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ABSTRACT

SMOOTH QUANTILE PROCESSES FOR RIGHT CENSORED DATA

Katsuhiro Uechi, Ph.D.

The University of Texas at Arlington, 2013

Supervising Professor: Dr. Shan Sun-Mitchell

The development of an estimator of a quantile function Q(p) is discussed. The

smooth nonparametric estimator Q̃n(p) of a quantile functionQ(p) is defined as the so-

lution to F̃n(Q̃n(p)) = p, whereF̃n is a smooth Kaplan-Meier estimator of an unknown

continuous distribution function F (x). The asymptotic properties of the smooth

quantile process,
√
n(Q̃n(p) − Q(p)) , based on right censored lifetimes are studied.

The asymptotic properties of the bootstrap quantile process,
√
n(Q̃∗n(p) − Q̃(p)) are

also investigated and shown to have the same limiting distribution as the smooth

quantile process. The bootstrap method to approximate the sampling distribution of

the smooth quantile process is used to construct simultaneous confidence bands for a

quantile function and the difference of two quantile functions. A Monte Carlo simula-

tion is conducted to assess the performance of these confidence bands by computing

the lengths and coverage probabilities of the bands. The optimum bandwidth is also

investigated.
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CHAPTER 1

INTRODUCTION

It is common that you often encounter right censored data in many statistical

areas such as survival analysis. Right censoring occurs when the actual data value is

unknown but is known to be above a certain value. In clinical trials, there are many

cases where the true survival time can not be observed due to the loss of a sampling

unit. For instance, the true survival time for a patient can not be recorded because

they move and become unable to participate in the study further, die from factors

unrelated to the study, or etc.

In this thesis, we study the asymptotic properties of the smooth quantile

process
√
n(Q̃n(p) − Q(p)) based on right censored data. The bootstrap method

which approximates the distributions of smooth quantile processes is investigated

and we use it to construct simultaneous confidence bands for quantile functions.

In section 2, we introduce the smooth quantile function estimators which we use

for our research applications and simulations. The main results and proofs are given in

sections 3 and 4. Later in section 4, we discuss an application of the developed results

to the construction of simultaneous confidence bands for the difference of two quantile

functions. These confidence bands are then used to test whether two distributions

F1 and F2 belong to the same family with a location shift. In clinical trials, we often

want to compare two treatments and determine if there is a difference between them.

One may prefer to use parametric tests if the assumptions of normality, homogeneity

and others. But if these assumptions are violated, non-parametric tests may have

more advantages. They do, however, have various assumptions that must be met.
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It is important not to be confused by not having the need to meet an assumption

of ”normality” with the notion of ”assumptionless.” One of the assumptions is that

samples are drawn from the same distribution family. And this application allows one

to check this assumption. In section 5, optimal bandwidths are studied. In section

6, we carry out a Monte Carlo simulation to assess the performance of the proposed

confidence bands.
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CHAPTER 2

Smooth quantile estimators

Let X be the survival time of an individual with an unknown continuous

distribution function F (x) and its quantile function Q(p) ≡ F−1(p) = inf{x | F (x) ≥

p}, 0 < p < 1. Let X1, ..., Xn be i.i.d copies of X. Xi’s may be right censored and

may not be observed. Let C be the censoring time from another unknown distribution

G(x). If C1, ..., Cn are i.i.d copies of C and if Xi’s and Ci’s are independent, then we

observe {X̃i, δi}, i = 1, ..., n, where X̃i = min(Xi, Ci) and δi = I(Xi ≤ Ci). δi = 1

indicates that the survival time Xi for the ith individual is observed and δi = 0

indicates that the value of Xi is not observed but is known to be greater than Ci.

The distribution function H(x) of X̃i is defined by

H(x) = 1− (1− F (x))(1−G(x)) (2.1)

Kaplan and Meier [7] proposed the following product limit estimator of the survival

function 1− F (x) based on the right censored data {X̃i, δi}, i = 1, .., n.

1− F̂n(x) =


1 0 ≤ x ≤ X̃(1)∏k−1

i=1 ( n−i
n−i+1

)δ(i) X̃(k−1) < x ≤ X̃(k), k = 2, .., n

0 X̃(n) < x,

(2.2)

where X̃(1), ..., X̃(n) are the ordered X̃i’s and δ(i) is the indicator for X̃(i). F̂n(x) is

called the Kaplan-Meier estimator, which is the most popular estimator used in the

study of survival function 1−F (x). Sander [14] proposed an estimator of the quantile

function Q(p) by its natural estimator Q̂n(p) = inf{x | F̂n(x) ≥ p} and proved its

week convergence. Cheng [2] obtained some asymptotic properties of Q̂n(p) and
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Csorgo [3] discussed the strong approximation results for Q̂n(p). Padgett [12], Lio,

Padgett and Yu [8] and Lio, Padgett, and Thombs studied a kernel smooth quantile

estimator Q̆n(p) from right censored data, extending the complete sample results of

Yang [15].

Let {h ≡ hn} be a bandwidth sequence of positive numbers so that hn → 0 as

n → ∞, and let k be a probability density function. Then the kernel smoothed

quantile estimator is given by

Q̆n(p) = h−1
∫ 1

0

Q̂n(p)k((t− p)/h)dt, 0 < p < 1. (2.3)

An alternative smooth nonparametric estimator of a quantile function was studied

by Nadaraya[9] and was extended to the right censored data case by Padgett and

Thomas [10] and [11]. That is ,let F̃n be the smooth Kaplan-Meier estimator of the

distribution function defined by

F̃n(x) = h−1
∫ ∞
0

F̂n(t)k((x− t)/h)dt. (2.4)

Then the smooth nonparametric estimator Q̃n(p) of the quantile function is defined

as the solution to F̃n(Q̃n(p)) = p. The solution can be found iteratively by various

numerical computational methods of locating roots of equations, such as bisection

method, secant method and Newton-Raphson method. The iterations should con-

verge rapidly if k and F are smooth and well behaved. We will use Q̃n(p) thorough

out the thesis.
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CHAPTER 3

Asymptotic Results of Smooth Quantile Processes

3.1 Assumptions and Definitions

We now give our main theorem and proof of weak convergence of Q̃n(p).

We assume the following conditions:

C1. k is a continuous density function with compact support [−c, c],for

some constant c.

C2. h→ 0 and
√
nh→ 0 as n→∞.

C3. F (x) is continuous and has a bounded density function f(x).

C4. τF ≤ τG ≤ ∞, where τH ≡ sup{t : H(t) < 1} for any distribution

function H(x).

Gaussian processes

A stochastic process is defined as a collection of random variables X(t), t ∈ T ,

defined on a common probability space, where T is a subset of (−∞,∞). A stochastic

process is called a Gaussian process if every finite linear combination of the random

variables X(t), t ∈ T , is normally distributed.

The Wiener processes

A stochastic process W (t),−∞ < t < ∞ is called the Wiener process with

parameter σ2 if the following properties are satisfied:

(1). W (0) = 0.

(2). W (t)−W (s) has a normal distribution with mean 0 and
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variance σ2(t− s) for s ≤ t.

