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ABSTRACT 
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Supervising Professor:  Diane J. Cook  

Frequent subgraph pattern recognition and graph-based relational learning have 

been an emerging area of data mining research with scientific and commercial 

applications. At the kernel of these algorithms are the computationally-expensive graph 

and subgraph isomorphism tests.    

The graph isomorphism problem consists in deciding whether two graphs are 

isomorphic i.e., whether there is a one-one mapping between the vertices of the two 

graphs that respects the edge connections. Many graphs will be depicted quite 

differently but in actuality have the same inherent structure. This leads to the 
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isomorphism problem. The graph isomorphism problem belongs to the class of NP 

problems and has been conjectured intractable though probably not NP-complete. 

We hypothesize that approximation algorithms can be developed for the graph 

and subgraph isomorphism problems, and that these algorithms can improve the runtime 

of data mining systems that rely on these capabilities. We analyze the validity of our 

hypothesis by implementing and testing three approaches to the problem: a genetic 

algorithm for subgraph isomorphism detection, canonical labeling of graphs for graph 

isomorphism testing and a technique that reduces the need for isomorphism tests in 

SUBDUE. 

Canonical labeling is a technique that assigns a unique code to a graph that is 

invariant on the order of the vertices and the edges in the graph. As a result two graphs 

will have same canonical labels if they are isomorphic and vice versa. In cases where 

many isomorphism checks are required between same set of graphs, a better way of 

performing this task is to assign each graph a canonical label. Our research has 

considered canonical labeling technique in SUBDUE to reduce the number of calls to 

the graphMatch routine and also as an alternative to the graphMatch routine. 

The subgraph isomorphism problem consists in deciding whether a graph is 

isomorphic to a subgraph of another graph. Subgraph isomorphism belongs to the class 

of NP-complete problems.  

Genetic algorithms represent an approximation technique that runs for a certain 

number of generations, retaining the best chromosomes from the current generation to 

the next generation and producing new chromosomes using the genetic operators of 
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selection, crossover and mutation. This approach is inspired by the natural process of 

evolution. In our research, a genetic algorithm approach has been considered for 

subgraph isomorphism detection in SUBDUE to find the instances of the predefined 

substructures in the input graphs. Since it is an approximation technique, it is not 

guaranteed to find all the instances of the subgraph in the main graph. 

Finally an approach taken by Potts is analyzed that reduces the number of calls 

to graphMatch by changing the order in which the instances are extended in SUBDUE. 
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CHAPTER 1 

INTRODUCTION 

1.1 Motivation 

The power of graphs to model complex data sets has been recognized by various 

researchers as it allows us to represent arbitrary relations among entities and solve 

problems that we could not previously solve. There are two types of settings, a graph 

transaction setting and a single transaction setting. 

The problem of frequent pattern discovery in a graph transaction setting is 

formulated as that of discovering frequent subgraphs that occur over the entire set of 

graphs. The problem of frequent pattern discovery in a single transaction setting is 

formulated as that of discovering subgraphs that occur frequently over a single graph. 

FSG is an example of a frequent subgraph discovery algorithm that deals with graph 

transaction setting. SUBDUE is an example of a knowledge discovery algorithm that 

deals with both single transaction and graph transaction settings. 

The problem of subgraph discovery involves computationally-expensive graph 

and subgraph isomorphism tests in both single transaction and graph transaction 

settings. 

Subgraph isomorphism detection is an NP-complete problem. It is still an open 

question if graph isomorphism detection is an NP-complete problem; however there are 

no known polynomial time algorithms for graph isomorphism detection.  



 

 

 

2

There are two basic approaches that past research has taken to address the 

problem of graph isomorphism. The first approach is based on group-theoretic concepts 

and the study of permutation groups. In Babai [8], it was shown that there exists a 

moderately exponential bound for the general graph isomorphism problem. Some of the 

known algorithms reduce the computational complexity of the matching process by 

imposing topological restrictions on the graphs. Algorithms for finding isomorphism 

between planar graphs [11], trees [22] or more generally bounded valence graphs [9] are 

known. 

 However, the major drawback of algorithms based on group-theoretic concepts 

is that there is usually a large overhead and consequently a large constant factor 

associated with the theoretical complexity.  

The second approach to graph and subgraph isomorphism is more practically 

oriented and aims directly at developing an algorithmic procedure for isomorphism 

detection. Most of these algorithms are based on a state-space search with backtracking. 

A major improvement of the backtracking method was presented by Ullman, who 

introduced a refinement method which reduces the search space of the backtracking 

procedure remarkably [12]. More recent work is described in [13, 14] where the graph 

isomorphism problem was reduced to the problem of clique detection by constructing 

an association graph for all possible vertex mappings.  
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1.2 Hypothesis 

We hypothesize that the scalability of graph-based data mining algorithms can 

be increased by making use of approximation techniques or by reducing the number of 

calls to the computationally-expensive graph match. 

A genetic algorithm can be used as an approximation technique to perform 

subgraph isomorphism detection. Canonical labeling can be used to assign each graph a 

unique label that is invariant on the order of vertices and edges in the graph. To find out 

if two graphs are isomorphic, it is enough to compare their canonical labels. Hence the 

computationally-expensive graph matching is reduced to a polynomial-time string 

matching problem. 

The number of calls to graphMatch can be reduced by changing the order of 

extending the instances of a substructure in SUBDUE. We validate our hypothesis by 

implementing and analyzing these three approaches on real and synthetic data. 

1.3 Contributions 

Our research has implemented a genetic algorithm for subgraph isomorphism 

detection and adapted a canonical labeling algorithm for use by SUBDUE. These 

techniques have been implemented on real and synthetic databases. A technique that 

reduces the number of calls to the graphMatch routine in SUBDUE has been described 

and analyzed.  

Chapter 2 gives an overview of the graph-based knowledge discovery system 

�SUBDUE�. Chapter 3 defines the concept of a genetic algorithm, describes the 

implementation of the genetic algorithm for subgraph isomorphism detection in 
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SUBDUE and shows the experimental results. Chapter 4 defines canonical labeling, 

describes the usage of the canonical labeling algorithm �nauty� in SUBDUE and shows 

the experimental results. Chapter 5 gives an overview of EE-SUBDUE, the efficiency- 

enhanced version of SUBDUE, obtained by reducing the number of calls to 

graphMatch. Finally, chapter 6 outlines the contributions of our research and suggests 

future work. 
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CHAPTER 2 

SUBDUE 

In this chapter we give an overview of SUBDUE. SUBDUE is a graph-based 

knowledge discovery system that has been used as the platform to implement and 

analyze the scalability-techniques proposed in the thesis. 

2.1 Introduction 

SUBDUE [1] is a graph-based knowledge discovery system that finds structural 

and relational patterns in data, representing entities and relationships. SUBDUE 

represents data using a labeled, directed/undirected graph in which entities are 

represented by labeled vertices or subgraphs, and relationships are represented by 

labeled edges between the entities. SUBDUE uses the minimum description length 

(MDL) principle, introduced by Rissanen [2] to identify patterns that minimize the 

number of bits needed to represent the input graph after being compressed by the 

pattern. SUBDUE can perform several learning tasks, including unsupervised learning, 

supervised learning, clustering and graph grammar learning. SUBDUE has been 

successfully employed in a number of areas including web structure mining, counter 

terrorism, social network analysis, aviation and geology. 

1 .Graph-based unsupervised learning (DISCOVERY) 

In discovery mode SUBDUE uses heuristic search guided by MDL to find 

patterns minimizing the description length of the entire graph compressed with the 
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pattern [3]. Once a pattern is found, SUBDUE can compress the graph using this 

pattern. It replaces the instances of the substructures with a node which is a pointer to 

the substructure. It can repeat the process on the compressed graph to look for more 

abstract patterns possibly defined in terms of previously discovered patterns. 

2. Graph-based Supervised learning 

If graphs depicting both positive and negative examples are given as input then 

SUBDUE enters supervised learning mode [4], searching for a pattern that compresses 

the positive graphs but not the negative graphs. For example, given positive graphs 

describing criminal networks and negative graphs describing benign social networks, 

SUBDUE can learn patterns distinguishing the two, and these patterns can be used as a 

predictive model to identify emerging criminal networks. When SUBDUE is given a 

new graph, it can see if this graph contains the patterns identified during its learning 

procedure and if yes, then labels the new graph as a criminal network. 

An evaluation method called set-cover is used to identify the best substructures. 

In this method a substructure is identified that best covers the positive graphs but not 

the negative graphs. Positive graphs that are covered are removed and the process is 

repeated until there are no more positive graphs. 

3. Graph-based hierarchical Clustering 

The ability of SUBDUE to iteratively discover patterns and compress the input 

graph can be used to generate a clustering of the input graph [5]. Essentially, clustering 

mode forces SUBDUE to iterate until the input graph can be compressed no further. 

The resulting patterns form a cluster lattice, such that if a pattern S is defined in terms of 
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one or more previously-discovered patterns, then these patterns form the parents of S in 

the lattice. 

