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ABSTRACT 

 

CRASHWORTHINESS DESIGN OPTIMIZATION USING 

SURROGATE MODELS 

 

Publication No. ______ 

 

Cheng-Ho Tho, PhD. 

 

The University of Texas at Arlington, 2006 

 

Supervising Professor:  Bo Ping Wang 

Despite the advances in computer technology, the enormous computational cost 

associated with the large-scale and complex nonlinear crashworthiness simulations 

renders it to be impractical to rely exclusively on computer simulations for 

crashworthiness design optimization.  A preferable strategy is to employ the 

computational efficient surrogate model in lieu of the expensive simulations to facilitate 

the optimization process and design concept exploration.  An added advantage of the 

surrogate models is that they tends to eliminate the high-frequency numerical noise 

which may hinder the performance of the direct gradient-based optimization technique 

by constructing smooth crash responses in the crashworthiness analysis.  
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Even thought the Design of Experiments with Response Surface Methodology 

technique has shown to be a promising way for crashworthiness design optimization 

over the years, it is still hampered by large number of function evaluations for large 

number of design variables or low numerical accuracy for small sample sizes.  In this 

dissertation, we propose and develop an effective methodology based upon the 

sequential regularized multiquadric with output space mapping to reduce the 

computational cost.  The proposed method overcomes the ill-conditioning of the 

coefficient matrix in the generalized multiquadric function for duplicate data when 

approaching to the optimal design.  Unlike the traditional DOE/RSM methodology, the 

sampling point is added sequentially and thus becomes more manageable to deal with 

problems involving large number of design variables.  Several numerical examples are 

employed to demonstrate the effectiveness and robustness of the methodology, 

including a large-scale full vehicle frontal impact problem and a helicopter skid landing 

gear hard landing problem.  It is shown that the proposed SRMQ/OSM method reduces 

the computational cost by 50~70% as compared to the traditional DOE/RSM based 

methodology or direct gradient-based optimization technique. 

In addition, this dissertation investigates and implements the Implicit Space 

Mapping optimization algorithm for solving the nonlinear crashworthiness design 

optimization problems. 
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CHAPTER 1 

INTRODUCTION 

 

Nowadays, the manufacturing industry is continuously challenged by new ways 

of managing the design process yielding reduction in design cycle time, cost saving and 

product quality improvement.  With the advances of computer technology, computer 

simulations for solving the highly nonlinear, transient-dynamic crashworthiness 

analysis have greatly been enhanced over the past decades.  While the physical crash 

tests are extremely expensive, engineers, more than ever, are driven by using computer 

simulations to assist them in crashworthiness design and analysis to ultimately achieve 

the goal of ‘certification by analysis only’. 

Computer simulations play a vital role particularly in the early preliminary 

design stage when several design concepts need to be evaluated.  Traditional ways of 

using trial-and-error method and engineering experience have resulted in long design 

cycle time, high engineering cost and high risk of design turn back.  Numerical design 

optimization offers a systematic way of assisting engineers in achieving a compromised, 

improved design in a shorter design cycle time.  Over the years, there has been 

tremendous growing interest in developing strategies and methodologies for 

crashworthiness design optimization.  Crashworthiness design optimization of large-

scale systems, perhaps among the most challenging optimization problems, possesses 
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several inherent factors such as extremely long simulation time, noisy behavior, and 

unavailability of sensitivity analysis etc.   

In recent years, the surrogate model based crashworthiness design optimization 

using the Design of Experiments (DOE) along with response surface methodology 

(RSM) has shown to be a promising method.  The use of surrogate models or 

metamodeling has lead to new areas of research in simulation-based design 

optimization.  Surrogate model based approaches have advantages over the traditional 

direct gradient-based optimization technique especially when dealing with the noisy 

responses and/or high computational cost characteristics of many computer simulations.  

However, the DOE/RSM method is still hampered by large number of function 

evaluations for large number of design variables or low accuracy for small sample size. 

1.1 Objective and Motivation 

There are two main thrusts in this dissertation.  

1.  Develop effective and robust surrogate model based optimization algorithms or 

framework for solving computational expensive simulation based optimization 

problems – using limited computational demands. 

2.  Implement and apply the developed algorithms to solve nonlinear crashworthiness 

design optimization problems for enhanced impact performance. 

Even though the focus of this dissertation is on the crashworthiness design 

optimization problems, it is noted that the developed algorithms may be applied to 

tackle with other applications involving extensive simulation time such as the metal 

forming in the manufacturing process, drop impact of the electronic devices etc. 
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1.2 Literature Review of Crashworthiness Optimization 

The literature for crashworthiness optimization is reviewed in this section.  We 

broadly divide the crashworthiness optimization methods into the following three major 

categories: 

1.  Gradient-based crashworthiness optimization 

2.  Design of experiment and response surface based crashworthiness optimization 

3.  Successive or sequential crashworthiness optimization 

1.2.1 Gradient-Based Crashworthiness Optimization 

Yang et al. (1994) [94] conducted the feasibility study of using the gradient-

based numerical optimization technique to optimize a simplified vehicle front horn 

problem by integrating Pro/ENGINEER, PDA/PATRAN3, RADIOSS in the 

optimization algorithm.  Both single- and multiple-objective formulations were used in 

the study and an improved design was achieved.  They concluded that the 

crashworthiness optimization using the gradient-based approach is feasible but requires 

good quality of the finite element mesh during the design iterations. 

Yang and Tho et al. (1999) [95] integrated an explicit crash code (FCRASH) 

and commercial available optimization package (iSIGHT) to solve a front rail 

crashworthiness optimization problem using three approaches:  gradient-based, design 

of experiment/penalty/gradient-based, and design of experiment/penalty/ response 

surfaces.  They found that the crash functions are very noisy and used 5% step size to 

compute the sensitivity using the finite difference method. 
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1.2.2 Design of Experiment and Response Surface Based Crashworthiness  
Optimization 

Etman et al. (1996) [24] adopted the sequential approximate optimization 

technique to deal with the noisy objective and constraint functions, as well as the high 

computational costs of the numerical analysis.  In this work, the linear model functions 

are built based upon the responses calculated for a multipoint experimental design in a 

restricted design space.  The linear programming is used to solve the optimization 

problem within the search subregion.  In each iteration, the optimal solution obtained 

from previous iteration is used as the starting point of the approximate optimization. 

Johnson et al. (1996) [42] demonstrated the use of regression and Kriging 

metamodels for surface estimation in multidimensional optimality analysis for linear 

programming.  The methodology was demonstrated using a small example problem, a 

three source-four destination transportation problem and a multiperiod manufacturing 

problem.  It was shown that these metamodels provide remarkably accurate predictions 

of the optimal objective function value. 

Schramm and Thomas (1998) [77] attempted to use the sequential polynomial 

regression for crashworthiness design optimization problems.  The quadratic 

polynomial is employed to construct the crash objective and constraint response surface 

functions globally.  In their implementation, only a subset of the polynomial 

coefficients is computed depending on the number of design points and number of 

analyses in each of the design iteration. 

Kurtaran et al. (2002) [52] applied the successive response surface 

approximation to solve the crashworthiness design optimization problems.  In this 
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approach, the sizes of the successive subregions are highly influential on the accuracy 

of the approximations to be constructed.  In general, the smaller the size of the 

subregion, the better the accuracy of the approximation.  A schemed is adopted to 

determine the size of the subregions in their work. 

Sobieski et al. (2000) [80] employed the response surface methodology to 

optimize the vehicle weight under the constraints of NVH (noise, vibration and 

harshness) and crash requirements.  They reported a very significant reduction in 

elapsed computing time for such a large-scale multidisciplinary design optimization 

(MDO) problem (from 9 months to 1 day) through the efficient use of shared memory 

multiprocessor systems. 

Kodiyalam et al. (2001) [50] extended Sobieski’s previous work to increase the 

computational complexity by addressing multiple safety impact scenarios including 

frontal crash, offset crash, side impact and roof crush, in addition to the NVH discipline.  

The MDO problem was solved using multiple approximation models, sensitivity based 

approximation model for NVH responses and Kriging metamodels for the crash 

responses.   

Miura et al. [61] attempted to combine the response surface methodology and 

numerical optimization technique in a commercial optimization, iSIGHT (Engineous 

Software), to improve the crash performance of a knee impact problem.   

Craig et al. (2005) [21] employed a screening method based on the response 

surface methodology (linear) to select a reduce subset of design variables in the 

optimization process for the knee impact and frontal impact problems. 
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Lanzi et al. (2005) [53] used the response surface methodology constructed by 

radial basis functions and coupled with genetic algorithm to optimize the shape of 

composite absorbers with elliptical cross-sections under the impact requirements. 

1.2.3 Successive or Sequential Crashworthiness Optimization 

Toropov et al. (1993) [87] attempted to use multipoint explicit approximations 

to fit objective and constraint functions and to reduce the total number of finite element 

analyses needed to solve the optimization problem.  In each iteration, the subregion of 

the initial region in the design space, as defined by move limits, is chosen.  Several 

design points are selected in this subregion, for which response analyses and design 

sensitivity analyses are carried out.  The explicit expressions are formulated using the 

weighted least-squares method.  The method was demonstrated to solve a MADYMO 

frontal impact problem. 

Polynkin et al. (1995) [69] employed the multipoint approximation approach to 

solve the optimization of the geometrically nonlinear thin-walled structures.  The 

approach is an iterative technique.  The approximations are formulated by means of 

multiple regression analysis.  In each iteration, the technique uses the results gained at 

several previous design points within a subregion as defined by the move limit. 

Roux et al. (1998) [74] investigated the use of response surface methodology 

for structural optimization problems.  They found that the approximation domain is the 

strongest determinant of the accuracy of the response surface.  They claimed that the 

approximation accuracy can be improved by using a windowing strategy with a series 

of small regions.  Substantial reduction in the approximation region, with corresponding 
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improvement in accuracy can be obtained by using a reasonable design strategy to limit 

the approximation domain.  

1.3 Contributions 

The author contributed substantially to the following original developments 

presented in this dissertation: 

1. Proposed and developed an effective and robust framework based on the Sequential 

Regularized Multiquadric with Output Space Mapping (SRMQ/OSM) algorithm for 

solving large-scale, computational expensive simulation-based design optimization 

problems. 

2. Implemented SRMQ/OSM algorithm by integrating the explicit nonlinear finite 

element code with the surrogate model in the numerical optimization framework. 

3. Demonstrated the algorithm on several real-world crashworthiness applications 

including a helicopter skid landing gear hard surface impact optimization and a full 

vehicle frontal impact optimization problem. 

4. Developed an efficient optimization framework based on the Implicit Space 

Mapping (ISM) technique for large-scale, nonlinear crashworthiness design 

optimization problems. 

5. Implemented the ISM optimization technique by directly coupling with finite 

element code and demonstrated the algorithm for a rectangular tube crush 

optimization problem. 
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1.4 Outline of Dissertation 

The fundamental of the nonlinear crashworthiness analysis is presented in 

Chapter 2.  The governing equation for solving the nonlinear finite element is given.  A 

weak form solution in the sense of weighted residuals to convert the complex partial 

differential equation of motion, coupling with appropriate boundary conditions and 

initial conditions, is discussed.  The comparison of using explicit and implicit 

techniques in the time marching algorithm is presented.  

The design of experiments techniques to produce uniform sampling in exploring 

the design space as well as the surrogate model methods to construct “cheap-to-run”, 

smooth approximation responses are discussed in Chapter 3.  A comparative study of 

surrogate models for a full vehicle frontal impact problem is given to pursuit a better 

understanding of the surrogate models and numerical behavior of the crash functions.  

The DOE/RSM technique is applied to optimize a foam-filled frontal rail impact 

problem as well as a full vehicle Multidisciplinary Design Optimization problem 

considering the noise, vibration and harshness (NVH), and crash function requirements. 

Chapter 4 presents the sequential regularized multiquadric and output space 

mapping optimization (SRMQ/OSM) algorithms.  The numerical behavior of the 

developed method is studied using several numerical examples including a rectangular 

tube crush optimization problem using the commercial nonlinear transient analysis 

code. 

In Chapter 5, the SRMQ/OSM method is applied to solve for two large-scale 

optimization problems: helicopter skid landing gear impact optimization (an aerospace 
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industry application) and full vehicle frontal impact optimization (an automotive 

industry application).  The numerical results of these two real-word applications by 

using the developed method are discussed. 

The basic concepts and algorithms of the space mapping optimization are 

reviewed in Chapter 6, including the original space mapping, aggressive space mapping, 

trust region aggressive space mapping, and implicit space mapping.  The 

crashworthiness design optimization based on the implicit space mapping technique is 

given in this chapter.  The method is implemented and applied to solve a rectangular 

crush tube optimization problem by using the plastic strength scale factor as the 

preassigned parameter. 

The conclusions along with recommendations for future research are given in 

Chapter 7.  
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CHAPTER 2 

FUNDAMENTAL OF NONLINEAR CRASHWORTHINESS ANALYSIS 
 

2.1 Introduction 

Numerical simulations of complex nonlinear transient-dynamic events such as 

crash analysis have greatly been enhanced with the recent advances in computer 

technology.  In aviation and automotive industries, safety engineers and designers have 

heavily relied on crash simulations as the Computer Aided Engineering (CAE) tool to 

assist them in designing, testing and achieving certification (such as occupant seats to 

dynamic impact criteria in Aviation Safety).  Early development of nonlinear 

crashworthiness dynamic finite element codes was funded by the government.  From 

late 1960’s to early 1970’s, NASA and the FAA funded Grumman Corporation to 

develop a nonlinear static structural finite element code called Plastic Analysis of 

Structures (PLANS) and later the Dynamic Crash Analysis of Structures (DYCAST).  

About the same time, the U.S. Army funded the Lockheed California Company to 

develop a semi-empirical kinematic finite element aircraft crash analysis coded called 

KRASH.  In 1970’s and 1980’s, a large group at Lawrence Livermore National 

Laboratories was funded by the U.S. Department of Energy to assemble much of the 

nonlinear dynamic structural and material knowledge and to develop a suite of 

nonlinear finite element codes including DYNA2D, DYNA3D, NIKE2D, and NIKE3D.  

Today, a number of commercial spinoffs including LS-DYNA, PAMCRASH, 
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RADIOSS, and MSC.DYTRAN are originally based on the public domain source code 

of the DYNA3D.  

2.2 Explicit Formulation of Transient Dynamics 

The crashworthiness analysis is among the most challenging nonlinear problems 

in structural mechanics.  In the crash events, the structure experiences high impact loads 

that produce localized plastic hinges and buckling.  This can ultimately lead to large 

deformations and rotations with contact and stacking among the various components.  

The deformation initially involves wave effects, associated with high stresses.  Once 

these stresses exceed the yield strength of the material and/or its critical buckling load, 

localized structural deformations occur during a few wave transmits in the structure.  

This is followed by inertial effects, which dominate the subsequent transient response.  

Of particular interest are the structural integrity and associated kinematics and stacking 

of components, forces transmitted through the various members, stresses, strains, and 

energy absorption.  Closed form analytical solutions of crash analysis for complex 

structures are formidable.  The numerical technique appears to be the practical option. 

The finite element (FE) method of structural dynamics solves a set of nonlinear 

partial differential equations of motion in the space-time domain, coupled with material 

stress-strain relations along with definition of appropriate initial and boundary 

conditions.  The solution first discretizes the equations in space by formulating the 

problem in a weak variational form and assuming an admissible displacement field.  

This yields a set of second order differential equations in time.  Next, the system of 

equations is solved by the classical Newmark-Beta method.  The technique is called 
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implicit if the selected integration parameters render the equations coupled, and in this 

case the solution is unconditionally stable.  If the integration parameters are selected to 

decouple the equations, the solution is called explicit and is conditionally stable.  The 

following section gives the details of the FE method formulations: 

2.2.1 Governing Equations 

Consider the momentum equation in Ω  as shown in Figure 2.1: 

iijij xfσ &&ρρ =+,         2.1 

satisfying the following boundary conditions: 

1. Traction boundary conditions on sΓ  

ijij tnσ =                2.2 

2. Displacement boundary condition on uΓ  

( )tii
0Uu =                 2.3 

3. Contact discontinuity on cΓ  

( ) 0=− −+
jijij nσσ                     2.4 

where 

ijσ  Cauchy stress 

 ρ  Density 

if  Body force 

ia  Acceleration 

jn  Unit outward normal to a boundary element 
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Figure 2.1 Notation for System of Equations 

 

2.2.2 Variational Principle 

The foregoing system of equations is too complex to integrate directly.  

