

A FRAMEWORK FOR A DYNAMIC INVOCATION INTERFACE AND HIGH-
LEVEL INTEROPERABILITY FOR MOBILE AGENT PLATFORMS

by

VAMSI K PUTREVU

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE AND ENGINEERING

THE UNIVERSITY OF TEXAS AT ARLINGTON

August 2005

 ii

ACKNOWLEDGEMENTS

I would like to first thank my supervising professor, Mr. David Levine, for his constant

support and able guidance. I thank him for being patient and helping me in solving various

problems, working under him was really �fun�. He has indeed been a great positive

influence on me.

I am also thankful to Wahid Bilal and Jimmy, for their useful discussions during the

initial phases of my work. I have benefited a lot from Bilal�s research work in analyzing the

security model of the Ajanta mobile agent system. I have a special thank you for Mr.

Ramesh Danduri who helped me during the documentation phase of my thesis.

I would also like to thank my dad, Mr. P.V.R.K. Ananda Rao, my brother Mr.

Raghav Putrevu, for their sincere support and constant encouragement, and above all, I

would like to thank my mom Mrs P. Subbulakshmi, her unconditional love has always been

my biggest strength.

August 27, 2005

 iii

ABSTRACT

A FRAMEWORK FOR A DYNAMIC INVOCATION INTERFACE AND HIGH-
LEVEL INTEROPERABILITY FOR MOBILE AGENT PLATFORMS

Publication No. ______

Vamsi Putrevu, M.S.

The University of Texas at Arlington, 2005

Supervising Professor: David Levine

The mobile agent paradigm for distributed systems is inherently suitable for many

applications ranging from network management to e-commerce. One inherent problem to its

wide spread use is communication between disparate agent platforms and reducing

overheads while doing the same. Not all platforms for mobile agents are the same. The

Mobile Agent Facility (MAF) proposal is an attempt to standardize this execution

environment, this thesis proposes a framework extending the current MAF specification, by

which inter-agent communication can be achieved in a more scalable fashion by interpreter

based mobile agent systems.

The future of the Internet depends on its ability to transmit video/audio signals over it, the

mobile agent paradigm, by its inherent nature saves a lot of bandwidth, and can achieve the

above requirement, to corroborate this, a decentralized videoconference using mobile agents

 iv

(IBM-Aglets), that aims to dynamically adapt itself to changing network conditions, was

implemented.

 v

TABLE OF CONTENTS

ACKNOWLEDGEMENTS��������������������������������ii

ABSTRACT�������������������������������������...iii

LIST OF FIGURES �������������������������..............xvi

LIST OF TABLES��������������������������� �...xvii

CHAPTER

1. INTRODUCTION.. 1

1.1 BACKGROUND.. 1

1.2 BASIC CONCEPTS RELATED TO MOBILE AGENTS.. 4

1.2.1 AN AGENT EXECUTION ENVIRONMENT .. 4

1.2.2 AGENT TRANSFER PROTOCOL (ATP).. 4

1.2.3 MESSAGE .. 4

1.2.4 ITINERARY .. 4

1.2.5 AGENT LIFECYCLE ... 5

1.2.5.1 Creation .. 5

1.2.6 MOBILITY ... 5

1.2.7 STORAGE... 5

1.2.8 DISPOSAL .. 6

1.2.9 INTER-AGENT COMMUNICATION ... 6

1.3 PROBLEM STATEMENT ... 6

 vi

1.4 ORGANIZATION OF THESIS .. 7

2. MOBILE AGENTS ... 19

2.1 INTRODUCTION.. 9

2.2 AGENTS.. 9

2.2.1 DEFINITIONS OF AGENT ... 10

2.2.2 CLASSIFICATION OF AGENTS .. 11

2.2.3 APPLICATIONS BASED ON AGENTS ... 12

2.3 MOBILE AGENTS .. 13

2.4 MOTIVATION FOR USING MOBILE AGENTS .. 15

2.5 APPLICATIONS OF MOBILE AGENTS .. 17

2.6 MOBILE AGENT SYSTEM .. 20

2.6.1 CHARACTERISTICS OF HOSTS (SERVERS) .. 20

2.6.2 CHARACTERISTICS OF AGENT SERVERS .. 20

2.6.3 CHARACTERISTICS OF AN AGENT ... 20

3. AJANTA A REFERENCE MODEL OF A MOBILE AGENT SYSTEM .. 22

3.1 INTRODUCTION.. 22

3.2 AJANTA.. 23

3.2.2 THE AJANTA SYSTEM .. 24

3.3 AGENT SERVER ARCHITECTURE .. 26

3.4 AGENT STRUCTURE... 29

3.5 NAMING RESOLUTION .. 30

 vii

3.5.1 THE NAME REGISTRY .. 32

3.5.2 PUBLIC KEY DISTRIBUTION.. 33

3.6 SECURE AGENT EXECUTION.. 33

3.6.1 PROTECTION DOMAIN FOR AGENT EXECUTION ... 34

3.6.2 SECURE ACCESS PROTOCOL ... 35

3.7 AGENT PROGRAMMING PRIMITIVES.. 36

3.7.1 PRIMITIVES RELATED TO AGENT CREATION ... 36

3.7.2 PRIMITIVES RELATED TO AGENT MIGRATION ... 37

3.7.3 AGENT TRANSFER PROTOCOL .. 38

3.7.4 PRIMITIVES RELATED TO AGENT COMMUNICATION... 44

3.7.5 PRIMITIVES RELATED TO AGENT MONITORING .. 44

3.7.6 PRIMITIVES RELATED TO FAULT TOLERANCE.. 44

3.7.7 PRIMITIVES RELATED TO SECURITY .. 46

4. MOBILITY AND COMMUNICATION... 57

4.1 INTRODUCTION.. 47

4.2 APRIL 3.0... 48

4.2.1 AGENT MOBILITY.. 48

4.2.2 AGENT COMMUNICATION .. 49

4.3 AGLETS SOFTWARE DEVELOPER KIT 1.0... 50

4.3.1 AGENT MOBILITY.. 51

4.3.2 AGENT COMMUNICATION .. 51

4.4 D�AGENTS 2.0.. 53

4.4.1 AGENT MOBILITY.. 54

 viii

4.4.2 AGENT COMMUNICATION .. 54

4.5 GRASSHOPPER 1.1 .. 55

4.5.1 AGENT MOBILITY.. 55

4.5.2 AGENT COMMUNICATION .. 56

4.6 ODYSSEY 1.0 BETA 2 .. 56

4.6.1 AGENT MOBILITY.. 56

4.6.2 AGENT COMMUNICATION .. 57

4.7 VOYAGER 2.0 BETA 1 ... 57

4.7.1 AGENT MOBILITY.. 58

4.7.2 AGENT COMMUNICATION .. 58

4.8 PLATFORM COMPARISON... 59

4.8.1 AGENT MOBILITY.. 60

4.8.2 AGENT COMMUNICATION ... 61

5. CORBA AND MOBILE AGENT TECHNOLOGY.. 74

5.1 INTRODUCTION... 64

5.2 CORBA COMMON OBJECT SERVICES ... 65

5.2.1 EXTERNALIZATION SERVICE .. 66

5.2.2 LIFE CYCLE SERVICE ... 66

5.2.3 NAMING SERVICE .. 67

5.2.4 TRADING OBJECT SERVICE... 67

5.2.5 SECURITY SERVICE.. 67

5.2.6 OBJECTS BY VALUE ... 68

 ix

5.3 KEY CAPABILITIES OF MOBILE AGENT PLATFORMS .. 68

5.4 MOBILE CORBA AGENT .. 69

5.4.1 STRUCTURE OF A MOBILE CORBA AGENT... 70

5.4.1.1 Core Object Type .. 70

5.4.1.2 Bridge Object Type ... 71

5.4.2 IDENTIFICATION OF A MOBILE CORBA AGENT .. 71

5.5 MAPPING OF CORBA SERVICES TO MAP CAPABILITIES ... 72

5.5.1 INITIAL THOUGHTS ABOUT MOBILITY... 73

5.5.2 MA SPECIFIC REQUIREMENTS ASSOCIATED WITH CORBA SERVICES...................................... 75

5.5.2.1 Externalization Service.. 75

5.5.2.3 Trading Object Service... 75

5.5.3 PRECONDITIONS FOR A MOBILE CORBA AGENT .. 76

5.5.3.1 Life Cycle Support .. 77

5.5.3.2 Externalization Support ... 77

5.5.4 MOBILE CORBA AGENT RELATED INTERACTION SCENARIOS... 77

5.5.4.1 Agent Creation... 77

5.5.4.2 Agent Termination ... 78

5.5.4.3 Agent Migration.. 79

5.6 LIMITATIONS OF THE CURRENT CORBA MODEL ... 82

5.7 CONCLUSIONS... 83

6. MOBILE AGENTS AND AGENT COMMUNICATION.. 84

6.1 INTRODUCTION.. 84

6.2 AGENTS AND INTEROPERABILITY.. 85

 x

6.2.1 THE MASIF STANDARD... 86

6.2.3 3�LAYERED PROBLEM OF INTEROPERABILITY ... 87

6.4.1 ACL AND A GENERIC MESSAGING PROTOCOL.. 90

6.4.2 ADVANTAGES OF AN ACL.. 90

6.5 CURRENT ACLS .. 91

6.5.1 BASIC CONCEPTS OF KQML... 91

6.5.2 FIPA AND ITS ACL.. 93

6.6 BRINGING THE TWO WORLDS TOGETHER .. 94

6.6.2 INTEGRATING ACL�S AND MOBILE AGENTS .. 96

6.6.3 PROBLEMS INTEGRATING ACL�S AND MOBILE AGENTS.. 97

6.7. CONCLUSIONS .. 98

7. AN INTRODUCTION TO THE MASIF STANDARD... 100

7.1 INTRODUCTION.. 100

7.2 COMMON CONCEPTUAL MODEL... 100

7.2.1 INTEROPERABILITY.. 101

7.2.1.1 Issues addressed by MASIF currently .. 102

7.2.1.2 Issues to be addressed by MASIF later... 104

7.2.1.3 MAF Interoperability Summary... 104

7.2.2 BASIC CONCEPTS... 105

7.2.2.1 Agent Authority .. 105

7.2.2.2 Agent Names... 106

7.2.2.3 Agent Location.. 106

7.2.2.4 Agent System.. 106

 xi

7.2.2.5 Agent System Type ... 106

7.2.2.6 Agent System to Agent System Interconnection ... 107

7.2.2.7 Regions... 109

7.2.2.8 Region-to-Region Interconnection ... 110

7.2.2.9 Serialization/Deserialization .. 110

7.2.2.10 Codebase... 110

7.2.2.11 Communications Infrastructure.. 111

7.2.2.12 Locality... 111

7.2.3 AGENT INTERACTION... 111

7.2.3.1 Remote Agent Creation .. 111

7.2.3.2 Agent Transfer .. 112

7.2.3.3 Agent Method Invocation .. 112

7.3 FUNCTIONS OF AN AGENT SYSTEM... 112

7.3.1 TRANSFERRING AN AGENT ... 113

7.3.1.1 Initiating an Agent Transfer ... 113

7.3.1.2 Receiving an Agent Transfer ... 114

7.3.1.3 Class Transfer ... 114

7.3.2 Creating an Agent .. 117

7.3.3 Providing Globally Unique Names and Locations.. 117

7.3.4 Supporting the Concept of a Region ... 118

7.3.5 Finding a Mobile Agent.. 118

7.3.6 Ensuring a Secure Environment for .. 118

7.3.7 COUNTERING THREATS.. 119

7.3.7.1 Security Service Requirements .. 120

7.3.7.2 Authentication of Client ... 120

7.3.7.3 Mutual Authentication of Agent Systems ... 121

 xii

7.3.7.3 Agent System Access to Authenticate Results and Credentials 121

7.3.7.5 Agent Authentication and Delegation... 121

7.3.7.6 Agent and Agent System Security Policies... 122

7.3.7.7 Integrity, Confidentialit,Replay Detection, and Authentication.................................... 122

7.4 CONCLUSIONS .. 122

8. INTER-AGENT COMMUNICATION .. 124

8.1 INTRODUCTION.. 124

8.2 A DYNAMIC INVOCATION INTERFACE ... 125

8.2.1 DIFFERENT PROTOCOLS FOR COMMUNICATION.. 126

8.2.2 AN ILLUSTRATION TO EXPLAIN THE PROPOSAL.. 127

8.3 THE SCENARIO ... 128

8.3.1 PROBLEMS BEING FACED.. 128

8.3.2 THE FUNCTIONING OF THE STORE TODAY .. 129

8.3.3 SOLUTION OFFERED BY STATE-OF-ART TECHNOLOGIES.. 129

8.3.3.1 Problems with the current solution... 131

8.3.4 HIGH LEVEL RESULTS... 131

8.3.5 BEHIND THE SCENES .. 132

8.3.5.1 The MAF services this scenario uses.. 133

8.3.5.2 Description of low level details.. 133

8.3.6 LOCATE .. 134

8.3.6.1 Details of the above action... 134

8.3.7 CREATE... 135

8.3.8 REGISTER .. 135

8.3.9 MOVE ... 136

 xiii

8.3.10 STATUS ... 137

8.4 CONTACTING STATIC/UN-REACHABLE AGENT SYSTEMS ... 138

9. A DECENTRALISED VIDEO CONFERENCE APPLICATION ... 152

9.1 INTRODUCTION.. 140

9.2 SYSTEM ARCHITECTURE.. 142

9.3 CONCLUSIONS .. 144

10. CONCLUSIONS.. 146

10.1 FUTURE WORK .. 147

REFERENCES������������������������������..148

BIOGRAPHICAL INFORMATION�����������������������..156

 xiv

LIST OF FIGURES

2.1 REMOTE PROCEDURE CALLS (RPC)��������������������� 33

2.2 REMOTE EVALUATION (REV) ������������������������ 33

2.3 MOBILE AGENT������������������������������... 34

3.1 THE AJANTA SYSTEM ARCHITECTURE��������������������. 44

5.1 A MOBILE CORBA OBJECT�������������������������� 69

7.1 AGENT SYSTEM ARCHITECTURE����������������������.. 106

7.2 AGENT SYSTEM TO SYSTEM INTERCONNECTION��������������... 107

8.1 ILLUSTRATION OF PROPOSAL�����������������������... 127

8.2 KEY ACTORS IN THE SCENARIO����������������������... 132

9.1 DECENTRALIZED VIDEO CONFERENCE ARCHITECTURE�����������.. 141

 xv

LIST OF TABLES

3.1 AGENT MOBILITY SUPPORT������������������������� 38

3.2 COMMUNICATIONS AND CONTROL PRIMITIVES���������������. 45

4.1 A COMPARATIVE STUDY OF DIFFERENT MA PLATFORMS����������� 61

 1

CHAPTER 1
INTRODUCTION

1.1 Background

Rapidly evolving network and computer technology, coupled with the exponential

growth of the services and information available on the Internet, will soon bring us to the

point where hundreds of millions of people will have fast, pervasive access to a phenomenal

amount of information, through desktop machines at work, school and home, through

televisions, phones, pagers, and car dashboards, from anywhere and everywhere. Mobile

code, and in particular mobile agents, will be an essential tool for allowing such access.

In the computer context an agent is a program that acts for a user, technically an

agent is associated with a certain amount of autonomy. With the exponential growth in the

Internet user base, network-centric programming and applications have gained a lot of

popularity; various driving forces for the above have been the wide use of interpreter-based

languages like Java, which facilitates mobility of code across the network. There has been

vast use of Internet based technologies in private networks- giving rise to intranets and

extranets, thus fuelling the demand for network-based applications.

Along with this growing need for network based applications there seems to be a

need for new network computing paradigms that can overcome the barriers posed by

congestion and unreliability. The �agent� paradigm offers a promising solution to the above

problems. Perhaps the most promising among the various new paradigms is that of mobile

agents.

 2

This paradigm naturally supports many applications like network management,

adaptive network load balancing, on-line shopping, real time control systems, distributed

computing and e-commerce applications. With the popularity of the Internet, more efficient

ways of representation and filtering of information are necessary.

Applications could specify the list of tasks and different sites to the agent and launch

it on the Internet. While performing the tasks, the mobile agent could follow the itinerary

already specified or it could determine its path dynamically based on its intelligence or some

other requirement. This agent could also spawn other mobile agents for some types of

distributed processing. The agents report the results to the owner or some other agent or

application.

Mobile agent technology has become popular primarily because of the efficient way

it provides for the access and the manipulation of remote information. It is based on a

different approach for the design of distributed systems [10, 12]. The traditional client-

server and the message-based architectures treat local and remote resources in the same way,

in that they use location transparency. From the user�s point of view all information is stored

locally. In contrast to the traditional technologies, the mobile agent architecture considers

that local interaction is more efficient than the remote one. The solution proposed by mobile

agents is for software to migrate to remote hosts, where information is stored, so that the

user�s request can be executed [3]. It means that agents can take decisions or fulfill

previously designed operations in an autonomous way on the remote site, even if the home

host becomes temporarily unavailable.

 The mobile agent paradigm has evolved from the traditional client-server paradigm

in which clients communicate through messages. The traditional systems used include

 3

messaging, simple datagram sockets, remote procedure calls (RPC), conversations

and remote evaluation (REV) for communication. Several use asynchronous protocols, for

example, messaging, and others used synchronous protocols, for example, RPC. Mobile

agents use asynchronous protocol. In RPC, only data is transferred in the form of

parameters. In REV, the code is sent from client to server and data is returned back. In

mobile agents, the data, code and execution context is transferred between clients and

servers in a fully duplex manner.

Because the technology and the industry are new a lot of mobile agent systems (for

example, Crystaliz�s MuBot, Dartmouth college�s AgentTcl, IBM�s Aglets, the open

group�s MOA, GMD FOKUS�s JMAF/Magna, and General Magic�s Odyssey and

University of Minnesota�s Ajanta), differ widely in their architecture and implementation.

The difference in the mobile agent systems prevent interoperability and rapid

proliferation of the agent technology, and has probably impeded the growth of the industry.

This paper describes how interoperability is being achieved among various mobile agent

systems and discusses the architectural changes that have to be made in a generic mobile

agent system to be compatible with the current common conceptual model [7].

Mobile agents also raise serious concerns in terms of security. The term mobile

means that the agent would have to move to another server and execute there. For its

execution, it would need server resources, which exposes the server to dangers of misuse or

tampering of resources by agent. Similarly a malicious host could also tamper with the

agent.

 4

1.2 Basic concepts related to mobile agents

1.2.1 An Agent Execution Environment

AEE is the agent�s workplace. It is a stationary object that provides means for

maintaining and managing running agents in a uniform environment regardless of the

underlying operating system. The AEE host and other agents are secured against malicious

agents, and agents have the ability to authenticate an AEE before they visit it to provide a

degree of protection against malicious AEEs. An AEE supports all aspects of the agent

lifecycle (described in the next section) and provides certain informational services to the

agents. For instance, an agent can query an AEE for its current load.

1.2.2 Agent Transfer Protocol (ATP)

This is defined to enable agent mobility between AEE hosts. When agents travel,

their code and state are encapsulated in ATP messages. An ATP daemon is a long-running

resident program that accepts ATP connections from other AEE hosts on a specified port.

An ATP daemon can support multiple named AEEs on the same host and port.

1.2.3 Message

This is an object exchanged between agents. It allows for synchronous as well as

asynchronous communication. Message-passing is used by agents to collaborate and

exchange information in a loosely coupled fashion.

 1.2.4 Itinerary

This is an agent�s travel plan. It provides an abstraction for travel patterns and

routing. An agent can be given an itinerary at the time of its creation, be provided with an

itinerary in a message, or modify its current itinerary based on its state, and the state of its

current AEE.

 5

1.2.5 Agent lifecycle

1.2.5.1 Creation

Agent creation takes place in an AEE. There are two ways to create an agent:

instantiation of a new agent using agent code in a specified location, or cloning of an agent

that is currently executing in an AEE. When a new agent is instantiated, its code is fetched

from the specified location; it is assigned an identifier, inserted into an AEE, and initialized.

The agent starts executing immediately after it has been initialized. An agent can be

instantiated by another agent or by a non-agent ATP client external to the AEE in which a

new agent is to be instantiated. When an existing agent is cloned, an almost identical copy is

produced in the current AEE and the execution restarts in the clone. The only difference is a

new agent identifier for the clone. An agent can clone itself or be cloned by another agent.

1.2.6 Mobility

Dispatching an agent from one AEE to another will remove it from its current AEE

and insert it into its destination AEE, where it will restart execution. In other words, the

agent is pushed into its new AEE. The retraction of an agent will pull (remove) it from its

current AEE and insert it into an AEE from which the retraction is requested.

1.2.7 Storage

Deactivation of an agent is the ability to temporarily stop and remove its thread(s)

from the current AEE and store the agent code and its current state in secondary storage

(typically, in the file system). Activation of an agent restores its thread(s) and its state in the

AEE. An agent can deactivate it, or another agent, and specify that it should be activated

after a certain period of inactivity, or upon receipt of a message of a certain kind(s).

 6

1.2.8 Disposal

The disposal of an agent stops and removes its thread(s) from the AEE.

1.2.9 Inter-agent communication

Agent-specific communication is achieved through messaging, which involves

sending, receiving, and handling messages synchronously as well as asynchronously. Agents

can also communicate with other agents and with objects in the distributed computing

environment, subject to security restrictions.

1.3 Problem Statement

Consider a network of a large company. Usually, such a network is connected to the

Internet via a router and protected by a firewall running on the router. Thus, only a fixed

number of ports are visible to users outside of the company's intranet. A generic mobile

agent communicates with the router in the same way as it would communicate with peer

agents within the intranet. Security is less of an issue within the intranet. However, the

security and communication protocols used by this agent are the same for communicating

with router or communicating within the intranet. Thus this mobile agent system is not able

to use its locality, and hence the intranet strategy.

The differences among the various mobile agent systems prevent interoperability and

rapid proliferation of the agent technology, and have probably impeded the growth of the

agent technology; therefore to promote both interoperability and system diversity some

aspects of the mobile agent technology must be interoperable.

The present architecture of a generic mobile agent system does not allow

communication with other agent systems, thus rendering itself a �dummy resource� within a

 7

host where other agents are residing. Not only is this agent a �dummy resource� to other

agents present at the host but also it cannot access other agent services by itself.

This thesis proposes and analyses a framework for a multi protocol based

communication service so that a generic mobile agent can make use of its locality and

chooses the most efficient protocol.

Current mobile agent systems save network latency and bandwidth at the expense of

higher loads on the service machines, since agents are often written in a (relatively) slow

interpreted language for portability and security reasons, and since the agents must be

injected into an appropriate execution environment upon arrival. Thus, in the absence of

network disconnections, mobile agents (especially those that need to perform only a few

operations against each resource) often take longer to accomplish a task than more

traditional implementations, since the timesaving from avoiding intermediate network traffic

is currently less than the time penalties from slower execution and the migration overhead,

thus we look into ways by which we can overcome some of these overheads.

1.4 Organization of Thesis

In chapter 1, the author introduced the mobile agent systems, issues involved and the

problem statement. Chapter 2 gives the motivation and historical evolution of the mobile

agent systems. In chapter 3, the author discusses the Ajanta mobile agent system

architecture, which is used as a reference model in the rest of the thesis. Chapter 4

establishes the state-of-art in mobility and communication frameworks of the current mobile

agent systems. In chapter 5 the author addresses the interoperability problem from the

CORBA standard perspective. Chapter 6 discusses the interoperability problem from a

high�level; an analysis of the current agent communication languages along with how they

can be used for the current mobile agent platforms is done. Chapter 7 provides an overview

 8

of the MASIF specification for interoperability standards. In chapter 8 the author proposes

and analyzes a dynamic invocation interface for mobile agent communication. In chapter 9

the author discusses the design of a decentralized and fault tolerant videoconference, which

was implemented using IBM Aglets

Chapter 10 concludes the paper with the contribution of this thesis and identifies

areas of future work.

 9

CHAPTER 2
MOBILE AGENTS

2.1 Introduction

This chapter describes the evolution of mobile agents. In section 2.2, various

definitions of agents are given along with classification and application of agents. In section

2.3, mobile agents are described in detail. Section 2.4 discusses the motivation for using

mobile agents in an open network like Internet. In section 2.5, various applications of mobile

agents are given. Section 2.6 gives various characteristics of mobile agent system

components.
2.2 Agents

The topic of agents is very broad and interesting and different researchers have

defined the agents in their own way depending on their area of research and their

application. Here are some of the generic definitions of agents:

• �An agent is anything that can be viewed as perceiving its environment through

sensors and acting upon the environment through effectors.� [17].

• �Autonomous agents are computational systems that inhabit some complex dynamic

environment, sense and act autonomously in this environment, and by doing so

realize a set of goals or tasks for which they are designed.�

• �Intelligent agents are software entities that carry out some set of operations on

behalf of a user or another program with some degree of independence or autonomy

and in doing so, employ some knowledge or representation of the user�s goals or

desires.�[18].

 10

2.2.1 Definitions of Agent

Different vendors and researchers have their own notion and definition of agents. It is

interesting to see some of the definitions given later in this page:

The Maes Agent: �Autonomous agents are computational systems that inhabit some

complex dynamic environment, sense and act autonomously in this environment, and by

doing so realize a set of goals or tasks for which they are designed.� [9,10].

The KidSim Agent: �Let us define an agent as a persistent software entity dedicated to a

specific purpose. 'Persistent' distinguishes agents from subroutines; agents have their own

ideas about how to accomplish tasks, their own agendas. 'Special purpose' distinguishes

them from entire multifunction applications; agents are typically much smaller.� [11].

The MuBot Agent: �The term agent is used to represent two orthogonal concepts. The first

is the agent's ability for autonomous execution. The second is the agent's ability to perform

domain oriented reasoning.� [8].