4. Graph Grammar Learning 

Graph grammars are similar to string grammars where the terminals and non-

terminals represent arbitrary graphs. SUBDUE learns context-free, node-replacement 

graph grammars by looking for common connections between the instances of a 

substructure S [6].  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Instances of the substructure in the graph. 
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2.2 Algorithm 

SUBDUE represents structured data in the form of a labeled graph. Objects in 

the data map to vertices or small subgraphs in the graph and the relationships between 

the objects map to the directed or undirected edges in the graph. A substructure is a 

connected subgraph that is part of a given input graph. A substructure instance is a set 

of edges and vertices in the input graph that is considered to match graph-theoretically 

to a given substructure. 

SUBDUE performs a computationally-constrained beam search. The algorithm 

begins with the substructure matching a single vertex in the graph. During each iteration 

the best substructures are extended by one vertex and a connecting edge or one edge 

connecting vertices already in the substructure in all possible ways as guided by the 

example graphs, to generate candidate substructures. SUBDUE maintains the instances 

of substructures in examples and uses graph isomorphism to determine the instances of 

the candidate substructures in the examples. The substructures are then evaluated 

according to how well they compress the description length (DL) of the data set. The 

DL of the input dataset G using substructure S can be calculated using the formula, 

DL(S) + DL(G|S), where S is the substructure used to compress the graph dataset G. 

DL(S) and DL(G|S) represent the number of bits required to encode S and the dataset G 

after G has been compressed with S. The length of the beam represents the number of 

substructures left to be considered for further expansion. However if there are ties, all 

substructures of the last value are kept on the beam. The procedure stops after all 
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substructures are found or user-imposed computational constraints are exceeded. At the 

end of the procedure SUBDUE reports the best compressing substructures. 

 

    SUBDUE (Graph, BeamWidth, MaxBest, MaxSubSize, Limit) 
1. ParentList = NULL; 
2. ChildList = NULL; 
3. BestList = NULL; 
4. ProceedSubs = 0; 
5. Create a substructure from each unique vertex label and its  

single-vertex instances; 
6. Insert the resulting substructures in ParentList; 
7. while ProceedSubs less than or equal to Limit and ParentList not empty 

a. do 
b. while ParentList not empty 

i. do 
1. Parent = RemoveHead(ParentList); 
2. Extend each instance of Parent in all possible ways; 
3. Group the extended instances into Child substructures; 

c. for each child 
d. do 

i. if Size of(child) less than MaxSubSize 
ii. then 

1. Evaluate the child 
2. Insert Child in ChildList in order by value; 
3. if BeamWidth Less than Length(ChildList) 
4. then 

a. destroy substructure at the end of ChildList; 
e. Increment ProceedSubs; 
f. Insert parent in BestList in order by value; 
g. if MaxBest less than length(BestList) 
h. then 

i. destroy substructure at the end of BestList; 
i. Switch parentList and childList; 

8. return BestList 
 

Figure 3: The SUBDUE algorithm. 
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The main processing loop of SUBDUE proceeds as follows. For the list of 

parents the while loop in line 7 (of Figure 3) is entered. A parent is removed from 

the list of parents and extended in all possible ways by one edge or one edge and 

one vertex. All of these extended instances are inserted into a sorted list, childList, 

whose size must be less than or equal to the BeamWidth.  

Once all the children of a parent are processed, the parent is added to the 

BestList. When the current ParentList is emptied, the ChildList becomes the new 

ParentList and the loop is repeated until the number of substructure extensions 

exceeds Limit or there are no more extensions. The algorithm terminates and returns 

the BestList containing the best substructures found. 

In addition, if the user has specified multiple iterations, then the graph is 

compressed with the best substructure and the process is repeated until there are no 

more positive graphs or the graph cannot be compressed further. 
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CHAPTER 3 

GENETIC ALGORITHM 

Genetic algorithms are used as approximation techniques for solving difficult 

problems. In this chapter a genetic algorithm has been considered to solve the NP-

complete subgraph isomorphism detection problem. A genetic algorithm has been 

implemented in SUBDUE that performs an approximative subgraph isomorphism test to 

identify all the instances of the predefined substructures in the input graphs. 

3.1 Definition of a genetic algorithm 

Genetic algorithms were formally introduced by John Holland in the 1970s at 

the University of Michigan [7]. Genetic algorithms are adaptive heuristic search 

algorithms premised on the evolutionary ideas of natural selection and Darwin�s 

principle of Survival of the fittest. They perform a parallel, non-comprehensive search 

for the global maximum of the graph. The search is not precise in that it does not 

guarantee that the global maximum will be found. We are in a stochastic system and a 

genetic pool may be too far from the solution, or a too-fast convergence may halt the 

process of evolution. Genetic algorithms have been successfully used to solve NP-

complete problems like Traveling Salesman Problem and Knapsack problem. They are 

well suited for problems such as evolving the weights of a neural network. 

A genetic algorithm is an iterative procedure that consists of a constant-size 

population of individuals, each one represented by a finite string of symbols, known as 
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chromosome, encoding a possible solution in a given problem space. This space, 

referred to as the search space, comprises all possible solutions to the problem at hand. 

Genetic algorithms are generally applied to problem spaces which are too large to be 

exhaustively searched.  

3.2 Procedure 

An initial population of individuals is generated either at random or heuristically.  At 

every evolutionary step, the individuals in the current population are evaluated 

according to some fitness function. To form a new population, individuals are selected 

according to their fitness from the current generation. Selection does not introduce new 

individuals to the population. Hence selection alone is not sufficient to find new points 

in the search space. These are generated by the genetically-inspired operators, crossover 

and mutation. Thus selection is used in conjunction with mutation and crossover to 

generate new population.  Crossover is performed with probability �pcross � between two 

selected individuals called parents and by exchanging parts of their 

genomes(chromosomes) to form two new individuals called offspring. This operator 

tends to move the evolutionary process towards more promising regions of the search 

space. The mutation operator is introduced to avoid premature convergence to local 

optima by randomly sampling new points in the search space. It is carried out by 

flipping bits at random with some probability �pmut�. Genetic algorithms are stochastic 

iterative processes that are not guaranteed to converge. The stop condition can be 

specified as a particular number of generations or as an attainment of a particular fitness 

level. Genetic algorithms tend to get slower than conventional searches by taking up 



 

 

 

13

large runtime to find the solution. In order to speed up the algorithm some 

enhancements such as elitism can be used where a fraction of the best chromosomes 

from the current population is retained unaltered to the next generation. The algorithm 

is depicted by the flow chart in Figure 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Structure of a genetic algorithm. 
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(a) 

 

(b) 

Figure 5: (a) Plot of Fitness vs. Initial population; (b) Plot of Fitness vs. Final 
population. 

 
The above graphs show the fitness of the population initially and after a 

number of generations have been executed [19]. The curve shows the 

distribution of the fitness values of the chromosomes. The dots on the curve 
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show the current generation chromosomes. Figure 5(a) shows the initial 

distribution of the chromosomes and Figure 5(b) shows the distribution of the 

final generation population of chromosomes. As can be seen, the 

chromosomes reach the peaks of fitness after a number of generations have 

been executed. The chromosome with the highest fitness value is going to be 

the best chromosome. 

3.3 Genetic Operators. 

Encoding: Encoding is a process of mapping the knowledge domain to the 

solution space. The selection of an encoding scheme varies with the design decision and 

also depends on the problem to be solved. It will affect the selection of genetic 

operators. An improper encoding scheme will produce infeasible chromosomes 

generated by genetic operators. Chromosomes can be encoded in different ways, as 

described here 

• Binary Encoding: One way of encoding chromosomes is as binary 

strings. Each bit in the chromosome can represent some characteristic or 

the presence or absence of a particular characteristic. 

Ex: chromosome =   10010011 

• Permutation Encoding: Permutation encoding can be used in ordering 

problems such as the traveling salesman problem (TSP) or a task 

ordering problem. Every number in the chromosome represents a number 

in the sequence. In TSP each number represents a city to visit. 

Ex: chromosome = 1 3 5 2 6 4 8 7 
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• Value Encoding: Direct value encoding can be used in some problems 

where some complicated values such as real numbers are used and where 

binary encoding would not suffice. While value encoding is good for 

some problems, it is often necessary to develop some specific crossover 

and mutation operators for these chromosomes. 

Ex: chromosome = A C B C D E 

  Here A could represent a task, B another and so on. 

• Tree Encoding: Tree encoding is used to allow programs or expressions 

to evolve. In tree encoding, every chromosome is a tree containing 

objects, such as functions or commands in a programming language. 

LISP is often used to implement this type of encoding because programs 

in LISP can be represented in this form and then easily parsed as a tree. 

 

 

 

 

 

Figure 6: Example of tree encoding. 

Population Size: The population size affects both the ultimate performance and 

the efficiency of genetic algorithms. A small population size will reduce the evaluation 

cost in each generation. For a large population size, genetic algorithms can perform a 

more informed search because a large population is more likely to contain 
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representatives from a large number of hyperplanes. As a result, selecting the optimal 

population size is critical for the success of a genetic algorithm. 

Selection: The selection operator forms a new population by selecting 

chromosomes in the old population based on their fitness value. The rationale is that the 

chromosomes with higher fitness value should have a higher probability of surviving 

into next generation. There are many methods of selecting chromosomes for the next 

generation.  

• Proportional Selection: Proportional Selection selects a candidate with 

probability proportional to the fitness of the candidate. 

• Roulette wheel selection: It is a proportional selection where each 

individual is given a chance to be a parent in proportion to its fitness. 

