
IMPROVING GESTURE RECOGNITION PERFORMANCE

USING THE DYNAMIC SPACE-TIME WARP ALGORITHM

by

DANNY ALLEN HANSON

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

THE UNIVERSITY OF TEXAS AT ARLINGTON

May 2013

Copyright c© by Danny Allen Hanson 2013

All Rights Reserved

To my wife and son who are the constant guiding light in my life.

ACKNOWLEDGEMENTS

As a working adult, the work presented within represents several years worth of

effort to complete. During this time, many people supported and inspired me. I wish

to thank Dr. Vassilis Athitsos for his continued support though the years. Without

the support of my family, Shelley and Patrick, this work would have never been

completed. Additionally, many of my co-workers supported my efforts including:

Brendan Drew, Dr. Jason Luck, Charles Carpenter, Chris Baker, and Ed Moon.

These individuals listened to my ideas and allowed me to find my own path. Finally,

I would like to thank my employer for covering the costs and allowing me the time

and resources to finish this work.

April 12, 2013

iv

ABSTRACT

IMPROVING GESTURE RECOGNITION PERFORMANCE

USING THE DYNAMIC SPACE-TIME WARP ALGORITHM

Danny Allen Hanson, M.S.

The University of Texas at Arlington, 2013

Supervising Professor: Vassilis Athitsos

The DSTW algorithm was originally used as the fundamental algorithm for a

gesture recognition software. When the need arose for implementing gesture recogni-

tion on-board a robotic vehicle, the original recognition software needed to undergo

several changes in order to meet the requirements of the target platform. The original

software was written in Matlab and had to be ported into a native language in order

to operate on the new platform. To support experiments needed to select a distance

and τ function, the new code needed to be designed to support dynamic binding of

distance and transition (τ) functions. The software needed to handle over 140 ex-

periments to determine the appropriate distance and τ functions. A new classifier

based on the A∗ algorithm was proposed and implemented to further reduce runtime

performance, and a new τ function based on template matching between the various

candidates provided by the detector was proposed and implemented. This work cov-

ers the results of theses efforts in Improving Gesture Recognition Performance using

the Dynamic Space-Time Warp Algorithm.

v

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iv

ABSTRACT . v

LIST OF ILLUSTRATIONS . ix

LIST OF TABLES . xi

Chapter Page

1. Introduction . 1

1.1 Motivation . 2

1.2 Contribution and Scope . 3

1.3 Organization . 4

2. Background Review and Related Work . 5

2.1 Related Work . 5

2.2 Dynamic Space-Time Warp Algorithm 5

2.2.1 Features for Gesture Recognition 6

2.2.2 Manhattan Distance Function 7

2.2.3 Manhattan τ Function . 8

2.3 Search Algorithms . 9

2.3.1 Nearest Neighbor Classifier . 9

2.3.2 A∗ Algorithm . 10

3. Proposed Optimizations . 12

3.1 Runtime Performance . 12

3.2 Improved Features for Gesture Recognition 13

3.3 Relative Distance Function . 13

vi

3.4 Template Matching τ Function . 14

3.5 A∗ Nearest Neighborhood Classifier 15

4. Implementation . 18

4.1 Runtime Performance . 19

4.2 Improved Features for Gesture Recognition 19

4.3 Relative Distance Function . 20

4.4 Distance and τ Normalization . 20

4.5 Zero τ Function . 21

4.6 Template Matching τ Function . 21

4.7 Nearest Neighborhood Classifier . 22

4.8 A∗ Nearest Neighborhood Classifier 23

5. Summary Results and Analysis . 26

5.1 Runtime Performance . 26

5.2 Datasets Used in Experiments . 28

5.2.1 Training . 28

5.2.2 Easy Query . 29

5.2.3 Hard Query . 29

5.3 Relative Distance Function . 30

5.4 Template Match τ Function . 32

5.4.1 Results from the Easy Dataset 33

5.4.2 Results from the Hard Dataset 34

5.4.3 Impact on Runtime Performance 35

5.4.4 Conclusion . 36

5.5 A∗ Nearest Neighborhood Classifier 37

5.5.1 Performance on the Easy Dataset 38

5.5.2 Performance on the Hard Dataset 40

vii

5.5.3 Effect on Runtime Performance 41

5.5.4 Conclusion . 43

5.6 Effect of Multiple Candidates . 45

6. Future Work . 47

6.1 GPU Processing of the Template Matching Classifier 47

6.2 Testing Relative Manhattan Distance Function with Motion 48

6.3 Inadmissible Heuristics for A∗ Nearest Neighborhood Classifier 48

6.4 A τ Function for a Stable Detector 48

Appendix

A. Summary of Experimental Results . 50

REFERENCES . 58

BIOGRAPHICAL STATEMENT . 61

viii

LIST OF ILLUSTRATIONS

Figure Page

5.1 Palm Graffiti Alphabet [1] . 29

5.2 An example image taken from the Training dataset 30

5.3 An example image taken from the Easy dataset 32

5.4 An example image taken from the Hard dataset 34

5.5 Comparison between Relative and Absolute Manhattan Distance func-

tions. (τ : Manhattan, Search: Nearest Neighbor, Dataset: Easy) 35

5.6 Comparison between Relative and Absolute Manhattan Distance func-

tions. (τ : Manhattan, Search: Nearest Neighborhood, Dataset: Hard) . 36

5.7 Comparison of the Manhattan Normalized vs. Zero vs. Template

Matching τ functions effective positive recognition. (Distance: Relative

Manhattan Normalized, Search: Nearest Neighbor, Dataset: Easy) . . . 37

5.8 Comparison of the Manhattan Normalized vs. Zero vs. Template

Matching τ functions effective positive recognition. (Distance: Relative

Manhattan Normalized, Search: Nearest Neighbor, Dataset: Hard) . . 38

5.9 Comparison of the Manhattan Normalized vs. Zero vs. Template

Matching τ functions effective runtime. (Distance: Relative Manhattan

Normalized, Search: Nearest Neighbor, Dataset: Easy) 39

5.10 Comparison of the A∗ Nearest Neighborhood vs. Nearest Neighbor-

hood vs. Nearest Neighbor classifiers. (Distance: Relative Manhattan

Normalized, τ : Manhattan Normalized, Dataset: Easy) 40

ix

5.11 Comparison of the A∗ Nearest Neighborhood vs. Nearest Neighbor-

hood vs. Nearest Neighbor classifiers. (Distance: Relative Manhattan

Normalized, τ : Manhattan Normalized, Dataset: Hard) 41

5.12 Comparison of the A∗ Nearest Neighborhood vs. Nearest Neighbor-

hood vs. Nearest Neighbor classifiers. (Distance: Relative Manhattan

Normalized, τ : Manhattan Normalized, Dataset: Easy) 42

5.13 Comparison of the A∗ Nearest Neighborhood vs. Nearest Neighbor-

hood vs. Nearest Neighbor classifiers. (Distance: Relative Manhattan,

τ : Manhattan Normalized, Dataset: Hard) 43

5.14 Summary of A∗ minimum, average, and maximum search depths for all

experiments using a conservative heuristic. (Distance: Relative Man-

hattan Normalized, τ : Manhattan Normalized, Dataset: Easy) 44

5.15 Summary of A∗ minimum, average, and maximum search depths for all

experiments using an aggressive heuristic. (Distance: Relative Manhat-

tan Normalized, τ : Manhattan Normalized, Dataset: Easy) 45

x

LIST OF TABLES

Table Page

5.1 Hardware Platforms Utilized for Development and Experiments 27

5.2 Runtime Performance for DSTW Gesture Recognition on Reference

Hardware . 27

5.3 Easy dataset best result (Test 59, 100.0%) 31

5.4 Hard dataset best result (Test 154, 76.4%) 33

xi

CHAPTER 1

Introduction

In the domain of gesture recognition, there are several methods commonly used

to recognize and classify gestures [2]. In some methods, the position of the hard must

be tracked between frames in order to correctly classify the gesture. This approach

requires a strong tracker in order to obtain acceptable recognition performance. An

alternative approach which attempts to remove the requirement of a strong tracker

was presented in Alon et. el. [3]. The approach specifies a way of utilizing a weak

detector to feed a dynamic programing table which would compute the lowest cost

alignment between a known exemplar and a sample query. The core idea being that

a weak detector may not label the gesturing hand as the highest scored detection,

but the hand would usually be detected within the first k candidates. If an algorithm

could accept all of the presented candidates and determine the lowest cost warping

path between and exemplar and a sample signal, then the weak detector would provide

useful results. The Dynamic Space-Time Warping algorithm was designed to allow

multiple candidate detection for each frame within a video sequence. The Dynamic

Space-Time Warping algorithm was later improved by Alon et al. [4].

The algorithm provides a method of computing the warping path which pro-

vided the lowest cost alignment between an exemplar signal and a sample signal

which is composed of various candidates at each time within a sequence. By design,

the algorithm returns a mapping which provides the best possible alignment of the

specific candidate at each point in time to the exemplar signal. The method was

1

shown to produce good results in the domain of gesture recognition when using a

small alphabet composed of the Palm Graffiti 0-9 digit set, shown in Figure 5.1 [3].

The DSTW algorithm utilizes two important functions to produce the best

warping path: a distance function and a transition (τ) function. The distance func-

tion computes the distance between an exemplar feature and a sample feature. The

transition function (τ) is used to compute the cost of transitioning between the states

within a dynamic programing matrix. The result of the distance function is combined

with the result of the τ function to determine the lowest cost warping path between

the exemplar and the sample.

