
APPLICATION OF SOFTWARE ENGINEERING

BEST PRACTICIES AND PRINCIPLES

TO SMALL DEVELOPMENT TEAMS

by

MILES HENRY PHILLIPS

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

THE UNIVERSITY OF TEXAS AT ARLINGTON

May 2006

ii

ACKNOWLEDGEMENTS

I would like to acknowledge my supervising professor Mr. David Levine for his

guidance throughout the development of this thesis. He provided good feedback and

encouragement to make this thesis possible. I also appreciate Dr, Sharma Chakravarthy

and Dr. Roger Walter for their participation on my committee.

I would be amiss to not mention my gratefulness to my wife Kristi and my

children Emily, Elizabeth, Ellen and Benjamin, for their loving support during my

pursuit of higher education. I am forever indebted to my Lord Jesus Christ for the

inspiration, strength and mercy given to me. It is for His glory and honor that I have

pursued this degree.

April 3, 2006

iii

ABSTRACT

APPLICATION OF SOFTWARE ENGINEERING

BEST PRACTICES AND PRINCIPLES

TO SMALL DEVELOPMENT TEAMS

Publication No. ______

Miles Phillips, M. S.

The University of Texas at Arlington, 2006

Supervising Professor: David Levine

The motivation of this thesis comes from the professional experience of the

author. Having worked with very small software development teams in various

capacities, he realized that significant improvements could be achieved by the application

of modern software engineering practices and principles. This paper is the result of

researching how the principles and practices promoted by the leading software

development authors can be applied to the small development team as they transition

from “programming in the small” to “programming in the medium.”

iv

This paper investigates the best practices and principles in various case studies

with the objective to clearly define how the application of these practices and principles

contributed to a successful software project. Several chapters are dedicated to reviewing

techniques applicable to each of the phases of the software lifecycle with examples of

each technique. The paper culminates with the author’s recommendation of principles

and practices for the small development team which can and should be used to improve

the quality and overall time of the software development lifecycle of a small project.

Each practice used in these case studies is evaluated for practical use in a small project,

discussing the advantages and disadvantages of each tool while also exposing some

reasons why trained software engineers often neglect these practices. The paper

concludes with suggestions from the author of appropriate application of the practices

and principles to small development teams.

v

TABLE OF CONTENTS

ACKNOWLEDGEMENTS... ii

ABSTRACT .. iii

LIST OF ILLUSTRATIONS... ix

LIST OF TABLES... xi

Chapter

1. INTRODUCTION... 1

2. SOFTWARE ENGINEERING EXPLAINED .. 14

2.1 Definition of Software Engineering... 14

2.2 Software Engineering Terminology .. 15

2.3 Modeling Languages ... 19

2.4 Software Development Lifecycle .. 21

2.5 Process Models .. 25

2.6 The Agile Alternative .. 31

2.6.1 Extreme Programming Method.. 34

2.6.2 Task Swamping: Alternative to Pair Programming........................ 36

3. UNIVERSAL PRINCIPLES AND PRACTICES... 38

4. SOFTWARE ENGINEERING STANDARDS .. 45

4.1 International Organization for Standardization (ISO) 47

4.2 Institute of Electrical and Electronics Engineers, Inc .(IEEE) 48

vi

5. CASE STUDY INTRODUCTIONS ... 51

5.1 Movies on the Web.. 51

5.2 Selling of Advertising Time for Piccadilly Television............................ 52

5.3 Center/TRACON Automation System (CTAS) 52

6. GENERAL TECHNIQUES .. 54

6.1 Software Reuse .. 54

6.2 Lai Notation ... 56

6.3 Structured Notation.. 60

6.3.1 Data Flow Diagram.. 60

6.3.2 Entity-Relationship Modeling (ER)... 64

6.3.3 Structure Charts ... 66

6.4 Object-Oriented Modeling Language (UML) ... 66

6.4.1 Use Case... 67

6.4.2 The UML Structural Model View.. 72

6.4.3 The UML Interactive Diagrams... 75

6.4.4 The UML Environment Model View .. 80

7. REQUIREMENTS PHASE... 84

7.1 Requirements Engineering Principles.. 84

7.2 Requirements Gathering and Definition Methods................................... 90

7.2.1 IEEEE Software Requirements Specification (SRS) 830-1998.... 92

7.2.2 Requirements Modeling with UML... 97

vii

 7.3 Formal Methods... 99

7.4 FREEDOM Method... 100

7.5 Reason Why Requirements Are Not Adequately Defined 105

7.6 Case Studies... 106

8. DESIGN PHASE... 108

8.1 Design Principles ... 109

8.2 Design Practices... 114

8.3 Design Techniques... 116

8.4 Case Studies... 117

8.5 Application to the Small Development Team ... 119

9. CONSTRUCTION PHASE .. 120

9.1 Construction Principles.. 122

9.2 Construction Practices ... 124

9.3 Application to the Small Development Team ... 125

10. VALIDATION PHASE ... 126

10.1 Testing Principles .. 127

10.2 Testing Techniques .. 128

10.3 Testing Practices .. 129

11. INTEGRATION AND DEPLOYMENT PHASE....................................... 131

12. MAINTENANCE PHASE .. 134

12.1 Corrective Stage... 135

12.2 Adaptive Stage... 135

viii

12.3 Perfective ... 136

13. CONCLUSION ... 137

13.1 Development Environment.. 138

13.2 Scenario One - The Lone Developer ... 140

13.3 Scenario Two - The Tiny Team... 141

13.4 Convincing Management... 142

13.5 For All Small Teams.. 143

REFERENCES .. 144

BIOGRAPHICAL INFORMATION... 150

ix

LIST OF ILLUSTRATIONS

Figure Page

2.1 Relationship of Principles and Techniques ... 17

2.2 Software Development Pentagon .. 19

2.3 Phasing to a New Release ... 25

2.4 Waterfall Process Model ... 27

2.5 The V Process Model .. 28

2.6 The Prototyping Process Model .. 29

2.7 Phased Development Process Model .. 30

2.8 Spiral Process Model... 31

6.1 Lai Notation – Transition Diagram – Movie Actor Example 59

6.2 Context Diagram – Movie Actor Example ... 61

6.3 Overview (or Level 0) Diagram – Movie Actor Example 61

6.4 Level 1 Diagram – Movie Actor Example – Process 1................................... 62

6.5 Entity Relationship Diagram – Movie Actor Example 64

6.6 Structure Chart – Movie Actor Example .. 66

6.7 Detailed Structure Chart – Movie Actor Example .. 66

6.8 Use Case Diagram – Movie Actor Example ... 69

6.9 Analysis level class diagram – Movie Actor Example 74

6.10 Design Level Class Model – Movie Actor Example....................................... 75

x

6.11 Sequence Diagram – Movie Actor Example... 76

6.12 Collaboration Diagram – Movie Actor Example .. 77

6.13 State Chart – Movie Actor Example ... 78

6.14 Activity Chart – Movie Actor Example .. 79

6.15 Component Diagram – Movie Actor Example ... 80

6.16 Deployment Diagram – Movie Actor Example .. 81

7.1 Freedom Requirements Process .. 102

xi

LIST OF TABLES

Table Page
 1.1 Software Development Team Roles.. 11

 2.1 Lifecycle Development Phase... 23

 3.1 Average Cost of Fixing Defects Based on When They’re Introduced and
Detected... 44

6.1 Artifact Definition Form for Artifact “Risk” .. 57

6.2 Lai Notation – Artifact Definition Form – Movie Actor Example 58

6.3 Module Description – Movie Actor Example .. 63

6.4 Use Case Listing – Movie Actor Example ... 70

6.5 Use Case Actor Listing – Movie Actor Example ... 71

6.6 Use Case Scenario – Movie Actor Example .. 72

7.1 Software Requirements Specification Characteristics 90

1

CHAPTER 1

INTRODUCTION

Thousands of programmers have produced useful products without consciously

applying any software engineering principles or without producing any written

requirements, design or testing plans. These professionals often balk at the “overhead”

encouraged by software engineering courses and literature, considering such time

consuming “extra” activities a luxury or “red tape”. Many of the programmers are

absolutely correct. Certainly, a programmer can be professionally successful without

adhering to the modern software engineering principles and techniques. However

successful the product was or however quickly the product was produced cannot be the

only measure to verify that software engineering practices do not need to be followed,

even for the small projects. Issues like maintenance ease of revision, reuse of

components, duration of testing and integration, and difficulty of training all must be

considered. When measuring the success of the project, the entire development cycle

must be considered. The old adage “there’s always room for improvement” holds true

for software engineering. Software engineering addresses software from the “big

picture” perspective. A small development team is often tempted to take the informal

or undisciplined approach especially if the project is considered “small” or is a

modification to an existing system due to a variety of reasons. While the product may

be initially delivered quicker in an undisciplined manner, the team must consider the

2

downstream effects. Did the lack of requirements lead to another cycle of development

based on customer dissatisfaction? How many critical bugs were found after product

delivery? How much of the system’s functionality will be repeated in future projects?

How long does it take for a developer in the team to maintain another developer’s code?

The small development team should evaluate the ideas conveyed in this paper since the

industry has a poor record of completed projects. The Standish Group reported in 1994

that only 16.2% of software engineering project finish on time and on budget.

[STANDISH1994]. This group reported in The Chaos Report an increase in 2003 of

34% of projects finishing on time and on budget. While this is a significant

improvement, it still remains that 66% of all projects fail to meet this basic objective.

[STANDISH 2003] Granted this is just one metric, but it illustrates the need for

improvement in the development of software projects. The author of this paper is

convinced that by applying software engineering best practices and techniques to some

degree, any small development team can improve, drastically in some cases, its ability

to effectively delivery software products.

The author of this paper writes from the perspective of over five years as a

commercial software developer and ten years as a system administrator, and “utility”

programmer. He is an example of a software professional who has achieved some

success in an “unstructured” development environment. Often the software engineering

community disregards this approach at any time. However, this author has had years of

successful experience researching new ways to automate mapping application and

producing utilities programs and prototypes. In these cases, it could be argued that the

3

unstructured approach is very efficient for rapid development for very small problems

or proof of concepts. In hindsight however, there are some universal principles that

would have improved his projects as they evolved into larger system. Having been

employed in roles as a utility programmer for the majority of his professional, he has

been productive without taking the time to formalize requirements, produce detail

design, or many other software engineering activities he was trained to do. It seldom

seemed practical to the situation. However, he transitioned several years ago into a

software developer for a small development company. His first task was to research

and develop a product that would manage the spatial aspects of the existing system into

a database management system instead of the existing file based approach. He

developed a prototype which after several iterations was accepted and then this

prototype evolved into a product without rebuilding the system using the practices and

principles mentioned in this paper. The evolved product has resulted in a

disproportionately amount of time spent on integration and maintenance. When the

opportunity to redesign the system presented itself, he was able to convince his

management to expend the resources to apply the appropriate software engineering

principles and practices to the project. The expected results are much shorter

integration and maintenance cycles, better communication of functionality, more

intuitive usability and reusable requirements, designs and components to provide a

foundation for future projects. This event happened approximately the time that the

author was selecting his thesis topic and therefore was of much interest to him. His

experience is not an isolated occurrence. Many well meaning software developers for a

4

variety of reasons have neglected proven practices. The goal of this paper is to provide

a concise evaluation of modern software engineering practices and principles.

The author is currently going through the pains of evolving from the practices of

“programming in the small” to those appropriate for “programming in the medium”.

“Programming in the small” has been defined as the development of the class of

programs that can be understood by one person, meaning that a developer can modify

the code without unexpected consequences and without referencing outside

documentation. [ZIMMER] It can further classified as a system that can be maintained

effectively without documentation over a sustained period of time. Outside

documentation may be needed to know what somebody else expects the code to do, but

no other documentation is needed to understand how the code works unless it

implements a technique new to the developer. While developers vary greatly in their

ability to mentally hold the details of a system, the human mind is limited in what can

be clearly retained. Obviously this “measure” is simply an attempt at determining to

what extent the developer should apply the software engineering principles and

practices. The answer is a scalable one, meaning that some are universal and would

benefit a program of any size, such as coding standard, while others are practical for

large complex system, or “programming in the large”. The “large” class of programs is

defined by systems that must be thoroughly documented in order for the system to be

understood and is performed by larger groups of people or by smaller groups over

longer time. It produces code that cannot be understood without a divide and conquer

approach. With programming in the small, the emphasis is on clean code that can be

5

understood. With programming in the large, the emphasis is on partitioning the work

into modules whose interactions are precisely specified. This requires careful planning

and careful documentation. [ZIMMER] Obviously, “programming in the medium”

would be the class of systems that are in between. Programming in the medium allows

for the flexibility shared with the small project but is large enough to require stricter

adherence to documentation and techniques. Many small to medium-sized system can

be built with today’s tools by one to two developers. Not only is the “size” or

complexity of a project to be considered when determining what principles and

practices to follow but also the risk factor of the project. With a low risk project, little

management support or review is needed. Large systems need more structure and

review, involve many customers and users and development occurs over a long period

of time. [PFLEEGER pg. 32] The basic assumption of this paper is that developing

software with some degree of a disciplined approach will always result in more stable,

useful, correct products that are produced in a more efficient manner. One of the goals

of this paper is to assist the small development team in recognizing the practices and

principles that are “universal”, ie. applicable to projects of all sizes as well as to

introduce those that are useful to projects large enough to benefit from a more

disciplined approach.

A software developer transitions into a software engineer when he or she

adheres to software engineering principles and utilizes the techniques shared amongst

the software engineering community. No matter the size of the project, some level of

software engineering principles, practices and techniques can improve the development.

6

Software engineering has much to offer developers of all types. Many authors have

written extensively on software engineering principles, methodologies, and techniques

so there is no shortage of material on the subject. Any respectful computer science

collegiate program includes several courses in solid software engineering on how to

develop efficient software. With this level of maturity of the software development

discipline, it would seem logical to conclude that trained software developers would

follow these proven techniques and thus more times than not, successfully and

efficiently produce stable and useful products. However, many developers, particularly

“developers in the small”, choose to not to follow the more disciplined approach,

resulting in the longer term in faulty or unusable systems or missed deadlines or yet

another one off product that does not allow the reuse any portion for future products.

Reasons for the omission of best practices range from lack of education to being lazy to

unsupportive management.. Also it takes discipline to follow a prescribed methodology

and many developers want to start programming after being given a description of the

problem. As stated in the opening paragraph, adhering to defined practices appears to

be a waste of time to this mindset, though studies show that projects without adequate

time given to each development activity has expensive repercussions later in the project.

For example if not enough time is spent on gathering requirements for a “project in the

medium”, the result would most likely be a product that does not meet the need of the

customer Developers prescribing to this undisciplined approach would not be

considered software engineers, for their actions do not demonstrate a systemic,

quantifiable approach to developing the product, which is at the core of the definition of

7

software engineering. [IEEE610 pg . 67] .Why does this negligence continue and in

some cases be rewarded by management? Some legitimate reasons include

• Some programs are small enough can be developed efficiently by

just “hacking it out”. These products are often utility programs that can be

easily revised and edited “on the fly” as bugs are found or the requirements for

the tool changes. Programs that fall into this category would be fall in the

“programming in the small” classification.

• The management is pressuring the developer to just get it done,

therefore tempting well-meaning developers to “cut corners” to accomplish the

task in the deadline given. These short cuts often lead to products that are riddle

with bugs, therefore taking a grossly disproportionate amount of testing and

“bug fixing” time or worst, sending out a faulty deliverable, causing loss of trust

or respect for a company by its clients. Why do developers feel that taking short

cuts will actual shorten the product cycle time? There is always the feeling that

“everything is going to go right this time”, even when it rarely does. This faulty

feeling results in accepting an email for a requirements document or testing of

the standard (or “happy path”) case as the final system test. While occasionally

these practices can be tolerated, they never pay off in the long run.

• Developer may have spent years of “programming in the small”,

building utility programs or performing research efforts, and then suddenly find

that one of his/her projects have grown into a sustain system without the

conscious application of today’ best practices or to adhering to the proven

8

principles that guide a substantial software development effort. In such

situations it is difficult to reverse the “hacker” trend without a conscious effort

of the development team and the management.

This paper is written for the benefit of software developers that find themselves

faced with medium sized development efforts with a small development team (two or

three developers). The ad hoc approach to development cannot be effectively be used

for “programming in the medium”. The term “medium” is relative but to provide some

metrics, this author considers a medium software project to contain 5,000 to 50,000

lines of code, 200 to 400 functions, and requiring more than one man month to

complete. Such projects require the developer to consciously employ software

engineering principles, practices and techniques in order to successfully develop the

product, although not to the degree that “programming in the large” requires. Much of

the software engineering literature is written for “programming in the large”, leaving

each development team to determine which techniques to incorporate and to what extent

is practical for this project. Certainly each project would benefit from the application of

modern software engineering principles, methodologies and techniques but to varying

degrees. It is time-consuming for a small development team assimilate the vast

information available and develop a well thought out and applicable approach to

software development. The intent of this paper is to examine several of these tricks of

the trade from the perspective of “programming in the medium”, review how others

have used them and to attempt to provide an example of how to implement a small

9

development project generated by efficient use of the best that the software engineering

discipline has to offer today.

Software engineering practices and methods fall into one of two concerns: :

managerial and technical. Applying project management (managerial) practices and

techniques for the planning, scheduling and controlling of a development project are

critical to the success of any medium to large project. Software projects benefit from

implementing good, basic project management principles and practices. A host of

software engineering professionals have developed solid project management

approaches with ideas and guidelines borrowed from the broader project management

community and much has been written on this managerial aspect of software

engineering. These concerns are not the focus of this paper. Separating the managerial

concerns from the technical permits a focused discussion on techniques that can be

applied in a variety of managerial techniques. This paper focuses on the technical

aspect of the trade, such as how to define requirements, create useable design

documentation, and generate tests that validate the requirements. The ideas presented in

this paper can, in some form, be applied to most any managerial methodology.

While the focus is not on the managerial side of software engineering, it is

necessary to discuss the roles required for an effective software development team. One

of the first steps to improving the technical aspects of a development team is to

recognize every member’s role (who is doing what) and how to efficiently carry out

these roles. The responsibilities of the roles discussed below should be performed to

some degree no matter what the size of the development team. If a project has a single

10

developer, then that person must assume all the roles while larger teams can divide the

responsibilities as skills allow. The assumption is that if a role is poorly implemented

or unconsciously carried out, then the byproducts of this neglect will negatively affect

the project. For example, requirements for a project may be a simply a discussion at the

break room or an email with a vague description of the system. Such requirements are

impossible to reference in design documentation or in test plans therefore not providing

the means for traceable requirements. In this case, the team member responsible for

requirements should recognize this deficiency and prepare an adequate level of

documentation.

Once the roles of a team are established, the development team must evaluate

the skills of its members and determine if all roles can be assigned and adequately be

performed by the team. Large development environments often have the luxury of

choosing team members appropriate for a development effort while small development

companies will often have to adapt or re-educate its developers to appropriately equip

the development team for the project. It is important that the team size is optimal for

the development effort. Doubling the size of a team will not half the development time.

[FACTGURU] No matter the size of the team, it is important to consciously develop

and maintain the efficient execution of each role. The roles are described in the table

below.