The AIMA Agent: �An agent is anything that can be viewed as perceiving its environment

through sensors and acting upon that environment through effectors.�

The Hayes-Roth Agent: Intelligent agents continuously perform three functions:

perception of dynamic conditions in the environment; action to affect conditions in the

environment; and reasoning to interpret perceptions, solve problems, draw inferences, and

determine actions [12].

The IBM Agent: �Intelligent agents are software entities that carry out some set of

operations on behalf of a user or another program with some degree of independence or

autonomy, and in so doing, employ some knowledge or representation of the user's goals or

desires.� [13].

 11

The Wooldridgep Jennings Agent: �... a hardware or (more usually) software-based

computer system that enjoys the following properties [14]:

Autonomy: agents operate without the direct intervention of humans or others, and have

some kind of control over their actions and internal state;

Social ability: agents interact with other agents (and possibly humans) via some kind of

agent-communication language.

Reactivity: agents perceive their environment, (which may be the physical world, a user via

a graphical user interface, a collection of other agents, the INTERNET, or perhaps all of

these combined), and respond in a timely fashion to changes that occur in it;

Pro-activeness: agents do not simply act in response to their environment, they are able to

exhibit goal-directed behavior by taking the initiative.�

The SodaBot Agent: �Software agents are programs that engage in dialogs [and] negotiate

and coordinate transfer of information.�

The Brustoloni Agent: �Autonomous agents are systems capable of autonomous,

purposeful action in the real world.� [15].

2.2.2 Classification of Agents

As can be seen by the number of definitions of the agents, it would be nice to have a generic

classification and definition of the agent based on its function. Some generic definitions are

given later in this page [16]:

• Reactive Agents (Sensing and Acting)�these respond in a timely fashion to changes

in the environment.

• Autonomous Agents�these exercise control over their own actions.

• Goal oriented (Pro-Active or Purposeful)�these do not simply act in response to the

environment.

 12

• Temporally Continuous�these are continuously running processes.

• Communicative (Socially Able)�these can communicate with other agents and

sometimes with people.

• Learning (Adaptive)�these agents are capable of changing their behavior based on

it�s previous experiences.

• Mobile Agent�can transport itself from one machine to another.

• Flexible�these agents do not have scripted actions.

• Character�these have believable personality and emotional state.

Almost all the agents have the first four characteristics and the other characteristics

are based on their particular functionality. For example mobile agents are reactive,

autonomous, goal oriented and temporally continuous but the main characteristic is its

mobility, which distinguishes it from a learning agent, although a mobile agent could also be

learning as well.

2.2.3 Applications Based on Agents

The agents are used for a number of applications, some of which are listed later in this page

[19,20]:

• Artificial Intelligence�Agents are used extensively in the field of artificial

intelligence. It improves collaborative online social online social events. Agents are

also used in the field of robotics.

• Distributed Systems�Agents have some advantages over the traditional client/server

architecture, which are used to enhance the client/server architecture. Agents reduce

client/server network bandwidth problems by moving a query from the client to

server. They allow decisions about the location of code to be made at the end of

development cycle, when a lot more is known about the performance of the

 13

application, reducing the design risks. The agents can work even when the network

goes down, they can work offline and return the results when the network goes back

online.

• Network management�The agent reduces network bandwidth by transferring the

queries by transferring the query or transaction from the client to the server, thus

minimizing bandwidth. An agent can be programmed to visit several nodes in the

network in succession carrying out some task, this ensures that communication is

defined clearly and the designer need only concentrate on the tasks to be assigned to

an agent. Another advantage is the agent can work offline or its transaction can be

stalled at one site and it can resume at the other site where it was stalled. The agents

also provide real time notification where an agent situated at any remote site may

notify the host of an important event immediately. It also allows parallel execution

where large computations can be divided depending on resources.

With a background in agents, the author describes mobile agents in detail.

2.3 Mobile Agents

An agent is defined as a self-contained software element that acts autonomously on

behalf of a user (e.g., person or organization) [5, 7]. Each agent has its own thread of

execution, which means that it can perform tasks on its own initiative. A mobile agent has,

in addition, the unique ability to migrate from one host in a network to another [5, 7].

The definition of a mobile agent contains at least two key words that raise important issues.

The first key word refers to the autonomy of a mobile agent. This is a feature that allows the

agent to act on its own by using the data and the mobile logic which it incorporates, and

does not need human intervention or guidance. The user can perform other activities in the

 14

meantime. Further, the time needed to fulfill the tasks is reduced because interaction with

the user is avoided. The agent is designed to deal with any situation that may occur during

execution. There are however cases when the lack of human supervision may lead to

unexpected and undesired actions, such as the violation of the private information associated

to the agent�s owner [5]. The relation agent-owner should be based on trust because the

agent has access to information stored in the user�s profile, information that may be private.

Due to the fact that an agent can collect, manipulate, and distribute data, including

user�s personal data, it is possible that there is a violation of privacy when the agent

communicates and/or exchanges data with its environment and/or agents belonging to

different systems. In order to defend the user's privacy, Privacy-Enhancing Technologies

(PETs) (e.g., Identity Protector) [6] should be added or integrated in mobile agent systems.

The second key word in the definition refers to the mobility of an agent. The

mobility feature enables the agent to travel to the host where the data is physically stored. In

this way the transfer of a large amount of data in the network is prevented. The agent

accesses the data locally and so provides only the results to the user. There are at least two

advantages to this approach: low traffic in the network and a better use of network

resources. The migration of an agent within the network should respect rules concerning the

agent transport, agent interaction and security, otherwise it is not possible to ensure

interoperability among mobile agents which belong to different vendors� systems.

The security issue has always been considered to be the weak point of mobile agent

technology. The security problem regards the security of the host that may receive a

potentially malicious agent, as well as the security of the agent that should be protected from

potentially malicious hosts. Closely related to this aspect, is legal responsibility, which

 15

concerns authentication of mobile agents, secrecy, privacy, data quality, and many other

similar aspects. Questions such as: �Is the agent really what it pretends to be?� or �Has it the

right to access this kind of data?� should have a clear response because otherwise the host

will not know how to react to the agents� requests.

2.4 Motivation for Using Mobile Agents

Traditional distributed applications have relied on the client/server paradigm, where

the main means of communication is either through message passing or by Remote

Procedure Calls (RPC), This way of communication is usually synchronous (i.e., the client

sends the request and waits for the server and waits for the response from the server with the

result). Stamos and Gifford proposed an alternate architecture called Remote Evaluation

(REV) in 1990 [22]. In REV the client instead of invoking a remote procedure, sends its

own procedure code to the server and requests the server to execute it and return the results.

Earlier systems like the R2D2 [25] and CHORUS [26] introduced the concept of active

messages that could migrate between the different nodes in a network, carrying the code to

be executed at the nodes. A more generic concept is a mobile object, which encapsulates

data along with a set of operations on that data, and which gets transported between the

nodes in a network. EMERALD [27] was an example of an early system that provided

object mobility but it was limited to homogeneous local area networks. The Mobile agent

paradigm has evolved from these antecedents. Figures 2.1, 2.2 and 2.3 illustrate how mobile

agent paradigm differs from its antecedents. In RPC data is transmitted between the client

and server in both directions. In REV, code is sent from the client to the server and data is

returned. In contrast a mobile agent is an encapsulated program that is sent by the client to

the server, But unlike a procedure call the, it does not have to return the results to the client,

 16

but instead it could migrate to other servers, transmit data back to its origin or migrate back

to it�s origin if appropriate.

Telescript [28], developed by General Magic is one of the first systems expressly

designed to support mobile agents in commercial applications. It was followed by other

systems like Tacoma [29] and Agent Tcl (D`Agents) [] where the agents were written using

script languages. The emergence of Java with its support for mobile code has lead to

development of other systems such as Aglets [30], Voyager [31], Concordia [13] and Ajanta

[14].

Figure 2.1 Remote Procedure Calls (RPC).

 Figure 2.2 Remote Evaluation (REV).

Client Server Results (data)

Client Server
Parameters (code)

Results (data)

Parameters (data)

 17

Figure 2.3 Mobile Agent.

2.5 Applications of Mobile Agents

The exponential growth of the World Wide Web and the advances made in the field

of Mobile Agents has led to the development of many applications based on Mobile Agent

paradigm. Some of the agent applications are discussed later in this page.

Information search and filtering applications often download and process large

amounts of server resident information, and generate comparatively small amounts of result

data. Instead, using mobile agents, which execute on server machines and access server data

without using the network, the bandwidth requirements can be reduced.

Some applications involve repeated client/server interactions, which require either

maintaining a network connection over an extended period, or making several separate

requests. If mobile agents are used instead, the client does not have to maintain a network

connection while its agent�s access and process information, as the agent can act

autonomously based on the data it collects dynamically. This permits increased asynchrony

between the client and server. This feature is especially useful for mobile computers, which

typically have low bandwidth, unreliable connections to the network, and are often switched

1. Agent Migration

Server-1 Server-2

2. Agent Migration

Client Server-3
4. Agent Migration

3. Agent
Migration

Agent Code,
data and
context

 18

off to save on power consumption. Also, the repeated client/server interactions are reduced

to two agent transfer operations, thus reducing the frequency of network usage as well.

In client/server applications, servers typically provide a public interface with a fixed

set of primitives. Clients may need higher level functionality composed of these primitives,

and their requirements can change over time. Rather than modifying the server interface to

support such requirements for every client, a client can maintain its own interface at the

server node, using a mobile agent. This has the added advantage of reducing the number of

network-based interactions required. Service providers to dynamically enhance server

capabilities can exploit the same feature.

Mobile agents can also be viewed as a mechanism for introducing parallel activities,

since they execute concurrently. A client can decompose its task among multiple agents for

providing parallelism or fault tolerance. It should be noted that when the client is

decomposing the tasks there are no resource conflicts.

Mobile agents support real time system control [41]. Consider an application that

uses RPC�s to control a device; it may be difficult (if not impossible) to guarantee that it will

meet the real time deadlines associated with the device. This is because communication

delays are not accurately predictable, unless the underlying network provides quality of

service guarantees. Instead, the application can send an agent to the device and control the

device locally, resulting in better predictability.

An active mail message is a middleware program that is based on mobile agents. An

active message service is a program that interacts with its recipient using a multimedia

interface, and adapts the interaction session based on the recipient's responses. The mobile

agent paradigm is well suited to this type of application, since it can carry a sender defined

session protocol along with the multimedia message.

 19

Agents have been used in the field of E-Commerce. Vendors can set up online shops,

with products, services or information for sale. A customer's agent would carry a shopping

list along with a set of preferences, visit various sellers, find the best deal based on the

preferences, and purchase the product using digital forms of cash. This application imposes

a broad spectrum of requirements on mobile agent systems. Apart from mobility, it needs

mechanisms for restricted resource access; secure electronic commerce, protection of agent

data, robustness and user control over roving agents.

Agents are used in applications that need to monitor events on remote machines also

benefit from mobile agents, since agents need not use the network for polling. Instead of

periodically downloading the required data, an agent can be sent to the access the data. The

agent can inform the user when a specified event occurs.

Manufacturers of cell phones, personal organizers, car radios and other consumer

electronic goods are all introducing new features and are becoming the primary focus of

Mobile agent developers. Since these devices are not online completely and they can use the

property of the mobile agent, an agent once launched can operate autonomously of its host

that launched it.

Besides the above mentioned applications agents some of the other applications that

have been developed based on the mobile agent paradigm are network maintenance, testing

and fault diagnosis, installing and upgrading software on remote machines. A file sharing

system and a Calendar manger has been developed based on the Ajanta a java based mobile

agent system.

 20

2.6 Mobile Agent System

The mobile agent system consists of hosts and agents. The host also acts as an agent

server to provide an agent an execution environment. The characteristics of each entity in

the system are listed later in this page:

2.6.1 Characteristics of Hosts (Servers)

• An agent host must allow multiple agents to co-exist and execute simultaneously.

• Provide means of communication between the agent and host and between agents.

• Provide a transport mechanism to transfer agents to other hosts and receive agents

from other hosts.

• Since and agent takes with it its state of execution the host must be capable of saving

the state of an executing agent and transmit it, conversely it must be capable of

receiving an agent and resume execution from the point it was interrupted.

• The host must ensure that the various agents executing on it don�t interfere with

each other.

2.6.2 Characteristics of Agent Servers

• It provides an environment for uniform execution and maintenance of agents on the

server.

• Secure the host from malicious agent attacks.

• Prevent an untrusted agent from accessing sensitive data and resources, while

authorizing a trusted agent to access various allocated resources.

2.6.3 Characteristics of an Agent

• An agent has a unique identity on a server.

• An agent must have means of determining messages other agents send and must be

capable of sending messages to other agents.

 21

• An agent must be tactile (i.e., Mobility and persistence).

• An agent must be social, (i.e., it must communicate and collaborate with other

agents).

• An agent must be cognitive (i.e., it must adapt to a situation, it must learn from it�s

past and must be goal oriented).

• An agent takes with it its state of execution.

• An agent is autonomous (i.e., once it leaves it�s creator it can be trusted to make

decisions on it�s itinerary and what it will execute).

• An agent can receive input from external sources and make decisions base on the

input regarding their itinerary or execution, independently without any external

influences.

Having introduced the mobile agent concept, the author analyzes the prior work done in

this area in the next chapter i.e., chapter 3.

 22

CHAPTER 3
AJANTA A REFERENCE MODEL OF

A MOBILE AGENT SYSTEM
3.1 Introduction

This chapter is an introduction to Ajanta a Mobile Agent system, developed in

University of Minnesota, by Dr. Anand Tripathi. This system is a Java Based Object

oriented system for programming and developing Mobile Agents. The Mobile agent

programming in Ajanta is based on the concept of network mobile objects, Agents in this

system are active mobile objects, which not only encapsulate the code, but also include the

data to be executed with the code. Ajanta�s programming environment is based on a set of

primitive operations for agent creation, dispatch, migration and remote control. Agents can

access server resources using a proxy based access control mechanism This architecture

provides mechanisms to protect server resources from malicious agents, agent data from

tampering by malicious servers or communication channels during its travel, and protection

of name service data and the global namespace. Ajanta uses a proxy-based mechanism for

secure access to server resources by agents. Using Java's class loader model and thread

group mechanism, isolated execution domains are created for agents at a server. Ajanta uses

generic authentication protocol to conduct client/server communications when protection of

resources is required. In this chapter the author gives a description of the system

architecture, agent structure, agent server structure, naming policy followed by Ajanta and

the programming primitives of Ajanta for activities including agent creation, agent transfer

protocol, agent execution on a server and communication between the agents. Section 3.2

gives the requirements Ajanta was based on and a general overview of Ajanta.

 23

3.2 Ajanta

Ajanta is a mobile Agent System developed at the University of Minnesota. In

section 3.2.1, the system requirements for Ajanta are elaborated. 3.2.1 Requirements for

Ajanta

Security and robustness are among the most important requirements of an agent

programming environment. In order to build any agent based application, a set of hosts have

to run a facility that receives the visiting agents and provides to them an execution

environment and access to its services. These issues are referred to in the Ajanta system

architecture.

Servers willing to host agents originating from unknown sources require a high level

of confidence in the protection mechanisms to enforce the desired security policies for

preventing unauthorized or malicious agents from leaking, destroying or altering the server's

resources or disrupt its normal functioning. Security mechanisms are thus necessary to

safeguard host�s resources. Conversely, an agent may need to be protected from its host

server, because it may carry sensitive information about the user it represents. This includes

the requirement of preserving the integrity of the information collected by an agent during

its visit to various hosts.

Robustness of the system is also a concern, especially in open, unreliable

environments such as the Internet. A user can have a high level of confidence in his agent

based applications only if he can monitor and control the agents at all times. Therefore, an

ideal agent programming system should provide suitable mechanisms using which a user

could monitor the roaming agents� status and control them remotely, irrespective of their

location on the network.

A mobile agent system must, in addition, present a programming framework that is

intuitive and powerful. It must provide the programmer a set of primitives that allow the

 24

user to partition the application's tasks among agents, specify their migration plans, control

and communicate with them as they traverse the network, and so forth. This task is

significantly simplified if a uniform, location independent global naming scheme is used, so

that the programmer can refer to agents, servers and resources using location independent

identifiers.

The initial step in creating any agent-based application is to define the services to be

provided to an agent by its host servers. Then the server needs to be implemented with

appropriate resources to provide those services, an agent server also needs to support a

generic set of services to allow an agent to migrate from one server to another, verify an

agent's identity, create an execution environment for an agent, and grant an agent controlled

access to its local resources. It should be possible to dynamically change the access control

policies that a service owner may wish to enforce on visiting agents. It should also be

possible to add new services with time. Thus, a mobile agent programming system needs to

provide customizable agent servers for hosting visiting agents, and a set of primitives for the

creation and management of agents. In section 3.2.2, Ajanta mobile agent system is

explained.

3.2.2 The Ajanta System

The Ajanta project was motivated mainly to investigate an agent programming

system architecture to address the requirements stated. In Ajanta, the mobile agent

implementation is based on the generic concept of a mobile object [42]. Agents are active

mobile objects, which encapsulate code and execution context along with data. Ajanta is

implemented using the Java [43] language and its security mechanisms [44]. It also makes

use of several other facilities provided by Java, such as object serialization, reflection, and

remote method invocation.

 25

Ajanta offers a programming environment, which reflects several useful and novel

features. For the ease of building new applications, Ajanta provides implementations of a

generic agent and a generic agent server. The Agent class of Ajanta defines the generic

agent, and the AgentServer class defines the generic agent server. These two classes together

implement the basic functionalities and protocols of the Ajanta architecture. These classes

can be suitably extended for building agents and servers required by an application. The

generic agent server can control a visiting agent's access to the host resources at any desired

level of access control granularity. This policy is based on the Agent�s credentials and it can

be dynamically altered. Ajanta also provides mechanisms by which any tampering of an

agent's data can be detected [45]. A novel feature supported by Ajanta is the composable

pattern of migration for building agent itineraries. A pattern separates the specification of an

agent's migration path from its computation tasks. A pattern can also include suitable

exception handling mechanisms to deal with migration related exceptions. The basic

migration primitive in Ajanta allows an agent to specify migration to a specific host or

collocation with another agent or some globally named resource.

Ajanta architecture uses a location independent global naming scheme for

referencing or communicating with agents, servers, and any other resources. Here one can

refer to all agents and servers without any knowledge of their locations. The name service is

also used for distributing public keys of the users and other entities such as the servers and

the agents.

Agents collocated at a server can communicate with each other using method

invocations or shared objects. Moreover, an agent can communicate with a remote agent

using Java's RMI facility. In this context, if required, an Ajanta server is given mechanisms

 26

to deny an agent access to the RMI facility. Any RMI based client/server interaction in

Ajanta can be authenticated if desired by the server.

For high confidence, Ajanta provides facilities for applications to monitor the status

of their roving agents, and control them remotely. If needed, an application can abort the

execution of its remote agents. Ajanta enforces appropriate security in the execution of these

control primitives, which can change an agent's travel plans. For error recovery, Ajanta

provides a model for handling exceptions encountered by an agent. It introduces the concept

of a guardian object associated with one or more agents of an application to handle those

exceptions for which the agent is unable to perform any recovery. In section 3.3, Agent

Server Architecture is presented.

3.3 Agent Server Architecture

 In Ajanta each agent server conceptually contains two entities � agents and

resources that the agents can access. Multiple agents can be running on a host each running

in its own protection domain. The server maintains a domain registry to keep track of the

agents currently executing on it.

The agent server has an agent environment component; this object acts as an

interface between the visiting agents and the server. When an agent arrives at the server it is

provided with a reference to this object. They then communicate with the server through the

agent environment�s interface. This interface allows the agents to access resources, request

migration and so forth.

The server also provides application specific resources. A resource is an object that

acts an interface to some service or information available on the host. The server maintains a

resource registry, which is used in setting up safe bindings between he resources and agents.

 27

The Agent Transfer component implements the Ajanta�s Agent Transfer protocol

that allows agents to migrate between the hosts. When an agent requests a transfer this

module contacts the corresponding module on the destination server and transfers the agent

across the network.

The final component is the server interface, which is remotely invocable method or

interface. It supports status queries about the agent resident on it; it also provides primitives

for tasks such as terminating agents, recalling them to their home sites and so forth. The

system architecture is as shown in figure 3.1

Figure 3.1 The Ajanta System Architecture.

 Resource

 Proxy1 Proxy2

Access Protocol

Agent Environment

Resource
Registry

Domain
Database

Agent
Transfer

Host Operating System

Itinerary Current

State
(Internal

Data)

Code
(Methods)

M
1

M
2

Host Credentials

 28

Some of the important elements of Ajanta�s computational model are described later

in this section.

Principal: Actions in the system are always performed on behalf of some authorized

principal, an entity that has a unique identity in the system. Agents, hosts, agent servers, and

human users are some of the principals in the system. For each principal, the Ajanta system

uses DSA keys for signature and El-Gamal keys for encryption.

Creator: The agent is usually created by another principal, such as an application program,

or another agent―Ajanta calls this the creator of the agent.

Owner: This is the human user whom the agent represents. An agent's owner is different

from its creator.

Guardian: An application assigns to each of its agents a guardian object, which is

responsible for dealing with exception conditions encountered by the agent. If the agent

encounters any exceptions during its execution, it is transported to its guardian, which takes

the appropriate recovery actions. An agent's creator can also act as its guardian.

Agent Credentials: This is a signed certificate carried by each agent describing its identity

and origin. Its tampering can be detected. It contains the names of the agent, its owner,

creator, and guardian. Other information encoded into the credentials includes a digest of the

�intentions� for which the agent is created. The inclusion of a digest of the intentions places

restrictions on the rights granted to an agent by its creator. Typically, the intention is

abstracted into an itinerary.

Code Base Server: Other information included in the credential is the URL for agent's code

base server, which is a server that provides the code for the classes required by the mobile

agent. Typically the creator of an agent would act as its code base server.

 29

3.4 Agent Structure

An agent is a Java object it consists of code―represented by a set of methods in its

Java class and state (i.e., the data members of its class). The basic Agent structure is defined

in the Agent class. Ajanta implements mobility of agents using Java�s object serialization

feature. The concept of Mobile Agent implies that a thread carry with it it�s state of

execution this cannot be implemented using an object serialization, since it cannot capture

the execution of the thread. This problem is overcome in Ajanta by making the threads

lightweight, It does not capture the state of the thread, no code is transported on an Agent�s

migration, All code migration in Ajanta takes place �on demand� during an agent�s

execution. A server associates a system defines class loader with each agent. This first

checks the servers class path for the classes if not found it contacts the agents code base

server.

 An agent carries with it a set of credentials as a part of its state. The credential help

identify the agent for access control purposes. The agent has a global name assigned in the

URN formats. Apart from this name the credentials also contain identities of the agents

owner, creator and guardian. The owner is the human user whom the agent represents.

Access control policies are usually specified in terms of owner�s authority and privileges.

The creator may be different from the owner; it may be another agent run by the same owner

or another application. The guardian is an optional part of the credential; usually it is the

creator who is the guardian. All errors and exceptions encountered by the agent will be

reported back to the guardian. An agent� credentials is usually protected from any tampering

by computing the digital signature of its owner on the owner and including it within the

object.

Another component of the credentials is a code base for the agent. This is a trusted

server process, which has access to all the Java classes that the agent may require, Usually

 30

the application runs the code server as a part of the agent server itself. If the agent�s current

host requires some class it contacts the agents code base and uses a secure, authenticated

protocol to load the class.

 An agent contains four kinds of data. The first kind consists of data defined by the

base agent class, which can get modified during the agent�s migration. The second kind of

data is aggregated in a collection called ReadOnlyContainer; any tampering of this data can

be detected. This contains some system defined agent specific data and also any application

defined constants. The third kind consists of encrypted objects intended for some specific

servers, these are put in a container called TargetedState, and Secrecy of this data is an

important requirement. The fourth kind of data consists of objects that an agent gets from a

host dynamically and carries it along. It is important to protect this data from deletion or

tampering by other servers it visits later. The agent checks in an object into this container,

the object is then cryptographically protected so that any attempt to modify it or delete it

will be detected.

The agent sometimes also contains an itinerary object. It encodes the travel path of

an agent along with the code to be executed at each destination. The itinerary is usually

assigned to the agent by its creator, but it is modifiable by the agent itself in transit.

3.5 Naming Resolution

In a Mobile Agent System the various system entities need to be assigned a unique

name, as they have to be identified uniquely when executing in a host. An agent must be

uniquely named so that its owner can identify and control it anywhere in the network. The

servers need to be uniquely identified so that the agents can specify their destination. Some

namespaces may be common though, Agents and Agent Servers can share a common name,

so that the agent can specify whether it wants to migrate to a particular server or if it wants

 31

to share a co-location with another agent to share information. Ajanta uses global, location

independent names that do not change when the entity is relocated. This requires the

provision for a name service, which maps a symbolic name to the current to the current

location of the named identity.

In Ajanta, following the requirements mentioned, it uses a location independent

Uniform Resource Naming (URN) scheme. A URN is a location independent identifier

which can be used to access an entity or for querying some of its characteristics. Each URN

consists of a namespace identifier (NID) followed by a namespace specific string (NSS). In

Ajanta the NID is called the ans, Ajanta Name Space, All the entities in Ajanta are assigned

URN�s within this namespace, therefore all the URN�s have the same urn:ans:<NSS>

The name service framework has to address three security requirements: (1) access

control on the name server's registry entries, (2) server authentication, and (3) server

replication to protect against �denial of service� attacks. To meet these requirements, Ajanta

name service protects its database using access control lists for its entries. The name service

maintains DSA public key and the El-Gamal public key for each registered principal, and it

executes a challenge/response based authentication protocol [46] for any update operation.