1.1 Motivation

The following work was inspired by searching for improvements to the results

provided by the original DSTW algorithm. Specifically in the areas of improved

gesture recognition and reduced computation performance. A reduction in runtime

was required to support the use of the DSTW gesture recognition system on-board a

robotic vehicle. The original DSTW results were obtained using software written in

Matlab and did not provide sufficiently fast runtime performance to be used on-board

an active robot.

After a significant reduction in runtime was achieved, attention was re-focused

on improving the recognition of the system. For the intended application, the recog-

nition system would now have to handle issues stemming from having the camera

mounted on a non-fixed platform. Some of these issues include scale and transla-

tion variance of the gesturing subject and recognition within a cluttered scene. With

the gains in runtime, it was now possible to use additional computation to improve

positive classification of gestures and still maintain runtime requirements.

2

1.2 Contribution and Scope

Within this work, the main focuses are divided between increasing runtime

performance (in terms of reduced wall time measurements) and increasing correct

recognition rates for the gesture recognition components. Runtime performance was

addressed by redesigning the core software. In addition to the redesign, a new classifier

based on the A∗ algorithm was developed to further reduce system runtime. In order

to improve recognition rates, a new τ function was designed and tested.

In order to reduce the runtime and conduct the necessary experiments within

the time constants, the original gesture recognition system had to be completely

redesigned and reimplemented using a native language that utilized computationally

efficient data structures and programming techniques which included multi-threading

and smart memory management. The resulting design allowed the required flexibility

to perform the needed experiments and the reduced runtime to complete all of the

148 experiments in a timely manner.

This work also introduces a new classifier which was based on the A∗ algorithm.

The classifier was able to reduce the search time needed to classify incoming gestures.

The proposed classifier works with each class traversing the exemplars until the algo-

rithm reaches the end node of the sample’s class. The class for which the algorithm

reaches the end node first is reported to be the class of the presented sample.

Based on the analysis of the native softwares’ reduced runtime performance, this

work presents a method of utilizing the multiple candidates presented by the weak

detector to the DSTW algorithm. The method utilizes template matching in an at-

tempt to influence the dynamic programing matrix used by the DSTW algorithm. By

matching a template image chip within the τ function, the DSTW algorithm should

naturally find more consistent warping paths and thereby lead to an improvement in

recognition performance.

3

1.3 Organization

This work is organized into distinct sections covering the phases of develop-

ment. In Section 2, background information is presented to introduce the reader to

the fundamentals upon which this work builds. In Section 3 titled ”Proposed Opti-

mizations,” several methods of enhancing the recognition performance and reducing

the runtime performance of the original DSTW based gesture recognition software

are presented. Section 4, ”Implementation”, details the software development of the

replacement gesture recognition system. The results of the experiments performed

are discussed and analyzed in Section 5. Proposals for future work can be found in

Section 6.

4

CHAPTER 2

Background Review and Related Work

This work attempts to increase the performance of a gesture recognition system

to the point were the software can be used on an active robotic platform for the

recognition of control gestures. Primarily, this work is an implementation driven

continuation of the work done by Alon et al. [3]. To that extent, the same datasets

were used and the recognition alphabet of the Palm Graffiti digits from 0-9 was

utilized. All experiments designed for use within the context are similarly in nature

to those developed by Alon et al. [3]. In this section, the reader is presented with

some background regarding the fundamental techniques and background.

2.1 Related Work

A significant body of work has already been done within the domain of gesture

recognition. This work largely followed the related work of Alon et al. in ”Simul-

taneous Localization and Recognition of Dynamic Hand Gestures” [3]. Of direct

importance is Chen et al. [5] work in real-time gesture tracking and hidden Markon

models. Black and Jepson’s work provides a foundation for gesture recognition [6].

Yuan et al. provides an outline of features used to detect hand positions within a

single image frame[7].

2.2 Dynamic Space-Time Warp Algorithm

The Dynamic Time Warp (DTW) algorithm uses a dynamic programing tech-

nique to compute the similarity between two sequences of features which are repre-

5

sented as vectors such that each index is a specific point in time [8]. The algorithm

was originally applied in the domain of speech recognition [9, 10] and is now commonly

used in the context of gesture recognition [11, 12]. The algorithm compensates for

variability of the sample rate of the signals under comparison and aligns the various

points in such a manner to reduce the distance cost of the alignment. The return value

of the algorithm is the best possible similarity between the given signals. A trivial

extension to the core algorithm also returns the warping path of the alignment.

The Dynamic Space-Time Warping (DSTW) algorithm is based on the DST

algorithm with the extension that one of the signals, known as the query, may have

multiple candidates at each index within the sequence. The DSTW algorithm lever-

ages the multiple candidates to determine the best possible alignment to the reference

signal by choosing the closest candidate for each point in time. The DSTW algorithm

removes the requirement of perfect detection as needed by the DTW algorithm. In

removing this requirement, the DSTW algorithm is able to determine the most likely

candidates which compose the signal, thus allowing the detector to present a list of

possible detections which reduces the detector’s accuracy requirements.

The DSTW algorithm is influenced by two important functions: Distance (d)

and Transition (τ). The distance function determines the similarity between a feature

from the sample signal and a feature from the exemplar signal. The τ function is used

to determine the cost of transition between two states within the dynamic programing

matrix. The definition of these functions defines the performance characteristics of

the DSTW algorithm.

2.2.1 Features for Gesture Recognition

In the domain of gesture recognition, the feature vector presented in Alon et

al. [3] was defined as follows:

6

For every frame j of the query sequence, K candidate hand regions are

found as described in the previous section. For every candidate k in

frame j a 4D feature vector Qjk = (xjk, yjk, ujk, vjk) is extracted. The

2D position (x, y) is the region centroid, and the 2D velocity (u, v) is the

optical flow averaged over that region.

The challenge in using the original features are introduced in the two-dimensional

component, (x, y). When calculating the centroid of the moving object, erroneous

noise surrounding the detection must be handled appropriately. If noise is grouped

together with the detection, then the centroid is artificially increased. If extended to

the logical extreme of equally distributed noise over the entire image area, the cen-

troid reduces to the center of the image which will not provide an adequate feature

for correctly matching the sample signal to an exemplar.

2.2.2 Manhattan Distance Function

A common distance function which may be used when measuring the distance

(or similarity) between two vectors is the Manhattan distance function. In the original

paper, the authors chose the Manhattan distance function for use with the DSTW

algorithm. The function computes the distance between two n-dimensional vectors

as shown in Equation 2.1.

d(x̄, ȳ) =
n∑

k=1

|xk − yk| (2.1)

Use of the Manhattan Distance function presented a few issues when used with

the DSTW algorithm in the domain of gesture recognition. One of the issues that was

discovered during initial testing was false measurements when the capture resolution

of the exemplars and samples differed greatly. Given that the vectors’ units are image

7

pixels, then if the sample image and exemplar image are captured using different

resolutions, the Manhattan Distance function will falsely penalize a matching signal.

Another problem discovered during test was related to the whole units that measured

the distance. The Manhattan distance function would measure a two-pixel diagonal

offset with a value of 4, when Euclidean geometry tells that the value should be 2.83.

Occasionally, in testing the error would build up to the point where it was significant

enough to result in a mis-classification.

2.2.3 Manhattan τ Function

In Alon et al., the originally presented τ function is shown in Equation 2.2

[3]. The τ , or transition function, is used to determine the cost of transitioning

between two states within the dynamic programing matrix. In the DSTW algorithm,

the function determines which candidates should correspond to which features of the

exemplar in order to produce the lowest cost alignment between the sample and the

exemplar. The presented τ function did not to utilize any information with regard to

the candidate when considering the cost of transitioning.

τ(ω, ω′) =

 0 if i or j = 0

|ωi − ω′i|+ |ωj − ω′j| otherwise
(2.2)

During testing of the original gesture recognition software, this limitation of the

τ function would allow a candidate consisting of noise to align more closely spatially

than an adjacent candidate containing a hand that was slightly further away. En-

abling a lower cost alignment using spatially closer noisy candidates leads the DSTW

algorithm to produce an artificially lower distance cost between an exemplar and

the query. The lower distance cost was determined to be a contributing factor to

mis-classification leading to a lower effective recognition rate.

8

The DSTW τ function accepts a pair of mapping vectors, ω which defines

the current state within the dynamic programing matrix, and ω‘ which is the next

candidate state under consideration for transition. Using the mapping vectors, the

τ function effectively knows which features within the exemplar and the sample are

involved in the transition.

2.3 Search Algorithms

A fundamental goal in the domain of gesture recognition is to determine the

classification of the sample signal. One method of utilizing the DSTW algorithm for

use within a classifier is to construct a database of known exemplars which can be

searched for a matching exemplar. The classification of each exemplar stored within

the database is known a priori. The process of determining the classification of the

sample signal begins with computing the DSTW similarity between each sample and

suspected exemplar stored within the database. The pairing of a similarity operator

with a search method builds a functional classifier. In the original paper, Nearest

Neighbors was chosen as the search algorithm. A another search algorithm that is

popular in the path planning domain is A∗ [13].

2.3.1 Nearest Neighbor Classifier

A nearest neighbor classifier is an example of one such search method. The

algorithm is a simplification of the (k, l) Nearest Neighbor Classifier [14, p. 500-

501] where (k, l) is defined as(1, 0). In conjunction with the DSTW algorithm, the

similarity score for each exemplar is determined. The sample is reported to have the

same classification as the exemplar with the lowest score. In this case, DSTW is

executed between the sample and every exemplar member of the database. However,

only the exemplar with the lowest score must be retained during the execution.

9

A nearest neighbor classifier provides a good degree of accuracy at the expense

of additional computational requirements. The classifier can produce poor results in

the event that a poor exemplar or a mis-classified exemplar is added to the database.

This introduces a requirement to ensure that only the best exemplars are added to

the database. In many applications, the quality requirement is a significant barrier

to entry.