11

Table 1.1 Software Development Team Roles [PFLEEGER pp. 25-27]

Each member of the development team should realize his or her role or roles

and coordinate together to efficiently develop the final product. Ideally, each team

should include at least two people capable of performing each role, so that if some

Role Description
requirements
analyst

Represents the activities of working with the customer to
understand what the problem is and how a new or modified
software system could provide a satisfactory solution to the
problem. The person or persons in this role should have good
communication skills as well as analytical skills so that they can
define the project into tangible, concrete pieces accurately
reflecting what the customer desires.

designer Involves generating system level descriptions in such a way that a
programmer can write lines of code which will implement what
the requirements specify

tester Involves working with the implementation team to verify that, as
the system is build up by integrating its components, it works
properly and according to the specifications.

trainers Directs users on how to use the system efficiently.
maintenance Consists of implementing bug fixes or enhancements
librarian Includes preparing and storing artifacts used for the life of the

system. These documents include requirements and design
specifications, training manuals, test data and schedules as well as
the software components.

configuration
manager

Has the responsibility of maintaining correspondences among
requirements, design, implementation and tests

12

member leaves the team or is absent, that role can continue. [FACTGURU] Many of

these roles correspond to a particular develop phase which will be discussed later and

are not required throughout the life of project and therefore could be a resource that is

assigned to multiple projects. Neglect of any of these responsibilities will result in a

less efficient use of the team’s resources. Therefore each role must be developed to

increase the maturity of a software development. The object of this paper is to provide

a concise summary of effective principles, practices and techniques to equip the

software developer to effectively fulfill his or her role or roles within the development

team that finds itself “programming in the medium” and has the difficult task of

determining a balance between “over engineering” the project versus not applying

sufficient software engineering techniques to generate a quality product in an efficient

manner.

In order to accomplish this objective, this paper has been organized in a manner

to lead the reader to full understanding of the software engineering discipline in chapter

two. Chapter three reviews current software engineering principles and practices and

provides some comments on how to apply to “programming in the medium”. Chapter

four discussions some of the current standards available for the software engineering

discipline. Chapter five introduces the case studies are referenced throughout the

remaining chapters. Chapter six details various techniques that can be used in various

phases of the software development lifecycle. Chapters seven through twelve describe

the phases of the lifecycle and review techniques specific to that phase. Chapter

13

thirteen concludes the paper with the author’s application of software engineering to the

“programming in the medium”.

14

CHAPTER 2

SOFTWARE ENGINEERING EXPLAINED

2.1 Definition of Software Engineering

Software engineering is formally defined by Institute of Electrical and

Electronic Engineers (IEEE) as “1. the application of a systematic, disciplined,

quantifiable approach to the development, operation and maintenance of software, that

is, the application of engineering to software. 2. The study of approaches as in 1.”

[IEEE610 pg . 67]. Alan Davis states “If software engineering is really an engineering

discipline, it is the intelligent application of proven principles, techniques, languages

and tools to the cost-effective creation and maintenance of software that satisfies users’

needs. [DAVIS95 preface] The distinguishing factor between simply creating a

software program and software engineering is in how the software is created. Software

engineering is the conscious application of a disciplined approach as stated in the above

definitions. Therefore a development project that does not follow “a systematic,

disciplined, quantifiable approach” cannot be considered a software engineering project.

This chapter describes software engineering by defining terminology and describing

some common approaches in order to lay a foundation for the remaining chapters of this

paper.

15

2.2 Software Engineering Terminology

Throughout the research for this paper, several terms were used in a variety of

ways to describe and enumerated current thought and practice of the modern software

engineering discipline. In order to consistently refer to these terms in this paper, it is

necessary to provide an acceptable description of each.

Practices are simple the way that something is done. They are not implemented

by technologies, but are conceived by humans. [WIKIPEDIA PRACTICE] “Practices

are the evidence of values.” [BECK pg. 14]

Principles are rules or norms that form the foundation for decisions and actions.

They vary from guidelines in that guidelines are more suggestions but a principle are

more edicts that suggest if a principle if violated, then the product will directly be

negatively impacted. [DAVIS95 pg. 3] Principles bridge the gap between values and

practices. They are domain specific guidelines. [BECK pg. 15]

Techniques are procedures that aid in developing software in performing some

subset of a software development phase, thus enforcing some underlying principles.

Many techniques result in documentation or are used to transform existing

documentation into a product. [DAVIS95 pg. 3]

Languages are a set of primitive elements and set of rules that can be used to

create more complex entities. Techniques create documents or products that are

represented by some language. [DAVIS95 pg. 4]

16

Methodologies in the context of software engineering referred to “a codified set

of recommended practices, sometimes accompanied by training materials, formal

educational programs, worksheets, and diagramming tools. While these would be more

accurately referred to as methods, the word methodology is a more grandiloquent.”

[WIKIPEDIA METHODOLOGY]

Tools are software programs used to enforce tool, support languages and

techniques in order to more efficiently carry out some step of software engineering.

[DAVIS95 pg. 4] Shari Pfleeger refers to a tool as "an instrument or automated system

for accomplishing something in a better way ie. more accurate, efficient, productive or

enhances quality.” [PFLEEGER98] Many excellent software engineering tools are

available to assist software development. Tools cover the full gambit of software

engineering activities, from project management to system modeling tools to integrated

development environments to software configuration management. Tools include such

a text editor or, database management system, testing support, and programming

environments. It is not the intent of this paper to review such programs but to focus on

the techniques that these tools automate. If a development team finds a particular

technique helpful in their environment, then the team should at that point start looking

for a tool to automate that technique. It is highly recommended that a technique be

utilized manually before spending the time and money on procuring an automated tool

for the simple reason if it is not useful manually then it will most likely not be useful

automated. Many procured tools quickly become “shelfware” after the novelty wears

off.

17

Alan M. Davis depicts the relationship between principles, techniques,

languages and tools in the following diagram.

Embraced by

Use

Supported by

Languages

Tools

Principles

Enforced by

Supported by

Techniques

Figure 2.1 Relationship of Principles and Techniques [DAVIS95 pg. 4]

A process is a series of steps involving activities, constraints and resources that

produce an intended output of some kind. The characteristics of a process are :

• prescribes all major process activities

• uses resources, subject to constraints (schedules), produces intermediate

and final products

• may be composed of subprocesses that are linked in some way

• each activity has an entrance and exit criteria

• activities are organized in a sequence

• every process has a set of guiding principles explaining the goal of each

activity

18

• constraints or controls may apply to an activity, resource, or product

(examples : budget or time) [PFLEEGER pg. 44 – 47]

Wasserman classifies the fundamental notions in the discipline of software

engineering into eight categories as listed below. These notions are referenced

throughout the paper.

• Abstraction – description of problem at some level of generalization that

allows the software developer to concentrate on the key aspects of the problem without

getting mired in the details

• Analysis and Design – provide a means to build models and check them

for completeness and consistency

• User Interface Prototyping – building a small version of a system used to

help user identify the key requirements of a system

• Software architecture – overall architectural structure of a system. Eases

implementation and testing as well as enhances the speed and effectiveness of

maintaining and changing a system.

• Software process – different types of software needs difference

processes. Various process models are described later in this chapter.

• Reuse - the practice of referencing artifacts used in previous

development for the benefit of reducing the development time by utilizing existing

requirements, designs, test scripts or data. Also aids in learning from past efforts.

• Measurement – quantifiable description of a satisfactory system

19

• Tools and integrated environments – software programs used to

automate various software engineering activities and technique.

[PFLEEGER98 pg. 29-35]

Another perspective of software engineering is the view of a software project as

having five distinct facets by Leszek A. Maciaszek in his “Software Engineering

Pentagon” (Figure 2.2). The facets addressed in this paper are the development

lifecycle and the modeling languages as they relate to “programming in the medium”.

The other facets are very important to the development of software project but are

outside of the scope of this paper.

Software
engineering
pentagon

Development
lifecycle

Process
management

Project
planning

Engineering
tools

Modeling
language

Figure 2.2 Software Development Pentagon [MACIASZEK pg. 3]

2.3 Modeling Languages

“Software engineering is about modeling.” [MACIASEK pg. 27] Models are an

abstract representation of reality. “By allowing concentration on important aspects of a

20

problem and by ignoring aspects that are currently not relevant, abstraction allows

systematically conquer the problem’s complexity.” Abstraction is a powerful technique

that allows the development team to systematically conquer the complexity of a

software project. This technique related to both the process (representation of the

software process) and the product (the abstraction representation of the product). This

approach applies to software products and processes. The process model defines the

lifecycle phases and how they interact, therefore determining what software products

needs to be produced by lifecycle phases. A software product model is an abstract

representation of a discrete product of a particular lifecycle stage. Examples are

requirements, specifications, architectural, detailed design, and the resulting program.

Further developing the idea that software engineering is modeling and that the resulting

program is actually an executable model, it logically leads to view a programming

language as a modeling language. [MACIASZEK pp. 37] This leads to the

understanding that the knowledgeable application of modeling languages and

techniques is fundamental to software engineering. Process models assist in guiding

behavior when working with a group.

Which abstraction techniques to use depend on the paradigm adopted. There

are two main paradigms in software development: functional and object-oriented. The

functional paradigm uses functional decomposition to break down a complex system

into manageable units using the data flow modeling technique. This paradigm also is

referred to as procedural, imperative, or structured. In this paradigm, the software

model is further divided into decreasing levels of abstraction linked by data flows. The

21

proven techniques from this paradigm have value in the modern software development

world and will be considered through the paper. The object-oriented paradigm breaks

the system into components or packages of classes that are linked together by

relationships. Abstraction can be modeled with nested structures by allowing

components or packages to contain multiple levels of other components or packages.

Various object-oriented techniques will be used to illustrate how to reduce a software

project into a collection of well-defined, related components in a flexible, maintainable

and reusable manner. [MACIASZEK pp.12-13] The modeling languages and notations

vary depending on the paradigms the developer chooses, so the choice to follow a

functional or object-oriented approach will define the techniques and artifacts used to

develop the product.

2.4 Software Development Lifecycle

Software engineering consists of activities which should be present in any

development project: Requirements gathering, analysis, design, construction, testing

deployment, maintenance. These activities represent phases of the development

lifecycle. These phases go by different names or are sometimes consolidated but the

activities should occur however labeled. For example, Pfleeger rolls requirements

gathering and analysis into one phase called “requirements analysis and definition.”

Another example would be from Roger Pressman. He compresses the phases into three

generic phases : Definition, Development, Support. [PRESSMAN pg. 22] Some

experts like Leszek A. Maciaszek contend that “testing … is an all-encompassing

activity that applies to all phases of the lifecycle”. Therefore testing is not depicted as a

22

separate phase in Maciaszek’s process model in figure 2.3. The following diagram

graphically depicts how the phases relate from one major release to another.

[MACIASZEK pg. 6] Kulak and Guiney encourage more limited phases. “We consider

requirements gathering a separate activity from analysis. This is contrary to several

other prominent industry luminaries, who lump them together. Neither way is

ultimately correct or incorrect; we have simply chosen to separate these activities to

emphasize their importance.” [KULAK pg. 5] The IEEE Taxonomy standard provides

the greatest number of phases including qualification, manufacturing, installation and

checkout, and retirement phases. This level of detail is applicable to some

environments. This paper will follow a variant set of activities prescribed by Kulak in

order to better delineate the appropriate application of principles and use of techniques.

The intent is to show why each phase is important and that following some principles,

practices and techniques are essential to generating efficient and qualify software

product. Daryl Kulak states the reality of many projects “The emphasis that the team

gives to each phase determines the direction and quality of the resulting system. If one

activity is not give its due, then will be predictable problems with the project and the

end product. In reality, however, certain activities usually receive more attention than

other activities. It is not easy to explain why this occurs, but it does. The activities that

are usually ignored or paid lip service are: requirements gathering, testing, deployment,

maintenance” [KULAK pg. 2]

23

The following table describes the phases of the software development lifecycle

followed by this paper which provides a logical break down of this paper’s topics.

Table 2.1 Lifecycle Development Phases
Activity
Name

Description

Requirements
gathering and
analysis

Gather and document the functions that the application should perform
in the language and perspective of the user
Build a logical solution that satisfies the requirements but does not
necessarily take the physical constraints into account.

Design Begin with the logical solution and change it to work effectively with
the physical constraints (network latency, database performance,
cashing, availability, and so forth) and produce specifications that can
direct the construction effort

Construction Use the design to produce working code, which involves making the
lowest-level design decision, writing code, compiling, debugging, and
testing by increment.

Testing Use the constructed application to produce a complete working system
by system testing, detecting and recording issues, fixing problems, and
getting user acceptance of the result.

Deployment Fit the tested application into the production environment by deploying
the code libraries to the designed machines, training the users, and fine-
tuning the business procedures surrounding the new system.

Maintenance Administer and make changes to the working system in the production
environment to adapt to ongoing business changes (legislative,
competitive), technology changes (hardware, software,
communications), physical changes (location, configuration), personnel
(information technology (IT), user), system issues (code bugs, design
problems) and politics.

24

Maciaszek states that in order to understand the software lifecycle one must

understand the context of software production. He captures these fundamental

observations in what he refers to as the “quintessence of software engineering”.

• The software system is less than the enterprise information system

• The software process is part of the business process

• Software engineering is different than traditional engineering

• Software engineering is more than programming

• Software engineering is about modeling

• The software system is complex.

[MACIASZEK pg 7]

In the following diagram, Maciaszek illustrates how the conclusion of the

development of one release of the product leads into the construction of the next

release. This diagram is included to visualize how phases relate to one another and to

future releases.

25

Requirements
Analysis

Systems
Design

ConstructionDeploymentMaintenance

Phasing in

Phasing out

Requirements
Analysis

Systems
Design

ConstructionDeploymentMaintenance

Phasing in
new system

Figure 2.3 Phasing to a New Release [MACIASZEK pg. 6]

2.5 Process Models

In order to communicate the appropriate uses of software engineering

techniques and practices, it is helpful to understand the various software process models

that are in common use today. Each of these models organizes the activities (lifecycle

phases) of software development in different ways, with each serving a particular

purpose. Models are used to form a common understanding of each activity, assist team

in finding omissions, inconsistencies, and redundancies in the process, thus allowing for

26

the generation of a more effective model. The process model chosen for a development

project should reflect the project goals and should be altered to fit the unique situation

of each project. Models are guidelines to help organize a project.

The waterfall model was one of the first models introduced [ROYCE70] in

1970 and depicts each of the stages as cascading from each other giving the image of a

waterfall. It is derived from the hardware arena which followed a manufacturing

perspective. Each phase, or stage, of development is not initiated until the previous

phase is completed and approved. The phases include requirements analysis, system

design, system design, program design, coding, testing, training and maintenance.

Progress is measured in delivered artifacts such as requirements specifications, design

documents, test plans, and code reviews. This model has proved to be impractical when

implemented for the whole project because software evolves as the problem is

understood and alternatives are evaluated. There is the inevitable need to traverse the

waterfall and repeat or redo one of the stages. It also imposed management structure on

system development. This model can result in significant integration and maintenance

issue. Another criticism is that there is no indication how one phase is transitioned to

another. However, the waterfall model does provide a good basis for other process

models. [PFLEEGER98 pg 48-49]

27

Requirements
Gathering

System
Design

Detailed Design

Construction

Unit and
Integration Testing

System
Testing

Acceptance
Testing

Operation and
Maintenance

Figure 2.4 Waterfall Process Model

Adding feedback to the waterfall model improves this model by allowing the

activities of a previous phase to be revisited based on the feedback of the next phase.

For example, if during system design, the developer discovers a new requirement, then

he should go back to the requirement “phase”, update the requirements and then

continue with the system design. The obvious limitation is the further down the cycle a

change is recognized, the harder that it is to change in earlier phases.

The V model is a variant of the waterfall model which depicts how testing

activities relate to analysis and design. The name comes from the shape of the

following diagram (Figure 2.5) that illustrates the relationships, arranging the activities

28

in a V formation. One of the short comings of this model is the fact that requirements

are not validated until acceptance testing is engaged. The time interval between

acceptance testing and requirements might be to such the extent that any feedback from

the user generates very expensive alterations to redesigning the system.

Requirements
Gathering

System
Design

Detailed Design

Construction

Unit and
Integration Testing

System
Testing

Acceptance
Testing

Operation and
Maintenance

Validate Requirements

Verify Design

Verify Design

Figure 2.5 The V Process Model [PFLEEGER pg. 52]

The prototyping model allows for the quick construction of all or part of a

system to understand or clarify the system. It is helpful for reducing risks and

uncertainty in development. Each phase is cycled between creating the prototype and

the customer creating a list of revisions until both the developer and customer agree.

29

The criticism of this approach is that it causes the focus to be on the user interface and

external functionality rather than the overall functionality of the system and it can be

costly to generate a multitude of prototypes.

Prototype
Requirements

Prototype
Design

Prototype
System Test

List of Revsions List of Revsions List of Revsions

System
Requirements

System
Requirements

Delivered
System

Delivered
System

Figure 2.6 The Prototyping Process Model [PFLEEGER pg. 53]

The phased (incremental or iterative) development model is useful for

satisfying today’s customer desire for quick results. It has proved to be very effective

approach to modern software engineering. In fact, Fred Brooks reports that nothing as

changed his own practice as incremental development. [MCCONNELL2004 pg. 16]

Careful planning from the beginning is necessary for this model to define and prioritize

the requirements in a manner that can be organized into incremental releases. With this

model, there are two systems functioning in parallel: the development system and the

production system. Two approaches developers use to organize the requirements and

design into incremental releases are the incremental development approach and the

30

iterative development approach. With the incremental approach, subsets of the

functionality are added each release but with iterative approach, new functionality is

added to an already complete system. The first release is the simplest possible version

of the system. With the iterative model, all functionality is present in each release but

the modules are improved with each release. Both have their advantages and ultimately

produce the same result but the phased releases will vary in the level of detail of each

module.

Build Release 1 Build Release 2 Build Release 3

Use Release 1 Use Release 2 Use Release 3

Time

Development systemsDevelopment systems

Production systemsProduction systems

Figure 2.7 Phased Development Process Model [PFLEEGER pg. 56]

The spiral process model is similar to the iterative development approach

mentioned above in that it constantly revisits previous phases. The spiral model

combines development activities with risk management to control and recognize risk.

The start of the project is towards the center cycling through the development activities.

As requirements are revisited, another “loop” of the spiral begins, further improving and

changing the artifacts of each phase.

31

Figure 2.8 Spiral Process Model [MACIASZEK pg. 27]

2.6 The Agile Alternative

In recent years, a conceptual framework for software development called the

agile software development as emerged to challenge the tradition process models

discussed above. This approach has been applied to several methods and most of these

methods emphasize short iterations, each having a duration of one to four weeks. Each

iteration is treated as a miniature project and executes all the necessary software

development activities required for that iteration. The resulting product from an

iteration might not warrant a release but one of the premises of this approach is that the

software could be released at the end of any iteration for customer review. The agile

approach is to reevaluate the system at the end of each iteration, making the necessary

32

adjustments to the requirements and design during the next iteration. Documentation is

secondary, given preference to face-to-face communication. Teams are usually co-

located in a “bull pen” and work together to get the project completed, including the

customer, ie. the person that defines the product. The team includes the developers and

possibly testers, interaction designers, technical writers and managers. Because the

chief metric of progress is working software, little documentation is generated which is

the main criticism of this approach. The founders of this process created “Manifesto for

Agile Software Development” in 2001, which is listed below.

Manifesto for Agile Software Development

We are uncovering better ways of developing software by doing it and helping

others do it. Through this work we have come to value:

• Individuals and interactions over processes and tools

• Working software over comprehensive documentation

• Customer collaboration over contract negotiation

• Responding to change over following a plan

That is, while there is value in the items on the right, we value the items on the

left more.

Kent Beck, Mike Beedle, Arie van Bennekum, Alistair Cockburn, Ward

Cunningham, Martin Fowler, James Grenning, Jim Highsmith, Andrew Hunt,

33

Ron Jeffries, Jon Kern, Brian Marick, Robert C. Martin, Steve Mellor, Ken

Schwaber, Jeff Sutherland, Dave Thomas

© 2001, the above authors

this declaration may be freely copied in any form, but only in its entirety

through this notice. [CUNNINGHAM]

Agile methods are often criticized as undisciplined and at the opposite end of

the development spectrum from the “plan-driven” methodologies. It is more accurate to

say that agile methods are on the “adaptive” end of the spectrum rather than on the

“predictive” end, with the focus being on the changing realities presented as the project

evolves. In contrast, predictive methods require great effort to introduce change since

they are based on planning for the future. While agile methods have a similar flow to

the iterative development process, the agile approach focuses on release cycles in

weeks, often with a fixed time increment (a strict time box), ie. the team will always

have a release ready every two weeks. The emphasis is on creating a basic working

version of the product and continually improving it. Some teams that follow the agile

approach implement the waterfall model each iteration, going through the complete

lifecycle in the small time box. Other variations work on various development activities

simultaneously, not adhering to any of the traditional process models. Agile teams may

appear “undisciplined” but often do follow very disciplined and defined processes

therefore distinguishing it from “cowboy coding” or hacker status. In fact, each

iterative release is carefully planned for customer evaluation. A major delivery

34

resulting in the product being put into production has a duration of about six two-week

cycles.