Therefore, a weak form solution in the sense of weighted residuals (or so-called 

Galerkin Method) is desired and can be written as: 

( ) ( ) ( ) 0, =−+−+−− ∫∫ ∫ −+ dsdsdv ijijijiijijiijiji
cs

xnσσxtnσxfσx
ΓΩ Γ

δδδρρ &&  2.5 

where ixδ  is the arbitrary test functions satisfying the boundary conditions 

Applying the Gauss divergence theorem gives: 

( ) ( ) 0
,

=−+= ∫∫ ∫ −+ dsdsdv ijijijijijjiij
cs

xnσσxnσxσ
ΓΩ Γ

δδδ            2.6 

Note that: 

( ) jiijijijjiij ,,,
xσxσxσ δδδ =              2.7 
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Therefore Equation 2.1 leads to the weak form of the equilibrium equations as a 

statement of the Principle of Virtual Work as: 

0, =−−+= ∫ ∫∫∫Ω ΓΩΩ
xtxfxσxx

s

dsdvdvdv iiiijiijii δδρδδρδπ &&      2.8 

2.2.3 Discretized Variational Principle 

By superimposing a mesh of finite elements interconnected at nodal points on a 

reference configuration and tracking particles through time yields: 

( ) ( ) ( )tt j
i

k

j
ji xφXx ∑

=

=
1

,,, ζηξ                   2.9 

where jφ  are the shape (interpolation) functions of the parametric coordinates ( )ζηξ ,, , 

k  is the number of nodal points defining the element, and j
ix  is the nodal coordinate of 

the thj  node in the thi  direction. 

Summing Equation 2.8 over the n  elements gives: 

0
1

, =⎟
⎠
⎞⎜

⎝
⎛ −−+∑ ∫ ∫∫∫

=

n

m

m
ii

m
ii

m
ji

m
ij

m
ii

m smm

dsdvdvdv
Ω ΓΩΩ

ΦtΦfΦσΦx ρρ &&          2.10 

where ( ) m
ik

m
i φφφΦ ,,, 21 L= , or in the matrix form as: 

0
1

=⎟
⎠
⎞⎜

⎝
⎛ −−+∑ ∫ ∫∫∫

=

mn

m

TTTT

m smm

dsdvdvdv
Ω ΓΩΩ

tNbNσBxNN ρρ &&             2.11 

where N  is the shape function matrix, σ is the stress vector, B  is the strain-

displacement matrix, x&&  is the nodal acceleration vector, b  is the body force load 

vector, and t  is the applied traction loads. 
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2.3 Explicit Time Marching Integration 

The explicit FE technique solves a set of hyperbolic wave equations in the zone 

of influence of the wave front, and accordingly does not require coupling of large 

number of equations.  On the other hand, the unconditionally stable implicit solves 

provides a solution for all coupled equation of motion, which require assembly of a 

global stiffness matrix.  The time step for implicit solvers is about two to three orders of 

magnitude of the explicit time step, as shown in Figure 2.2.  Table 2.1 compares the 

differences between explicit and implicit techniques.  For crash simulations involving 

extensive use of contact, multiple material models and a combination of non-traditional 

elements, it turned out that explicit solvers are more robust and computationally more 

efficient than implicit solvers.  The FE simulation for structural crashworthiness by 

explicit solvers appears to be first introduced by Belytschko. 

Table 2.1 Comparison of Explicit and Implicit Integration Techniques 

 Explicit Implicit 

Matrix No matrix assembly and matrix 

inversion is not required 

Require matrix assembly and 

inversion 

Time step Small time step (conditional 

stable) 

Large time step 

(unconditional stable) 

Implementation Easy and robust solution 

procedure even for high degree 

of nonlinearities 

Solution procedure becomes 

complicated with increasing 

degree of nonlinearities 

 



 

 16

lcExplicit

Implicit

 
Figure 2.2 Critical Time Step Comparison for Explicit and Implicit Techniques 
in Nonlinear Finite Element Analysis 

 
The semi-discretized (i.e. discretized in space domain but continuous in time 

domain) momentum equations of Equation 2.11 in Lagrangian mesh can be written as: 

intffxM −= ext&&                   .12 

where M  is the inertia matrix of the structure, extf  is the external nodal force vector and 

intf  is the internal nodal force vector. 

The central difference technique is employed in the explicit time integration.  

The explicit time marching scheme is depicted in Figure 2.3. 

( ))(int)(1)( nnextn ffMx −= −&&             2.13 

)()(2/)1(2/)1( nnnn tΔ+= −+ xxx &&&&               2.14 

2/)1(2/)1()()1( +++ Δ+= nnnn txxx &                2.15 

2

)1()(
2/)1(

+
+ Δ+Δ

=Δ
nn

n ttt
            2.16 
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Figure 2.3 Schematic of Explicit Time Marching Integration 

 
The drawbacks of the explicit algorithm are the conditional stability and 

inability of treating static problems.  The conditional stability means that the integration 

time step must be smaller or equal to the Courant Criterion.  The Courant Criterion is 

based on the minimum time required for an acoustic stress wave to propagate across an 

element.  For beam and truss elements, smallest time step is: 

E
Sl

c
l

St c
c ρ

==Δ          2.17  

where S  is the time step scale factor, cl  is the element characteristic length, c  is the 

sound speed, ρ  is the density and E  is the Young’s Modulus. 

A shell element can be interpreted as a series of beam elements located next to 

each other.  The geometry confines the Poisson’s ratio effects in the plane of the shell 

during the longitudinal compression and therefore increases the longitudinal stiffness as 

well as the wave speed.  Therefore, the critical time step for shell elements with an 

elastic material and constant bulk modulus becomes: 

E
Slt c

ρα=Δ      2.18 

where                      21 να −=       2.19 
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For solid elements, the Poisson’s ratio effects can be interpreted to confine in 

both transverse directions during the longitudinal compression.  Consequently, the 

membrane stiffness and the acoustic wave speed increase significantly.  For an elastic 

material with constant bulk modulus, the critical time step of solid elements is: 

E
Slt c

ρβ=Δ  2.20

where        ( )( )
( )ν

ννβ
−

−+
=

1
211       2.21 

Table 2.2 and Figure 2.4 show the critical time step factor of shell and solid 

elements compared to beam elements.  Note that when the material is incompressible 

(i.e. ν=0.5 or β=0), the critical time step is zero. 

Table 2.2 Critical Time Step Factors for Shell and Solid Elements 

ν 0.0 0.20 0.30 0.40 0.45 0.49 0.50 

α 1.0 0.980 0.954 0.917 0.893 0.872 0.866 

β 1.0 0.949 0.862 0.683 0.513 0.242 0.000 
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Figure 2.4 Critical Time Step Factors for Shell and Solid Elements 

 

2.4 Elements for Crashworthiness Analysis 

The 4-noded Belytschko-Tsay shell element [12] is discussed in this section 

since it has widely been used for crashworthiness simulations due to its computational 

efficiency and numerical robustness by the manufacturing industry, particularly the 

automotive and aerospace industries.  The Belytschko-Tsay shell element is based on a 

combined co-rotational and velocity-strain formulation.  The efficiency of the element 

is obtained from the mathematical simplifications that result from these two kinematic 

assumptions.  The co-rotational portion of the formulation avoids the complexities of 

nonlinear mechanics by embedding a coordinate system in the element.  The choice of 
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velocity strain, or rate of deformation, in the formulation facilitates the constitutive 

evaluation, since the conjugate stress is the more familiar Cauchy stress. 

The Belytschko-Tsay is a bilinearly interpolated isoparametric element.  The 

use of under-integrated points makes it very efficient in terms of computational cost.  

The drawback of using under-integration, however, is that a number of zero-energy or 

so-called hourglass energy modes may exist in the element.  Due to the simplifications 

of evaluating the element strain-displacement matrix, certain deformation modes result 

in a zero-strain calculation, and consequently, no stresses and nodal forces are 

evaluated.  Most crash codes implemented hourglass control algorithms to prevent the 

non-physical hourglass modes from occurring.  However, if too much hourglass energy 

is required to suppress the phenomenon, the crash solution becomes invalid. 

In spite of a number of choices that clearly include a loss of generality and 

trade-off for numerical robustness and computational efficiency, the results obtained in 

thousands of crashworthiness simulations using the Belytschko-Tsay element during the 

past two decades have been good enough to establish its usefulness to the industry. 
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2.5 Contact-Impact Algorithm 

The most common used contact for crashworthiness applications is the penalty-

based method.  There are two penalty-based methods of calculating the contact force.  

In the first method, the contact force on a node is based on a penetration distance times 

the material stiffness.  In the second method, the contact force is proportional to the 

penetration distance divided by the time-step squared multiplied by an effective mass.  

Figures 2.5 (a) and (b) show two frequent used contacts based on the penalty-based 

method: surface-to-surface contact and self-surface contact, respectively. 

  
 

(a)        (b) 

Figure 2.5 Schematic of Surface-to-Surface and Self-Surface Contact 
Algorithms: (a) Surface-to-Surface Contact, (b) Self-Surface Contact 

2.6 Crashworthiness in Aerospace Industry 

First used in the aerospace industry in the early 1950’s, the term 

“crashworthiness” provided a measure of the ability of a structure and any of its 

components to protect the occupants in survivable crashes.  Crashworthiness of general 

aviation aircraft is a complex subject involving human tolerance, the crash environment 

(impact surface, terrain, aircraft velocities and attitudes), seats and restraint systems, 
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cabin environment, landing gear, and the airframe structure.  Figure 2.6 depicts the 

crash energy absorption approaches for various types of aircraft (transport, light fixed-

wing, and helicopter).  Various types of aircraft may affect the crashworthiness design 

approach.  For example, to provide control of deceleration loads of seated occupants in 

a vertical impact, a different design approach would probably be used for a large 

transport aircraft compared to a light fixed-wing general aviation aircraft or a 

helicopter.  The large transport structure having considerable depth of crushable 

structure may not require energy-absorbing landing gear and seats.  On the other hand, 

light fixed-wing aircraft and helicopters having relatively little crushable airframe 

structure would require energy absorption in the landing gear and seats, as well as the 

fuselage structure, to prevent injury to occupants in potentially survivable crashes. 

When designing a crashworthy airframe structure, there are many factors to 

consider.  Of prime importance is the design of the airframe to maintain structural 

integrity and a livable space for the occupants.  The airframe structure should 

incorporate a high-strength protective shell or cage around the occupants.  This 

structure should provide roll-over strength, a strong support structure for restraint of 

large mass items and seats, as well as maintain the integrity of the normal exits for 

emergency egress.  The forward fuselage structure should be designed to minimize 

plowing and to absorb energy during longitudinal impacts.  In addition, the crushable 

structure in an aircraft should be designed to carry normal airframe loads as well as 

absorb as much energy as possible in a crash.  If the seat support structure is allowed to 

crush, it must maintain enough structural capability to support the seat loads.  If the 
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seats are energy absorbing, the crushing structure must not interface with the stroking 

seats.  Figures 2.7 (a) to (c) show several crashworthiness applications in the aerospace 

industry including the hard surface impact of the ATR42 commuter aircraft, hard 

surface impact of the helicopter composite fuselage, and water impact of the rotorcraft. 

Before After Before After 

V
V

δ δ 

Before After 

V 

δ 

Transport                  Light Fixed-Wing                   Helicopter  

Figure 2.6 Crash Energy Absorption Approaches for Various Types of Aircraft 

 

             
(a)                                               (b)                                              (c)  

Figure 2.7 Crashworthiness Applications in Aerospace Industry: (a) ATR42 
Commuter, (b) Helicopter Composite Fuselage, (c) Rotorcraft Water Impact 
 

2.7 Crashworthiness in Automotive Industry 

In the automotive industry, crashworthiness connotes a measure of the vehicle’s 

structural ability to plastically deform and yet maintain a sufficient survival space for its 
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occupants in crashes involving reasonable deceleration loads.  Restraint systems and 

occupant packaging can provide additional protection to reduce severe injuries and 

fatalities.  The goal of crashworthiness is an optimized vehicle structure that can absorb 

the crash energy by controlling vehicle deformations while maintaining adequate space 

so that the residual crash energy can be managed by the restraint systems to minimize 

crash loads transfer to the vehicle occupants. 

For crashworthiness requirements, the vehicle structure should be sufficiently 

stiff in bending and torsion for proper ride and handling.  It should minimize high fore-

aft vibrations that give rise to harshness.  In addition, the structure should yield a 

deceleration pulse that satisfies the following requirements: 

• Deformable, yet stiff, front structure with crumple zone to absorb the crash kinetic 

energy resulting from frontal collisions by plastic deformation and prevent intrusion 

into the occupant compartment. 

• Deformable rear structure to maintain integrity of the rear passenger compartment 

and protect the fuel tank. 

• Properly designed side structures and doors to minimize intrusion in side impact and 

prevent doors from opening due to crash loads. 

• Strong roof structure for rollover protection. 

• Properly designed restraint systems that work in harmony with the vehicle structure. 

Figure 2.8 shows some crashworthiness applications in the automotive industry 

including the frontal offset impact, side impact, and occupant restraint system. 
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(a)                                      (b)                                        (c)  

Figure 2.8 Crashworthiness Applications in Automotive Industry: (a) Frontal 
Offset Impact, (b) Side Impact, (c) Occupant Restraint System 
 

2.8 Column Collapse Modes Under Crush Loadings 

In the energy absorption management, there are two basic collapse modes or 

mechanisms encountered for thin-walled structural columns: axial collapse mode and 

bending collapse mode.  Pure axial collapse can be achieved only in the energy-

absorbing structures and only during direct frontal/rear impacts.  Therefore, most of the 

structural members are subject to mixed modes comprised of axial collapse and 

bending.  In a well-designed and executed energy-absorbing structure, the mixed modes 

can be avoided to assure predictable performance during crash.  The sheet metal 

closure/shear and outer skin panels are likely to collapse by predominantly irregular 

folding or crumpling.  The degree of folding regularity depends on the panel’s size-to-

thickness ratio and geometric stiffness (or curvature).  

2.8.1 Axial Collapse Mode 

Axial folding crush mode is considered to be the most effective mechanism for 

energy absorption.  It is also, perhaps, the most difficult one to achieve in real structures 

because of the instability problems associate with it.  Figure 2.9 shows a typical stable 

axial collapse mode of a square column under axial crush loading. 

 



 

 26

PP

 
Figure 2.9 Axial Collapse Mode of Column under Axial Crush Loading 
 
Wierzbicki and Abramowicz [91] developed a theory of crushing behavior of 

thin-walled, plate-type columns.  The expression for the mean crush load is derived 

from the energy balance by equating the external work done by the crush load with 

energies dissipated in different types of deformation mechanisms as they occur in a 

folding process.  Based upon this, the mean crush load mP  can be expressed as: 

3
1

3
1

027.38 −
= tCMPm            2.22 

4

2
0

0
t

M
σ

=               2.23  

uσσ )95.0~9.0(0 =                     2.24 

( )dbC +=
2
1                 2.25 

where 0M  is the fully plastic moment, 0σ  is the average flow stress, uσ  is the ultimate 

tensile strength of the material, b  and d  are the width and height of a rectangular box 

column, and t  is the wall thickness.  For a square tube, for which bdC == , the mean 

crush load of the previous equation can be simplified to: 

3
1

3
5

056.9 btPm σ=          2.26 
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Magee and Thornton [58] employed experimental data from crush tests of 

columns of several different section geometries to derive the mean crush load mP  for 

square thin-walled columns: 

2.08/117 btP um σ=           2.27 

However, none of the formulations given by Equations 2.1 and 2.6 consider the 

material elasticity.  Mahmood and Paluszny [56] realized the shortcoming and 

developed a quasi-analytical approach to derive mP  for square thin-walled columns: 

14.086.157.043.03270 btP ym σβ −=               2.28 

where β  is the material strain hardening factor, and yσ  is the material yield strength. 

2.8.2 Bending Collapse Mode 

The bending mode, which involves formation of local hinge mechanisms and 

linkage-type kinematics, is a lower energy mode.  Figure 2.10 shows a typical bending 

collapse mode of a thin-walled structural component under moment crush loading.  Pure 

bending failures are extremely rare in vehicle structures.  In most crash scenarios, 

mixed modes involving axial compression and bending or sometimes torsion, will 

prevail.  In these situations, component failure will be triggered at the location where 

compressive stress reaches the critical value, causing the side of flange of the section to 

buckle locally, which initiates formation of a plastic hinge-type mechanism. 

There are three different types of collapse modes observed in box-type columns 

subjected to bending.  The first mode is associated with the collapse of a compressively 

loaded flange of a compact section that is identified by a uniform hinge mechanism 
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composed of straight yield lines.  The second mode is initiated by the flange collapse of 

non-compact sections, identified by non-uniform hinge mechanisms composed of 

curved yield lines.  The third mode is initiated by the web collapse of narrow of 

stiffened flange columns.   