2.3.2 A∗ Algorithm

A∗ is a common minimizing search algorithm often used to reduce search time

for large datasets [15, p. 97-101]. A∗ is implemented as a directed search using the cost

equation shown in Equation 2.3 where f(n) represents the estimated cost between

the node n to the goal node, g(n) represents the cost between the n node and the

start node, and h(n) is a heuristic function which represents an estimated lowest cost

path between the n node and the goal node.

f(n) = g(n) + h(n) (2.3)

A∗ has been used with a great degree of success in the domain of path planning.

The performance of the A∗ algorithm is determined by the heuristic function. The

heuristic functions guides the search and allows the algorithm to focus on the most

likely lowest cost path to the goal. An admissible heuristic is a function which never

over estimates the costs of the path between the n node and the goal node. Given

that the function h(n) is admissible, the A∗ algorithm is complete and optimal [15,

p. 97]. The challenge when using an A∗ algorithm results from having to define the

heuristic h(n) function in an admissible way.

10

The opposite to an admissible heuristic is an inadmissible heuristic. When an

inadmissible function is used as a heuristic with the A∗ algorithm, an optimal solution

is no longer guaranteed by the algorithm. When using an inadmissible heuristic

function, the final results may be a local minimum within the search space. However,

an inadmissible function will usually execute with a reduced runtime and may provide

results that are good enough for the problem domain.

11

CHAPTER 3

Proposed Optimizations

Within the following sections, proposed optimizations for to the DSTW gesture

recognition software are presented. The section on Runtime Performance (3.1) at-

tempts to address the limitations related to the original implementation of the DSTW

gesture recognition software. Additionally, Improved Features for Gesture Recogni-

tion Section 3.2, proposes an enhanced set of features to be used with the DSTW

algorithm’s distance and τ functions.

Section 3.3 entitled Relative Distance Function explores a new coordinate sys-

tem to address issues stemming from the use of image pixel coordinates in gesture

recognition. Template Matching τ Function introduces a new method of utilizing

information regarding each candidate in the query for the purpose of effecting the

transition function. A new classifier is introduced the Section 3.5 entitled A∗ Nearest

Neighborhood Classifier which utilized the power of an A∗ search algorithm to classify

sample signals.

3.1 Runtime Performance

The original implementation of the DSTW gesture recognition software was

written in Matlab. Matlab provides an easy to use, rapid development platform for the

construction of computer vision algorithms. However, Matlab lacks the performance

of a native programming language. In order to build a software system capable

of performing numerous experiments within a limited about of time and to have a

working software solution for use on a robotic platform, the original software needed

12

to be rewritten using a native language. The language of choice for this work was

C++, utilizing reusable components from Boost and OpenCV open-source libraries.

3.2 Improved Features for Gesture Recognition

Starting with the original feature vectors given in Alon et al. [3], a few enhance-

ments were proposed. The first is the inclusion of a bounding box containing the face

of the subject who is performing the gestures. The bounding box of the face allows

the location of the hand position to now be referenced in a coordinate system with

the origin located at the center of the face. The bounding box of the face provides

information that can be used to introduce a degree of scale invariance with regard to

computing the hand size of the subject performing the gesture.

In the original DSTW gesture recognition software, an assumed value for the

size of the hand within the image was encoded into the detector algorithm. Using

the face bounding box, the software may estimate the size of the hand as one-half the

size of the face. As the subject’s distance to the camera increases, the size of the face,

and proportionally the size of the hand decreases. By addressing the scale invariance

issue, the centroid defining the hand blob can be successfully reduced. The reduction

of the area also reduces the amount of noise surrounding the hand that may influence

the computation of the centroid location.

3.3 Relative Distance Function

With the feature set extended to include the face bounding box, the (x, y)

position can now be defined as (x′, y′) whose values are defined by Equation 3.1.

Improvements in translational invariance are made when (x′, y′) are stored as relative

values to the center of the face. The improvements are a result of reducing the effect

13

of an offset subject performing the gesture. The proposed change does not account

for the individual subjects’ arm length, and as such does not address all transitional

invariance issues.

Let b be a bounding box, then:

(x′, y′) = (x, y)− (bx + 1
2
bwidth, by + 1

2
bheight)

(3.1)

3.4 Template Matching τ Function

Given the multiple candidate nature of the DSTW algorithm, there must ex-

ist a method of utilizing the additional information from each of the candidates to

select the most consistent warp path. The detector used for the original DSTW ges-

ture recognition produces candidates by selecting the top k scores from the result of

Equation 3.2 [3]. In the presented equation, the P (motion) component was calculated

using image subtraction [16, p. 253-4]. P (skin) was calculated using a 3D histogram

trained for skin detection. The histogram used red, green, and blue pixel components

for each dimension, containing 32 bins. Each bin contained the probability of skin

for the given R, G, B combination. The histogram was trained manually as part of

another effort.

P (hand) = P (skin)× P (motion) (3.2)

Since the top scores from Equation 3.2 may vary between frames, selecting the

top k candidates many not yield a consistent result vector between frames. Therefore,

it is not possible to assume that candidate k1 in frame n is the same object as

candidate k1 in frame n + 1. The limitation of the original detector may have been

the reason that the candidate information was not previously included as part of the

τ function.

14

A proposed solution to allow the candidate information to be considered in the

τ function is to use the stored template image of the hand region to match between

various candidates. Transitions between candidates with a strong template matching

score between their perspective hand regions at each time interval are more likely

to represent the path through space which the hand traveled. Given a sufficient

frame rate for the sampled video, when two candidates from adjacent time intervals

present a strong match, the probability of the two objects representing the same

image region within the video is very high. Whereas, when the template match is

weak, the probability is significantly lower.

3.5 A∗ Nearest Neighborhood Classifier

Based on the A∗ path planning algorithm, the A∗ Nearest Neighborhood Clas-

sifier uses a heuristic function to traverse a priority queue of defined nodes. The node

is a data structure which contains a score value used for sorting and selection, the

name of the class for which the node represents, and an iterator to the next exemplar

in the representative class. At any given time, the minimum priority queue may only

contain one node representing a given class [17, p. 420-421].

The priority queue is seeded with a representative example of each class. If there

exists 10 classes, each containing 30 exemplars the priority queue will only contain a

maximum of 10 nodes. The A∗ algorithm is used to select and remove the minimum

node from the priority queue. The minimum node will be expanded by computing

the score of the exemplar which is pointed to by the iterator, n+1. The iterator value

is then incremented to point to the next exemplar and the node’s score is updated

according to Equation 3.3, where:

15

g(n) = nscore + c(n+ 1)

h(n) = e ∗ c(n+ 1) ∗ d(n,Nend)

f(n) = g(n) + h(n)

(3.3)

• e is a heuristic estimate value between (0 < e < 1.0)

• c is a function which computes the score between the current sample and ex-

emplar

• d is a function which computes the distance between n and the last node in the

class Nend

The expanded node is then enqueued in the priority queue and the expansion

process repeats. The expansion process is terminated when n = Nend. The node which

reaches the termination condition is determined to represent the best neighborhood

for the samples’ membership. Therefore, the sample is classified as being a member of

the class represented by the terminating node. From this conclusion, it is important

to note that each of the classes are assumed to contain exactly equal numbers of

exemplars.

Given that a value for e is selected to ensure that h(n) is admissible, then the A∗

Nearest Neighborhood Classifier will determine the best possible class membership

for the given sample [15, p. 95]. In the worst case, the algorithm will expand all

possible nodes as defined by Equation 3.4, where C is the number of classes, and n is

the number of exemplars in each class (note: all classes must contain an equal number

of exemplars). In the best case, the algorithm will expand one exemplar from each

class and immediately determine the best class leading to only n−1 more expansions

(as shown in Equation 3.5).

O(n) = n(C − 1) + 1→ n (3.4)

16

Ω(n) = C + n− 1→ n (3.5)

As shown in Equation 3.4 and Equation 3.5, the growth of the algorithm is linear

and bound by n. Given that the best and worst case for the proposed algorithm is

bounded by n, Theta can be determined are shown in Equation 3.6.

Θ(n) = n (3.6)

The proposed algorithm requires that each representative class contain exactly

the same number of exemplars. Care must be taken to ensure that the exemplars

provide for the class are good representation of the gesture. All gestures to be recog-

nised must also be distinctly separable into specific classes. The gesture recognition

problem defined within this work meets all of the algorithm pre-conditions.

17

CHAPTER 4

Implementation

The implementation details of the re-designed gesture recognition software are

discussed in this section. Beginning with Section 4.1, the details of how the software’s

runtime performance was increased are discussed. Section 4.2 covers the enhanced

features used for the native implementation of the gesture recognition software. The

relative distance function is explored in Section 4.3. In Section 4.4, the normalization

between the distance function and the τ functions and the related balancing between

those functions is explained.

Two new τ functions were implemented for the experiments conducted during

the course of this work. The Zero reference τ function is described in Section 4.5.

The details of the implementation of a new τ function introduced in Section 3.4 is

explained in Section 4.6.

Additionally, two new classifiers were also implemented in order to conduct

the experiments described within context of this work. The Nearest Neighborhood

classifier was developed as a reference classifier for use as the basis of comparison for

the results provided by the A∗ Nearest Neighborhood classifier. The implementation

of the Nearest Neighborhood classifier is examined in Section 4.7. The A∗ Nearest

Neighborhood classifier’s implementation and pseudo code algorithm are presented

in Section 4.8.

18

4.1 Runtime Performance

A native implementation of the DSTW Gesture Recognition system was devel-

oped to overcome the performance issues of the original Matlab version. C++ was

selected as the primary language for the native implementation. OpenCV version

2.3.1 [18] was selected as the implementation of several computer vision algorithms.