An example of a URN in Ajanta's namespace is:

urn:ans:cs.umn.edu/UserName/ResourceName

Here �ans�, is the Ajanta Namespace Identifier [54] and the name space string is

�cs.umn.edu/UserName/ResourceName�. Ajanta uses the existing resolution framework of

the Domain Name System (DNS) for URN resolution―the translation of URN to a URL, or

another URN, or other characteristics. Here, �cs.umn.edu� is the DNS domain where the

object was first created. Ajanta refers to this as the creation domain, which is used as a hint

to locate an object. Within this domain, �UserName� is a naming authority or a subdomain,

 32

and �ResourceName� is a unique string in this subdomain. This hierarchical structure

provides ease of maintenance and delegation of namespaces. The naming authority can

create a new name only its name space. Ajanta's name service maintains the mapping

between the URN of an entity and its characteristics, including its current location.

Application level primitives are provided for the client to create new entries or query/update

an existing one. All updates require authentication, and they are performed only if permitted

by the access control policies. The URN resolution procedure used in Ajanta first queries the

local nameserver. If that name server is unable to resolve locally, it queries the nameserver

in the URN's creation domain. The creation domain nameserver maintains the entire URN�s

created in its domain and contains the authoritative versions of their name registry entries. In

the current version, whenever an object migrates, its creation domain is updated. If an object

migrates to a domain other than its creation domain, then both the current domain as well as

the creation domain nameservers is updated. Each domain has a name registry, which is a

server process for maintaining the resolution of data for the entire URN�s created in that

domain. The name registries of different domains interact with each other in order to

implement replication. Section 3.5.1 describes the Ajanta Name registry.

3.5.1 The Name Registry

The name registry in Ajanta is implemented based on the Java RMI-based server

process. It provides for three basic interface functions: bind, rebind and lookup. The bind

primitive sets up the initial association between the URN and a specified registry entry,

which includes the current location of the entity among other attributes. The rebind primitive

changes the binding of a URN to a new registry entry. The Lookup primitive returns the

registry entry of a particular entity for a given URN. Depending on the entity the name

registry contains different entries that can be registered.

 33

Some of the entries associated with different entities are often distinct. In an Agent

server�s entry Ajanta stores the URL location at which it can be contacted for agent

migration. With an agent it stores the URN of the agent server on which it is currently

residing or executing. For resources, since they can be replicated and multiple copies might

exist Ajanta stores a list of agent server URN�s at which the resource can be found. The only

attribute, which must always have an entry for every entity is its ownership attribute, this

determines who is permitted to make critical changes to the entries. Section 3.5.2 describes

the role of the name registry in Public Key distribution.

3.5.2 Public Key Distribution

Each entity in the system Agents, Agent Servers, Resources and users and so forth.

have public keys associated with them. These keys are stored as a part of the name registry

entries. The Name registry is responsible to distribute the public keys on request, Hence the

name registry also acts as a public-key infrastructure for the system. This binding between

the URN and the public key is critical for the authentication process, since the system cannot

always depend on network communications for this purpose.

Public key cryptosystems are used to serve two purposes in Ajanta, Digital

signatures and encryption. The name service provides a lookup method in its interface,

which allows the clients to determine the public key for a given URN. The reply is signed by

the name service itself to prevent tampering.
3.6 Secure Agent Execution

The major challenges in agent execution are, the creation of a protection domain in

which to isolate the agent, and the provision of a secure resource access protocol. In section

3.6.1, the author gives detail of the creation of securer protection domains for Agent

execution.

 34

3.6.1 Protection Domain for Agent Execution

Ajanta uses two Java mechanisms for implementing protection domains: thread

groups and class loading. A thread group in Java is a simple collection of threads. When an

agent arrives, a new thread group is created for it. A single thread is created in this group,

and is assigned the task of executing the method requested by the agent. During its

execution, the agent may create other threads, but it is constrained to create them within its

own thread group. Thus, any thread executing that agent's code can be identified by its

thread group id. The agent server maintains a domain database indexed by thread group ids,

in which it stores the agent's URN and credentials, as well as a reference to the agent object

itself. This entry is used by the server's code whenever it needs access to the agent or its

identity, when an agent attempts to acquire a resource; its credentials are needed to

determine the level of access permitted.

Ajanta uses Java's class loader mechanism to protect agents from each other. The

Java virtual machine associates with each class, the class loader instance that loaded it. Two

classes loaded by different loaders may have the same name, but are considered different

types. This implies that objects of the two classes are not type compatible, even if the classes

are in fact identical. In effect, a class loader defines its own namespace. Each agent is

assigned a unique class loader instance. Whenever the agent's code encounters an object

reference whose class is not currently loaded, the Java virtual machine invokes the agent's

class loader, and provides it the name of the required class. The class loader first searches

the server's classpath a set of directories on the local file system which contain classes

trusted by the server. If the required class is found on the classpath, it is loaded into the

virtual machine. Otherwise, the agent's code base is contacted and asked to supply the

missing class. This communication may be encrypted and digitally signed to ensure the

 35

integrity of the downloaded code. Since each agent has its own class loader, a malicious

agent cannot replace any other agent's classes with its own impostor versions.

Agent Activation

When an agent transfer connection is initiated, the ATP handler thread first reads the

transfer request message from the sender. This contains the credentials of the agent being

transferred. The handler consults the server's security policy to determine whether to allow

the transfer to continue. If the agent is not permitted to execute on the server, the connection

is aborted. Otherwise, the ATP handler creates a thread group, a new thread in that group,

and a new class loader for the agent. An entry for the agent is made into the domain

database. The newly created thread uses a bootstrap mechanism to transfer control into the

new class loader's namespace. It then deserializes the agent object from the incoming

connection, and sets the agent's host reference to the local server's agent environment.

Finally, it transfers control to the agent, by invoking the method in the transfer request.

Section 3.6.2 discusses the Secure Access protocol.

3.6.2 Secure Access Protocol

Agents need access to both systems level and application defined resources as they

execute. The server must grant access only to authorized agents, and then only to the extent

permitted by their privileges. System level resources are protected in Java using the security

manager, which encodes security policy. All Java library calls, which access system

resources, first invoke the security manager to screen the access. For application level

resources however, burdening the security manager further is avoided, since every new

resource added to the system would necessitate extending the security manager, making it a

large, uncohesive module prone to errors. Therefore, a mechanism is needed, which allows

the agent server to provide a secure language level binding between agents and resources.

 36

Each resource must be allowed to define its own security policy, and control its

implementation.

Ajanta uses a proxy-based mechanism to access server resources. The resource

request and the resource access protocols are discussed in detail in chapter 9.

3.7 Agent Programming Primitives

The primitives for programming in Ajanta are used for controlling the agents in the

network. The primitives provide methods for creating and dispatching the agents, control the

agent mobility, monitor them, check for exceptions and recover from exceptions.

3.7.1 Primitives Related to Agent Creation

An agent creation primitive allows the programmer to create instances of agents,

thereby partitioning the application's task among its roving components. This also introduces

concurrency into the system. Agent creation involves the submission of the entity to be

treated as an agent, to the system. This could be a single procedure to be evaluated remotely

(as in REV), a script, or a language level object. In object-oriented systems, an agent is

usually created by instantiating a class, which provides the agent abstraction. The system

can inspect the submitted code to ensure that it conforms to the relevant protocols and

doesn't violate security policy. Based on the identity of the agent creator, a set of credentials

for the agent may also be generated at this time. These are transmitted as part of the agent, to

allow other entities to identify it unambiguously.

A newly created agent is just passive code, since it has not yet been assigned a thread

to execute it. For activation, it must be dispatched to a specific agent server. The server

authenticates the incoming agent using its credentials and determines the privileges to be

granted to it. It then assigns a thread to execute the agent code. A variant of the creation

 37

primitive allows an agent to create identical copies of itself, which can execute in parallel

with it, and potentially visit other hosts performing the same task as their creator. Another

variant is forking of agents, in which the newly created agent retains a parent child

relationship with its creator. This allows programmers to create agents that inherit their

ownership, privileges, and so forth. from their parents. Section 3.7.2 discusses the

primitives related to Agent Migration.

3.7.2 Primitives Related to Agent Migration

 When an agent is executing, the agent program may determine that it needs to visit

another site on the network. To achieve this, it invokes a migration primitive. The agent

server must suspend the agent's execution, capture its state and transmit it to the requested

destination. The server at the destination can then receive the agent state and activate it after

the appropriate security checks are passed. The destination specified by the agent can either

be absolute, (i.e., the name of the server it needs to migrate to), or relative, (i.e., the name of

another agent or resource it needs to collocate with). Most systems provide absolute

migration primitives. Ajanta supports Relative migration. Some systems build upon their

migration primitives to provide higher levels of abstraction, such as an itinerary, which

contains a list of servers to visit, and the corresponding code to execute at those locations.

Table 3.1 summarizes the basic mobility features provided in the various Mobile Agent

systems.

 38

Table 3.1 Agent Mobility Support

System Naming Agent Migration

Telescript
Location dependent (based on

DNS).
Both absolute (go) and relative (meet) migration.

Agent Tcl
Location dependent name based on

DNS and optional symbolic alias.

Only absolute, using agent_jump primitive. The

agent_fork sends a clone agent instead.

Aglets URL�s based on DNS names.
Only absolute, using the dispatch primitive.

Supports Itinerary abstraction.

Voyager
Location Independent global ID, as

well as local proxy.

Single primitive (moveTo) supports both absolute

and relative migration.

Concordia
Location dependent (based on

DNS). Directory Services available

Only absolute, based on the contents of agent�s

Itinerary.

Ajanta
Location Independent global

names.

Single primitive (go) supports both absolute and

relative migration. Supports Itinerary abstraction.

Tacoma
Location dependent (based on

DNS).

Single primitive (meet) supports both absolute and

relative migration.

3.7.3 Agent Transfer Protocol

The generic agent server in Ajanta, which can be extended by a user to define an

application specific server, supports the Agent transfer protocol, which is used for agent

migration between agents and servers.

 39

An agent requesting migration specifies a destination and the method to be executed

there. The interactions between two agent servers to transfer an agent consist of two phases.

In the first phase, the current server first sends a request message to the destination server

containing the agent's credentials, agent owner's signature for the credentials, a method

specification, and some other parameters controlling the transfer itself, including flags

indicating whether the transfer should be encrypted and signed, size of the agent and so

forth. The credentials identify the agent, thus allowing the destination server to decide

whether to permit the transfer. The destination server then verifies the credentials against the

owner's signature. If the verification is successful, a positive acknowledgment is sent to

sender; otherwise, an exception is sent. On receiving a positive acknowledgment, the sender

sends the serialized agent object to the destination.

Two Java mechanisms are used for isolating agents from each other at a server

thread grouping and class loading. When an agent arrives at a server, a new thread group is

created; all threads created by the agent are constrained to be within this group. Thus at

runtime, the actions of an agent's code can be identified by the thread group id. This

mechanism also enables the server to distinguish between the agents executing on it, so that

they do not interfere with the others working. Ajanta uses Java's class loader mechanism to

isolate agents. Each executing agent is assigned a separate Ajanta defined class loader,

which is responsible for locating and loading any classes needed during the agent's

execution. Each class loader defines a separate name-space for the classes that it loads and

prevents an agent from bringing in any untrusted code for security sensitive operations. This

class loader ensures that all trusted classes are always loaded from the server's class path;

only when a class is not found on this class path, will the class loader look for that class at

the agent's code base server.

 40

At the destination server, a new thread group and an Ajanta defined class loader are

created for this new agent's execution. Also a new server thread is created in this thread

group to receive the serialized agent and deserialize it, and to execute the method specified

in the transfer request. The Startup class does the deserialization of the agent. This ensures

that a class loader loads all classes of the arriving agent, which is separate from the system

class loader. Moreover, as a class loader is exclusively created for each agent, classes for all

agents are kept under separate namespaces. If the transfer is successful, the thread created to

handle the agent transfer first executes the arrive method of the agent, then it executes the

method specified in the transfer request, and finally the depart method is executed. Once the

agent is deserialized, the receiving server verifies the credentials of the agent. If verified, an

acknowledgment is sent to the sender. Otherwise, if an error occurs before the agent can be

activated, an exception is returned instead. On a transfer error, the sending server informs

the agent by raising an exception that its transfer request failed. On receiving a positive

acknowledgment of transfer completion, the sending server updates the agent's location with

Ajanta's name service, and cleans up its internal data structures to indicate that the agent is

no longer hosted by it. Section 3.7.4 describes the primitives related to Agent

communication and synchronization.

3.7.4 Primitives Related to Agent Communication

Agents sometimes need to communicate with each other to accomplish some task.

Suitable inter agent communication primitives must therefore be made available. Inter agent

communication can be established using different mechanisms. One approach is to provide

message-passing primitives, which allows agents to either send asynchronous datagram style

messages, or to set up stream based connections to each other. Method invocation is another

 41

approach for communication in object-based systems. If two agent objects are collocated on

a server, they can be provided references to each other, using which they invoke operations.

Ajanta allows agents to acquire safe references to collocated agents. For agents that

are not collocated, remote method invocation can be provided. Collective communication

primitives can be useful in applications that use groups of agents for collaborative tasks.

Such primitives can be used to communicate with or within an agent group. Other group

coordination mechanisms such as barriers can be built upon these primitives.

Communication can also be implemented using shared data. For example, in Ajanta, two or

more agents can gain access to a shared object, which can then be used to exchange

information.

Another metaphor for agent communication is event signaling. Events are usually

implemented as asynchronous messages. An agent may request the system to notify it when

certain events of interest occur, such as agent creation, arrivals, departures, check pointing,

and so forth. This is referred to as the publish subscribe model of event delivery. Another

model is to provide broadcast of events to all agents in a group.

3.7.4.1 Agent-Agent Communication

Agent communication is a major part of the system, as two agents may need to

communicate and share information between them to complete some task. Two approaches

to agent communication are described later in this section.

Communication Using Resource Proxies: Two agents located on the same server can

utilize the proxy based resource access mechanism to communicate among themselves. An

agent class can implement the Resource and AccessProtocol interfaces. The agent then

registers itself with the server as a resource, and can provide proxies, which allow other

 42

agents to communicate with it. Collocated agents may also communicate via shared access

to a resource on their server. However, in many applications, agents residing on different

servers may need to communicate or synchronize with each other. Thus a remotely

invocable communication mechanism is necessary. Here too the proxy classes must be on

the server's classpath. If an agent is allowed to present an RMI interface to the outside

world, it opens up a security loophole. The server may grant the agent itself access to certain

resources. From the viewpoint of an agent's security, the RMI interface provides a conduit

through which unauthorized principals on remote sites may try to interfere with the agent.

We need to authenticate incoming connections, so as to control the set of principals, which

have indirect access to a resource. The proxy interposition concept is used here to control

incoming connections. From the server's security viewpoint, it is necessary to appropriately

control an agent's access to the server's communication resources. All incoming RMI

invocations are thus intercepted by a proxy object, which passes the RMI call through to the

agent object and relays the results back to the caller. The code for the proxy class is loaded

from the server's classpath.

Installing a Proxy RMI Server of an Agent: An agent wishing to make itself available for

remote invocations by other entities in the system must use the createRMIProxy primitive of

the agent environment object. The agent specifies the interface that it intends to support, and

requests the server to create and install an RMI proxy. This method executes the following

steps. First, it makes sure that the server's security policies allow this agent to install a proxy

object for accepting RMI calls. If so, it looks for the corresponding proxy class for that

interface on its classpath and creates a proxy instance (containing an embedded reference to

the agent object). It then registers the proxy object with the local RMI registry under the

agent's name. If the proxy class is not available locally, the createRMIProxy fails―the

 43

agent's code base is not relied upon to provide a safe proxy class. Thus the proxy code is

trusted to be safe. When a remote entity wishes to communicate with such an agent, it first

finds the current host server for the agent by querying the Ajanta name service. It also

obtains the URL for that server's RMI registry. It then queries that RMI registry using the

agent's name. The RMI stub returned by the RMI registry however points to the agent's RMI

proxy. Section 3.7.5 discusses the issues of the primitives for agent monitoring and control.

3.7.5 Primitives Related to Agent Monitoring and Control

An agent's parent application may need to monitor the agent's status while it executes

on a remote host. If exceptions or errors occur during the agent's execution, the application

may need to terminate the agent. This involves tracking the current location of the agent and

requesting its host server to kill it. Ajanta provides a terminate primitive for this purpose.

Similarly, the agent owner may simply recall its agent back to its home site and allow it to

continue executing there. This is equivalent to forcing the agent to execute a migrate call to

its home site. The owner can use an event mechanism to signal the agent, or raise an

exception remotely. The agent's event/exception handler can respond by migrating home.

Ajanta provides a retract operation using which, a user can recall their agents from the

electronic mall if they run out of digital cash. This capability of remotely terminating and

recalling agents raises security issues only an agent's owner should have the authority to

terminate it. Thus, some authentication functions need to be built into these primitives, (i.e.,

the system must ensure that the entity attempting to control the agent is indeed its owner, or

has been authorized by the owner to do so). Ajanta is the only system, which performs such

authentication. In order to determine whether it needs to recall/abort an agent, the owner

must be able to query the agent's status from time to time. Such queries can be answered by

the agent's host server, which keeps track of status information for all agents executing on its

 44

site. If the owner needs to make a more application specific query, which can only be

answered by the agent, it simply communicates with the agent via the usual agent

communication primitives. Table 3.2 gives a summary of Communication and control

primitives of various systems. Section 3.7.6 discusses the primitives related to fault

tolerance.

3.7.6 Primitives Related to Fault Tolerance

A checkpoint primitive creates a representation of the agent's state, which can be

stored in non-volatile memory. If an agent crashes, the owner can initiate a recovery process.

It can determine the agent's last known checkpoint, and request the server to restart the agent

from that state. In addition to the checkpoints themselves, agent servers can also maintain an

audit trail so as to allow the owner to trace the agent's progress along its itinerary, and

potentially determine the cause of the crash. If an agent encounters an exception that it

cannot handle, its server can take suitable actions to assist the application with recovery.

This approach is not supported in Ajanta. Alternatively, the server can simply transfer the

agent back to the owner. This allows the owner to inspect the agent's state locally and restart

it with appropriately corrected state. Ajanta supports the latter approach. Section 3.7.7

discusses the primitives related to security of the system.

 45

Table 3.2 Communications and Control primitives

System Communication Primitives Events and
Monitoring Agent Control

Telescript Local method invocation after co-location.
Events supported at

language-level.
Not Supported.

Tacoma
Agents can co-locate and exchange briefcases

(i.e., data, using meet.)
Not supported. Not Supported.

Agent Tcl

Message passing using agent_send and

agent_receive.

Stream based communication-using

agent_meet, agent_accept.

Events are identical to

messages.
Not Supported.

Aglets

Send/Receive Message objects. Supports

synchronous, one-way, future-reply

communication modes.

Not supported.

Force agents to return using retract

primitive.

No access control provided.

Voyager

Supports RMI / CORBA / DCOM

Synchronous one-way, future and multicast

invocations.

JavaBeans compliant

event model.
Not Supported.

Concordia

Local method invocation after co-location.

Integrates with CORBA. Multicast possible

using the AgentGroup construct.

Publish-Subscribe as

well as multicast events.
Not Supported.

Ajanta
Local method invocation via proxy after co-

location, RMI via proxy.

Agent status queries

supported by servers.

Request agent to return using recall

primitive. Force immediate return

using retract. Kill agents using

terminate. Access control provided.

 46

3.7.7 Primitives Related to Security

Agents may pass through untrusted hosts or networks during their travels, the agent

programmer need primitive operations for protecting sensitive data. This includes primitives

for encryption and decryption which protect the privacy of data, as well as message sealing

or message digests using which any tampering of the code or data can be detected. Digital

signatures and signature verification primitives may also be needed to establish

authenticated communication channels. If public key cryptography is used, the programmer

needs to have a secure key pair generation primitive, as well as a key certification

infrastructure. Primitives related to the encoding, allocation and disbursement of digital cash

might also be required. An agent's identity, it�s certified public key, digital cash allocation,

its owner using suitable operations provided by the system can encode constraints on its

access rights, and so forth. into its credentials. This primitive is not supported on the Ajanta

system.

 47

CHAPTER 4
MOBILITY AND COMMUNICATION IN

 MOBILE AGENT SYSTEMS

4.1 Introduction

In this chapter the author gives an overview of the state-of-the-art in agent

communication systems, the author decided to evaluate Java-based and non-Java-based

agent platforms, various evaluation criterion like, the point at which execution is restarted at

a defined entry point or from the beginning will be evaluated. The following Java-based

platforms were selected for evaluation:

The two following non-Java-based were chosen for evaluation:

• April from Imperial College [39,48]

• D�Agents from Dartmouth College [40,41]

The four following Java-based platforms were chosen for evaluation:

• Aglets Software Development Kit from IBM [43,46]

• Grasshopper from IKV++ [42,45]

• Odyssey from General Magic [49]

• Voyager from ObjectSpace [44]

The author will first analyze the non-Java based systems and then the Java based

mobile agent platforms. The communication services were analyzed and a comparative table

is provided, the various limitations to the currently existing protocols have been pointed out,

chapter 6 provides a solution by which some of the limitations of the current mechanisms

can be overcome.

 48

4.2 April 3.0

April (Agent Process Interaction Language) is a process-oriented language [39]

designed for implementing intelligent applications on a network. April is also the name of

corresponding execution platform. The April system is written in C and the agents are

programmed in the April language. The agent transport and communication is based on a

proprietary protocol on top of TCP/IP.

4.2.1 Agent Mobility

April treats functions and procedures as first-class data values1, which can be any

size from code fragments to whole agents [39]. Mobility is achieved by sending these values

in messages to remote processes, which can then either incorporate them into their own code

(for methods) or fork them as new processes (for agents). The execution stack cannot be

serialized. The execution is restarted at a defined entry point [39].

Serialization is performed transparently to an internal format and transport uses the

same mechanism as ordinary communication. As the entire code of the agent can be

serialized, a class loader is not used [39].

Since the original agent remains in place after the message is sent, all previous

communication links remain intact. The original agent can either continue as before, exit, or

become a proxy that forwards messages to the new agent. If it exits, but had a publicly

named handle, new incoming messages will be held by the communication server for later

delivery to allow services to be stopped and restarted without disruption. However, if it had

a generated handle, new incoming messages will be discarded.

1A language supports some data type as first-class when the objects of the type can be created and

used as data at run time. First-class data can be kept in variables, and passed to and returned from functions. In
dynamically typed languages, first-class data can also have its type examined at run-time.

 49

Agents explicitly decide for themselves which destination to travel to next. There is

no specific itinerary mechanism. No distinction is made between stationary and mobile

agents.

4.2.2 Agent Communication

April processes communicate with each other by special message send and receive

commands defined within the language. It makes no difference whether the receiving

process is local or remote. April agents can transparently send messages to other agents

located anywhere on the network, as long as their handles are known.

The base implementation for the message-passing operation is TCP/IP between April

communication servers running at a well-known port number on each machine. These

servers then deliver messages to the intended process. Hence a separate port for each process

is not required.

Messages can contain any April data type, ranging from atomic types such as

symbols or integers to tuples, lists, and higher-order types such as function and procedure +

structures such as KQML [40] messages to be sent. Constructors are not necessary. The

expressions to be sent is given as an argument to the message send command. Strong typing2

is not used�any message type can be dynamically created and sent to any agent. If the

receiver is not capable of handling the message, it can choose to ignore it.

All incoming messages are stored in a single queue. Messages originating from

different senders may be interleaved, but all messages from the same sender are guaranteed

to arrive in order [40]. A process does not have to process its incoming messages in strict

2Implies that values of one type cannot be assigned to variables of another type.

 50

order, as it can scan the entire queue first looking for messages matching a particular pattern,

(e.g., priority messages).

The base communication mode of April is one-way asynchronous. No event is

generated when a message arrives. The receiver must explicitly perform a (blocking)

message receive. Blocking the sender after each message and requiring an immediate

acknowledgement to be sent by the receiver can implement synchronous communication.

Two-way asynchronous communication can be implemented by having the sender stop at

some point and block waiting for a reply. Multicast messages can be sent to any list of

processes.

Messages are completely location-transparent and can be stored for later delivery to

a process that has not yet started, or forwarded by a chain of proxies (see 1.2.1 Agent

Mobility) an arbitrary number of times to follow a process that has migrated. Some

processes may also act as blackboards, forwarding incoming messages to other processes

which have registered interest in them by placing patterns on the blackboard. Any messages

matching these patterns will then be forwarded.

There is no built-in directory support. Agents can only discover handles by using

pre-specified public names, by receiving them in messages, or by forking children.

4.3 Aglets Software Developer Kit 1.0

The ASDK is entirely written in Java. It requires the JDK 1.1 or higher to be

installed. The Aglets transport and communication is based on the proprietary Agent

Transfer Protocol (ATP), which is modeled on the HTTP protocol [43]. It is accessed

through the Agent Transfer and Communication Interface (ATCI) [45], which allow an

abstraction from the underlying transport protocol.

 51

4.3.1 Agent Mobility

Since ASDK is implemented in Java, the serialization of the execution stack is not

supported. Therefore one fixed entry point is defined which is called at every arrival. This

limitation requires that the current execution state of the aglet task has to be stored by itself

in a serializable Java data structure. Then the execution state can be restored after migration

from that data. ASDK uses the Java-Object-Serialization of the JDK to marshal and un-

marshal Java-objects. Aglets can migrate to another context by calling the dispatch method

with the URL of the remote host as the argument. The aglets and the contained data objects

will be serialized. The classes necessary to build the aglet in the new context are loaded by

the class loader from the given code base [45].

Currently, the proxy-objects do not keep track of roaming aglets. Once an aglet is

dispatched, the proxy-objects referring to it are no longer valid. A mechanism for preserving

the reference to the moving aglet is announced for the future [45]. A migrating proxy-object

remains valid.

An aglet can migrate on its own will, forced by another aglet, by the user via the

GUI, and by the agent system. It can also be fetched back by using the retract method from

the GUI. Additionally, the ASDK provides the itinerary-class, which can be used to specify

elaborate travel plans. The ASDK does not distinguish between mobile and stationary

agents.