Agile development works best when the developers of a small team (less than

10) are physically co-located and the project has fuzzy or unpredictable requirements

that can quickly change. A team should consider the agile development approach if the

team is composed of a small number of developers, the developers are all experienced,

the project has low criticality, the expected frequency of requirement changes is high

and the team’s culture thrives on chaos.

2.6.1 Extreme Programming Method

Here are a few examples of methods that have embraced the agile development

approach: Extreme Programming, Scrum, Agile Modeling, Lean software

development. [WIKIPEDIA AGILE] At the time of this writing (circa 2006), Extreme

Programming (XP) has received sufficient attention to warrant reviewing its

implementation of the agile development approach. Kent Beck, one of the founders of

the Agile movement, describes XP in his book “Extreme Programming Explained”

[EXTREME pp. 37-70]. He defines XP as a lightweight methodology for any size

teams developing software in the face of vague or rapidly changing requirements. The

core practices of XP include those of agile development as well as simple design, pair

programming, ten-minute build, test driven development, design improvement,

collective code ownership, coding standards, and working at a sustainable pace. Pair

programming and collective code ownership are two of the more radical ideas of XP.

Pair programming means, according to Kent, “write all production programs with two

35

people sitting at one machine. … Pair programming is a dialog between two people

simultaneously programming (and analyzing and designing and testing) and trying to

program better.” [EXTREME pg. 42] Most programmers can only do pair

programming for more than five hours a day. Pairs should rotate frequently, every one

to two hours at natural breaks in development. The benefits of this practice are that it

keeps each other on track, allows for brainstorming to refine a system, clarifies ideas,

holds each other accountable and allows one to take initiative when the other is stuck.

Sharing time in this manner also gives the group ownership of the code, creating built-

in redundancy. The criticism of this practice is duplication of effort and inefficient use

of resources.

Another practice promoted by XP is the ten-minute build. The product should

be able to be built and tested in ten minutes. This practice requires automation of builds

and tests. It is not always easy to get the build and test cycle down to ten minutes but

should be given priority to find a way to accomplish this. If it takes much longer than

ten minutes, then it is more likely to be used less often, resulting in longer intervals

between builds.

The XP practice of test-first programming addresses several issues. Writing

code to test for each condition of a method reduces scope creep, promotes loosely

coupled, highly cohesive code, builds trust because the code is proven to work, and

establishes rhythm (test, code, refactor, test, code refactor, …).This practice coupled

with the ten-minute build will greatly assist in preventing unexpected behavior to be

introduced by other modules. While a pure XP approach is not be appropriate for every

36

team, this method should be reviewed and some of the applicable practices can be

adopted to improve the efficiency of any team.

Each developer has his own style. Each development team has its own

dynamics. Each development project has its own unique set of circumstances. So it

stands to reason that no one single approach to software development fits all situations.

The small development team might be tempted to not follow any process model because

of the difficulty of adopting the discipline required. The team members should realize

that improvement can come from following software engineering and software

engineering requires some level of discipline. Therefore it is important that any

development team that desires to improve the quality, stability and efficient of its

products to adapt to today’s software engineering principles and practices.

2.6.2 Task Swapping: Alternative to Pair Programming

Task swapping is a concept that might be worth considering for the small

development team. Developers with similar skill levels are paired together. Each pair

is responsible for the development of at least two projects or components. Each

developer would work isolated for no more than 3 hours and then send 30 minutes or so

of transition time to review and discuss alterations to the projects, then the developers

will swap project. This practice would be a variant of pair programming in which “lone

developers” trade projects with minimum overlap. This approach might satisfy

management’s concern with the “wasted resources” perception of paired programming

and have the advantage of reducing code ownership. It has the build-it emphasis on

37

documentation and following coding practices since the two programmers would have

to communicate on each other’s progress.

38

CHAPTER 3

UNIVERSAL PRINCIPLES AND PRACTICES

Principles are what define and drive quality software. They evolve as the

discipline matures. Old ones are modified or discarded as new ones are added. Some

principles common in the 1960s would not be acceptable in today’s software

engineering word, such as keep variable names short, or do whatever possible to reduce

the length of a program. [DAVIS95 p. 5] No doubt, some of today’s principles held as

paramount will be discarded as the discipline continues to grow. While it may be

difficult to do, software engineers of a small development team would be advised to

stay abreast of the current principles in order to continue to product quality products in

an efficient manner. Some of the software engineering principles are “universal” and

apply to all or most phases of the development lifecycle as well as to any size

development team. Other principles are specific to the respective phase of software

development mentioned in the previous chapter. Since the focus of this paper is on the

technical aspects of software engineering, the management and product assurance

principles will not be described. This chapter reviews the universal, or general,

principles of software engineering that can apply to the technical aspects of several or

all of the software development phases. The principles that fall into one of the

development lifecycle phases will be discussed in its appropriate chapter.

39

As defined in the first chapter, principles are truths, rules or assumptions that

hold true regardless of how the software is implement. If a principle is violated, then it

is expected that some aspect of software engineering is compromised, resulting in an

inferior product or significant deadline overrun. It is important that the small

development team be cognizant of these principles, which provide the underlying

guidelines for decisions and effectiveness. In a small company, the violation of these

principles can be devastating, resulting in a poor reputation or financial ruin.

Quality of product must not be compromised. According to Alan Davis,

there is one overriding principle that governs all other principles of the software

engineering discipline: a product must meet the quality specified in the requirements or

it is a failure. The reason to prescribe to any principle is to efficiently produce a

product that meets the acceptable quality. However, the definition of quality is “in the

eyes of the beholder”. [DAVIS95 pg. 9]. Developers might define quality as elegant

code or design whereas customers would see quality in light of how a product satisfies

his/her needs (real or perceived). Therefore though difficult, some definition of quality

must be understood by all team members, management and customers in order to

product an acceptable product. To honor this principle, acceptable quality must not be

sacrificed to achieve a higher level of productivity. It is interesting that Alan Davis

goes on to say “As the attempts are mode to drive productivity up, the density of bugs

increases.” [DAVIS95 pg. 10] One of the objectives of this paper is in direct conflict

with this statement. The underlying assumption of this paper is that by applying

modern principles and techniques to any software project, the productivity will increase

40

as well as the quality of the resulting program. In fact, it is assumed that only by

following best practices and principles, that a software development team can sustain

long term quality products that are efficiently produced. Quality should be a driving

factor from the initial phases of the development, not an after thought. An example of

this principle is that a prototype used for gathering or defining requirements should not

be evolved into a product. While efficiency is to be considered at all phases, the

reliability of the product should always come first. Therefore if a practice or technique

would provide a more efficient way to achieve a desired result but would compromise

the reliability of the product, then it should not be utilized.

Obtain customer feedback early in the development lifecycle. The earlier

that a product can be reviewed by customers, the sooner the development team will

receive feedback, and therefore have opportunity for the modification to be incorporated

into the product in a cost-effective and efficient manner. The major flaw of the

waterfall model is that the customer does not see the product until the end of the

lifecycle cycle, therefore requiring much more effort to apply any feedback from the

customer, thus violating this principle.

Don’t use the first release. When creating an entirely new product, expect the

first release not to be acceptable, therefore should be treated as a prototype. This

principle requires that the development team allow time for the first cut not to be the

final cut. The principle of building software incrementally has been popularized in

recent years with the advent of Extreme Programming [EXTREME]. However this

concept is not new. In 1971, R. Mills suggested a similar approach: Start small, with a

41

working system that implements only a few functions and incrementally add larger

subsets until the final product is arrived. [MILLS] Following this practice effects all

lifecycle phases. For example, all documentation should be stored in a manner that can

be easily retrieved and changed since requirements changes are inevitable, and

requirements must be changed before design can be altered.

Design should be intuitive. Well designed software should be intuitive to use.

One measure if this principle is being followed is the size of the user manual: the

smaller the manual, then more intuitive the product. This principle is universal because

it spans more than just the design phase of the project, but also effects how

requirements are organized and how testing is accomplished.

Document assumptions. Each component should have an explanation of the

assumptions of a product or its environment Manny Lehman states that developers

“make one assumption every 10 lines of code”. [LEHMAN91 pg. 243-258] Therefore,

it is impossible to be cognizant of all the assumptions that are made at each phase of the

project. However the practice of maintaining a diary of the recognized assumptions and

the resulting implications allows the developer to quickly identify the impact of a faulty

assumption. A good practice would be to include an impact assumption list with each

review and to provide an assumption section in each design module.

Use appropriate techniques for the project. One advantage of a small

development team should be its ability to be flexibly and change techniques and

languages to adapt to the situation. The desire to find a simple solution to a complex

problem can lead a developer to attempt to use the same notations for software

42

presentation throughout the entirety of a development cycle. It would better serve the

development team if its members were aware of several techniques and practices for

each phase of the development process and establish a principle that one set of

techniques and languages is to be selected for each phase of a project. Certainly if a

notation is optimal for more than one phase, it should be used where applicable. But a

team should not dictate that one set of techniques and languages should be required

through every phase of every project. This practice has received some criticism

however with the emphasis on incremental development. The argument is that instead

of throwing the product away, make the necessary adjustment for the next cycle of

development and release an improved product. The approach would be based on the

amount of change requirement and the type of software being generated. Business

system do not require as formal execution of construction prerequisite actvities as do

mission-critical system or embedded life-critical systems.

Manually prove a technique before automating. Before adopting a new tool,

the technique that the tools is implementing should be applied by hand first, to

demonstrate its usefulness and convince management that this technique is worthy to

automation. It is tempting to purchase a flashy tool before proving the technique is

useful with the team’s environment.

Avoid gold plating. A principle particularly applicable to small development

teams is to stop when the goal is achieved. The addition of unspecified functionality or

quality is called “gold plating” and while it might provide a temporary sense of

satisfaction of “over delivering” a product, it has the potential of introducing additional

43

bugs or complexity that the customer neither desires or appreciates and it will inevitably

add to the cost of the project and possibly introduce unnecessary bugs.

Use industry standard document formats. Using software engineering

standard documents can be very helpful if for no other reason that serving as a check list

to avoid major omissions. Standards are discussed later in this paper, reviewing some

of the industry standards and suggesting what is applicable to the small development

team.

Reuse. Reusing software components from previous products is an obvious

practice that can result is reducing the time required and improving the quality for all

phases of a project. This practice is not limited to the confines of the construction phase

but dictates how requirements and design activities are organized and effects testing.

Once a small software development team adopts reuse as a team norm, then stands to

reason that reuse can greatly improve a team’s ability to produce efficient products by

not only learning from past products but borrowing from them as well. Later chapters

will provide more discussion of reuse.

Fix defects as early as possible. Steve McConnell backs up this principle with

the following statement : “Researchers … have found that purging an error by the

beginning of construction allows rework to be down 10 to 100 times less expensively

than when it’s done in the last part of the process, during system test or after release.”

[MCCONNELL pg. 29] The following table shows the relative expense of fixing

defects at various phases of the project.

44

Table 3.1 Average Cost of Fixing Defects Based on When They’re Introduced and
Detected [MCCONNELL2004 pg. 29]

Time Detected
Time
Introduced

Requirements Architecture Construction System
Test

Post-
Release

Requirements 1 3 5-10 10 10-100
Architecture - 1 10 15 25-100
Construction - - 1 1- 10-25

45

CHAPTER 4

SOFTWARE ENGINEERING STANDARDS

Software engineering experts have researched and developed practices and

techniques using various notations and instruments to aide in the exercise of each phase,

resulting in software standards. Practices and techniques reflected in the standards

evolve from the application of good engineering principles to software development.

Principles of engineering were used to build principles of software engineering which

led to practice standards. The detailed implementation of the provisions of the practice

standards results in the creation of best practices. [MOORE pg. 5].

A standard is defined as 1) an object or measure of comparison that defines or

represents the magnitude of a unit, 2) a characterization that establishes allowable

tolerances or constraints for category of items and 3) a degree or level of required

excellence or attainment. Standards are definitional in nature, established either to

further understanding and interaction, or to acknowledge observed norms of exhibited

characteristics or behavior. [MAGEE2006]

Software engineering standards are used to improve communications between

software engineers and others, achieve economy of cost, human effort and essential

materials, institutionalize practical solutions to recurring problems, achieve

predictability of cost and quality, and to establish norms of acceptable professional

practice. [IEEE1002 foreword] The purpose of a standard is to communicate the

46

collective knowledge of industry experts on a particular subject, not to lock a developer

into a single way of accomplishing a task. Each standard has to be evaluated and

adapted to fit the needs of the team. The small development team can benefit from

adopting some standards by using the contents to reveal omissions or activities out of

sequence, by providing a common format to record information at each phase, by

having documents that are linked to together by a uniform approach to development.

The proper use of standards can improve and evaluate software competency by

increasing quality, customer satisfaction, reducing cycle time and increasing

productivity. Standards provide a common framework and terminology for the

development team and customer to more efficiently communicate.

However, choosing the appropriate standards for a small development team to

implement can be difficult. At the time of this writing (circa 2006), there are over 350

potentially applicable standards in the software engineering realm with over 50

organizations responsible for monitoring and maintaining these standards. “Many

organizations become ‘lost’ trying to select the right set of standards to use to produce

quality software products at a reasonable cost.” [MAGEE1997] With such a large

variety standards, it is practical to review and choose between a few of the most popular

ones or ones that are already familiar to the team members. Other option is to employ

experts like Software Engineering Process Technology [SPET] to review a company’s

needs and recommend a set of standards to follow. However obtained, adopting some

level of industry standards is an excellent way to improve efficiency by learning from

47

the collective wisdom of software engineers. The level of implementation of standards

can only be determined by the team itself.

The lists below are documents describing standards related to software

engineering. Other standard organizations exist that are helpful to the small

development team but only these two organizations are mentioned below will be

mentioned in this paper for brevity.

4.1 International Organization for Standardization (ISO)

ISO is a non-governmental organization with representation from 156 counties

which acts a bridge in which a consensus can be reached on solutions that meet both the

requirements of business and the broader needs of society, such as the needs of

stakeholder groups like consumers and users. ISO prides itself on being voluntary,

market-driven, equal footing, consensus based, and world wide. Often its standards

become law. One of the ISO areas of standardization is technology, which involves

software engineering. Below is a list of standards documents produced by ISO that

influence the software engineering community. The ISO documents are listed for

reference but not reviewed in this paper. [ISO]

• ISO/IEC 2382-1 Vocabulary – Fundamental terms

• ISO/IEC 2382-7 Vocabulary – Computer Programming

• ISO/IEC 12207-1995 - Software life cycle processes

• WD 14764 - Software Maintenance

• WD 15288 – Software Life Cycles

48

4.2 Institute of Electrical and Electronics Engineers, Inc. (IEEE)

IEEE has developed and maintained many standards for the software

engineering disciple since the early 1950s. “The existence of an IEEE Standard does

not imply that there are not other ways to produce, test, measure, purchase, market, or

provide other goods and services related to the scope of the IEEE Standard.” [IEEE830

pg 2] However, these standards are rigidly followed by large organizations and

therefore are worthy of review to evaluate what qualities of the reported tools used

might apply to the small software development team.

The following IEEEE standard documents were selected for review as each

provides a tool that is directly applicable to some phase of the software development

cycle.

• Standard Taxonomy for Software Engineering Standards [IEEE1002] –

explains how IEEE classifies software engineering standards into the following

partitions : process standards, product standards, professional standards, notational

standards. This document divides software engineering into job functions and software

life cycle.

• Standard glossary for Software Engineering Terminology [IEEE610] –

identifies the terms used in the computer field and to establish standard definitions for

these terms.

• Standard for Software Verifications and Validation Plans [IEEE1012] –

defines how to perform verification and validation plans for comprehensive evaluation

throughout each phase of a software project.

49

• Recommended Practice for Software Design Descriptions [IEEE1016] –

describes the necessary information content and recommendations for an organization

of Software Design Descriptions (SDD)

• Standard for Software Reviews [IEEE1028] - defines five types of

software reviews, together with procedures required for each type. The five types are :

management reviews, technical reviews, inspections, walk-throughs and audits

• Software Requirements Specification [IEEE830] – describes alternative

approaches to the specification of software requirements in order to help software

customers to accurately describe the product, to assist software suppliers to understand

what the customer wants, and to guide individuals on the development of a software

requirements specification (SRS) for their own organization as well as other supporting

items like a SRS quality checklist and SRS writer’s handbook.

• Standard for Software User Documentation [IEEE1063] – provides the

minimum requirements for the structure, information content, and format of user

documentation, including both printed and electronic documents used in the work

environment by users of systems containing software.

• Standard for Developing Software Life Cycle Processes [IEEE1074]

provides a process for the creation of a software life cycle model including the creation

of the software life cycle, primarily directed at the process architect for a given software

project.

• Standard for Software Maintenance [IEEE1219] – describes the process

of managing and executing software maintenance activities.

50

• Standard for Software Test Documentation [IEEE829] – provides

guidance on the development of test plans. Describes a set of basic test documents and

specifies the form and content of individual test documents.

• Guide to Software Reuse [IEEE1420] – defines the minimal set of

information about assets that reuse libraries should be able to exchange to support

interoperability.

Each member of the small development team should review the appropriate

standards for his or her role to better understand the scope of responsibilities within

each role. The standards documents provide a concise description of the industry’s

perspective of that role. While some of these standards are dated and have been

replaced with more modern practices, the majority of the information remains

applicable to current software engineering development.

51

CHAPTER 5

CASE STUDY INTRODUCTIONS

To better understand how the software engineering principles and techniques

addressed in this paper can be applied to the small development project, several case

studies have been reviewed and highlighted as to how software engineering practices

effected the projects. Theses case studies are referenced in the remaining chapter.

5.1 Movies on the Web

This case study was derived from the example used in Maciaszek and Liong’s

“Practical Software Engineering: A Case Study Approach” book. [MACIASZEK pg.

38] This paper elaborates on this case study to develop examples of various techniques.

This example is referenced the most of the case studies and provides a running example

throughout the remaining chapters.

This system is used by cinema chains to advertise movies on the Internet, to

provide movie information and screenings so that customers can query movie info and

order tickets. Most of the object orient diagrams in the General Software Engineering

Techniques chapter are drawn from this example.

52

5.2 Selling of Advertising Time for Piccadilly Television

This case study is taken Shari Lawrence Pfleeger’s summary [PFLEEGER pg.

35-37]. The original case study was documenting in the book entitled “Complete

Systems Analysis: The Workbook, the Textbook, the Answers” by James and Suzanne

Robertson (1994). [ROBERTSON] It serves as an information system example and

involves the selling of television airtime for a regional British television company.

Piccadilly Television was an 8-year franchise to a commercial television

company with rights to a region in the middle of England. The franchise broadcasts a

set number of hours of drama, comedy, sports, children’s and other programs. The

commercial advertisers in the area have several choices to reach the Midlands audience

– Piccadilly, cable or satellite. One way to attract commercial advertisers is to publish

audience rating (number of types of viewers at different times of day). Ratings reported

in terms of program type, audience type, time of day, television company, etc. Bulk

purchase lowers rate per hour also effect the advertising rate. Other limitations are ads

for alcohol only after 9 p.m., actor in ad cannot be shown within 45 minutes of same

actor in show, and only one commercial of a given class may been shown during a

commercial break.