MM

 
Figure 2.10 Bending Collapse Mode of Column under Moment Crush Loading 

 
Kocman [48] postulated that the bending collapse is initiated by local buckling 

of the compressively loaded flange and used the concept of “effective flange width” to 

develop expressions for the maximum bending strength capacity of a rectangular box 

section.  If the critical local buckling stress crσ  is less than the material yield stress yσ , 

the compressively loaded flange will buckle elastically, producing a non-linear stress 

distribution with the middle portion carrying considerably less load than the corners.  

Thus, in terms of the corner stress, the effective width of the flange has been reduced: 
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The critical local buckling stress is given by: 

( )
( )2
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ν
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b
dK f 16.023.5 +≈          2.27 

where fK  is the flange buckling coefficient, b  and d  are the sides of the section.  

Different formulations are used for the maximum moment depending on the magnitude 

of the critical local buckling stress relative to the material yield strength: 
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2.9 Dynamic Effect on the Crash Resistance 

A dynamic collapsing process in the thin-walled structures involves many 

interacting effects that are not present in the static collapse.  There are two most 

important factors identified in dynamic collapse under the impact velocity in the most 

of crash accidents where the strain rates are below 100 sec-1.  The first is the strain 

effect, which is a material property, whereby the yield or flow stress is raised.  The 

second factor is the inertia effect developed within the structure by the rapid 

acceleration during the collapse. 

While the inertia effects were shown to be responsible for peak magnitudes of 

the instantaneous resisting forces and therefore do not contribute the crash energy 

dissipation, many studies have been conducted on the strain rate empirically or 

analytically yielding simple equations relating the dynamic crash resistance and the 

static crush resistance.  Ohkubo et al [67] suggested an empirical formula for dynamic 

load factor in closed-hat axially compressed columns.  By fitting experimental data, a 

ratio of dynamic to static crushing force was approximated linearly: 

00668.01 V
P
P

s

d +=             2.32 

where dP  is the dynamic crash force, sP  is the static crushing force, and 0V  is the initial 

impact velocity.  A different empirical formula was obtained by Wimmer for square 

mild steel columns: 
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The Cowper-Symonds equation [20] has widely been used to relate the dynamic 

flow stress d
0σ  to the static flow stress s

0σ : 

p
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                      2.34 

where ε&  is the strain rate, C  and p  are material constants to be determined from the 

dynamic tensile tests on the material. 

Based on the strain rate sensitivity on the yield stress of material, Masanori and 

Funahashi [57] derived the following equation for mild steel structure by simply 

applying the Cowper-Symonds equation with one-dimensional uniform deformation 

assumption: 
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where L  is the crushing distance. 

Wierzbicki and Akerstrom [91] derived the following equation with the 

consideration of complex folding mechanism of axially compressed mild steel box 

column: 

714.0
011.01 V

P
P

s

d +=            2.36 

For impact velocities used in crash barrier tests, the dynamic correction factor is 

in the range of 4.1~2.1=sd PP  [46].  This of course applies to utilized steel body 

structures.  Aluminum alloy have no or very little strain rate sensitivity.  All general 
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application purposes, no dynamic correction factor needs to be introduced in all 

aluminum vehicle bodies.  Wierzbicki [91] observed from the comparison of static and 

dynamic tests of crushing of thin-walled structures that the deformation patterns of 

sheet metal components differ little between static and dynamic loading conditions. 
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CHAPTER 3 

CRASHWORTHINESS OPTIMIZATION USING DESIGN OF  
EXPERIMENTS AND RESPONSE SURFACE METHODOLOGY 

 

3.1 Introduction 

Today, manufacturing industry, particularly automotive industry, still relies 

intensively on Computer Aided Engineering (CAE) for crashworthiness design to 

reduce the design cycle time and development cost in the early design stage, while 

satisfying different design functionality requirements and disciplines.  Numerical 

optimization technique, on the other hand, provides a systematic approach to achieve 

the objective within competitive time constraint.  However, numerical crashworthiness 

optimization faces a lot of technical challenges.  The traditional gradient-based direct 

optimization technique requires many function evaluations and hence is prohibitive 

since the computation of crash analysis for large-scale systems is very costly due to the 

very small time step requirement in the explicit nonlinear finite element method.  The 

crash pulse functions in the crashworthiness analysis are very noisy and irregular due to 

impact-contact algorithms in the explicit nonlinear dynamic finite element method.  The 

sensitivity of the crash pulse with respect to the design parameters depends on the finite 

element mesh and the finite difference step size.  The bottom line is that numerically 

computed design sensitivities are prone to error and therefore it is extremely difficult to 
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obtain accurate sensitivities for routine use in the gradient-based direct optimization 

technique.   

Alternatively, many researchers have achieved prominence by using the 

surrogate-model based optimization that combines the Design of Experiments (DOE) 

and Response Surface Methodology (RSM) to explore the design space and construct 

approximate crash functions for solving crashworthiness design optimization problems 

in recent years.  RSM based optimization refers to the idea of speeding optimization 

processes by using the surrogate models for the objective and constraint functions.  

RSM is a statistical method for constructing smooth approximations to functions in a 

multi-dimensional space.  Thus the local effect caused by the ‘noisy’ functions is 

alleviated and the method attempts to find a representation of the design response 

within a bounded design space.  Based on the extraction of global information of these 

“efficient-to-compute” surrogate models (or so-called metamodels), designer can access 

the main effect and perform approximate optimization, multi-criteria trade-off analysis, 

robustness assessment, as well as robust design using alternative design formulations.  

The quality of RSM is extremely crucial in those stages as poor RSM will be 

misleading, causing the optimization solution diverged and increasing the design cycle 

time.   

Typically the surrogate model based optimization method involves the 

following procedures: 

1. Choose an experimental design to sample the region of interest (of design space); 

2. Perform analyses (or simulations) based upon the selected sample data; 
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3. Construct the surrogate model (or RSM, meta-model) to the observed sample data; 

4. Perform approximate optimization to find the predicted optimal design; 

5. Validate the predicted optimal design by conducting an analysis on the fine model 

(or true function); 

6. Check for convergence (stop if within convergence tolerance); 

7. Update surrogate model using new data points; 

8. Iterate until convergence. 

Figure 3.1 illustrates the procedures for Steps 1 to 3.  The motivation of the 

method is to take advantage of the effectiveness of search algorithms used in the 

numerical optimization more efficiently using DOE generated data to construct 

surrogate models in an approximate optimization algorithm.   

 

P1

P2

P2

P1

Simulations

 

Figure 3.1 Schematic of Design of Experiments and Response Surface 
Methodology Based Computer Simulations 

 
Over the years, there have seen several researchers conducted the comparative 

study of the surrogate models. Wang and Liu (1998) [90] employed linear regression 

model, piecewise linear regression model, quadratic regression model and multivariate 
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adaptive regression splines (MARS) to construct surrogate models for a body-in-white 

vehicle model containing five design parameters.  They found that the accuracy of the 

approximation is decided by the choice of regression model and the number of data 

points used.  When very little information is available, the result is almost the same no 

matter which model to use.  When a large number of evaluations are available (> 5N), 

using a more complex regression model can generate a better approximation. 

Jin et al. (2000) [40] compared four popular metamodeling techniques 

(polynomial regression, multivariate adaptive regression splines, radial basis functions 

and kriging) based on multiple performance criteria using fourteen test problems 

representing different classes of problems.  They concluded that for small and scarce 

sample sets, radial basis function performs the best when both average accuracy and 

robustness are considered.  Kriging appears to be a more expensive metamodeling 

technique in terms of efficiency while polynomial and radial basis function are the 

easiest to implement in terms of simplicity.  It is very important to obtain uniform 

samples to improve metamodeling performance.   

Krishnamurthy (2005) [51] compared surrogate models constructed the moving 

least square, kriging, and radial basis function with the global least square method for 

three numerical examples for derivative generation capability.  He found that the 

surrogate models constructed by kriging and radial basis function interpolation yields 

more accurate results compared to the moving least square and global least square 

methods. 
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Fang et al (2005) [51] compared the polynomial regression and kriging methods 

in multi-objective crashworthiness optimization of a full-scale vehicle model.  The 

study showed that the Multiquadric function is the more stable compared to the first- 

and second-order of polynomial, as well as other radial basis functions (such as inverse 

Multiquadric). 

3.2 Design of Experiments 

Design of experiments (DOE) offers a systematic approach to study the effects 

of multiple design parameters by providing a structured set of analyses in a design 

matrix.  Specifically, DOE techniques allow designers to sample the design space to 

generate sample data to create surrogate models for each of the responses of interest.  It 

can be used for screening experiments to identify significant factors and reduce the 

number of interested design parameters.  Among some of the popular DOE methods are 

centeral composite design, D/G-Optimal designs, Box-Behnken design, and orthogonal 

arrays.  Among these, the orthogonal arrays (OA) appear to be more attractive it allows 

to avoid a costly full factorial experiment, in which all combinations of all factors at 

different levels are studied.  Namely, a fractional factorial experiment can be performed 

by executing a certain fractional subset of the full factorial set of experiments while 

maintaining orthogonality among the various factors and specified interactions.  

Orthogonal arrays were formulated as early as the late 1800’s by Hadamard and have 

been used in design since as early as the 1940’s by Plackett and Burman, who 

formulated saturated designs which now referred to as Plackett-Burman designs.  

Orthogonal arrays were primarily popularized by Taguchi, who developed a 
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standardized family of OAs to study interaction effects and focused on improving 

design quality by reducing variation from the target. 

Properly selection of experimental designs is essential for design and analysis of 

computer experiments.  In the classical design and analysis of physical experiments 

(e.g. central composite, full factor design etc.), random variation is accounted by 

spreading the sample points out in the design space and by taking multiple data points 

(replicates).  Sacks et al. (1989) stat that the classical notions of experimental blocking, 

replication, and randomization are irrelevant when it comes to deterministic computer 

experiments.  Thus, sample points should be chosen to fill the design space uniformly 

for computer experiments.  In this dissertation, several “space filling” experimental 

designs are reviewed. 

3.2.1 Latin Hypercube Sampling 

Latin hypercube sampling (LHS) was the first type of design proposed 

specifically for computer experiments by Mckay et al. (1979) [60].  LHS is a form of 

simultaneous stratification on all d dimensions.  It offers flexible sample sizes while 

ensuring stratified sampling, i.e. each of the input variables is sampled at n levels.  

Mckay (1979) introduced a version of LHS for computer experiments: 

( )
n

Ui
X

j
ijj

i

−
=

π
          3.1 

where jπ  are uniform random permutations of the integer n,,1K , the j
iU  are [ ]1,0U  

random variables.  All of the jπ  and j
iU  are independent. 

An older version of LHS, due to Patterson (1954) [68] is 
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           3.2 

3.2.2 Uniform Design 

A uniform design (UD) provides uniformly scatter design points in the 

experimental domain.  A uniform design is a type of fractional factorial design with an 

added uniformity property.  If the experimental domain is finite, UD is very similar to 

LHS.  When the experimental domain is continuous, the fundamental difference 

between these two designs is that in LHS, the sampling points are selected at random 

from cells, whereas in a UD, the sampling points are selected from the center of the 

cells.  Furthermore, LHS requires one-dimensional balance of all levels for each factor, 

while UD requires one-dimensional balance and n-dimensional uniformity.  Therefore 

these two designs are similar in one-dimension but are very different in higher 

dimensions. 

3.2.3 Halton Sequence 

Halton Sequence (Halton, 1960) [36] is used to generate a “uniform design“ of 

the sampling points.  Let the base 2≥b  be an integer, any positive integer 0≥n  can be 

written as the following form: 

( ) ( )
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The radical inverse function ( )nbφ  for base b  can be obtained by reversing the 

digits in ( )bn  using the Van der Corput sequence (Niederreiter, 1992) [66] and the nth 

Halton number in base b is: 

( ) ( )
bjj

j
b dddd

b
d

b
d

b
d

n LL 21012
10 .0=+++= +φ          3.5 

or             ( ) ( )∑
=

+−=
j

k

k
kb bdn

0

1φ         3.6 

Thus, Halton sequence in s-dimensional can be expressed as: 

( ) ( ) ( )( ){ }nnnX
sbbbn φφφ ,,

211
=       3.7 

Note that b must be a prime number.  The above algorithms generate numbers 

from 0 to 1.  For high dimensions, different prime numbers are used for each dimension.  

The points generated by Halton Sequence fills the (0, 1) hypercube “uniformly”. 

As an example to illustrate the algorithm, we expand 1038=n  using base 5=b : 

012
510 53525112338 ×+×+×===n  

Applying the radical inverse function gives: 

( ) 10325105 688.0
5
1

5
2

5
3321.038 =++==φ  

Table 3.1 shows the illustrative sampling generated by using the Halton Sequence. 
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Table 3.1 An Illustrative Sampling Example Using Halton Sequence 

 b=2 b=3 b=5 … 

n=0 0 0 0 … 

n=1 0.5000 0.3333 0.2000 … 

n=2 0.2500 0.6667 0.4000 … 

n=3 0.7500 0.1111 0.6000 … 

… … … … … 

 

 

(a)                                                         (b)  

Figure 3.2 An Illustrative Sampling Example Using Scrambled Halton Sequence: 
(a) Before Scrambling, (b) After Scrambling 

 

It is noted that the sampling generated by the Halton sequence using the radical 

inverse function may degrade in the higher dimension as shown in Figure 3.2(a), which 

is constructed using 200 Halton sampling points.  A solution to resolve the issues is to 

employ the scrambled Halton Sequence.  Figure 3.2(b) shows the projections after 
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scrambling.  In the scramble Halton Sequence, the scrambled radical inverse function is 

employed in lieu of the radical inverse function as shown in Equation 3.5.  Namely, 

( ) ( ) ( ) ( )
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jbbb
b b

d
b

d
b
dnS

πππ
L    3.8 

where bπ  is a permutation on the digits ( )1,,1,0 −bK  which holds 0 fixed. 

To illustrate the algorithm, the scrambled radical inverse function is employed 

to expand the same integer using the same base as shown previously (i.e. 1038=n  using 

base 5=b ) to obtain: 
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Many researchers have also proposed the scrambled version of the Halton 

Sequence (Warnock, 1972; Braaten and Weller, 1979; Faure, 1992; Warnock PhiCf, 

1995; Tuffin, 1996; Mascagni and Chi, 2004; Atanassov, 2004). 

3.2.4 Sobol Sequence 

The Sobol sequence (Sobol, 1967) [81] solved the problem of dependency in 

higher dimensions using only the prime 2.  The Sobol sequence is generated using a set 

of so-called direction numbers k
k

k
m
2

=υ , where km  are odd positive integers less than 

k2 .  The values of km  are chosen to satisfy a recurrence relation using the coefficient of 

a primitive in the Galois Field of order 2.  A primitive polynomial is irreducible (i.e. 



 

 43

cannot be factored into polynomials of smaller degree) and does not divide the 

polynomial 1+rx  for 12 −< pr .  Thus, the Sobol sequence can be expressed as: 

( ) ( )∑
=

+−=
j

k

k
kkb bdn

0

1υφ      3.9 

Several authors have concluded that the Sobol sequence appears to resist the 

degradation effect better than the Halton sequence in higher dimensions.  Galanti and 

Jung (1997) [32] showed that the Sobol sequence presented no degradation at all up to 

the dimension 260.  Morokoff and Caflisch (1995) [62] concluded that for lower 

dimensions (n=6 or lower) the Halton sequence exhibited the best results, whereas for 

higher dimensions the Sobol sequence were better off 

3.2.5 Faure Sequence 

The Faure sequence (Faure, 1992) [27] is similar to the Halton sequence in that 

each dimension is a permutation of a van der Corput sequence.  As mentioned earlier in 

Halton sequence, the Van der Corput sequence is mapped from ( ) ∑
=

=
j

k

k
kb bdn

0
φ  into 

( ) ( )∑
=

+−=
j

k

k
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0

1φ .  In Faure sequence, different permutation coefficients are used: 
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Notice that only the last 1+− kt  values of kd  are used to generate kc .  The 

Faure sequence has better regularity properties than the Halton sequence particularly in 

high dimensions.  For example, consider the case 2=n  and 2=b .  The first 10 Faure 

numbers are: 

16
9

16
1

8
7

8
3

8
5

8
1

4
3

4
1

2
10  

16
7

16
15

8
7

8
3

8
1

8
5

4
1

4
3

2
10  

The first row corresponds to the Van der Corput numbers and the second row 

obtained from the first row by permuting the values with the same denominator. 