Additionally, the Boost libraries, version 1.46.1 [19], was selected to provide multi-

threading, program configuration, and serialization functionality. The resulting code

base was compiled using GNU g++ version 4.2.1 on both SuSE enterprise Linux and

Mac OS X 10.6.8. The implementation of the DSTW algorithm was designed as a

standalone library which accepts functor objects or function pointers to provide the

distance and τ functions. The C++ implementation was used for all of the reported

experiments.

4.2 Improved Features for Gesture Recognition

The original features were extended to include a bounding box around the

subject’s face. The center of the bounding box provides an origin for the reference

coordinate system of positions within the image. The face detection algorithm was

taken from the example of the Haar feature cascade classifier class defined in the

OpenCV library based on the work presented in Viola and Jones [20]. The cascade

classifier was set to return the largest object within the scene and the largest object

returned was taken as the location of the subject’s face. Additionally, a center point

of the bounding box was added to the feature set to simplify the programing.

In addition to the face bounding box, a template image of the located hand

region can also be added to the feature set. The hand region chip will be a gray

scale, floating-point (0→ 1.0) image with the mean value subtracted from each pixel.

19

The resulting hand region template was used to support the Template Matching τ

Function (see Section 3.4).

The fundamental values of the vectors from which the distance function oper-

ates is still defined as a four-dimensional vector composed as (x, y, u, v) where (x, y)

represents the hand position within the coordinate system, and (u, v) represents the

hand velocity. The hand velocity is determined by the Farneback [21] optical flow

algorithm, as implemented in the OpenCV 2.3.1 library [18]. Using the OpenCV

implementation, the optical flow velocity was calculated over the entire image. Only

the velocity values at the localized hand position were used as the (u, v) components.

4.3 Relative Distance Function

With support from the addition of the face location in the feature, two variations

of each distance function were developed for comparison: absolute and relative. In the

absolute versions, the units of the position component in the feature vector, (x, y), are

measured in whole pixels, from the origin of the image frame (0, 0). In the relative

version, the units of the position component in the feature vector, (x, y), are also

measured in whole pixels from the origin defined at the face location. In summary,

absolute distance functions measure the absolute pixel positions within the image

space, whereas relative distance functions measure everything from the center point

of the face bounding box.

4.4 Distance and τ Normalization

In order to obtain the maximum performance from the distance and τ functions,

the range of the functions must be balanced. Without balancing the functions, either

the distance or the τ function will primarily determine the behavior of the DSTW

20

algorithm. In order to address this issue, the range values will be normalized to the

range of [0→ 1.0].

In the case of the distance function, the value of x is normalized with respect

to the image width and the y value is normalized with respect to the image height.

Using this method, the value (0, 0) represents the upper-left corner while (1.0, 1.0)

corresponds to the lower-right corner.

For the τ function, the range values should also be normalized to the range of

[0→ 1.0] to allow the sum of the distance and τ functions to be balanced. Therefore,

the τ value will be normalized such that 0 is a no-cost transition and 1.0 is the most

expensive transition.

4.5 Zero τ Function

The Zero τ function was developed as a reference implementation for a constant

transition function for the DSTW algorithm. In this case, the function will return a

0 value for all pairs of (ω, ω′) presented to the function (see Equation 4.1). In other

words, all transitions have a fixed cost of zero. The overall effect of this is to drive

the dynamic programing table only by the provided distance function. The results

obtained from this implementation are used as a baseline for comparison with the

Template Matching τ function.

τ(ω, ω′) = 0 (4.1)

4.6 Template Matching τ Function

With the feature set now containing an image chip of a hand region, the results

from a template matching function may now be used as part of the τ function. The

21

goal is to allow an object which appears to be consistent between frames to produce

a smaller transition cost than objects which are inconsistent using cross-correlation

[22]. The cross-correlation operator can be used to determine the similarity of two

consecutive image templates [16, p. 169]. The OpenCV cv::matchTemplate func-

tion using the method type of CV TM CCORR NORMED provided the cross-correlation

implementation.

Given a sufficient frame rate and that the image chips of the hand region are of

the same object, then the cross-correlation score will be near 1.0. If the image chips

are mismatched, then the cross-correlation score will be near zero. The result of the

cross-correlation operation is then subtracted from 1.0 to produce a value which can

be treated as a probability of match between the hand regions (see Equation 4.21).

The resulting value is then added to the transition cost; effectively making transitions

between inconsistent chips more expensive than those between nearly consistent image

chips.

τ(ω, ω′) = |ωi − ω′i|+ |ωj − ω′j|+
(
1.0−max(0, wimage ? w

′
image)

)
(4.2)

4.7 Nearest Neighborhood Classifier

The Nearest Neighborhood classifier attempts to locate the class of a query by

finding the best matching class. The best matching class is determined by computing

a similarity score between the sample and every member exemplar of each given class.

The score from each member is summed and the average score is recorded. The class

with the lowest overall average score is selected as the sample’s class. In this case,

the membership of a given class determines the neighborhood and new members are

expected to be near the candidate neighborhood.

1Note: The ? symbol denotes the cross-correlation operator.

22

The nearest neighborhood classifier is an attempt to reduce the effect of a

single, poorly selected exemplar causing mis-classifications. An implementation of

the nearest neighborhood classifier was developed to act as a reference for the A∗

Nearest Neighborhood classifier described in Section 3.5.

4.8 A∗ Nearest Neighborhood Classifier

Based on the concepts introduced in Section 3.5, an implementation of the A∗

Nearest Neighborhood classifier was developed according to the pseudo code shown

in Algorithm 1. The ClassSet input value is a set of lists where each list represents a

specific class to be identified, and the list is composed of n number of exemplars. The

sample to be classified is represented as sample within the pseudo code. An estimate

constant is shown as estimate provides a measure to estimate the similarity between

the sample and the remaining exemplars in the class. A function which computes

the similarity between the sample and the exemplar is shown as similarity. An

additional function distance is provided to compute the distance between the current

exemplar’s position within the list and the last element of the list.

23

input : A set of classes ClassSet each containing n exemplars, a sample
sample to be classified, a heuristic estimate constant estimate, a
similarity function similarity, a distance function distance.

output: The nearest neighborhood class for sample contained within the
set ClassSet

Initialization
minPriorityQueue = φ
foreach class in ClassSet do

nodeclass = class
nodekey = similarity (sample, classexemplar[0])
nodegV alue = nodekey
nodeiterator = classexemplar[1]

nodeend = classexemplar[n]

enqueue (minPriorityQueue, node)

end

Iteration
node = dequeue (minPriorityQueue)
while nodeiterator 6= nodeend do

score = similarity (sample, nodeiterator)
nodegV alue = nodegV alue + score
nodekey = nodegV alue + (estimate × score × distance (nodeiterator,
nodeend))
nodeiterator = nodeiterator +1
enqueue (minPriorityQueue, node)
node = dequeue (minPriorityQueue)

end
return nodeclass
Algorithm 1: A∗ Nearest Neighborhood Classifier Algorithm

An implementation of Algorithm 1 was written in C++ for use in performing

the experiments documented in this work. The ClassSet used in the experiments was

the Palm Graffiti (see Figure 5.1) digit gestures [3]. The exemplars for each class were

computed from a training set of data based on 10 individuals performing each gesture

in the set 3 times (see Section 5.2). The gesture to be classified was provided as sample.

Through experimental selection, a value of 0.825 was chosen for the estimate. The

estimate values provide a good balance between acceptable positive detection and

24

the number of nodes expanded during the A∗ algorithm. In the context of this work,

the DSTW algorithm was used as the similarity function. The Standard Template

Library std::distance() function was used to calculate the distance between the

current iterator and the end of the exemplar set.

25

CHAPTER 5

Summary Results and Analysis

A summary of the experimental results and an analysis of those results are pre-

sented within this section. Section 5.1 provides a summary of the reduction in terms

of runtime that the enhanced software obtained. In Section 5.2, the two datasets

that were used in the experiments as well as the training dataset are explained. The

relative distance function’s performance is discussed in Section 5.3. The performance

of the Template Matching τ classifier is compared to the reference Nearest Neighbor-

hood classifier in Section 5.4. Section 5.5 explores the performance of the A∗ Nearest

Neighborhood classifier utilizing a conservative and an aggressive heuristic function.

Section 5.6, entitled ”Effect of Multiple Candidates,” discusses the performance im-

pact of using multiple candidates within the composed query signals.

5.1 Runtime Performance

In discussing runtime performance in terms of wall time, a reference computing

environment must be declared and used for the basis of comparison. In this section,

the reference hardware and the experimental hardware is given in Table 5.1.

The performance limitations of Matlab presented a significant restriction in the

number of experiments that could be performed within a reasonable amount of time.

With a recognition database size of 10 classes, each containing 3 exemplar gestures,

the Matlab implementation was only able to complete an average of one query per

several minutes of execution time on reference hardware. After significant optimiza-

26

Table 5.1. Hardware Platforms Utilized for Development and Experiments

Reference Experimental
System: Macintosh OS X 10.6.8 SuSE 11 Linux 3.0.58 SMP
Processor: 2.8GHz Intel Core 2 Duo Quad 10-core 2.4GHz Intel Xeon
Memory: 4 GB 256 GB
Matlab: R2008b N/A
Tool chain: g++ 4.2.1 g++ 4.3.4
Libraries: Boost 1.46.1, OpenCV 2.3.1

tions of the Matlab code, the performance was improved to an average execution time

of 55 seconds per query (see Table 5.2).

The key contributing factor affecting the runtime execution performance is the

selection of the distance and τ functions. Within the context of the following per-

formance factors, the Manhattan function as previously introduced in 2.2.2 was used

for the distance function. The Manhattan function as previously introduced in 2.2.3

was used for the τ functions. These functions were also implemented in the Matlab

version of the gesture recognition software, and hence are used as the base function

for comparison with the native software implementation.