4.3.2 Agent Communication

Aglets communicate with each other by message passing [43]. That allows dynamic

communication with unknown as well as with well-known aglets. The communication is

based on a simple call back scheme that requires an aglet to implement the necessary

 52

handlers for each kind of message. Invoking a send-message method on the proxy-object

sends the messages. The proxy-objects enable location transparency for aglets with the

restriction that proxy-objects for moving aglets become invalid. For the communication it

makes no difference whether the receiving aglet exits locally or remotely [43]. The

generation of proxy-classes is not required because all aglets have to implement the same

message handler.

Messages may contain arguments of any Java type that implements

java.io.Serializable [45]. Using predefined constructors can create atomic messages. Non-

atomic messages with multiple arguments are handled as a list of key and value pairs. A

remote message does not cause any transfer of byte code. The classes used in the message

have to be installed in both hosts.

ASDK supports synchronous, asynchronous and multicast messages. Currently, one-

way communication is documented but not implemented [43]. For asynchronous messaging

an object reference is returned which can be used to check for incoming replies. Multicast

messages can be sent to all aglets within a local context that have subscribed to this kind of

message.

All incoming messages are stored in a message queue and then handled one by one.

This serializes the message handling and ensures that the handling of the current message is

finished before the message handler of the aglet is invoked again. This process can be

customized to allow the handling of the messages in order of their priority depending on

their type and to synchronize messages with the aglets� state.

The ASDK defines a number of methods that are called in case of a major event (e.g.

on creation, on cloning, on arrival). The aglets programmer to react to a special event can

 53

overwrite these methods. Message forwarding and dynamic invocation interfaces are not

supported [43].

The ASDK provides a very simple directory services for aglets. A list of hosted

aglets can be retrieved only for the current context. Since proxy-objects are not valid after

the migration of the referenced aglet, it is very difficult to keep track of a moving aglet and

to establish a connection to a remote aglet with unknown Globally Unique IDentifier

(GUID). For the creation of proxy-objects the URL of the host system and the GUID is

needed.

4.4 D�Agents 2.0

The Agent TCL platform is a modified version of the Tool Command Language

interpreter (TCL), which aims at providing a basic support for mobility. This support is

achieved via a modification of the TCL kernel which offers a command to freeze the

execution of a TCL script, catch the execution state, move it to another computer, and then

resume the execution at the next instruction of the script.

The platform has just been renamed D'Agents as its last version is henceforth

designed to take into account other programming languages, not just TCL. Today, D'Agents

is the only available target language, but the integration of Java, Scheme and Python is on

the way [40,41].

D'Agents 2.0 (with TCL) comes with a basic architecture and a basic command set

for communication and migration. It also offers security enforcement, resource access

control, and agent life cycle management. The platform is written in C and the agents are

written in TCL. For transport and communication purposes D'Agents uses a proprietary

protocol based on TCP/IP or on e-mail [40].

 54

4.4.1 Agent Mobility

An agent controls its own mobility by using the unique agent_jump command. The

modification of the TCL interpreter allows the capture of the entire execution stack of an

agent. On arriving, the execution is resumed at the command following the migration

instruction. When the agent is restarted on its new host, it has a new local identifier and its

name is not registered anymore. All the pending messages are lost, and the direct

connections (see the communication section) are merely broken. Since the global identifier

always includes location information, any reference to the moving agent is obsolete. From a

general point of view, every local resource (handlers to files, sockets...) of the origin site is

de-allocated.

There are no predefined structures allowing the representation of the itinerary of an

agent though it would be quite straightforward to implement [40], as TCL makes it easy to

handle lists of destination-site or command-to-launch tuples. Nevertheless, such a high-level

representation is not useful as the execution state is saved by the migration command.

There is no concept of stationary agent, but it is possible to specify that an agent

cannot move, so that it is forced to be stationary.

4.4.2 Agent Communication

Two communication modes are available: Messages and Direct Connections. The

former, a mail service, is managed by the agent daemons on the sender and recipient sites.

Two commands allow agents to send and receive asynchronous bytes messages, which may

hold arbitrary data or TCL scripts. The latter consists of a message stream between two

agents (typically a socket connection). It is established after a synchronous request from one

agent and an acceptance from the target agent. By accepting a direct connection, an agent

gets a privileged communication channel with another agent to exchange information

 55

without utilizing the mail service. In any case, its host machine and its local identifier

specify the target agent of a communication. The local identifier may be a name registered

in the local daemon, which offers a local directory service.

4.5 Grasshopper 1.1

Grasshopper is the first available mobile agent platform, which is compliant to the

MASIF standard. It is being continuously developed since 1997 by the IKV++. Grasshopper

1.0 was released in March 1998 for UNIX and Window NT systems.

4.5.1 Agent Mobility

Java does not provide mechanisms for capturing the execution stack. Therefore an

entry point can be specified in the move command, which is called after the arrival of the

agent, or the default entry method is called.

In Grasshopper all proxy-objects keep valid even if the referenced agent or the

proxy-object itself moves [42]. If the referenced agent has left its location, the proxy-object

is updated with the new location information fetched from the region registry.

An agent can migrate on its own will, forced by another agent, by the agent system

or the user via the GUI. Grasshopper does not specify any special itinerary pattern.

There are two different kinds of agents in Grasshopper, stationary agents and mobile

agents. A stationary agent executes on the agent system where it was started. It cannot

migrate by itself, but it can be moved by external entities. Stationary agents can be used to

offer services, which are related to their agency. They improve the core functionality of an

agency.

 56

4.5.2 Agent Communication

Inter-agent communication is based on method invocation [45]. In order to

communicate with another agent, its GUID and the corresponding proxy-class are required.

The GUID can be found in the region registry. The proxy-class has to be generated before

the agent is compiled using the stub generator of the Grasshopper package. If the proxy-

class is not available, a dynamic invocation interface can be used. Optionally it is possible to

specify the location of the target object in a communication request. Grasshopper supports

location transparent communication. Synchronous, asynchronous and multicast

communication is possible. Grasshopper provides callbacks on important events, e.g. if a

message arrives.

The region registry of Grasshopper can also be used to find the GUID of

communication partners. Theoretically the region could have a global scope [42].

4.6 Odyssey 1.0 Beta 2

Odyssey is General Magic's mobile agent system. It is implemented as a set of class

libraries that provide support for developing distributed, mobile applications.

The libraries allow the building of places in the network as needed for agents to

travel between. Odyssey is implemented in Java and requires the JDK1.1. It is transport

independent by the use of a transport API. Odyssey provides implementations of this API

for RMI, IIOP, and DCOM. In order to use IIOP as transport and communication

mechanism, VisiBroker [13] for Java by Visigenic (Inprise) is required.

4.6.1 Agent Mobility

Java does not provide a way to capture the execution state of a Java thread. Thus,

when an Odyssey agent is transported from one system to another, the agent's thread is

 57

restarted at the destination at a predefined point [49]. Therefore Odyssey provides the

worker class, which is a subclass of the Odyssey agent class. A worker is structured as a set

of tasks and a set of destinations. At each destination, the worker executes to completion the

next task on its task list. An Odyssey worker may manipulate its task list at any point during

its travels [49].

Odyssey uses the Java-object-serialization to transfer the agents. Since Odyssey does

not support remote communication, all object references become invalid during a migration.

4.6.2 Agent Communication

Documentation concerning the agent communication in Odyssey is nearly non-

existent. Odyssey communication is based on agents meeting in the same place. Remote

communication is not possible [49]. By the use of the function meet, agents can find other

agents in the place and exchange object references, which can be used for further

communication. Other mechanisms are not supported.

A finder interface for places and agent systems is define in the API. The directory

service for agents seems to be limited to the local host.

4.7 Voyager 2.0 Beta 1

Voyager is a Java-based and agent-enhanced Object Request Broker. It is entirely

programmed in Java. It requires the JDK 1.1 or higher to be installed.

The agent transport and communication is based on a proprietary ORB on top of

TCP/IP. Since version 2 support for CORBA communication in included in the ORB.

 58

4.7.1 Agent Mobility

The serialization of the execution state is not possible in Java. Voyager provides

advance possibilities for defining the entry point after migration [44]. When objects move,

they leave behind forwarders to forward messages and future communication requests. All

virtual object references keep valid, even if the objects move. When the target object cannot

be located, the forwarders are used to find the new location of the object. The return value is

tagged with the remote object�s new location so that the virtual reference can be updated.

Subsequent messages and request are sent directly to the new location of the remote objects.

An agent in Voyager can move on its own will or can be forced by other objects.

Voyager provides a simple itinerary mechanism [44] to define a collection of tasks to

be performed at a sequence of locations. The locations to be visited can be stored as a

Vector of addresses, and an agent can move easily from location to location, performing

tasks as it travels. The locations can consist of an arbitrary combination of target objects and

programs. Voyager uses regular Java features to execute an itinerary.

Voyager does not explicitly use the concept of stationary agents [44].

4.7.2 Agent Communication

In contrast to other ORBs, Voyager uses lightweight agents called messengers to

deliver messages. The communication to remote objects is transparent. Since version 2.0

beta 2, the need to pre process the class files to generate proxy-objects is eliminated [44].

The proxy-classes are dynamically generated at runtime. Voyager supports the following

types of communication:

• Synchronous messages.

• One way messages.

 59

• One way multicast messages with subscribe mechanism.

• Asynchronous or future messages.

• Events.

• Dynamic invocation.

Voyager provides �Space�Scalable Group Communication� to send broadcast

messages or events to a great number of objects [45]. In order to efficiently distribute the

messages, clusters of objects in the target group are stored in local groups called subspaces.

These Subspaces are linked to form a larger logical group called a Space. When a message is

sent into one of the subspaces, it is cloned to each of the neighboring subspaces before being

delivered to every object in the local subspace. Voyager implements a special mechanism in

each subspace, which ensures that no message is processed more than once. This

architecture allows a parallel distribution of the messages to every object in the Space and

enables a good scalability of the system.

Voyager provides a comprehensive event and call back service. Messages are

forwarded by the use of the forwarders left behind by migrating objects. Voyager allows the

use of dynamic invocation interfaces and provides a global directory service for remote

object look-up. This service is built of distributed directory services, which are linked

together to form a single, federated directory service [45].

4.8 Platform Comparison

Here the author presents a comparison of all the mobile-agent platforms evaluated for

their mobility and communication.

 60

4.8.1 Agent Mobility

The Serialization of the execution stack is not possible in all agent platforms based

on Java and in April. Hence, fixed entry points are defined at which the execution of the

agent is resumed after migration. Grasshopper and Voyager allow specifying these entry

points by the agents. Only D�Agent is able to transport agents including all execution stack

information. That may simplify the programming of agents because their state must not be

stored in data structures before migration. The missing serialization of the execution stack is

only a minor drawback, which can be overcome by an adapted programming scheme.

Therefore ASDK, Odyssey and Voyager provide special itinerary mechanisms for common

travel patterns.

A major problem of mobile agents is the validity of object references. Only Voyager

and Grasshopper provide platform mechanisms to automatically update the references to

moving agents. In all other platforms this task is left to the agent programmer, which results

in overhead in each agent.

The agents, corresponding to the concept of mobile agents, in any case control the

migration. Additionally, ASDK, Grasshopper and Voyager allow the control of migration by

other agents and applications. ASDK and Grasshopper allow moving an agent by the use of

the GUI.

In contrast to all other platforms, Grasshopper distinguishes between stationary and

mobile agents according to the MASIF specification [13]. A stationary agent is not able to

migrate at its own will, but it can be forced to do so by another entity. Stationary agents are

usually used to enhance the core functionality of a Grasshopper agency.

 61

4.8.2 Agent Communication

Table 4.1 lists the following features of agent communication.

• Communication Type: Describes the basic communication mechanism.

• Proxy-class Generation Required: Is the pre-processing of class files to generate

the proxy-classes required?

• Remote Communication: The general ability of communication with remote

objects.

• Location Transparency: This denotes the fact that in a communication the location

of the communication partners is transparent and is internally handled by the

underlying communication mechanisms.

• Synchronous Communication: The way of communicating synchronously, i.e. the

sender blocks until the receiver returns.

• Asynchronous Communication: The way of communicating asynchronously, (i.e.,

the sender continues its execution), regardless of the message receiver. The result of

the method invocation can be returned later.

• One-way Communication: A special case of asynchronous communication, where

the sender just sends a message, without expecting a result.

• Multicast Communication: The ability of a sender communicating with multiple

receivers.

• Event Services/Call Back: The feature of sending and handling events

asynchronously.

• Message forwarding: The ability of forwarding a message to the new position of the

receiver.

 62

• Dynamic Invocation Interface: Coined by the CORBA standard, this term denotes

the ability of invoking a method of another agent when the proxy is absent.

Table 4.1 A comparative study of different MA platforms.

Criterion April ASDK D�Agents Grasshopper

Odyssey Voyager

Communication
type

Message
passing

Message
passing

Message
passing

Method
Invocation

Method
Invocation

Method
Invocation

Remote
Communication

Yes Yes Yes Yes No Yes

Proxy-class
Generation
Required

- - - Yes - No

Location
Transparency

Yes Almost
transparent

Almost
transparent

Yes - Yes

Synchronous
Communication

Yes Yes No Yes Yes Yes

Asynchronous
Communication

Yes Yes Yes Yes No Yes

One-way
Communication

Yes No Yes No No Yes

Multicast
Communication

Yes Yes No Yes No Yes

Dynamic
Invocation
Interface

- No - Yes No Yes

In contrast to all other platforms Odyssey does not support remote communication.

This may be due to the fact that was not developed any further in the last year. Since

 63

Odyssey does not provide remote communication, Grasshopper is the only platform, which

requires the generation of proxy-classes. In Voyager the proxy-classes are generated at

runtime.

In April, ASDK and D�Agent the communication is location transparent as long as

the agents do not move. Otherwise a new communication has to be established. Grasshopper

and Voyager allow for completely location transparent communication. The references to

moving agents are automatically updated by the agent system.

April, ASDK, Grasshopper and Voyager support multicast communication. Voyager

uses a specialized architecture with super-spaces and subspaces to efficiently deliver the

messages.

ASDK and Grasshopper provides a simple call back service on important events.

Voyager has implemented a complex distributed event services.

No evaluated platform has currently specified the content or the semantics of

messages or has implemented an agent communication language.

 64

CHAPTER 5
CORBA AND MOBILE AGENT TECHNOLOGY

5.1 Introduction

In this chapter the author gives an overview as to how Mobile agents (MAs) can

make use of already defined CORBA objects and services and vice versa offer their services

to other CORBA objects.

MAs are considered today as one of the key middleware technology for the

implementation of flexible, nomadic applications residing within service and/or network

layers.

In contrast to the early days of this technology, today there exists a common

understanding that Mobile Agent Technology (MAT) can be regarded as an enhancement of

Distributed Object Technology (DOT), such as the Object Management Group�s Common

Object Request Broker Architecture (CORBA) [31].

 The first step in that direction is achieved by approving the Mobile Agent System

Interoperability Facility (MASIF) specification within the OMG [32]. This specification

follows the architectural guideline as proposed in the OMG�s Object Management

Architecture in which higher level functional capabilities are specified in so called Common

Facilities, which are based on lower level functional capabilities provided by CORBA

services.

The MASIF specification's target is to enable a minimum interoperability among

different agent systems through the definition of two key interfaces. However, it does not

yet cover a mapping of the key capabilities of an agent system's services to CORBA

services. The basic assumption is that object mobility will be a fundamental capability of

 65

CORBA [31,32], which then allows a more flexible, location aware service provisioning

within the field of terminal and personal mobility. This means that in the midterm the

capabilities provided by today's mobile agent platforms, which provide that object mobility

in form of add-on services on top of CORBA, can be incorporated into CORBA directly,

(i.e., the mobility of CORBA objects) is supported by the core and an appropriate set of

CORBA services, such as (the Life Cycle Service, Persistency Service, Trader Service, etc.).

The key questions in this context are:

• Are the already specified CORBA services (i.e. their interfaces) sufficient to

provide the required object mobility capabilities?

• If yes, how could object mobility be provided?

• If not, what additional interfaces or object services are required?

This chapter describes the requirements for supporting object mobility in CORBA

based on the capabilities provided by state of the art mobile agent platforms.

5.2 CORBA Common Object Services

The current Common Object Services Specification (COSS) [33] defines the

following services:

• Concurrency Control Service

• Event Service

• Externalization Service

• Licensing Service

• Life Cycle Service

• Naming Service

• Object Collection Service

• Persistent Object Service

 66

• Property Service

• Query Service

• Relationship Service

• Security Service

• Trading Object Service

• Transaction Service

• Time Service

The Objects by Value Service is also considered. The following paragraphs describe

briefly those services, which are of special interest for the integration of CORBA and mobile

agent technology with respect to the mandatory MA platform requirements listed in section

3.

5.2.1 Externalization Service

The Externalization Service defines protocols and conventions for externalizing and

internalizing objects [33].

Externalizing an object means to store the object�s state in a stream of data, (e.g., in

memory, on a disk drive, or across the network). An externalized object can exist for

arbitrary amounts of time, be transported by means outside of the ORB, and be internalized

in a different, disconnected ORB. Internalization means the recovery of an externalized

object in the same or a different process.

5.2.2 Life Cycle Service

The Life Cycle Service defines conventions for creating, deleting, copying, and

moving objects [33]. Because CORBA-based environments support distributed objects, the

Life Cycle Service defines mechanisms that allow clients to perform life cycle operations on

 67

objects in different locations. Object creation is defined in terms of factory objects, where a

factory is an object that creates another object.

5.2.3 Naming Service

The Naming Service provides the ability to bind a name to an object relative to a

naming context [33]. A naming context is an object that contains a set of name bindings in

which each name is unique. To resolve a name means to determine the object associated

with the name in a given context.

5.2.4 Trading Object Service

The Trading Object Service [33] facilitates the offering and the discovery of service

instances of particular types trader, (i.e., an object that supports the Trading Object Service),

maintains information about services, (i.e., the service type, the service�s object reference,

and various service-specific properties). A client may contact a trader in order to export

services, (i.e., to register new services in a trader), or to import services, (i.e., to search for

specific services). Several traders can be connected with each other, thus increasing the

available search scope for requesting clients.

5.2.5 Security Service

The CORBA Security Service specifies the functionality to authorize principals,

control their access to objects, and secure the communication among objects. Once the

functionality of this service is provided, clients and servers, both acting in behalf of

principals, are sure that a trustworthy ORB environment is provided for communication

purposes [33].

 68

5.2.6 Objects by Value

The Objects by Value Service provides the facility to pass on object by value rather

than by reference as the traditional CORBA approach. This service respects any constrains

of the current CORBA and is fully incorporated into the CORBA model [31,34].

By using Objects by Value, an application can explicitly make a copy of an object

and replicate it onto another physical node. By definition, the copied object does not have

any relationship with the original one.

5.3 Key Capabilities of Mobile Agent Platforms

Mobile agents need a sophisticated runtime environment that supports their entire

life cycle, including among others their creation, termination, and migration. Besides, users

must be able to manage, (i.e., to monitor and control their agents).

The following paragraphs describe the basic capabilities that are provided by a

mobile agent platform.

Management Support: It is necessary for agent administrators to be able to monitor

and control their agents. The control aspect comprises at least the creation and termination

of agents. Monitoring of agent�s means in the first place their localization in a distributed

environment. Due to the agents� mobility and active behavior, this is not a trivial task.

Mobility Support: A special mobility support must be provided by the platform,

supporting both remote execution and migration. The mobility supports the transfer of the

state and the classes representing an agent.

Support for Unique Identification: Mobile agents must be uniquely identifiable in

the whole distributed environment. This is the inevitable precondition for accessing a

specific agent.

 69

Apart from the mandatory capabilities above, the following optional platform

capabilities should be considered:

Transaction Support: An important aspect is the support of correct and reliable

execution of agents in presence of concurrency and the occurrence of failures. Thus,

transaction support is desirable.

Security Support: Important aspects are authentication, (i.e., the determination of an

agent�s or agent system�s identity), and access control of resources or services. Besides, in

order to guarantee privacy and integrity, important information such as code and internal

data of a migrating agent, should be encrypted before the transfer.

Communication Support: Agents should be able to communicate with each other as

well as with the surrounding environment.

5.4 Mobile CORBA Agent

A mobile CORBA agent � or short just named as agent - is a group of CORBA

objects that provides multiple CORBA interfaces [35,36]. An instance of an agent has the

ability to migrate from one physical network location to another without loosing its internal

state, (i.e., the states of all objects associated with that agent). By definition, all CORBA

objects associated with an agent can only be migrated as a whole [31].

In order to support the mobility, an agent is always associated with two CORBA

objects, which one realizes the LifeCycleObject interface [37] as defined in the Life Cycle

Service specification and the other the Streamable interface as defined in the Externalization

Service specification [32].

An agent can be created either from templates (classes) or by cloning an existing

instance of an agent. Agents are delivered as package consisting of the class and possibly a

 70

serialized version of an agent instance itself. Unpacking can cause the serialized agent to

reinstate itself at the destination [32].

The additional CORBA objects, (i.e., consequently CORBA interfaces), associated

with it, characterize the provided service of an agent. The following figure sums up the

content of these Sections.

Figure 5.1 A mobile CORBA object.

5.4.1 Structure of a Mobile CORBA Agent

The basic structure of an agent is relatively simple. There are two kinds of object

types, a core (stateful) object type and a bridge (stateless) object type [37].

5.4.1.1 Core Object Type

A core object type contains the state of an agent. An essential property of this object

is that its implementation is always local, in a particular programming language, (e.g., Java).

This object has no identity and is not registered with the ORB. The realization of the

provided service of agent is contained within this object. This object in order to access the

SB

 LCS

CS

Service Interface

Streamable
Interface

Life Cycle Interface

 71

service, local interfaces (API) is supported. Such a core object is composed of native

objects.

Additionally, the programming language used for implementing the agent must

support the serialization of objects, (i.e., write to and read from a stream). The serialization

of objects is not part of CORBA [31]; it is matter of the programming language. The core

object is the part that is involved in the migration process.

5.4.1.2 Bridge Object Type

A bridge object is a CORBA object that inherits from CORBA::Objects and supports

normal object reference semantics. The interface associated with this object is realized as an

inter-working bridge between the other CORBA objects, acting as clients, and the core

object of an agent, acting in the server role. Thus, a bridge object translates incoming

CORBA requests and makes the appropriate local interface (API) calls provided by the core

object.

5.4.2 Identification of a Mobile CORBA Agent

Input for this Section will be provided, once some clarifications of which part of an

agent has to be identified is made.

The agent identification is still a heated debate. Traditionally, each CORBA object

that realizes an interface is registered with the ORB, and as specified in the CORBA

specification [31], a unique Interoperable Reference (IOR) is associated with each CORBA

instance. Since an agent support multiple CORBA interfaces means that there are going to

be at least three IORs, which are associated to the Life Cycle, Streamable, and Service

Interface. There are few questions that have to be answered:

 72

• Should all CORBA objects be registered themselves to the Naming Service by their

names? But, then the group relationship among these CORBA objects is not

expressed [31].

• Should an agent only register a well-defined CORBA object, which provides an

interface for accessing the interfaces of the other CORBA objects, associated with

the agent? That means that the other interfaces are local and are therefore not directly

resolvable.

• Is an agent a CORBA object with an object reference or just a logical construct to

group other CORBA objects?

• Should a new CORBA service be identified in order to create unique name or

identifier for agents?

• Should an agent be identified by a naming graph? For example, a CORBA object�s

compound name is stated: <name of the agent, name of the CORBA object

associated with the agent>, where the first part is used to name the agent context and

the last component denotes the bound object. This approach has the advantage that

the group relationship is expressed within the naming graph.

5.5 Mapping of CORBA Services to MAP Capabilities

This Section explains how the COSS services introduced in Section 2 can be used to

handle mobile CORBA agents instead of usual, static CORBA objects.

The main difficulties are the following:

• Mobile CORBA agents are able to migrate from one physical network location to

another. The ORB must be able to handle this mobility aspect, for instance by

managing the availability of the access part to the agent, which changes its location

 73

after each migration. However, please refer to Section 5.1 for more information

about the mobility aspect in a CORBA environment.

• During migration, an agent�s state and code must be transferred to the new location.

The environment to handle this task must provide mechanisms.

• The CORBA environment must handle a synchronization process between the

creation and deletion of the instance at the new and original location.

• The instantiation of an object requires a suitable runtime context, which depends on

the language in which the object is implemented. For instance, a Java object can only

be created inside a Java program that is running on top of a Java Virtual Machine

(JVM). The CORBA environment must maintain suitable runtime contexts for all

supported implementation languages and further agent-related requirements. This

aspect is discussed in Section 6.

5.5.1 Initial Thoughts about Mobility

The migration of mobile agents can be split into the following procedures:

1. Externalization of the agent�s execution state

2. Pack and transfer of the externalized state and the code to the destination location

3. Reinstatement of a new agent instance at the destination location

4. Internalization of the agent�s execution state

5. Removal of the original instance at the source location

The interaction steps 3 and 5 show that there exist two instances of an agent during

the migration process. The new instance at the new location is not identical with the one at

the original location. After the removal of the instance at the original location, those

CORBA objects associated with the agent can register themselves to the ORB at the new

location and therefore will get new IORs associated to them. In the specification of the

 74

Generic Inter-ORB Protocol (GIOP) [31], an approach for handling this IOR modification is

given:

An ORB must provide so-called "agents" which are responsible for handling client

requests at the server side of a connection. Note that these "agents" have nothing in common

with the mobile CORBA agents in the context of this chapter. To illustrate the difference,

the "agents" specified in the GIOP description are surrounded by quotation marks.

An "agent" has the following possibilities to handle client requests if the IOR

specified by the client is not associated with an active object (for instance if the

corresponding object has moved to another location and has thus obtained a new IOR):

1. The �agent� knows the new IOR of the object and forwards it to the new address.

The result of the request is sent from the object back to the �agent� which forwards it

back to the client. This is achieved transparently to the client, which means that the

client is not aware of the forwarding procedure and of the new server side location.

2. The "agent" knows the new location of the object, but is not able to forward the

request to the object. Instead, the "agent" delivers the new IOR to the client, which is

then able to establish a new connection to the object at the new location.