(3). W (t2)−W (t1),W (t3)−W (t2), ...,W (tn)−W (tn−1) are

independent for t1 ≤ t2 ≤ ... ≤ tn.

Let D[a, b] be the space of functions on an interval [a, b] that are right con-

tinuous and with left limits, equipped with the Skorohod topology. The notation
D→

will be used for week convergence in a Skorohod space. Let y(s) = (1 − F (s))(1 −

G(s−)), λ(s) = f(s)/(1− F (s)), i.e., the hazard function and B(s) be a Wiener pro-

cess.

Let

Z(x) = (1− F (x))

∫ x

0

(λ(s)/y(s))1/2dB(s). (3.1)

It is shown by Gill that
√
n(F̂n(x) − F (x))

D→ Z(x) in D[a, b], 0 ≤ a < b < τF .

In the following section, we show an analogous result for smoothed estimator of the

distribution function.

3.2 Main Results

Theorem 1 Under C1−C4, for 0 ≤ a < b < τF ,
√
n(F̃n(x)−F (x))

D→ Z(x) in D[a, b]

as n→∞.

proof : Let F0(x) = h−1
∫∞
0
F (t)k((x− t)/h)dt.

Note that

√
n(F̃n(x)− F (x)) =

√
n(F̃n(x)− F0(x) + F0(x)− F (x)) (3.2)

=
√
n(F̃n(x)− F0(x)) +

√
n(F0(x)− F (x)). (3.3)

We show that the first term of equation (3.3) converges to Z(x) in D[0, b] and the

second term is O(
√
nh),i.e., it converges to 0 as n→∞.
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For all x such that 0 ≤ a ≤ x ≤ b < τF , let α > 0 be such that b + α < τF . Then

under condition C1,

√
n(F̃n(x)− F0(x)) =

√
n

(∫ ∞
0

h−1F̂n(t)k((x− t)/h)dt

−
∫ ∞
0

h−1F (t)k((x− t)/h)dt

)
(3.4)

=
√
nh−1

∫ ∞
0

(F̂n(t)− F (t))k((x− t)/h)dt (3.5)

= h−1
∫ b+α

0

√
n(F̂n(t)− F (t))k((x− t)/h)dt

+
√
nh−1

∫ ∞
b+α

(F̂n(t)− F (t))k((x− t)/h)dt.

(3.6)

The second term of equation (3.6)can be shown equal to 0 as follows. By condition

C1,

√
nh−1

∫ ∞
b+α

(F̂n(t)− F (t))k((x− t)/h)dt ≤ 2
√
nh−1

∫ ∞
b+α

k((x− t)/h)dt (3.7)

= 2
√
n

∫ x−(b+α)
h

−∞
k(u)du (3.8)

≤ 2
√
n

∫ −c
−∞

k(u)du (3.9)

= 0 (3.10)

Since
√
n(F̂n(t)−F (t)

D→ Z(t) for t ∈ [a, b], the first term in equation (3.6) converges

in distribution to h−1
∫ b+α
0

Z(t)k((x−t)/h)dt. So we now show that h−1
∫∞
0
Z(t)k((x−

t)/h)dt→ Z(x) uniformly in [a, b] with probability 1.

Note that

7



h−1
∫ b+α

0

Z(t)k((x− t)/h)dt− Z(x) =

∫ x
h

x−(b+α)
h

Z(x− hu)k(u)du− Z(x) (3.11)

=

∫ c

−c

(
Z(x− hu)− Z(x)

)
k(u)du. (3.12)

Since Z(x) is continuous, Z(x− hu)− Z(x) converges to zero uniformly in x ∈ [a, b]

with probability 1. Thus
∫ c
−c

(
Z(x− hu)−Z(x)

)
k(u)du

a.s→ 0 for x ∈ [0, b]. We have

shown that
√
n(F̃n(x)− F0(x))

D→ Z(x) in D[a, b].

Next, we show that sup0≤x<∞
√
n | F0(x)− F (x) |= O(

√
nh).

√
n | F0(x)− F (x) | =

√
n

∣∣∣∣h−1 ∫ ∞
0

F (t)k((x− t)/h)dt− F (x)

∣∣∣∣ (3.13)

=
√
n

∣∣∣∣ ∫ x/h

−∞
F (x− hu)k(u)du− F (x)

∣∣∣∣ (3.14)

As h→ 0, x/h� c. So

√
n

∣∣∣∣ ∫ x/h

−∞
F (x− hu)k(u)dt− F (x)

∣∣∣∣ =
√
n

∣∣∣∣ ∫ c

−c

(
F (x− hu)− F (x)

)
k(u)du

∣∣∣∣ (3.15)

≤
√
n

∫ c

−c
| F (x− hu)− F (x) | k(u)du (3.16)

=
√
n

∫ c

−c
| f(ξ) | huk(u)du, ξ ∈ (x− hu, x)

(3.17)

=
√
nh | f(ξ) |

∫ c

−c
uk(u)du (3.18)

<
√
nh | f(ξ) |

∫ c

−c
2ck(u)du (3.19)

= 2c | f(ξ) |
√
nh (3.20)

By condition C3, f is bounded. Thus
√
n | F0(x) − F (x) |→ 0 with bound

√
nh as

n→∞. And this completes the proof of theorem 1.
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Corollary 1
√
nF̃n(0)

p→ 0 as n→∞.

proof :Let x = 0, then theorem 1 becomes

√
n(F̃n(0)− F (0))

D→ Z(0).

in D[a, b] as n→∞. F (0) = 0 since x is survival time, i.e., x ≥ 0. And

Z(0) = (1− F (0))

∫ 0

0

(λ(s)/y(s))1/2dB(s)

= 0.

So we have
√
nF̃n(0)

D→ 0 as n→∞. Thus
√
nF̃n(0)

P→ 0.

Theorem 2 Let 0 < β < 1. Suppose that f(Q(p)) is continuous and positive on the

interval [0, β). Then, under C1− C4,

√
n(Q̃n(p)−Q(p))

D→ Z(Q(p))/f(Q(p)) in D[0, β] as n→∞.

proof :

Let b be such that β < F (b) − ε for some ε > 0. Let F̃ 0
n(x) = F̃n(x) − F̃n(0). Then

F̃ 0
n(x) is non-decreasing and F̃ 0

n(0) = 0. Now consider a process
√
n(F̃ 0

n(x) − F (x)).