The chances of selecting a parent can be seen as spinning a roulette 

wheel with the size of the slot for each parent being proportional to its 

fitness. Obviously those with larger fitness values have an increased 

probability of being chosen. Hence in roulette wheel selection there is a 

chance that some of the individuals dominate others and get selected a 

high proportion of the time. 

• Boltzmann selection: This technique is similar to roulette wheel 

selection except that the area of each section on the wheel is give by 

       Ai = e-(F
m

-F
i
)/ (kT)  

 
Where Fm is the fitness of the fittest solution and Fi is the fitness of the ith 

chromosome. The term (kT) is the effective temperature; it can stay 
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constant or be reduced for each new generation. Selection pressure is 

slowly increased over evolutionary time to gradually focus the search. 

• Tournament selection: 

Method1: Select a pair of individuals at random. Generate a random 

number, R between 0 and 1. If R < r, the first individual is used as the 

parent, otherwise if R >= r, the second individual is used as the parent. 

This is repeated to select the second parent. The variable r is a 

parameter to this method. 

Method2: Select a pair of individuals at random. Select the individual 

with larger fitness as a parent. Repeat this process to select a second 

parent. 

• Rank selection: Rank selection ranks the population first and then every 

chromosome gets fitness proportional to its rank. The individual with 

the lowest rank gets a fitness of 1, the next lowest gets a fitness of 2 and 

the highest-ranked individual gets a fitness value of N, where N is the 

number of chromosomes. In this method, each chromosome has a 

significant chance of being selected. However, this method can lead to 

slower convergence since the best chromosomes do not differ much 

from others in terms of fitness. 

• Steady state selection: In every generation a few good chromosomes are 

selected to create offspring, and then these offspring replace the bad 

chromosomes and the rest survive to the next generation. 



 

 

 

19

Crossover: Selection redirects the search towards the best existing 

chromosomes but does not create new chromosomes. The crossover operator, on the 

other hand, takes valuable information from both parent chromosomes and then 

combines them to find highly fit chromosomes. 

• Single Point Crossover: A random number is chosen between 0 and the 

length of the chromosomes. The chromosomes are split at that random 

point and merged. Two offspring are produced. 

Ex: 11001011+11011111 = 11001111 and 11011011     

• Multi Point Crossover: More than one random point is chosen between 0 

and length of the chromosomes and the chromosomes are split at those 

points and merged. Two offspring are produced.  

Ex: 11001011 + 11011111 = 11011111 and 11001011 

• Uniform Crossover: For each gene, a gene value from the corresponding 

position in the parents is chosen at random. One offspring is produced. 

Ex: 11001011 + 11011101 = 11011111 

• Arithmetic Crossover: Some arithmetic operation is performed to 

produce new offspring. 

Ex: 11001011 + 11011111 = 11001011 (AND) 

If the crossover rate is too low, the search may stagnate due to a low exploration 

rate. The higher the crossover rate, the faster new chromosomes will be introduced into 

the population. 
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Mutation: Mutation maintains the diversity of the population. 

• Bit Inversion:  In a binary chromosome, a gene is randomly chosen and a 

bit inversion is done i.e. if the gene is 1 it is changed to 0 and vice versa. 

• Other forms of mutation can be performed that are specific to the 

chromosomes and the genetic algorithm. 

Mutation should be sparingly used because it is a random search operator. With 

high mutation rate, the algorithm would become little more than a random search. 

Stop Condition:  Another important design factor of a genetic algorithm is the 

stop condition, i.e. when should the evolution process be stopped. A number of options 

are possible such as the following 

• A genetic algorithm can be run for a certain number of iterations and then 

stopped and the best chromosome is taken as the solution. 

• A genetic algorithm can be stopped after the allocated computing time is 

used up. 

• A genetic algorithm can be stopped after an individual is found that 

satisfies the required criteria 

• A genetic algorithm can be terminated when a plateau is reached and the 

successive iterations do not produce better results 

• Combinations of the above methods can be used as terminating conditions. 
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3.4 Implementing a genetic algorithm for subgraph isomorphism detection in 
SUBDUE. 

 
The amount of effort expended by a brute force solution to graph isomorphism 

problem would typically be considered intractable, as there are N! possible node orders 

for a graph with N nodes. The subgraph isomorphism problem is even worse 

combinatorially, as the subset of the vertices in the main graph that are to be matched 

with the subgraph is unknown. In the worst case, all possible combinations of vertex 

subsets may be matched with a graph representing a candidate concept. 

A method for subgraph isomorphism in polynomial time has been proposed by 

Messmer and Bunke [15]. This method constructs a decision tree with a number of 

modal graphs and then takes an input graph and gives a list of modal graphs which have 

this input graph as a subgraph. The time taken is said to be polynomial without taking 

into account the preprocessing step where the decision tree is constructed. 

It is because of the NP-completeness of the subgraph isomorphism problem that 

an approximate solution was sought. �LeRP� is one such approximation technique for 

subgraph isomorphism detection [16]. It is based on counts of Length-R-Paths. The 

algorithm outputs if the given smaller graph is a subgraph of the larger graph. The 

worst-case time complexity is O (N3D2R) where N is the number of nodes in the smaller 

graph, D is the mean degree and R is the highest power of the adjacency matrix used in 

processing. Another approximate technique has been proposed by David Eppstein [17] 

that uses a graph decomposition method similar to one used by Baker [18] to 

approximate various NP-complete problems on planar graphs. This method finds all the 
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instances of a smaller graph in the main graph with complexity O (cw log w n + wk), 

where c is a constant, w is the number of vertices in the subgraph, n is the number of 

vertices in the main graph and k is the number of instances of the subgraph in the main 

graph. 

Genetic algorithms are better than conventional search methods in that they are 

more robust [19]. They do not break easily even if the inputs change slightly or a 

reasonable amount of noise is present in the data. Also in searching a large state-space, 

a genetic algorithm may offer significant computation time benefits over conventional 

search techniques. Hence we consider here a genetic algorithm approach for subgraph 

isomorphism detection in SUBDUE. In SUBDUE, subgraph isomorphism is used to 

find all instances of predefined substructures in the input graphs. 

The three most important aspects of using genetic algorithms are: (1) 

representation of the chromosomes, (2) definition of the objective function, and (3) 

definition and implementation of the genetic operators.  

The idea for the chromosome representation has been adopted from a paper 

written by Max Pesakhov and William Regli [19].  The paper searches for only one 

instance of the subgraph in the main graph. In contrast, our algorithm tries to list all the 

instances of the subgraph in the main graph. The fitness function used in their paper 

requires a significant amount of computational time. Hence, an alternative fitness 

function has been considered in our research. The size of the initial population and also 

the number of iterations were manually given in their paper whereas we present the 
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results of experimentation in which the size of the population and the number of 

iterations are both manually and dynamically initialized. 

Initial Population: The chromosome used is a permutation chromosome. Each 

gene has two fields, position and value. Position refers to the number of the vertex in 

the subgraph and value represents the number of the vertex in the main graph to which 

the vertex in the subgraph is mapped. 

Chromosomes are created by finding a mapping between the vertices in the 

subgraph and those in the super graph. Chromosomes are generated randomly by 

mapping a vertex in the subgraph to a vertex in the super graph. The mapping is 

constrained such that the label of both the vertices must be same and the degree of the 

vertex in the subgraph must be smaller than or equal to that of the degree of the vertex 

in the super graph. 

 

 

 

 

 

                                    

 

Figure 7: Example of creating a chromosome 

Consider the example graphs shown in Figure 7, vertex 0 in graph g1 can be 

mapped to vertex 1 in graph g2, vertex 1 in graph g1 can be mapped to vertex 2 in graph 
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g2 and vertex 2 in graph g1 can be mapped to vertex 3 in graph g2. Hence a valid 

chromosome would be 123 which is represented as the following. 

Value 1 2 3 

Position 0 1 2 

 

Size of the population: The size of the population is specified as nv2 where nv2 

is the number of vertices in the main graph. This particular value is chosen because 

there will be at the most nv2 instances of the subgraph in the main graph. However this 

is not necessarily an optimal population size. Our experimental results will show that an 

optimal runtime may sometimes be obtained when the size is varied to an alternative 

value. 

Fitness: The fitness function gives each chromosome a fitness value which is a 

judgment of its surviving capability. Choosing and formulating an appropriate fitness 

function is crucial in obtaining an efficient solution.  

In the genetic algorithm designed for SUBDUE, the fitness evaluation is 

performed as shown in Figure 8. 

The fitness function does not give misleading results by being partial to either 

densely or sparsely connected graphs. This is because for all the graphs, the fitness 

function is normalized by the same value i.e. the number of vertices in the subgraph and 

for each vertex, it is normalized by the number of edges emanating from the 

corresponding vertex in the subgraph, which is again same for all the vertices in this 

position. 



 

 

 

25

 

 

 

 

 

 

 

 

 

 

Figure 8: Algorithm to calculate the fitness of a chromosome 

The fitness calculation is illustrated through the following example. 

 

Figure 9: Example illustrating the calculation of fitness of a chromosome. 
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For each vertex v1 in the subgraph 

    For each edge e1 originating from v1 

If there is an edge e2originating from v2, where v2 

is a vertex in the main graph that is mapped to v1 

in the subgraph and the destination vertices of the 

edges e1 and e2 match 

 Then increase fit by 1 

Divide fit by the number of edges originating from of v1. 