5.3 Center/TRACON Automation System (CTAS) [JACKSON]

This case study was written as a summary of an MIT class project to see how

application of modern software engineering techniques would benefit a large system.

CTAS is a suite of tools to assist air traffic controllers to manage air flow at large

airports. The inputs for the system are location, velocity, flight plans, weather data,

53

runaway info, controller commands. It models the descent rates to predict aircraft

trajectories up to 40 minutes in advance, suggesting landing sequence to minimize

unused landing slots. It was implemented at DFW airport, improving the landing rate

by 10%. This system was composed of two tools. The low-altitude controllers manage

air space near airport use the Final Approach Spacing Tool (FAST) and the high-

altitude controllers use Traffic Mgmt Advisor (TMA). Both components used same set

of software components which are:

• Communications Manager (CM) – message switch moving data among

other components, maintains aircraft info,

• Input Source Mgr (ISM) collates input data streams (radar feeds/flight

plans) are the Route Analyzer (RA) and Trajectory Synthesizer (TS) – predict paths and

arrival times

• Dynamic Planner (DP) – computes runway assignments and suggested

delays

CM is main process. FAST and TMA are dependent on CM. The case study

focused on the CM component and emphasized redesign which is discussed in design

phase and construction phase chapters.

54

CHAPTER 6

GENERAL TECHNIQUES

This chapter describes many popular techniques used to develop software that are not

limited to the scope of one phase of the development lifecycle. Many of these

techniques are associated with artifacts which are in included as an example. Structured

techniques will be discussed first, followed by object-oriented techniques Since it has

already been established that software engineering is about modeling, it is appropriate

to classify the techniques as modeling techniques. There are two classifications of

models: static and dynamic. Static models depict the process, illustrating that inputs are

transformed into outputs. Dynamic models involve the process so the user can visualize

how intermediate and final products are transformed over time.

6.1 Software Reuse

Reusing software components from previous products is an obvious practice that

can result is reducing the time interval all phases of a project. While this practice has

received increased attention in recent years, it is not a new practice. Back in the mid-

1950s, a user organization for scientific application of IBM “mainframe” was formed

with one of its primary functions being a clearinghouse for contributed software

subroutine. This system became one of the first libraries of reusable software. [GLASS

pp. 43-44] Reuse-in-the-large is much more difficult, but developing smaller, more

generic components is manageable.

55

Consistent reuse of not only classes but of requirements lists, design diagrams

and test plans can lead to reductions in software development code and cycle time and

can promote software quality. Throughout the research for this paper, reuse is listed as

one of the chief means of improving a software development team. One study found

that small development teams of four to eight developers obtained substantial reuse with

a strong central architect as the reuse guardian. [FICHMAN] There are several reasons

why software is not reused.

1) Easier to create than find. If a development team does not have standards in

place on how to organize components, then it may very well be faster for a programmer

to recreate a module instead of finding.

2) Behavior of the existing module uncertain. If the behavior of an existing

module is not documented sufficiently, then it might be more prudent to recreate the

module so that the results are guaranteed. In order to efficiently reuse a module, all

assumptions and behavior must be specified clearly.

3) Takes longer to make code reusable. In order to allow other developers, or

even the originator, to reuse a module, the module should adhere to the team’s

conventions and provide the necessary documentation that will provide efficient and

effective future use of the model. Robert Glass states that “it is three times as difficult

to build reusable components as single use components and that a reusable component

should be tried out by three different applications before it will be sufficiently general to

accept into a reuse library. [GLASS pg. 49]

56

4) Uncertain of responsibility. Developers might resist using existing modules

because of the liability of unintentionally misusing the module.

5) Difficulty of sufficient documentation. This reason is echoed as a theme

through the previous reasons. Developers might be under pressure to just get the code

done and not take the time to document the module in a manner in which others would

have confidence to reuse it. [PFLEEGER98 pg. 29-35]

6) Conflict with top priorities. Top priorities on projects are to get them

released on time and within budget. Reuse is often viewed as ”nice to have” but should

slow down the project to get it started.

7) Reuse across teams is hard to coordinate and ownership issues cause

disincentives.

6.2 Lai Notation

Lai notation provides a static technique for modeling any process at any level. It

is based on the idea that people perform roles and resources provide activities, resulting

in the production of artifacts and provides notation to depict the relationships between

these entities. State tables reveal the status of each artifact. Lai defined seven types of

process elements: [LAI]

1. activity – something will happen

2. sequence – it will happened in some order

3. process model – a view of a particular interest or perspective

4. resource – an item, person or tool related to the system

5. control – some external influence that alters or initiates behavior

57

6. policy – high level constraints dictating system behavior

7. organization – hierarchical mapping of physical entities to logical

entities.

Techniques used in this notation are the artifact definition form and the

transition diagram. Using this technique, all possible combinations of values are

explicitly stated and noted in the table. One of of this technique is to evaluate the risk

of a requirement. In the template below, each sub-artifact will only be assigned two

states for simplicity,: low and high for probability, and small and large for severity.

Table 6.1 Artifact Definition Form for Artifact “Risk” [PFLEEGER pg. 70]

Name Risk (Problem X)

Synopsis This artifact represents the risk that problem X will occur and have
a negative affect on some aspect of the development process.

Complexity Type Composite
Data type (risk_s, user_defined)
Artifact-state list
Low ((state_of(probability_x) = low)

((state_of(severity_x) = small)

Probability of problem is
low, severity problem impact
is small.

high-medium ((state_of(probability_x) = low)
((state_of(severity_x) = large)

Probability of problem is
low, severity problem impact
is large.

low-medium ((state_of(probability_x) = high)
((state_of(severity_x) = small)

Probability of problem is
high, severity problem
impact is small.

High ((state_of(probability_x) = high)
((state_of(severity_x) = large)

Probability of problem is
high, severity problem
impact is large.

Subartifact list
Probability_x The probability that problem

X will occur.
Probability_y The probability that problem

Y will occur

58

This form communicates what conditions determine the level of risk. This table

assists in determining whether a requirement is worth the risk. Other aspects of the

development process can be defined and use diagrams to illustrate the activities and

interconnections. Using the combination of the spiral model and risk table can be used

to evaluate risks periodically.

The following artifact definition form defines the possible relationships between

the movie, actor and listed_as objects in the Movie Actor example.

Table 6.2 Lai Notation – Artifact Definition Form – Movie Actor Example
Name Create Movie Actor
Synopsis Represents the process that creates a Movie Actor
Complexity Composite
Data type (movie.movie_code, number)

(actor.actor_code, number)
(listed_as.actor_code, number)
(listed_as.movie_code, number)

Artifact-state
list

Optimal ((state_of(movie.movie_code) = non null and
unique)
 ((state_of(actor.actor_code) = non null and
unique)
((state_of(listed_as.movie_code) = matching
value in movie.movie_code)
((state_of(listed_as.actor_code) = matching value
in actor.actor_code)

Movies are
connected with
actors via the
listed_as entity

Permitted but
not useful

((state_of(movie.movie_code) = non null and
unique)
 ((state_of(actor.actor_code) = non null and
unique)
(((state_of(movie.movie_code) = no matching
value in listed_as.movie_code)
OR ((state_of(actor.actor_code) = no matching
value in listed_as.actor_code))

A movie does not
have any actors.
OR an actor is not
assigned to any
movies.

59

Table 6.2 Continued

Corrupt (((state_of(listed_as.movie_code) = no matching
value in movie.movie_code)
OR ((state_of(listed_as.actor_code) = no
matching value in actor.actor_code))

An unknown actor is
assigned to a movie
OR
An unknown movie is
assigned to an actor

Subartifact
list

Movie Stores movie
attributes

Actor Store actor attributes
Listed_as Stores the

relationship between
movie and actors

Relations
list

Listed_as
Movie

Listing of movies and their assigned actors

Listed_as
Actor

Listing of actors and their assigned movies

The following transition diagram is used to visually show the conditions that

transfer from and to an optimal state for the Movie Actor example.

60

Optimal

Permitted but not
useful

Corrupt

Fixed

Movie or Actor
Orphaned

Fixed

Listed_as
Orphaned

Figure 6.1 Lai Notation – Transition Diagram – Movie Actor Example

6.3 Structured Notation

The traditional structured approach has several notations that have proved useful

for several years. Three diagrams used in conjunction are helpful to functionally

decompose the problem to arrive at a design for the solution.

6.3.1 Data Flow Diagram

The data flow diagram (DFD) has been one of the most popular modeling

techniques used in software engineering. It is being used less frequently with the

advent of the UML but still remains a valid technique. DFDs are based on functional

decomposition which is the method of gradually defining the functional processes of a

system. It is a top down activity, starting with a context diagram and culminates with

module specifications, therefore combining analysis and design. While DFD

61

concentrate on processes, it uses data flows thoroughly define the data structure,

resulting in an almost complete description of the system. To complete the description,

structure charts are used to define the intersection of design and implementation and

the entity-relation modeling is diagrammed with entity-relation diagrams

The context diagram represents only the process that corresponds to the system

being developed. It helps determine the place of a system within the environment by

showing the inputs and outputs with external entities, like organizations, departments,

people, other systems. These diagrams have four elements: data flows (depicted with

arrows), external entities (depicted with boxes), processes (depicted with circles), and

the data store (depicted with a box with side rectangles). The following context

diagram shows the basic activities of the Movie Actor example:

• a customer requesting details on a specified movie

• a customer purchasing a ticket for a specific screening of a movie

• distributors updating the movie database

Customer Distributors

0

Movies on the
Web

MovieDetails

ScreeningDetails

TicketOrder

Figure 6.2 Context Diagram – Movie Actor example

All the processing is done inside the system depicted as a circle. The system is

expanded in a level 0 diagram (or overview diagram) which provides the specification

of what activities are performed inside the system. The Movie Actor system has three

processes: CRUD Move Actor, CRUD Screening, Manage Ticketing. These processes

62

are numbered to uniquely identify each but do not imply any sequence. Processes of the

level 0 diagram are each expanded into a level 1 diagram, showing the process

decomposed into more defined processes.

1

CRUD
MovieActor

2

CRUD
Screenings

3

Manage
Ticketing

MovieDetails

movie_title +
duration

movie_title +
screening_time +
cinema_location +
available_seats

Figure 6.3 Overview (or Level 0) Diagram – Movie Actor Example

Each level 0 diagram can be further decomposed into level 1 diagrams.

Keeping with the Movie Actor case example, the CRUD Movie Actor process is

diagramed in Figure 6.3 introducing the data store element, in this case the Movie Actor

database. There are five (5) processes in this diagram, symbolized by the process circle.

The process 1.4 Retrieve Movie Actor provides the movie_title and duration required

by the Process 2 of Figure 6.3.

63

1.1

Create
MovieActor

1.5

Display
MovieActor
Webpage

1.3

Delete
MovieActor
Webpage

1.4
Retrieve

MovieActor

1.2

Update
MovieActor

MovieActor
Database

MovieDetails

MovieDetails

movie_codeMovieDetails

MovieDetails

MovieDetails

MovieDetails

movie_title + duration

MovieDetails

Figure 6.4 Level 1 Diagram – Movie Actor Example – Process 1 (CRUD Movie Actor)

Each subsequent level can be further decomposed with a new level diagram.

For example, a level 2 diagram of Process 1.4 could have two processes: 1.4.1

ReadMovieDetails and 1.4.2 FormatMovieDetails.

The last or leave node processes are furthered defined with a module

specification, written in pseudo English called Structured English. Typically this

specification will use typical programming language concepts, like assignments, loops

and conditional statements. For example, the following table shows the module

specification for the UpdateActor module.

64

Table 6.3 Module Description – Movie Actor Example

Name UpdateActor

Inputs Movie ID

Description Adds or deletes actor association with a movie

Updates the MovieActor database

On the negative side, DFDs are criticized as confusing to the user, too much

detail for requirements, too much detail too soon in the development cycle. It is argued

that DFDs can be replace with use cases and class, sequence, state chart, and activity

diagram in UML It is the opinion of this author that these criticism is valid if the

customer is not technically oriented. In situations where the customer is an internal

senior technical staff, this approach can be very efficient and result in well organized

project.

6.3.2 Entity-Relationship Modeling (ER)

This data modeling technique is used to provide a conceptual level of

abstraction for modeling data structures. ER models are represented by ER Diagrams

(ERDs) and have three elements: entities, relationships and attributes. There are many

variations of ERD notation but a popular variant is the crow’s foot notation used in the

example below in Figure 6.5. Entities are represented by a box with a top and bottom

part. The top part is the entity name and the bottom part is the list of attributes for that

entity. Each entity can have multiple relationships with other entities. These

relationships are depicted with a line having specific end symbols. A relationship

65

denotes how two entities are related by having line drawn between the entities and

specifying the cardinality, which is how many of each entity can exists on either end of

the relationship. If any entity can have one and only one instance in the relationship,

then the symbol is a straight end. If the entity can have more than one, then the symbol

is a “crow’s foot”. A straight bar on the end indicates that the entity is required whereas

a small circle indicates that the entity is optional. The example below is from the

Movie Actor case study. One movie will have many positions and one actor may be in

many positions. Actors and movies can exists without existing in “listed as” (but will

not be too successful if that condition lasts for long!)

movie
PK movie_code

movie_title
director

listed_as

position

actor
PK actor_code

actor_name
 Figure 6.5 Entity Relationship Diagram – Movie Actor Example

ER models lead to creating database objects (tables, indexes, constraints). This

author used MicroSoft Visio 2003’s Database Modeling Diagram to create the diagram

above. However, ERDs do not illustrate any dynamic interaction and must be used with

DFDs. The ERD can be confusing to the user, thus being of limited use during the

requirements phase.

66

6.3.3 Structure Charts

In the functional decomposition methodology, structure charts are used to

illustrate the high level design, or architecture, of a system. The developer uses this

technique to “divide and conquer” a problem by recursively breaking down the problem

into parts small enough to be understood. Structure charts are similar to the master

blueprint plan that an architect would use to build a house.

To build a structure charts, the main class would be placed in the root of the

upside down tree and then place the sub-tasks called by main in the nodes of the root.

These new leaves would then have its child nodes representing sub-tasks called by the

parent node. This pattern is continued until the “bottom” is hit, ie. no more sub-task.

This approach is called “top-down” design and is often followed with “bottom-up”

implementation and testing which tests from the lowest level and works its way up

building and testing all functionality. [WOLBER]

Figures 6-6 and 6-7 below show the application of this technique to the Movie

Actor example.

Main

CRUD MovieActor CRUD Screenings Manage Ticketing

MovieActor
info

MovieActor
info

MovieActor
info

Figure 6.6 Structure Chart – Movie Actor Example

67

CRUD MovieActor

Create
MovieActor

Update
MovieActor

Delete
MovieActor

Retrieve
MovieActor

info

Display
MovieActor
webpage

MovieActor
info

MovieActor
info

MovieActor
info MovieActor

info

MovieActor
info

Figure 6.7 Detailed Structure Chart - Movie Actor Example

6.4 Object-Oriented Modeling Language (UML)

“The Unified Modeling Language (UML) is a modeling language for

specifying, visualizing, constructing, and documenting the artifacts of a system-

intensive process.” [ALHIR pg. ix] It provides a suite of diagrams to aid the software

engineer to present a system from various perspectives. The goals of the UML are to 1)

be already-to-use expressive, simple and extensible visual modeling language, 2) have

extensibility and specialization mechanisms for extending, rather than modifying core

concepts 3) be independent of programming languages, 4) be process independent, 5)

encourage the growth of the object oriented market, 6) support higher-level concepts,

7) address recurring architectural complexities, 8) be scalable, 9) be widely applicable

and usable, 10) integrate the best engineering practices. [ALHIR pg. 5-6] The UML is

not a programming language, tool or repository specification or a process. Therefore it

is wise for the software engineer to be aware of this notation in order to be aware of its

potential usefulness when needing to communicate a concept to the customer.

68

Diagrams are always accompanied with a narrative that is descriptive text that explains

the elements of the diagram. This narrative could be notes directly on the diagram or

more often a separate page following a standard format. This narrative is written in

understandable verbiage and should provide sufficient detail about the general

functionality. Pseudo-code snippets can be included in the narrative but it must be able

to be understood by any level of expertise. Anyone should be able to read the narrative

and flow the diagrams and understand what the system does.

The UML has nine different diagrams, each with a particular purpose: use case,

class, sequence, collaboration, state chart, activity, object, component, and deployment.

[Kulak pg. 27-33] These diagrams can be can organized into five architectural views :

User, Implementation, Structural, Environment, Behavioral. [ALHIR pg. 116-118]

6.4.1 Use Case

The use case diagram is a tool that illustrates the user view of a system and is

accompanied with a use case description. Together the description and the diagram

create the use case mode. Use case diagrams are the driving diagrams of UML. It is

usually implemented first in the development of a suite of UML diagrams. The use case

forms a foundation on how the system interacts with external entities: people, other

machines, even factors like time, temperature, etc. Use cases have textual description

of interaction of external actors and the computer system called the use case document.

This tool is used to gather requirements and guide the entire software development

cycle. A use case is initiated by an actor which can be a person, computer system, or

condition like time or temperature and is represented by a stick figure but is not an

69

internal entity like an internal database. Actors will interact with a system but not

automate it. The role of an actor in respect to the system is denoted by the name given

to the actor figure. Role names are useful during requirements and during design to

some extent. In the diagram, a use case is symbolized as an oval and had a basic name

that describes its function. Actors and use cases are connected with associations

(directed arrows) which can be a generalization, extend or include “adornments”.

Cinema Employee Corporate Database

MovieGoer
Retrieve

Screenings Details

Retrieve
MovieActor Details

Display Screenings
Details

Display MovieActor
Details

Create/Update/Delete
Screenings Database

Create/Delete/
Updte

«extends»

«uses»

«uses»

Figure 6.8 Use Case Diagram – Movie Actor Example [MASIACZEK pg. 49]

70

The accompanying use case document could look like the following.
Table 6.4 Use Case Listing – Movie Actor Example

Use Case List

Move Actor Project

ID System Name Description
U1 Admin Create/Delete/

Update Movie
Database

Allows the user to create, deleted and update the
Movie database

U2 Admin Create/Update
/Delete
Screenings

Allows the user to create, update, delete the
screening database

U3 User Display Move
Actor Details

Displays the reports with the various movie and
actor information

U4 User Retrieve
Move Actor
Details

Uses the specific input to get the Movie and
Actor information from the database

U5 User Retrieve
Screenings
Details

Uses the specific input to retrieve the screening
info about a movie

U6 User Display
Screenings
Details

Displays the various reports with the selected
screening details

71

Table 6.5 Use Case Actor Listing – Movie Actor Example
Project Actors

Move Actor Project

ID Actor Description / Use cases

Maintains the corporate database with the movie and
screening information

A1 Cinema Employee

Use Cases:

U1 – Create/Delete/Update Movie Database
U2 – Create/Update/Delete Screenings
Stores the actor and movie information A2 Corporate Database

Use Cases:

U1 – Create/Delete/Update Movie Database
U2 – Create/Update/Delete Screenings
U4 – Retrieves Move Actor Details
U5 - Retrieves Screenings Details
Queries for movie, actor and screening information A3 MovieGoer

Use Cases:

U3 – Display Move Actor Details
U6 – Display Screenings Details

Scenarios are used to pick up where the use case leaves off. They focus on

detailed interaction. The definition of scenario in requirements gathering is used in at

least distinct ways. For the purpose of this paper, a scenario will refer to an example.

The iteration value in the scenario is used to specify the current iteration. Daryl Kulak

suggests these four iterative values to be used when gathering requirements [KULAK

pg. 55]

• façade – outline and high-level descriptions

72

• filled – broadening and deepening

• focused – narrowing and pruning

• finished – touching up and fine-tuning

These iterations are not to be used as a “lifecycle for requirements” but rather as

a way of categorizing activities needed to develop use cases.