By Theorem 1 and Corollary 1, it is easily seen that
√
n(F̃ 0

n(x) − F (x))
D→ Z(x) in

D[a, b]. Then by Theorem 1 of Doss and Gill [4], we have

sup
0≤p≤F (b)−ε

|
√
n(F̃ 0

n

−1
(p)−Q(p)) +

√
n
F̃ 0
n(Q(p))− p
f(Q(p))

| p→ 0. (3.21)

Note that F̃ 0
n

−1
(p) = Q̃n(p+ F̃n(0)). So (3.21) becomes

sup
0≤p≤F (b)−ε

|
√
n(Q̃n(p+ F̃n(0))−Q(p)) +

√
n
F̃ 0
n(Q(p))− p
f(Q(p))

| p→ 0. (3.22)

9



By the definition of F̃ 0
n(x), we have

√
n(F̃ 0

n(Q(p))− p) =
√
n(F̃n(Q(p))− F̃n(0)− p) (3.23)

=
√
nF̃n(Q(p))−

√
nF̃n(0)−

√
nF (Q(p)) (3.24)

By Corollary 1, Theorem 1, and (3.24) above, we see that

√
n(F̃ 0

n(Q(p))− p) D→ Z(Q(p)) (3.25)

Thus,
√
n
F̃ 0
n(Q(p))− p
f(Q(p))

D→ Z(Q(p))

f(Q(p))
(3.26)

∀p ∈ [0, F (b)].

Now, since, for each n, Q̃n(p) is increasing on [0, 1], Q̃n is differentiable almost every-

where. And since Q̃′n(p) <∞ almost everywhere on [0, 1] for each n, there exists M

such that supp | Q̃′n(p) |< M ∀n. Then we have, ∀ε > 0,

P (| Q̃n(p+ F̃n(0))− Q̃n(p) |> ε) = P (| Q̃n(c) || F̃n(0) |> ε) (3.27)

≤ P (M | F̃n(0) |> ε) (3.28)

= P (| F̃n(0) |> ε/M) (3.29)

p→ 0 (Corollary1) (3.30)

By (3.30), (3.22) becomes

sup
0≤p≤F (b)−ε

|
√
n(Q̃n(p)−Q(p)) +

√
n
F̃ 0
n(Q(p))− p
f(Q(p))

| p→ 0. (3.31)

Theorem 2 now follows from Theorem 1.
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CHAPTER 4

APPLICATION OF SMOOTH QUANTILE PROCESSES

4.1 Efron’s Bootstrap

A re-sampling method known as Efron’s bootstrap (or simply the boot-

strap) was introduced by Brad Efron. It is a computer-intensive method to approx-

imate the sampling distribution of any statistic of interest. Bootstrap samples are

samples of size n drawn at random from the original data set of size n with replace-

ment.

4.2 Simultaneous Confidence Bnads

Let (X̃∗i , δ
∗
i ), i = 1, 2, ..., n be bootstrap replicates of the original right

censored data (X̃i, δi), i = 1, 2, ..., n Let F̂ ∗n(x) be the Kaplan-Meier estimator based

on a bootstrap sample and F̃ ∗n(x) the bootstrap smoothed Kaplan-Meier estimator of

F (x). And let Q̃∗n(p) be the bootstrap smoothed estimator of the quantile function

Q(p). Here we show analogous results for bootstrap samples.

Theorem 3 Under C1 − C4, for 0 ≤ a < b < τF ,
√
n(F̃ ∗n(x) − F̃n(x))

D→ Z(x) in

D[a, b] as n→∞.

11



proof :

√
n(F̃ ∗n(x)− F̃n(x)) =

√
n

(∫ ∞
0

h−1F̂ ∗n(t)k((x− t)/h)dt−
∫ ∞
0

h−1F̂n(t)k((x− t)/h)dt

)
(4.1)

=
√
nh−1

∫ ∞
0

(F̂ ∗n(t)− F̂n(t))k((x− t)/h)dt (4.2)

= h−1
∫ b

0

√
n(F̂ ∗n(t)− F̂n(t))k((x− t)/h)dt

+
√
nh−1

∫ ∞
b

(F̂ ∗n(t)− F̂n(t))k((x− t)/h)dt.

(4.3)

The second term of equation (4.3) can be shown to be equal to 0 as follows. By

condition C1,

√
nh−1

∫ ∞
b

| F̂ ∗n(t)− F̂ (t) | k((x− t)/h)dt ≤ 2
√
nh−1

∫ ∞
b

k((x− t)/h)dt (4.4)

= 2
√
n

∫ x−b
h

−∞
k(u)du (4.5)

≤ 2
√
n

∫ −c
−∞

k(u)du (4.6)

= 0 (4.7)

Now

h−1
∫ b

0

√
n(F̂ ∗n(t)− F̂n(t))k((x− t)/h)dt =

∫ x
h

x−b
h

√
n(F̂ ∗n(x− hu)− F̂n(x− hu))k(u)du

=

∫ x
h

x−b
h

√
n(F̂ ∗n(x)− F̂n(x))k(u)du+

∫ x
h

x−b
h

√
n

[
(F̂ ∗n(x− hu)− F̂n(x− hu))

−(F̂ ∗n(x)− F̂n(x))

]
k(u)du.(4.8)
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By theorem 2.1 of Akritas [1],
√
n(F̂ ∗n(x) − F̂n(x))

D→ Z(x) in D[a, b]. Then we see

that

lim
n→∞

lim
δ→0

sup
|x−y|<δ

∣∣∣∣√n(F̂ ∗n(x− hu)− F̂n(x− hu))−
√
n(F̂ ∗n(x)− F̂n(x))

∣∣∣∣ p→ 0 (4.9)

This implies that the term (4.8) = op(1). Also we have∫ x
h

x−b
h

√
n(F̂ ∗n(x)− F̂n(x))k(u)du =

√
n(F̂ ∗n(x)− F̂n(x))

∫ x
h

x−b
h

k(u)du (4.10)

D→ Z(x) (4.11)

This completes the proof of theorem 3.

Theorem 4 Let 0 < β < 1. Suppose that f(Q(p)) is continuous and positive on the

interval [0, β]. Then, under C1 − C4,
√
n(Q̃∗n(p) − Q̃n(p))

D→ Z(Q(p))/f(Q(p)) in

D[0, β] as n→∞.

proof : The proof of theorem 4 is done in a similar manner to the proof of the main

theorem, by using theorem 3 with theorem 2 of Doss and Gill (1991).

Now, applying theorem 4, a (1 − α)100% simultaneous confidence band for quantile

function Q(p) over an interval I ⊂ [0, 1) is given by

(Q̃n(p)− c/
√
n, Q̃n(p) + c/

√
n) (4.12)

where c is a value such that

P (
√
nsupp∈I | Q̃∗n(p)− Q̃n(p) |≤ c | {X̃i, δi}n1 ) ≈ 1− α (4.13)
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4.3 Hypothesis Testing

Next, we construct a simultaneous confidence band for the difference

between two quantile functions to test whether two distributions F1 and F2 belong

to the same distribution family z = {F (x − θ) | θ ∈ Θ}, where F is an unknown

continuous distribution. First, we consider the following null-hypothesis.

H
(1)
0 : F1 and F2 are members of a distribution family z, i.e. there exist θ1 and θ2 ∈ Θ

such that F1 = F (x− θ1) and F2 = F (x− θ2).

Let Q1(p) and Q2(p) be the corresponding quantile functions to F1 and F2 ∈ z,

respectively. Then note that Q1(p) = θ1 + Q(p) and Q2(p) = θ2 + Q(p). Thus, we

have the following equivalent hypothesis to H
(1)
0 .