3. The "agent" is able to handle the client request even without contacting the actual

object. This may be possible if the "agent" maintains (parts of) the object�s

implementation.

4. The "agent" is not aware of the object�s new IOR and returns an exception to the

client, indicating that the object is not any more reachable. In this case, the client

may retrieve the current IOR of the object by contacting the Naming Service or a

trader. For this purpose it is necessary that the object must have modified its entries

in the Naming Service or the trader, respectively.

 75

5.5.2 MA Specific Requirements

In Section 2, a general, brief description of those COSS services has been given

which are essential for the support of mobile agents. However, the description was not

related to mobile agents, but to CORBA objects in general. This section explains the agent-

specific aspects and requirements regarding the COSS services.

5.5.2.1 Externalization Service

Agent migration relies on the agent�s or agent system�s capability for externalization.

This means, it must be possible to maintain an agent�s object structure, including all

fundamental internal information, by means of a stream. The stream can be transferred

across the network, and the agent�s object structure can be recovered at the destination

location.

The Externalization Service defines interfaces for this process, (i.e., for the

externalization and internalization of objects). Thus, this service is essential for the support

of agent migration.

5.5.2.2 Life Cycle Service

The Life Cycle Service defines methods to create, remove, copy, and move objects.

While the methods create and remove are essential for each object, the move method is

especially of interest in the context of mobile agents.

This method may be invoked by the agent itself in order to migrate actively, or even

by an external client in order to send the agent to another location.

5.5.2.3 Trading Object Service

Due to the agents� mobility, their management is not a trivial task. A fundamental

requirement regarding agent management is the ability to locate each agent at any time,

 76

independent of its current location. The Trading Object Service seems to be suitable to

support this in a sufficient way. Each agent could be registered within a trader. The Trading

Object Service offers the possibility to store any desired property of a registered service. An

agent-specific property could be the agent�s current location, (e.g., in form of a URL). In

this way, a client, (e.g., an agent manager), would be able to track specific agents by

specifying their name and retrieving their current location from the trader. Also the trader,

such as the identifier or name of the agent owner, can maintain any other agent property. In

this way, an administrator would be able to get information about all agents belonging to a

specific person or organization, or the owner herself would be able to get the current

locations of all owned agents, just by initiating a single request to the trader.

Another important aspect regarding the Trading Object Service in an agent-enhanced

CORBA environment is the maintenance of agent systems. Each agent or at least each agent

type requires an individual runtime environment (i.e. agent system) in which it can be

executed. Before migrating to a new location, the agent must locate an agent system at its

desired destination, which is able to support its execution. the proposed solution for this

problem is to register all running agent systems in a trader. One essential property to be

contained in each agent system entry is a list of agents or agent types are supported by the

agent system.

5.5.3 Preconditions for a Mobile CORBA Agent

This section explains the preconditions that must be fulfilled by each agent in order

to be executable and manageable in a CORBA environment.

 77

5.5.3.1 Life Cycle Support

As stated in Section 4, each mobile CORBA agent must provide the interface

Lifecycle Object as defined in the Life Cycle Service Specification [32]. This interface

comprises operations to copy, move, and remove the object/agent.

5.5.3.2 Externalization Support

A fundamental requirement for agent migration is that the agent is externalized, (i.e.

important internal information), (e.g., the agent�s execution state), is written out into a

stream. The counterpart, (i.e., the internalization), means that the state is read out from the

stream for the purpose of reinstatement of the agent.

Due to the CORBA Externalization Service specification, an object that shall be

externalizable must support the Streamable interface [33].

5.5.4 Mobile CORBA Agent Related Interaction Scenarios

This section shows how the creation, removal, migration, and localization of mobile

agents can be achieved just by using COSS services. The proposed solutions may not be

very efficient. However, they do not need any modifications or enhancements to the

services.

5.5.4.1 Agent Creation

Mandatory CORBA Common Services:

• Life Cycle Service. Required interfaces: FactoryFinder (FF), Factory (F)

• Naming Service. Required interfaces: NamingContext (NC)

Optional CORBA Common Services:

• Trading Object Service. Required interface: Registration (R)

Interaction Scenario:

 78

1. resolve: The client looks for a factory finder by contacting the Naming Service.

2. find_factories: The client contacts the factory finder in order to find a specific

factory that is able to create the demanded agent.

3. create: The client invokes the create method of a suitable factory.

4. The factory creates the core object of an agent. Since the core object contains the

core implementation, it then creates all the bride objects associated with it.

5. bind: The new agent creates a context in the Naming Service and binds all bridge

objects to this context. Clients can then resolve the IORs by resolving the

component names.

6. export: The agent creates an entry in a trader by using the trader�s Register

interface. This entry contains all-important information about the agent, such as

its current location and all offered services.

Note: Several additional steps have to be performed, (e.g., in order to generate a CORBA

name), but these steps are not mentioned here for the sake of simplicity.

5.5.4.2 Agent Termination

Mandatory CORBA Common Services:

• Life Cycle Service. Required interfaces: LifeCycleObject (LCO)

• Naming Service. Required interfaces: NamingContext (NC)

Optional CORBA Common Services:

• Trading Object Service : Registration (R)

 79

Interaction Scenario

1. resolve: The client looks for the agent to be removed by contacting the Naming

Service and resolves the name of the CORBA object that provides the Life Cycle

interface

2. remove: The client invokes the remove operation on the agent�s LifeCycleObject

interface. This request is passed to the core object which first deletes all bridge

objects.

3. unbind: Next, the agent unbinds all CORBA objects from the agent�s context in the

Naming Service and destroys its context.

4. withdraw: The agent removes its entry in the trader by using the trader's Register

interface and finally removes itself.

5.5.4.3 Agent Migration

Mandatory CORBA Common Services:

Life Cycle Service. Required interfaces: LifeCycleObject (LCO), FactoryFinder (FF),

Factory (F)

• Externalization Service. Required interfaces: StreamFactory (SF), Stream (S),

StreamIO (SIO), Streamable (SB)

• Naming Service. Required interfaces: NamingContext (NC)

Optional CORBA Common Services:

• Trading Object Service : Registration (R)

Interaction Scenario

1. move: The client invokes the agent�s move method, provided by the LCO interface.

Note that this step is usually performed by the agent itself.

 80

2. find_factories: The agent looks for a stream factory that is able to create a Stream

object for the agent�s externalization.

3. create: The agent creates a Stream object for its externalization.

4. The stream factory creates the Stream object.

5. externalize The agent initiates its own externalization. Note that in [32] this

operation is performed by the client.

6. externalize_to_stream The Stream object has prepared for storing the streamed agent

and orders the agent to write its externalized form. This request -at the CORBA

level- is translated to native serialization methods of the core object. The core object

serializes itself into native stream forms and maps them to CORBA date types.

7. write_<data> The agent sends its externalized form to the Stream object, using

various write methods, depending on the data type to be written.

8. find_factories: The agent looks for a factory that is able to create a new instance of

the agent at the desired new location.

9. create: The agent creates a new instance of itself at the new location.

10. The factory creates the agent.

11. internalize: The new agent instance contacts the Stream object that maintains the

externalization data in order to initiate the internalization process.

12. internalize_from_stream: The Stream object has prepared for recovering the

streamed agent and orders the agent to read its externalized form.

13. read_<data>: The agent reads its externalized form from the Stream object, using

various read methods, depending on the data type to be read. Note that, for the sake

of simplicity, this scenario assumes that the agent is a single object.

 81

14. rebind: The agent is now internalized and ready to continue its task processing at the

point where it was interrupted before the migration. However, the IORs of the

CORBA objects associated with the agent maintained in the Naming Service still

points to the old instance in agent system 1. Thus, the agent updates the references,

using the rebind method on the Naming Service.

15. withdraw: The agent withdraws its offer in the trader via the trader's Register

interface.

16. export: The agent export a new offer in the trader via the trader's Register interface.

This new offer comprises the new IORs.

17. remove: The factory that has successfully created the new agent instance, removes

the old instance via the agents LCO interface.

Note: In the scenario mentioned above, just the agent's externalized data is

transferred to the new location.

Another important aspect is the transfer of the agent's code, for the case that it is not

already available before the migration. At first sight, three possibilities seems to be feasible

for the code transfer:

1. The code is transmitted as a parameter of the create method invoked on the Factory.

The create method allows any parameters to be used. For this reason, the code must

be packed in a form that can be transferred.

2. The Factory �internally� performs the code transfer, (i.e., in an implementation-

specific way). For instance, the code of an agent implemented in Java could be

transmitted by using the Java class loading mechanism [38].

3. For this purpose, the CORBA environment must have adequate marshaling routines

as well as appropriated factories to handles this date type. This native stream may be

 82

specified as propose within the Objects By Value Service. But this needs more

investigation.

4. A new CORBA Service has to be introduced that provides a code loading service.

5.6 Limitations of the current CORBA model

As shown in Section 5.5, the most fundamental operations, (i.e., agent creation,

termination, and migration), can be realized by means of existing CORBA Common

Services. However, at least the migration scenario provides several disadvantages that could

be eliminated by means of enhancements and modifications of the CORBA services. Among

others, the following disadvantages can be identified:

• The agent itself has to manage the whole migration procedure, comprising the creation

of a stream for containing its externalized data, the localization of a suitable agent

system, the creation of its new instance at the destination location, and the

modification of its entries in the Naming and the Trader Service. Since a mobile

agent�s code and data should be as small as possible in order to keep the migration

duration acceptable small, as much functionality as possible should be placed outside

the mobile agent, (i.e., in the surrounding, static environment).

• An agent that wants to migrate to a specific location requires a suitable agent system at

the desired destination side. If no suitable agent system is running, the agent is not able

to migrate. Thus, an additional CORBA service is desirable which is able to create

agent systems "just in time" when an agent arrives. This service should support the

creation of different agent systems (of different manufacturers).

• In the scenario described in Section 5.4.3, many interactions are necessary between the

source and the destination location. In a usual CORBA context, this is no problem.

One important feature of CORBA is that this architecture allows clients and servers to

 83

interact remotely in a location-transparent way. However, in contrast to this, one

fundamental concept of mobile agent technology is to move agents "as close as

possible" to their intended communication peers. In this way, MAT reduces the

network load and the dependency of network availability. Following this approach,

interactions between the source and the destination location should be minimized, even

during agent migration.

5.7 Conclusions

The CORBA standard has gained high acceptance in the world of distributed

computing. Various service specifications have been developed, providing standardized,

implementation-independent interfaces and a common protocol, and thus enabling a high

degree of interoperability between applications of different manufacturers. In contrast to

this, mobile agent technology is driven by a variety of different approaches regarding

implementation languages, protocols, platform architectures and functionality. Thus in this

chapter the author has presented various issues and a broad framework required for mobile

agent technology in order to achieve a sufficient integration with CORBA. This standard has

to handle interoperability between different agent platforms, and the usability of (already

existing) CORBA services by agent-based components. In the next Chapter we will study

various aspects of such a standard � MASIF.

 84

CHAPTER 6
MOBILE AGENTS AND AGENT COMMUNICATION

LANGUAGES

6.1 Introduction

Interoperability is a central issue for both the mobile agents community and the

wider agents community. Unfortunately, the interoperability concerns are different between

the two communities. As a result, inter-agent communication is an issue that has been

addressed in a limited manner by the mobile agents community. Agent communication

languages (ACLs) have been developed as tools with the capacity to integrate disparate

sources of information and support interoperability but have achieved limited use by mobile

agents [54]. In this chapter the author differentiates various issues with regards to inter-agent

communication as far as mobile agents and generic agents go, moreover investigates the

origins of the differences of perspective on agent-to-agent communication and explores

achieving interoperability by use of ACLs in mobile agents paradigm.

There are still two basic questions that are not clearly answered with regards to the

mobile agent paradigm: (a) what is an agent, and (b) why do we need mobile agents.

After study, the author comes to the conclusion that the answer to these questions is a

matter of perspective, at least until useful applications of mobile-agents come about.

The author will forego giving his perspective on these questions and will instead

focus on another question, which has not attracted much attention. Even though agent-to-

agent communication is a central issue in the pursuit of interoperability in the agent

community, why is it rarely the case that agent communication languages (ACLs) and mobile

agents are mentioned in the same context? The author supports the view of software agents

[66] as an emerging software-building paradigm. The paradigm definitely introduces a

 85

powerful and ubiquitous abstraction that exhibits the following key concepts: (a) a software

agent is an autonomous goal-directed process capable of performing actions [59], (b) is

situated in, is aware of and re-acts to its environment, and (c) cooperates with other agents

(software or human) to accomplish its tasks.

 In the context of the above question, the author adopts the viewpoint that suggest

that mobile agents may be thought as programmed entities that can freely roam the network

and act on behalf of their users [65]. A slightly more technical definition suggests that

mobile agents are programs, typically written in a script language, which may be dispatched

from a client computer and transported to a remote server computer for execution [68]. From

a historical perspective, the work on distributed computing led to mobile agents following a

route through the problem of process migration and the concept of mobile objects [65]. A

large part of the work on agents, on the other hand, has its roots in various branches of

Artificial Intelligence.

 In Section 2, the author examines what interoperability has come to mean for the

mobile agent community and the (largely non-mobile) agent community, respectively. In

Sections 3 and 4 the author argues in favor of ACL support for mobile agents; the argument

is based on the power of an ACL as an interoperability mechanism and tool, and the

observation that such interoperability is at least as important for mobile agents as it is for

any other kind of agents. After a brief coverage of today's ACLs and their status in Section

5, we discuss reasons why the mobile agent community might be reluctant to fully engage

ACLs and explore their integration in mobile agent frameworks and systems.

6.2 Agents and interoperability

Agents are meant to work with other agents. A central point of the agent paradigm of

software development is that communities of agents are much more powerful than any

 86

individual agent, which immediately raises the necessity for interoperable agent systems.

But the mobile agent community and the agent community at-large do not necessarily refer

to the same things; the issues involved regarding interoperability amongst agents are very

different. Before exploring the historical roots of these conceptual differences, the author

will try to identify the issues that each community associates with interoperability. Briefly,

for the mobile agents community interoperability work focuses on:

• The execution environment

• The standardization of some of its aspects and features.

In the case of (non-mobile) agents, there is no notion of an execution environment and the

focus is on communication as the means for achieving interoperability.

Mobile agents reside in a highly heterogeneous environment [53]. Mobile agents

migrate to a host where an execution environment is set up for them; upon arriving there,

they might execute code, make remote procedure calls (RPCs) in order to access the

resources of the host, collect data and eventually might initiate another process of migration

to another host. While residing on a particular host, mobile agents might have limited

interaction (communication) with other agents on the host through an RPC-type mechanism.

A potential problem arises from the fact that not all platforms for mobile agents are the same.

6.2.1 The MASIF standard

The Mobile Agent Facility (MAF) proposal [69], which was subsequently replaced

by MASIF [63,64], which was dealt with in great detail in chapter 4, is an attempt to

standardize some aspects of this execution environment.

MASIF is a collection of definitions and interfaces that provides an interoperable

interface for mobile agent systems. MASIF's interoperability is not about language inter-

operability but instead it aims at interoperability between agent systems written in the same

 87

language although possibly by different vendors/architectures. MASIF focuses on

standardizing three things: (1) agent management, (i.e., standard operations such as creating

an agent, suspending it, resuming, and terminate it); (2) agent transfer, (i.e., a common

infrastructure for agent applications to freely move among agent systems of different types);

and finally (3) names for agents and agent systems. It is expected that the use of a

standardized syntax and semantics of agent and agent system names will allow agent

systems and agents to identify each other, as well as clients to identify agents and agent

systems.

There are issues that are not addressed by MASIF, either because they are outside the

scope or because the field is not mature enough for standardization over some issues. One of

them is agent communication as it is extensively addressed by CORBA discussed in great

detail in chapter 5. As such a viewpoint suggests, agent communication for the mobile agents

community means, at least most of the time, the exchange of objects or object references.

6.2.3 3�Layered problem of interoperability

Agent research ought to take into account the following realities: (a) various

languages, representing different programming paradigms (procedural, object-oriented, logic,

functional, etc.) will be used for implementing agents, (b) hardware platforms and operating

systems are expected to be equally varied, and (c) agents are going to be written as

autonomous applications and thus few assumptions might be made about their internal

structure. A generic break up of the large problem would be into three layers.

One layer is that of translation between languages in the same family (or between

families) of languages. This is a very formidable task. The Object Management Group

(OMG) standardization effort is an example of work in this direction, within the family of

object-oriented languages.

 88

Another layer is concerned with guaranteeing that the semantic content of tokens is

preserved among applications; in other words, the same concept, object, or entity has a

uniform meaning across applications even if different names are used to refer to it [54].

A third layer relates to the communication between agents. This is not about

transporting bits and bytes between agents; agents should be able to communicate complex

information and knowledge content.

Agents need to ask other agents, to inform them, to request their services for a task,

to find other agents who can assist them, to monitor values and objects, and so on. Such

functionality, in an open environment, cannot be provided by a simple remote procedure call

mechanism [54].

6.3 A wider interoperability perspective

So, the first question to ask is what happens when a mobile agent needs to interact

with mobile agents that are currently hosted in a platform of a different design; in such a case

a mobile agent cannot even visit such a platform. Hopefully, a wide acceptance of the

MAF/MASIF proposal will help with this problem. But, let us consider the case of a mobile

agent that needs to interact with some agent that is not endowed with mobility. In this case,

there is no agent platform to visit. Should the mobile agent be prevented from interacting

with the static agent or with an information source that is not a full fledged agent but might

offer some way of interacting with its information content. Thus it is very clear that

interaction between these agents is a must.

Interaction means more than simply exchanging messages [23,24]; it also involves

facilities for finding these information sources. Finding, means not only physically locating

them on the network, but also been able to identify them or judge them relevant based on

their apparent content or capabilities.

 89

 There is, finally, another issue of a different nature, which is particular to mobile

agents. Mobile agents carry their own code that prescribes the �how to� of the tasks they

can tackle. This procedural approach towards problem solving can be very limiting [55]. In

the current mobile agents paradigm there is not much room for a declarative approach, (i.e.,

one in which agents simply specify the task they want performed), leaving the details of

carrying out the task to the recipient of the request, mobile agents ought to be able to

communicate tasks in a common language [54].

6.4 ACLs as an interoperability mechanism

One common abstraction of an agent is as a Virtual Knowledge Base [62] � a

collection of (mostly) declarative information and knowledge and an associated inference

mechanism that allows it to proactively make inferences, answer queries, and appropriately

take action. In this context interoperability is often interpreted as a problem of enabling

agents with sharing their information and knowledge content.

Three basic problems need to be addressed for agents to effectively share knowledge.

First, how we can translate from one knowledge representation language to another; second,

how we can guarantee that the meaning of concepts, objects, relationships is the same across

different agents; and third, how this potentially sharable knowledge is going to actually be

shared, communicated between agents.

 An Agent Communication Language (ACL) is a tool that follows the path of this

layered abstraction of the interoperability question. An ACL can be thought of as a collection

of message types each with a reserved meaning [54]. A communication language is not

concerned with the physical exchange, over the network, of an expression in some language,

but rather with stating an attitude about the content of this exchange [54].

 90

6.4.1 ACL and a generic messaging protocol

From a software engineering point of view, an agent communication language can be

viewed as another messaging protocol, but with two major differences: (a) it describes the

application and the actions it can perform, or it can be requested to perform, at a higher level

of abstraction, and (b) offers a larger variety of message types. An ACL thus introduces a

powerful abstraction because it separates (1) the expressions that are the content of the

exchange and (2) their meaning, from the attitude that is expressed about them. ACLs offer a

conceptual framework that can assist in addressing the difficult problem of achieving

interoperability between applications [54]. Although interoperability is not a problem unique

to agents, the very fact that software agents are meant to be, almost by definition,

autonomous applications designed with minimal a priori expectations for the state of the rest

of the universe brings interoperability to the forefront. Mobile agents are even more

susceptible to differences in architecture and language [23,24].

6.4.2 Advantages of an ACL

An agent communication language offers three kinds of advantages. First, an ACL

supports interoperability between static and mobile agents, between mobile agents designed

for different agents platforms, and also between mobile agents and static agentified

information sources. Second, the declarative nature of most ACLs provides many features

that make interoperability easier, such as abstracting away some of the lower level, more

procedural aspects of the systems involved. Finally, the higher level of abstraction at which

ACLs operate can accommodate multiple paradigms.

Thus far, most of the work on mobile agents has focused on the problem of

designing the agent platform and addressing major issues surrounding its design, such as

security and authentication. Agent communication has been put in the background, partly

 91

because of the concentration on fundamental issues and partly because the ACL alludes to a

declarative approach that contradicts the procedural approach implicit in the mobile agent

paradigm [55]. There are some exceptions to this situation, of course, such as some

experimental work in integrating Agent Tcl and KQML [67].

6.5 Current ACLs

The Knowledge Sharing Effort [70] (KSE) was initiated circa 1990 by DARPA. Its

goal was to develop techniques, methodologies and software tools for knowledge sharing

and knowledge reuse, at design, implementation, or execution time.

The central concept of the KSE was that knowledge sharing requires communication,

which in turn, requires a common language; the KSE focused on defining that common

language. Some other agent that uses a different implementation language and domain

assumptions should understand expressions in a given agent�s native language. The ACL is

only concerned with capturing prepositional attitudes3 [56], regardless of how prepositions

are expressed. But still, prepositions are what agents will be �talking� about. KIF [61], a

particular logic language, was proposed within the KSE as a standard to use to describe

things within computer systems, (e.g., expert systems, databases, intelligent agents, etc.). In

the next section the author discusses the basic concepts of KQML [59] illustrating the basic

concepts of existing ACLs.

6.5.1 Basic concepts of KQML

All KQML dialects and FIPA ACL follow the same basic concepts of KQML that

we discuss here. KQML is a high level, message-oriented communication language and

3The proper term is prepositional attitudes. Prepositional attitudes are three part relationships

between: (1) an agent, (2) a content bearing proposition (e.g., �it is raining�), and (3) a finite set of
prepositional attitudes an agent might have with respect to the preposition.

 92

protocol for information exchange independent of content syntax and applicable ontology

[59]. So, KQML is independent of the transport mechanism (TCP/IP, SMTP, IIOP, etc.),

independent of the content language (KIF, SQL, STEP, Prolog, etc.) and independent of the

ontology assumed by the content [59].

The KQML language is divided into three layers: the content layer, the message

layer, and the communication layer. The content layer bears the actual content of the

message, in the programs own representation language. KQML can carry any representation

language, including languages expressed as ASCII strings and those expressed using a

binary notation. Every KQML implementation ignores the content portion of the message,

except to determine where it ends. The communication level encodes a set of features to the

message, which describe the lower level communication parameters, such as the identity of

the sender and recipient, and a unique identifier associated with the communication. It is the

message layer that is used to encode a message that one application would like to transmit to

another. The message layer forms the core of the KQML language, and determines the kinds

of interactions one can have with a KQML speaking agent. The primary function of the

message layer is to identify the network protocol to be used to deliver the message and to

supply a speech act or performative which the sender attaches to the content (such as that it

is an assertion, a query, a command, or any of a set of known performatives). In addition,

since the content is opaque to KQML, this layer also includes optional features, which

describe the content language, the ontology it assumes, and some type of description of the

content, such as a descriptor naming a topic within the ontology. These features make it

possible for KQML implementations to analyze, route and properly deliver messages even

though their content is inaccessible.

 93

Though there is a predefined set of reserved performatives, it is neither a minimal

required set nor a closed one. A KQML agent may choose to handle only a few (perhaps one

or two) performatives. The set is extensible; a community of agents may choose to use

additional performatives if they agree on their interpretation and the protocol associated with

each. However, an implementation that chooses to implement one of the reserved

performatives must implement it in the standard way.

One of the design criteria for KQML was to produce a language that could support a

wide variety of interesting agent architectures [59]. Thus, KQML introduces a small number

of KQML performatives, which are used by agents to describe the metadata specifying the

information requirements and capabilities; KQML also introduces a special class of agents

called communication facilitators [62]. A facilitator is an agent that performs various useful

communication services, (e.g. maintaining a registry of service names, forwarding messages

to named services, routing messages based on content), providing �matchmaking� between

information providers and clients, and providing mediation and translation services.

6.5.2 FIPA and its ACL

Although the Knowledge Sharing Effort (KSE) introduced the major research issues

and approaches to the interoperability problems of the agent�s community it did not offer a

disciplined way for developing standards. This void was filled in 1996 by the Foundation for

Intelligent Physical Agents (FIPA). FIPA is a nonprofit association whose purpose is to

�promote the success of emerging agent-based applications, services and equipment.�

FIPA's goal is to make available specifications that maximize interoperability across agent-

based systems. The modus operandi of FIPA is to assign tasks to Technical Committees

(TCs) that have the primary responsibility for producing, maintaining and updating the

specification(s) that are applicable to their task(s). A TC was assigned with the task of

 94

producing a specification for an Agent Communication Language. Along with the TC in

charge of Agent Management (agent services, such as facilitation, registration and agent

platforms) and Agent/Software Interaction (integration of agents with legacy software

applications) they form the backbone of the FIPA specifications.

The FIPA Agent Communication Language (FIPA ACL), like KQML, is based on

speech act theory: messages are actions, or communicative acts, as they are intended to

perform some action by virtue of being sent. The specification consists of a set of message

types and the description of their pragmatics, that is the effects on the mental attitudes of the

sender and receiver agents. Every communicative act is described with both a narrative form

and a formal semantics based on modal logic. The specification also provides the normative

description of a set of high level interaction protocols, including requesting an action,

contract net and several kinds of auctions. The FIPA ACL is superficially similar to KQML.

Its syntax is identical to that of KQML's except for the different names for some reserved

primitives. Thus, it maintains the KQML approach of separating the outer �language� that

defines the intended meaning of the message and the inner language, or �content language�

that denotes the expression towards which the beliefs, desires and intentions of the

interlocutors, as described by the meaning of the communication primitive, apply. The FIPA

ACL specification document claims that FIPA ACL (like KQML) does not make any

commitment to a particular content language [57].