Add the quotient to the fitness 

 Divide fitness by number of vertices in the subgraph 
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Consider the graphs shown in Figure 9. In this example, vertices 0, 1, 2 in the 

subgraph are mapped to vertices 1, 2, 3 in the main graph, respectively. Hence, the 

chromosome is 123. 

The fitness of 123 is calculated as follows. 

Step 1: The variables fit and fitness are initialized to 0. Consider the gene at 

position 0, with value 1. There are two edges originating from vertex 0 in g1. For the 

edge labeled b originating from vertex 0 in g1, there is a corresponding edge labeled b 

originating from vertex 1 in g2, and the destination vertices also match (i.e. Y). Hence 

the value of variable fit is incremented by one.  

fit = 1; 

For the edge labeled c originating from vertex 0 in g1, there is a corresponding 

edge originating from vertex 1 in g2. Hence the value of variable fit is further 

incremented by one. 

fit = 2; 

Now fit is divided by the degree of the vertex 0 in g1 and the value of the 

variable fitness is incremented by the quotient. Therefore value of fitness = fit/2; 

fitness = 1; 

Step 2: The variable fit is initialized to 0. Consider the gene at position 1(with a 

value of 2). Again there are 2 edges originating from vertex 1 in g1. For the edge 

labeled b originating from vertex 1 in g1 there is a corresponding edge labeled b 

originating from vertex 2 in g2. Hence fit is incremented by 1. 

fit = 1; 
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Similarly for the other edge labeled c originating from vertex 1 in g1, there is an 

edge labeled c originating from vertex 2 in g2. Hence fit is incremented to 2. Now fit is 

divided by the degree of vertex 1 in g1 and added to fitness. Therefore the value of 

fitness is 2. 

Step 3: The variable fit is initialized to 0. The value of gene at position 2 with 

value 3 is considered and the same operations as in the above two steps are performed. 

Now the value of fitness is 3. Finally fitness is divided by the number of vertices in the 

subgraph. Therefore the value of fitness is 1. 

Since the value of fitness is 1, this is considered an exact match. 

Selection: Rank selection is employed. Each chromosome is assigned a sector in 

the roulette wheel proportional to its rank. The wheel is spun N times, where N is the 

number of vertices in the subgraph and N chromosomes are selected for the next 

generation. 

 Elitism: 10% of the best chromosomes are retained from the current generation 

to the next generation.  

Crossover: Uniform crossover is performed. After the parents are selected for 

crossover, a random number between 0 and 1 is generated and the crossover function is 

called only if the random number is less than or equal to 0.9. Within the crossover 

function, for every gene position, a random number between 0 and 1 is generated and 

the genes in this position are interchanged only if the random number is less than or 

equal to 0.2. 



 

 

 

28

For example in Figure 10, the genes in positions 0 and 3 are exchanged 

producing offspring1 and offspring2. This procedure does not result in invalid 

chromosomes. Because genes in a particular position are interchanged, the mapping is 

still valid. For example if vertex 0 in the subgraph can be mapped to only vertices 1 and 

3 in the main graph, an invalid mapping where gene at position 0 has a value other than 

1 or 3 will not result using this procedure. 

  

 

Figure 10: Example illustrating the crossover operation. 

Mutation: Random mutation is performed. The value of a gene is replaced by a 

value from a list of vertices to which it can be mapped. A random number between 0 

and 1 is generated and the mutation function is called only if the random number is less 

than or equal to 0.3. With in the mutation function, for every gene position, a random 

number between 0 and 1 is generated and the gene at that position is mutated only if the 

random number is less than or equal to 0.4. These rates of crossover and mutation have 

been decided based on the results of a number of trials using different values. 

Number of Iterations: Deciding upon an optimal number of iterations is a 

difficult task for a genetic algorithm. The number of iterations for our algorithm is taken 

as ∏
1

1

)(
nv

iCount /size of the population, where Count(i) is the number of vertices in the 

main graph to which the ith vertex in the subgraph can be mapped. The product of 

Count(i) for all i gives the maximum number of possible instances of the subgraph in 

Offspring1 = 3 4 6 
 
Offspring2 = 1 5 2 

Chromosome1 = 1 4 2 
 
Chromosome2 = 3 5 6 

Crossover 
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the main graph. Hence by iterating ∏
1

1

)(
nv

iCount /size number of times, all possible 

instances may be considered. 

Stop Condition:  The algorithm stops after running for a fixed number of 

iterations.  

3.5 Subgraph isomorphism detection using sgiso 

Algorithm sgiso, a utility provided with the SUBDUE code performs subgraph 

isomorphism detection by finding instances of the subgraph in the main graph. The 

function starts by finding all instances of a vertex of the subgraph in the main graph. It 

then extends all instances of this vertex by a single edge. The process of extending by a 

single edge is repeated until all the edges and vertices of the subgraph are covered. 

Finally the function performs a graph match to eliminate those instances that do not 

match the subgraph. This step also eliminates overlapped instances if they are not 

allowed by the user. 

3.6 Experimental Results 

Tables 1 through 3 show the number of instances found and runtime taken by 

sgiso and that taken by the genetic algorithm.  

The graphs sample2.graph through sample10.graph are generated using subgen. 

Subgen is a synthetic graph generator that accepts as input the number of vertices and  

edges of a graph to be generated, the possible vertex and edge labels, the graph 

connectivity, a substructure to be embedded and the percentage of the final graph to be 

covered by the substructure as parameters and generates a graph consistent with the 
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specified parameters . The sizes of the graphs sample2.graph through sample10.graph 

vary from 12 vertices, 11 edges to 88 vertices, 100 edges. The graph shown in Figure 11 

is the substructure, sample2sub.graph,  that is embedded in all of these graphs. 

 

Figure 11: The substructure sample2sub.graph. 

 ttt_notwin is the graph representation of the database found in the UCI 

repository [36]. ttt_win is a graph with 5634 vertices and 10016 edges. ttt_notwin is a 

graph with 2988 vertices and 5312 edges. ttt_win is a graph representation of all 

possible winning board configurations of a tic-tac-toe game. ttt_notwin  is a graph 

representation of all possible board configurations of a tic-tac-toe game with one blank 

position.  

The desired results would be that the genetic algorithm finds all the instances of 

the subgraph in the main graph and also the time taken by the genetic algorithm is lower 

than that taken by sgiso. 

Table1 shows the comparison results when the sizes of the population and 

numbers of iterations have been given manually for a number of trials. The table shows 

bar
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that the genetic algorithm could find all the instances of the subgraph in the main graph. 

However the time taken by the genetic algorithm is a lot higher than that of sgiso. 

Table 2 shows the comparison results when the size of the population has been 

calculated dynamically as equal to the number of vertices in the main graph and number 

of iterations has been given manually. Again the genetic algorithm could find all 

instances of the subgraph in the main graph but the time taken is higher than that of 

sgiso. The time taken by this approach is almost similar to the time taken in the above 

table.  

Table 3 shows the comparison results when both the size of the population and 

the number of iterations have been dynamically calculated. The genetic algorithm could 

not find all the instances of the subgraph in the main graph in some of the experiments. 

The reason for this is that the genetic algorithm is stopped after too small a number of 

iterations. The GA would require more iterations to find all the instances.  However, it 

could find more than 95% of the substructure instances. The time taken by the 

algorithm is less than in the above two methods.  

The Figures 12 through 15 show the plots of the results shown in tables 1 

through 3. The graphs are shown along the x-axis and the runtime or number of calls is 

shown along the y-axis. The labels s2 through s10 on the x-axis correspond to the 

graphs sample2.graph through sample10.graph respectively. 

The sgiso algorithm takes less time compared to the GA. The reasons for this 

are the algorithm sgiso has a tab on the number of instances of the subgraph in the main 

graph which the GA does not have. This helps the algorithm in a big way when the 
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number of instances of the subgraph in the main graph is very small and the main graph 

is very large in which case the GA suffers. The GA is computationally intensive since it 

evaluates a large number of chromosomes which are probable solutions, although most 

of them are not actual solutions to the problem. 

Table 1: Comparison of runtime of sgiso and the genetic algorithm with the size of the 
population and the number of iterations given manually. 

 
Subgraph 
 

 

Main 
graph 

No. of 
inst.s 
found 
by 
sgiso 

Time 
taken 
by 
sgiso 
(secs) 

No. of 
inst.s 
found 
by GA

Time 
taken 
by GA 
(secs) 

Pop 
Size 

No. of 
iterations 

Sample2sub Sample2 3 0.00 3 0.00 22 20 

Sample2sub Sample3 22 0.00 22 0.7 91 1900 

Sample2sub  Sample5 22 0.00 22 1.05 116 1800 

Sample2sub Sample6 10 0.00 10 0.04 27 900 
 

Sample2sub Sample7 10 0.00 10 0.04 27 800 

Sample2sub Sample8 10 0.00 10 0.02 27 600 

Sample2sub Sample9 10 0.00 10 0.03 27 600 

Sample2sub Sample10 11 0.00 11 0.03 31 500 

ttt_notwin_sub ttt_notwin 343 0.01 343 2348.43 4000 4000 

ttt_win_sub ttt_win 563 0.01 563 6000.32 5000 6000 
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Table 2: Comparison of runtime of sgiso and the genetic algorithm with the size of the 
population calculated dynamically. 