H0 : Q1(p)−Q2(p) = θ1 − θ2 = θ ∀ 0 < p < 1, where θ is some constant in Θ.

In other words, if H0 is true, then it is equivalent to show F1 and F2 are from the

same distribution family. We develop a method to establish a confidence band such

that H0 (equivalently H
(1)
0 ) is not rejected if θ is within the confidence band for any

p ∈ (0, 1).

Let {X̃i, δi}n1 and {Ỹi, γi}m1 be samples of n and m right censored data. Let

Q̃1,n(p) and Q̃2,m(p) be the K-M smooth quantile estimates from the first and the

second samples, respectively. and let Q̃∗1,n(p) and Q̃∗2,m(p) be the bootstrap esti-

mates. Suppose n/m → ρ as n,m → ∞. Then by theorem 4, the distribution of

√
n(Q̃1,n(p)−Q1(p))−

√
n/m
√
m(Q̃2,m(p)−Q2(p)) can be estimated by the distribu-

tion of
√
n(Q̃∗1,n(p)− Q̃1,n(p))−

√
n/m
√
m(Q̃∗2,m(p)− Q̃2,m(p)) conditional on the two

data sets {X̃i, δi}n1 and {Ỹi, γi}m1 . Therefore, a 90 % simultaneous confidence band

for Q1(p)−Q2(p) over an interval I ⊂ [0, 1) is given by

(Q̃1,n(p)− Q̃2,m(p)± d/
√
n), (4.14)
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where d is a value such that

P (
√
nsupp∈I | (Q̃∗1,n(p)−Q̃∗2,m(p))−(Q̃1,n(p)−Q̃2,m(p)) |≤ d | {X̃i, δi}n1 , {Ỹi, γi}m1 ) ≈ .9.

(4.15)

4.4 Example

In this section, we provide an example of testing the hypothesis H0 in

section 4.3. The data are from a randomized CTE brain tumor clinical trial [13]. This

is a trial of BCNU impregnated implantable polymer for the treatment of recurrent

malignant tumor in the brain. 222 patients were randomized with equal probability to

receive either BCNU polymer or placebo polymer, implanted in the cavity remaining

after surgical resection of recurrent tumors. We test the hypothesis that the group

receiving BCNU and the group receiving the placebo belong to the same location

distribution family. We construct a 90% confidence band for the difference of two

quantile functions using the formulas (19) and (20). The confidence band in figure

4.1 shows the existence of a constant θ in H0 within the band. Thus we conclude that

these two samples are drawn from the same location family.
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Figure 4.1. Confidence band for the difference between the two quantile functions.
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CHAPTER 5

BANDWIDTH CONSIDERARION

Determining an appropriate value for the bandwidth h plays an important role

in constructing confidence bands since coverage probabilities and lengths of bands

depend on h as well as n. A bandwidth selection method for a point estimator of

Q(p) to choose the best value of h for computing the quantile estimator Q̃n(p) has

been proposed by Padgett and Thombs [11]. They choose h∗ to be the bandwidth if

it minimizes the bootstrap estimate of the mean squared error, MSE∗(Q̃n, h), which

is defined as follows.

First, let Q̃∗in (p) denote the quantile estimate obtained from the ith bootstrap sample,

i = 1, 2, ..., B. Then the bootstrap estimate of variance is defined by

V ar∗(Q̃n(p)) =
1

B − 1

B∑
i=1

[Q̃∗in (p)− Q̃∗n(p)]2, (5.1)

where Q̃∗n(p) = 1
B

∑B
i=1 Q̃

∗i
n (p). The bootstrap estimate of bias is

Bias∗(Q̃n(p)) = Q̃∗n(p)− Q̂n(p), (5.2)

where Q̂n(p) is the Kaplan Meier estimate obtained from the original data. So for

some fixed p and h, the bootstrap estimate of the mean squared error is given by

MSE∗(Q̃n(p), h) = V ar∗(Q̃n(p)) + [Bias∗(Q̃n(p))]2. (5.3)

17



Now, to construct confidence bands over an interval p ∈ I, we need to select a

bandwidth to minimize a ”global” mean squared error, so called the mean integrated

squared error (MISE). The bootstrap estimate of MISE is given by

MISE∗(Q̃n(p), h) =

∫
p∈I

MSE∗(Q̃n(p), h)w(p)dp

≈
J∑
j=1

MSE∗(Q̃n(pj), h)w(pj) Mj,

where w(p) is a weight function. p1 < p2 < ... < pJ is a partition of the interval I and

MJ= pj − pj−1. The selection of h∗ is the value minimizing MISE∗(Q̃n(p), h). Once

h∗ is selected, a simultaneous confidence band for Q(p), p ∈ I can be constructed

based on Q̃∗in (p) which are obtained using h∗.
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CHAPTER 6

SIMULATION STUDIES

6.1 Performance of the Confidence Bands

In this chapter, we carry out a Monte Carlo simulations to assess the

performance of the proposed confidence bands using the smoothed quantile estimates.

We compare the coverage probabilities and lengths of the confidence bands computed

from the smoothed and non-smoothed quantile estimates.

First, we construct the original right censored sample of size n. The survival

times are generated from the exponential distribution with mean 1,

F (x) =


0 if x ≤ 0

1− e−x if x > 0.

(6.1)

The censoring times are generated from the exponential distribution with mean 7/3,

G(x) =


0 if x ≤ 0

1− e−3x/7 if x > 0.

(6.2)

The kernel density function used here is called the Epanechnikov kernel and defined

by

K(u) =
3

4
(1− u2)1{|u|<1}. (6.3)

From the original sample of size n, we generate 1000 bootstrap samples. The Kaplan-

Meier estimator, F̂n(x) and bootstrap K-M estimators, F̂ ∗n,j(x), j = 1, .., 1000 are cal-

culated based on the original right censored sample and bootstrap samples, respec-
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tively. The smooth K-M estimator, F̃n(x), and smooth bootstrap K-M estimators,

F̃ ∗nj(x), j = 1, ..., 1000, can be calculated by using the formulae (2.2) in Padgett and

Thombs [11]. The smooth estimator Q̃n(p) of the quantile function is the solution

of F̃ (Q̃n(p)) = p and all of the smooth quantile estimates for the original and 1000

bootstrap samples were found by applying the Newton method. Once all the smooth

quantile estimates are computed, we find the value of cj, defined by

cj =
√
n sup
p∈I
| Q̃∗(n,j)(p)− Q̃n(p) |

∀j = 1, .., 1000, where , in our simulations, I = .25(.01).75 and then construct

an ascending ordered set, {c(1), c(2), ..., c(1000)}. To construct a 90 % confidence band

for Q(x) over [.25, .75], we use c̃ = c(900) as the estimate of c in (4.13) .

To assess the performance of the bootstrapping method, we carry out 1000

simulations and calculate the coverage probabilities. The coverage probability for

all 1000 simulations of size n and a specific value of bandwidth h can be calculated

by calculating the relative frequency of all the one thousand 90 % confidence bands

defined in (4.12) containing Q(p) for p ∈ I. The average length of the confidence

bands for a given pair of n and h is determined as the mean value of 2c̃/
√
n for all

simulations.