The following figure illustrates a scenario for the Move Actor example.

Table 6.6 Use Case Scenario: Movie Actor Example
Use Case Name: Display Screening Details
Iteration: Filled
Scenario: 1. MovieGoer Mary pulls up the Screening webpage to see

what is playing at the local theaters tomorrow night
2. She enters her zipcode and tomorrow’s date and presses

Search.
3. The system returns the following information

• AMC 2, Pink Panther 2:30 5:00 7:30 10:00
• AMC 2, Curious George 2:00 4:00 6:00 8:00
• Brazos Drive Inn, Curious George 8:00
• Brazos Drive Inn, Nanny McPhee 10:00

Author Miles Phillips
Date March 1, 2006

6.4.2 The UML Structural Model View

The structural model view shows how a system is structured rather than how it

behaves. These static structure models are also referred to as state models and are

expressed in class and object diagrams. A class diagram graphically depicts the classes

73

and interfaces along with their internal structure and their relationships to other classes.

Class diagrams show how classes are constructed and list the names, attributes and

operations of a class as well as any associations to other classes statically

(generalization and aggregation). Object diagrams are similar but the focus is on

runtime instantiations of the classes. They show relationships between objects that are

the instances created at runtime from the class templates.

UML defines a class as a description for “a set of objects that share the same

specifications of features, constraints, and semantics.” [UML2002 pg. 45]. The

features refer to the attributes (structural) and operations (behavior). In programming

languages, an attribute is called a class member, a member variable, instance variable or

field whereas an operation is called a member function or method. When a service

provided by a method, a message is sent to an object, as called message passing

between objects. A relationship is a meaningful connection between classifiers and are

one of several types: association, aggregation, generalization.

An association is specified on classes. However the meaning of a relationship is

depicted by the multiplicity notation on each end of the relationship, or the number of

instances of one class may relate to one instance of another class. Multiplicity notations

include 0, 0..n, 0..1, or 1. If a multiplicity contains a zero, then the participation of that

class instance is optional. Therefore, a multiplicity of 0 seems illogical but indicates a

unidirectional association.

Generational is a relationship on classifiers, which are classes in the domain

class model). It is a special kind of association where an instance of a more specific

74

class (subclass) is also an instance of a more generic class (superclass). Therefore,

multiplicity does not apply to generalization. In contrast, an aggregation is the special

association in which an instance of superclass contains instances of other subset class.

The class diagram represents the static structure of a class as well as the

dynamic behavior of the system. It is similar to the data flow diagram function used in

structured modeling in that both define processes and data structures. Class diagrams

focus more on the data structure. If the class diagram does not visualize operations,

then it is a pure static structure diagram. The following class diagram is from the Move

Actor example. The listed_as class is an associational class used to show the

relationship between the actor and movie class. This associational class is necessary

because the relationship has its own attribute called position. This example includes

both behavior and state features. The first behavior feature of each class is the

constructor, a special method to instantiate the objects of the class. The classes also

include instance methods with their signatures, ie. the list of arguments and types.

-position : double
listed_as

-movie_code : double
-movie_title : string
-director : string

movie
-actor_code : double
-actor_name : string

actor

0..* 0..*

Figure 6.9 Analysis level class diagram – Movie Actor Example

75

+ListedAs(in I)
+getPosition()
+setPosition ()
+getMovie()
+setMovie()
+getActor()
+setActor()

-position : double
listed_as

+Movie(in movieCode : double, in title : string, in director : string)
+addListedAs(in I)
+removeListedAs(in I)
+getMovieTitle() : string
+setMoveTitle(in property1 : string)
+getMovieCode() : double
+setMovieCode(in movieCode : double)
+getDirector() : string
+setDirector(in directorName : string)
+equals(in o)

-movie_code : double
-movie_title : string
-director : string

movie

+Actor(in actorCode : double, in name : string)
+addListedAs(in I)
+removeListedAs(in I)
+getActorCode() : double
+setActorCode(in actorCode : double)
+getActorName() : string
+setActorName(in actorName : string)
+equals(in o)

-actor_code : double
-actor_name : string

actor

1
1

«utility»
Collection

0..1

listedAs

0..1

listedAs

+MovieSearcher()
+getMovies()
+setMovies()
+displayMoviesByDirector ()
+displayMoviesByLeadingActors ()
+displayMoviesByTitle ()
+displayMoviesByMovieCode ()
+retrieveAll()
+display ()
+displayMovie ()
+displayActor ()
+main()

-MOVIE_ONLY : int = 1
-ACTOR_ONLY : int = 2
-MOVIE_AND_ACTOR : int = 3

MovieSearcher

+Connection()
+readAll()
+query()
+closeResult()
+getLeadingActorsByQuery()
+getLeadingActorsByStoredProcedure()
+searchMoviesByStoredProcedure()

Connection

listedAs

listedAs

 Figure 6.10 Design level class model – Movie Actor Example
[MACIASZEK pg 45-47]

The detail class diagram shows the method parameters and the return code

6.4.3 The UML Interactive Diagrams

The main design level behavior modeling techniques in UML are the interactive

diagrams: the sequence diagram and the collaboration diagram. These diagrams are

also known as communication diagrams in some literature.

76

The sequence diagram visually communicates the internal workings of a use

case, presenting how messages are passed between objects for a simple, linear

relationship. Its name indicates the emphasis of the diagram is to record the sequence

of messages. Sequence diagrams have the advantage of presenting more complex

models, explicitly displaying message sequences, though they can take up a lot of space.

searcher : Top Package::MovieSearcher

conn : Top Package::Connection

: Top Package::Connection : Top Package::Statement

: Top Package::movie

: Top Package::actor

: Top Package::listed_as

2. readAll
executeQuery(s)

Connection()

createStatement()

Movie(movieCode, title, director)

Actor (code, name)

ListedAs(m, a, position)

JDBC Interfaces:

Figure 6.11 Sequence Diagram – Movie Actor Example [MACIASZEK pg 48]

Collaboration diagrams is a lesser used variation of the sequence diagram.

These diagrams do not illustrate lifelines like sequences diagrams. Activations and

77

object creation are implied by the message numbering. These diagrams are useful when

analyzing the messages going to or coming from an object. They are beneficial for

brainstorming because the ease in which initial draft interactions can be drawn. They

can be useful for complex interactions like multithreaded or conditional messaging.

MovieSearch

conn

2.1 query(sql)

1.0 Connection()

2.0 readAll()

Connector

Statement

listedAs

Actor

Movie

2.1.1 createStatement

2.1
.1.

1e
xe

cu
teQ

ue
ry(

s)

2.1.3 Actor(code, name)

2 .1.2 Movie(movieCode, t itle, d irector)

2 .1
.4

list
e dA

s(m
ov

ie C
od

e,a
cto

rCo
d e

Figure 6.12 Collaboration Diagram – Movie Actor Example
[MACIASZEK pg. 45-47]

These interactive diagrams (behavior model views) show the dynamic aspects of

a problem and solution. This view can be referred to as the dynamic, process,

concurrent or collaborative view. In contrast, the state charts and activity diagrams

focus on how one state transitions to another. State charts are used for simpler views

while activity diagrams are used for more complicated views.

78

Movie Details Known

Purchased for Screening

/ BuyIt [finances approved] / sendPurchaseOrder()

Scheduled for Screening

Current Screening

Withdrawn from Screens

/ [opening date]

/ withdraw

/ ScheduleIt()

/ Withdrawn from Screens

Figure 6.13 State Chart – Movie Actor Example

79

Control package: CAdmin getEMovie {activity: }

{object flow: }mediator package: MDataManager{object: }

{decision: }
find EMovie

{control flow: }

find it by OID retrieve it from the database/ where is it?/ [in cache]

Figure 6.14 Activity Chart - Movie Actor Example

The implementation model view includes both the behavioral and structural

aspects of the realization of the solution and is helpful in planning the implementation

phase. This includes component diagrams which describe the organization of and

dependencies among software implementations. Component diagrams demonstrate

how the components work together and help transition from a fine-grained object to a

courser-grained object. This diagram helps communicate to the staff responsible for

integration and deployment what components will be involved in the installation and

now the components relate to each other.

80

SearchController

ActorSearcher
MovieSearcher

Movie_Actor

Actor ListedAs Movie

{Movie_Actor.jar: }

searchActor searchMovie

«call»«call» «call»

 Figure 6.15 Component Diagram – Movie Actor Example

6.4.4 The UML Environmental Model View

The environment model view, also known as the deployment or physical view,

has the behavioral and structural aspects of the domain in which a solution must be

realized. These contain nodes, components, and relationships. Deployment diagrams

show how components will be deployed into the production environment. This

81

diagram provides a standardize view of the configuration of each component and map

how the components interact with each other.

Client

AppServer

WebBrowser

SearchController

MovieSearcher MovieSearcher

Movie ListedAs Actor

searchMovie
searchActor

DBServer

MovieDB

Figure 6.15 Deployment Diagram – Movie Actor Example

82

Another mechanism in the UML is the package metaphor, which is a way to

hide complexity. Packages can be used within use cases, components, or deployment

nodes. They provide a graphical method to group components together into one unit.

[KULAK pp. 28-33, 116-118]

The advantages to using the UML notation is that it is a well thought out set of

tools that can be used throughout the various phases of development to communicate

various aspects of the system’s requirements and design to the customer, development

staff and management. The disadvantages include the learning curve, the lack of

directly producing an executable product and it must be implemented and altered to

work well within a methodology. Since the UML does not advocate requirements list,

scenarios and use cases are used to define requirements and therefore testing and design

elements related back to the use case or scenario name. For system with a good number

of requirements means that the development team must be willing to generate a large

amount of scenarios to capture all the requirements.

For the small software development team the UML has the advantage of

providing a cohesive set of documents and diagrams that can be reused for related

projects that is readily acceptable by the industry, thus saving time. The smaller the

team, the greater the chance that the UML documents will be remembered and reused.

The UML also provides a good basis for thought retention (ie. the ability to recall ideas

that were presented a year ago.). Therefore if the small development team is properly

trained in the implementation of the UML, then this notation provides a consistent

83

notation through out the life of the project. This author would suggest that DFDs are

used to complement the UML in order to show the data flow.

84

CHAPTER 7

REQUIREMENTS PHASE

Requirements engineering involves learning about the problem and specifying

the external or black box behavior of a system that can solve that problem.

Traditionally, the requirements phase results in a requirements specification.

[DAVIS95 pg. 47] This phase is often the most neglected phase in software

engineering, but can also be the most beneficial for reducing the overall lifecycle.

Robert Glass states that unstable requirements are one of the top two causes for

runaway projects. [GLASS pg. 67] Daryl Kulak and Eamonn Guiney report that they

have“.. seen more projects stumble of fail as a result of poor requirements than for any

other reason.” [KULAK pg.2]

Therefore the prudent development team should be committed to properly

conducting the activities required to adequately define requirements for each project.

Explicitly stating requirements ensures that the user is specifying the functionality

rather than the developer. These chapter reviews current software engineering

principles that apply to requirements and describes several requirements gathering and

definition techniques.

7.1 Requirements Engineering Principles

Certain principles should be followed regardless of the techniques or processes

used during the requirements gathering and definition phase. Poor initial requirements

85

results in invalid cost estimates due to frequent changes, missing requirements,

miscommunication, inadequate specification, insufficient analysis.

Understand the problem before writing the requirements. It is important to

understand what the problem is before writing the requirements. A small development

team should commit to understanding the problem and defining the requirements

adequately before diving into design or coding. This can be accomplished by

prototyping, user interviews, or collecting data. If all of the requirements cannot be

ascertained, then the requirements that are understood should be documented and built,

with clear notation that additional requirements will be added in a future iteration

signally the customer and management that another round of development will be

required.

Fix requirements as early in the development cycle as possible. A team

should be committed to fixing any invalid requirements specifications as soon as

possible. Studies show that that if a requirements specifications has an error, it will cost

five times more to find and fix in design phase, ten times more in the construction

phase, twenty times more in the testing phase, two hundred times more if not fixed until

after the product is delivered. [DAVIS95 pg. 47] Requirement changes are the most

expensive to fix when found during production and the cheapest to fix early in

development. [GLASS pg. 71]

Group requirements by functionality and priority. The resulting document

of this phase is the requirement specification. This specification can include a prototype

of a user interface if applicable. Each requirement should be documented as to why it

86

was included. Requirements should be grouped by functionality and priority. The

priority values can provide information as to what requirements are to be present in

each release. This is a particularly important practice for teams committed following

the incremental model.

Avoid design in requirements. One principle repeated by various authors

when defining a good requirements specification is to avoid design in requirements.

Since requirements describe the external behavior of a system, it should not specify the

software architecture or algorithm. If necessary, then note design constraints in the

requirements so that the designer can generate a design that is within the specified

constraints. Requirements should only be concerned with defining the functionalities

of the product, not stating how the product will be implemented. This principle should

be followed because skill sets of those gathering requirements may not be suited for

design or development and solutions must come after the problem has been identified,

documented and understood. Also when design precedes requirements, the system

tends to take on requirements of its own.

No one technique can be universally applied for all systems. However the

requirements are determined and documented, they should be organized sensibly, which

usually means hierarchically. Each requirement should have a unique identifier so that

it can be referenced easily in design, implementation and test documentation. For

complicated systems, it is helpful to use a variety of techniques and viewpoints in order

to establish an acceptable level of requirements.

87

Requirement should be clearly and unambiguously stated. Since

requirements are written in natural language (ie. English), they are prone to be

ambiguous. A requirements analysis should make every effort to word requirements in

an unambiguous manner.

Requirements should be traceable. Design and testing artifacts should be

based on requirements, verifying that each design and test element is necessary to fulfill

the requirement. Therefore, in order to identify these elements with at least one

requirement, the requirements need to be organized in a way that uniquely identifies

each one. The design and testing documents can then reference this identifier,

clarifying which requirement it is addressing. [IEEE830 pg 4]

Requirements should be verifiable, meaning that within its description some

cost-effective process exists that can be used to check if a product meets the

requirements. For example, statements like “works well” or “will usually happen” are

not verifiable because “good”, “well” and “usually” cannot be measured. [IEEE830 pg

4]

Reliability should be specified specifically. Stating a system should be 90%

reliable is not any help. Reliability should be specified in measurable terms stating

what the percentage of requests that can be incorrect is and what the acceptable down

time would be, such as a system should be available 23 hours and 45 minute of every

day. [DAVIS95 pp. 47-70]

Missing requirements are the hardest to correct. They lead to omitted logic

which leads to persistent software errors. [GLASS pg. 73]

88

It is important to document what requirements are known early in the project

with the understanding that some requirements will be added later. McConnell suggests

two approaches to plan for added requirements. 1) expect 80 percent of the

requirements to be known before design is started and allocate time for the remaining

20 percent to be introduced later or 2) specify only the top 20 percent of requirements

at the beginning and plan for the rest to be developed in small increments.

[MCCONNELL2004 pg. 34]

 “Requirement analysis is the activities of determining and specifying

requirements.” [MACIASZEK pg. 16] The determination of requirements is one of

the most difficult challenges in software engineering. There is the potential risk that

developers misunderstand what the customer requires from the product. “Developers

are faced with the following anonymous observation: ‘I know you believe you

understood what you think I said, but I’m not sure you realize that what you heard is not

what I meant.’” [MACIASZEK pg. 16] Therefore the development team should be

aware of various techniques used to elicit requirements

• interviewing user and domain experts

• questionnaires to users

• study of existing system documentation

• study of similar software systems

• prototyping of the working model to confirm requirements

• joint application development sessions with the customer

89

• This leaves the question as to what level of detail is acceptable for the SRS.

Many of the principles listed above can only be quantified by human review.

Therefore, testing of these abstract models is difficult and cannot be automated. Walk-

through and inspection meetings are popular and effective techniques that are helpful in

“testing” the SRS with the purpose of uncovering problem. The emphasis of these

meetings is to identify problems, not to find a solution or find fault with individuals.

Solutions are left to the requirements engineer to rework the SRS until it satisfactorily

defines the product in a way that can be successfully used to execute the design and test

activities.

There are a variety of techniques which can aid in communicating requirements

between the customer and the development team, depending on the characteristics of

the project as specified in the following table. As a project grows in complexity, it may

benefit the development team to incorporate several techniques to verify that the

requirements are properly understood.

To reduce ambiguity, it is helpful to perform Fagan type inspections on the

SRS. This is accomplished by a team of reviewers who are provided with the SRS and

a checklist of features that should be included. Each member conducts a review

independently and then all meet together to discuss. Fagan’s model calls for certain

team members to play specific roles in the meeting: a chairperson, recorder, and a

reader. All members should be prepared, no management should be present and the

meeting should be at least two hours. Any defects found in the SRS should be

categorized according to the impact on the resulting project. The result of the Fagan

90

type inspection is to accept the SRS unconditionally, accept it conditionally or reject it.

Inspections are shown to increase the requirements step by 15 to 20 percent but the

payoff comes in building the product correctly the first time. Inspections however can

find as many as 80 percent of the errors. This coupled with the principle that it is much

cheaper to correct a requirement before design cost justifies the effort of an inspection.

[MILLERPRESSMAN]

7.2 Requirements Gathering and Definition Methods

Hopefully papers such as this one will serve to educate and motivate developers

to commit to good requirements practices. Once a team has committed to requirements,

it must decide what how to record the requirements. This section reviews various

approaches and the corresponding artifacts that can be used to document.

As stated above, the software requirements specification is traditionally the

resulting document for this phase. An SRS should address the following characteristics.

Table 7.1 Software Requirements Specification Characteristics

Characteristics Question to be answered…

Functionality What is the software do to?
External Interfaces How does the software interact with people or other

systems or programs?
Performance What is the acceptable availability or response time, etc.?
Attributes What are the portability, correctness, maintainability,

security, etc considerations?
Design constraints imposed
on implementation

What limitations on implementation are required by the
customers such as operating systems, database
management system, resource limits, etc.?

91

The IEEEE 830 standard mentioned in the Standards chapter provides a

thorough description of the intent, content and suggested format of an acceptable SRS.

A good SRS is one that is correct, unambiguous (one interpretation), complete,

consistent, ranked for importance and/or stability (essential vs. desirable), verifiable,

modifiable, traceable. [IEEE830 pg 4] While some of the characteristics mentioned are

obvious, there are a few less obvious characteristics that are worth consideration in the

context of this paper. In following the traceable and verifiable principles described

above, the method must be stated in concrete and measurably quantities. This IEEEE

830 document further defines the other characteristics in detail. Also since changes to

requirements are inevitable, the document must be written and organized in a

modifiable manner regardless of the format chosen. This document should include the

services that the resulting system will provide and also the constrains on the system

such as the “look and feel” of the user interface, acceptable performance criteria,

security limitations, or any operational, political or legal considerations. Some of the

challenges to requirements gathering are

1. finding out what the users need

2. documenting user’s needs

3. avoiding premature design assumptions

4. resolving conflicting requirements

5. eliminating redundant requirements

6. reducing overwhelming volume

7. ensuring requirements traceability. [KULAK p 11]

92

The industry provides many formats of SRS, each with its own advantage. This

paper does not attempt to cover all the available formats. The following methods are

presented to expose the reader to some possible approaches for gathering and defining

requirements.

7.2.1 IEEEE Software Requirements Specification (SRS) 830-1998

For years, software development teams have used templates such as the IEEE

830 Software Requirements Specification document to detail all requirements of a

project. Requirements are gathered by interviewing the customer, examining the

current work flow, wording the requirements in an unambiguous manner and then

attempting to lock the customer into agreeing that this SRS completely defines the

scope and goal of this product. In this ideal scenario, the development team can then

develop the perfect product after months of isolation. Even though this scenario is

never realistic, the traditional requirements list operations under that assumption. The

following is the description of the IEEE SRS.