 
Subgraph 
 

 

Main 
graph 

Number 
of inst.s 
found 
by sgiso 

Time 
taken 
by 
sgiso 
(secs) 

No. of 
inst.s 
found 
by GA

Time 
taken 
by GA 
(secs) 

Pop 
Size 

No. of 
iterations 

Sample2sub Sample2 3 0.00 3 0.00 12 50 

Sample2sub Sample3 22 0.00 22 1.02 88 3000 

Sample2sub  Sample5 23 0.00 23 1.00 88 3000 

Sample2sub Sample6 10 0.00 10 0.02 36 200 
 

Sample2sub Sample7 10 0.00 10 0.02 36 200 

Sample2sub Sample8 10 0.00 10 0.05 36 600 

Sample2sub Sample9 10 0.00 10 0.05 36 600 

Sample2sub Sample10 11 0.00 11 0.07 44 600 

ttt_notwin_sub ttt_notwin 343 0.01 343 1631 2988 5000 

ttt_win_sub ttt_win 563 0.01 563 10000 5634 7500 
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Table 3: Comparison of runtime of sgiso and the genetic algorithm with the size of the 
population and the number of iterations calculated dynamically. 

 
Subgraph 
 

 

Main  
graph 

No. of 
inst.s 
found 
by 
sgiso 

Time 
taken 
by 
sgiso 
(secs) 

No. 
of 
inst.s 
found 
by 
GA 

Time 
taken 
by GA 
(secs) 

Pop 
Size 

No. of 
iterations

Sample2sub Sample2 3 0.00 3 0.00 12 54 

Sample2sub Sample3 22 0.00 21 0.98 88 2904 

Sample2sub  Sample5 23 0.00 23 0.99 88 2904 

Sample2sub Sample6 10 0.00 10 0.04 36 486 
 

Sample2sub Sample7 10 0.00 10 0.03 36 486 

Sample2sub Sample8 10 0.00 9 0.03 36 486 

Sample2sub Sample9 10 0.00 9 0.04 36 486 

Sample2sub Sample10 11 0.00 11 0.07 44 726 

ttt_notwin_sub ttt_notwin 343 0.01 336 927.18 2988 2833 

ttt_win_sub ttt_win 563 0.01 536 5515.66 5634 4740 
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Figure 12: Plot of runtime of sgiso vs. runtime of the genetic algorithm with the  

size of the population and the number of iterations given manually. 
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Figure 13: Plot of runtime of sgiso vs. runtime of the genetic algorithm with the 

size of the population  calculated dynamically. 
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Figure 14: Plot of runtime of sgiso vs. runtime of the genetic algorithm with the 
size of the population and the number of iterations calculated dynamically. 
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Figure 15: Plot of the number of instances found by sgiso vs. the number of 

instances found by the genetic algorithm with the size of the population and the 
number of instances calculated dynamically. 
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3.7 Conclusions 

The genetic algorithm can be successfully used to perform subgraph 

isomorphism detection in order to determine if a given smaller graph is a subgraph of a 

larger graph. This approach is an alternative to generating all of the instances of the 

smaller graph in the larger graph. However the genetic algorithm is an approximative 

approach. We may not perfectly emulate the results of the exhaustive approach owing to 

the stochastic nature of the genetic algorithm. 

The drawback of using a genetic algorithm to find all instances of a subgraph in 

a main graph is that since we do not know the number of instances beforehand, we 

cannot stop the algorithm even though all the instances may have been found and run 

the algorithm for a fixed number of iterations. Hence the time taken is high. Any other 

stop condition like the variance of the fitness of the population does not guarantee an 

optimal solution. On the other hand function sgiso, knows when all of the instances are 

found and stops after all of the instances have been found. 

 A genetic algorithm is an approximative technique and using it for an 

optimization problem would make it time consuming. Hence, usage of a genetic 

algorithm to find all instances of a predefined substructure in SUBDUE is not a good 

idea. 

Genetic Algorithms give approximate solutions to difficult-to-solve problems. 

The main disadvantage of using Gas is that they are relatively slow, being very 

computationally intensive compared to other methods such as random search. As a 

general rule of thumb, genetic algorithms might be useful in problem domains that have 
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a complex fitness landscape as recombination is defined to move the population away 

from local minima in which a traditional hill climbing algorithm might get stuck. 

3.8 Future Work 

There are many factors that affect the performance of a genetic algorithm, such 

as the choice of fitness function. A good fitness function should be able to guide the 

search to more prominent regions in the search space. Our fitness function could be 

improved so that the GA performs better and the goal is reached more quickly.  

Determining the size of the initial population is a major factor that affects the 

performance of the algorithm and there is no straightforward method to find an optimal 

size of the initial population. The best choice for the size of the initial population 

depends on the size of the graph. If the population size is too small, the algorithm does 

not find all of the instances of the subgraph in the main graph. On the other hand if the 

population size is too big, the run time taken is very high. However, the size of the 

population should be significant to find all the instances. Hence, deciding upon an 

optimal size of the initial population determines the success of the genetic algorithm. 

The population size used in our algorithm seems to be a good one though not 

necessarily an optimal one. 

One more factor that affects the genetic algorithm is the choice of the number of 

generations to execute, which depends on the size of the input graphs and the size of the 

population. Hence, coming up with reasonable size for the initial population, number of 

iterations and a good fitness function may improve the results. 
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CHAPTER 4 

CANONICAL LABELING 

In this chapter, canonical labeling has been considered as an alternative 

technique for graph match. We give an overview of the nauty package, which has been 

adapted to perform canonical labeling in SUBDUE. Canonical labels have been 

assigned to the substructures and thereby the number of calls to the graphMatch routine 

has been reduced. 

4.1 Introduction 

Canonical labeling is an alternative technique to the graph match routine that 

assigns a unique code, or string, to each graph. Two graphs that are isomorphic have the 

same canonical labels. The graph match problem thereby reduces to matching the 

canonical labels. Hence, when a number of graph matches need to be performed among 

the same set of graphs, using canonical labels reduces the number of calls to the 

computationally expensive graph match routine and replaces them with polynomial-

time string matches. Hence this technique has been considered to reduce the 

computational complexity of SUBDUE and thereby increase its scalability. 

4.2 Definition of a canonical label 

A canonical label is a unique code given to a graph that is invariant on the order 

of edges and vertices in the graph [20, 21]. Two graphs having the same canonical 

representation are isomorphic and vice versa.  
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4.3 Methods of canonical labeling 

A simple way of finding a canonical label is by finding the lexicographically 

largest or smallest string obtained by concatenating the rows or columns in an 

adjacency matrix over all possible symmetric permutations of the adjacency matrix. 

This method is illustrated in Figure 16 that shows a graph G and the permutation of its 

adjacency matrix that leads to its canonical label �aaazyx� (taking the largest possible 

string as the canonical label). Any other permutation of G�s adjacency matrix will lead 

to a code that is lexicographically smaller than �aaazyx�. The codes �aaazyx� and 

�aaazxy� are obtained by concatenating the columns in the upper triangular matrix 

prefixed by the vertex labels in the order they appear in the adjacency matrix. For a 

directed graph, however the entire columns should be concatenated. The time 

complexity of generating a canonical label using this method is O(|V|!), where |V| is the 

number of vertices in the graph [26]. 

 

 

 
 
 
 
 
 
 
 
 
 
 

Figure 16:  Example illustrating the calculation of the canonical label of a graph. 
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Liu and Klein have proposed a O(N3) canonical labeling algorithm [27]. The 

algorithm is based on the computation of the Eigen values of the graph adjacency 

matrix and is applicable to all types of graphs. However the proposed algorithm is not 

guaranteed to succeed especially for highly symmetric graphs (i.e. the canonical label 

assigned to the graph is not the appropriate one). The reason for this is computation of 

eigen values and eigen vectors is not sufficient for automorphism partitioning and hence 

computing a canonical label [28]. 

An algorithm for automorphism partitioning is proposed by Fortin [29] where 

vertices are partitioned according to their subspanning trees. The algorithm is efficient 

since the problem of automorphism partitioning is reduced to a tree isomorphism 

problem. However, this method succeeds in most instances but fails in specific cases 

[35]. 

The general characteristics of these methods is the use of vertex invariants to 

perform an initial vertex partitioning into equivalence classes, partitioning them into 

sets of vertices such that two vertices in different sets cannot possibly be mistaken for 

each other. Vertex invariants are some attributes or properties assigned to a vertex 

which do not change across isomorphism mappings. All vertices in each equivalence 

class must share the same value of some invariant that is independent of labeling. 

Possibilities for vertex invariants include: 

• Vertex degree � The simplest way to partition vertices is based on their 

degree, the number of edges incident on the vertex. Clearly, two vertices 
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of different degree cannot be identical. This simple partition can often be 

a big win, but it will not do much for regular graphs, where each vertex 

has the same degree. 

• Shortest path matrix � For each vertex v, the all-pairs shortest path 

matrix defines a multiset of n-1 distances representing the distances 

between v and each of the other vertices. Any two vertices that are 

identical in isomorphic graphs will define the exact same multiset of 

distances, so we can partition the vertices into equivalence classes 

defining identical distance multisets. 