The coverage probabilities and average lengths of the 90 % simultaneous con-

fidence bands for the quantile function Q(p) ≡ F−1(p) = −log(1 − p) over p ∈ I for

sample sizes n = 50, 100, 150, 200 and 300 are reported in tables 6.1 and 6.2 below.

For tables 6.1 and 6.2, their first columns show the coverage probabilities and

average lengths of the confidence bands for non-smoothed method. For the smoothed

method, the results are shown for the bandwidths h = .10(.10).80. We see from table

6.1 that, for a given n, the coverage probabilities of the smoothed method are closer
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to the nominal level of .90 than those of non-smoothed method for all bandwidths. As

h increases, the coverage probabilities are generally decreasing. Similarly, it is seen

from table 6.2 that for any n, the average lengths of bands are shorter than those

of non-smoothed method. And the average lengths decrease as the sample size n or

bandwidth h increases.

Fighre 6.1 is a demonstration of the simultaneous confidence bands of the quan-

tile function over p ∈ [.25, .75] using the smooth and non-smooth estimates with

n = 300 and h = .36. The solid line is the true quantile function. The dotted lines

are the smooth quantile estimate and the confidence band. And stepped lines are the

non-smooth estimate and the confidence band.

Table 6.1. Coverage probabilities of 90 % simultaneous confidence bands for Q(p) ,
0.25 ≤ p ≤ 0.75
with 1000 replicates, using smoothing and non-smoothing bootstrap methods

n\h non-smooth smooth
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

50 .947 .936 .919 .907 .897 .891 .888 .896 .890
100 .942 .935 .925 .915 .906 .898 .896 .893 .891
150 .947 .937 .924 .918 .910 .905 .908 .903 .903
200 .941 .937 .926 .914 .911 .905 .902 .895 .881
300 .942 .935 .922 .914 .907 .894 .894 .878 .863

6.2 Optimum Bandwidth Selection

We simulated the data from the same exponential distributions as in sec-

tion 6.1. For simplicity, the weight function for the computation of MSE∗(Q̃n(p), h) is

chosen to be w(pj) = 1 over the partition pj = .25(.01).75. The values ofMISE∗(Q̃n(p), h)

was computed by the formula in Chapter 5 for the bandwifth h = 0(.01)1 with 1000
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Table 6.2. Average lengths of 90 % simultaneous confidence bands for Q(p) , 0.25 ≤
p ≤ 0.75
with 1000 replicates, using smoothing and non-smoothing bootstrap methods

n\h non-smooth smooth
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

50 1.4393 1.3708 1.2893 1.2120 1.1480 1.0863 1.0321 0.9842 0.9423
100 0.9295 0.8763 0.8274 0.7756 0.7308 0.6939 0.6641 0.6396 0.6191
150 0.7359 0.6942 0.6499 0.6090 0.5754 0.5490 0.5283 0.5109 0.4958
200 0.6176 0.5854 0.5445 0.5100 0.4834 0.4637 0.4480 0.4350 0.4235
300 0.4910 0.4638 0.4315 0.4056 0.3868 0.3728 0.3616 0.3520 0.3432

Figure 6.1. Quantile estimates and 90 % simultaneous confidence bands for exponen-
tial survival times .
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bootstrap samples. The optimum bandwidth h∗ which minimizes MISE∗(Q̃n(p), h)

is given for each of the samples of size n = 50, 100, 150, 200, 300, 500 and 1000 in

table 6.3. We find that as the size n of the sample increases, h∗ decreases as well as

MISE∗(Q̃n(p), h).

Table 6.3. Bootstrap selections of smooth bandwidth h∗ minimizing
MISE∗(Q̃n(p), h) for
0.25 ≤ p ≤ 0.75 for a single right censored sample.

n 50 100 150 200 300 500 1000
h∗ .88 .59 .60 .45 .36 .36 .25

MISE∗(Q̃n(p), h∗) .020914 .006516 .005074 .003402 .002623 .001814 .000859
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APPENDIX A

SAS Code
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In this chapter, the SAS codes, which were used in the simulation studies, are

presented.

Coverage probabilities and average lengths of confidence bands

libname saslib ’ /sasoutputs/’ ;

% let nsam=1; ** this must be equal to 1;

% let nnsam=1001; ** number of samples to generate - must be at least 2.

% let nnnsam= & nnsam-1; ** number of bootstrap samples, which is 1000;

% let nsize=200; ** sample size n;

% let seed1=5129589; ** seed for initial sample;

% let seed2=7200117; ** seed for bootstrap samples;

% let ntri=1000; ** number of trials;

% let numqt=51; ** number of quantiles, i.e., .25(.01).75;

% let h=.2; **bandwidth h;

*********************************************************************

This macro generates a sample of size n from each of

two exponential distributions.

One contains true life-times and the other contains censoring times.

*********************************************************************;

%macro picksampone;

** generate nsam samples of size nsize from F(x)and nsam samples of size nsize

from G(c);

call streaminit(&seed1);

data one;

isam=0; ** sample index;

do trial=1 to &ntri;
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do i=1 to &nsize; ** observation index within the sample;

x=rand(’EXPONENTIAL’); ** life times;

cen=rand(’WEIBULL’,1,7/3); ** censoring times;

x tilda=min(x,cen); ** right censored data;

delta=(x <= cen); ** delta=1 if life time is observed, 0 if censored;

output;

end;

end;

proc sort data=one;

by trial x tilda;

% mend picksampone;

% macro samps;

data keepone1;

set one;

isam=1;

keep trial isam x tilda delta;

% do iisam=2 % to & nnnsam; ** Duplicating the original sample;

data keepone & iisam; ** Generating many sets in the do loop;

set keepone1;

isam= &iisam;

% end;
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data keepall;

set

% do iisam=1 % to & nnnsam;

keepone & iisam

% end;

;

proc sort data=keepall;

by trial isam x tilda;

%mend samps;

*******************************************************************

This macro generates bootstrap samples from the original sample.

*******************************************************************;

%macro pickallsamps;

data one;

set one;

%samps

proc surveyselect data=keepall

method = urs

sampsize = & nsize

seed= & seed2

out=bstrap1;

strata trial isam ;

run;
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data bstrap;

set bstrap1;

do i = 1 to numberhits;

output; ** outputs each datum numberhits times;

end;

data keepone;

set one bstrap;

keep trial isam x tilda delta numberhits;

proc sort data=keepone;

by trial isam x tilda;

%mend pickallsamps;

**************************************************************

This macro computes Non-smoothed K-M estimates of F.