“The SRS is based on a model in which the result of the software requirements

specification process is an unambiguous and complete specification document. It

should help

1. Software customers to accurately describe what they wish to obtain;

2. Software suppliers to understand exactly what the customer wants;

3. Individuals to accomplish the following goals:

a. Develop a standard SRS outline for their own organizations

b. Defined the format and content of their specific SRS

93

c. Develop additional local supporting items such as SRS quality

checklist, or an SRS writer’s handbook.” [IEEE830 pg. iii]

The IEEE document goes on to state that an SRS should provide the following

benefits: agreement on what the product is to do, reduce the development effort, provide

a basis for cost estimation, make it easier to transfer the product to new users, provide a

base for enhancements. It would be helpful to state how IEEE defines the following

terminology as related to an SRS: contract (legally binding document agreed upon by

the customer and supplier), customer (the person, or persons, who pay for the product

and usually decide the requirements), supplier (the producer of the product for the

customer), user (the person, or persons, who operate or interact directly with the

product. [IEEE830 pg. 3]

 The IEEEE standard encourages the use of prototyping to demonstrate the

characteristic of a system. This practice is helpful because the customer will usually

react to a prototype than actually read an SRS, facilitating quick feedback. A prototype

will also expose unexpected aspects of the systems, raising new questions about the

requirements of the system. Using a prototype also tends to shorten the change during

development and is used to elicit requirements. [IEEE830 pg. 9]

The SRS should not include partitioning the software into modules, allocating

functions, describing the follow of information or control, or choosing data structures.

However, the SRS does provide for the documentation of design constraints like

physical and performance requirements, software development standards and software

quality assurance standards.

94

IEEEE Standard 830-1998 suggests the following format for a standard SRS

1. Introduction

1.1. Purpose

1.2. Scope

1.3. Definitions, acronyms, and abbreviations

1.4. References

1.5. Overview

2. Overall description

2.1. Product perspective

2.2. Product functions

2.3. User characteristics

2.4. Constraints

2.5. Assumptions and dependencies

3. Specific requirements

3.1 External interface requirements

3.1.1 User interfaces

3.1.2 Hardware interfaces

3.1.3 Software interfaces

3.1.4 Communications interfaces

3.2 (see below)

3.3 Performance requirements

3.4 Design constraints

95

3.5 Software system attributes

3.6 Other requirements

Appendixes

Index

[IEEEE830 pg 11]

Each component is described in the specification standards document. Section 3

should contain a description of all specific requirements in sufficient detail as to allow

the developers to design a system to satisfy the requirements and to allow testers to test

that the system satisfies the requirements. Each requirement mentioned should be

observed externally. At minimum, the requirements should include every input and

output of a system. Requirements are composed of the following items: External

interfaces, functions, performance requirements, logical database requirements, design

constraints. Functionality are fundamental actions (usually starting out with “The

system shall …”) and include input validation, sequence of operations, responses to

abnormal situations, relationship of output to inputs (formulas). Also included in the

SRS are software system attributes such as reliability, availability, security,

maintainability, and portability.

The IEEE document [IEEE830 pp. 18-26] describes various organizational

methods of the system requirements:

1. By system mode – such as training, normal, emergency and is either

organized by globally identifying the external interface, functional, performance and

requirements and listing the modes by functional requirements or by specifying the

96

external interfaces, functional and performance requirements within each mode.

Reference IEEE 830 Annex A.1 for more details.

2. By user class – software provides a different set of functions to different

classes of users (administrator, “normal user”, super user) . Each functional

requirement has a list of classes. Reference IEEE830 Annex A.3 for more details.

3. By objects – group real-world entities together as classes and define each

class a set of attributes and functions (services, methods, processes). Reference

IEEE830 Annex A.4 for more details.

4. By Feature – usually a sequence of stimulus-response pairs. Reference

IEEE830 Annex A.5 for more details.

5. By Stimulus – group the functions by stimulus (activation event). Reference

EEE830 Annex A.6 for more details.

6. By Function hierarchy – to be used when none of the methods prove helpful.

The functions are organized by common inputs, common outputs, or common internal

data access. This format references data flow diagrams and data dictionaries.

Reference IEEE830 Annex A.7 for more details.

7. By multiple organizations – useful when combining user class and feature.

Reference IEEE830 Annex A.8 for more details.

Some advantages of using the traditional SRS format are

• inclusion of all requirement elements

• standardized so that all projects have similar look and feel

• some flexibility for multiple perspectives of the requirements

97

Criticisms to using the traditional SRS format are

• usually written in natural language (like English) which is inherently

ambiguous. If used, each requirement should have its description reviewed by a third

party for clarity.

• hard not to embed design into requirements

• too little or too much effort

• prototypes are not useful or are distracting

• difficult to use

• difficult to alter or rearrange

• no checks and balances with other systems

• easy to write a duplicate or obsolete requirements

• some alternatives like the functional hierarchy could easily result in 100s

of pages to list all the data elements in this format.

• not usually references after the requirements definition activity is

completed so why bother?

7.2.2 Requirements modeling with UML

Traditional techniques of expressing requirements functionality include the

requirements specification, data-flow diagram (DFDs), entity relationship diagrams

(ERDs) and prototypes. While these traditional techniques have served the industry

well for several decades, some believe that more modern object-oriented approach is

superior. Kulak and Guiney feel that these traditional requirement specifications are

often not used after they are produced and therefore are declining in their usefulness.

98

They contend that requirements list are full of duplicate or conflicting requirements and

do not provide the user with a cohesive view. ERDs and DFDs help move into

programming an database design but are confusing to the user. Prototypes are helpful

to the user but take the focus off of the system requirements and on to the user interface.

Therefore, Kulak and Guiney feel that these techniques not be used by the requirements

analyst. DFDs can be replaced with use cases and class, sequence, state chart, and

activity diagrams in the UML. ERDs can still be helpful but not as a user

communication tool. Kulak and Guiney encourage the use of use cases to define

requirements in their book appropriately named “Use Cases Requirements in Context”.

[KULAK pp. 20-21]

Requirement should be gathered iteratively and incrementally in order to reduce

risk by treating at risk items early in the development cycle. Since requirements

specifications change constantly due to the fact that requirements are based on people’s

fuzzy ideas. Kulak breaks down the iterations into four logical steps (or mindsets) with

each step further defining the requirements. He gives these steps the following names

and descriptions:

• façade – outline and high-level description

• filled – broadening and deepening

• focused – narrowing and pruning

• finished – touching up and fine-tuning

99

The steps are not to be viewed as a lifecycle for requirements but rather of a

way to categorize activities needed for use cases. Throughout the iterations, several

“tools” are developed to define the requirements deliverable set. These “tools” are

• problem statement – description of the business problem to be solved.

This statement should be written by the high-level executives who are approving the

need to solve the problem.

• statement of work – defines the scope of the work and general view of

how the work is to be accomplished. It includes items such as scope, objectives,

application overview, user demography, constraints, assumptions, duration, etc.

• risk analysis – ranking the risk associated with each state

• prototype – software mockups of a system’s user interface

• use cases and use case diagram – defines and visually describes the

system’s interaction

• business rule catalog – written and unwritten rules that dictate how a

company conducts its business

Using use cases to gather requirements is all about iterations. The user views

the system as black boxes so requirements documents should put everything in context

of “going in and out” of these boxes. Then the next iteration the box expands and the

next step is detailed, calling another set of black boxes.

7.3 Formal Methods

Formal methods provide an approach to removing ambiguity in requirements

but are difficult to understand and implement, therefore making it not usually desirable

100

for the small development company. Since small projects will usually yield relatively

small requirements documents, then a reasonable effort to word requirements

unambiguously within the natural language is usually appropriate. If it is decided to

incorporate formal models of requirements into the SRS, then include the natural

language description on the facing page so that the intent of the formal model is easily

identified.

Implementing formal methods requires a high learning curve but if a team has

members that are trained and are well versed in this approach, then it can be a very

efficient way to define requirements as long as there is sufficient attention to provide an

accompanying user level explanation.

7.4 FREEDOM Method

Traditionally requirements have defined as “what the system shall do but not

show it should do it” “ a condition or capability that must be met or possessed by a

system to satisfy a contract, standard, or other formally imposed document”

[LUTOWSKI pg. 20] The practical use of this definition is limited because it is too

ambiguous to offer guidance. The Freedom process (used by the NASA team for

developing software for the Space Shuttle Freedom) provides a more useful perspective

of requirements, consisting of

1. all external stimuli of system

2. all associated external responses

3. all external communication protocols [LUTOWSKI]

101

This stricter definition provides a litmus test for the customer and developer to

use in determining what is a requirement and what is a design or implementation

constraint. Ideally the customer should not specify design or implementation

constraints when determining the requirements of a system. The customer should work

with the designer to establish first the stimuli and then the associated responses to the

stimuli.

In order to understand what is truly a requirement, it is helpful to define

precisely what elements are to be composed in the design specification. Lutowski states

that a design specification consists of the following

1. identification of each module block box and encapsulated info

2. identification of relationships among the module black boxes

3. specification of module stimuli

4. specification of response behavior of each module stimulus

5. specification of detailed communication protocols that comprise the

stable interfaces to the modules

[LUTOWSKI pg. 23]

The Freedom requirements process is illustrated in the following figure.

102

Prioritize Quality
Requirments

Identify
Requirements
Commonalities

Reuse Library

Identify &
Organize Stimuli

Specify
Responses

Prioritize
Requirements

Develop External
Interface Prototype

Changes? Get User Feedback

Ojbect
Design

Depict External
Comm Protocols

Sketch Human
User Interface

Build vs Buy

Education

Yes

No

Figure 7.1 Freedom Requirements Process [LOTOWSKI pg. 44]

This process is not a step by step procedure that must be rigorously followed but

documents a rational process established by Parnas and Clements. [PARNAS]

Lutwoski suggests that steps can be “faked” by producing the required products. The

process will work regardless how the products are produced since requirements

encapsulation and other aspects of Freedom rely on these notations. [LUTWOSK pg.

31] Each Freedom task is described below

• Build versus buy – requirements process is to be started only after the

customer determines that no off the shelf product can be purchased to satisfy the need.

103

• Prioritized quality requirements – the customer should modify the

default quality ranking of each requirement. Once generated the list of customer ranked

quality requirements should be publicized and emphasized to all team members.

• Identify and organize stimuli – Stimuli are identified for each input

source in the context diagram and put on the functionality tree which organizes stimuli

based on their activation. This task is central to the requirements process.

• Sketch Human User Interface The development of functionality screens

help define stimulus. On the sketch, stimulus manifest themselves as buttons, data entry

field, lists, etc.

• Depict external communication protocols. Specifying the

communication protocol for accessing files or external database of external systems is

helpful in identifying stimulus.

• Identify requirements commonalities. Repetitions or commonalities in

the functionality trees should be identified and given a reference name. This activity

will lead to reusable requirements components, simplifying the functionality tree,

application code and future applications.

• Reuse Library. The library of reusable components should be inspected

once a requirement is known. If the requirement specification exists in the library, then

a simple reference name is recorded on the functionality tree.

• Specify response – Behavior tables should be created using the Program

Design language to describe the externally detectable responses of each stimulus.

104

Design and implementation constraints are allowed in the behavior table but should be

should be segregated from external responses of true requirements.

• Prioritize requirements – the customer may prioritize the requirements

based on the importance or urgency of the need by annotating the functionality tree.

These annotations provide the selection criteria for incremental releases. For non-

incremental development models, then there is no need for prioritization since it will be

all considered in the current release.

• Develop external interface prototype. Developing an internal mockup of

the GUI is refined by depicting the interfaces to external systems and environment.

This prototype is useful in obtaining customer feedback early on in the process.

• Object Design. The resulting artifacts of the requirements process are

object designs which will serve as the input of the object design process. This

document specifies the capability requirements from the functionality tree, associated

behavior tables, and functionality screens.

Freedom process categories requirements into two types of requirements:

capability and quality [LUTOWSKI pg. 43-44]. Quality requirements must be

determined first to define the scope and the capability requirements are developed using

the quality requirements. Capability requirements also called “functionality

requirements” are recorded in the stimulus-response behavior of the external system

interface. The quality requirements are those measurable attributes of the system as a

whole including a ranking by the customer on the importance to the customer.

105

Kuluk’s book “Use Cases Requirements in Context” provide some excellent

examples of how to develop a functionality tree and the related behavior table.

Examples of these techniques were not included. This book is recommended for review

if this approach sounds applicable to a team’s project.

The author of this paper found the Freedom approach attractive for the

specification of requirements of an interactive intense application. The simplicity of the

artifacts allows for ease on updates while providing a comprehensive format to specify

the expected reaction to each stimulus. It is interesting to note that the practice of

requirement encapsulation could reduce maintenance costs by 20 percent.

[LUTOWSKI pp. 230-232] Statistics like this entice the exploration of this alternative

for a team of any size.

7.5 Reasons Why Requirements Are Not Adequately Defined

With all this convincing evident and variety of methods, why would any well

trained software developer not generate acceptable requirements documentation? Here

are some of the common reasons why development teams neglect writing requirements.

• takes too long

• documents wrong thing

• makes assumption about activities that have not happened

• often completed in time to do it again

• not as fun as programming

The development team can go off track with requirements when the SRS

includes embedded design considerations, is vaguely written, or computer science

106

jargon is used so that the customer does not fully understand the requirement. Common

problems with the requirements gathering and definition techniques are

• Developers tend to get ahead and start embedding design into requirements

• Either too little or too much effort is spent on requirements

• Prototypes are useful but are also distracting

• Requirements lists that are difficult to use and do not provide any checks or

balances

Regardless of the technique used to gather and document requirements, the

small development team should be committed to developing acceptable requirements at

the appropriate detail and in the format that is useful for that project.

7.6 Case Studies

[PFLEEGER pp. 69-71]

The following example demonstrates the use of the Lai notation to identify and

quantify risk in the project within the boundaries of the spiral process model. In

choosing the process model for the Piccadilly television advertising program, several

options were considered. The chief constraint was the type of advertisements that can

be sold and when it can be displayed, and that regulations can change with Advertising

Standards Authority rulings. The waterfall model was too rigid since it provided little

flexibility after requirements analyst stage is complete. Some prototyping was included

to build the user interface but not the primary process model. Since most of the

uncertainty of the regulations and business constraints, a process model was needed that

can used and reused as the system evolves. A variation of the spiral model was chosen

107

for the Piccadilly system because its inherit nature of reviewing assumptions, risks and

prototyping various characteristics. The repeated evaluation of this model has the

necessary flexibility to change the requirements and design. The original Boehm

spiral model does not have the necessary detail to guide analysts, designers, coders and

testers. [BOEHM] Therefore, other techniques and tools were used for finer levels of

detail. Lai’s notation was used to represent risk as an artifact to measure and track risk

with each iteration. Risk was divided into probability (likelihood that a particular

problem will occur) and severity (the impact it will have on the system). For example,

one element of risk is not enough training in the development method. If object-

oriented approach is chosen, then the developers must be trained in this practice. This

risk the system not properly implementing the object-oriented system is lowered by

requiring all developers to attend a four week object-oriented course. However, if this

training is not sufficient, then the project would probably not be completed on time.

The probability is low but the severity is high. . This risk situation could be evaluated

using the Lai artifact table technique.

108

CHAPTER 8

DESIGN PHASE

Design is the set of activities in which the architect is defined that will satisfy

the requirements and also the specification of the algorithm used to by each software

component. “The architect includes specification of all building blocks of the software,

how they interface with each other, how they are composed of one another, and how

copied of components are instantiated and destroyed.” [DAVIS95 pg. 73.] While

requirements describe the functions and/or attributes that are externally visible, a design

describes a subcomponent of a system and/or its interfaces to other subcomponents.

[IEEE830 pg . 9]

During the design phase, certain principles should be followed. The small

development team should realize that transitioning to the design phase from

requirements is a conscious and difficult task. It is the process of converting an external

view of the system into an internal view and therefore should be allotted a significant

amount of the project’s overall time. Some obvious, but not always applied, design

principles that need mentioned but not elaborated are use of efficient algorithms; make

modules efficient, flexible and general. “Great designs are clean, simple, elegant, fast,

maintainable, and easy to implement. They are the result of inspiration and insight, not

just hard work or following a step-by-step design method.” [DAVIS95 pg .95]

109

“When moving from requirements to design, there is an explosion of ’derived

requirements’ (the requirements for a particular design solution) caused by the

complexity of the solution process. The list of these design requirements is often 50

times longer than the list of original requirements.” [GLASS pg. 76] How well a

system is designed determines the quality of the product. “Efficiency stems more from

good design than from good coding”. [GLASS pg. 139]

One of the long standing debates in software engineering is how much effort

should be spent on design. In ten years, the trend had changed from design everything

to design nothing. It is this author’s opinion that each project would benefit from some

level of design, however it is accomplished or recorded. If any activity in this phase

needs compromised, then it should be in making the documentation pretty. Time spent

hashing through various design alternatives is well worth the effort. While polished

documents of bad or mediocre designs might be impressive on the surface, it does not

help to efficiently create a product.

8.1 Design Principles

The following principles represent the best of the modern software engineering

principles that relate to the design phase. Designs that include these principles should

be result in products that are stable, robust and usable.

Conduct design reviews. A good review of a product will require about half of

the time that it took to produce it. This same ratio applies to all phases of the software

development (design / design review time , requirements / requirements review time,

etc.) [HUMPHREY pg. 35] While this ratio initially seems greatly disproportional,

110

design review is critical for identifying problems in the design. Writing test plans as

designing is good way to combine review efforts, review the design for defects while

discovering functions to test.

Enforce standardize configuration management. Each team should have a

standard naming convention for design components and documentation as well as a

standard method of storing these artifacts. This system will not be used effectively if it

is difficult to use , is not available when needed or produces unexpected results. It is

worth the investment to provide quality tools for this function. This author uses

Surround SCM by Seapine Software for this purpose with satisfactory results. Each

team member should be aware of the naming conventions for storing source code and

related artifacts.

Traceable to requirements - As with requirements, there is no design

methodology that is optimal for every project. Whatever methodology is used, the

design components must be traced back to requirements. This principle will assure that

all requirements are addressed and that each design component has a valid reason for its

existence. This identify will also link the design components to the test plans since both

are referencing the same requirements identifier.

Create proper design documentation. - Design is manifested in

documentation. Without proper documentation, the design does not really exist.

Therefore, a development team should be absolutely committed to the appropriate level

of design documentation for that project to facilitate good communication within the

team. Granted, a small development team should have daily, even hourly contact with

111

each other but design documentation is still necessary to assure that the design provides

solutions for all the requirements in such a manner that is acceptable to the customer.

Providing adequate documentation also will assist in preserving ideas in case a project

gets put to on hold.

Encapulsate design components. - The principle of encapsulation applies to

design as well as requirements and implementation. Information hiding is a proven,

simple concept which makes software easier to test and maintain. Encapsulation refers

to a uniform set of rules about which types of information can be hidden. [DAVIS95 pg

. 70] Following this principle leads to a modular design which is easier to maintain and

enhance as new or modified requirements are introduced.

Create reusable components - A small development team should be able to

reuse software components and reference these in design documents. This principle

allows a team to build on it past success. In order to transition a team from reinventing

the wheel for each project, a thoughtful and systematic process should be agreed upon

which will allow all members of the team to access and store consistently build and

documented software components. Following this principles will allows team members

to be consistent in following coding conventions which should make the code more

manageable. As a component is designed, the developers should make the interface and

name as general as possible so that the component can be reused easily under a variety

of conditions without having to modify the component. While design reuse is not a new

concept, it gained popularity in the 1990s when it was packaged in “designing pattern”.

A design pattern is defined as “a description of a problem that occurs over and over

112

again, accompanied by a design solution to that problem. A pattern has four essential

elements: a name, a description of when the solution should be applied, the solution

itself and the consequences of using that solution.” [GLASS pg. 56]

Design for error detection. - Since errors are unavoidable, the software

engineer should design a product so that errors are easily detectable and that undetected

errors are not critical. Some ideas that aid in following this principle are never assume

a value for a case statement (ie. always include a default case), develop strategies for as

many “impossible” scenarios as can be imagined and do fault tree analysis to predict

unsafe conditions. Proper error handling should not allow “garbage in, garbage out”.