• Counting length-k paths � Taking the adjacency matrix of G and raising 

it to the kth power gives a matrix where Gk[i,j] counts the number of 

paths from i to j. For each vertex and each k, this matrix defines a 

multiset of path-counts, which can be used for partitioning as with 

distances above. We could try all 1≤k≤n or beyond and use any single 

deviation as an excuse to partition. 

Using these invariants, it should be possible to partition the vertices of each 

graph into a large number of small equivalence classes. Because vertex invariants 

remain the same irrespective of the ordering of vertices and the edges, we can create the 

same partitions no matter how the vertices are ordered. Now the canonical label is 

generated by maximizing (or minimizing) over those permutations that keep the vertices 

in each partition together instead of maximizing (or minimizing) over all the 

permutations of the vertices. If the sizes of the equivalence classes of both graphs are 
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not identical, then the graphs cannot be isomorphic. It is harder to detect isomorphisms 

between graphs with high degrees of symmetry than it is for arbitrary graphs, because 

of the effectiveness of these equivalence-class partitioning heuristics. We may not have 

fine-grain partitioning of the vertices for symmetric graphs. 

Nonetheless, since all vertices may have the same invariant, the upper bound of 

the time complexity for the exhaustive labeling generation scales exponentially with the 

number of vertices. While vertices with different invariants belong to different 

equivalent classes, the reverse is not necessarily true. 

The complexity of finding a canonical label can be reduced by using various 

heuristics to narrow down the search space or by using alternate canonical labeling 

definitions that take advantage of special properties that may exist in a particular set of 

graphs [20, 21, and 29]. For example polynomial-time algorithms can be written to find 

the canonical labeling of chemical compounds [30].  

4.4 nauty  

nauty (no automorphism, yes?) is a set of very efficient C language procedures 

for determining the automorphism group of a vertex-colored graph developed by 

Brendan McKay [20, 21]. It is also able to produce a canonically-labeled isomorphism 

of a graph to assist in isomorphism testing. It is considered to be the fastest 

isomorphism detector in the world [31]. It is free for educational and research 

applications. The code may be obtained from http://cs.anu.edu.au/~bdm/nauty/.  

Two graphs G and H are said to be identical (written G = H) if V(G) = V(H), 

E(G) =E (H) and ψG = ψH. Two graphs G and  H are said to be isomorphic (written G ≅  
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H) if there are bijections   θ : V(G) →  V(H) and φ : E(G) →   E(H) such that ψG (e) = uv 

if and only if ψH(φ (e) ) = θ(u) θ(v); such a pair(θ, φ ) of mappings is called an 

isomorphism between G and H. An automorphism of a graph is an isomorphism of the 

graph onto itself. 

Let V be the vertex set of a graph with n vertices, γ a permutation of V, and  v ∈  

V, then vγ  is the image of v under γ, and Gγ is the graph in which vertices xγ and yγ are 

adjacent if and only if x and y are adjacent in G. An automorphism of a simple graph G 

can be regarded as a permutation of V that preserves adjacency. The automorphism 

group of a graph denoted Aut (G) is the set of all permutations γ ∈  Sn (where Sn is the 

set of all permutations of n elements) such that Gγ = G. 

Given a graph G with n vertices, a canonical label is a map C, such that C(G) ≅  

G, and C(Gδ ) = C(G) for all permutations δ ∈  Sn. 

The vertex classification using vertex invariants is the basis of McKay�s 

canonical labeling algorithm, which canonically colors an input graph and finds its 

automorphism group to compute its canonical form. However, in addition to vertex 

classification, this algorithm extensively utilizes the information of discovered 

automorphisms and hashes partial information of vertex labeling to keep search space 

from becoming impractically large.  McKay�s algorithm is based on a depth-first search 

through a tree whose nodes are stable vertex colorings. At each stage, a vertex is chosen 

and separated as a singleton color class by assigning a new color. 

 

 



 

 

 

45

4.5 Making use of nauty in SUBDUE 

In SUBDUE, a graph match is performed to see if a discovered substructure is 

already on a list of discovered substructures and to check if an instance is isomorphic to 

a substructure so that the instance can be added to the list of the substructure�s 

instances. There are three routines where the routine graphMatch is called. They are 

SubListInsert, MemberOfSubList and NewEdgeMatch.  

SubListInsert takes a substructure and a list of substructures as arguments and 

inserts the substructure into the list of substructures if the substructure is not already 

present in the list. To find out whether the substructure is present in the list or not, it 

performs a graphMatch between the substructure and all the substructures in the list. 

 MemberOfSubList takes a substructure and a list of substructures as arguments 

and returns True or False depending on the presence or absence of the substructure in 

the list.  

NewEdgeMatch takes two instances of a substructure as arguments and finds out 

if the two instances are isomorphic. It performs graphMatch as a last resort to detect if 

the two instances are isomorphic.  

Here we consider a canonical labeling approach to graph match. nauty has been 

used in SUBDUE to assign a canonical label to the substructures and the graphs and 

thus perform graph match by comparing the canonical labels. nauty does not consider 

edge labels. Because of this reason FSG has not used nauty inspite of nauty being the 

fastest isomorphism detector. They have developed their own canonical labeling 

technique. Our research has used nauty by converting the edges into vertices thereby 
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overcoming the limiting factor of nauty. However using this approach, the size of the 

graph increases and hence the time taken to calculate the canonical label may increase. 

This has been observed by creating few synthetic graphs with  

Two methods of integrating canonical labels into SUBDUE using nauty have 

been considered. We describe these methods here. 

Method 1:  There are three data structures in SUBDUE that employ a graph 

representation. They are the input graph, substructure definitions and 

substructure instances. Canonical labeling has been assigned only to the 

substructures. The idea behind this is that graph match is being performed more 

than once only on a substructure to check if it is already present on the list. 

Hence the canonical labels are utilized completely in the case of substructures. 

The canonical labels have been used for graph match in two routines, namely,  

SubListInsert and MemberOfSubList. 

SubListInsert: This routine inserts a substructure into a list of substructures if 

the substructure is not already there. To perform this operation the substructure 

is matched with every other substructure on the list. So by using canonical 

labels, the canonical labels of the substructures are compared instead of calling 

the graphMatch routine. A check is performed to see if both substructures have 

canonical labels assigned to them. If yes, then they are compared. If the labels 

match, then the substructures are possibly isomorphic. The time complexity of 

comparing the canonical labels is O(n) where n is the number of vertices in the 

graph. Then a check is performed to see that both the graphs have same number 
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of vertices and edges. If yes, then the vertex labels of both the graphs are 

compared and if they too match, then the graphs are isomorphic. If either the 

canonical labels, the vertex labels or the number of vertices and edges do not 

match, then the substructures are not isomorphic. On the other hand if either of 

the substructures does not have a canonical label assigned to it, the graphMatch 

routine is called to perform graph isomorphism detection. 

MemberOfSubList: This routine checks if the substructure�s definition 

matches exactly with a substructure on the list. Using canonical labels, an 

operation similar to that performed in SubListInsert is performed here. 

Method 2: nauty has been used to perform graph match instead of the 

graphMatch routine available in SUBDUE. Here canonical labels are assigned to 

both substructures and also graphs (that are created in the process). Whenever 

the graphMatch routine is called with graphs g1 and g2, a check is performed to 

see if g1 and g2 have been assigned a canonical label. If either of them has not 

been assigned one, then nauty is called to create a label for the graph and then 

the labels are compared to perform graph match. 

 Figure 17 illustrates the method of converting a graph g1 into graph g2 

by converting the edges into vertices. Each edge in graph g1 has been converted 

into a vertex with the same label as that of the edge. 

4
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Figure 17: Example showing the conversion of edges into vertices. 

With nauty, when two graphs are compared for isomorphism, we can 

give an initial partitioning of the vertices so that we can group all vertices with 

same label into one cell, thereby informing nauty that all these vertices have 

same label (there is no way of giving the vertex label information to nauty). For 

example, for the graph g2 in Figure 17, an initial partitioning of the vertices is 

{4|5|6|7|0, 2|1, 3}. This is to say that vertices 0 and 2 have the same label (A), 

vertices 1 and 3 have the same label (B) and so on.  

The order of the cells in the partition is important in the sense that the 

same order must be maintained for all the graphs. The example shown in Figure 

18 illustrates the way the order of the cells should appear in the vertex partitions 

of both the graphs which are tested for isomorphism. 
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Figure 18: Giving initial vertex partitions to nauty. 

For Graph g1, if the vertex partitioning is given as {0,2|3,4|1} i.e. the cell 

with vertices labeled A is followed by the cell with vertices labeled C and finally 

the cell with vertices labeled B, then the vertex partitioning of Graph g2 also 

must follow the same order. In this case, this means that the vertex partitioning 

of Graph g2 should be {0|1,2|4,3}. 

4.6 Graph match in SUBDUE 

Algorithm graphMatch is a utility provided in SUBDUE to perform a graph 

match. The function computes the minimum-cost transformation of g1 into an 

isomorphism of graph g2 (also known as computing the graph edit distance), but any 

match cost exceeding the given threshold is not considered. This algorithm returns true 

if the cost of transformation is less than the given threshold, otherwise it returns false.  
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4.7 Experimental Results 

Table 4 shows the comparison of the runtime and the number of calls to 

graphMatch with and without using canonical labeling (as per method 1 discussed in 

section 4.5). Canonical labeling has been used only for the substructures and not their 

instances. By doing so, the number of calls to graphMatch from SubListInsert and 

MemberOfSubList can be reduced.  