**************************************************************;

%macro f hat;

proc transpose data=keepone out=xout prefix=xo;

var x tilda;

by trial isam;

proc transpose data=keepone out=dout prefix=do;

var delta;

by trial isam;
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proc transpose data=keepone out=sout prefix=so;

var x tilda;

by trial isam;

data transdata;

merge xout dout sout;

by trial isam;

data fvalue;

set transdata;

array xo(*) xo1-xo &nsize;

array do(*) do1-do &nsize;

array so(*) so1-so &nsize;

do j=1 to &nsize;

if(so(j) le xo1) then do;

f1=1;

end;

else do;

do k=2 to &nsize;

if(xo(k-1) lt so(j) and so(j) le xo(k)) then do;

p=1;

do i=1 to k-1;

p=p*((&nsize - i)/(&nsize -

i+1))**do(i);

end;

f1=p;
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end;

end;

end;

if(xo(&nsize) < so(j)) then f1=0;

f hat=1-f1;

x=so(j);

delta=do(j);

output;

end;

keep trial isam f hat x delta;

data work.stuff;

set fvalue;

by trial isam x;

if first.x;

run;

%mendf hat;

**********************************************************************************

This macro finds K-M estimates of the quantiles.

And these quantile estimates are used as the initial values of the newton method to

compute

the smoothed K-M estimates.

**********************************************************************************;
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%macro km quant;

proc transpose data=work.stuff out=fout prefix=fo;

var f hat;

by trial isam;

proc transpose data=work.stuff out=gout prefix=go;

var x;

by trial isam;

proc transpose data=work.stuff out=delout prefix=del;

var delta;

by trial isam;

data step1;

merge fout;

by trial isam;

data step2;

set step1;

array fo(*) fo1-fo & nsize;

do i=2 to & nsize;

f km=fo(i);

output;

end;

keep trial isam f km;

data step3;

do i=1 to & ntri;
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do j=1 to & nnsam;

trial=i;

isam=j-1;

f km=1;

output;

end;

end;

keep trial isam f km;

data step4;

set step2 step3;

if f km ne .;

proc sort data=step4;

by trial isam f km;

proc transpose data=step4 out=kmout prefix=kmo;

var f km;

by trial isam;

data f value;

merge fout kmout gout delout;

by trial isam;

data step5;

set f value;

array go(*) go1-go &nsize;
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array del(*) del1-del &nsize;

array fo(*) fo1-fo &nsize;

array kmo(*) kmo1-kmo &nsize;

do i=1 to &nsize;

x=go(i);

if kmo(i)=. then delete;

else do;

f km=kmo(i);

end;

if fo(i)=. then delete;

else do;

f km2=fo(i);

end;

jump=kmo(i)-fo(i); ** Jump size of F hat at Xi tilde;

delta=del(i);

output;

end;

keep trial isam f km f km2 x jump delta ;

data work.stuff2;

set step5;

by trial isam f km;

if first.f km;

run;
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proc transpose data=work.stuff2 out=kout prefix=ko;

var f km;

by trial isam;

proc transpose data=work.stuff2 out=zout prefix=zo;

var x;

by trial isam;

data step6;

merge kout zout;

by trial isam;

data quantile;

set step6;

array ko(*) ko1-ko&nsize;

array zo(*) zo1-zo&nsize;

do p=.25 to .75 by .01;

fm=100000;

do l=1 to &nsize;

if (ko(l) ge p) then do;

if (ko(l) le fm) then do;

fm=ko(l);

qt est=zo(l);

f hat=ko(l);

prob=p;

end;

end;
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end;

output;

end;

keep trial isam prob f hat qt est;

proc datasets library=work;

save stuff2 quantile zout;

run;

%mend km quant;

****************************************************************************

The derivative of F tilda, which is computed by the formula in a paper

by Padgett and Thombs (1988)

****************************************************************************;

%macro derivative;

t=x;

derivative=0;

do i=1 to &nsize;

y=abs(t-zo(i));

if y lt &h then do;

ker=(1/&h)*jo(i)*(3/4)*(1-((t-zo(i))/&h)**2);

end;

else do;

ker=0;

end;

if ker=. then do;
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derivative = derivative;

end;

else do;

derivative=derivative+ker;

end;

end;

%mend;

*************************************************************

Smooth K-M estimator

*************************************************************;

%macro f tilde;

t=x;

f tilde=0;

do j=1 to &nsize;

if t le zo(j)-&h then do; sjw=0; end;

if zo(j)-&h lt t lt zo(j)+&h then do;

sjw=jo(j)*((-1/4)*((t-zo(j))/&h)**3+(3/4)*((t-

zo(j))/&h)+.5);

end;

if zo(j)+&h le t then do; sjw=jo(j); end;

if sjw=. then do; f tilde=f tilde; end;

else do; f tilde=f tilde+sjw; end;

end;
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%mend;

%macro f tilde2;

t=x;

f tilde2=0;

do j=1 to &nsize;

if t le zo(j)-&h then do; sjw=0; end;

if zo(j)-&h lt t lt zo(j)+&h then do;

sjw=jo(j)*((-1/4)*((t-zo(j))/&h)**3+(3/4)*((t-

zo(j))/&h)+.5);

end;

if zo(j)+&h le t then do; sjw=jo(j); end;

if sjw=. then do; f tilde2=f tilde2; end;

else do; f tilde2=f tilde2+sjw; end;

end;

%mend;

***********************************************************************

Computing smooth quantle estimates

***********************************************************************;

%macro smoothqtestimate;

proc transpose data=work.stuff2 out=jout prefix=jo;

var jump;

by trial isam;
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proc transpose data=quantile out=prout prefix=pro;

var prob;

by trial isam;

proc transpose data=quantile out=qout prefix=qo;

var qt est;

by trial isam;

data step7;

merge jout zout prout qout;

data smoothqt;

set step7;

array jo(*) jo1-jo & nsize;

array zo(*) zo1-zo & nsize;

array pro(*) pro1-pro & numqt;

array qo(*) qo1-qo & numqt;

do mm=1 to & numqt;

x=qo(mm);

p=pro(mm);

do jjj=1 to 20;

%derivative

%f tilde

d=(f tilde-p)/derivative;

x=x-d;

%f tilde2;

if abs(d) < .000000000000001 then do; jjj=20; end;
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end;

output;

end;

keep trial isam d x jjj p f tilde2;

% mend;

************************************************************************************

This macro computes the suprimum difference between original quantile estimates

and

bootstrap quantile estimates.