6.6 Bringing the two worlds together

In this section the author investigates the possibilities of supplementing mobile

agents with the ability to handle an ACL. As previously argued, doing so will make a new

range of interoperability options available to mobile agents. The deep division between

stationary and mobile agents is unnecessary and integrating ACLs into mobile agents

 95

frameworks might not be as hard of a problem. Moreover, the MASIF proposal and the

enduring presence of FIPA, along with the continuous interaction between the communities

involved in these two endeavors, make the time right for the relatively minor adjustments

needed to bring the two worlds together.

6.6.1 Origins of the different perspectives

The semantic approaches of current ACLs [71] suggest the origins of much of the

past and ongoing research on ACLs. Rooted in various branches of Artificial Intelligence,

these semantic approaches rely on multi-modal logics that are often non-computable and/or

have no efficient implementation. Mobile agents, however, are usually programmed in

object-oriented or scripting languages. Traditionally, this is not the domain of AI

programming languages.

But things seem to be changing. An informal survey of the various multi-agent

systems that use an ACL for inter-agent communication would reveal two interesting trends.

• Java is rapidly becoming the language of choice for building agents and knowledge

based systems in general [60].

• Many of the new APIs for agent communication languages [72] offer support for

modeling, manipulating and reasoning about conversations among agents.

Conversations offer an intuitive way to structure an agent's activities. Also, given the

problematic nature of compliance with the ACL's semantic account, conversations shift the

focus from the internals of the agent to its observable behavior expressed as sequences of

messages sent to other agents. Agents can agree on a conversation protocol for a particular

task (e.g., negotiation or auction) and then engage in a scripted interaction. The reluctance of

the mobile agents community to engage into the world of ACLs has to do, in some degree,

with the programming languages that dominate each branch of the �agent� paradigm. The

 96

fact that Java is becoming the favorite language for programming agents of all types,

however, might be changing that. The reality of a language like Java can be seen at the

realm of the semantic definition of ACLs.

6.6.2 Integrating ACL�s and mobile agents

From a software design point of view, for an agent system to �speak� KQML (or

FIPA ACL for that matter) the following things have to be provided:

1. A suite of APIs that facilitate the composition, sending and receiving of ACL

messages.

2. An infrastructure of services that assist agents with naming, registration and

basic facilitation services (finding other agents that can do things for your agent).

3. The code that for every reserved message type (performative or communicative

act) takes the actions prescribed by the semantics, for the particular application;

this code depends on the application language, the domain and the details of the

agent system that uses the ACL.

Unfortunately, such services were not the focus of the standardization efforts until

very recently. There is no service where one can register an agent by just sending a

registration message. This problem, which is being addressed by the agents� community, has

to do primarily with the lack of agreement on the naming scheme for agents. Because mobile

agents are typically programmed in object-oriented or scripting language, it might seem that

the major obstacle for adopting ACLs in the mobile agents community is the difficulty of

translating the semantics account into code in such languages that complies with the ACL's

specification. As Java rapidly becomes the language of choice in the agents� world, the

author feels that this will no more be a problem, or at least, it is not more of a problem for

 97

mobile agents than it is for agents in general. This view seems to be supported by the

emphasis in conversations and the specification of conversation protocols; this shift of focus

suggests a programming-friendly way to account for an agent's communicative behavior.

6.6.3 Problems Integrating ACL�s and mobile agents

The first problem is that mobile agents ought to be able to compose, send and receive

ACL messages. At this point, they are only concerned with the code necessary for these

tasks. One answer to this issue is that mobile agents need not actually have such code; the

agent place 4can provide this functionality [5]. As we mentioned, there is a variety of Java

APIs that support that kind of functionality; the only issue is integrating them with places'

implementations. The mobile agent will use its usual mechanisms of interacting with the

place in order to retrieve its messages or to submit messages for sending. It is likely that a

mobile agent will only retrieve or submit the content of the ACL message. A place can

interact with other places, facilitators and ontology services in order to manage delivery to

the appropriate recipient, or language and ontology translation issues [5]. But these aspects

of interoperability and the necessary infrastructure to achieve it do not differ from the

requirements for non-mobile agents. Of course mobile agents are still left with the task of

processing the content of an ACL message, as they see fit. This task, as is the case for non-

mobile agents, will depend on the particulars of the agent and its domain. The only real

difference is that the compositions, sending and receiving of messages is delegated to the

agent place.

A second obstacle is that mobile agents do not have a permanent location on the

network. This has repercussions for the naming scheme needed to identify and refer to them

4A place is a context in which an agent executes. It is associated with a location, which consists of the
place name and the address of the agent system where the place resides [35]

 98

in the network. Technically speaking, the naming scheme is not part of an ACL specification.

Agent naming though is viewed as one of the most essential agent management issues that

the ACL community is concerned with.

 The views of the agents community have been gradually shifting from the earlier

viewpoint of a permanent fixed agent location and a symbolic name associated with it, to a

more flexible view, where agents may or may not be connected to the network all the time,

or may suspend their operation and resume it in some new location or even might have

multiple names associated with a unique identity (in such a case these name are related to

each other and to the common identity). Such a view seems to include, at least conceptually,

the concept of a mobile agent that changes locations carrying (all or parts of) state and data.

To the extend that such concepts are reflected in current naming mechanisms and

conventions its should be possible to find a common ground between the two communities.

It would be fruitless to get into more detail about naming matters since existing

proposals are just proposal and bound to change, but this is exactly the opportunity we ought

to take advantage of.

If we were to assign priority to the technical issues mentioned here, the most

important concern would be to ensure that naming conventions are consistent between the

MASIF proposal and whatever gets adopted in the wider agents community (for example

FIPA's choices).

6.7. Conclusions

Software agents offer a new paradigm for building very large scale distributed

heterogeneous applications that focus on the interactions of autonomous, cooperating

processes that can adapt to humans and other agents. As such, communication is key to

realizing the potential of this new paradigm, just as the development of human language was

 99

critical to the development human society and culture. This holds for mobile agents as well

as for stationary ones. Agents use an Agent Communication Language to communicate

information and knowledge. Some [62] even go so far as to suggest that the use of a rich

ACL is a defining characteristic of a software agent, (i.e., a software agent is any process

that makes appropriate use an ACL to exchange in-formation). Although this sounds

circular, it is not if we stipulate that an ACL should be sufficiently rich to encode a wide

range of knowledge and a reasonable set of prepositional attitudes toward sentences in the

ACL.

The distinguishing characteristic of mobile agents, in terms of being agents, should

not be their ability to move around the network but their ability to act (autonomously) on

behalf of their users and eventually perform tasks for them. Agents can achieve high-level

interoperability by communication at a higher-level of abstraction involving such concepts

as beliefs, goals, expectations and intentions. Currently, mobile agents present a very narrow

view of agent communication that does not take full advantage of communication as an

interoperability mechanism. The author argues that at this critical period of standardization

efforts in the broader area of agents, bringing mobile agents and agent communication

together is an opportunity not to be missed.

 100

CHAPTER 7
AN INTRODUCTION TO THE MASIF STANDARD

7.1 Introduction

Mobile agent technology has gained momentum in various application areas, such as

electronic commerce, workflow management, and telecommunications. The reason for this

are several benefits of this rather new technology, such as asynchronous task execution,

reduction of network traffic, robustness, distributed task processing, and flexible on-demand

service provision [1]. However, also legacy technologies, such as the traditional client/server

paradigm, are still considered as suitable solutions for many distributed application

scenarios. Currently, efforts are spent to combine these two approaches in order to realize a

unified distributed middleware, supporting both client/server-based remote procedure calls

and mobile agents. The recent OMG work on a Mobile Agent System Interoperability

Facility (MASIF) [2] specification can be regarded as a milestone on the road toward such a

unified middleware, which enables technology and location transparent interactions between

static and mobile objects/agents. This chapter illustrates the current state of standardization

as described by the OMG MASIF submission.

7.2 Common Conceptual Model

Mobile agents (also called transportable agents) are a relatively new technology that

is fueling a new industry. Because the technology and the industry are new, mobile agent

systems (for example, Crystaliz�s MuBot [8], Dartmouth College�s AgentTcl [9,10], IBM�s

Aglets [11,12], the Open Group�s MOA [2], and General Magic�s Odyssey [13]) differ

widely in architecture and implementation.

 101

The differences among mobile agent systems prevent interoperability and rapid

proliferation of agent technology, and have probably impeded the growth of the industry.

To promote both interoperability and system diversity, some aspects of mobile agent

technology are being standardized. This chapter provides an introduction on interoperability

and describes the terminology of the MASIF submission.

 Following the definition of a common conceptual model, sets of features dealt in the

MASIF specification to promote interoperability and enhance the functionality of most

existing mobile agent systems are discussed. Together, the definitions and features provide a

common interoperability base for mobile agent technology [2].

7.2.1 Interoperability

An important goal in mobile agent technology is interoperability between various

manufacturers� agent systems. Interoperability becomes more achievable if actions such as

agent transfer, class transfer, and agent management are standardized [2]. When the source

and destination agent systems are similar, standardization of these actions can result in

interoperability.

MASIF specification does not standardize interfaces at the language level. Mobile

Agent System Interoperability Facilities (also called MAF, an acronym for the original

proposal, Mobile Agent Facility) is about interoperability between agent systems written in

the same language, but potentially by different vendors and systems that are expected to go

through many revisions within the lifetime of an agent. Language interoperability for active

objects that carry �continuations� around is technically difficult to achieve. Furthermore, it

is not needed, since the support for different languages can be replicated at each node [3].

 102

This specification does not define standardization of local agent operations such as

agent interpretation, serialization, execution, or de-serialization. However, these actions are

implementation specific, and there is currently no compelling reason to limit agent system

implementations to a single architecture.

7.2.1.1 Issues addressed by MASIF currently

Among others, the following functionality is covered by the MASIF-compliant

interfaces due to the requirements defined in the MASIF RFP:

• Agent management

• Agent transfer

• Agent and agent system names

• Agent system types

• Location syntax

This section discusses the reasons for standardizing these aspects of mobile agent

technology now.

7.2.1.1.1 Agent Management

This topic comprises the creation, termination, suspension, and resumption of agents.

The MAFAgentSystem interface provides several methods for this purpose, (i.e., the methods

create_agent, terminate_agent, suspend_agent, and resume_agent).

7.2.1.1.2 Agent Transfer

The topic �agent transfer� states that it is advantageous for two agents to

communicate at the same location rather than across a network for two reasons: number of

network transactions, and data monitoring [2].

 103

Allowing a source agent to travel to an agent system close to the destination agent

system achieves the benefit of locality. If the network between the two agents has low

bandwidth, filtering data across the net can be expensive and time consuming when

compared to local data transfers.

Data monitoring is a task that can continue for long periods of time. It may be

preferable to send a mobile agent to the platform providing the data, rather than use a

stationary agent to send periodic inquiries for the latest stock price. For this type of

application, using a mobile agent is cost-efficient and resource-efficient [2].

7.2.1.1.3 Agent and Agent System Names

In addition to standardizing operations for interoperability between agent systems,

MASIF has also standardized the syntax and semantics of various parameters: agent name,

agent system name, and location.

When invoking a management operation, the agent being managed must be

identified. Therefore, the agent name syntax should be standardized. Standardized agent

name syntax also provides two other benefits. It allows an agent system to quickly determine

whether it can support an incoming agent, and it allows two agents to identify each other by

name [2].
7.2.1.1.4 Agent System Type and Location Syntax

MASIF enforces standardization of the location syntax so that an agent can access

agent system type information from the desired destination agent system, and so that the

source and destination agent systems can identify each other. If the agent system type can

support the source agent, the agent transfer can happen. It is also important to provide a

naming authority (an organization that assigns a unique identifier) for each agent system

 104

type. Ensuring uniqueness of agent system type names prevents two companies from

duplicating agent system type values [2].

7.2.1.2 Issues to be addressed by MASIF later

The previous section discussed the aspects of mobile agent technology that are

addressed by the MASIF now to ensure agent system interoperability. The OMG group

identifies other aspects of the technology that should be standardized.

 This section describes some of the areas that will be addressed by the standards

body in the future. When an agent takes a multi-hop travel, which travels between more than

two security domains (regions, see section 2.2.13, �Regions�), the security issues become

complex. Most security systems today deal only with security between two domains, which

is single-hop travel. The mobile agent community should delay standardizing multi-hop

security of mobile agents until security systems can handle the problem. Today�s mobile

agent systems use several different languages (for example, Tcl and Java). Therefore, the

effort to convert from one agent encoding to another is too complex. When the serialization

formats for agent code and execution state are similar, it should be possible to build standard

bridges between different agent system types. In the future, features are likely to be added to

MAF that improve interoperability, and minimize the need for bridges.

7.2.1.3 MAF Interoperability Summary

Interoperability is an important goal of the MAF Specification [2]. Agent

management allows an agent system to control agents of another agent system. MAF

addresses this interoperability by defining interfaces for actions such as suspending,

resuming, and terminating agents. This interoperability is relatively straightforward for most

agent systems to implement. Agent tracking permits the tracing of agents registered with

 105

MAFFinders (i.e., Naming Services) of different agent systems. This interoperability is also

relatively straightforward for most agent systems to implement [2]

Agent communication is extensively addressed by CORBA as object communication

and is considered out of scope for the MASIF specification. Therefore, agent

communication is omitted from the MAF specification [2]. MAF addresses agent transport

by defining methods for receiving agents and fetching their classes. Agent transport

interoperability is not simple to achieve and requires a certain amount of cooperation

between implementers of different agent systems to achieve. Note that this chapter presents

an overview of interoperability and does not discuss the details of achieving interoperability.

An important goal in mobile agent technology is interoperability between various

manufacturers� agent systems. Interoperability becomes more achievable if actions such as

agent transfer, class transfer, and agent management are standardized. When the source and

destination agent systems are similar, standardization of these actions can result in

interoperability. However, when the two agent systems are dramatically different, only

minimal interoperability can be achieved.

7.2.2 Basic Concepts

This section defines the major mobile agent concepts, some of the concepts have

already been introduced in chapter 1, and thus the author will concentrate on concepts

specific to the MASIF reference model.

7.2.2.1 Agent Authority

An agent�s authority identifies the person or organization for which the agent acts.

An authority must be authenticated.

 106

7.2.2.2 Agent Names

Agents require names that can be identified in management operations, and can be

located via a naming service. Their authority, identity and agent system type names agents.

An agent�s identity is a unique value within the scope of the authority that identifies a

particular agent instance. The combination of an agent�s authority, identity and agent system

type is always a globally unique value. Because an agent�s name is globally unique and

immutable, the name can be used as a key in operations that refer to a particular agent

instance.

7.2.2.3 Agent Location

The location of an agent is the address of a place (refer to section 1.2.12, �Place� for

more information). A place resides within an agent system. Therefore, an agent location

should contain the name of the agent system where the agent resides and a place name. Note

that if the location does not contain a place name, the destination agent system chooses a

default place.

7.2.2.4 Agent System

An agent system is a platform that can create, interpret, execute, transfer and

terminate agents. Like an agent, an agent system is associated with an authority that

identifies the person or organization for which the agent system acts. For example, an agent

system with authority Bob implements Bob's security policies in protecting Bob's resources.

An agent system is uniquely identified by its name and address. A host can contain

one or more agent systems.

7.2.2.5 Agent System Type

An agent system type describes the profile of an agent. For example, if the agent

system type is Aglet, the agent system is implemented by IBM, supports Java as the Agent

 107

Language, uses Itinerary for travel, and uses Java Object Serialization for its serialization.

This specification recognizes agent system types that support multiple languages, and

languages that support multiple serialization methods. Therefore, a client requesting an

agent system function must specify the agent profile (agent system type, language, and

serialization method) to uniquely identify the desired functionality.

7.2.2.6 Agent System to Agent System Interconnection

Figure 7.1 Agent System architecture

When an agent transfers it, the agent travels between execution environments called

places. A place is a context within an agent system in which an agent can execute. This

Communication Infrastructure

Agent Agent

Place

Agent System

Operating System

Agent

Place

 108

context can provide functions such as access control. The source place and the destination

place can reside on the same agent system, or on different agent systems that support the

same agent profile.

Figure 7.2 Agent System to Agent System Interconnection.

A place is associated with a location, which consists of the place name and the

address of the agent system within which the place resides. An agent system can contain one

or more places and a place can contain one or more agents. Even though a place is defined

as the environment where an agent executes, if agent system does not implement places,

Operating
System

Agent System

Place

Agent

Communication
service

Operating
System

Agent System

Place

Communication
service

Network

Agent

Operating
System

Agent System

Place

Agent

Communication
service

Operating
System

Agent System

Place

Communication
service

Agent

 109

then place is still defined as the default place. When a client requests the location of an

agent, it receives the address of the place where the agent is executing.

7.2.2.7 Regions

A region is a set of agent systems that have the same authority, but are not

necessarily of the same agent system type. The concept of region allows more than one

agent system to represent the same person or organization. Regions allow scalability because

you can distribute the load across multiple agent systems.

A region provides a level of abstraction to clients communicating from other regions.

A client wishing to contact an agent or agent system may not be aware of the agent�s

location. Instead, a client has an address for the region (basically, the address of an agent

system that is designated as the region access point), and the name of the agent or place. It is

now possible to contact and communicate with an agent or agent system with only this

information.

An agent may also have the same authority as the region in which it is currently

residing and executing. This means that the agent represents the same person or organization

as the region. Normally, the configuration of the region may grant a richer set of privileges

to such an agent than to another resident agent with a different authority. For example, an

agent that has the same authority as the region may be granted administrative privileges. A

region can be same as an identity domain of CORBA security if the authority of the region

equals to identity of the identity domain.

A region fully interconnects agent systems within its boundaries and enables the

point-to-point transfer of information between them. Each region contains one or more

region access points and by these means, regions are interconnected to form a network.

 110

7.2.2.8 Region-to-Region Interconnection

Regions are interconnected via one or more networks and may share a Naming

Service based on an agreement between region authorities and the specific implementation

of these regions. A non-agent system may also communicate with the agent systems within

any region as long as the non-agent system has the authorization to do so. A region contains

one or more agent systems. Agent systems and clients outside of the region access the region

via agent systems that are exposed to the outside world, similar to a firewall situation. These

agent systems are defined as region access points. Access rights are allocated to agents,

based on the same authority as the region in which they are currently running. Using this

definition, a region is regarded as a security domain in the context of MAF.

 7.2.2.9 Serialization/Deserialization

Serialization is the process of storing the agent in a serialized form. Deserialization is

the process of restoring the agent from its serialized form. The key to storing and retrieving

agents is representing the state of an agent in a serialized form that is sufficient to

reconstruct the agent. Note that the serialized form must be able to identify and verify the

classes from which the fields were saved. For agent systems that are not object oriented, the

agent state is the extraction of runtime data for the agent, and classes are the code that

implements the agent.

7.2.2.10 Codebase

Codebase specifies the locations of the classes used by an agent. It can be an agent

system or a non-CORBA object such as a Web server. If an agent system is responsible for

providing the necessary classes, the codebase must have enough information to locate the

agent system. Such an agent system is called a class provider.

 111

7.2.2.11 Communications Infrastructure

A communications infrastructure provides communications transport services (e.g.,

RPC), naming, and security services for an agent system.

7.2.2.12 Locality

In the context of mobile agents, locality is defined as being close to the destination

agent system either in the same host or the same network.

7.2.3 Agent Interaction

Three common types of agent interactions are defined that are related to

interoperability:

• Remote agent creation

• Agent transfer

• Agent method invocation.

Here the author would lay emphasis on agent transfer because this is mobile agent specific

7.2.3.1 Remote Agent Creation

In remote agent creation, a client program interacts with the destination agent system

to request that an agent of a particular class be created. A client program is:

• A program in a non-agent system

• An agent in an agent system of a different type than the destination agent system

• An agent in an agent system of the same type as the destination agent system

The client authenticates itself to the destination agent system, establishing the

authority and credentials that the new agent will possess. The client supplies initialization

arguments and, if necessary, the class needed to instantiate and execute the agent. An agent

system can also choose to create agents on its own initiative. The new agent will generally

have the same authority as the agent system.

 112

7.2.3.2 Agent Transfer

When an agent transfers to another agent system, the agent system creates a travel

request. As part of the travel request, the agent provides naming and addressing information

that identifies the destination place. The agent also specifies a quality of communication

service required for agent transfer. The quality of communication service is not specified by

MAF standard [2], it is left open to agent system implementers to specify it. If the source

agent system reaches the destination agent system, the destination agent system must fulfill

the travel request, or return a failure indication to the agent. If the source agent system

cannot reach the destination agent system, then a failure indication must be returned to the

source agent system. When the destination agent system agrees to the transfer, the source

agent�s state, and authority, security credentials, and, if necessary, its code is transferred to

the destination agent system. The destination agent system reactivates the source agent, and

then execution is resumed.

7.2.3.3 Agent Method Invocation

An agent invokes a method of another agent or object, if authorized and has a

reference to the object. As with agent transfer, the agent specifies the required level for

quality of service. Similarly to agent transfer, this is not specified by MAF [2]. The

communications infrastructure must invoke the indicated method and return the result of the

invocation, or return a failure indication. When an agent invokes a method, the security

information supplied to the communications infrastructure executing the method invocation

must be the agent�s authority.

7.3 Functions of an Agent System

Common actions among agent systems are:

 113

• Transferring an agent, which can include initiating an agent transfer, receiving an

agent, and transferring classes

• Creating an agent

• Providing globally unique agent names and locations

• Supporting the concept of a region

• Finding a mobile agent

• Ensuring a secure environment for agent operations

The remainder of this section discusses these areas, defining terms as necessary.

7.3.1 Transferring an Agent

In the previous section, transferring an agent includes initiating the transfer,

receiving an agent, and transferring classes. The following sections discuss each of these

steps.

7.3.1.1 Initiating an Agent Transfer

When a mobile agent is preparing for a trip, the agent must be able to identify its

destination. If the place is not specified, the agent executes in the default place of the

destination agent system.

When the location of the destination agent system is established, the mobile agent

requests the source agent system for a transfer to the destination agent system. This message

is relayed using an internal API between the agent and the source agent system.

When the destination agent system receives the agent�s trip request, the following

actions are initiated:

• Suspend the agent (halt the agent�s execution thread)

• Identify the pieces of the agent�s state that will be transferred

• Serialize the instance of the Agent class and state

 114

• Encode the serialized agent for the chosen transport protocol

• Authenticate client

• Transfer the agent

7.3.1.2 Receiving an Agent Transfer

Before an agent is received into a destination agent system, the destination agent

system must determine whether it can interpret the agent. If the agent system can interpret

the agent, it accepts the agent, then:

• Authenticates client

• Decodes the agent

• Deserializes the Agent class and state

• Instantiates the agent

• Restores the agent state

• Resumes agent execution

7.3.1.3 Class Transfer

Class transfer is the ability to transfer class information from one agent system to

another. This ability is a requirement in agent systems that support object-oriented agents.

Not all agents are object-oriented programs (for example, AgentTcl). There are three reasons

why class transfer is necessary during the life span of a mobile agent.

1. Agent instantiation as a part of remote agent creation (Agent class needed)

When an agent is created remotely by invoking a create operation at the agent

system, the Agent class is needed to instantiate the agent. If the Agent class does not exist at

the agent system that creates the agent, the class information must be transferred from the

source agent system.

 115

2. Agent instantiation as a part of agent transfer (Agent class needed)

After an agent travels to another agent system, the Agent class is needed to

instantiate the agent. If the Agent class does not exist at the destination agent system, the

class must be transferred from the source agent system.

3. Agent execution after instantiation (classes other than Agent class needed)

After an agent is instantiated due to remote creation or agent transfer, the agent often

creates other objects. Obviously, the classes of these objects are needed for their

instantiation. If any of these objects� classes are not available at the agent system that creates

or receives the agent, they must be transferred from the source agent system. The common

conceptual model is flexible enough to support variations of class transfer so that

implementers have more than one method available [2]. Specifically, the model supports:

• Automatic transfer of all possible classes

The source agent system (the class provider or the agent sender) sends all classes

needed to execute the agent with each remote agent creation or transfer request. This

approach eliminates the need for the destination agent system to request more classes.

However, automatically sending all classes consumes more bandwidth than necessary if any

of the transferred classes are already cached at the destination agent system.

• Automatic transfer of the Agent class only, other classes transferred on demand.

The source agent system sends the class needed to instantiate the agent with each

remote agent creation or transfer request. If more classes are needed after instantiating the

agent, the destination agent system issues requests for these classes to the class provider.

 116

If the class provider is not directly accessible from the destination agent system, the

destination agent system issues the request to the sender agent system by calling fetch_class

method along with the codebase of the classes. In this case, the sender agent system must be

able to locate the requested classes either by using the codebase information, or by sending a

further request to another agent system associated with the codebase. The sender agent may

have a cache for the classes [2].

This approach does not require the source agent system to determine all possible

classes necessary before creating or transferring an agent. It is also more efficient as more

classes are cached at the destination agent system. However, the agent creation or transfer

request fails if the destination agent system cannot access the source agent system to transfer

the necessary classes. This failure could happen, for example, if the source agent system is a

portable computer that has been disconnected since the agent creation or transfer request

was sent successfully.

• Automatic transfer of the Agent class and on-demand transfer of all other classes

when transferring an agent, coupled with transferring all classes automatically when

creating an agent remotely.

This approach is a combination of the first two for example a remote agent creation

is launched by a client that is not always connected (for example, a laptop computer).

Therefore, if all classes are automatically transferred for remote agent creation operations,

then the problem of losing access to the classes available at the source agent system may be

avoided.

• Transfer a list of the names of all possible classes with the agent creation or transfer

request

 117

This approach is another combination of the first two. The source agent system sends

a list of class names that includes all the classes necessary to perform the specific agent

operation. The destination agent system then requests only the classes on that list that have

not been cached. This approach is efficient, but still requires the source agent system to

know which classes the agent needs before making the agent creation or transfer request.

