose data=one out=xout prefix=xo;
var c;
by trial;

proc transpose data=keepall out=dout prefix=do;
var true _ quant;

by trial;
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data supdiff;
merge xout dout;
by trial;
array xo(*) xol-xo &numgt;
array do(*) dol-do &numgt;
do i=1 to &numgqt;
diff=( &nsize ** .5) * abs(xo(i)-do(i));
output;
end;
keep diff trial;
proc sort data=supdiff;
by trial diff;
proc transpose data=supdiff out=supout prefix=sup;
var diff;
by trial;
data choosesup;
merge supout;
by trial;
array sup(*) supl-sup &numgt;
keep trial sup &numgt;
Y%omend supdiff;

>k ok 3Kk ok ok ok ok sk sk ok sk ok skokskok ok ok sk sk sk sk sk okokoskokook skook sk sk sk sk sk oskoskokook sk sk sk sk sk ok kokokokokook skosk sk sk sk skokoskokokokoskoskoskoskokokok

Computing the coverage probability of P % simultaneous confidence

bands for Q(p), .25 <=p <= .75
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Y%macro coverageprob;
data two;
set saslib.cvalue;
proc transpose data=choosesup out=tout prefix=to;
var sup & numqt;
by trial;
proc transpose data=two out=ccout prefix=cco;
var c;
by trial;
data three;
merge tout ccout;
by trial;
array to(*) tol;
array cco(*) ccol;
do i=1;
if to(i) le cco(i) then cover=1;
else cover=0;
end;
keep trial cover;
proc transpose data=three out=cpout prefix=cp;
var cover;
data four;
merge cpout;
coverprob= sum(of cpl-cp &ntri)/ &ntri;

keep coverprob;
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Y%mendcoverageprob;

Y%oconstructingsets;
Yosupdif f;

%coverageprob;

** Outputs the coverage probability;
data saslib.covprob;
set four;

run;
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Optimum bandwidth
For the computations of optimal bandwidth, we use the same macros picksampone,
pickallsamps, f_hat, km_quant and smoothgtestimate as defined in section 77 along
with the new macros shown below.
Y%macro variance_n_bias;
data group_by_p;
set smoothqt;

if isam ne 0;

proc sort data=group_by_p;
by bw p;

proc transpose data=group_by_p out=kluout prefix=Kklu;
var x;

by bw p;

data btstrap_qt_mean;
merge kluout;
array klu(*) klul-klu&numbt;
qt-mean=sum(of klul-klu&numbt)/ &numbt;
output;

keep bw p qt_mean;

data duplicate_qt_mean;
set btstrap_qt_mean;
do elu=1 to &numbt,;

output;
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end;

proc transpose data=duplicate_qt_mean out=k2uout prefix=k2u;
var qt_mean;

by bw p;

data squarediff;

merge kluout k2uout;
array klu(*) klul-klu&numbt;

array k2u(*) k2ul-k2u&numbt;
do e2u=1 to &numbt;
bt_qt=klu(e2u);
qt-mean=k2u(e2u);
sq-diff=(klu(e2u)-k2u(e2u))**2;
output;

end;

keep bw p bt_qt qt_mean sq_diff;

proc transpose data=squarediff out=k3uout prefix=k3u;
var sq_diff;

by bw p;

data variance;
merge k3uout;

array k3u(*) k3ul-k3u&numbt;
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bt_var=sum (of k3ul-k3u&numbt)/ (&numbt-1);
output;

keep bw p bt_var;

data original km_qt;
set quantile;
if isam=0;

rename prob=p;

data duplicate_. KM _qt;

set original km_qt;

do h=.7 to .9 by .01; Frrrerkmilitopok,
bw=h;
output;

end;

keep bw p qt_est;

proc sort data=duplicate_ KM _qt;

by bw p;

proc transpose data=duplicate_KM_qt out=k4uout prefix=k4u;
var qt_est;

by bw p;

proc transpose data=btstrap_qt_mean out=kbuout prefix=k5u;

var qt_mean;
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by bw p;

data bias;
merge kduout kbuout;
array kdu(*) kdul;
array kbu(*) kbul;
bt_bias=kb5ul-k4ul;
bias_sq=(kbul-k4ul)**2;
output;

keep bw p bt_bias bias_sq;

Y%omend,;

Y%omacro mise;

proc transpose data=variance out=k6uout prefix=k6u;
var bt_var;
by bw p;

proc transpose data=bias out=k7uout prefix=k7u;
var bias_sq;

by bw p;

data mse;
merge k6uout k7uout;
array k6u(*) k6ul;
array k7u(*) k7ul;
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bt_var=k6ul;
bias_sq=k7ul;
bt_mse=k6ul+k7ul;
output;

keep bw p bt_var bias_sq bt_mse;

proc transpose data=mse out=k8uout prefix=k8u;
var bt_mse;

by bw;

data mise;
merge k8uout;
array k8u(*) k8ul-k8u&numqt;
bt_mise=(.01)* sum(of k8ul-k8u&numqt);
output;

keep bw bt_mise;
proc sort data=mise;

by bt_mise;

Y%omend,;

Y%variance_n_bias

Y%omise
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data saslib.mise;
set mise;

run;
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Confidence band for the difference between two quantile functions