************************************************************************************;

%macro qtdifference;

data bestquant;

set smoothqt;

data originalquant;

set bestquant;

if isam = 0;

rename x = quantile;

data bootstrapquant;

set bestquant;

if isam = 0 then delete;

% do iisam=1 % to &nnnsam;

data originalquant &iisam; ** Generating many sets in the do loop;

set originalquant;
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isam=&iisam;

% end;

data duplicatingoriginal;

set

% do iisam=1 % to &nnnsam;

originalquant & iisam /*no semicolon here*/

% end;

; ** this semicolon is for set;

proc sort data=duplicatingoriginal;

by trial;

proc transpose data=duplicatingoriginal out=pout prefix=po;

var quantile;

by trial isam;

proc transpose data=duplicatingoriginal out=ftilout prefix=ftilo;

var f tilde2;

by trial isam;

proc transpose data=bootstrapquant out=ppout prefix=ppo;

var x;

by trial isam;

proc transpose data=bootstrapquant out=fftilout prefix=fftilo;

var f tilde2;

by trial isam;

data supremum;

merge pout ppout ftilout fftilout;

array po(*) po1-po &numqt;

array ftilo(*) ftilo1-ftilo &numqt;
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array ppo(*) ppo1-ppo &numqt;

array fftilo(*) fftilo1-fftilo &numqt;

p=.20;

do i=1 to &numqt by 1;

p=p+.05;

originalqt=po(i);

bootqt=ppo(i);

quantdiff=abs(ppo(i)-po(i));

output;

end;

keep trial i isam p quantdiff originalqt bootqt;

data supremum2;

set supremum;

proc sort data=supremum2;

by trial isam quantdiff; ** by sorting the set, it is easier to spot the largest

quantdiffs;

run;

proc transpose data=supremum2 out=ddout prefix=qdif;

var quantdiff;

by trial isam;

data findingc;

merge ddout;

array qdif(*) qdif1-qdif &numqt;

do i= &numqt;

sup q diff=qdif(i);
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output;

end;

keep trial isam sup q diff;

%mend;

%picksampone

%pickallsamps

%f hat

%km quant

%smoothqtestimate

%qtdifference

** Outputs quantile estimates from the initial samples;

saslib.originalqt;

set originalquant;

** Outputs all the suprimum quantile differences between the initial sample and each

of the bootstrap sample;

data saslib.qtdiff;

set findingc;

run;

% let p cent=.9; * Pth percentile;

% let ntri=1000; ** number of trials;

% let nsam=1000; ** number of bootstrap samples for each trial;
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% let nsize=200; ** size of each sample;

% let numqt=51; ** number of quantiles;

%macro findC;

data one;

set saslib.qtdiff;

proc sort data=one;

by trial sup q diff;

proc transpose data=one out=qout prefix=qo;

var sup q diff;

by trial;

data two;

set one nobs=setsize;

merge qout;

by trial;

data three;

set two;

array qo(*) qo1-qo &nsam;

PxNSAM= & p cent* &nsam;

int=int(PxNSAM);

dec=PxNSAM-int;

do i=1 to &ntri;

if dec = 0 then c = ( &nsize ** .5) * (qo(int)+ qo(int+1))/2;

else do;

c = (& nsize ** .5) * qo(int+1);
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end;

end;

data four;

set three;

keep trial c;

%mend findC;

***************************************************

This macro finds the average of C’s

***************************************************;

%macro findaverageC;

proc transpose data=three out=cout prefix=co;

var c;

data five;

merge cout;

array co(*) co1-co &ntri;

average of C = mean(of co1-co &ntri);

keep average of c;

%mend findaverageC;

%findC

%findaverageC;
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** Outputs all C’s from 1000 trials;

data saslib.cvalue;

set four;

** Outputs the average value of the 1000 C’s;

data saslib.aveCn;

set five;

run;

%macro constructingsets;

data one;

set saslib.originalqt;

keep trial c f tilda;

proc sort data=one;

by trial f tilda;

run;

data truequant;

do p=.25 to .75 by .05;

true quant=quantile(’EXPO’,p);

trial=1;

output;

end;

% do itri=1 % to &ntri;

data truequant &itri;

set truequant;
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trial= & itri;

% end;

data keepall;

set

% do itri=1 % to &ntri;

truequant &itri

% end;

;

proc sort data=keepall;

by trial true quant;

%mend constructingsets;

**********************************************************

Finding the supremum difference between the estimated

quantiles and true quantiles.

***********************************************************;

%macro supdiff ;

proc transpose data=one out=xout prefix=xo;

var c;

by trial;

proc transpose data=keepall out=dout prefix=do;

var true quant;

by trial;
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data supdiff;

merge xout dout;

by trial;

array xo(*) xo1-xo &numqt;

array do(*) do1-do &numqt;

do i=1 to &numqt;

diff=( &nsize ** .5) * abs(xo(i)-do(i));

output;

end;

keep diff trial;

proc sort data=supdiff;

by trial diff;

proc transpose data=supdiff out=supout prefix=sup;

var diff;

by trial;

data choosesup;

merge supout;

by trial;

array sup(*) sup1-sup &numqt;

keep trial sup &numqt;

%mend supdiff ;

**********************************************************************

Computing the coverage probability of P % simultaneous confidence

bands for Q(p), .25 <= p <= .75
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**********************************************************************;

%macro coverageprob;

data two;

set saslib.cvalue;

proc transpose data=choosesup out=tout prefix=to;

var sup & numqt;

by trial;

proc transpose data=two out=ccout prefix=cco;

var c;

by trial;

data three;

merge tout ccout;

by trial;

array to(*) to1;

array cco(*) cco1;

do i=1;

if to(i) le cco(i) then cover=1;

else cover=0;

end;

keep trial cover;

proc transpose data=three out=cpout prefix=cp;

var cover;

data four;

merge cpout;

coverprob= sum(of cp1-cp &ntri)/ &ntri;

keep coverprob;
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%mendcoverageprob;

%constructingsets;

%supdiff ;

%coverageprob;

** Outputs the coverage probability;

data saslib.covprob;

set four;

run;
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Optimum bandwidth

For the computations of optimal bandwidth, we use the same macros picksampone,

pickallsamps, f hat, km quant and smoothqtestimate as defined in section ?? along

with the new macros shown below.

%macro variance n bias;

data group by p;

set smoothqt;

if isam ne 0;

proc sort data=group by p;

by bw p;

proc transpose data=group by p out=k1uout prefix=k1u;

var x;

by bw p;

data btstrap qt mean;

merge k1uout;

array k1u(*) k1u1-k1u&numbt;

qt mean=sum(of k1u1-k1u&numbt)/ &numbt;

output;

keep bw p qt mean;

data duplicate qt mean;

set btstrap qt mean;

do e1u=1 to &numbt;

output;
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end;

proc transpose data=duplicate qt mean out=k2uout prefix=k2u;

var qt mean;

by bw p;

data squarediff;

merge k1uout k2uout;

array k1u(*) k1u1-k1u&numbt;

array k2u(*) k2u1-k2u&numbt;

do e2u=1 to &numbt;

bt qt=k1u(e2u);

qt mean=k2u(e2u);

sq diff=(k1u(e2u)-k2u(e2u))**2;

output;

end;

keep bw p bt qt qt mean sq diff;

proc transpose data=squarediff out=k3uout prefix=k3u;

var sq diff;

by bw p;

data variance;

merge k3uout;

array k3u(*) k3u1-k3u&numbt;
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bt var=sum(of k3u1-k3u&numbt)/ (&numbt-1);

output;

keep bw p bt var;

data original km qt;

set quantile;

if isam=0;

rename prob=p;

data duplicate KM qt;

set original km qt;

do h=.7 to .9 by .01; ******************************;

bw=h;

output;

end;

keep bw p qt est;

proc sort data=duplicate KM qt;

by bw p;

proc transpose data=duplicate KM qt out=k4uout prefix=k4u;

var qt est;

by bw p;

proc transpose data=btstrap qt mean out=k5uout prefix=k5u;

var qt mean;
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by bw p;

data bias;

merge k4uout k5uout;

array k4u(*) k4u1;

array k5u(*) k5u1;

bt bias=k5u1-k4u1;

bias sq=(k5u1-k4u1)**2;

output;

keep bw p bt bias bias sq;