This technique is most effective when there is cooperation between the agent language

compiler and the agent system. For example, the compiler can provide a list of classes

associated with each agent so the agent system does not parse the agent�s code at run time to

get this information.

When an agent system requests a class transfer, the agent system must identify the

class to another agent system.

7.3.2 Creating an Agent

For each agent, there is a class from which the agent system instantiates an agent.

This class is defined as Agent [2]. To create an agent, an agent system creates an instance of

the Agent class within a default place or a place the client application specifies. The Agent

class specifies both the interface and the implementation of the agent. To create an agent, an

agent system should:

• Start a thread for the agent

• Instantiate the Agent class

• Generate (if necessary) and assign a globally unique agent name that can be

authenticated

• Start execution of the agent within its thread.

 118

7.3.3 Providing Globally Unique Names

An agent system must generate a unique name for itself, and the places it creates. It

also has to generate a unique name for the agents it creates if required.

7.3.4 Supporting the Concept of a Region

An agent system supports a region by cooperating with other agent systems of the

same authority and by supporting a region access point. The region access point is in charge

of routing external travel requests to internal agent systems.

7.3.5 Finding a Mobile Agent

When an agent wants to communicate with another agent, it must be able to find the

destination agent system to establish communication. The ability to locate a particular

mobile agent is also important for agent management. Because a mobile agent travels, an

agent name must be unique across all agent systems within regions. Agent systems may

provide a naming service based on agent names.

7.3.6 Ensuring a Secure Environment

Because a mobile agent is a computer program that can travel among agent systems,

a mobile agent is often compared to a virus. So, it is imperative for agent systems to identify

and screen incoming agents. An agent system must protect resources including its operating

system, file system, disks, CPU, memory, other agents, and access to local programs.

To ensure the safety of system resources, an agent system must identify and verify

the authority that sent the agent. The agent system must also know what access the authority

is allowed. The ability to identify the authority of an agent enables access control and agent

authentication within an agent system. Another aspect of security is confidentiality. For

example, one agent traveling to meet another agent might want to keep both the occurrence

of the meeting and the substance of the interaction confidential.

 119

7.3.7 Countering Threats

This section presents several examples illustrated in the MASIF specification how to

use security policies to counter threats to the integrity of agent communications. The two

general problems covered in these scenarios are denial of service and unauthorized access of

data and services. Suppose an agent executes code that attempts to consume all system

resources. When resources are not available, services are denied to other agents and possibly

to code running on the agent system host. To resist an attack like this, the region

administrator can impose resource constraints on agents or code originating from untrusted

sources. In most cases, including CORBA, the level of trust assigned to an agent is partially

a function of the agent�s authority and whether that authority was authenticated.

The trust level may also depend on digital signatures (generated strings or numbers

that identify the author), or other techniques. If a security method such as digital signatures

is used, an agent can be trusted even if it arrives from an untrusted node. In such cases, the

signed pieces can be trusted and only the pieces the untrusted node modified are suspect.

The communications infrastructure is responsible for authenticating the agent�s

authority. The agent system can supply any other safety services used in this scenario. In

addition, the agent language can supply safety features that further enhance security.

Another possible attack on system resources can occur when an agent system is

flooded with communications traffic. Usually, the lower-level communications equipment

deals with this type of attack. An agent system might have no inherent defense against such

an attack.

In an agent-based application, there may be an infinite number of techniques for

gaining unauthorized access to data or services. The remainder of this section presents two

possible threats to data and service integrity, and the defenses against them. Suppose an

 120

attacker can monitor communications traffic that transports agents and decodes their state

data. Once the state data is decoded, the attacker has access to any private information that

the agent is carrying. To counter this attack, an agent carrying sensitive information may

demand confidentiality services as a condition for transport. If the level of protection

required is not available, the agent transport should fail.

Suppose an attacker establishes an agent system that claims to operate on behalf of

some trusted authority. Faking the identity of a trusted authority allows the attacker to

receive agents that may be carrying information meant for only trusted parties. To counter

this type of attack, an agent may demand that it only be transferred to agent systems that are

authenticated.

7.3.7.1 Security Service Requirements

This section defines and describes the requirements for secure mobile agent

communications, which are:

• Client authentication for remote agent creation

• Mutual authentication of agent systems

• Agent system access to authentication results and credentials

• Agent authentication and delegation

• Agent and agent system security policies

• Integrity, confidentiality, replay detection, and authentication

7.3.7.2 Authentication of Clients

Security services must provide for the authentication of non-agent system client

applications. This authentication might be done using passwords or smart cards.

 121

Authenticating a client establishes the credentials of agents that the client launches. Client

credentials also determine which security policy is used.

7.3.7.3 Mutual Authentication of Agent Systems

Agent systems, operating without human intervention, must be capable of

authenticating each other. This authentication is accomplished by proving that the agent

system is in possession of some secret information such as a private key. It may be

acceptable for a human to enter a password at the time of the agent system�s initialization to

authorize the agent system to have access to the secret information.

7.3.7.3 Agent System Access

When agent communication takes place, the destination agent system must sample

the credentials of both the agent and the source agent system, and verify their authenticity.

An agent authenticator can use this information to authenticate an agent. The result

of the authentication process determines which security policy to apply to the

communications between the agent and the hosting agent system.

7.3.7.5 Agent Authentication and Delegation

If an agent is migrating to destination agent system, the agent�s credentials must be

transferred with the agent if the migration succeeds. The credentials may be weakened

depending on the results of the authentication. If the communication mechanism is RMI, the

client agent�s credentials are passed along to the server agent for charging or auditing. When

a client agent makes an RPC call, the client agent�s credentials are made available to the

server agent. If the server agent makes an RPC call on behalf of the client agent, the server

agent should be able to pass the client agent�s credentials.

 122

An agent uses its thread of execution to take actions (such as making RPC calls) on

its own initiative. When an agent takes such an action, the credentials associated with that

action must be those of the agent so that the correct security policy is applied.

7.3.7.6 Agent and Agent System Security Policies

An agent should be able to control access to its methods. The agent or its associated

agent system must both set and enforce the access controls. If the agent or agent system�s

access controls are both self-defined and self-enforced, the source agent�s credentials must

be available to the destination agent system, because this information is needed for access

control decisions.

Alternatively, the agent or agent system set the access controls, then require the

communications infrastructure to enforce them. For example, an agent could construct an

access control list, and then deliver it to the communications infrastructure for enforcement.

7.3.7.7 Integrity and Authentication

For any communication, the requestor must be able to specify its integrity,

confidentiality, replay detection, and authentication requirements. The communications

infrastructure must honor these requirements, or return a failure indication to the requestor.

7.4 Conclusions

In order to favor the interaction among different mobile agent platforms, the OMG

(Object Management Group) has proposed a standard called MASIF (Mobile Agent System

Interoperability Facility) [4,9], whose purpose is to overcome the differences of platforms,

by specifying a set of functions and interfaces which all agent platforms need to comply

with, so to communicate and interact.

 123

MASIF, in its present form, provides for the functionalities required for the first level

of interoperability. This consists of moving agents from an agent system to another, once the

information concerning the agent has been transferred; the way the destination agent system

manages such information depends on the implementation of the agent system, and has not

been dealt with in the MASIF specification.

In fact, it does not standardize some operations for the local management of agents,

such as those concerning their interpretation, serialization/de-serialization, and execution.

Besides, interfaces are defined at the level of the agent system, rather than being defined at

that level of the agent.

The quality of communication service is not guaranteed by the MAF standard, Agent

Transfer is modeled on the concept that it is advantageous for two agents to communicate at

the same location rather than across a network, and an agent has to communicate using a

standard protocol wherever it is located, the author sees this as a limitation to the standard,

in the next chapter the author proposes and analyses, using scenarios, how a dynamic

communication protocol can be realized and can improve the quality of communication.

 124

CHAPTER 8
INTER-AGENT COMMUNICATION USING DYNAMIC INVOCATION

INTERFACE FOR A GENERIC MOBILE AGENT PLATFORM

8.1 Introduction

The main reasons why the mobile agent technology is not widely used today are

firstly the security loopholes that they open up [1] and secondly the overhead of the inter-

agent communication framework. The overhead is because communication is realized over a

distributed-object model.

Most of the current mobile agent systems run on interpreter based languages like

Java [29,32], the introduction of a middle layer between the OS kernel and the agent

framework only increases the overheads incurred. Thus, any way by which these overheads

can be minimized is the need of the hour.

In this chapter the author proposes and analyzes inter-agent communication using

dynamic invocation interface for a generic mobile agent platform.

The author explains the proposed framework in the context of a complex real world

scenario. First the scenario is presented and the problem is established. The current solution

to the problem is discussed and later the author goes on to formally analyze the proposed

framework in this context.

8.2 A dynamic invocation interface

The concept of mobile agent-based computing has received widespread attention in

recent years for its potential to support increased asynchrony and disconnected operations in

client-server interactions [1][2]. Mobile agents can be used for information searching,

filtering and retrieval, and for various other e-commerce applications on the Web, thus

 125

acting as personal assistants for their clients. Most of the inter-agent interaction still happens

in the Intranet itself.

A regional center5 can protect users from malicious agents by providing a single

agency as an access point in its Intranet, permitting only secure interactions to the outer

world. Inside of the intranet, agents may interact by taking advantage of fast but insecure

connections.

The problem with the current communication protocol is that the negotiations with

the regional center happen in the same way as with others in the Intranet. Thus, the

communication framework is not able to take advantage of the Intranet strategy, and

overheads of communicating over a distributed object model are being imposed on all the

communication lines.

The author uses the methods in the MAF specification [5], to execute the interaction.

When the SC (stationary client) creates the agent, it gives the agent an initial list of sites to

visit (its itinerary). Either the SC or the agent can modify this list later, based on information

it gathers or receives from an agent system.

The transfer of data from regional center to regional center needs to be secure thus a

secure but slow protocol can be used when communicating via the Internet, once at a

regional center, the agent system un-marshals the agent credentials and invokes the

MAFFinder::lookup_agent_system() and gets the location of the agent system next in the

itinerary. If this agent system is within the Intranet, security is not much of an issue. Thus

the communication framework is able to dynamically decide, based on certain quality of

communication parameters that are specified in the agent credentials, as to what protocol it

should use to transfer information.

5A regional center is a gateway in an Intranet.

 126

The MAF specification makes neither provisions nor guarantees for the quality of

communication [5,67,68]. An agent initiates its migration by contacting its current agent

system. The current agent system then invokes the MAFAgentSystem::receive_agent()

method on the agent system where the agent wants to go.

The communication protocol is transparent to the agent. It is the agent system that

decides the protocol to be chooses, however the agent credentials specify the quality of

communication service through their credentials.

The following section lists the various interfaces, through which the agent server

could communicate by specifying a QoCS6

8.2.1 Different protocols for communication

• CORBA IIOP: The CORBA 2.0-compliant Internet Inter-ORB Protocol can be used

in all environments that support CORBA, independent of a vendor-specific ORB

implementation. It uses the standard-compliant mechanism to connect to an object

using a CORBA Naming Service.

• MAF IIOP: This protocol is a specialization of CORBA IIOP developed for agent

system interaction. It is introduced in the MASIF standard and provides the

connectivity between agent systems of different vendors.

• RMI: Java Remote Method Invocation (RMI) enables Java objects to invoke

methods of other Java objects running on another Virtual Machine (VM). Since this

protocol is included in every JDK1.1-compliant VM, all Ajanta agencies support this

protocol by default without any further installation or configuration effort.

• RMI with SSL: Using this protocol, RMI will run over sockets protected with the

Secure Socket Layer (SSL) protocol, which provides a secure transport of all data.

6Quality of communication service.

 127

• Plain Sockets: The fastest method for remote interactions is to use communication

via plain sockets to a specific port of the target host. This technique is robust and

avoids the overhead of a distributed object model. Plain socket communication is

possible in each Internet-enabled environment and thus ensures a more efficient way

to realize communication, especially for interpreter based mobile agent frameworks.

• Plain Sockets with SSL: Using this protocol, plain socket connections are protected

by SSL. The preconditions for the usage are the same as those mentioned for

RMI/SSL.

8.2.2 An Illustration to explain the proposal

Figure 8.1 Illustration of proposal

1

6

12

2
1

2

6

12

1212

1 1

2 2

6
6

 128

If 2 in Intranet 1 wants to get data from 2 and 1 in Intranet 2, previously 2 in 1 would

communicate with 2 and 1 in Intranet 2 in the same way. The transfer of data in most of the

Java based mobile agent systems is through RMI.

Using the proposed interfaces and infrastructure, all systems in Intranet 2 can

communicate by opening up insecure but fast connections like direvt sockets, and thus

avoiding the overhead of a distributed object model.

8.3 The scenario

XYZ Inc.7 is a bookstore, which has grown rapidly and expanded its business into

every state, partly by building new stores and partly by acquiring smaller bookstores. They

now have a dozen major regional centers, and each one of these has close ties with a dozen

or more stores in the region. XYZ offers a wide range of products and services for home and

office. Each regional center has its own inventory system, more or less coordinated with the

stores in its region. However, part numbers are not fully standardized, and central IT says it

will be years before the different systems are fully integrated. Adding to the problem is the

continuing fast growth of the store.

8.3.1 Problems being faced

Quality, price, and, above all, service is the XYZ corporate credo. If a customer asks

for an item in a store that is not in stock, the CEO insists that the store check with all other

stores to see if it is in stock or on order elsewhere. But with their continuing growth and

disparate computer systems, this is difficult to do. Sometime, these checks are aggravated by

problems, such as a communications link in their network that is down, heavy traffic on their

network due to the daily replication and update of the databases in several regional centers,

7This is a made up name. It does not refer to any organization.

 129

overheads related to the distributed object model being used to update, query their databases

and legacy systems on multiple platforms that have inconsistent part number and vendor

number assignments. New stores and new services are not being integrated quickly enough

to maintain the level of service the CEO demands, and their customers expect.

8.3.2 The functioning of the store today

A customer comes into the Boston store, and asks for the past 2 years bestsellers in

the areas of humor and fiction, for his personal collection. Joe, the salesperson in the store,

checks the local inventory on his terminal. He has only 2 of the 10 books in humor and none

in fiction. He can check also other regional stores on-line, although that doesn�t reflect

replenishment orders recently placed, but nothing there either. He calls his contact Susan at

another regional center, who looks up the inventory there (no luck), and while Joe is on the

phone, she calls two other stores just acquired last month. One of them has the fiction books,

but only 5 out of 10. Joe calls three more regional centers without success, though a person

at one of the regional centers says he will call back in the afternoon when his computer link

is fixed. Joe knows the remaining regional centers are very unlikely to have those books, and

he has other customers waiting. He asks the customer to call him tomorrow, and tells him

that he should have more information for him then. If they locate the books in another

regional center, they can be shipped to this store for pickup in about a week. The customer

leaves the store and never calls back. Thus customer satisfaction is the problem the author

will be addressing in the following sections.

8.3.3 Solution offered by state-of-art technologies

The IT group of XYZ Inc. has decided that mobile agent technology, combined with

better collection and integration of data within a store or regional group of stores, offers

 130

their company the best opportunity for handling rapid growth while maintaining, and, indeed

improving, customer service.

Thus, each of the dozen main regional stores in the US is in an Intranet that

comprises of approximately a dozen small stores in its proximity. Thus there are 12 Intranets

each of which exchanges information via the Internet. Each regional store has installed a

mobile agent system; the disparate computer systems forced the IT group to establish

different mobile agent platforms for some of the Intranets.

A customer comes into the Boston store, and asks for the past 2 years bestsellers in

humor and fiction. Joe, the salesperson in the store, checks the local inventory on his

terminal. He finds only 2 of the 20. The terminal tells him it is starting to search other stores

to see if they have the other books in stock or on order. Does he want to cancel the search?

Does he want information about best sellers in other categories? Joe answers that he does.

He is told that he will be given partial results every two minutes, and a chance to modify the

search at that time. Two minutes later Joe sees that a store in Atlanta has five of the books,

and a store in Charlotte has forty in the horror category. The customer says suspense would

be okay, but horror is not. Joe modifies the search criteria and waits. The customer

meanwhile has just called his spouse on his cell phone. He is sorry but suspense is not okay.

Joe suspends the search. After a few minutes, the customer says the books must be of humor

or adventure. Joe modifies the search criteria again, and then tells the system to restart the

search from the prior point.

 Finally, the requested books were found in Seattle. The customer asks for them to be

shipped directly to his home. Joe enters the order, which will be filled by the Seattle store,

and shipped UPS.

 131

8.3.3.1 Problems with the current solution

The stores in Dallas, Los Angeles regions and all systems in their Intranets could not

be contacted because they were not of a compatible agent system type. The overheads of

communicating over a distributed object model were hogging the resources on Joes� as well

as systems on all the regional stores as well the smaller stores within them. The IT group

was realizing that since all the stores were not yet �mobile�, there were stores which could

not be accessed because the current mobile agent systems are incapable of using stationary

hosts as resources [67,68], moreover they were looking for a way by which quality of

communication could also be established, they could no longer be oblivious to these facts

and were looking for better solutions to this problem.

8.3.4 High level results

A customer comes into the Boston store, and asks for the past 2 years bestsellers in

humor and fiction. Joe, the salesperson in the store, checks the local inventory on his

terminal. He finds only 2 of the 20. The terminal tells him it is starting to search other stores

to see if they have the other books in stock or on order. Does he want to cancel the search?

Does he want information about best sellers in other categories? Joe answers that he does.

He is told that he will be given partial results every two minutes, and a chance to modify the

search at that time. Two minutes later Joe sees that a store in Cleveland, which could not be

accessed before because it used a different mobile agent platform, had all the requested

books. The customer asks for them to be shipped directly to his home. Joe enters the order,

which will be filled by the Cleveland store, and shipped UPS.

 132

8.3.5 Behind the scenes

Each store has installed a MAF agent system. There are several different hardware

platforms involved, but the MAF agent systems interoperate, providing the infrastructure to

support mobile agents in a heterogeneous environment.

Within this environment, agents can efficiently find information, and coordinate with

each other and the controlling user.

Figure 8.2 Key Actors in the Scenario.

The following entities are involved: agents execute on top of agent systems; agents

and agent systems use the MAFFinder to locate other agent systems; the stationary client,

using interfaces for an agent system and MAFFinder, can create an agent with Joe�s

authority to perform specific tasks for it; the stationary client can also monitor and control

the agent it created, because XYZ�s policy allows agents of the same authority to manage

each other. The agent system and MAFFinder interfaces can be invoked by the following

Stationar
y Client

Agent
System A

Agent

MAFFinder

Agent
System B

Search for books

Joe
(Authority) Boston

(host 1) Atlanta
(host 3)

Dallas
(host 2)

 133

�clients�: a mobile agent, or a stationary client (user application) that monitors/controls

agents, or other agent systems.

8.3.5.1 The MAF services this scenario uses

• Locating an agent system for agent creation (using the MAFFinder interface).

• Creating an agent to begin the query (using the MAFAgentSystem interface).

• The agent registers as it moves (using the MAFFinder interface), so that others can find

it.

• The agent goes from place to place (using the MAFAgentSystem interface).

• Finding the search agent to request status (using the MAFFinder interface).

• Suspending or resuming the agent (using the MAFAgentSystem interface).

The main actors in the scenario are described in Figure 5-1. Joe our salesperson is

the authority. The user application interacting with Joe at his terminal is the stationary client

(SC). The SC has control over and monitors all agent activity in this scenario.

8.3.5.2 Description of low level details

Joe�s request starts a series of actions. The user application (SC) working on Joes�

behalf invokes the MAF services to dispatch and control mobile agents going to the

appropriate sites.

In all cases where a MAFFinder is used to locate a stationary object such as

stationary agents, agent systems, and places, the client actually can choose between the

CORBA naming service and the MAFFinder, thus this framework is also able to interact

with stationary agents and use them as resources. In the case where a MAFFinder should be

located, one can get the object reference of the MAFFinder via

MAFAgentSystem::get_MAFFinder(), or via the CORBA naming service.

 134

 Joe is informed that the item is not in stock locally. Thus, the SC deploys an agent in the

network to search for the same.

8.3.6 Locate

The SC begins by obtaining a reference to a �finder� (MAFFinder) by invoking a

get_MAFFinder() method on behalf of an agent system (MAFAgentSystem). This method

takes no parameters. A finder can be shared among multiple agent systems.

8.3.6.1 Details of the above action

The SC obtains the locations of available agent systems and places using the

MAFFinder methods lookup_agent_system() and lookup_place(). This information is used

to decide where to start an agent, and where to move it during its lifetime. To locate other

agent systems and places, the SC needs to know only their names, which are provided as

parameters to the methods lookup_agent_system() and lookup_place().

The author proposed to overload these methods to obtain information as to which

Intranet the target agent system belongs and stores it in a parameter my_location.

The SC can also obtain additional information about each agent system by invoking

the get_agent_system_info() method (MAFAgentSystem interface). This information is

agent-system specific. This method takes no parameters, and it returns agent-system-specific

information. The lookup operation of an agent system is based either on the agent system

name or the agent system information.

When a new agent system starts up, it registers itself with the MAFFinder using the

register_agent_system() method. This method takes the agent system name, agent system

information, and the location as parameters. The agent system information parameter

(agent_system_info) is used during lookup to identify agent systems with specific

 135

characteristics. It is an internal matter of the MAFFinder to announce itself available to other

MAFFinders, as well as to announce availability of the new agent system.

Thus apart from using the MAF interfaces which allow locating mobile agent

systems of any framework, the location (Intranet) specific information is also obtained.

8.3.7 Create

Based on the availability of other agent systems and places, the SC creates an agent

on a selected agent system by invoking the create_agent() method of the MAFAgentSystem

interface.

As a part of this invocation, the SC provides various parameters. The agent_profile

parameter specifies the agent and the originating agent system specific information, such as

the type of the agent system, and the way the agent was serialized. The agent parameter

contains agent state, such as the serialized state of an agent�s objects, and agent class

definitions, the location specific information is also specified here, thus, apart from knowing

agent system specific information the agent_profile contains location specific information

my_location. The receiving agent system uses this data to create a new instance of the agent.

If specified, the place_name is the destination of the agent on the receiving host. Otherwise,

the agent is associated with the agent system�s default place. The Arguments parameter is

passed to the agent constructor. class_names, code_base and class_provider and are used to

retrieve agent classes. The create_agent() method returns the name of the agent created.

8.3.8 Register

Once a new agent is created, the SC (as well as the agent) has many interfaces

available to control the activity and movement of the agent throughout its life. The agent can

also control the activity of other agents.

 136

To allow other SCs and other agents to be aware of it and locate it, the agent needs to

register itself with the MAFFinder (if the controlling SC wants registration). This is

achieved using the register_agent() method of the MAFFinder interface, which takes as

parameters the agent name, agent profile and the agent�s current location. Agent profile

specifies agent characteristics that can be useful for filtering during a lookup operation.

Similarly, if the agent does not want to publicize itself anymore, it can remove itself from

the MAFFinder, by invoking unregister_agent(). This method takes only the agent name as a

parameter.

The SC acting on behalf of Joe wants the agent to go to each regional center, and get

information about relevant stock items.

8.3.9 Move

When the agent completes its work at the first site (host), it migrates to the next host

on its list. In this section the author discusses the multi protocol based communication

framework that was proposed in (section 2) the advantages of this add-on to the current

MAF specification are also illustrated.

When the SC (stationary client) creates the agent, it gives the agent an initial list of

sites to visit (its itinerary). Either the SC or the agent can modify this list later, based on

information it gathers or receives from an agent system.

At a regional center, the agent system un-marshals the agent credentials and invokes

the MAFFinder::lookup_agent_system() and gets the my_location parameter of the agent

system next in the itinerary. If this agent system is within the Intranet, security is not much

of an issue. Thus a fast and robust mechanism such as communication via sockets can be

used.

 137

The communication framework is able to dynamically decide, based on certain

quality of communication parameters that are specified in the agent credentials, as to what

protocol it should use to transfer information.

An agent initiates its migration by contacting its current agent system. The current

agent system then invokes the MAFAgentSystem::receive_agent() method on the agent

system where the agent wants to go.

Finally, the agent_sender represents the agent system the agent is leaving (source).

When attempting to receive an agent, the destination needs to fetch from the source agent

system the classes on an ad-hoc basis. This is achieved using the method fetch_class(),

which uses as parameters class_names and code_base. Previously, these parameters were

passed to the destination host as parameters of the receive_agent() method.

After a set period of time (about two minutes), the SC wants to retrieve the

information the agent has gathered so far, and then pass it on to Joe.

8.3.10 Status

The agent has visited several sites so far, and gathered relevant information from

those sites about the particular stock items. Some of these stock searches done locally by the

agent are in fact quite complex, processing a lot of data from several databases on

interconnected systems, and making a summary of the requested information for later

transmission to the SC.

The SC must find and interrogate the agent for its status, and also obtain any relevant

data that the agent wants to send back to the SC through the non-MAF interfaces. The SC

obtains the status by invoking get_agent_status(), and using as a parameter the name of the

agent in question.

 138

The SC can also find out all the places and agents residing at an agent system by

invoking the methods list_all_agents() and list_all_places(), respectively. These two

methods return the lists of the agent and place names. It is also possible to obtain all the

agents that belong to a user (distinguished by its principal) by invoking the method

list_all_agents_of_authority(), passing the authority as a parameter.

In some cases, however, it is required that the invoking client be authenticated prior

to being allowed to invoke this method. Prior to being able to invoke these methods, the

client needs to resolve the agent�s current location, by invoking the lookup_agent() method

(MAFFinder). The agent must maintain this information by updating appropriate

MAFFinders.

Lookup can be based either on agent name or on agent profile. Joe modifies the

search criteria and waits.

8.4 Contacting static/un-reachable agent systems

The SC sees from the data that the agent was not able to visit the Miami site. It was

on the itinerary, but the agent system in Miami was not able to receive agents at that time.