Table 5.2. Runtime Performance for DSTW Gesture Recognition on Reference Hard-
ware

Implementation Runtime per Query
Matlab (original) ∼2 minutes, 15 seconds

Matlab (optimized) ∼55 seconds
Native Executable ≤ 1 seconds

The native implementation proved to perform significantly better on the refer-

ence hardware than the Matlab implementation. During the experimentation phase

of this work, it is worth noting that the native code base was multi-threaded to enable

27

simultaneous queries to execute in parallel. The primary system used for the experi-

ments was a Dell PowerEdge R950 with quad ten-core Intel Xeon 2.4GHz processors

with 256GB RAM running SuSE Enterprise Linux server version 11, service pack 2,

kernel 3.0.58 SMP (see Table 5.1). The experiments executed without intervention

for several weeks. The native implementation proved to be very robust.

5.2 Datasets Used in Experiments

In the following section, the datasets which were used during the experiments

are examined. The same set of gestures that were used in the original Alon et al.

[3] paper were also used for this work. The datasets contain individuals performing

the digit gestures defined by the Palm Graffiti alphabet (see Figure 5.1 provided

by http://www.techdc.com/rip-original-palm-os). The dataset was segmented

into Training, Easy, and Hard sets. Each of the datasets included ground-truth files

which enabled automatic scoring. The datasets were delivered and processed as AVI

video files, captured at 320x240 resolution with a 24 bit RGB color space.

5.2.1 Training

The Training dataset provided 10 classes (digits 0-9), each containing 30 ex-

emplars. The resulting Training dataset was composed into the recognition database

and used during all experiments. The training videos were produced by 10 different

individuals, each performing the gesture for each digit three times. The training ges-

tures were made with a green gloved hand to enable the software to detect a specific

color for improved recognition. An example image from a Training dataset video is

shown in Figure 5.2. The frame rate for the Training dataset was 30 Hz.

28

Figure 5.1. Palm Graffiti Alphabet [1].

5.2.2 Easy Query

The Easy dataset was used as the source of the easy queries. The Easy dataset

is characterized by having a single subject performing the gesture, with little or no

background movers. Additionally, effects of sun-busts within the video image have

been minimized. A representative image from the dataset is shown in Figure 5.3. The

Easy dataset was composed by the same 10 individuals that performed the gestures

in the Training dataset. In the Easy dataset, each person performed each digit three

times creating a dataset containing 300 query gestures. The frame rate for the Easy

dataset was 30 Hz. Test 59 obtained the best results on the Easy dataset (see 5.3).

5.2.3 Hard Query

The Hard dataset was used as the source of the hard queries. The Hard dataset

is characterized by having multiple subjects within the scene. The gesturing subject

29

Figure 5.2. An example image taken from the Training dataset.

is often positioned to one side of the image while other participates are moving in

the background. Often the background subjects turn to face the camera, as shown

in Figure 5.4. The Hard dataset was composed by 7 individuals that performed

each gesture twice, creating a dataset containing 140 queries. The frame rate for the

Training dataset was 15 Hz. Test 154 obtained the best results on the Hard dataset

(see 5.4).

5.3 Relative Distance Function

For the experiments that were executed on the Easy dataset, the relative dis-

tance function generally seems to have had no significant improvement on the recog-

nition performance of the system (see Figures 5.5 and 5.6). The figures clearly show

that the most significant impact to recognition performance is the number of candi-

30

Table 5.3. Easy dataset best result (Test 59, 100.0%)

Confusion Matrix
0 1 2 3 4 5 6 7 8 9

0 30 0 0 0 0 0 0 0 0 0
1 0 30 0 0 0 0 0 0 0 0
2 0 0 30 0 0 0 0 0 0 0
3 0 0 0 30 0 0 0 0 0 0
4 0 0 0 0 30 0 0 0 0 0
5 0 0 0 0 0 30 0 0 0 0
6 0 0 0 0 0 0 30 0 0 0
7 0 0 0 0 0 0 0 30 0 0
8 0 0 0 0 0 0 0 0 30 0
9 0 0 0 0 0 0 0 0 0 30

dates presented to the DSTW algorithm. In fact, the relative verses absolute distance

functions produced nearly identical results.

The Hard dataset presented additional challenges. As a result of presenting

an additional face to the camera in the Hard dataset, the face detection algorithm

would become confused and report the non-gesturing face as the face center point.

As discussed in Section 3.3, a misclassified face center point location could cause a

reduction in recognition performance. Experiments on the Hard dataset prove this

to be the case. In order to address this problem, a more sophisticated face detector

and tracker should be used. Once the face location of the subject who is gesturing is

determined, that face should be tracked between frames to ensure a relatively stable

origin point for the gesturing space.

In conclusion, the experiments performed within this work show that there

is not enough meaningful data to suggest using a relative distance function over

using an absolute function. However, when executed with an early development

dataset that was not included in the final experiments, the relative distance function

performed considerably better. In a dataset in which the subject performing the

31

Figure 5.3. An example image taken from the Easy dataset.

gesture is in motion, the relative distance function may prove to be useful. Lacking

experimental data to suggest that using a relative distance function would reduce

recognition performance in any meaningful way, experiments performed within the

remainder of this work are based on the results of relative distance functions.

5.4 Template Match τ Function

In the following sections, the performance results from the experiments isolating

the effects of the Template Matching τ functions are discussed. For all of the experi-

ments covered in this section, the Relative Manhattan Normalized distance function

and the Nearest Neighbor search method were used to produce the results. In Sec-

tion 5.4.1, impact on the positive recognition rates between the Template Matching,

Zero, and Manhattan Normalized τ functions when using the Easy dataset queries

is discussed. Section 5.4.2 covers the performance of the three functions when the

32

Table 5.4. Hard dataset best result (Test 154, 76.4%)

Confusion Matrix
0 1 2 3 4 5 6 7 8 9

0 8 1 0 0 4 0 1 0 0 0
1 0 13 0 0 0 0 0 1 0 0
2 0 0 12 0 1 0 0 1 0 0
3 0 1 0 13 0 0 0 0 0 0
4 0 0 0 0 14 0 0 0 0 0
5 0 0 0 0 3 9 0 2 0 0
6 1 0 0 0 3 0 10 0 0 0
7 0 6 0 0 0 0 0 8 0 0
8 0 0 1 1 0 1 0 0 11 0
9 0 1 0 0 1 1 0 2 0 9

Hard dataset is used for the queries. The runtime impact of the Template Matching

τ function is covered in Section 5.4.3. A conclusion is then presented in Section 5.4.4.

5.4.1 Results from the Easy Dataset

On the Easy dataset, the Template Match τ function performed equal to, or

better than both Zero and Manhattan Normalized functions (see Figure 5.7). When

used with a single candidate, all three τ functions were able to obtain a result of 100%

correct recognition of the presented queries. All three functions demonstrated a re-

duction in recognition performance when the number of candidates increased. With

5 candidates under consideration, all three functions were able to correctly recognize

99.67% of the presented queries. The data shows that once the number of candidates

is increased to 10 or more, both the Zero and Manhattan Normalized functions’ recog-

nition performance continue to drop. The Template Matching function’s recognition

performance levels off at the 99.67% mark. This behavior suggests that the Template

Matching function is at least maintaining the level of performance when presented

with an increasing opportunities for error.

33

Figure 5.4. An example image taken from the Hard dataset.

5.4.2 Results from the Hard Dataset

The results from the Hard dataset are quite different and shown in Figure 5.8.

All three τ functions are able to correctly recognize 53.57% when presented with a sin-

gle candidate. When presented with 5 candidates, both the Zero and the Manhattan

Normalized functions are able to increase gesture recognition to 56.42%. However,

the Template Matching function’s performance drops to 50%. When presented with

10 candidates, the Template Matching function increases slightly to 50.67% while

the Zero and Manhattan Normalized functions continue to fall to 37.86%. Given the

length of runtime needed to complete the experiments using the Template Matching

function, data for a comparison at the 15 and 20 candidate level is not available.

It would be interesting to compare those results to determine if the general trend

continues.

34

Figure 5.5. Comparison between Relative and Absolute Manhattan Distance func-
tions. (τ : Manhattan, Search: Nearest Neighbor, Dataset: Easy).

5.4.3 Impact on Runtime Performance

Experiments on both datasets seem to indicate that the Template Matching

τ function may offer some performance improvement when numerous candidates are

generated for a given query. However, the major drawback to using the Template

Matching function is the significantly increased runtime as shown in Figure 5.9. In

the event that the runtime can be reduced to a point where it becomes feasible to run

a query with 50, 75, and 100 candidates, then the overall recommendation to avoid

the Template Matching τ algorithm would need to be revisited.

35

Figure 5.6. Comparison between Relative and Absolute Manhattan Distance func-
tions. (τ : Manhattan, Search: Nearest Neighborhood, Dataset: Hard).

5.4.4 Conclusion

In conclusion, the Template Matching τ function does not add sufficient value

to the gesture recognition problem to warrant the additional runtime. The clear ten-

dency of the function to stabilize when presented with additional candidates indicates

that the Template Matching τ function was influencing the transition table used in

the DSTW algorithm. For all of the experiments in which the Template Matching

τ function was selected, it should be noted that the distance and τ functions were

balanced to equally influence the DSTW matrix. It is possible that additional exper-

imentation using different weighting might provide useful results.

36

Figure 5.7. Comparison of the Manhattan Normalized vs. Zero vs. Template Match-
ing τ functions effective positive recognition. (Distance: Relative Manhattan Normal-
ized, Search: Nearest Neighbor, Dataset: Easy).