%mend;

%macro mise;

proc transpose data=variance out=k6uout prefix=k6u;

var bt var;

by bw p;

proc transpose data=bias out=k7uout prefix=k7u;

var bias sq;

by bw p;

data mse;

merge k6uout k7uout;

array k6u(*) k6u1;

array k7u(*) k7u1;
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bt var=k6u1;

bias sq=k7u1;

bt mse=k6u1+k7u1;

output;

keep bw p bt var bias sq bt mse;

proc transpose data=mse out=k8uout prefix=k8u;

var bt mse;

by bw;

data mise;

merge k8uout;

array k8u(*) k8u1-k8u&numqt;

bt mise=(.01)* sum(of k8u1-k8u&numqt);

output;

keep bw bt mise;

proc sort data=mise;

by bt mise;

%mend;

%variance n bias

%mise
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data saslib.mise;

set mise;

run;
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Confidence band for the difference between two quantile functions

The code for constructing the simultaneous confidence band for the difference

between two quantile functions shown in figure 4.1 in section 4.3 is given here. The

data are given in Tables 19.16 - 19.21 in ([]). Once the data are put into a data set

one, we use the the macros samps, picksampone, pickallsamps, f hat, km quant

and smoothqtestimate as defined in section ?? to compute the quantile estimates for

the samples, placebo and polymer though there were a few changes in codes. Those

estimates are in the sets called smoothqt and smoothqt cat, which are then used in

the macros shown below to construct the confidence band.

libname saslib ’C:sasresult’ ;

% let nsam=1; ** this must be equal to 1;

% let nnsam=1001; ** number of samples to generate - must be at least 2;

% let nnnsam=%eval(&nnsam− 1); ** number of bootstrap samples;

% let size1=110; ** sample size of polymer tx=1;

% let size2=112; ** sample size of placebo tx=0;

% let numqt=51; ** number of quantiles;

% let h=.65; ** bandwidth;

% let p cent=.9;

%let seed1=1852163;

%let seed2=3612581;

data one;

input tx weeks event;

datalines;
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[the data themselves are given in Tables 19.16 - 19.21 in ([])]

%samps

%picksampone

%pickallsamps

%f hat

%km quant

%smoothqtestimate

%macro choosesupdiff ;

proc transpose data=smoothqt out=x1out prefix=x1o;

var x;

by isam;

proc transpose data=smoothqt cap out=x2out prefix=x2o;

var x;

by isam;

data part1;

merge x1out x2out;

data part2;

set part1;
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array x1o(*) x1o1-x1o&numqt;

array x2o(*) x2o1-x2o&numqt;

p=.24;

do ss=1 to &numqt;

p=p+.01;

x rad=x1o(ss);

x cap=x2o(ss);

qtdiff=x1o(ss)-x2o(ss);

output;

end;

keep isam qtdiff x rad x cap p;

data originalqtdiff;

set part2;

if isam = 0;

data bootstrapqtdiff;

set part2;

if isam = 0 then delete;

%do iisam=1 %to &nnnsam;

data originalqtdiff&iisam; * Generating many sets in the do loop;

set originalqtdiff;

isam=&iisam;

%end;
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data duplicatingoriginal;

set

%do iisam=1 %to &nnnsam;

originalqtdiff&iisam /*no semicolon here*/

%end;

; * this semicolon is for set;

proc transpose data=duplicatingoriginal out=pout prefix=po;

var qtdiff;

by isam;

proc transpose data=bootstrapqtdiff out=ppout prefix=ppo;

var qtdiff;

by isam;

data supremum;

merge pout ppout;

array po(*) po1-po&numqt;

array ppo(*) ppo1-ppo&numqt;

p=.24;

do i=1 to &numqt by 1;

p=p+.01;

og qtdiff=po(i);

bt qtdiff=ppo(i);

diffofqtdiff=abs(ppo(i)-po(i));

output;
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end;

keep isam p og qtdiff bt qtdiff diffofqtdiff;

data supremum2;

set supremum;

proc sort data=supremum2;

by isam diffofqtdiff;

run;

proc transpose data=supremum2 out=ddout prefix=qdi var diffofqtdiff;

by isam;

data findingd;

merge ddout;

array qdif(*) qdif1-qdif&numqt;

do i=&numqt;

sup d diff=qdif(i);

output;

end;

keep isam sup d diff;

proc sort data=findingd;

by sup d diff;

%mend;
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%macro findD;

proc transpose data=findingd out=qout prefix=qo;

var sup d diff;

data two;

merge qout;

data findd;

set two;

array qo(*) qo1-qo&nnnsam;

PxNSAM=&p cent*&nnnsam;

int=int(PxNSAM);

dec=PxNSAM-int;

if dec = 0 then do;

d = (&size1 ** .5)*(qo(int)+ qo(int+1))/2;

end;

else do;

d = (&size1 ** .5) * qo(int+1);

end;

output;

keep d;

%mend findD;

%macro existenceofaconstant;
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proc transpose data=originalqtdiff out=eout prefix=eo;

var qtdiff;

data confband;

set findd;

merge eout;

array eo(*) eo1-eo&numqt;

p=.24;

do z=1 to &numqt;

p=p+.01;

uplim=eo(z)+(d /&size1 **.5);

lowlim=eo(z)-(d /&size1 **.5);

output;

end;

keep p uplim lowlim;

proc transpose data=confband out=upout prefix=upo;

var uplim;

proc transpose data=confband out=lowout prefix=lowo;

var lowlim;

data yesorno;

merge upout lowout;

array upo(*) upo1-upo&numqt;

array lowo(*) lowo1-lowo&numqt;
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if min(of upo1-upo&numqt) ¡ max(of lowo1-lowo&numqt) then yes=0;

else do;

yes=1;

end;

keep yes;

%mend existenceofaconstant;

%choosesupdiff

%findD

%existenceofaconstant

data saslib.braintumor1B;

set supremum2;

data saslib.braintumor2B;

set findingd;

data saslib.braintumor3B;

set findd;

data saslib.braintumor4B;

set confband;

data saslib.braintumor5B;

set originalqtdiff;

run;

*****************************************************************************

Graph the difference between the two quantile functions over [.25, .75]

Test the nullhypothesis H0 : b=0

******************************************************************************;

data plot1;

set tmp1.braintumor4B;
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rename p=x;

rename uplim=up;

data plot2;

set tmp1.braintumor4B;

rename p=x;

rename lowlim=low;

data plot;

set plot1 plot2;

keep x up low;

symbol1 i=join color=black;

symbol2 i=join color=black;

proc print data=plot;

proc gplot data=plot;

plot up*x low*x/overlay;

run;

quit;

data originalqtdiff;

set tmp1.braintumor5B;
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proc gplot data=originalqtdiff;

plot qtdiff*p;

run;

quit;
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