We conducted experiments using both real and synthetic datasets. The graphs 

sample3.graph through sample10.graph were generated using the synthetic graph 

generator, syngen. All the remaining graphs have been obtained from the UCI 

repository. The description of the graphs sample3.graph through sample10.graph, 

ttt_win and ttt_notwin can be found in section 3.5. 

All the remaining graphs range from 1250 vertices, 1200 edges to 154812 

vertices and 215587 edges. Graph chorales_bach and chorales_beethoven are single-line 

melodies of chorales. vote_d, vote_r, diabetes_0, diabetes_1, credit_1 and credit_2 are 

collections of disconnected subgraphs, where each subgraph has a vertex connected to 

other vertices in the form of a star. The chess_legal and chess_illegal graphs represent 

different chess board configurations in graph format. 

As can be seen from table 4, the number of calls to graph match has been 

reduced when canonical labeling is used. However there is not a significant reduction in 

the runtime because the time saved in graphMatch is undone by the time spent in 

creating the canonical labels. The table also shows the time taken by SUBDUE with and 

without using nauty.  
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 As can be seen from the table below, there is a reduction in the runtime for 

some inputs and there is an increase in the runtime for some others. The reason for this 

type of behavior is that a significant amount of time has been taken for creating the 

canonical labels. If these generated labels are not used many times, then the time saved 

in graphMatch is undone by the time taken to initially create the canonical labels. 

Table 5 shows the comparison of the runtime taken by SUBDUE with and 

without using nauty to perform graphMatch (as per method 2 discussed in section 4.5). 

That is the graphMatch routine provided in SUBDUE has been replaced by a call to 

nauty to perform the graph match, just to observe the behavior of SUBDUE. As can be 

seen from the table below, the time taken when nauty is used is greater than the time 

taken when it is not used.  

Figures 19 through 22 show the plots of the results shown in tables 4 and 5. The 

graphs are shown along the x-axis and the runtime or number of calls to graphMatch is 

shown along the y-axis. The labels cba, cbe, d0, d1, tnw, tw, vd, vr correspond to 

chorales_bach, chorales_beethoven, diabetes_0, diabetes_1, ttt_notwin, ttt_win, vote_d, 

vote_r respectively. 
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Table 4: Comparison of runtime of SUBDUE with and without using canonical labels 
to perform graphMatch for the substructures. 

 
Graph No. of calls 

to 
graphMatch 
without 
using nauty 

No. of calls 
to 
graphMatch 
using nauty 
(seconds) 

Time 
Taken 
Without 
using nauty 
(seconds) 

Time Taken 
using nauty 
(seconds) 

chess_illegal 72307782 67264157 16581.23 16513.23 

chess_legal 33477481 31408046 3442.91 3435.14 

chorales_bach 147097 141329 1.35 1.37 

chorales_beethoven 100550 84402 1.01 0.98 

credit_1 13915620 13830781 299.19 297.13 

credit_2 5563057 5480263 58.34 57.68 

diabetes_0 584691 580442 5.51 5.3 

diabetes_1 317584 313118 2.3 2.27 

ttt_notwin 593140 546937 7.94 7.20 

ttt_win 1008916 956839 19.66 19.48 

vote_d 2230530 2208469 25.92 25.67 

vote_r 1639956 1619200 17.51 17.25 

Sample10.graph 6697 4717 0.08 0.04 

Sample9.graph 11449 7625 0.11 0.08 

Sample8.graph 9802 6711 0.07 0.06 

Sample7.graph 9057 6270 0.08 0.08 

Sample6.graph 10679 7387 0.12 0.08 

Sample5.graph 22460 16863 0.21 0.17 

Sample3.graph 23442 17355 0.34 0.27 
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Table 5: Comparison of runtime of SUBDUE with and without using nauty to perform 
graphMatch. 

 
Graph No. of calls to 

graphMatch 
without using 
nauty 

No. of calls to 
graphMatch 
using nauty 
 

Time Taken 
Without using 
nauty 
(seconds) 

Time 
Taken 
using nauty 
(seconds) 

chess_illegal 72307782 67128945 16481.23 19835.23 
chess_legal 33477481 31394393 3442.91 5747.03 
chorales_bach 147097 141329 1.35 1.74 
chorales_beethoven 100550 84402 1.01 1.08 
credit_1 13915620 13830781 299.19 535.77 
credit_2 5563057 5480263 58.34 118.39 
diabetes_0 584691 580442 5.51 8.99 
diabetes_1 317584 313118 2.3 3.22 
ttt_notwin 593140 560449 7.94 12.58 
ttt_win 1008916 950237 19.66 33.37 
vote_d 2230530 2208469 25.92 45.97 
vote_r 1639956 1619200 17.51 29.39 
Sample10.graph 6697 4718 0.08 0.06 
Sample9.graph 11449 7625 0.11 0.08 
Sample8.graph 9802 6710 0.07 0.07 
Sample7.graph 9057 6270 0.08 0.06 
Sample6.graph 10679 7384 0.12 0.09 
Sample5.graph 22460 16863 0.21 0.18 
Sample3.graph 23442 17352 0.34 0.22 
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Figure19: Plot of runtime of SUBDUE with and without using canonical labels to 
perform graphMatch for the substructures. 
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Figure 20: Plot of the number of calls to graphMatch with and without using 

canonical labels to perform graph Match for the substructures. 
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Figure 21: Plot of runtime of SUBDUE with and without using nauty to perform 
graphMatch. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 22: Plot of the number of calls to graphMatch with and without using nauty to 
perform graphMatch. 
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4.8 Conclusions 

The idea of using canonical labeling as an alternative to graphMatch is more 

useful when graphMatch is performed among same set of graphs for a number of times. 

The experimental results show that there has not been a significant reduction in the 

runtime of SUBDUE when canonical labeling is used. The reasons for this type of 

behavior is there has not been a great reduction in the number of calls to graphMatch 

when canonical labeling is used, hence the time saved in graphMatch has been undone 

by the time taken to create canonical labels. There has been the highest reduction in the 

number of calls to graphMatch for chess_illegal with the reduction being 8%. For all the 

other graphs the reduction is less than 8%. 

Also a lot of time is being spent to convert the graph representation in SUBDUE 

to be compatible with nauty (i.e., converting edges into vertices and giving an initial 

partitioning of the vertices of the graphs). 

Even if nauty is considered to be the fastest graph isomorphism algorithm 

available, it has been shown that there are categories of graphs for which it employs 

exponential time in order to find an isomorphism [32]. 

However some studies suggest that canonical labeling and graph isomorphism 

detection are not equivalent and canonical labeling is harder than isomorphism [33]. 

As can be seen from the experimental results, the idea of using canonical 

labeling for SUBDUE does not seem appropriate. If a different canonical labeling 

algorithm is used, then the time taken for preprocessing is reduced and hence the 

computation time taken would probably be reduced. But still there would not be a 
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significant reduction owing to the fact that there has not been a great reduction in the 

number of calls to graphMatch when canonical labeling is used. 

4.9 Future Work 

One of the main reasons for the increase in the runtime is the time saved by 

reducing the number of calls to graphMatch has been undone by the time taken to 

initially create canonical labels. Other factors that contribute to the runtime are the time 

taken for preprocessing to make the graphs used in SUBDUE compatible with nauty 

and time taken to initially partition the vertices. The increase in the graph size by 

converting the edges into vertices increases the runtime. This has been validated by 

running experiments on the synthetic graphs created with one single edge label.  

Hence if a canonical labeling algorithm can be devised that takes less time than 

nauty, then it would be a good option to try for SUBDUE.  
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CHAPTER 5 

REDUCING THE NUMBER OF CALLS TO GRAPHMATCH 

In this chapter, we provide the analysis of an approach proposed by Potts that 

reduces the number of calls to the graphMatch routine in SUBDUE. 

5.1 Introduction 

Graph match is computationally the most expensive routine in a graph-based 

data mining system. Hence, the computational complexity of a graph-based data mining 

system can be reduced by reducing the number of calls to graph match. Here we 

describe and analyze this alternative mechanism for scaling SUBDUE. The original 

algorithm enhancement has been designed by Potts [34]. Here we provide the analysis 

and assessment of its features in comparison with the improvement we have described 

for the graph match algorithm. 

5.2 Graph match in SUBDUE 

As discussed in the algorithm for SUBDUE in section 2.2, SUBDUE discovers 

substructures that best compress the input graph by growing the instances of the best 

substructures discovered. The process begins by discovering all instances of a single 

vertex and proceeds in a level-by-level fashion until the best substructure is found. 

SUBDUE discovers substructures by growing them level-by-level by one edge or an 

edge and a vertex in every level. This process of growing a substructure by an edge or 

an edge and a vertex is done by taking the instances of the substructure and extending 
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each one of the instances in all possible ways. The procedure Extend illustrates this 

process. 