Cheng and Druzdzel (2000) tested Halton, Sobol and Faure sequences 

concluding that for higher dimensions the Sobol sequences outperformed the other two. 

3.3 Surrogate Models 

3.3.1 Polynomial Regression 

By far, the polynomial regression perhaps is the most popular technique for 

building the response surface or surrogate model (Myers and Montgomery, 1995) [64].  

For complex engineering systems such as crashworthiness, the linear (1st order) or 

quadratic (2nd order) polynomial regression models are typically applied to construct 

“cheap-to-compute” surrogate models.  The linear and quadratic polynomial models can 

be expressed as: 
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where ŷ  is the approximate function, m  is the total number of design variables, ix  is 

the ith design variable, and the β s are the unknown coefficients.  The foregoing 

equation can be expressed in a matrix form as: 

βXy ˆ=             3.14 

where X  is the design matrix of sampling points.  The vector of unknown coefficients 

β̂  represents the least-square estimator and is solved using the method of least squares 

as: 

( ) ( )yXXXβ TT 1ˆ −
=                   3.15 

It is noted that the number of function evaluations required to construct the full 

quadratic function increases dramatically when the number of design variables 

increases. 

3.3.2 Stepwise Regression 

The stepwise regression is often referenced to an algorithm proposed by 

Efroymson (1960) [23].  The stepwise regression procedure starts off by choosing an 

equation containing the single best X variable and then attempts to build up with 

subsequent additions X’s one at a time as long as these additions are worthwhile.  The 

order of addition is determined by using the partial F-test values to select which 

variable should enter next.  The higher partial F-value is compared to an (selected or 

default) ‘F-to-enter’ value.  After a variable has been added, the equation is examined to 

see if any variable should be deleted.  The procedure is described in the following: 

 



 

 46

3.3.2.1 Forward Selection 

Let pRSS  denotes the residue sum of square (RSS) with p  polynomial and 

constant terms in the regression model.  The RSS is given by: 

( )∑
=

−=
m

i
ii yyRSS

1

2ˆ                       3.16 

where m  is the total number of sampling points ( pm > ). iy  and iŷ  are the “exact” and 

“approximate” responses of the sampling points, respectively. 

Suppose the smallest RSS  that can be obtained by adding another polynomial 

term set is 1+pRSS .  The following ratio is calculated and compared with an ‘F-to-enter’ 

value, eF : 
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pp                        3.17 

If R  is greater than eF , the polynomial term is added to the selected set. 

3.3.2.2 Backward Deletion 

Having p  terms (including the constant term) selected, let 1−pRSS  be the 

smallest RSS  that can be obtained after deleting any terms from the previously selected 

terms.  The following ratio is calculated and compared with an ‘F-to-delete’ value, dF : 
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p

pp                      3.18 

If R  is less than dF , the polynomial term is deleted from the selected set. 
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3.3.3 Moving Least Square 

Moving least square (MLS) was originated in curve and data fitting in 1981 

(Lancaster et al.) [54].  The MLS approach has become quite popular since it has been 

used to construct shape functions in mesh-free method.  In MLS, the interpolant ( )xuh  

of the function ( )xu  is: 

( ) ( ) ( ) ( ) ( )xxxxPxu T
m

i
ii

h αp∑
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==
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α          3.19 

A linear basis and a quadratic basis in 1-D are provided as: 

( ) [ ] ( ) [ ]21,1 xxxxx TT == PP           3.20 

The coefficients ( )xiα  are obtained at any point x  by minimizing a weighted, 

discrete 2L  norm: 
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i uxxxxwJ
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where n  is the number of points in the domain of influence.  The stationary condition 

of J  with respect to ( )xα  leads to: 

( ) ( ) ( )uBAα xxx 1−=             3.22 

where  
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( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]nn xxxwxxxwxxxwx PPPB −−−= L2211   3.24 

Hence we have: 
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where the interpolant function ( )xNi  is given by: 
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1 BA         3.26 

3.3.4 Kriging 

Kriging is an interpolation method that originated in geostatistics.  The method 

is named after D. G. Krige, who applied empirical methods for determining true ore 

grade distributions based on sampled ore grades.  Kriging uses the properties of the 

spatial correlation among the data samples.  In arriving at an interpolated value at some 

point in the parameter space, Kriging more heavily weights data samples that are 

“nearby” rather than giving all data samples equal weight.  In Kriging, interpolation is 

achieved by setting the mean residue error to zero and minimizing the variance of the 

errors. 

A spatial correlation metamodel is a combination of a polynomial model and 

departures of the following form: 

( ) ( ) ( )xxx Zfy +=            3.27 

where ( )xy  is the unknown function of interest, ( )xf  is a known polynomial and ( )xZ  

is the localized deviations and the departure from the standard polynomial.  ( )xZ  

represents the realization of a stochastic component with mean zero, variance 2σ  and 

non-zero covariance. 
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While ( )xf  “globally” approximates the design space, ( )xZ  creates “localized” 

deviations so that the kriging model interplolates the sn  sampled datga points.  The 

covariance of ( )xZ  that dictates the local deviations is given by: 

( ) ( )[ ] ( )[ ]( )jiji RZZCov xxRxx ,, 2σ=           3. 28 

where R  is the correlation matrix, ( )jiR xx ,  is the correlation function between two 

sampled data points ix  and jx .  R  is a ( )ss nn ×  symmetric positive definite matrix 

with unit diagonal.  The correlation function could be an exponential, Gaussian, cubic 

or any such kind of an approximation function.  For a Gaussian correlation function, R  

is given by: 
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where ndv  is the number of design variables, kθ  are the unknown correlation 

parameters, and j
k

i
k xx −  is the distance between the kth components of points ix  and 

jx .  Once the correlation function has been selected, the predicted estimate of the 

response ( )xŷ  at the untried values of x  is given by: 

( ) ( ) ( )ββ ˆˆˆ 1 fyRxrx −+= −Ty     3. 30 

where ( )xrT  is the correlation vector between a predicted x  and the sn  sampling 

points, y  represents the responses at each sampling point and f  is an ns-vector of ones 

(in the case that ( )xf  is taken as a constant).  The vector r  and scalar β̂  are given by: 

( ) ( ) ( ) ( )[ ]TnT sRRR xxxxxxxr ,,,,,, 21 K=            3.31 
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( ) yRffRf 111ˆ −−−= TTβ          3.32 

The estimate of variance, of the sampling data, from the underlying global 

model is: 

( ) ( )
s
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    3.33  

The maximum likelihood estimates for kθ  can be found by solving the 

following constrained maximization problem: 

Maximize: ( ) ( )[ ]
2

lnˆln 2 R+−
=Φ

σ
θ sn

 

Subject to: nℜ∈≥ θθ ,0           3.34  

where both σ̂  and R  are functions of Θ .  R  is adaptively regularized because of 

potential ill-conditioning.  The net effect is that the approximating functions no longer 

interpolate the observed response values exactly, but still closely approximate the 

observations. 

3.3.5 Radial Basis Function 

Given data set ( )ii fx , , i=1 to n, ℜ∈ℜ∈ i
n

i fx , , the interpolation of a radial 

basis function ( )xf  is expressed as a linear combination as: 
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where jC  are the interpolation constants to be determined, φ  are the radial basis 

functions, jxx −  is Euclidean norm representing the distance r  of the point x  from 

the center node jx . 

The unknown interpolation coefficients iC  can be determined by minimizing 

the 2L  norm  

( )
2

1
⎥
⎦

⎤
⎢
⎣

⎡
−−= ∑

=

N

i
jiji CJ xxf φ     3.36  

or in matrix form as: 

[ ]{ } { }fCA =      3.37  

where 

[ ] jxxA −=         3.38  

{ } { }N
T CCC ,,, 21 K=C       3.39  

{ } { }N
T fff ,,, 21 K=f        3.40  

Note that the matrix [ ]A is always invertible, provided that the data are not 

redundant.  The commonly used classical radial basis functions are provided in Table 

3.2. 
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Table 3.2 Commonly Used Radial Basis Functions 

Type Radial Basis Function 

Linear hr=φ  

Cubic ( )3hr +=φ  

Thin Plate Spline ( )22 log hrr=φ  

Gaussian 2hre−=φ  

Multiquadric hr += 2φ  

Inverse Multiquadric hr += 2/1φ  

where jr xx −= . 

3.3.6 Adaptive and Interactive Modeling System (AIMS) 

Adaptive and Interactive Modeling System (AIMS) is a hybrid metamodeling 

system [55].  It uses machine learning and statistical techniques to induce models from 

training examples that are generally obtained from math models through simulation or 

from physical experiments.  AIMS uses a recursive decomposition method to split the 

design space into less complicated sub-regions and fits each region with an appropriate 

surrogate model.  

The AIMS consists of two major components: Competitive Relation Learner 

(CRL) and Induction/Selection Optimizer (ISO).  The CRL is the learning component.  

It is responsible for generating metamodels from training examples.  It has many control 

parameters (called biases) that can influence the properties of the metamodels.  The 

CRL evaluates multiple competing learning strategies and chooses the most appropriate 
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one for each sub-region in the design space.  The decision of choosing a particular 

learning strategy depends on the modeling objectives.  The current implementation of 

the CRL contains statistical regression, inductive learning strategies, such as linear 

regression, prototype and neural nets, and decomposition algorithms that are based on 

distance or population measures.  Both learning strategies and decomposition 

algorithms have biases that affect the accuracy, formation time, and the form of the 

resulting surrogate models. The ISO is the optimization component in AIMS.  It uses a 

multiple-objective optimization method to select the most appropriate modeling 

strategies and associated control parameters (biases), such as the decomposition 

method, the learning method, and the number of layers and neurons of neural nets for 

the CRL.  These biases are designed to satisfy user specified modeling objectives such 

as model accuracy and evaluation time. ISO uses an induction-based procedure for 

optimizing the bias space formed by the learning strategies and decomposition 

algorithms.  The inputs to ISO are a bias space and modeling objectives, and the output 

is a set of optimal biases. Optimization in the ISO is iterative, consisting of three steps: 

selection, evaluation, and induction.  In a typical AIMS application, ISO first selects a 

bias from the bias space randomly.  The CRL uses this bias to generate a metamodel 

based on training examples.  The ISO evaluates the model by checking its objective 

score against the objective functions and selects the next bias.  The CRL uses the new 

bias to generate a new metamodel with the same training examples.  The iteration 

continues until a desirable set of metamodels is obtained. 
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3.3.7 Multivariate Adaptive Regression Splines (MARS) 

Multivariate Adaptive Regression Splines is a nonlinear regression technique 

that fits high dimensional data to an expansion in multivariate basis functions.  The 

number of basis functions, the product degree, and the knot locations are automatically 

determined by, and adaptive to, the data.  The model produces strictly continuous 

approximation with continuous derivatives, and identifies the contributions from 

additive terms and multivariable interactions.  The approximation takes the form of an 

expansion in multivariate spline basis functions: 

( )∑
=

+=
M

m
nmm xxBaay

1
10 ,,ˆ K     3.41 

where: 

( ) ( )( )∏
=

=
mK

k
kmmkvkmnm txbxxB

1
,1 ,,K      3.42 

with: 

( ) 1,,1 =no xxB K                  3.43 

The { }M
ma 0  are the coefficients of the expansion, obtained by minimizing a 

generalized cross-variance criterion that is the average squared residual of the fit to the 

data times a penalty to account for the increased variance associated with increasing 

model complexity.  Each multivariate spline basis function mB  is the product of 

univariate spline basis function kmb  which is either order 1 or cubic, depending on the 
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degree-of-continuity of the approximation, each of a single input variable ( )mkvx ,  and 

characterized by a knot at kmt .  The multivariate spline basis functions mB  are adaptive. 

3.4 Comparative Study of Surrogate Models 

3.4.1 Introduction 

In this section, a real-world full vehicle frontal impact problem, as shown in 

Figure 3.3, is studied using five metamodeling techniques: Stepwise Regression (SR), 

Moving Least Square (MLS), Kriging (KG), Multiquadric (MQ), and Adaptive and 

Interactive Modeling System (AIMS).  These metamodels are used to investigate the 

model accuracy for two safety performance attributes: toe-board intrusion and Head 

Injury Criteria (HIC). 
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Figure 3.3 Frontal Impact Finite Element Model and Selected Design 
Variables for Comparative Study of Surrogate Models 

 

Vehicle safety design is one of the major attributes in vehicle product 

development.  The vehicle must be designed to absorb enough impact energy through 

structural deformation and attenuate the impact force to a tolerable level to protect the 

occupants when impact occurs.  More and more impact scenarios are now required to 
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evaluate the vehicle performance such as: full frontal impact, frontal offset impact, roof 

crush, rear impact and side impact.  The full frontal impact is commonly used to design 

and validate the vehicle front-end structures while satisfying the federal safety 

regulations for FMVSS (Federal Motor Vehicle Safety Standards) 208 as well as 

corporate requirements.  The key performance measures in the full frontal impact 

include: toe-board intrusion, HIC, chest G and chest deflection. 

3.4.2 Finite Element Model 

The full vehicle finite element model is used in this paper. It contains about 

75,500 shell elements, as shown in Figure 3.3.  The simulation speed is 35 mph against 

a rigid wall.  The simulation time used in this study is 80ms.  The computing time for 

one such analysis requires about 17 hours on a CRAY J916/16 machine using 8 CPUs.  

The explicit finite element commercial software, RADIOSS from MECALOG, is used 

to solve this highly nonlinear, transient, dynamic, and large deformation frontal impact 

simulation.  Four major components in the frontal impact event are chosen as the design 

variables.  They are the thicknesses of the crush cans, the inner and outer parts of the 

rails, and the shotguns, as shown in Figure 3.3.  Two major performance measures, 

toeboard intrusion and HIC (Head Injury Criteria), are selected for investigating the 

accuracy and convergence rate of the metamodels.  The HIC number is calculated using 

a commercial multi-body occupant simulation product, MADYMO from TNO by 

importing the rocker/B-Pillar acceleration pulse from the RADIOSS analysis results.  

The occupant model used in this study consists of: restraint system with airbag, seat 

model, steering wheel model, dummy model, and simplified model of the drivers space 
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with toeboard, dashboard, and windshield, as shown in Figure 3.4.  The HIC number is 

calculated as: 

( )
max

12

5.2

12

2

1

1
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−⎥

⎦

⎤
⎢
⎣

⎡
−

= ∫ ttadt
tt

HIC
t

t
         3.44 

where a  is the acceleration pulse in G’s, 21, tt  is expressed in second and 

measured during impact, ( )12 tt −  is within 36ms.  

 

      

Figure 3.4 Occupant Restraint System Model to Evaluate Injury Numbers 
for Comparative Study of Surrogate Models 

 

3.4.3 Numerical Results 

The so-called adjusted coefficient of determination or 2
adjustedR  is commonly used 

as an error indicator in regression fit to check the accuracy and examine whether the 

regression model is overfitting.  However, since the KG and MQ metamodels pass 

through all sampling points, it is unsuitable to use the 2
adjustedR  in this study.  Instead, the 

Root Mean Square (RMS) error is employed as the error indicator and is defined as 

follows: 

Crash 
Pulse • HIC 

• Chest G 
• Chest deflection 
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∑
=

=
k

i
ik

RMS
1

21 ε         3.45 

where iε  is the error at each evaluated point and k  is the number of the evaluation data 

sets. 

The optimal Latin Hypercube Sampling is chosen to explore the design space in 

this particular problem.  As mentioned earlier that unlike the conventional factorial 

DOE, the LHS is capable of capturing the higher order of nonlinearity using a larger 

number of levels with fewer design points.  To ensure the uniformity of the sampling 

points within the region of interest, a combinatorial optimization algorithm is performed 

based on an entropy criterion to minimize the bias part of Mean Square Error (MSE).  

Five sampling data sets are created for studying the accuracy and convergence rate of 

each metamodel, i.e. 3N, 6N, 9N, 18N and 36N, where N is the number of design 

variables.  The sample sizes are selected for achieving uniformity and balancing of the 

sampling points within the design domain.   

Since AIMS is a hybrid system that includes statistical regression and inductive 

learning strategies, only the pure neural network is selected to fit the nonlinear functions 

for the purpose of consistency.  The SR uses up to the quadratic polynomial.  The CAE 

data of the frontal impact is based on a full factorial design.  Based on the number of 

levels defined in Table 3.3, a total of 144 (3×4×4×3) simulations are performed.  