The code for constructing the simultaneous confidence band for the difference
between two quantile functions shown in figure 4.1 in section 4.3 is given here. The
data are given in Tables 19.16 - 19.21 in ([]). Once the data are put into a data set
one, we use the the macros samps, picksampone, pickallsamps, f_hat, km_quant
and smoothgtestimate as defined in section 7?7 to compute the quantile estimates for
the samples, placebo and polymer though there were a few changes in codes. Those
estimates are in the sets called smoothqt and smoothqt_cat, which are then used in
the macros shown below to construct the confidence band.
libname saslib 'C:sasresult’ ;
% let nsam=1; ** this must be equal to 1;
% let nnsam=1001; ** number of samples to generate - must be at least 2;
% let nmnsam="%eval(&nnsam — 1); ** number of bootstrap samples;
% let sizel=110; ** sample size of polymer tx=1;
% let size2=112; ** sample size of placebo tx=0;
% let numqt=>51; ** number of quantiles;
% let h=.65; ** bandwidth;
% let p_cent=.9;
Y%olet seed1=1852163;
%olet seed2=3612581;

data one;
input tx weeks event;

datalines;
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[the data themselves are given in Tables 19.16 - 19.21 in ([])]

%samps
Y%opicksampone
%opickallsamps
%[ _hat
Y%okm_quant

%smoothqtestimate

Y%omacro choosesupdif f;
proc transpose data=smoothqt out=xlout prefix=x1o;
var x;

by isam;
proc transpose data=smoothqt_cap out=x2out prefix=x20;
var X;

by isam;

data partl;

merge xlout x2out;

data part2;

set partl;
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array x1o(*) xlol-xlo&numgt;
array x20(*) x2o0l-x20&numgqt;
p=.24;
do ss=1 to &numgt;
p=p+.01;
x_rad=xlo(ss);
x_cap=x20(ss);
qtdiff=x1o(ss)-x20(ss);
output;
end;

keep isam qtdiff x_rad x_cap p;

data originalqtdift;
set part2;

if isam = 0;

data bootstrapqtdiff;
set part2;
if isam = 0 then delete;
%do iisam=1 %to &nnnsam;
data originalqtdiff&iisam; * Generating many sets in the do loop;
set originalqtdiff;
isam=&/isam;

Yoend;
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data duplicatingoriginal;
set
%do iisam=1 %to &nnnsam;
originalqtdiff&iisam /*no semicolon here*/
Y%oend;

; * this semicolon is for set;

proc transpose data=duplicatingoriginal out=pout prefix=po;
var qtdiff;

by isam;

proc transpose data=bootstrapqtdiff out=ppout prefix=ppo;
var qtdiff;

by isam;

data supremum;
merge pout ppout;
array po(*) pol-po&numqt;
array ppo(*) ppol-ppo&numgqt;
p=-24;
do i=1 to &numgqt by 1;
p=p+.01;
og_qtdiff=po(i);
bt_qtdiff=ppo(i);
diffofqtdiff=abs(ppo(i)-po(i));

output;
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end;

keep isam p og_qtdiff bt_qtdiff diffofqtdift;

data supremum?2;

set supremum;

proc sort data=supremum?2;
by isam diffofqtdiff;

run;

proc transpose data=supremum?2 out=ddout prefix=qdi

by isam;

data findingd;
merge ddout;
array qdif(*) qdifl-qdif&numaqt;
do i=&numaqt;
sup_d_diff=qdif(i);
output;
end;

keep isam sup_d_diff;

proc sort data=findingd;
by sup_d_diff;

Y%omend,;
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Y%macro findD;
proc transpose data=findingd out=qout prefix=qo;

var sup_d_diff;

data two;

merge qout;

data findd;
set two;
array qo(*) qol-qo&nnnsam;
PxNSAM=&p_cent*&nnnsam;
int=int(PxNSAM);
dec=PxNSAM-int;
if dec = 0 then do;
d = (&sizel ** 5)*(qo(int)+ qo(int+1))/2;
end;
else do;
d = (&sizel ** .5) * qo(int+1);
end;

output;

keep d;
Y%mend findD:;

Y%omacro existenceofaconstant;
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proc transpose data=originalqtdiff out=eout prefix=eo;
var qtdiff;
data confband;
set findd;
merge eout;
array eo(*) eol-eo&numqt;
p=-24;
do z=1 to &numgqt;
p=p-+.01;
uplim=eo(z)+(d /&sizel **.5);
lowlim=eo(z)-(d /&sizel **.5);
output;
end;
keep p uplim lowlim;
proc transpose data=confband out=upout prefix=upo;

var uplim;

proc transpose data=confband out=lowout prefix=lowo;

var lowlim;

data yesorno;
merge upout lowout;
array upo(*) upol-upo&numaqt;

array lowo(*) lowol-lowo&numaqt;
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if min(of upol-upo&numgt) ; max(of lowol-lowo&numgt) then yes=0;
else do;
yes=1;
end;

keep yes;
Y%mend existenceo faconstant;
%choosesupdi f f
% findD
Yexistenceo faconstant
data saslib.braintumorlB;

set supremum?2;
data saslib.braintumor2B;

set findingd;
data saslib.braintumor3B;

set findd;
data saslib.braintumor4B;

set confband;
data saslib.braintumor5B;

set originalqtdiff;
run;
stk ko ok ok K ok ok ok ok ok ok ok ok ok ok Kk ok ok ok ok ko sk ok ok sk ok o sk ok ok ok ok ok ok ok ok
Graph the difference between the two quantile functions over [.25, .75]
Test the nullhypothesis HO : b=0
b
data plot1;

set tmpl.braintumor4B;
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rename p=x;

rename uplim=up;

data plot2;
set tmpl.braintumor4B;
rename p=x;

rename lowlim=low;

data plot;
set plotl plot2;

keep x up low;

symboll i=join color=Dblack;

symbol2 i=join color=Dblack;

proc print data=plot;

proc gplot data=plot;
plot up*x low*x/overlay;
run;

quit;

data originalqtdiff;

set tmpl.braintumor5B;
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proc gplot data=originalqtdiff;
plot qtdiff*p;
run;

quit;
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