5.5 A∗ Nearest Neighborhood Classifier

The performance of the A∗ Nearest Neighborhood classifier is discussed in fol-

lowing sections. All experiments in the subsequent sections utilized the Relative

Manhattan distance function and Manhattan Normalized transition function as τ .

The experiments were conducted using a conservative and aggressive version of an

inadmissible heuristic function. In Section 5.5.1, experimental results on the effect of

the classifier on recognition performance when using the Easy dataset is presented and

analyzed. The A∗ Nearest Neighborhood classifier effect on gesture recognition per-

formance from the Hard dataset is discussed in Section 5.5.2. The impact to runtime

37

Figure 5.8. Comparison of the Manhattan Normalized vs. Zero vs. Template Match-
ing τ functions effective positive recognition. (Distance: Relative Manhattan Normal-
ized, Search: Nearest Neighbor, Dataset: Hard).

performance is covered in Section 5.5.3. A conclusion based upon the experimental

data is presented in Section 5.5.4.

5.5.1 Performance on the Easy Dataset

On the Easy dataset, the impact to positive gesture recognition from the A∗

Nearest Neighborhood classifier must be compared against the Nearest Neighborhood

classifier. Both methods are attempting to classify the given sample by computing the

average score of the entire class membership and select the class with the lowest score

as the sample class. In Figure 5.10, the results from the Nearest Neighbor classifier are

provided for reference. As Figure 5.10 shows, the results from both the conservative

38

Figure 5.9. Comparison of the Manhattan Normalized vs. Zero vs. Template
Matching τ functions effective runtime. (Distance: Relative Manhattan Normalized,
Search: Nearest Neighbor, Dataset: Easy).

and aggressive heuristic functions perform identically, with the exception of the tests

executed with 10 candidates. In the 10 candidate case, the aggressive heuristic failed

to correctly classify one query that the conservative heuristic classified correctly.

By choosing an aggressive heuristic for the A∗ algorithm, a trade-off between

correctness and speed is made. It should be noted, however, that the performance

from the Nearest Neighborhood classifier also mis-classified one query. The Nearest

Neighborhood classifier computes results for every member of the class and therefore

should provide the optimal performance for classifiers of this type. It is possible that

the conservative A∗ version produced a false positive classification rather than the

admissibility of the heuristic function causing the error.

39

Figure 5.10. Comparison of the A∗ Nearest Neighborhood vs. Nearest Neighbor-
hood vs. Nearest Neighbor classifiers. (Distance: Relative Manhattan Normalized,
τ : Manhattan Normalized, Dataset: Easy).

5.5.2 Performance on the Hard Dataset

Figure 5.11 shows a comparison of the A∗ Nearest Neighborhood, Nearest Neigh-

borhood, and Nearest Neighbor classifiers. With the Hard dataset, the aggressive A∗

heuristic was used for all experiments. With this dataset, the results show a significant

improvement in performance for the A∗ classifier. In all cases except the 5 candidate

case, A∗ provides better recognition performance than both Nearest Neighborhood

and Nearest Neighbor. However, Nearest Neighborhood is expected to equal or out

perform A∗. One explanation for the presented results is that the A∗ algorithm did

not expand the nodes which provided closer matches to the incorrect classes. Since

A∗ classifier is traversing to the last exemplar defined within the class, the algorithm

40

may reach the terminal condition prior to expanding nodes which could end in false

classifications. In the 5 candidate case, the difference was not considered meaningful.

Figure 5.11. Comparison of the A∗ Nearest Neighborhood vs. Nearest Neighbor-
hood vs. Nearest Neighbor classifiers. (Distance: Relative Manhattan Normalized,
τ : Manhattan Normalized, Dataset: Hard).

5.5.3 Effect on Runtime Performance

As expected of an A∗ family algorithm, runtime was significantly reduced in

comparison to the performance of the other classifiers. The runtime results for the

Easy dataset are shown in Figure 5.12. As the number of candidates increase, the

graph of the A∗ Nearest Neighborhood classifier can be seen falling away for the

computation time needed by both Nearest Neighbor and Nearest Neighborhood clas-

41

sifiers. The lowest line within the graph represents the effects on runtime of selecting

an aggressive heuristic for the A∗ algorithm. Also as expected, the aggressive heuristic

further reduced runtime. The impact to the runtime for the Hard dataset is shown

in Figure 5.13.

Figure 5.12. Comparison of the A∗ Nearest Neighborhood vs. Nearest Neighbor-
hood vs. Nearest Neighbor classifiers. (Distance: Relative Manhattan Normalized,
τ : Manhattan Normalized, Dataset: Easy).

In terms of experimental algorithm complexity performance, both the O(n)

(see equation 3.4) and Ω(n) (see equation 3.5) bounds are linear to the number of

exemplars and classes as previously shown. The results from the experiments shows

that the average number of expended nodes was 139.26. The average maximum nodes

expanded was found to be 231.54 out of a maximum possible of 271 nodes as given

42

Figure 5.13. Comparison of the A∗ Nearest Neighborhood vs. Nearest Neighbor-
hood vs. Nearest Neighbor classifiers. (Distance: Relative Manhattan, τ : Manhattan
Normalized, Dataset: Hard).

from O(n) equations previously presented. Examining the lower bound experimental

results, the average minimum expansion depth was found to be 70.06 nodes; above

the theoretical lower bound of 39 nodes as given by the previously presented Ω(n)

equation.

5.5.4 Conclusion

In conclusion, the A∗ Nearest Neighborhood classifier does reduce runtime at

the cost of positive recognition performance. When eliminating the Nearest Neighbor

classifier performance from the evaluation, the A∗ Nearest Neighborhood classifier

performs on par with the ideal Nearest Neighborhood classifier; however the advantage

43

Figure 5.14. Summary of A∗ minimum, average, and maximum search depths for all
experiments using a conservative heuristic. (Distance: Relative Manhattan Normal-
ized, τ : Manhattan Normalized, Dataset: Easy).

of speed clearly goes to the A∗ Nearest Neighborhood classifier. The decision to use

a conservative or an aggressive heuristic must be made with a clear understanding of

the specific application’s tolerance to incorrect results.

Another interesting conclusion from Figure 5.11; Nearest Neighbor is no longer

the premier classifier providing the best recognition performance. Given that the same

individuals that created the gestures for the Easy dataset also created the Training

dataset, the performance recorded from Nearest Neighbor on the Easy dataset may be

the result of over training. An interesting experiment would be to have a different set

of individuals create an alternative easy query dataset for execution with the existing

Training dataset.

44

Figure 5.15. Summary of A∗ minimum, average, and maximum search depths for all
experiments using an aggressive heuristic. (Distance: Relative Manhattan Normal-
ized, τ : Manhattan Normalized, Dataset: Easy).

5.6 Effect of Multiple Candidates

Throughout the experiments, the single most significant effect on the positive

gesture recognition was the number of candidates. With the exception of two test

cases within the Hard dataset, increasing the number of candidates reduced recog-

nition performance. A contributing factor to this behavior may be explained by

examining the detector. The detector written for use in this work closely followed the

detector described in Alon et al. [3]. One key difference between the two implemen-

tations was in the hard coded hand size parameter. In the original detector, the hand

size was fixed. In the detector written for this work, the hand size was computed in

each frame as one-half the size of the detected face.

45

The DSTW algorithm was designed to produce the best possible alignments

between sample and exemplar when a weak detector provides multiple candidates.

In the experiments presented within this work, the additional candidates caused the

opposite effect. It is possible that the rewritten detector simply performed better

than the detector used the Alon et al. paper [3]. In the case of a strong detector, the

first candidate may always be the hand to be tracked. By providing additional candi-

dates, the DSTW is given opportunities to find a better alignment to the extraneous

candidates than a slightly less optimal, but accurate, alignment to the true sample.

46

CHAPTER 6

Future Work

Within this section, suggestions for future work are presented. In Section 6.1

an experiment that could improve the results of the Template Matching τ is outlined.

Section 6.2 describes an experiment to test the usability of the relative distance func-

tions within a scene that contains a moving gesturing subject. An experiment to

determine the ideal inadmissible heuristic is discussed in Section 6.3. An alternative

τ function designed for a stable detector is presented in Section 6.4.

6.1 GPU Processing of the Template Matching Classifier

The largest disadvantage to using the Template Matching classifier was the neg-

ative impact to runtime. The Template Matching classifier could prove significantly

more useful when provided with more candidates than were tested within this work.

The limitation to increasing the number of candidates was constrained by the amount

of time available to conduct experiments. The impact to runtime may be minimized

by executing the cross-correlation operation on a high-performance graphics process-

ing unit (GPU) or other specialized hardware.

Another possibility for the improvement to the Template Matching classifier is

to identify another method of performing the template match that would be more

computationally efficient than the cross-correlation operation chosen for this work.

Additional experiments using the Template Matching classifier were initially per-

formed using the square difference algorithm as implemented in the OpenCV library.

The initial impact on runtime and recognition performance between square difference

47

and cross-correlation where nearly identical and cross-correlation was selected for all

future experiments.

6.2 Testing Relative Manhattan Distance Function with Motion

Given the results from testing the Relative distance function with both the

Easy and Hard dataset, it is possible that the function would perform better when

the scene was less stable. Given that the origin of the reference frame for matching the

trajectories is based on the gesturing subject’s face, should the subject move about

the scene while still maintaining a reasonably clear view of the face, the relative

function should provide significantly better results than the absolute function. In

order to conduct this experiment, the face detector would need to be enhanced to

allow for the tracking of the face within the scene.