Additional 24 points, which scatter over the design domain but excluded from the 

training data, are generated to evaluate the accuracy and convergence rate. 
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Table 3.3 Description of Design Variable, Lower Bound, Upper Bound 
and DOE Levels for Frontal Impact Problem 

Design Variable Bounds (mm) Level No. of Levels 

Crushcan [0.8, 2.0] [1.2, 1.5, 1.75] 3 

Rail Inner [2.0, 3.0] [1.75, 2.0, 2.3, 2.5] 4 

Rail Outer [2.0, 3.0] [1.75, 2.0, 2.3, 2.5] 4 

Shotgun [0.8, 2.0] [1.2, 1.5, 1.75] 3 

 

The plots of the RMS error vs. sample size in real scale for the toe-board 

intrusion and HIC number are shown in Figures 3.5 (a) and 3.6 (a), respectively.  

Figures 3.5 (b) and 3.6 (b) shows the RMS error vs. sample size in log-log scale.  The 

corresponding RMS percentage is given in Tables 3.4 and 3.5.  Note that the sample 

size is normalized with respect to the number of design variables, N.  It is observed that 

for sample size less than 9N, all metamodels appear to perform poorly.  In general, the 

results of the RMS error vs. normalized sample size oscillate and lack of consistency.  

For sample size larger than 9N, although it is not clear to identify the best metamodel 

for both the toe-board intrusion and HIC, the trends appear to be smoother and much 

more consistent.  The accuracy and convergence rate of the MQ seem to be better than 

the others.  The convergence rate is poorer and the results do not improve much when 

more training data are added.  The KG outperforms other methods for the toe-board 

intrusion but has the poorest performance for HIC. 

To get more insights into these metamodels, the surface plots for the toe-board 

intrusion and HIC are generated, using the complete full factorial data (36N), as shown 
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in Figures 3.7 and 3.8, respectively.  For the toe-board intrusion, both the MQ and KG 

give very similar and accurate approximations, evidenced by the lowest and the same 

RMS error (0.9%).  The SR shows the worst surface plot.  Although it captures the 

trend, the accuracy for local regions is poor.  It becomes more obvious for the HIC.  It is 

shown from Table 3.5 that the most accurate surface plot comes from the MQ (RMS 

error=2.3%) with sample size of 36N.  Assuming this represents the true model, the 

surface plots using KG and MQ are still quite good and similar, even though some of 

the local regions are not well represented.  As for the SR, it completely missed the local 

minimum region and it will not be able to find the global optimal design. 
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(a) 

 

(b) 

Figure 3.5 RMS Error vs. Sample Size for Toe-Board Intrusion in the 
Frontal Impact Problem: (a) Real Scale, (b) Log-Log Scale 
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(a) 

 

(b) 

Figure 3.6 RMS Error vs. Sample Size for HIC Injury Number Predicted by 
Occupant Restraint System Analysis in the Frontal Impact Problem: (a) Real 
Scale, (b) Log-Log Scale 
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Figure 3.7 Surface Plot Comparison for Normalized Toe-Board Intrusion 
Using 36N Sample Size in Frontal Impact Problem 

 
Table 3.4 Model Accuracy Comparison Using RSM Error for Toe-Board  
Intrusion in Frontal Impact Problem 

Sample Size MLS KG MQ SR AIMS (NN) 

3N 1.6 1.5 1.9 2.2 1.4 

6N 1.3 1.5 1.6 1.7 1.2 

9N 1.4 1.4 1.6 1.6 1.4 

18N 1.2 1.0 1.6 1.4 1.2 

36N 1.1 0.9 0.9 1.4 1.1 

 

MLS (RMS=1.1%, 36N) KG (RMS=0.9%, 36N) 

MQ (RMS=0.9%, 36N) SR (RMS=1.4%, 36N) 
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Figure 3.8 Surface Plot Comparison for Normalized HIC Injury Number 
Using 36N Sample Size in Frontal Impact Problem 

 

Table 3.5 Model Accuracy Comparison Using RSM Error for HIC Injury 
Number in Frontal Impact Problem 

Sample Size MLS KG MQ SR AIMS (NN) 

3N 3.1 3.2 2.7 2.7 3.0 

6N 3.1 3.1 2.7 2.6 2.9 

9N 2.9 3.1 2.8 2.4 2.5 

18N 2.8 3.1 2.7 2.5 2.6 

36N 2.5 2.8 2.3 2.5 2.6 

 

MLS (RMS=2.5%, 36N) KG (RMS=2.8%, 36N) 

MQ (RMS=2.3%, 36N) SR (RMS=2.5%, 36N) 



 

 65

3.5 Aluminum Foam-Filled Front Rail Impact Optimization 

3.5.1 Introduction 

The front rails are the most important structural member in frontal collision.  

They absorb about 50% of crash energy during the collision process.  The design of 

front rail has to satisfy both crashworthiness and weight efficiency requirements, and 

therefore has become a focus of activity in the crashworthiness design of full vehicle 

structure.  The results presented in this section was a collaborative research effort with 

Impact and Crashworthiness Laboratory of Massachusetts Institute of Technology.  

3.5.2 Finite Element Model 

Figure 3.9 shows the front rail finite element model.  Two main outer panels are 

assembled by spot-welding, and the stiffeners are attached inside of the rail.  In the front 

part, crush triggers in the form of corrugated flanges are placed to reduce the peak load, 

induce progressive folding in the axially collapsing part, and to avoid the global 

bending collapse.  The approximate dimension of the front end section is 100 mm × 130 

mm.  The subframe or cradle is attached to the rail by a rigid body constraint 

representation.  A total of 4,825 shell elements are employed to construct the finite 

element model.  The impact velocity of the front rail is 31 mph into a rigid wall.  The 

simulation termination time is taken to be 30 msec, and the added mass of 713.9 kg is 

attached to the end part of the front rail to compensate for the mass of entire vehicle 

structure.  As this model represents a half of the front rail and subframe, symmetry 

boundary conditions are applied to the nodes of the cradle on the plane of symmetry. 
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Figure 3.9 Front Rail Finite Element Model 

Four parts of the front rail are reinforced individually by using the aluminum 

foam filler.  The aluminum foam model used in this study represent the HYDRO 

aluminum foam with plastic flow stress of bare foam material f,0σ =150 Mpa.  The 

idealized mechanical behavior of the foam under compression is illustrated in Figure 

3.10.  The mechanical properties of foam material definition are: 

2
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5.1
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ρστ            3.50 

s
c ρ

ρε 4.11−=        3.51 

where E  is the Young’s modulus, 1tE  is the first tangent modulus, G is the shear 

modulus, fσ  is the foam crushing strength, fτ  is the foam shear crushing strength, and 

cε  is the densification strain. 

Note that all the mechanical properties of the foam filler are determined by the 

foam relative density 
s

fd ρ
ρ

=  where sρ  is the mass density of solid cell wall of the 

foam and fρ  is the foam density.  In this study, the relative density of foam is used as 

the design parameter to determine the foam strength.  Namely, there are total six design 

variables including four foam densities and two gage thickness. 

σ

εεc
Densification Strain

Young’s Modulus
E

Et2
Second Tangent Modulus

First Tangent Modulus

Et1σf
Crushing
Strength

 

Figure 3.10 Mechanical Properties of Aluminum Foam under Compression 
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3.5.3 Surrogate-Based Optimization Algorithm 

In this study, the optimal Latin Hypercube Sampling (LHS) method is selected 

to explore the uniform design points uniformly on the front rail design space.  The 

sample size is chosen to be 24 or 4N (where N is the number of design variables).  The 

number of levels of each design variable in LHS is set to be 10 to capture the 

nonlinearity of the responses.  Table 3.6 shows the optimal LHS DOE and finite 

element response matrices for the foam-filled front rail problem.  Among the RSM 

methods, the quadratic stepwise regression is chosen to construct the surrogate model 

being used in the numerical optimization process.  In this study, the response surface 

function of the structural weight is constructed using the linear basis function while the 

quadratic basis function is selected to construct the internal energy and initial average 

force response functions.  The explicit form of the functions in terms of the design 

variables (gages and foam relative densities) obtained from the stepwise regression is 

shown in the following: 

432121 201.3110.7077.6352.5654.1133.322.14 ddddttW ++++++=   3.52 

2
3

2
1312142

3222312121

414106.21026080127404587

71074080295618861602026156046

dtdddddt

dtdtdtdtdtIE

−−+−

++−+−++=
 3.53 

211 66.696.621.25 ttdIAF ++=         3.54 

Figure 3.11 illustrates the surrogate-based optimization algorithm.  The 

Sequential Quadratic Programming (SQP) solver is used in the optimization process.  

After each approximate optimization, a CAE confirmation analysis is conducted to 

check the accuracy and convergence of the approximate response surface functions.  
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Three single objective optimization problems are investigated to achieve a more 

balanced design between the structural weight and internal energy: 

1.  Minimize  Weight 

Subject to 000,17≥IE J 

  55≤IAF kN 

2.  Maximize  IE 

Subject to Weight 2.26≤ kg 

  55≤IAF kN 

3.  Minimize  Weight 

Subject to 110,12≥IE J 

  40≤IAF kN 
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Figure 3.11 Surrogate-Based Optimization Algorithm 
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Table 3.6  Optimal LHS DOE matrix and Finite Element Response Matrix for  
Foam-Filled Front Rail Optimization Problem 

t1 (mm) t2 (mm) d1 d2 d3 d4
Weight 

(kg) IE (J) IAF (kN)

Baseline 1.9000 1.9000 0.0300 0.1800 0.2000 0.2000 26.65 14,570 47.38
1 1.2111 1.4667 0.1667 0.1389 0.0000 0.0000 22.18 9,338 43.51
2 1.4667 2.7444 0.0000 0.1944 0.0278 0.0830 25.02 11,220 51.28
3 1.2111 2.7444 0.0833 0.0833 0.1667 0.2500 25.50 15,010 61.03
4 1.9778 1.7222 0.0000 0.2500 0.1944 0.1667 26.71 15,390 40.74
5 2.2333 1.9778 0.1944 0.0000 0.1944 0.0000 26.90 14,380 68.05
6 3.0000 1.2111 0.0833 0.0833 0.0556 0.0000 26.98 13,230 65.31
7 1.4667 0.9556 0.1667 0.0000 0.0556 0.1667 22.22 11,120 41.49
8 2.7444 2.4889 0.2500 0.1667 0.0833 0.0278 29.95 14,090 81.27
9 3.0000 1.2111 0.0556 0.1111 0.1111 0.2500 28.21 15,520 61.80

10 2.4889 2.4889 0.0833 0.0278 0.0000 0.1389 27.20 12,980 71.53
11 1.4667 2.2333 0.1667 0.1944 0.0000 0.2500 25.39 12,830 58.88
12 1.7222 2.2333 0.2500 0.2222 0.2222 0.1944 28.16 16,120 65.82
13 3.0000 3.0000 3.0000 0.2222 0.1111 0.1944 31.94 17,040 86.07
14 0.7000 0.7000 0.1111 0.1667 0.1667 0.2222 21.08 11,070 27.78
15 2.2333 3.0000 0.0556 0.1111 0.2222 0.0556 28.91 16,160 76.19
16 0.7000 1.4667 0.2222 0.0556 0.2500 0.1111 22.51 10,570 39.82
17 0.9556 1.7222 1.7222 0.0278 0.1389 0.0278 21.47 9,770 34.93
18 2.7444 2.2333 0.2500 0.0556 0.1389 0.2222 29.88 16,990 79.45
19 1.7222 0.7000 0.0000 0.1667 0.0278 0.1111 22.35 12,460 20.63
20 1.9778 1.4667 0.0278 0.0000 0.2500 0.1667 25.34 13,000 20.96
21 0.7000 1.9778 0.1389 0.2500 0.1667 0.0556 23.30 11,650 44.69
22 2.2333 0.9556 0.1944 0.2500 0.0833 0.1389 26.39 13,880 57.51
23 0.9556 3.0000 0.2222 0.0833 0.0833 0.0833 24.72 12,040 61.52
24 2.4889 0.7000 0.1389 0.1389 0.2500 0.0833 26.81 14,120 57.75  

3.5.4 Numerical Results 

The design history along with validation values and error percentage for each of 

the design iteration are shown in Tables 3.7 to 3.9.  Note that the weight constraint of 

26.2 kg in Formulation 1 and internal energy of 12110 J in Formulation 3 are based 

upon the original empty model with internal sheet metal stiffeners.  The numbers 

highlighted are the optimal design chosen for each of the formulations.  For 

Formulation 1, the energy absorption is increased by 41% (from 12110 to 17097 J) and 

the structural weight is increased by 7% (from 26.2 to 28.1 kg) compared to the original 

empty foam-filler model.  However, the initial average force constraint is violated and 
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more iteration is required for the optimization process.  For Formulation 2, the 

optimization problem converges after three design iterations.  The optimization results 

show that the internal energy is increased by about 37% (from 12110 to 16534 J) while 

the weight remains unchanged compared to the original model.  About 15% of 

structural weight is reduced in the Formulation 3 while the energy absorption is 

maintained the same as the original baseline model. 

 

Table 3.7 Design History for Single Objective Formulation 1 

Obj/Constr Prediction Validation Error %
Weight (kg) Minimize 26.8 26.8 0

IE (J) ≥ 17000 17000 16269 4.5
IAF (kN) ≤ 55 53.8 52.9 1.7

Obj/Constr Prediction Validation Error %
Weight (kg) Minimize 28.1 28.1 0

IE (J) ≥ 17000 17000 17097 -0.6
IAF (kN) ≤ 55 55.0 56.4 -2.5

Obj/Constr Prediction Validation Error %
Weight (kg) Minimize 28 28 0

IE (J) ≥ 17000 17000 16660 2
IAF (kN) ≤ 55 55.0 66.7 -1.2

Design Iteration 1

Design Iteration 2

Design Iteration 3
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Table 3.8 Design History for Single Objective Formulation 2 

Obj/Constr Prediction Validation Error %
Weight (kg) ≤ 26.2 26.2 26.2 0

IE (J) Maximize 16594 15851 4.7
IAF (kN) ≤ 55 52.2 49.7 5.0

Obj/Constr Prediction Validation Error %
Weight (kg) ≤ 26.2 26.2 26.2 0

IE (J) Maximize 16141 16454 -1.9
IAF (kN) ≤ 55 55.0 54.9 0.2

Obj/Constr Prediction Validation Error %
Weight (kg) ≤ 26.2 26.2 26.2 0

IE (J) Maximize 16310 16534 -1.4
IAF (kN) ≤ 55 55.0 54.7 0.5

Design Iteration 2

Design Iteration 3

Design Iteration 1

 

Table 3.9 Design History for Single Objective Formulation 3 

Obj/Constr Prediction Validation Error %
Weight (kg) Minimize 22.9 22.9 0

IE (J) ≥ 12110 12110 11417 6.1
IAF (kN) ≤ 40 40.0 40.5 1.2

Obj/Constr Prediction Validation Error %
Weight (kg) Minimize 22.3 22.3 0

IE (J) ≥ 12100 12110 12737 -4.9
IAF (kN) ≤ 40 40.0 39.3 1.8

Obj/Constr Prediction Validation Error %
Weight (kg) Minimize 22.1 22.1 0

IE (J) ≥ 12100 12110 11861 2.1
IAF (kN) ≤ 40 40.0 45.0 -11.1

Design Iteration 3

Design Iteration 1

Design Iteration 2

 

From the results above, it is clearly seen that for the axially collapse part, low 

strength of foam is preferable, and high strength foam is better for global bending zone.  

The rigid wall force of the optimal designs as well as the original baseline model is 
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shown in Figure 3.12.  In all optimal designs, the peak force is reduced considerably 

while the bending resistance is almost doubled. 
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Figure 3.12 Rigid Wall Forces of Optimal Designs and Original Baseline 
Model for Aluminum Foam-Filled Front Rail 

 

3.5.5 Weight Efficiency  

The measure used to assess the weight efficiency of the model is Specific 

Energy Absorption (SEA).  Figure 3.13 shows that as much as up to 37% increase of 

SEA are achieved in the optimal designs of aluminum foam-filled front rail compared to 

the original non-filled model with internal sheet metal stiffeners.  Note that the baseline 

model value in the bar chart is normalized to 1.0 for ease of comparison.  Figure 3.14 

illustrates the relation between the structural weight and the absorbed energy.  It is 

clearly seen that as the structural weight increases, the absorbed energy increases.  The 
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lower and upper bounds of the distribution are plotted as in dashed lines.  The points of 

the optimal designs are located on or above the upper bound, which means highest 

weight efficiency.  In addition, the result of the original empty model with stiffeners 

made of sheet metal is plotted as an empty square, which is located at the lower bound.  