The SC therefore locates another store in the Miami region that has a compatible agent

system, and instructs the agent to go there. In order to access an object on an agent system

that cannot receive the agent, the agent can invoke a method

find_nearby_agent_system_of_profile() on the incompatible agent system. This method

takes as a parameter the profile describing the agent system. It returns the location of the

closest agent system of compatible type, if this information/system is available. This type of

information is useful for improving the locality of reference between the object and the

agent in question.

 139

Using the agent name, the SC suspends the agent by invoking the method

suspend_agent(). Note that clients other than the SC (the owner), need to be authenticated

and authorized to be able to invoke the suspend() and resume() methods.

After four minutes the terminal displays information that a store in Cleveland, which

could not be contacted before, has all the required books.

The customer asks for them to be shipped directly to his home. Joe enters the order,

which will be filled by the Dallas store and shipped UPS the next day.

The mobile agent has fulfilled its duty, so the SC (or other authorized client) can

now terminate it, by invoking the terminate_agent() method. This is the end of the agent life

cycle.

 140

CHAPTER 9
A DECENTRALIZED VIDEO CONFERENCE APPLICATION

9.1 Introduction

This chapter is a design overview of a multimedia application for videoconferencing

over the Internet. The chapter tries to provide a thorough discussion of the capabilities,

specifications and limitations of the mobile agent based Decentralized Video conference

(DVC) application. The DVC application is a video conferencing tool to perform real time

conferencing on a network using mobile agents. The audio/video media will be streamed

between two users over the Internet. The mobile agent system provides the premise for the

users to find each other on the network. This system brings a whole new perspective to

conferencing systems by decentralizing the DVC server. There is a paradigm shift from

execution program on a single server to execution of the program on the various clients or

users that use the system.

Video conferencing applications all over the world use the centralized approach [1].

This means that a user who wants to chat has to connect and logon to a central server on

which the other user also has to connect and logon. All the execution happens on the server

and only the clients or the users give the input and get the output. This places a tremendous

load on the server that not only has to provide the necessary support but also has to route all

the traffic from the client to itself and from itself to the other client. This causes congestion

and has drawbacks that you might well expect in a centralized environment. There is also a

single point of failure.

Within the past few years, there has been a rapid growth in network traffic. All kinds

of data are transferred on the networks today. This includes media like (sound, video,

 141

images etc.). Each of the different types of data has some bandwidth requirements to

perform efficiently on these networks. QoS allows networks to use their existing resources

efficiently and to guarantee that critical applications receive high-quality service without

having to expand quickly or even provision their networks. QoS parameters can be listed as

bandwidth, latency, jitter and reliability. Bandwidth is the rate at which an application�s

traffic must be carried by the network. Latency is the delay that an application can tolerate in

delivering a packet of data. Jitter is the variation in latency. Reliability is the percentage of

packets discarded by the router.

Regardless of the delivery mechanism used, all processes of delivering multimedia

data on the Web are basically similar; data from the source must be converted to a digital

format, which is then encoded. In this process the data is compressed into a more

manageable delivery size. When providing content for low-bandwidth encoding, it is crucial

to provide as high a quality of source material as possible. It is important to realize that the

compression used for encoding is lossy; meaning a great deal of information is removed

from the original signal to obtain a particular compression. By providing a high quality

source, the encoder will have more meaningful data to analyze that helps produce a

noticeably better end product.

The author discusses a solution to the stated problems of centralization and quality of

service by providing a multimedia application, which is not centralized. The author uses the

mobile agent paradigm to do this.

Section 9.2 gives system architecture of the DVC application.

 142

9.2 System Architecture

The system architecture for the video conferencing application using Mobile Agents is as

shown in figure 9.1

Migration

Logged In

Two-way Streaming Video/Audio connection

Figure 9.1 Decentralized video conference architecture

The DVCServer extends from the Aglets AgentServer class and the DVCAgent

extends from the Aglets Agent class. Users are logged on to various machines running the

DVCServer. This means that the DVCServer at any point of time can find out all the users

logged onto the machine. The DVCServer keeps track of all users who are logged onto the

Machine 1
DVC
Server1

Machine 2

DVC
Server2

Machine 3

DVC
Server3

DVCAgent

User 2

User 3

User 1

User 4

User 5

DVCAgent

Audio
/Video
Connection

DVC
Agent1

Agent

DVC
Agent

 143

machine. It also provides the environment for a DVCAgent to execute its functionality in.

As mentioned earlier, the DVCServer is a derivative of the Agent Server class in the Mobile

Agent System we are using. DVCAgents can execute only under the jurisdiction of the

DVCServer. This gives the DVCServer complete control over the execution of the

DVCAgent, thus securing the machine from any malicious agents. The DVCAgent is a piece

of code that has a particular itinerary to execute. It travels / migrates from one machine to

another and executes the same piece of code there under the vigil of the DVCServer. The

DVCAgent has an understanding with the DVCServer and this is provided so that the

DVCAgent is protected from malicious Servers. The Agent migrates from machine to

machine inside a fixed domain. This domain is the same as specified in the name registry of

the mobile agent system.

According to figure 9.1, all the machines in the network are running the DVCServer.

User 1 is connected to Machine 1, User 2 and User 3 to Machine 2 and User 4 and User 5 to

Machine 3. These users are registered with the DVCServer. A user creates the DVCAgent if

he/she wants to talk or chat with another user. The original DVCAgent then clones itself and

migrates to other machines across the domain to find the user to talk to. The DVCAgent has

the functionality to open a streaming audio and video connection to another DVCAgent. It

then gets the voice data from the user through a mike and video data through a camera,

compress it and send it to the DVCAgent with the other user which uncompresses the data

and feeds it to the user�s sound and video cards so that he/she can respond. But first the

Agent has to search for the user to talk to.

The User who initiates the audio session tells the DVCAgent that he/she wants to

talk to a user by specifying his/her name. The DVCAgent communicates with the

DVCServer on the initiating user�s machine and finds out whether the user to be talked to is

 144

logged on in this machine or not. If the user is logged on then the DVCAgent opens a

streaming audio/video connection between the two users on the same machine. If the user is

not logged on, then the DVCAgent clones itself and migrates to another machine in the

network domain. There it communicates with the DVCServer running on that machine to

find out whether the user to be talked to is logged on in this machine. If the user is logged in

then the DVCAgent opens a streaming audio connection with the original DVCAgent in the

initiating machine. If the user is not logged in then the DVCAgent migrates to yet another

machine where it does the same things as before till it has covered all machines or found the

user to talk whichever is earlier.

For example let us say that User 1 on Machine 1 wants to talk to User 4. So User 1

starts up a DVCAgent 1 to do the audio chat. This DVCAgent 1 communicates with DVC

Server1 and finds whether User 4 is logged on in Machine 1. After finding out the User 4 is

not logged on, DVCAgent 1 clones itself to a DVCAgent. This DVCAgent migrates from

Machine 1 to Machine 2. In Machine 2, it communicates with DVC Server2 and finds out

whether User 4 is logged on Machine 2. After not finding User 4 logged in, the same

DVCAgent migrates to Machine 3. In Machine 3, it communicates with DVC Server3 and

finds that User 4 has indeed logged on in Machine 3. Now the DVCAgent opens up a

streaming connection with DVCAgent 1 on Machine 1. Once the connection is setup, the

DVCAgent does the (sampling, compression, transmission, decompression, playing etc.) as

required by the modalities of the chat.

9.3 Conclusions

As networks continue to expand and interact, the problems involved in controlling

them from an enterprise point of view expand accordingly, thus solutions such as the DVC

become essential to decentralize the network. In addition, the need to gather effective

 145

information on a timely basis is a critical factor. Two trends are obvious: the need to

simplify the users' contact with the network and the need to simplify the technical

management of the network, including bandwidth management, and the expansion and

introduction of new technologies. The future of the Internet depends on its ability to transmit

multimedia data over it; the mobile agent paradigm, by its inherent nature saves a lot of

bandwidth, and can achieve the above requirement, and the above application shows the new

frontiers that the mobile agent paradigm opens.

 146

CHAPTER 10

CONCLUSIONS

10.1 Conclusions

In this thesis the author discussed various issues with regards to interoperability

between disparate agent systems. A framework to achieve inter-agent communications

through dynamic invocations interfaces has been proposed. Various solutions to the

interoperability problem have been explored.

One of the solutions that have been discussed is integrating Agent communication

languages (ACLs), which have been developed as tools with the capacity to integrate

disparate sources of information and support interoperability, and the MASIF standard.

The author investigates the possibilities of supplementing mobile agents with the

ability to handle an ACL.

As part of another solution to the interoperability problem the author gives an

overview as to how Mobile agents (MAs) can make use of already defined CORBA objects

and services and vice versa offer their services to other CORBA objects.

The state-of-art in agent mobility and communications has been established. Most of

the mobile agent systems are being implemented over interpreter based languages like Java

thus increasing overheads of the communication mechanism, by making use of different

communication protocols for different localities, the author has discussed many advantages

that can be gained.

Finally the author described a multimedia application, which is a decentralized

videoconference.

 147

10.2 Future Work

The proposed communication framework could be extended to become a plug-and-

play kind of an interface, which should not be restricted to certain number of protocols. The

multimedia application of videoconferencing can be enhances to a multi-point conference.

The capabilities can further be extended to include fault tolerance. Various modes of

communicating or passing data like promiscuous, non-promiscuous etc. can be used to

deliver data.

 148

REFERENCES
 [1] D.C. Chess, C. Harrison, A. Kershenbaum - Mobile Agents: Are They a Good
 Idea?,IBM Research Report, 1995

 [2] T. Papaioannou, J. Edwards - Using Mobile Agents To Improve the Alignment
 Between Manufacturing and its IT Support Systems, 1998

 [3] P. Siepel, J.J. Borbink, B.M.A. van Eck - Intelligent Software Agents: Turning a
 Privacy Threat into a Privacy Protector, April 1999

 [4] T.Taka, T.Mizuno, T.Watanabe � A Model of Mobile Agent Services Enhanced for
 Resource Restrictions and Security, Proceedings of the International Conference on
 Parallel and Distributed Systems, 1998, p. 274-281

 [5] GMD FOKUS - MASIF � Mobile Agent System Interoperability Facilities
 Specification, ftp://ftp.omg.org/pub/docs/orbos/97-10-05

 [6] P. Siepel, J.J. Borbink, B.M.A. van Eck - Intelligent Software Agents: Turning a
 Privacy Threat into a Privacy Protector, April 1999

 [7] T. Taka, T. Mizuno, T. Watanabe � A Model of Mobile Agent Services Enhanced
 for Resource Restrictions and Security, Proceedings of the International Conference on
 Parallel and Distributed Systems, 1998, p. 274-281

 [8] Sankar Virdhagriswaran http://www.crystaliz.com/logicware/mubot.html - White paper
 of Crystaliz, Inc., defining mobile agent technology.

 [9] Maes, Pattie (1990) ed., Designing Autonomous Agents, Cambridge, MA: MIT Press

[10] Maes, Pattie (1995), �Artificial Life Meets Entertainment: Life like Autonomous Agents,�
Communications of the ACM, 38, 11, 108-114

[11] Smith, D. C., A. Cypher and J. Spohrer (1994), �KidSim: Programming Agents Without a
Programming Language,� Communications of the ACM, 37, 7, 55-67

[12] Hayes-Roth, B. (1995). �An Architecture for Adaptive Intelligent Systems,� Artificial
Intelligence: Special Issue on Agents and Interactivity, 72, 329-365.

 149

[13] IBM�s strategy white paper available at http://activist.gpl.ibm.com:81/WhitePaper/ptc2.htm.

[14] Wooldridge, Michael and Nicholas R. Jennings (1995), �Agent Theories, Architectures, and
Languages: a Survey,� in Wooldridge and Jennings Eds, Intelligent Agents, Berlin:
Springer-Verlag, 1-22

[15] Brustoloni, Jose C. (1991), "Autonomous Agents: Characterization and Requirements,"
Carnegie Mellon Technical Report CMU-CS-91-204, Pittsburgh: Carnegie Mellon University.

[16] Stan Franklin and Art Graesser Institute for Intelligent Systems, University of
Memphis Proceedings of the Third International Workshop on Agent Theories,
Architectures, and Languages, Springer-Verlag, 1996.

[17] Russell, Stuart. J. and Norvig, Peter (1995) �Artificial Intelligence: A modern approach �
Eaglewood cliffs, NJ: Prentice Hall, pp 33.

[18] Chang, IBM (1998) http://activist.gpl.ibm.com:81/WhitePaper/e2.html

[19] Sunsted, Todd �Agents on the move. Java world July 1998.�
http://www.javaworld.com/javaworld/jw-07-1998-/jw-07-howto.html

[20] Sunsted, Todd �An introduction to agents� Java World, June 1998.

[21] WJ Buchanan, M Naylor and AV Scott Napier University, Edinburgh, UK �Enhancing
Network management using mobile agents.�

[22] James W. Stamos and David K. Gifford. �Remote Evaluation�. ACM Transactions on
Programming Languages and Systems, 12(4): 537-565, October 1990.

[23] John Vittal. Active Message Processing: Messages as Messengers. In R.P. Uhlig, editor,
Computer Message System, pages 175-195. North Holland, 1981.

[24] J.S. Banino. �Parallelism and Fault Tolerance in Chorus�. Journal of Systems and Software,
pages 205-211, 1986.

[25] Eric Jul, Henry Levy, Norman Hutchinson, and Andrew Black. �Fine-Grained Mobility in
the Emerald System�. ACM Transactions on Computer Systems, 6(1): 109-133, February 1988.

[26] James E. White. Mobile Agents. Technical report, General Magic, October 1995.

 150

[27] Dag Johansen, Robbert van Renesse, and Fred B. Schneider. �Operating System Support
for Mobile Agents�. In Proceedings of the 5th IEEE Workshop on Hot Topics in Operating
Systems (HotOS-V), pages 42-45, May 1995.

[28] Gunter Karjoth, Danny Lange, and Mitsuru Oshima. �A Security Model for Aglets�. IEEE
Internet Computing, pages 68-77, July August 1997.

[29] ObjectSpace. ObjectSpace Voyager Core Package Technical Overview. Technical report,
ObjectSpace, Inc., July 1997. http://www.objectspace.com/.

[30] Neeran Karnik and Anand Tripathi. �Design Issues in Mobile Agent Programming
Systems.� IEEE Concurrency, July-Sep 1998 pp 52-61.

[31] OMG: The Common Object Request Broker: Architecture and Specification.
Technical Report, Revision 2.2, Feb 1998.

[32] Crystaliz Inc, General Magic Inc, GMD FOKUS, IBM, TOG: OMG Joint
Submission "Mobile Agent System Interoperability Facility", November 1997, available
at ftp://ftp.omg.org/pub/docs/orbos/97-10-05.pdf

[33] OMG: CORBA Services: Common Object Services Specification, November 1997.

[34] OMG: Objects by Value, Joint Revised Submission, OMG TC Document orbos/98-
01-01

[35] Thomas Magedanz, Markus Breugst, Sang Choy: �Integrating Mobile Agent
Technology and CORBA, Towards CORBA object mobility� Draft 2.

[36] Thomas Magedanz, Markus Breugst, Sang Choy: �A CORBA Environment
Supporting Mobile Objects� Draft 1, January 1999.

[37] OMG: CORBA Components, Joint Initial Submission, OMG TC Document
orbos/97-11-24, November 1997.

[38] Sheng Liang, Gilad Bracha: �Dynamic Class Loading in the Java Virtual Machine�,
Conference on Object-oriented programming, systems, languages, and applications
(OOPSLA'98).

[39] F.G. McCabe, K.L. Clark April - Agent Process Interaction Language; F.G.;
Intelligent Agents: Theories, Architectures, and Languages (LNAI volume 890)

 151

[40] Robert S. Gray. Agent Tcl: A transportable agent system. In Proceedings of the
CIKM Workshop on Intelligent Information Agents, Fourth International Conference on
Information and Knowledge Management (CIKM 95), Baltimore, MA, December
1995.

[41] Shankar Sundaram. Mission-Flow Constructor: A Workflow Management System
Using Mobile Agents. Masters Thesis, Thayer School of Engineering, Dartmouth College,
May 2000.

[42] IKV++GmbH Informations und Kommunikations systeme. Grasshopper: The Agent
Platform - Technical Overview. IKV++ GmbH Informations- und Kommunikations
systeme, February 1999.

[43] Lange, D. B. et al., Aglets: Programming Mobile Agents in Java, In Proc. of
Worldwide Computing and Its Applications (WWCA '97), Lecture Notes in Computer
Science, vol. 1274, Springer Verlag, 1997.

[44] Voyager technical overview. ObjectSpace White Paper, ObjectSpace, 1997.

[45] M. Breugst, I. Busse, S. Covaci, and T. Magedanz. Grasshopper � A Mobile
Agent Platform for IN Based Service Environments. In Proceedings of IEEE IN
 Workshop 1998, pages 279�290, Bordeaux, France, May 1998.

[46] Mitsuru Oshima, Guenter Karjoth, and Kouichi Ono Aglets Specification 1.1 Draft,
September 8th, 1998.

[47] McCabe F.G. and K.L. Clark (1994) "Programming in April", Department of
Computing, Imperial College, London.

[48] F.G. McCabe and K.L. Clark. "Programming in April". Technical report, Department
of Computing, Imperial College, London, 1994.

[49] Odyssey: Beta Release 1.0, 1997. Available as part of the Odyssey package at
http://www.genmagic.com/agents/.

[50] http://java.sun.com

[51] Crystaliz Inc, General Magic Inc, GMD FOKUS, IBM, TOG: OMG Joint Submission
"Mobile Agent System Interoperability Facility", November 1997, available via
ftp://ftp.omg.org/pub/docs/orbos/97-10-05.pdf

 152

[52] N. R. Jennings, P. Faratin, M. J. Johnson, T. J. Norman, P. O'Brien, and
M. E.Wiegand: �Agent-based business process management.� International Journal of
Cooperative Information Systems, 1996.

[53] Robert S. Gray and George Cybenko and David Kotz and Daniela Rus. Mobile
agents: Motivations and State of the Art. In Jeffrey Bradshaw, editor, Handbook of
Agent Technology, AAAI/MIT Press, 2001.

[54] Yannis Labrou, Tim Finin, and Yun Peng, `The current landscape of agent
communication languages', IEEE Intelligent systems, 1999.

[55] D. Rus, R. Gray, and D. Kotz. Transportable Information Agents. Proceedings of
the first ACM international conference on Autonomous agents, 1997.

[56] R. Patil, R. Fikes, P. Patel-Schneider, D. Mckay, T. Finin,T. Gruber and R. Neches:
"The DARPA Knowledge Sharing Effort: Progress Report", In Charles Rich, Bernhard
Nebel, & William Swartout, Principles of Knowledge Representation and Reasoning:
Proceedings of the Third International Conference, Cambridge, MA, Morgan
Kaufmann,1992.

[57] Part 2 of the FIPA 97 specifications, Agent Communication Language:
http://drogo.cselt.stet.it/fipa/spec/fipa97/f7a12pdf.zip

[58] Homepage of FIPA: http://drogo.cselt.stet.it/fipa/

[59] ARPA Knowledge Sharing Initiative. Specification of the KQML agent
communication language. ARPA Knowledge Sharing Initiative, External Interfaces
Working Group, July 1993.

 [60] V. K. Chaudhri, A. Farquhar, R. Fikes, P. D. Karp, and J. P.Rice. Okbc: A
programmatic foundation for knowledge base interoperability. In Proceedings of the
National Conference on Artificial Intelligence (AAAI98). AAAI Press, 1998.

 [61] R. S. Cost, T. Finin, Y. Labrou, X. Luan, Y. Peng, I. Sobo-roff, J. Mayfield, and
A.Boughannam. Jackal: a java-based tool for agent development. In Working Papers or
the AAAI-98 Workshop on Software Tools for Developing Agents, august 1998.

[62] M.R. Genesereth. Knowledge interchange format version 3.0 reference manual.
Technical Report Logic Group Report Logic-92-1, Stanford University, June 1992.

 153

[63] M. R. Genesereth and S. P. Katchpel. Software agents. CACM, 37(7):48�53, 147,
1994.

[64] O. M. Group. Mobile agent facility (joint submission). Technical report, Object
Management Group, 1997.

[65] C. G. Harrison, D. Chess, and A. Kershenbaum. Mobile agents: Are they a good
idea? Research report, T.J. Watson Research Center, 1994.

 [66] Y. Labrou and T. Finin. Semantics and conversations for an agent communication
language. In Proceedings of the Fifteenth International Joint Conference on Artificial
Intelligence (IJCAI-97), Nagoya, Japan, August 1997.

 [67] D. Milojicic, M. Breugst, I. Busse, J. Campbell, S. Covaci, B. Friedman,
K.Kosaka, D. Lange, K. Ono, M. Oshima, C. Tham, S. Virdhagriswaran, and J. White.
Masif: The omg mobile agent system interoperability facility. Personal Technologies,
2(3), December 1999.

[68] D. Milojicic, M. Breugst, I. Busse, J. Campbell, S. Covaci, B. Friedman, K. Kosaka,
D. Lange, K. Ono, M. Oshima, C. Tham, S. Virdhagriswaran, and J. White. Masif: The
omg mobile agent system interoperability facility. In K. Rothermel and F. Hohl, editors,
Mobile Agents, Proceedings of the Second International Workshop, MA'98, LNCS 1477.
Springer-Verlag, 1998.

[69] D. S. Milojicic, M. Condict, F. Reynolds, D. Bolinger, and P. Dale. Mobile objects
and agents. In �Distributed Object Computing on the Internet� Advanced Topics
Workshop, Second USENIX Conference on Object Oriented Technologies and Systems
(COOTS), Toronto, Canada, 1996.

 [70] H. S. Nwana. Software agents: an overview. Knowledge Engineering Review,
11(3):1�40, September 1996.

[71] R. S. Patil, R. E. Fikes, P. F. Patel-Schneider, D. McKay, T. Finin, T. Gruber, and
R.Neches. The darpa knowledge sharing effort: Progress report. In M. Huhns and
M.Singh, editors, Readings in Agents. Morgan Kaufmann Publishers, 1997. (reprint of
KR-92 paper).

 [72] D. Rus, R. Gray, and D. Kotz. Transportable information agents. In 1997
International Conference on Autonomous Agents, Marina del Ray, CA, 1997.

 154

[73] Eric Jul, Henry Levy, Norman Hutchinson, and Andrew Black. �Fine-Grained
Mobility in the Emerald System�. ACM Transactions on Computer Systems, 6(1): 109�
133, February 1988.

[74] James Gosling, Bill Joy, and Guy Steele. �The Java Language Specification�.
Addison Wesley, August 1996.

[75] J. Steven Fritzinger and Marianne Mueller. �Java Security. Technical report�, Sun
Microsystems, 1996. http://www.javasoft.com/security/whitepaper.ps

[76] Neeran M. Karnik. �Security in Mobile Agent Systems�. PhD thesis, University of
Minnesota, October 1998.

[77] Bruce Schneier. �Applied Cryptography�. John Wiley & Sons, 1996.

[78] M. T. Sun and I.-M. Pao, �Multipoint video conferencing,� Visual Commun. and Image
Proc., Marcel Dekker, 1997.

 [79] T. Magedanz, K. Rothermel, S. Krause: "Intelligent Agents: An Emerging Technology
for Next Generation Telecommunications?� in: Proceedings of IEEE INFOCOM '96, pp.
464-472, IEEE Catalog No. 96CB35887, ISBN: 0-8186-7292-7, IEEE Press, 1996.

[80] Crystaliz Inc, General Magic Inc, GMD FOKUS, IBM, TOG: OMG Joint Submission
"Mobile Agent System Interoperability Facility", November 1997, available at
ftp://ftp.omg.org/pub/docs/orbos/97-10-05.pdf

[81] OMG: The Common Object Request Broker: Architecture and Specification. Technical
Report, Revision 2.2, Feb 1998

[82] OMG: Common Facilities rfp3. Request for Proposal OMG TC Document 95-11-3,
Object Management Group, Framingham, MA, November 1995.

[83] Grasshopper homepage: http://www.ikv.de/products/grasshopper/

[84] OMG: CORBA services: Common Object Services Specification, November 1997

[85] FIPA: FIPA98 Draft Specification: Part 11: Agent Management Support for Mobility,
FIPA8415, Version 0.3, Foundation for Intelligent Physical Agents, April 1998

[86] Sankar Virdhagriswaran http://www.crystaliz.com/logicware/mubot.html - White
paper of Crystaliz, Inc., defining mobile agent technology.

 155

[87] Robert S. Gray. Agent Tcl: A transportable agent system. In Proceedings of the CIKM
Workshop on Intelligent Information Agents, Fourth International Conference on
Information and Knowledge Management (CIKM 95), Baltimore, Maryland, December
1995.

[88] Shankar Sundaram. Mission-Flow Constructor: A Workflow Management System
Using Mobile Agents. Masters Thesis, Thayer School of Engineering, Dartmouth College,
May 2000.

[89] Lange, D. B. et al., Aglets: Programming Mobile Agents in Java, In Proc. of
Worldwide Computing and Its Applications (WWCA '97), Lecture Notes in Computer
Science, vol. 1274, Springer Verlag, 1997.

[90] Mitsuru Oshima, Guenter Karjoth, and Kouichi Ono Aglets Specification 1.1 Draft,
September 8th, 1998.

[91] Odyssey: Beta Release 1.0, 1997. Available as part of the Odyssey package at
http://www.genmagic.com/agents/.

 156

BIOGRAPHICAL INFORMATION

Vamsi Putrevu attended The Malaviya Regional Engineering College at Jaipur, India

from 1995 through 1999. He started his M.S. in Computer Science and Engineering at the

University Of Texas at Arlington, U.S in the fall 1999. He served as a Teaching Assistant of

Dr. Mostafa Ghandehari, for the course �Algorithms and Data Structures� in CSE

department of UT Arlington from Fall 2000 to the Summer 2001. He received his M.S. in

Computer Science and Engineering in August 2001.