Inputs that would be considered “garbage” should not be processed but raise a

meaningful error condition.

Aim for low coupling and high cohesion. – In order to design to easily detect

errors, the architecture or algorithm should be written in a simple manner. Two ways to

implement this principle are low coupling and high cohesion. Coupling is the measure

of interconnection among modules in a software structure. The less complicated the

connection, the lower the possibility for a negative ripple effect to related modules.

Cohesion is the measure of how clearly defined a particular module is. A module with

high cohesion does one or a few things well. Design should have low coupling and high

cohesiveness, manifesting in these properties of a system: [WIKIPEDIA COUPLING]

• a change to one module does not usually require changes to other

modules in the system

• source of errors is easy find

113

• new requirements are easy to implement.

Spend adequate time on design. As a rule of thumb, every hour spent in

coding should be matched with a least an hour of design with a design time to coding

time ratio of 1 to.5 being optimal. If more time is spent coding than in design, then

most likely a significant about of design is being conducted during coding. “Because

developers typically inject more than twice as many defects per hours in coding,

designing while coding is not a sound quality practice.” [HUMPHREY pg. 35]

Design for maintenance - Experience shows that the most expense phase of a

product is the maintenance phase. The architectural selection directly affects a

product’s maintainability. This principle is often neglected during design, thus

increasing the maintenance cost.

Design multidimensionally. A good design is represented in many ways to

fully understand and convey its essence to the customer and the development team. The

complete design should include the following representations.

• Packaging – a hierarchy chart representing “what is part of what?”

• Needs hierarchy – a network diagram of components with arrows

indicating which components need something. Represents “who needs whom?”.

• Invocation – a network diagram of components with arrows indicating

which components call, interrupt, or send messages to others. Represents “who invokes

whom?”.

114

Process – set of components are packaged together as asynchronous processes

and specified as to what conditions would cause the process to be created, executed,

stopped and destroyed. [DAVIS95 pg. 94]

Use design patterns. Solutions for many of software’s most common problems

have been captured in design pattern (design reuse). The book Design Pattern

[GAMMA] extensively describes several patterns. This paper does not include many

details about design patterns due to the level of detail required to provide an adequate

review of these pattern. Each developer is encouraged to examine this book to evaluate

if design patterns will assist his or her design efforts. Patterns can aid design by

• Reducing complexity by providing ready-made abstractions

• Reducing errors by providing well thought out solutions

• Reduces time by providing a list of alternatives instead of having to

create from “scratch”.

• Improve communication by allowing the design dialog to be at a higher

level.

8.2 Design Practices

Iterate. Design is an iterative process. As the design evolves, it requires

revisiting the previous design components. Continuous review of the design from

high-level to low-level provides a healthy dynamics to assist in defining a stable design.

Use both top-down and bottom-up approaches. By applying both

composition and decomposition approaches to a solution, strengths and weakens of the

design are more easily captured.

115

Experimental prototyping. Some designs cannot be proven as viable without

implementing it and therefore requirement some level of prototyping, which presents a

paradox of having partially solve a problem before completing the design. Prototyping

can provide an expensive way to address this problem by writing the absolute minimum

amount of throwaway code that is needed to answer a specific design question. The

research question should be narrowly defined to improve the chances of the prototype

being helpful. Several authors warn developers to avoid the trap of treating a prototype

as the first iteration of the project instead of throwaway code. The problem with this

approach is that programmers will code beyond the absolute minimum for a prototype if

they feel the code is going to evolve into the product. One suggestion to prevent this

from happening is to develop the prototype in a different environment or language than

production code.

Collaborative design. This practice can range from just informally walking to

a coworkers desk and soliciting his or her opinion to scheduling a format inspection.

The main point is that some level of review is conducted that is appropriate the level of

the project. No one should complete the construction phase without having some

feedback.

Build Abstract Data Types (ADT). Creating a collection of data and

operations that use that data is an efficient way to encapsulate and hide information to

simplify a design. Some of the benefits from using ADTs are [MCCONNELL2004 pg.

127-129)

• Hiding of details

116

• Changes don’t effect the whole program

• The interface can be more informative

• Easier to improve performance

• Program is more obviously correct

• Program becomes self-documenting

• Data is not passed all over the program

• Model real world entities better than low-level structures

Create good interfaces. By applying good abstraction methods and good

encapsulation methods, a class interface can provide an abstraction. An interface

should adhere to good containments implementation (“has a” relationships) and should

have no more than five to nine data members. [MILLER1956]

Follow general member functions and data guidelines.

[MCCONNELL2004 pg. 150]

• Keep the number of routines in a class as few as possible

• Don’t allow implicitly generated member functions not desired to be public.

Use private to keep others from accessing it.

• Minimize the number of different routines called by a class

• Minimize indirect routine calls to other classes

• Minimize the extent to which ha class collaborates with other classes

8.3 Design Techniques

Many techniques that help communicate design idea have been mentioned under

general techniques because these ideas are useful for more than just the design phase.

117

The UML notation is design centric and includes class diagrams and class descriptions

in its structural model. Module specifications related to DFDs describe each component

to be constructed.

8.4 Case Studies

The original design of the CTAS system became too complex due to the

multitude of additional functionality added to the system. This design was developed

with functional decomposition. For example, one module handles addition and deletion

of flight plans, another interacts with the ISM, and another maintains assignment of

aircraft to RAs with similar logic duplicated. The control flow is implicit for system

administrators to configure the CM. The main processing loop runs when called by

Motif. Here is a partial list of problems addressed by redesign.

• Blocking sends - blocking primitives used to send messages could result

in deadlock. Since CM would generate more messages than algorithms could handle,

the initial team batched the messages into groups of messages of limited size, causing

increased complexity and hard to analyze.

• Failures – CM is a single point of failure. FAA specs indicate that no

system outage should be longer than 25 seconds but it takes longer than to reboot the

system and refill the aircraft database

• Monitoring – additional monitoring features

• Complexity – system became too complicated

In the redesign, the focus was on reducing the CM’s complexity, hoping it

would solve other issues. It did this by addressed blocking and monitoring explicitly.

118

The new design separated parts that cannot be easily reconstructed on reboot from

others, with the thought that these would be stored in a persistent database. The

redesign team was surprised to find the design could be simplified so much by standard

and well-know techniques. They used data abstraction to changed procedure-oriented

design into abstract data types that encapsulates data structures and prevent direct

access. Infinite queues were changed to use standard message queue abstraction.

Deadlocks were avoided deadlocks with the illusion of infinite queue with non-blocking

reads/writes. The resulting system reduced the lines of code to about 20% of the

original, but only included the core functionality so this metric is of limited use. The

lessons learned were:

• simple designs are possible

• standard software engineering techniques work (only used data

abstraction, did not need to do object modeling). Before refining processing, make sure

the potential of well-understood software engineering notions have been applied

• coding standards are essential – made reengineering the code easier.

(information transparency – code written with analysis in mind)

• reverse engineering tools work (helped a lot in rapidly directing to

relevant parts of code)

• high level models essential. System level model documentation aids

new developers understand system. Inconsistent system models might not be detected

until integration

119

Summary: underlines that the power of software engineering fundamentals such

as data abstraction, consistent coding style and design focus on simplicity

8.5 Application to the Small Development Team

Arriving at the appropriate level of design for a project is a difficult process and

therefore the small development team must be willing to tolerance some

experimentation as it evolves from a more undisciplined approach to embracing modern

software engineering practices and principles. Hopefully small teams can be flexible

and adjust quickly to those practices that are not working for their projects. Any step

toward improving the design process can be helpful. This author recommends that a

senior developer of the team work through the suggestions in this paper and generate a

well thought out design approach that will work for his or her team. Then he or she

should meet with the team and go through a design review for a current project. Any

faults in the design or the design methodology can be adjusted until the team generates

a working approach. This way the team has ownership in the process and will have a

better chance of carrying out the improved process. Management should encourage this

exercise, understanding that some benefits of the changes will be immediate but other

might take several months to realize such as reuse.

120

CHAPTER 9

CONSTRUCTION PHASE

The construction phase, also referred to at the coding or implementation phase,

is the set of activities including translating the design algorithms into a compliable,

programming language that can be executed by a computer. The end result of the

construction phase is a program listing (preferably documented) and set of executables.

Software construction can be the most expensive part of a project. If requirements

definition and design activities are “skimped”, then construction will most assuredly be

costly, causing this phase to be repeated unnecessarily. In order for this phase to be

executed efficiently, the upstream activities must be adequately completed first. The

goal of these initial phases is to reduce risk. Therefore it is highly advised not to start

implementation without proper preparation.

Steve McConnell lists several reasons why software construction is important in

his book Code Complete [MCCONNELL2004 pg. 7] These reasons underscore that

efficient construction principles and techniques should be embraced by all developers,

regardless how abbreviated the other phases become.

• Construction typically takes from 30% to 80% of the software development

project

121

• Construction is the central software development activity. Requirements and

design are performed prior to this phase so that the code can be implemented

successfully.

• The source code is often the only accurate description of the software.

Documentations from the other phases can be out of date but the code must be

current.

• Construction is the only activity guaranteed to get done. No code, no product.

Critical to the success of a small software development team is a well

maintained and implemented coding standards document. This document should detail

naming conventions of classes, methods, objects, variables, etc. as well as defining

acceptable comments and code organization. It is a good idea to establish a required

indention convention to provide for consistent readability of the code. For example,

having the convention that one and only one class should be written in a single file

would allow for easier location and distribution of a class. Having clean conventions

established allows new members of the development team to adapt quickly and to

resume responsibility for code implemented by other developers. Good conventions

should be intuitive and flexible. Since there are multiple equally good and acceptable

ways to code, a team should agree upon a single standard. This should not be viewed as

limiting a developer’s creativity.

Often the development environment for a small development team is established

dictated by management. Team members should be trained on how to use the

development environment efficiently and uniformly.

122

Due to the limited number of human resources available for the small

development teams, most projects will be written in the languages already mastered by

the members of the development team. However the primary criteria on what language

to use should be the appropriateness of the language to projects. If none of the

languages mastered by the development team are appropriate for the project, then either

graciously turn down the project or allow time for retraining of the team members.

Large companies often have the luxury of determining the optimal language and then

acquiring the team member that are skilled in that language. However with a small

development company, having a good generalized “base” coding language is a good

approach and the team should either accept projects that can efficiently be implemented

in the base language or should requirement management to allow sufficient time for

retraining. Obviously, as technology changes, the “base” language used by a team

needs to be evaluated to determine if the language is still an efficient way to implement

the projects. Retraining a team for a different language can be costly and time

consuming practice so the establishment of a good “base” language for the team is

critical to reduce the frequency of change.

9.1 Construction Principles

Some general coding principles that should be followed to produce quality code:

1) avoid global variables, 2) write code to read from top down, 3) avoid side effects,

3) use meaningful names for variables, procedures, methods, classes, etc., 4) code for

correct functionality before optimizing for speed, 5) modify documentation along with

the code , 6) require sufficient requirement and design documentation before coding.

123

Other principles related to the construction phase that need more discussion are as

follows.

Document before coding A good practice is to write the inline documentation

of a method before actually coding, then compiling to make sure that the documentation

text did not introduce some errors. After a successful compilation, then write the code

as specified by the documentation. It is not necessary to provide a line of

documentation for each line of code. Each program segment should be commented as

to describe its intent. The code should be written in an understandable manner so it is

not necessary to describe the detailed logic that is implement but rather the function the

segment provides. [DAVIS95 pg. 111]

Hand-execute each component – Each component should be “hand-executed”

in an isolated environment with a few simple test cases. This practice could save days

of troubleshooting later. [DAVIS95 pg. 112] MicroSoft has provided NUnit testing

which allows a small development team to implement this principle with little overhead

cost.

Encourage code inspection and peer review - While inspections can take up

to 15 percent of development resources, studies show that code inspections can catch 82

percent of coding errors which reduces development cost by 25 to 30 percent with a 50

to 90 percent reduction in testing. [FAGAN]

Avoid tricks – Software developers are often highly intelligent and enjoy

showing how clever they are by using “tricks” or coding in obscure ways, like using the

124

side effort of a function to implement a primary function. The use of tricks may

produce the desired results but will not be easily maintained. [DAVIS95 pg. 102]

Avoid deep nesting - Nested IF-THEN-ELSE statements are useful for

simplifying code but not more than three levels deep. Nesting more than three levels

causing confusing. Some alternatives to deep nesting are to simplify the control

structure or to break part of the logic off as a routine. [MCCONNELL pg. 385]

9.2 Construction Practices

The following practices can assist in integrated changes to the system

requirements that are presented during the construction phase.

Verify the quality of the new requirement before implementing. Steve

McConnell provides a good checklist in his book Code Complete on evaluating the

quality of a requirement. [MCCONNELL2004 pg. 42-43]

Communicate the cost of implementing the change. Often the customer will

reduce the scope of a requirement or withdraw it once they are aware of the impact on

the system and the cost of implementing the new change.

Establish a change control procedure Development teams should allow

changes at specified interval to avoid continuous interrupts in the development.

Use development approach that accommodates change. Adopting a phased

or prototype process model allows for feedback in an organized, intentional manner.

Be willing to cancel the project. If the requirements are especially bad or too

many changes are required, be willing to redo the project or cancel it. The management

125

should have some concept of how bad a project has to get before cancelling it if nothing

more than to provide a comparison to the current state of the project.

9.3 Application to the Small Development Team

The activities of the construction phase are the most common of any developer

since coding is the heart of the development process. It is a good place to start

implementing more stricture adherence to software engineering best practices and

principles for teams that are slow to embrace change. A developer with any experience

should be able to recognize their benefits.

Each developer much less each development team has his or her own style of

coding. The implementation of these principles and practices can be perceived as

hindering the developer’s creativity. In order to counter this objection, the management

and technical leaders of a company should encourage experienced developers to assist

in the development or alteration of the team norms such as coding conventions and

provide adequate education on the benefits of proposed changes. The developer that

will not conform to the team standards will have to be addressed by the management.

Larger companies can reassign a problem development, but in a small company, one

member can significantly reduce the benefits of implementing these principles and

practices. Having team norms are only useful if the practices actually become the norm.

Therefore sometimes management must make the painful decision to release an

experienced developer for the long term benefit of team unity.

126

CHAPTER 10

VALIDATION PHASE

Validation of a software product, or testing, does not stand alone but it is a

separate process activity, “the final arbiter of validity before the user assesses its merit”

[CHILLAREGE] This phase of the development cycle is the set of activities that

performs testing on individual components (unit testing), on sets of unit-tested

components (integration testing), and on the entirely integrated set of software

components (system testing). The purpose of the tests is to conclude that each

component and the system behave as designed. Also the generation of test plans is

included in this phase for each of the testing levels. It is important to note that testing

can only determine the presence of a bug but cannot determine if software is bug free.

Therefore it is important to generate thorough test plans to attempt cover all possible

scenarios. Another part of the testing phase is the creation of test harnesses and test

environments. One of the challenges of creating a test environment is to replicate

multiple clients’ production environment. With today’s vast variety of hardware,

operating systems and databases, it is difficult for a small development company to

maintain a sufficient enough variety of test environments to cover the environments.

Therefore, it is important to discover the environment used by the majority of the

perspective clients and decide early on what environments will be supported.

Validation throughout the project is necessary to help ensure that

127

1) Errors are detected and corrected as early as possible in the software life

cycle

2) Project risk, cost and schedule effects are lessened

3) Software quality and reliability are enhanced

4) Management visibility into the software process is improved

5) Proposed changes and their consequences can be quickly assessed

[IEEE 1012 foreword]

Testing should be done throughout all phases of development. While testing

activities are documented as a separate phase, the development team should adopt

appropriate validation activities throughout the development lifecycle.

• Programmers should use test driven development techniques to define

and test modules as they are coding such as MicroSoft’s NUnit approach.

• Test plans should be developed concurrently the design and coding

phases so that tests are ready to be applied after an incremental release is available.

• Designers should review test cases to see if all functionality is addressed.

10.1 Testing Principles

Tracing tests to requirements. To implement this principle, the requirements

must be uniquely identified and listed with an unambiguous description as mentioned in

the requirements section.

Plan tests early in the process. Since testing is a major task and critical for

program, it should be planned and implemented in parallel with the development

128

efforts. SRS should be reviewed by the testing team to determine is the requirements

are documented in a testable manner prior to the final approval of requirements.

Don’t leave testing solely to the developer. While each developer should

write tests for test driven code, each component or unit should be tested to some degree

by someone else on the team other than the developer who wrote the code. Components

should be tested by someone else other than the developer who wrote the code. Also

test plans should be written by someone else other than the developer who wrote the

code and then reviewed by the developer to ensure tests are appropriate.

Don’t only test the “happy path”. Successful tests find faults in the expected

use of the component but also undesirable results when the component is “misused”. A

complete test plan should include testing invalid inputs and should stress test a system.

If there are constraints the use or environment of a system, then these should be

adequately documented.

Testing needs to be complete. The development team needs to be committed

to not skipping or short cut testing, shipping until tests are completed or integrating

until unit test passes. While this seems obvious, it is a strong temptation to not

complete testing due to deadline pressure or desire to move on to the next project.

10.2 Testing Techniques

Use a requirements/test table. A tangible way to verify if all tests are linked

to a requirement is to create and maintain a large binary table with the rows

representing the tests and the columns representing each requirement. Then each

corresponding cell is flagged with a 1 for the intersection of a test and a requirement.

129

This table provides a simple approach to determining is all requirements are captures by

at least one test and if all tests are based on at least one requirement.

Use state task diagram. The diagrams visualize transitions from one state to

another and should be used to generate test case by validating the claims and

completeness of the state task diagram.

Use scenarios to test. If using the UML notation, then the development team

need to commit to writing good scenarios which capture all the requirements.

10.3 Testing Practices

Combine “Black box” and “White box” testing “Black box” testing only uses

the external behavior description as its criteria for testing. Input and output

expectations are limited to what was documented that this component should or should

not do. “White box” testing is based on the actual logic within the code. to generate

test. Given these definitions, it stands to reason that developers should lean toward

white box testing and complete documentation of each component’s external behavior

modules while the test team do only black box testing, assuming that the testing team

members are not skilled in reading code. Both modes of testing are necessary and

should complement one another.

Work from functional specifications. Functional specification should have

been created in some form during the requirements phase for the purpose of not only

describing the system but providing harmony between testing and design. Testers use

this document to write test cases. This practice can be executed in parallel with

development.

130

Develop automated test execution. The goal of automating test execution is to

reduce the hours of manual work involved in test execution. Small development teams

should consider investing into some test automation tools. Once integrated in to a

team’s mode of operation, then the results should be shorter and more consistent testing

phases.

Utilize user scenarios. User scenarios were introduced early in this paper to

define requirements but can also be used for testing. Scenarios have the advantage of

testing the functionality from the end user’s perspective. Therefore it is helpful for the

test team member to be involved with writing the user case studies to adequately reflect

the user experience.

Team test with developers. Close coupling of testers with developers

improves the test cases and the code developed. One practical method of executing this

practice is to have testers write test cases and then walk through the test with the

developer that will be coding the functionality. Microsoft goes so far as to have the

tester shadow the developer, which is not cost justifiable for the small development

team but underscores the importance of this practice. The practice can serve as

guidance during the team selection or even the hiring process.

Test for memory leaks. Memory resource failures can be simulated to some

extent with commercial tools. Memory leaks are caused by poor resource handling in

the source code or in third party APIs.

131

CHAPTER 11

INTEGRATION AND DEPLOYMENT PHASE

“Integration assembles the application from the set of components previously

implemented and tested. Deployment is the handing over of a system to customers for

production use.” [MACIASZEK pg. 19] Deployment is the most important phase for

the software development company since it is the phase that generates income. Most of

the company is not interested in the development problems but just want to know that it

works and can be delivered to the clients. This realization is overlooked some times

but developers who are closely attached to the development lifecycle. A good practice

is to focus on the end and adjust accordingly within the principles mentioned

throughout this paper.