Therefore, it is shown that the reinforcement of the front rail by using foam-filler gives 

either reduced weight while maintaining the same level of energy absorption (horizontal 

arrow) or, increased energy absorption while maintaining the same structural weight 

(vertical arrow).  In either case, considerable improvement in the performance is 

achieved. 
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Figure 3.13 Comparison of the Specific Energy Absorption between Original  
Baseline Design and Foam-Filled Optimal Designs 
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Figure 3.14 Relation Between Structural Weight and Energy Absorption 

3.6 Full Vehicle Multidisciplinary Design Optimization 

3.6.1 Introduction 

Multidisciplinary Design Optimization (MDO) has evolved as a new discipline 

that provides a body of methods and techniques to assist engineers in moving 

engineering system design close to optimum.  The key concept in several of these MDO 

methods is a decomposition of the design task into subtasks performed independently in 

each of the modules, and a system-level or coordination task giving rise to a two-level 

optimization.  In general, decomposition is motivated by the obvious need to distribute 

work over many people and computers to compress the task calendar time.  An 

application for MDO using the DOE/RSM methodology for exploring the design space 

and constructing highly nonlinear crash function is given in this section.  MDO of a full 
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vehicle under the consideration of crashworthiness, Noise, Vibration, and Harshness 

(NVH), durability, and other performance attributes is one of the imperative goals for 

automotive industry.  However, it is often infeasible due to the lack of computational 

resources, robust simulation capabilities, and efficient optimization methodologies.  

This research demonstrates that with high performance computing, a conventionally 

intractable real world full vehicle multidisciplinary optimization problem considering 

all performance attributes with large number of design variables become feasible. 

Vehicle safety design is one of the major attributes in car product development.  

The vehicle structure must be designed to absorb enough crash energy through 

structural deformation and attenuate the impact force to a tolerable level when crash 

events occur.  In the real world, all crash modes need to be considered simultaneously 

for crash analysis and optimization.  Figure 3.15 shows the finite element models for 

full frontal impact, roof crush, 50% frontal offset impact, side impact, and NVH.  The 

nonlinear explicit code RADIOSS and Nastran are used for the crashworthiness and 

frequency analyses, respectively. 
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Figure 3.15 NVH and Crashworthiness Finite Element Models for 
Multidisciplinary Design Optimization 

 
3.6.2 MDO Problem Formulation 

The MDO problem is to minimize the total vehicle weight subjected to design 

constraints of NVH and safety crash modes: 

Minimize: Weight 

Subject to: 

NVH Constraints: 

  HzfHz 3.293.27 3 ≤≤  

  Static torsion ≤ Dt 

  Static bending ≤ Db 

where  3f =3rd frequency 
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  Dt=local displacement=3.4mm 

  Db=local displacement=0.9mm 

Roof Crush Constraints: 

  Crush distance (D) ≤ 5” 

  Critical peak load ( crP ) ≥ 27kN 

Full Frontal Impact Constraints: 

  HIC ≤ 450 

  Chest G ≤ 45 g 

  totalP ≤ 10% (i.e. 5-star NCAP rating) 

where   totalP =Total probability of severe injury= ( )( )chesthead PP −−− 111  

  ( )HIChead e
P 0035.002.51

1
−+

=  

  ( )ChestGchest e
P 0693.055.51

1
−+

=  

50% Frontal Offset Crash Constraints: 

  Toe board intrusion ≤ 10” 

Side Impact Constraints: 

  Viscous Criterion V*C ≤ 0.54 

  Displacement ≤ 27.2 mm 

There are 10 global (system) thickness design variables in the MDO problem 

including windshield, roof panel, roof rail, roof cross members and pillars.  The total 

number of design variables for the NVH model is 19, including 10 for backlite glasses 
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and sheet metal thickness, 9 for the stiffness of connection between the backlite glass 

and structures.  The thickness design variables contain floor panels, jacking/towing on 

quarter panel, backlite glass, shotgun and radiator support.  There are 5 subsystem 

thickness design variables for full frontal and 50% frontal offset crash models, namely 

rails and subframe.  As for the roof crush, 3 thickness and 7 material yield stress local 

design variables are taken into account for consideration.  The MDO data flow is 

illustrated in Figure 3.16. 

 

 

Figure 3.16 Multidisciplinary Design Optimization Data Flow 

3.6.3 MDO Procedure 

This research employs a DOE/RSM method to construct the approximation 

models for crash performance functions.  Among the various methods for DOE and 

RSM, the optimal Latin Hypercube sampling method is employed to explore the design 

space uniformly to capture the nonlinear behavior of crash functions, while the stepwise 

regression method is used to construct the nonlinear response surfaces based on the 

computer experimental points.  The NVH responses are approximated by the 

conservative Taylor Series Approximation (TSA) as: 
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where ( )xak  is the approximate function at step k , ( )xf  is the exact function, ig  is a 

partial derivative of f  with respect to the thi  design variable. 

Two optimization strategies are employed to perform the inner loop within the 

MDO process.  The first takes advantage of the design sensitivity analysis capability in 

MSC.NASTRAN and the second takes advantage of both the sensitivity and the 

optimization capability.  In the first strategy, the NVH sensitivities are extracted from 

the MSC.NASTRAN output and approximations are constructed using TSA.  In 

addition to the three crash mode responses approximated by the quadratic order of 

stepwise regression, the MDO problem is solved by an SQP optimizer.  As the NVH 

model is more efficient to run in this case, the NVH design variables are updated and 

the analysis is repeated in MCS.NASTRAN for three times while keeping the crash 

approximation models unchanged.  After three NVH inner loops, all design variables 

are updated and reflected on the NVH and crash models.  Simulations are then 

performed to validate the results from the first MDO cycle.  The crash approximation 

models are updated and then continue to perform the next MDO cycle if necessary.  The 
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move limits of the design variables for NVH approximation using the TSA are selected 

to be 20%. 

 

Figure 3.17 Multidisciplinary Design Optimization Flow Chart 

The second strategy for the inner loop optimization is to take advantage of the 

design optimization capabilities in MSC.NASTRAN.  Instead of exporting the NVH 

sensitivities and performing inner optimization loop manually for three iterations, the 

optimization process for each MDO cycle is completed entirely in the MSC.NASTRAN 

by imposing the crash performance constraints using the DEQATN and DRESP2 cards 

for the explicit crash equations provided from the stepwise regression approximations.  

The advantage of this strategy is that the inner loop can be completed without any hum 
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intervention.  However, the approximate crash functions needs to be provided explicitly.  

The MDO flow chart is shown in Figure 3.17. 

3.6.4 MDO Numerical Results 

The design histories for the two strategies are summarized in Table 3.10.  Note 

that the initial design starts from an infeasible region where the constraints of the third 

mode frequency, torsion and bending displacements, HIC and toe-board intrusion are all 

violated.  After two MDO cycles, all constraints are satisfied and it is shown that two 

MDO strategies yield comparable results.  The total vehicle weight is reduced by 14.8 

kg and 15.6 kg, respectively.  The objective and the maximum constraint histories are 

shown in Figure 3.18.  The DOE results for frontal crash (Ptotal vs. weight) and offset 

crash (maximum intrusion vs. weight) are shown in Figure 3.19 and 3.20, respectively.  

It is observed that significant design improvements for both strategies are achieved, 

after two complete cycles.  In frontal crash, the Ptotal is improved from 10% to 8.0% and 

7.5%, respectively.  While in the offset crash, the maximum toe-board intrusion is 

successfully controlled within 10 inches, while reducing vehicle weight.  The roof crush 

performance constraint is insignificant as all designs are feasible before and after the 

optimization process.  All NVH targets are also met, i.e. improving the torsion and 

bending stiffness by 10% and increasing the third mode frequency by 5%.  

In brief, this example has successfully demonstrated the feasibility of using the 

DOE/RSM methodology for the multidisciplinary design optimization problem.  The 

results showed that the methodology could substantially reduce the design cycle time 
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and vehicle weight in the development and certification of new vehicle designs while 

satisfying the functionality requirements.  

Table 3.10 Design History for Multidisciplinary Design Optimization 

Weight (Kg)            1740.5      Minimize     1726.6    1725.7     1727.2     1724.9

 

 
Figure 3.18 Objective and Constraint Design History for Multidisciplinary 
Design Optimization 
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Figure 3.19 DOE Matrix for Frontal Crash (Ptotal vs. Weight) 

 

 

Figure 3.20 DOE Matrix for Offset Crash (Maximum Intrusion vs. Weight) 
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3.7 Conclusions 

The use of surrogate models or metamodeling has lead to new areas of research 

in simulation –based design optimization.  The Surrogate model based optimization 

method offers advantages over traditional gradient-based direct optimization 

techniques, especially when dealing with the noisy responses and/or high computational 

cost characteristics of computer simulations.   

The space filling DOE methods (LHS, UD, Halton Sequence, Sobol Sequence, 

Faure Sequence) and metamodeling techniques (polynomial regression, stepwise 

regression, kriging, moving least square, radial basis function, adaptive and interactive 

modeling system, multivariate adaptive regression splines) are reviewed in this Chapter.  

A comparative study for a full vehicle frontal impact is presented using five 

metamodeling techniques.  It is shown that the MQ function outperforms other 

metamodeling techniques for HIC and toe-board intrusion crash functions.  A vehicle 

front rail optimization problem is given to improve the structural energy absorption 

efficiency by using the DOE/RSM based optimization method.  Finally, the DOE/RSM 

method is demonstrated on a Multidisciplinary Design Optimization problem for a full 

vehicle model considering the NVH and crashworthiness design requirements. 
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CHAPTER 4 

SEQUENTIAL REGULARIZED MULTIQUADRIC AND  
OUTPUT SPACE MAPPING 

 

4.1 Introduction 

In recent years, response surface methodology (RSM) has become a popular 

tool for design optimization of large-scale problems required extensive computational 

time.  In addition, RSM provides an overall perspective of system response within the 

design space and simplifies the process of integrating different mathematical models.  

Traditional RSM (Myers and Montgomery, 1995) [64] is a global approach that uses 

polynomials to approximate the objective and constraint responses for optimization 

process.  The coefficients of the polynomial models are computed using the least square 

regression method.  The computed response surface model is the “best fit” polynomial 

function from the available data. 

In general, the fitted function does not interpolate the available data.  In 1971, 

Hardy  proposed the use of multiquadratic (MQ) function for interpolation [37].  

Multiquadric function was originally used to approximate geographical surfaces and 

gravitational and magnetic anomalies.  Recently, MQ response surface has been used 

for design optimization applications.  Essentially MQ response surface models are 

multidimensional interpolation functions.  One basis function is chosen for each data 
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point (hence MQ is a special case of approximations that use radial basis functions).  

Thus MQ models are very flexible; they can be built with limited available data. 

Hardy’s work was largely unknown to mathematicians until the publication of 

Franke’s review paper (Franke, 1982) [30].  Franke reviewed many methods and 

concluded that, “in terms of fitting ability and visual smoothness the most impressive in 

the tests is the Multiquadric method, due to Hardy”.  More recent review papers by 

McDonald et al. [59] and Jin et al. [40] have indicated that MQ can also be used as a 

basis for constructing multivariate response surface models.  However, despite MQ’s 

excellent performance, it contains a parameter, often referred to as the shift (or smooth 

or shape parameter), whose choice can greatly affect the accuracy and performance of 

the approximation.  By adjusting the shift parameter, the accuracy of the approximation 

can be considerably improved.  It has been found by Kansa [44] that by increasing the 

shift parameter, the root mean square (RMS) error of the fit dropped to a minimum and 

then grew rapidly thereafter.  Thus there exists an optimal shift parameter that will yield 

minimum RMS for the fitted function.  Methods for computing the optimal shift 

parameter have been reported by Wang [88, 89], so as to take the most advantage of the 

excellent performance of the MQ approximation. 

In search for better basis functions for approximation, many mathematicians 

have proposed the use of radial basis function for multivariate interpolation of scattered 

data [15].  Radial basis function approximation schemes have also been linked to neural 

network by Girosi et al [33].  In that work, Tikhonov’s regularization theory [86] is 

combined with RBF to produce more robust approximation than RBF alone.  It is noted 
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that regularization network has also been related to support vector machines (SVM) in a 

recent paper by Evgeniou et al [25].  A recent study shows that the performance of 

SVM regression is similar to the best-tuned Artificial Neural Network (ANN). 

4.2 Regularized Multiquadric 

Radial basis functions (RBF) have extensively been used for interpolation 

regression due to their universal approximation properties and simple parameter 

estimation.  In 1988, Broomhead and Lowe [14] introduced the RBF networks into the 

neural network literature.  This is because in applications where one has to deal with 

many thousands of noisy data points, an approximate solution to the data is more 

desirable than an interpolate one.  Broomhead and Lowe proposed to reduce the number 

of basis functions in order to reduce the computational complexity.  The RBF network 

has widely been used in many machine learning applications such as the regularized 

radial basis function network (RRBFN) and support vector machines (SVM).  Given the 

following data base (xi, yi), i=1 to N, the approximation of the RBF takes form: 

∑
=

=
N

i
iiiCy

1
),()( xxx φ              4.1 

where xi is the ith input vector, N is number of training data, x is the coordinates of 

evaluation points.  Any radial symmetric radial basis function (RBF) can be chosen as a 

basis in Equation 4.1.  In this research, we propose to use the Multiquadric (MQ) radial 

basis function: 

hii += 2rφ         4.2 
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Note that in the foregoing equation, 22
ir xx −= , and h is known as the shift or 

smooth parameter.  The value of shift parameter h, controls the curvature of the 

multiquadric approximate functions, is generally chosen as smaller than the average 

spacing of the sampling points.  The estimation of the value of the shift parameter is 

crucial, several researchers [1, 78] have proposed to use the bootstrapping techniques, 

which are normally used in statistics for accuracy estimation, and are related to Monte 

Carlo methods, to estimate the shift parameter in a quasi-optimal way.  The basic idea 

of the approach is to resample a relatively small set of data to increase its statistical 

significance.  In this case, the cross-validation or so-called ‘leave-one-out’ technique 

can be employed to obtain the associated characteristic interpolation error between the 

true function and MQ approximate function.  Namely, compute the cross-validation root 

mean square (CVRMS) error to assess model accuracy by removing each sample point 

used to fit the model one at a time from the data set, rebuilding the model without the 

sample point, and computing the difference between the predicted value and actual 

value at the sample point: 

( )

N

yy
CVRMS

N

i
ii∑

=

−
= 1

2ˆ
 

where N  is the number of sample points, iy  is the point currently not in the data set, 

and iŷ  is the predicted value. 

The unknown interpolation coefficients iC  can be determined by minimizing 

the 2L  norm  
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or in matrix form as: 

fAC =               4.4 

where 

ji xxA −=          4.5 

{ }N
T CCC ,,, 21 K=C         4.6 

{ }N
T fff ,,, 21 K=f         4.7 

Note that the matrix A is always invertible, provided that the data are not 

redundant.  However, in the situation where the matrix A is singular, the regularization 

theory in the RRBFN can be used to resolve the ill-posed problem.  The basic idea of 

regularization, in the multi-dimensional hyper-surface reconstruction problem, is to 

stabilize a solution by means of some auxiliary nonnegative functional using prior 

information of the solution as system information.  In RRBFN, the weights Ci are 

trained by solving the following constrained minimization problem.  Namely: 

Find c to minimize 

CCεε TT rf
2
1

2
1

+=             4.8 

Subject to the constraint 

YACε −=        4.9 
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where ε  is the error vector and Y is the known data.  The elements of matrix A take the 

form ),( ijji xxA φ= .  The solution of this problem can be obtained by Lagrange 

Multiplier method.  That is: 

( ) YAIAAC TT r 1−
+=           4.10 

where r is the so-called regularization parameter.  A direct mathematical derivation of 

Equation 4.10 is provided in Appendix A.  Note that the foregoing approach leads to 

interpolation when r  approaches to zero. 

In modern machine learning terminology, the first term of Equation 4.8 is 

known as the empirical error (or standard error) and the second term is known as the 

structural error.  The empirical error controls the closeness (minimum of mean square 

error) of the trained data while the structural error controls the smoothness of the 

functions.  Thus, in RRBFN, the network is trained to balance between the empirical 

error and structural risk.  Note that for given h, r, the training is the solution of a system 

of equations.  It should be noted that the approach is essentially the regression by least 

square using Tikhonov’s regularization theory.  Regularization theory provides a 

mathematical framework, which allows estimating of the optimal weights and 

smoothing of the function encoded in the radial basis function network to be controlled 

via the regularization term (or structural error).  It has been found through numerical 

experiments that even with a very small regularization parameter r , the proposed 

approach produces a much smoother (i.e. smaller coefficients c) function than a strict 

interpolation approach with no adverse effect on the accuracy. 
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For the MQ function, it is well known in the literature that the parameter h has a 

large effect on the performance of the RBF approximation.  An efficient method to 

optimize the smooth parameter h for MQ interpolation model has been developed by 

Wang [88, 89]. 