6.3 Inadmissible Heuristics for A∗ Nearest Neighborhood Classifier

As presented within the context of this work, the A∗ Nearest Neighborhood

classifier was executed using two different heuristic functions: conservative and ag-

gressive. The aggressive function produced considerably larger estimates to the end

node than the conservative function. However, no effort was made to determine the

most ideal inadmissible heuristic for the gesture recognition problem. A series of

experiments on the Hard dataset should be devised to determine an inadmissible

heuristic with an ideal balance between accuracy and runtime.

6.4 A τ Function for a Stable Detector

The core concept presented here is that the detector generally produces detec-

tion in order of likelihood of being the correct signal, then the signal should rarely

48

transition between candidate position. Therefore, any transition in the dynamic pro-

graming matrix that is farther than neighboring candidates should be weighted heav-

ily. Based on the results presented within, a good additional experiment would be to

use the candidate ranking as an input to the τ function. If a strong detector is able to

consistently produce properly ranked results, then the position within the candidate

vector would be a good indicator as to the validity of the transition. For example, if

the ranking is stable, then a transition between non-adjacent candidates could have

a larger weighted cost than between neighboring candidates.

49

APPENDIX A

Summary of Experimental Results

50

Table A.1. Abbreviation Table

Abbreviation Meaning
Datasets

E Easy
H Hard

Distance Functions
M Manhattan
R Relative Manhattan
N Relative Manhattan Normalized

Tau (τ) Functions
M Manhattan
N Manhattan Normalized
T Template Cross-Correlation Normalized
Z Zero

Classifiers
N Nearest Neighbor
H Nearest Neighborhood
A A∗ Nearest Neighborhood

Summaries of the raw results from all of the experiments discussed within the

paper are included in this section. The values listed under ”Runtime” are in seconds

and the minimum, average, and maximum values are presented. For experiments

executed using the A∗ Nearest Neighborhood classifier, the minimum, average, and

maximum search depths (node expanded) are also provided with respect to the con-

servative heuristic. The abbreviations used in the tables are shown in Table A.1.

51

Table A.2. Summary of Experiments: Test 1 to 25.

T
e
st

#

D
a
ta

se
t

C
a
n
d

id
a
te

s

D
is

ta
n

ce
F
u
n
ct

io
n

T
a
u

(τ
)

F
u

n
ct

io
n

C
la

ss
ifi

e
r

A
∗

D
e
p

th
(n

o
d
e
s)

R
u

n
ti

m
e

(s
e
co

n
d
s)

%
C

o
rr

e
ct

MIN AVG MAX MIN AVG MAX

01 E 20 M M N N/A 3 16.5 32 59.7

02 E 20 M M H N/A 3 16.0 33 83.0

03 E 20 M M A 65 153.9 250 0 8.4 25 76.0

04 E 20 R M N N/A 4 15.7 34 58.0

05 E 20 R M H N/A 3 16.1 33 82.7

06 E 20 R M A 65 154.5 250 0 8.4 24 75.3

07 E 5 N N H N/A 0 1.9 4 98.7

08 E 10 N N H N/A 2 7.2 14 98.7

09 E 15 N N H N/A 3 16.0 32 98.7

10 E 20 N N H N/A 6 28.4 54 98.7

11 E 5 N N A 96 143.8 236 0 0.9 2 99.0

12 E 10 N N A 101 149.6 248 0 3.6 8 99.0

13 E 15 N N A 101 151.9 250 1 8.2 18 98.7

14 E 20 N N A 102 153.1 251 2 14.5 32 98.7

15 E 5 N T A 73 97.8 172 178 1600.9 6755 99.0

16 E 10 N T A 75 100.6 178 798 6571.0 27547 99.0

17 E 5 N T H N/A 1109 5140.8 15149 99.3

18 E 10 N T H N/A 4257 20284.1 60465 98.7

19 E 5 N T N N/A 1081 5134.0 15474 99.7

20 E 10 N T N N/A 4117 20164.6 57714 99.7

21 E 10 M M N N/A 1 4.1 8 77.7

22 H 10 N T N N/A 4661 32054.2 189226 50.7

23 H 10 N T H N/A 4676 32067.9 186746 52.9

24 H 10 N T A 78 158.4 240 981 16476.0 125641 53.6

25 E 10 M M H N/A 0 4.1 9 88.7

52

Table A.3. Summary of Experiments: Test 26 to 50.

T
e
st

#

D
a
ta

se
t

C
a
n
d

id
a
te

s

D
is

ta
n

ce
F
u
n
ct

io
n

T
a
u

(τ
)

F
u
n
ct

io
n

C
la

ss
ifi

e
r

A
∗

D
e
p

th
(n

o
d
e
s)

R
u

n
ti

m
e

(s
e
co

n
d
s)

%
C

o
rr

e
ct

MIN AVG MAX MIN AVG MAX

26 E 10 M M A 66 151.7 240 0 2.1 6 85.7

27 H 10 N N H N/A 1 5.4 10 50.0

28 H 10 N N A 108 210.9 282 0 4.5 10 52.1

29 H 10 N N N N/A 2 6.5 11 47.1

30 H 20 M M H N/A 4 14.1 25 40.0

31 H 20 R M H N/A 4 13.9 29 38.6

32 H 20 N N H N/A 6 22.2 44 42.1

33 E 15 M M N N/A 2 9.2 18 64.3

34 E 15 M M H N/A 2 9.2 18 84.0

35 E 15 M M A 65 153.5 249 0 4.7 14 77.3

36 E 5 M M N N/A 0 1.1 2 97.7

37 E 5 M M H N/A 0 1.1 3 97.0

38 E 5 M M A 64 137.6 237 0 0.5 2 96.3

39 E 10 R M N N/A 1 4.1 8 78.0

40 E 5 N N N N/A 0 1.9 4 99.7

41 E 10 N N N N/A 1 7.3 14 99.3

42 E 15 N N N N/A 3 16.4 34 99.3

43 E 20 N N N N/A 5 29.3 56 99.0

44 E 10 R M H N/A 1 4.1 9 88.0

45 E 10 R M A 66 152.1 241 0 2.1 6 85.3

46 E 15 R M N N/A 2 9.3 20 63.7

47 E 15 R M H N/A 2 9.2 18 83.7

48 E 15 R M A 65 154.0 249 0 4.8 14 77.0

49 E 5 R M N N/A 0 1.1 3 98.0

50 E 1 M M N N/A 0 0.1 1 99.7

53

Table A.4. Summary of Experiments: Test 51 to 78.

T
e
st

#

D
a
ta

se
t

C
a
n
d
id

a
te

s

D
is

ta
n
ce

F
u
n
ct

io
n

T
a
u

(τ
)

F
u
n
ct

io
n

C
la

ss
ifi

e
r

A
∗

D
e
p

th
(n

o
d
e
s)

R
u

n
ti

m
e

(s
e
co

n
d
s)

%
C

o
rr

e
ct

MIN AVG MAX MIN AVG MAX

51 E 1 M M H N/A 0 0.1 1 99.7

52 E 1 M M A 75 136.8 226 0 0.1 1 99.3

53 E 1 R M N N/A 0 0.1 1 99.7

54 E 1 R M H N/A 0 0.1 1 99.7

55 E 1 R M A 76 137.1 227 0 0.0 1 99.3

56 E 1 N N N N/A 0 0.2 1 100.0

57 E 1 N N H N/A 0 0.1 1 99.3

58 E 1 N N A 91 134.6 227 0 0.1 1 99.7

59 E 1 N T N N/A 43 215.6 736 100.0

60 E 1 N T H N/A 45 214.1 720 99.3

61 E 1 N T A 65 90.9 168 7 63.6 298 99.7

65 E 5 N Z N N/A 0 1.0 2 99.7

66 E 10 N Z N N/A 0 3.4 8 99.3

67 E 15 N Z N N/A 1 7.5 15 99.3

68 E 20 N Z N N/A 3 13.2 29 99.0

69 E 5 N Z H N/A 0 1.0 2 98.7

70 E 10 N Z H N/A 0 3.5 7 98.7

71 E 15 N Z H N/A 2 7.4 15 98.7

72 E 20 N Z H N/A 2 13.2 27 98.7

73 E 5 N Z A 92 139.4 235 0 0.5 1 99.0

74 E 10 N Z A 93 145.0 244 0 1.8 4 99.0

75 E 15 N Z A 94 147.2 246 0 4.0 8 98.7

76 E 20 N Z A 96 148.4 250 1 7.0 15 98.7

77 E 5 R M H N/A 0 1.1 3 97.0

78 E 5 R M A 65 138.0 238 0 0.5 2 96.3

54

Table A.5. Summary of Experiments: Test 80 to 108.

T
e
st

#

D
a
ta

se
t

C
a
n
d
id

a
te

s

D
is

ta
n
ce

F
u
n

ct
io

n

T
a
u

(τ
)

F
u

n
ct

io
n

C
la

ss
ifi

e
r

A
∗

D
e
p

th
(n

o
d
e
s)

R
u

n
ti

m
e

(s
e
co

n
d
s)

%
C

o
rr

e
ct

MIN AVG MAX MIN AVG MAX

80 E 20 N T A 76 101.9 181 3059 25856.1 108618 99.0

81 E 15 N T A 76 101.4 180 1711 14425.7 61283 99.0

82 E 20 N T H N/A 16232 78402.3 233270 98.7

83 E 15 N T H N/A 8877 44075.5 131601 98.7

84 E 20 N T N N/A 16226 78112.0 233602 99.7

85 E 15 N T N N/A 9238 43871.0 131959 99.7

90 H 1 N T N N/A 44 519.4 4672 53.6

91 H 1 N T H N/A 44 519.4 4688 52.9

92 H 1 N T A 72 155.3 233 10 269.4 3319 55.7

93 H 1 N N H N/A 0 0.1 1 52.9

94 H 1 N N A 102 211.9 281 0 0.1 1 55.7

95 H 1 N N N N/A 0 0.1 1 53.6

96 H 5 N T N N/A 1114 8437.8 54916 50.0

97 H 5 N T H N/A 1102 8470.1 56848 54.3

98 H 5 N T A 78 156.8 241 239 4403.6 33299 53.6

99 H 5 N N H N/A 0 1.7 3 57.1

100 H 5 N N A 114 209.8 286 0 1.2 3 56.4

101 H 5 N N N N/A 0 1.7 3 56.4

102 E 1 N Z N N/A 0 0.1 1 100.0

103 E 1 N Z H N/A 0 0.1 1 99.3

104 E 1 N Z A 87 131.1 225 0 0.0 1 99.7

105 E 1 M Z N N/A 0 0.1 1 99.7

106 E 1 M Z H N/A 0 0.1 1 99.7

107 E 1 M Z A 75 136.8 226 0 0.1 1 99.3

108 E 5 M Z N N/A 0 1.1 3 97.7

55

Table A.6. Summary of Experiments: Test 109 to 133.