Deployment is also the phase with potentially the least amount of control.

Every client’s environment will have its own uniqueness and potential to encounter new

problems. The company’s installation specialist should evaluate the clients IT

environment and determine what environments (OS, database version, third party

application, etc.) will be supported for this release of the product. [BIRTLEY]

Deployment is more than installation. Installation is the act of loading artifacts

onto a host environment. Deployment is doing whatever is required to get the

application into production use on the client’s environment so that the product will start

132

generating income for the development company. It certainly involves generating the

installation procedures and disks, delivering the training material, troubleshooting

integration issues.

The author’s experience with deployment is that this task has been assigned to

other IT staff besides the developers. The activities in this phase include the creation of

installation images, production of user documentation, installation of product, loading

of databases, training of users and reporting of problems during integration at the client

site. Often it is efficient to have these same staff in the small development company be

the testers as well as product support. In this environment, the “programmers” would

provide the support staff the executable components with the necessary support

documents on how to operate the system and move on to the next project.

With this approach the development team must be expanded to include the staff

with this skill set. With such an environment, the installation and training staff can

specialize at their tasks but would be dependent on the developers to generate the

appropriate documentation. The installation specialists should be provided opportunity

to provide feedback during the beginning of the design phase and during requirements

review, especially for the redesign of projects that they have been supporting.

This phase has its own set of issues to be addressed that are important to the

success of the project but most are outside of the scope of this paper. One of the

activities of this phase is the build process. “The build” is more than just compiling In

the XP process mentioned early in the paper, one of the practices is to automate the

build process to be completed in less than 10 minutes and to execute this build at least

133

once a day. While a development team might not embrace all of the XP methodology,

this practice seems reasonable to be incorporated into every project, regardless of the

process model chosen. If this practice is implemented from the start, then the staff

responsible for actually deploying the system can implement some realistic mock

deployment tests, and can determine early one if the manner in which the build is

produced is conducive to being deployed. If issues are found, then the team has time to

respond before the release of the product.

134

CHAPTER 12

MAINTENANCE PHASE

Maintenance is the phase that follows a successful hand over to a customer of

each incremental release, eventually the entire software product. This phase is an

inherent part of the software cycle and has been said to account for 67% of the entire

software life cycle. [SCHACH] “Maintenance typically consumes 40 to 80 percent of

software costs. Therefore, it is probably the most important life cycle phase of

software.” [GLASS pg. 115] Given this activity traditionally accounts for such a high

percentage of software development, it stands to reason that sufficient efforts should be

made to improve maintenance activities. However, some argue that reducing the

maintenance cycle is an unobtainable goal. Better software engineering development

has lead to longer maintenance phases because changes are easier to make, thus

resulting in more code changes. Better software also lasts longer and therefore has a

longer maintenance life. Therefore a better metric for determining improvement in this

phase might be the turn around time for bug resolution or enhancement incorporation,

rather than how many man-hours are spent on the maintenance of a project.

Often the original developer will not be the one that will maintain the system,

requiring others to learn the system well enough to make efficient alternations.

Understanding the existing product can take 30 percent of the total maintenance time

135

and is the dominant maintenance activity. [GLASS pg. 120] If for not other reason,

this fact validates the need for good documentation and archival system.

The maintenance phase has three stages : Corrective (addressing faults),

Adaptive (adjusting functionality to satisfy the changing environment), Perfective (

modification to accommodate new or significantly altered requirements).

[MACIASEK90] Each of these stages have distinctive goals and is helpful to break

down the maintenance activities for discussion.

12.1 Corrective Stage

While bug fixing will always be part of the maintenance, proper adherence to

the principles should greatly reduce the time required for this activity. Often the initial

fix is temporary, just enough to keep the system going. The problem should be reported

and properly address in a future release.

12.2 Adaptive Stage

Activities in this category are unavoidable for keeping software usable. This

stage does not result in new capabilities for the user but is limited to only the activities

performed to change the system to execute properly in an altered environment. Events

like changes to the operating system, hardware platform, compiler, software library or

database structure would lead to adaptive maintenance activities. These events are

driven by the market and clients desire to keep current with their computing

environment.

136

12,3 Perfective

This stage is the most unpredictable and time consuming but can be the most

controllable. Activities in this stage are those that implement new requirements or an

alteration of existing requirements. Obviously new requirements cannot be predicted

but management does have the control over whether these enhancements will be

implemented. “Enhancement (perfective stage) is responsible for roughly 60 percent of

software maintenance costs. Error correction (adaptive phase) is roughly 17 percent.

Therefore, software maintenance is largely about adding new capability to old software,

not fixing it. “ [GLASS pg. 117] A small development team should adapt a systematic

procedure of change control, from the manner in which the enhancement is defined to

how it is implemented and tested. Keeping this stage in mind while designing a new

system can save countless hours later when new requirements are to be implemented.

Some authors, such as Pfleeger, add a preventive maintenance phase that focusing on

fault handling to make sure the system can handle all possible conditions.

137

CHAPTER 13

CONCLUSION

This paper has presented the software engineering best practices and principles

for software development discovered by this author. In this chapter, the author will

provide some concrete applications of this material to the software development team

with fewer than eight members. Several scenarios are presented with the author’s

suggestions.

Throughout the research for this paper, four reoccurring themes for improving

the efficiency of a small development team were

• to generate traceable requirements

• to seek feedback as early in the process as possible

• to incrementally develop the product

• to plan for reuse

These activities provide a good foundation for the improvement of any

development team and foster many other principles and practices discussed. The

implementation of these practices take a conscious effort but it is the opinion of this

author based on his research that this effort will rewarded significantly. Traceable

requirements enable requirements, design and test activities to be directly linked to one

another. Incremental releases enable constructive early feedback. Early feedback

encourages reviews of various types. Planning for reuse drives modular designs, coding

138

standards and test driven development because the developer knows that others will use

and depend on his or her code.

13.1 Development Environment

The management and technical leadership of a small development company

should work together to establish technical norms of software development. A strong

technical leader with good communication skills should be endowed with the

responsibility of encouraging and enforcing these norms. Without this role, then the

developers will follow their own preferences and therefore any sense of standardization

will be lost. Team norms without enforcement are just suggestions. It takes a skilled,

creative and tactful person to enforce norms without limiting creativity and job

satisfaction. Norms should include universal best practices regardless of the size of the

teams. In addition to actively investing in training to equip the development team, the

company should provide an adequate environment to enable the developers to be

successful as software engineers. This environment includes

• modern Integrated Development Environment such has MicroSoft Visual

Studio.NET

• software configuration management tools like Seapine SurroundSCM

• modeling tools like MicroSoft Visio

• stable network with reliable backup system,

• knowledgeable and available technical support

• adequate desktop equipment (large enough monitors, enough RAM and CPU

horse power)

139

• automated testing tools

As key employees evolve in their understanding for the company’s core

products and approach to software development, management should transition these

employees into technical leadership positions (not necessarily management roles) and

provide them the resources to mentor the development staff in the company’s

development norms. These norms should always include

• always be conscious of requirements, design and software component reuse

• requirements reviews

• technical design reviews

• requirements lists with unambiguous reference and unique id

• acceptable design methodologies appropriate to the project

• coding conventions

• configuration management conventions (how to store source code and

related documentations and how to implement version control)

• testing responsibilities and expectations clearly defined

Granted that for smaller projects, many of these activities can be combined and

greatly shortened but some version should be executed in order to enforce the

company’s standards and generate consistent, stable products. Regardless the size of

the team, each company should have senior technical staff monitoring the norms and

conducting technical reviews. This resource can also be directly involved with the

requirement definition, design and testing phases of several projects.

140

13.2 Scenario One – The Lone Developer

Often, a small project is assigned to a single developer to execute most all of the

activities of the software lifecycle. This developer should be familiar with all aspects of

software development and should consult with his management on what level of

documentation is expected. At a minimum, the developer should generate a “high

level” requirements list to assist in communicating the requirements in the staff

responsible for integration testing. The developer should request for a testing “partner”

to assist in writing the test cases and conducting the tests in order to implement the

practice of not allowing the developer to completing test his or her own code.

Periodic informal reviews should be conducted by another “lone developer” or

by senior technical staff. If possible, the developer should use the incremental process

model with two week incremental or iterative release cycles. The management can act

as the customer if it is not practical for the customer to review and test the release each

two weeks. This practice is particularly important for the lone developer to prevent

costly misunderstandings from escalating over months.

.It is tempting to neglect these best practices and principles for small projects

because the resulting software can in some case be produced more quickly without

taking time.for the “extras”. However, this omission will most likely lead to the

following undesirable conditions.

1. No duplication of knowledge. Each “lone developer” might have the

tendency to develop in isolation. The obvious problem is the inevitable costly learning

141

curve required for another developer to pick up the project if that developer is

unavailable or leaves the company and a change is required.

2. Inadequate design documentation. Since the developer is doing the design

and construction himself, then he might be tempted to not complete the design

documentation and therefore leave run for assumptions to go unchecked during design

reviews.

3. Progress is dependent on one individual. If the developer is out of the office

or is temporarily assigned to another project, the progress on his or her project stops. If

the delay to return to the project is significant (highly variable on the developer’s

memory retention), then significant time can be spent for the developer to get “back in

the flow” of developing this project.

4. Maintenance is complicated if only one developer is knowable about the

program and little to no documentation exists. Extra time is required to fix a bug or add

an enhancement even for the original developer if enough time has elapsed since its

release.

For the company with several “lone developers”, task swapping mentioned

earlier in this paper is a concept that might be worth considering overcoming some of

the negatives if pair programming is not an option. The “partner” can keep the project

going during the developer’s absence and provide the extra accountability.

13.3 Scenario Two – The Tiny Team

Several small companies may employ two to three developers for a project.

This approach has much promise for the small development company as it directly

142

addresses the negatives of “lone developer” environment. With the “tiny team”

approach, many of the advantages of the XP method can apply, regardless if XP is

formally embraced or a more traditional approach is followed.

It is important that each team member recognize his or her role. While each

team member can contribute and review requirements and designs, one person should

be chiefly responsible for documenting and communicating the results of these phases.

The teams should work from the design to avoid duplicating effort and to ensure that

components follow the specified interfaces. Each team member should be aware of the

strengths of others and seek to learn from them. If skills allow, then roles should be

swamped when transitioning to another projects. Coding standards, test driven

development, team design reviews can be used as unifying events for the small team.

13.4 Convincing Management

One of the challenges for the development team to face when transitioning into

efficient “programming in the medium” approach is to convince management to support

this cultural change. When management is not convinced that construction

prerequisites are worth the effort, then the software engineer is faced with a dilemma.

Steve McConnell lists the options for developers in this predicament. If the manager

requires a developer to start coding right away, then the developers’ choices are : 1)

give in and just do it to satisfy the management, 2) pretend to coded and proceed with

requirements and design, 3) educate the management on the advantages of “doing it

right”, or 4) find a new job in a more enlightened company. [MCCONNELL2004 pp. .

26-27]

143

13.5 For All Small Teams

In summary, all small development teams should consider the following

practices. These have been proven in other environments to be helpful, radically in

some cases.

• Nightly 10 minute builds

• Reuse

• 10 minute build

• Early feedback

• Incremental releases

While it was not possible to cover all of that modern software engineering has to

offer the small development team, hopefully some of the concepts and ideas presented

in this paper have reminded and encouraged developers who find themselves

transitioning to “programming in the medium” to become more efficient though

applying the collective wisdom of the industry experts.

144

REFERENCES

Alhir, Sinan Si (1998) UML in a Nutshell, O’Reilly

Beck, Kent & Andres, Cynthia (2004) Extreme Programming Explained:

Embrace Change 2nd Edition, Addison-Wesley Professional

Birtley, John. (2005) Best Practices for Risk-Free Deployment

http://www.theserverside.com/articles/article.tss?l=BuildManagement (accessed last on

March 10, 2006)

Boehm, B. (1976) “Software Engineering”, IEEE Transactions on Computers,

25, 12 (December 1976), pp. 1226-1241

Chillarege, Ram. (April 26, 1999) Software Testing Best Practices, IBM

Research, http://www.chillarege.com/authwork/papers1990s/TestingBestPractice.pdf

(accessed on March 4, 2006)

 Cunningham, Ward. (2001) “Manifesto for Agile Software Development”

(2001) http://www.agilemanifesto.org (accessed on March 4, 2006)

Davis, Alan E. (1995) 201 Principles of Software Development. McGraw-Hill,

Inc.

Factguru. Software Development Team

http://www.site.uottawa.ca:4321/oose/index.html#smallsoftwaredevelopmentteam

145

Fagan, Michael “Design and Code Inspections to Reduce Errors in Program

Development”, IBM System Journal, 15, 3, July 1976

Fichman, Robert M. “Incentive Compatibility and Systematic Software Reuse”,

Journal of Systems and Software, NY. Apr 27, 2001, Vol. 57, Iss. 1, pg 45

Gamma, Erich, Helm, Richard, Johnson, Ralph, & Vlissides, John, (2002)

Design Patterns, Elements of Reusuable Object-Oriented Software. Addison- Wesley.

Glass, Robert E. (2003) Facts and Fallacies of Software Engineering, Addison-

Wesley

Humphrey, Watts (2006) “Sweet Predictability”, Software Development,

February 2006, pp. 35

IEEE Std 1002-1987. IEEE Standard Taxonomy of Software Engineering

Standards (June 4, 1987)

IEEE Std 1012-1986. IEEE Standard for Software Verification and Validation

Plans (September 17, 1986)

IEEE Std 1016-1998. IEEE Recommended Practice for Software Design

Descriptions (September 23, 1998)

IEEE Std 1028-1997. IEEE Standard for Software Reviews (December 9, 1997)

IEEE Std 1063-2001. IEEE Standard for Software User Documentation

(December 20, 2001)

IEEE Std 1074-1997. IEEE Standard for Developing Software Life Cycle

Process (December 9, 1997)

146

IEEE Std 1219-1997. IEEE Standard for Software Maintenance (December 9,

1997)

IEEE Std 1420.1-1995. IEEE Standard for Information Technology – Software

Reuse Data Model for Reuse Library Interoperability: Basic Interoperability Data

Model (BIDM) (December 12, 1995)

IEEE Std 610.12-1990. IEEE Standard Glossary of Software Engineering

Terminology. (September 28, 1990)

IEEE Std 829-1998. IEEE Standard for Software Test Documentation.

(September 16,, 1998)

IEEE Std 830-1998. IEEE Recommended Practice for Software Requirements

Specifications. (June 25, 1998)

Jackson, Daniel & Chapin, John “Redesigning Air Traffic Control”, MIT Lab

for Computer Science, May/June 2000, IEEE Software,

http://people.csail.mit.edu/dnj/publications/ctas00.pdf

Kulak, Daryl & Guiney, Eamonn (2000) Use Cases Requirements in Context,

Addison-Wesley

Lai, Robert Chi Tau Process Definition and Modeling Methods. Technical

Report SPC-91084-N Hendon, VAP: Software Productivity Consortium.

Lehman, M.(1991) “Software Engineering, the Software Process and Their

Support”, Software Engineering Journal, 6, 5 (September 1991, pp. 243-258, Section

3.6

147

Lutowski, Rick (2005) Software Requirements Encapsulation, Quality, and

Reuse. Auerbach Publications.

Maciaszek, Leszek A., Bruc Lee Liong (2005). Practical Software Engineering:

A Case Study Approach. Pearson Education Limited.

Magee, Stan & Tripp, Leonard L. (1997) Guide to Software Engineering

Standards and Specifications, Artech House

Magee, Stan.(2006) “Software Engineering Standards Suite Selection”.

http://www.12207.com/std.%20Suite.htm (last access March 2006)

McCabe, Tom, “A Complexity Measure”, IEEE Transactions on Software

Engineering, 2, 12, December 1976, pp. 308-320.

McConnell, Steve, (2004) Code Complete. 2nd Edition. MicroSoft Press

Miller, G. (1956) The magical number sever, plus or minus two. Some limit on

our capacity for processing information. Psychology Review 63:2

Miller, Ann, Pressman, Roger & Yourdon, Edward “16 Critical Software

Practices – Inspect Requirements and Design”,

www.iceincusa.com/16CSP/content/14_inspt/insrgt.htm

Mills, H. “Top-Down Programming in Large Systems”, in Debugging

Techniques in Large Systems, R. Ruskin, ed., Englewood Cliffs, N.J.: Prentice Hall,

1971

Moore, James W. (1998) Software Engineering Standards – A User’s Road

Map. IEEE Computer Society Press

148

Parnas. D.L. & Clements, P.C. (1986) “A rational design process: How and

why to fake it” IEEE Transactions on Software Engineering SE-12.2 (February) pg.

251-257.

Pfleeger, Shari Lawrence, (1998). Software Engineering Theory and Practice.

Prentice Hall

Pressman, Roger S. (2001) Software Engineering: A Practioneer’s Approach,

5th edition, McGraw-Hill series in computer science

Royce, W. W., (August 1970) “Managing the development of large software

system: Concepts and Technique.” Proceedings of WESCON

Robertson, James & Robertson, Suzanne, (1994) “Complete Systems Analysis:

The Workbook, the Textbook, the Answers” Dorset House Publishing

Schach, S. (1996) Classical and Object-Oriented Software Engineering. 3rd

edition, Irwin, pp. 604

The Standish Group Report, “Chaos”,

http://www.projectsmart.co.uk/docs/chaos_report.pdf (last accessed March 3, 2006)

SESC Long Range Planning Group, “Master Plan for Software Engineering

Standards”, Version 1, Dec 1, 1993

Wikipedia. The Free Encyclopedia (2004) “Coupling and cohesion”. Web page

and wiki,. http://c2.com/cgi/wiki?CouplingAndCohesion (accessed on March 4, 2006)

Wikipedia. The Free Encyclopedia “Agile software development”,

http://en.wikipedia.org/wiki/Agile_software_development (accessed on March 4, 2006)

149

Wikipedia. The Free Encyclopedia “Methodology”,

http://en.wikipedia.org/wiki/methodology (accessed on March 4, 2006)

Wikipedia. The Free Encyclopedia “Practice”,

http://en.wikipedia.org/wiki/practice (accessed on March 4, 2006)

Wolber, David, CS 112: Supplementary Notes Structure Charts and Bottom-up

Implementation,

http://www.usfca.edu/~wolberd/cs112/SupplementalNotes/structureChart.doc

Zimmer, J A. (1996) Programming In the Large Versus Programming In the

Small http://www.mapfree.com/sbf/tips/smalarg.html, (accessed on March 4, 2006)

150

BIOGRAPHICAL INFORMATION

Miles Phillips received his Bachelor of Science in Computer Science from

Baylor University in Waco, TX, in 1986. Since then, he has worked for the following

companies: E-Systems (defense contractor), North Central Texas Council of

Governments (local government planning), Berger and Company (IT consultant), Union

Pacific Resources (oil and gas exploration), University of Texas at Arlington School of

Urban Affairs (higher education), and LandWorks, Inc. (commercial GIS software

development). During the past five years, he has been working as a software developer

from his home for LandWorks, Inc, which is based in Houston, TX. He primarily

designs and builds Geographic Information Systems (GIS) applications using Oracle

PL/SQL, MicroSoft SQLServer TSQL and with ESRI’s ArcMap Suite of products. Mr.

Phillips has also held positions as a GIS consultant, Oracle database administrator,

UNIX system administrator, GIS project manager, GIS adjunct professor and IT

manager.

He plans on continuing his career as a software engineer with an emphasis on

database and GIS applications and would like to teach computer science at the

university level in the near future.

Mr. Phillips is married to Kristi and they have four children Emily, Elizabeth,

Ellen and Benjamin. They currently live in Aledo, TX.