4.3 Proposed Algorithms for Crashworthiness Optimization 

Two effective simulation-based optimization algorithms that can be used to 

solve for design optimization of large-scale, computationally expensive systems are 

developed and studied in this dissertation.  The solution approach for crashworthiness 

design optimization is described in the following. 

4.3.1 Sequential Regularized Multiquadric (SRMQ) 

In this proposed method, the initial response surface model is constructed using 

the Regularized Multiquadric (RMQ) approximation based upon simulation results at a 

set of the sampling points that has the uniform-space filling property.  In the 

implementation of this dissertation, we select the quasi Monte-Carlo Sampling (QMC) 

using the Halton Sequence.  Note that other space-filling methods such as LHS, Sobol 

Sequence, Faure Sequence etc. can also be applied to determine the uniform distributed 

sampling points.  The regression analysis is then perfomed on the objective and 

constraint responses to generate the RMQ models.  The nonlinear optimization process 

is performed based on the approximate functions using a Sequential Quadratic 

Programming (SQP) algorithm to obtain a predicted optimal design satisfied the 

constraint requirements.  The crash finite element analysis (e.g. LS-DYNA) is evaluated 

at the predicted design to validate the response attributes (such as structural weight, 
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internal energy etc.).  The convergence tolerance is checked for each of the design 

iterations.  The DOE matrix is augmented by design points obtained in the optimization 

process.  The process is repeated sequentially until the solution converges.  Figure 4.1 

shows the flow chart of the SRMQ optimization algorithm. 

 

Convergence
Check

Add new design Xopt to
DOE matrix

STOP
Yes

No

Conduct DOE sampling (N+1)
(e.g. Halton Sequence, LHS etc.)

Conduct crash analysis
(e.g. LS-DYNA) & extract responses

Perform Regularized MultiQuadric
Regression for Rc(X) 

Find X* to optimize coarse model Rc(X) 
subject to constraints based on Regularized MQ regression

Perform crash analysis
to predict responses at X*, i.e. Rf(X*)

 

Figure 4.1 Flow Chart for SRMQ Optimization Algorithm 
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4.3.2 Sequential Regularized Multiquadric with Output Space Mapping 

The Sequential Regularized Multiquadric with Output Space Mapping 

(SRMQ/OSM) algorithm contains two procedures that are repeated iteratively to solve 

for the design problem.  The first procedure is exactly same as the one described in the 

foregoing SRMQ algorithm.  After performing the SRMQ, an Output Space Mapping 

(OSM) is performed to fine-tune the approximate RMQ functions.  The basic concept of 

OSM is based on the residual misalignment when approaching to the optimal design.  

The OSM aims at establishing a mapping O  between the output mapped surrogate 

response oR  and the RMQ model cR .  The mapping can be expressed in the following 

form as: 

εXRR Δ+= )(co         4.11 

where  

( ) ( )** XRXRε cf −=Δ            4.12 

εΔ  is the residual between the RMQ and finite element validation responses at the 

predicted optimal design *X obtained in the SRMQ procedure.  The optimization 

process is then performed again on the ‘calibrated’ approximate functions, namely: 

( )( )
⎭
⎬
⎫

⎩
⎨
⎧= XROX

X copt
opt

minarg              4.13 

The convergence tolerance is checked in each of the iterations.  The DOE 

matrix is augmented by the designs obtained in both steps.  The process is repeated 

sequentially until the solution converges.  Figure 4.2 shows the flow chart of the 

proposed SRMQ/OSM optimization algorithm. 
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Figure 4.2 Flow Chart for SRMQ/OSM Optimization Algorithm 

 



 

 97

4.4 Numerical Examples 

4.4.1 One Dimensional Function 

Without loss of generality, an unconstrained optimization problem is presented 

in this section using the proposed SRMQ and SRMQ/OSM methods to find the optimal 

solution of an one-dimensional nonlinear function.  The optimization problem is: 

Find x  to: 

Minimize:  2)sin(2 xxy −−=  

Side constraints: 60 ≤≤ x  

The optimal design found by the direct gradient-based optimization method is 

9132.4* =x , and the corresponding function value is 179.25min −=y .  The values are 

used as the exact solution to compared with the proposed methods.  Figure 4.3 shows 

the design history of the SRMQ/OSM method.  The sequential optimization process 

starts with a linear function by selecting two (N+1, N=number of design variables=1) 

DOE sampling points at 5.5,5.0=x  (as shown in Figure 4.3 (a) and are represented by 

green square dot).  For higher dimensional problems, the DOE sampling points can be 

generated by any “space-filling” DOE methods as discussed in Chapter 2.  The 

regularized Multiquadric regression is used to generate an approximate function based 

upon these two sampling points initially.  The Sequential Quadratic Programming 

(SQP) is used to find a predicted optimal design on the approximate function.  The 1st 

iteration design is found to be at ( ) 61 =x  (upper bound), as shown in Figure 4.3(a).  

Note that the design is located on the boundary since the process starts with a linear 
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function.  A validation evaluation, ( )1y , is then performed at this predicted optimal 

design and the convergence tolerance is subsequently checked.  In the OSM process, a 

correction factor based upon the residual misalignment is evaluated at the predicted 

design ( )1x  and is added to the approximate function to find the next predicted design in 

the Output Space Mapping (OSM) process.  The predicted design ( ) ( )( )11 , yx  is then 

added to the DOE and response matrices to update the approximate function.  The 

process is repeated iteratively.  Note that the predicted design found by the OSM 

method for this one-dimensional unconstrained example is same as the one found by the 

Sequential Regularized Multiquadric (SRMQ).  Figures 4.3(b) to Figure 4.3(f) show the 

design history for iterations 2 to 6 respectively.  It is observed that the predicted design 

quickly converges to the optimal design after 4 design iterations.  Note that the RMQ 

approximate function is evolving from a linear function into a nonlinear function as the 

sequential optimization process proceeds by including the predicted optimal design. 

The original function contains two local minima.  In order to test if the proposed 

SRMQ/OSM method is able to find the global optimum, we purposely select the initial 

DOE sampling points at 4,2=x  so that the optimization process starts from the lower 

bound in the second case study.  Note that the predicted optimal design at the 1st 

iteration is at ( ) 01 =x , which is separated by a local minimum (around x=2) as shown in 

Figure 4.4(a).  In the 2nd iteration, the predicted design found by the proposed method is 

able to “leap over” the local minimum and quickly converges to the global optimum 

after 4 design iterations.  Note that the SQP algorithm to solve for the optimization 
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process is a local optimizer.  Figure 4.4(e) shows the design history after seven design 

iterations.   

Based on the numerical study of the two cases, it is shown that the proposed 

SRMQ/OSM method indeed is able to find the global optimum using a fairly small 

number of function evaluations.  It is noted that the solution obtained by SRMQ/OSM 

and SRMQ is the same for this unconstrained problem since the objective function is 

simply sifted by a constant calculated from the misaligned residue in each of the design 

iterations.  The effect of OSM can be shown for the constrained optimization problems.  

Figure 4.5 shows the correction factor (or residual error) for these two cases.  In both 

cases, the correction factor is reduced rapidly after four design iterations, indicated the 

solution also converges quickly accordingly. 

Our numerical experiment also indicates that the SRMQ/OSM solution will be 

‘stranded’ on the lower bound or upper bound of the design domain if all the initial N+1 

sampling points are located at the boundary (i.e. 6,0=x  for this example).  This is 

because the initial RMQ function has zero a correction factor on the design domain 

boundary.  In this situation, shifting the sampling points away from the boundary or 

adding additional initial sampling points will resolve the issue. 
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(e)        (f)  

Figure 4.3 One Dimensional Problem Using SRMQ/OSM Optimization 
Algorithm (Sampling Points: 5.1,5.0=x ): (a) 1st Iteration, (b) 2nd Iteration, 
(c) 3rd Iteration, (d) 4th Iteration, (e) 5th Iteration, (f) 6th Iteration 
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Figure 4.4 One Dimensional Problem Using SRMQ/OSM Optimization 
Algorithm (Sampling Points: 6,4=x ): (a) 1st Iteration, (b) 2nd Iteration, 
(c) 3rd Iteration, (d) 4th Iteration, (e) 7th Iteration 
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(a)        (b)  

Figure 4.5 Correction Factor for One Dimensional Problem Using SRMQ/OSM  
Optimization Algorithm: (a) 5.1,5.0=x , (b) 6,4=x  

 

Table 4.1 Parametric Study for Prediction Error using Different Regularization  
Parameter r 

r log(r ) Xopt Y Abs. Error %

1.0E-06 -6.0 4.9529 -25.139 0.158

5.0E-06 -5.3 4.9497 -25.146 0.133

1.0E-05 -5.0 4.9425 -25.157 0.086

5.0E-05 -4.3 4.9065 -25.178 0.004

1.0E-04 -4.0 4.8944 -25.170 0.035

1.0E-03 -3.0 4.8823 -25.155 0.095
4.9132 -25.179 N/AExact:  
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Figure 4.6 Logarithm Regularized Parameter vs. Absolute Error Percentage 

It is shown in Equation 4.8 that the structural error contains a regularization 

parameter r .  This value needs to be selected properly since it controls the smoothness 

of the multiquadric radial basis function to be used in the optimization process.  To 

better understand the numerical behavior, we conduct a parametric study by selecting a 

set of regularization parameters and studying the error between the exact and predicted 

values.  Table 4.1 and Figure 4.6 show the predicted error percentage with different 

regularization parameters r .  Note that the x-axis of the regularization parameter in 

Figure 4.6 is in logarithm scale.  It is shown that the absolute error percentage tends to 

reduce and then increase thereafter as r is decreasing.  It is obvious that an optimal 

regularization parameter exists which controls the smoothness and accuracy of the 

predicted function.  Note that as r  is approaching to zero, the regularized term becomes 

very small and the approach leads to interpolation.  In the situation where too many 
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close sampling points are selected in the optimization process, the interpolation 

becomes ill conditional and the numerical problem starts to emerge.  A more systematic 

way of finding the optimal r  is to perform the cross-validation by dividing the data into 

k subsets of approximately equal size.  The regularized Multiquadric surrogate model is 

constructed k times, each time leaving out one of the subsets from training, and using 

the omitted subset to compute the error measure of interest, such as the mean square 

error.  In most cases, a small positive (but not to be zero) r  is preferable. 
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4.4.2 Two Dimensional Function 

The proposed SRMQ/OSM method is employed to solve a two-dimension 

problem of the nonlinear peak function as shown in Figure 4.7.  The unconstrained 

optimization problem is: 

Find ( )yx,  to: 

Minimize:  ( ) ( )( ) ( ) ( )( )222222 15312

3
1

5
1013),( yxyxyx eeyxxexyxz ++−+−++− −⎟

⎠
⎞

⎜
⎝
⎛ −−−−=  

Side constraints: 33 ≤≤− x  and 33 ≤≤− y  

It is evidenced from the surface plot of Figure 4.7 that peak function contains 

two local minima.  In order to investigate if the proposed method is able to find the 

global optimal design, the initial design is selected at a point that is close to the local 

minima (not the optimal design).  The initial DOE sample data is selected to be linear as 

N+1 (N=2).  Figures 4.8 and 4.9 show the contour plot of the design history for 

3101 −×=r  and 6101 −×=r  respectively.  Since the SRMQ starts with linear regression, 

the design for the first few design iterations (2 to 4) falls on the design domain 

boundary.  For 3101 −×=r  as shown in Figure 4.7, the final design seems to be stranded 

at )9941.1,9434.0( − , whereas the exact optimal solution is )6255.1,2283.0( − .  As r  is 

reduced to 6101 −× , a better solution to the optimal design is found at )6562.1,3218.0( − , 

as shown in Figure 4.9.  When the sample data is increased to 4 (a better starting RMQ 

function), the solution tends to converge much faster (8 iterations as compared to 10 

iterations for sample data of 3), as shown in Figure 4.10.  The final solution 

)6677.1,2281.0( −  falls even closer to the optimum.  For all the 3 cases, the proposed 
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SRMQ/OSM method is able to “leap over” the local minima and tends to converge to 

the global optimal design.   

 

Figure 4.7 Surface Plot of the Two Dimensional Peak Function 
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Figure 4.8 The Peak Function Using SRMQ/OSM (3 Sampling Points, r=1×10-3) 
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Figure 4.9 The Peak Function Using SRMQ/OSM (3 Sampling Points, r=1×10-6) 
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Figure 4.10 The Peak Function Using SRMQ/OSM (4 Sampling Points, r=1×10-6) 
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4.5 Rectangular Tube Crush Optimization Problem 

4.5.1 Finite Element Model 

A rectangular tube crush model is developed using the explicit nonlinear finite 

element code, LS-DYNA, to demonstrate the Crashworthiness optimization using the 

proposed SRMQ and SRMQ/OSM algorithms as well as to compare with the gradient-

based direct optimization technique.  LS-DYNA is a general purposed nonlinear explicit 

finite element commercial code developed by the Livermore Software Technology 

Corporation (LSTC).  Figure 4.11 shows the LS-DYNA model of the rectangular tube.  

The width, height and length of the tube are 110 mm, 90 mm and 460 mm, respectively.  

A 800 Kg rigid body moving at 20 mph is attached to each node of the rear end of the 

tube.  The rectangular tube, along with lumped-mass rigid body, impacts onto a rigid 

wall barrier with an initial impact velocity.  The master-slave contact algorithm is 

defined between the rectangular tube (serves as the slave part) and the wall (serves as 

master part).  The self-contact algorithm is defined for each of the 4 parts of the 

rectangular tube to prevent the node from penetrating or intersecting each other after 

impact.  The finite element model contains 3,197 shell elements and 3,261 nodes.  The 

crush trigger or crush initiator modeling is included in the FE model to initiate the 

buckling load to avoid high initial peak load.  The critical time step according to the 

critical element size for this model is 0.52 μsec.  The simulation time is selected to be 

20 msec.  The computational time is 5 minutes and 30 seconds running on an IBM 

Intellistation with 2.8 GHz speed using 1 CPU.   
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Figure 4.11 LS-DYNA Finite Element Model of the Rectangular Tube Crush Problem 

4.5.2 Problem Definition 

The energy-absorbing mechanism of this rectangular tube is mainly the axial 

collapse mode.  The main thrust of the design problem is to improve the impact 

performance by increasing the internal energy while reducing or maintaining the initial 

crush peak force and structural weight.  Four thickness design variables are selected as 

shown in Figure 5.  The optimization problem is formulated as: 
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Find the thickness design variable xi (i=1~4) to 

Maximize:  IE 

Subject to:  g1: W ≤ 3.1 kg 

   g2: IE2ms ≤ 850 J 

   g3: IE3 ≤ IE4 

Side constraints: 0.7 ≤ xi ≤ 3.0 

where 

  IE: Total internal energy of design variable components 

  W: Structural weight 

  IE2ms: Internal energy in the first 2 msec 

  IE3: Internal energy of design variable component 3 

  IE4: Internal energy of design variable component 4Note that we 

impose 15% structural weight penalty on constraint g1.  Constraint g2 is imposed to 

control the initial peak force within the peak value of the baseline model.  Constraint g3 

is used to manage the energy distribution so that the progressive collapse mode will not 

initiated at the rear end of the rectangular tube.   

4.5.3 Numerical Results 

To study the effectiveness and robustness of the proposed methods, five 

methods are employed to solve the optimization design problem as shown previously.  