T
e
st

#

D
a
ta

se
t

C
a
n
d

id
a
te

s

D
is

ta
n

ce
F
u
n

ct
io

n

T
a
u

(τ
)

F
u
n

ct
io

n

C
la

ss
ifi

e
r

A
∗

D
e
p

th
(n

o
d
e
s)

R
u
n
ti

m
e

(s
e
co

n
d
s)

%
C

o
rr

e
ct

MIN AVG MAX MIN AVG MAX

109 E 5 M Z H N/A 0 1.0 2 97.0

110 E 5 M Z A 64 137.5 237 0 0.5 2 96.3

111 E 10 M Z N N/A 1 3.8 8 78.0

112 E 10 M Z H N/A 1 3.9 9 88.7

113 E 10 M Z A 66 151.6 240 0 2.0 6 85.7

114 E 15 M Z N N/A 2 8.5 17 64.3

115 E 15 M Z H N/A 2 8.6 16 84.0

116 E 15 M Z A 65 153.4 249 0 4.4 13 77.3

117 E 20 M Z N N/A 4 15.0 29 59.7

118 E 20 M Z H N/A 3 15.0 28 83.0

119 E 20 M Z A 65 153.8 250 0 7.8 24 76.0

120 H 20 N N N N/A 7 25.4 46 37.9

121 H 20 N N A 113 211.9 276 2 17.6 40 42.9

122 E 1 R Z N N/A 0 0.1 1 99.7

123 E 1 R Z H N/A 0 0.1 1 99.7

124 E 1 R Z A 76 137.0 227 0 0.0 1 99.3

125 E 5 R Z N N/A 0 1.1 2 98.0

126 E 5 R Z H N/A 0 1.1 2 97.0

127 E 5 R Z A 65 137.9 238 0 0.5 2 96.3

128 E 10 R Z N N/A 1 4.0 8 78.0

129 E 10 R Z H N/A 1 3.9 8 88.0

130 E 10 R Z A 66 152.1 240 0 2.0 6 85.7

131 E 15 R Z N N/A 1 8.5 16 63.7

132 E 15 R Z H N/A 1 8.5 16 83.7

133 E 15 R Z A 65 153.9 249 0 4.4 13 77.0

56

Table A.7. Summary of Experiments: Test 134 to 156.

T
e
st

#

D
a
ta

se
t

C
a
n
d

id
a
te

s

D
is

ta
n

ce
F
u
n

ct
io

n

T
a
u

(τ
)

F
u
n

ct
io

n

C
la

ss
ifi

e
r

A
∗

D
e
p

th
(n

o
d
e
s)

R
u
n
ti

m
e

(s
e
co

n
d
s)

%
C

o
rr

e
ct

MIN AVG MAX MIN AVG MAX

134 E 20 R Z N N/A 3 15.0 31 58.3

135 E 20 R Z H N/A 3 15.2 31 82.7

136 E 20 R Z A 65 154.3 250 0 7.7 22 75.3

137 H 1 N Z H N/A 0 0.1 1 53.6

138 H 1 N Z A 97 210.4 280 0 0.1 1 55.7

139 H 1 N Z N N/A 0 0.1 1 53.6

140 H 5 N Z H N/A 0 1.0 2 57.1

141 H 5 N Z A 109 207.6 286 0 0.7 2 56.4

142 H 5 N Z N N/A 0 0.9 2 56.4

143 H 10 N Z H N/A 1 3.3 6 50.7

144 H 10 N Z A 103 208.8 282 0 2.2 5 52.1

145 H 10 N Z N N/A 1 3.3 6 47.1

146 H 20 N Z N N/A 3 12.2 21 37.9

147 H 20 N Z H N/A 4 12.6 23 42.1

148 H 20 N Z A 107 209.8 276 1 8.7 19 43.6

149 H 1 M M H N/A 0 0.1 1 76.4

151 H 5 M M H N/A 0 1.0 2 73.6

152 H 10 M M H N/A 1 3.6 7 55.7

153 H 15 M M H N/A 2 8.0 14 42.9

154 H 1 R M H N/A 0 0.1 1 76.4

155 H 5 R M H N/A 0 1.0 2 72.1

156 H 10 R M H N/A 1 3.5 7 54.3

57

REFERENCES

[1] D. C. Tech. (2013) Rip original palm os. [Online]. Available: http:

//www.techdc.com/rip-original-palm-os

[2] V. I. Pavlovic, R. Sharma, and T. S. Huang, “Visual interpretation of hand ges-

tures for human-computer interaction: A review,” IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 19, no. 7, pp. 677–695, Jul 1997.

[3] J. Alon, V. Athitsos, Q. Yuan, and S. Sclaroff, “Simultaneous localization and

recognition of dynamic hand gestures,” IEEE Motion Workshop, pp. 254–260,

Jan 2005.

[4] ——, “A unified framework for gesture recognition and spatiotemporal gesture

recognition,” IEEE Transactions on Pattern Analysis and Machine Intelligence,

vol. 31, no. 9, pp. 1685–1699, 2009.

[5] F.-S. Chen, C.-M. Fu, and C.-L. Huang, “Hand gesture recognition using a real-

time tracking method and hidden markov models,” Image and Video Computing,

vol. 21, no. 8, pp. 745–758, Aug 2003.

[6] M. J. Black and A. D. Jepson, “Recognizing temporal trajectories using the

condensation algorithm,” Automatic Face and Gesture Recognition, pp. 16–21,

1998.

[7] Q. Yuan, S. Sclaroff, and V. Athitsos, “Automatic 2d hand tracking in video

sequences,” Proceedings of the Seventh IEEE Workshop on Applications of Com-

puter Vision, 2005.

[8] P. Senin, “Dynamic time warping algorithm review,” 2008.

58

[9] J. B. Kruskall and M. Liberman, The symmetric time warping algorithm: From

continuous to discrete. Addison-Wesley, 1983.

[10] L. Rabiner and B. Juang, Fundamentals of Speech Recognition. Prentice Hall,

1993.

[11] T. Darrell and A. Pentland, “Space-time gestures,” Proceedings IEEE Computer

Society Conference on Computer Vision and Pattern Recognition, pp. 335–340,

1993.

[12] A. Corradini, “Dynamic time warping for off-line recognition of a small gesture

vocabulary,” Proceedings IEEE ICCV Workshop on Recognition, Analysis, and

Tracking of Faces and Gestures in Real-Time Systems, pp. 82–89, 2001.

[13] J. Yao, C. Lin, X. Xie, A. J. Wang, and C.-C. Hung, “Path planning for virtual

human motion using improved a∗ algorithm,” Seventh International Conference

on Information Technology, 2010.

[14] D. A. Forsyth and J. Ponce, Computer Vision: A Modern Approach. Upper

Saddle River, New Jersey, 07458: Prentice Hall, 2003.

[15] S. J. Russel and P. Norvig, Artificial Intelligence: A Modern Approach, 2nd ed.

Upper Saddle River, New Jersey, 07458: Prentice Hall, 2003.

[16] L. G. Shapiro and G. C. Stockman, Computer Vision. Upper Saddle River,

New Jersey, 07458: Prentice Hall, 2001.

[17] J. R. Hubbard and A. Huray, Data Structures with Java. Upper Saddle River,

New Jersey, 07458: Pearson Education Inc., 2004.

[18] Itseez. (2013) Opencv: Open source computer vision. [Online]. Available:

http://opencv.org

[19] B. Dawes, D. Abrahams, and R. Rivera. (1998-2007) Boost c++ libraries.

[Online]. Available: http://www.boost.org

59

[20] P. Viola and M. Jones, “Rapid object detection using a boosted cascade of sim-

ple features,” Proceedings of the 2001 IEEE Computer Society Conference on

Computer Vision and Pattern Recognition, vol. 1, 2001.

[21] G. Farneback, Two-frame motion estimation based on polynomial expansion, ser.

Lecture Notes in Computer Science, 2003, no. 2749.

[22] A. A. Efros, A. C. Berg, G. Mori, and J. Malik, “Recognizing action at a dis-

tance,” Proceedings of the Ninth IEEE International Conference on Computer

Vision, pp. 726–733, 2003.

60

BIOGRAPHICAL STATEMENT

After a 13 year career in Information Technology, Danny Allen Hanson received

his Bachelor’s degree in Computer Science from California State Polytechnic Uni-

versity, Pomona in 2006. Danny’s undergraduate research was in robotics with an

emphasis on path planning and he is currently working in robotics and computer

vision. He received his Masters of Science in Computer Science with a focus on com-

puter vision at the University of Texas at Arlington in May 2013. His work focuses

on developing cutting-edge technologies for military applications.

61