Procedure Extend (Substructure Sub) 

1. newInstanceList = ExtendInstances (sub → instances); 
2. Take an instance from newInstanceList, create a substructure from this 

instance and check if it is already present in the list of extendedSubs (call 
MemberOfSubList which performs a graphMatch between this substructure 
and all the substructures present in the list of extendedSubs) 

If no, then add this substructure to extendedSubs and add instances of 
this substructure to it, using AddPosInstancesToSub and 
AddNegInstancesToSub, both of which perform graphMatch using a 
call to NewEdgeMatch. 

3. Repeat step 2 for all the instances in newInstanceList. 
4. Return extendedSubs. 
 

Procedure ExtendInstances (instanceList) 

1. Take the first instance, instance from instanceList. 
2. Extend instance in all possible ways by one edge and an already present 

vertex or one edge and one vertex and insert the extended instances into 
newInstanceList. 

3. Repeat the above 2 steps for all instances in instanceList. 
4. Return newInstanceList. 
 

The above procedure does not take any advantage from the fact that all the 

instances of a substructure are isomorphic to each other and hence if they are extended 

in the same way, the resulting extended instances will be isomorphic and need not be 

compared by a graphMatch operation. 
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5.3 Reducing the number of calls to graphMatch (EE-SUBDUE) 

The following are the observed features of SUBDUE that aid in reducing the 

number of calls to graphMatch. The instances of a substructure are always isomorphic 

to each other. As a result, if they are extended by the same edge, in the same direction, 

they are still isomorphic. Hence they need not be compared using graph match; instead 

a simple test can be performed on the last extension to decide if they are isomorphic. 

The current version of SUBDUE extends an instance in all possible ways by one 

edge or one edge and one vertex and then performs an isomorphism test to see if an 

instance is isomorphic to a substructure. In the efficiency enhanced version of 

SUBDUE, all the instances of a substructure are extended at the same time by one edge 

or one edge and one vertex and hence they need not be compared for isomorphism. In 

this way the number of calls to graph isomorphism is reduced and hence the total 

runtime for SUBDUE is reduced. 

The following are the revised functions corresponding to the Extend and 

ExtendInstances functions in the original version of SUBDUE. 

Procedure NewExtend (Substructure Sub) 

1. newInstance = ExtendInstanceByEdgeOrVertex (sub → instance); 
2. Take the instance newInstance, create a substructure, newSub from this 
instance, if there is not already a substructure with this definition. 
3. Add newInstance as an instance to newSub. 
4.  Repeat steps 2, 3 for all the instances of Sub. 
 

Procedure ExtendInstanceByEdgeOrVertex extends the given instance by the 

given edge and vertex and returns the extended instance. 
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As seen from our function NewExtend, graphMatch is not being performed to 

check if a substructure is already present in the list of extendedSubs. In other words 

there are no calls to MemberOfSubList, which does a graphMatch to find if the 

substructure is already present in the list of extendedSubs. This method is taking 

advantage of the fact that all the instances of a substructure are isomorphic and hence 

they need not be tested for isomorphism by calling graphMatch but instead can be tested 

by comparing the last extension.  

In addition, there are no calls to AddPosInstancesToSub and 

AddNegInstancesToSub, both of which make a call to NewEdgeMatch that performs 

graphMatch. Hence there is a reduction in number of calls to graphMatch here also. 

On the whole, no calls are made to MemberOfSubList, AddPosInstancesToSub 

and AddNegInstancesToSub and in turn there are no calls to graphMatch from these 

routines. As a result the number of calls to graphMatch is drastically reduced and hence 

the runtime is improved. 

5.4 Experimental Results 

Table 6 shows the comparison of the original SUBDUE code (version 5.1.2) and 

the efficiency enhanced version of SUBDUE (which we will refer to as EE-SUBDUE). 

The experiments are conducted with the following parameter values. MDL is used as 

the substructure evaluation method. The value of threshold is 0, so exact graph match is 

being performed. SUBDUE�s beam width is set to 4.  
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Table 6 shows the number of calls to graphMatch and the time taken by the two 

versions. As can be seen from the table, there has been a significant reduction in the 

number of calls to the graphMatch routine. 

Figures 23 and 24 show the plot of the results shown in table 6. The graphs are 

shown along the x-axis and the runtime or number of calls to graphMatch is shown 

along the y-axis. The labels cba, cbe, d0 ,d1, tnw, tw, vd and vr correspond to 

chorales_bach, chorales_beethoven, diabetes_0, diabetes_1, ttt_notwin, ttt_win, vote_d 

and vote_r respectively. 

The reduction in the number of calls to graphMatch is a lot more than the 

reduction obtained by making use of the canonical labeling technique. The reason for 

this is when canonical labeling is used, there is a reduction in the calls to graphMatch 

from the two routines SubListInsert and MemberOfSubList. But a maximum number of 

calls to the graphMatch routine are made from the routine NewEdgeMatch. With the 

approach proposed in EE-SUBDUE, there are no calls to the graphMatch routine from 

NewEdgeMatch. 
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Table 6: Comparison of runtime of SUBDUE-5.1.2 and EE-SUBDUE. 

Graph No. of calls to 
graphMatch 
in SUBDUE  

No. of calls to 
graphMatch in  
EE-SUBDUE 

Time taken 
by 
SUBDUE  
(seconds) 

Time taken 
by  
EE-SUBDUE 
(seconds) 

chess_illegal 72307782 789 16481.23 588 

chess_legal 33477481 836 3442.91 230 

Chorales_bach 147097 1075 2.44 1.00 

Chorales_beethoven 100550 1634 1.89 1.00 

ttt_notwin 587676 586 7.33 2.00 

ttt_win 1009523 684 17.82 4.00 

vote_d 2230530 669 41.34 5.00 

vote_r 1639956 764 32.16 3.00 

diabetes_0 584691 418 5.51 1.00 

diabetes_1 317584 372 2.25 0.00 

credit_1 13915620 3107 299.19 49 

credit_2 5563057 3079 58.34 14 

Sample10.graph 6697 465 0.08 0.0 

Sample9.graph 11449 527 0.11 0.0 

Sample8.graph 9802 411 0.07 0.0 

Sample7.graph 9057 465 0.08 0.0 

Sample6.graph 10679 476 0.12 0.0 

Sample5.graph 22460 742 0.21 0.0 

Sample3.graph 23442 1176 0.34 0.0 
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Figure 23: Plot of runtime of SUBDUE Vs. runtime of EE-SUBDUE. 
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Figure 24: Plot of the number of calls to graphMatch in SUBDUE vs. the number of 

calls to graphMatch in EE-SUBDUE. 
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5.5 Conclusions 

As seen from the experimental results, a significant reduction in the 

runtime has been obtained by reducing the number of calls to graphMatch. The 

experiments showed that there were no calls to graphMatch from 

MemberOfSubList and AddPostInstancesToSub and AddNegInstancesToSub. All 

calls to graphMatch are from SubListInsert. 

5.6 Future Work 

The above approach works for only exact graph match i.e. only if the 

threshold is 0.0. An approach that works for inexact graph match should be 

considered. 
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CHAPTER 6 

CONCLUSIONS AND FUTURE WORK 

6.1 Conclusions 

In this thesis, we have looked at methods to increase the scalability of graph-

based data mining systems. Methods such as approximation techniques using genetic 

algorithms and alternative techniques like canonical labeling are discussed. An overview 

of an approach proposed by Potts that reduces the number of calls to graphMatch has 

been given. All of these techniques have been implemented and analyzed on a variety of 

databases. 

The use of a genetic algorithm for subgraph isomorphism detection suffers from 

the fact that there is no appropriate stop condition for the algorithm. This is due to the 

fact that the number of instances of a subgraph in the main graph is not known before 

hand and the algorithm in turn has to run for a fixed number of generations, which 

increases the runtime of the algorithm. 

On the other hand, the canonical labeling technique for graph isomorphism 

detection suffers when the time saved by reducing the number of calls to graphMatch is 

undone by the time taken to create the canonical labels. As a result the canonical 

labeling approach is useful when graphMatch is being performed among the same set of 

graphs multiple times. 
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Of the three approaches we analyze, the approach that reduces the number of 

calls to graphMatch is the most successful. While all of the techniques offer some 

benefit for graph-based data mining, reducing the need for graph isomorphism and 

subgraph isomorphism tests, appears to be the most effective scaling mechanism. 

6.2 Future Work 

Our reasons for investigating approximation algorithms for subgraph 

isomorphism and graph isomorphism are twofold. First, the runtime cost of these 

algorithms is intractable, making application of data mining algorithms to graph data 

impractical. Second, approximation approaches have been suggested in the literature, 

thus we sought to determine if they would benefit a complex discovery algorithm such 

as SUBDUE. 

Our research results indicate that while approximation algorithms do improve 

the runtime of isomorphism tests, their benefits are limited. There are many directions 

for future research that could further improve these results. First, the genetic algorithm 

may be modified by changing the fitness function. In addition the size of the population 

and the number of generations may be parameterized. A new canonical labeling 

algorithm may be considered that takes less time to calculate the canonical labels. A 

canonical labeling algorithm may be developed for SUBDUE as was done for FSG. 

Other techniques that increase the scalability of the graph-mining algorithms by pruning 

the search space should be considered. Our research has looked at techniques to 

improve the scalability of graph-based data mining systems by reducing the time-

complexity of the graph and subgraph detection algorithms or by reducing the number 
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of calls made to these algorithms. Future work may be focused on other techniques to 

improve the scalability such as pruning the search space. 
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