The methods are Sequential regularized Multiquadric with output space mapping 

(SRMQ/OSM), SRMQ, Implicit Space Mapping (ISM), Direct optimization, Hybrid 

method (coupling of SRMQ/OSM and direct optimization methods). 
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While the mathematical formulation of the ISM method will be discussed 

further in Chapter 6, it is presented herein to compare with other methods.  Figure 4.12 

shows the design history for all the five methods.  All the methods achieve feasible 

design with no constraint violations.  It is observed that the SRMQ/OSM outperforms 

other methods in terms of the objective function (internal energy).  The SRMQ/OSM 

solution tends to oscillate.  The SRMQ method also oscillates at the early stage but 

tends to behave much smoother as the solution starts to converge.  As discussed earlier, 

the crash functions are very noisy and since the analytical sensitivity analysis for 

explicit finite element analysis is still not available, finite difference method is used to 

compute the sensitivity in the direct optimization method.  In this work, the step size of 

the finite difference is chosen to be 5%.  It is shown in Figure 4.12 that the direct 

method tends to converge after 11 design iterations but the design is not as good as the 

SRMQ/OSM and SRMQ.  Among the methods, the ISM approach seems to perform 

poorly mainly due to the inaccurate sensitivity computed by the finite difference 

method.  In the last approach, we employ the hybrid method by switching the 

SRMQ/OSM method to the direct gradient-based optimization method starting from the 

SRMQ/OSM optimal design found in 18 design iterations.  It is shown by the design 

history that the direct gradient-based method is not able to find a better solution than the 

SRMQ/OSM. 
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Figure 4.12 Design History Comparisons for Objective Function Using SRMQ,  
SRMQ/OSM, ISM, Direct and Hybrid Optimization Methods 

 

The constraint design history and design variable history are shown in Figures 

4.13 to 4.15 and Figures 4.16 to 4.17, respectively.  Note that the constraint g2 (IE2ms) is 

violated at the 1st design iteration for all methods but is corrected afterwards.  No 

constraint is violated at the final design for all methods.  The constraint g3 of the 

SRMQ/OSM (Figure 4.13(a)) tends to oscillate more than the SRMQ and direct 

gradient-based methods. 
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Figure 4.13 Design Constraint History Using SRMQ/OSM Optimization Method 
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Figure 4.14 Design Constraint History Using SRMQ Optimization Method 
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Figure 4.15 Design Constraint History Using Direct Optimization Method 
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Figure 4.16 Design Variable History Using SRMQ/OSM Optimization Method 
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Figure 4.17 Design Variable History Using SRMQ Optimization Method 
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Figure 4.18 Design Variable History Using Direct Optimization Method 
 

Figure 4.19 shows the time history for the rigid wall for all the five methods, 

respectively.  The initial peak force is successfully controlled to be the same or less than 

the baseline model by imposing a constraint in the optimization process.  The time 

history for the internal energy is shown in Figure 4.20.  The SRMQ/OSM outperforms 

other methods with the internal energy increased by 62.3% (9,140 J) as compared to the 

baseline (5,633 J).  The SRMQ and direct method come in second place and third place 

with internal energy at 8,614 J (+52.9%) and 8,343 J (+48.1%), respectively.  The ISM 

method performs poorly with internal energy at 7,636 J (35.6%). 
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Figure 4.19 Rigid Wall Force Comparisons Using SRMQ, SRMQ/OSM, ISM, 
Direct and Hybrid Optimization Methods 
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Figure 4.20 Internal Energy Comparisons Using SRMQ, SRMQ/OSM, ISM, 
Direct and Hybrid Optimization Methods 
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It is worthwhile to note that the total number of finite element analysis required 

for the direct gradient-based method is 76 (including finite difference and line search 

computations).  While the SRMQ and SRMQ/OSM require 22 (5+17) and 23 (5+18) 

analyses, respectively.  Note that the SRMQ/OSM starts with a linear RMQ function 

that requires 5 (N+1, N=number of design variables=4) finite element analyses.  

Therefore, the SRMQ and SRMQ/OSM methods reduce the total computational cost by 

about 70% for this rectangular tube crush problem.  Note that the computational cost 

reduction would be more obvious for problems with large number of design variables. 
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CHAPTER 5 

LARGE-SCALE SYSTEM OPTIMIZATION USING 
SRMQ/OSM ALGORITHM 

 

This section presents the applications of the developed SRMQ and SRMQ/OSM 

algorithms for two large-scale system optimization problems.  The first problem is an 

aerospace industry application: helicopter skid landing gear hard landing optimization.  

The second problem is an automotive industry application: full vehicle frontal impact 

optimization. 

5.1 Helicopter Skid Landing Gear Hard Landing Optimization 

5.1.1 Design Considerations 

When designing helicopter skid landing gear, the principal design criteria 

considered included the gear’s energy absorption capability; its ability to provide 

adequate ground clearance for both under-fuselage maintenance and access to the 

aircraft’s structure and stores during static (“on-the-deck”) and dynamic landing 

conditions; its capability to accommodate ground handling of the aircraft; and its ability 

to facilitate loading of the aircraft into cargo aircraft for air transport.  Primary design 

considerations include the redesigned gear’s impact on the aircraft’s backup structure; 

its impact on reliability, maintainability, operational suitability, and field durability; 

and, of course, its impact on aircraft cost, weight, and performance.   

 



 

 120

5.1.1.1 Crashworthiness Considerations 

The design landing condition, which applies to the aircraft’s basic structural 

design gross weight, requires rotor lift to equal the aircraft’s weight during the landing 

condition.  For aircraft with skid gear, this design condition stipulates that only the 

energy-absorbing crossbeams can yield during this landing impact condition.  All other 

landing gear and airframe structure must remain unyielded, thereby allowing the skid 

gear to be the only piece of “sacrificial structure” requiring replacement after a landing 

at 12 ft/s or less.  Careful design of the skid gear’s structural properties is required to 

optimize energy absorption within the available stroke distance without introducing 

excessively large loads into the aircraft’s backup structure, which would result in 

increased structural weight. 

Other primary landing conditions include the capability for the aircraft to 

perform a run-on or sliding landing while simultaneously impacting the ground at 12 

ft/s, as might occur during autorotation landings.  Another is the capability for the 

aircraft to perform a landing with a side loading force imposed on the skids, which 

could occur when performing a vertical landing with rolled attitude.  An additional new 

design landing condition imposed upon the aircraft is the requirement to perform a 12-

ft/s landing where one of the gear’s skid tubes is restricted from deflecting, as might be 

the case when the aircraft lands in unimproved landing sites where obstructions such as 

rocks, fallen trees, stumps, or uneven ground could effectively constrain lateral 

deflection of one skid tube.  The significance of this design condition is that it does not 
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allow the crossbeams on the restricted side of the aircraft to freely deflect and absorb 

the energy of the landing impact, as they would do when they are unrestrained. 

5.1.1.2 Ground Resonance Frequency Considerations 

Traditionally, the skid gear crossbeams are generally hollow with circular, 

symmetric cross sections.  These symmetric-section crossbeams are designed to 

optimize the attenuation of the vertical energy from hard landings as well as to provide 

adequate fatigue life.  In addition, the skid gear must be designed to avoid ground 

resonance, which requires careful tailoring of its stiffness.  The design of the 

crossbeam’s cross section has a dominant impact on the gear’s energy absorption, as 

well as on the overall stiffness of the skid gear.  With circular cross sections, therefore, 

the two design criteria − energy absorption and stiffness − are coupled. 

To avoid ground resonance instability, the helicopter must maintain positive 

damping throughout the entire rotor speed range.  Some helicopters employ skid-gear 

dampers for avoidance of ground resonance, which effectively decouples the frequency 

placement requirement from the hard landing energy absorption requirement.  However, 

such devices are generally heavy and costly, and they require maintenance.   

A skid gear with a circular cross section that provided a stiff natural frequency 

placement with acceptable ground resonance and vertical energy-absorption characteristics 

would be heavier than required to meet the F/A stiffness requirements for ground 

resonance.  Therefore, a crossbeam with a noncircular cross section is introduced to 

optimize the various design requirements with minimum weight.  Decoupling the 

directional stiffnesses of the crossbeams allows the ground resonance frequency 
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placements to be optimized, while retaining the vertical-stiffness properties essential for 

optimizing the required vertical energy attenuation and fatigue life.  Accurate modeling 

of these rectangular crossbeams is required to properly analyze attachment-fitting loads 

during dynamic landings. 

5.1.2 Finite Element Model 

The proposed SRMQ and SRMQ/OSM methods are employed to optimize a 

genetic helicopter landing gear subjected to the level landing impact requirements.  The 

LS-DYNA finite element model is shown in Figure 5.1.  To accurately simulate the 

structural response, the tapered, hollow box-section crossbeam of the skid landing gear 

was divided into beam elements approximately 1 inch (2.5 cm) in length.  While the 

aspect ratio of the elements fell outside of the accepted guidelines for classic beam 

theory, this level of fidelity was required to accurately capture the tapering and curved 

geometry of the crossbeam.  Dimensional properties of the elements were assigned 

based on data extracted from the CAD geometry and modified using Equations 5.1 and 

5.2.  The crossbeams were modeled as Hughes-Liu nonlinear beam elements with full 

cross section integration.  The Hughes-Liu beam element, which is based on a 

degenerated brick element formulation, is appropriate for dealing with finite strains in 

many practical applications.  This type of element was selected for its robustness and 

computational efficiency.  In LS-DYNA, hollow cross section properties are calculated 

using eight integration points, based on the inner and outer dimensions provided in the 

input.  A total of 204 beam elements were utilized to model the forward and aft 
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crossbeams.  Orientation for the elements was provided by a series of massless nodes 

located in the primary axis of the cross section plane for each section. 
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The skid tubes were modeled using a Belytschko-Schwer resultant beam 

formulation with constant crosssectional properties.  A total of 80 beam elements was 

utilized to model behavior of the circular cross section of the left and right skid tubes.  

Stiff beam elements were employed at the attachment fittings, connected between the 

fuselage and crossbeams, to provide an analytical entity for recovering the vertical load 

applied on the attachment fittings during impact.  Spotweld elements were employed to 

represent the saddles as a rigid link between the crossbeams and skid tubes.  A 

piecewise linear representation of the elastic–plastic response of 7075-T26 aluminum 

alloy was applied to both the crossbeams and skid tubes in the finite element model to 

accurately represent the material behavior of the structure. 

In the finite-element model, the helicopter fuselage was represented by a rigid 

body whose center of gravity (cg) location, effective drop weight, and mass moments of 

inertia were defined at a single node location.  The fuselage was connected to the 

attachment fittings of the crossbeams through a set of four rigid links.  The steel impact 

surface was modeled as a rigid panel of 144 shell elements with constraints imposed on 
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the translational and rotational directions.  Dynamic and static frictional coefficients 

were used to model the sliding contact of the lower surface of the skid tubes and the 

impact surface. The friction coefficient in LS-DYNA® is calculated using Equation 5.3: 

( ) relV
dsdc efff βμ −−+=      5.3 

where df  is the dynamic coefficient of friction, sf  is the static coefficient of friction, β  

is the exponential coefficient of decay, and relV  is the relative velocity of the surface in 

contact. 

Fuselage represented by rigid 
boy with defined mass, moment 

of inertia and cg location

Tapered hollow rectangular 
crossbeam represented by

non-linear Hughes-Liu beam element

Circular skid-tube represented by 
Belytschko-Schwer resultant 

beam element

12 ft/s Impact 12 ft/s Impact 
velocityvelocity

Master-slave penalty contact 
between skid tube and rigid surface

Rigid surface represented by 
4-node shell element

 

Figure 5.1 Helicopter Skid Landing Gear LS-DYNA Finite Element Model 
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5.1.3 Problem Definition 

The design problem is to size the tapered hollow rectangular cross section of the 

crossbeams, as shown in Figure 5.2, to maximize design objective function and to meet 

the specified crashworthiness requirements.  For simplicity, the actual crossbeam 

hardware, which contains rounded corners, is modeled using a pure (without rounded 

corners) hollow rectangular nonlinear beam element.  The flange thickness and web 

thickness of the beam element are calibrated carefully at the expense of cross section 

area to match the area moment of inertias are matched.  To ensure the manufacturability 

of the optimum design, the scale factor of the cross-sectional geometry is chosen as the 

design variables to scale the flange thickness and web thickness of the baseline model.  

The design components are focused on the crossbeams since they are the main 

contributor to absorb most of the strain energy through the plastic bending deformation 

during the standard hard landing scenarios (e.g. level landing, run-on landing, roll 

attitude level landing, and level landing with sideward obstruction).  As shown in 

Figure 5.2, each side of the fwd and aft crossbeams is divided into two sections where 

each section contains 20 nonlinear beam elements.  Due to the symmetry of the 

crossbeams, there are total 4 sections to be included in the design domain.  With each 

element contains four design variables ( d , w , ft , wt ), the total number of design 

variables in this skid landing gear optimization problem is 16.   
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Figure 5.2 Design Variables for Hollow Rectangular Cross-Section Crosstube 

The optimization problem is to increase the structural energy absorption 

efficiency while satisfying the attachment-fitting peak force and peak deformation 

requirements.  Since the internal energy and structural weight are usually coupled, the 

Specific Internal Energy (SIE) is used as the objective function in the design 

optimization formulation.  The SIE is defined as the ratio of the internal energy over 

structural weight.  The optimization problem is formulated as: 

Find id , iw , iwt , 
ift  (i=1~4) to 

Maximize:  SIE 

Subject to:  0
fwdfwd ff ≤  

   0
aftaft ff ≤  

   0
fwdfwd dd ≤  

0
aftaft dd ≤  



 

 127

where: 

fwdf , aftf : Fwd and aft crossbeam peak force 

fwdd , aftd : Fwd and aft crossbeam peak deformation 

0
fwdf , 

0
aftf : Fwd and aft crossbeam peak force of baseline model 

0
fwdd , 

0
aftd : Fwd and aft crossbeam peak deformation of baseline model 

DOE Domain
Design Domain

 

Figure 5.3 Design Domain and DOE Design Sampling for Design Variables 10  
and 11 Generated by Halton Sequence 

The SRMQ/OSM starts with N+1 Halton Sequence sample runs, where N=16 is 

the total number of design variables.  Namely a total of 17 LS-DYNA simulations are 

performed initially according to the DOE design points constructed by the Halton 

sequence.  To ensure the sampling points cover the boundary domain, we use ±30% of 

the nominal design in selecting the uniformly distributed sampling points using the 

Halton Sequence DOE method.  In the SRMQ/OSM optimization process, we reduce 
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the design domain to be ±25%.  Figure 5.3 depicts the schematic of the DOE domain 

and design domain for variables 10 and 11. 

5.1.4 Numerical Results 

Two methods of the proposed sequential optimization methods are studied for 

the helicopter skid landing gear crashworthiness optimization problem.  They are 

SRMQ and SRMQ/OSM.  As discussed in Chapter 4, the SRMQ method employs the 

RMQ function sequentially in the optimization process while the SRMQ/OSM method 

incorporates the OSM technique to fine tune the RMQ functions.  Figure 5.4 shows the 

design history of the objective function, SIE, using both SRMQ and SRMQ/OSM 

methods.  Note that all the values in this study are normalized for proprietary protection.  

Although the numbers shown herein do not represent any physical meaning, they do not 

lose the insight in showing the effectiveness of the proposed optimization method.  

After 4 design iterations, the SIE of using SRMQ/OSM and SRMQ is increased by 

13.1% and 12.3%, respectively, as compared to the baseline design.  The improvement 

of the SIE is mainly contributed by the structural weigh reduction, which is reduced by 

15.8 lb and 14.3 lb respectively.  Note that in the SRMQ/OSM method (as shown in 

dash line), iterations 1 and 3 represent the design obtained by the SRMQ while 

iterations 2 and 4 represent the design obtained by the OSM method.  Iteration 0 

represents the initial baseline design of the skid landing gear model.  Both methods in 

Figure 5.4 use the same number of finite element analyses.  While higher SIE represents 

better energy absorption efficiency, the design obtained by the SRMQ/OSM method is 

slightly better than the one obtained by the pure SRMQ method. 
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Figure 5.5 shows the design history of the normalized constraint functions for 

fwd and aft forces and deformations.  The design starts with a feasible design.  The aft 

deformation constraint is violated in the 1st iteration.  After four iterations, both 

methods converge to a feasible design with no constraint violation.  Note that the aft 

deformation is an active constraint function. 
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Figure 5.4 Objective Function Design History for Helicopter Skid Landing  
Gear Optimization Problem 
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Figure 5.5 Constraint Function Design History for Helicopter Skid Landing  
Gear Optimization Problem 

 

Figure 5.6 shows the normalized fuselage CG acceleration of the initial baseline 

and optimum designs.  The optimum designs obtained by both methods (both are 

similar) exhibit better impact performance in terms of energy absorption, peak 

acceleration, onset rate, and pulse duration.  Namely, the normalized peak acceleration 

is reduced from 1.0 (initial design) to 0.6 (optimum design).  The pulse duration is 

increased from 230 msec to 380 msec approximately.  The onset rate of the optimum 

design is decreased.  The energy absorption, even though it is not very obvious from the 

figure, is increased by about 6%.   
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Figure 5.6 Normalized Fuselage CG Acceleration (Initial vs. Optimum) 

The normalized attachment fitting force of the fwd and aft crossbeams is shown 

in Figures 5.7 (a) and 5.7 (b), respectively.  The attachment fitting force is similar to the 

fuselage cg acceleration, evidenced by the fact that force is proportional to the 

acceleration.  The normalized fwd peak force is reduced from 1.0 to 0.528 and 0.530 

using SRMQ and SRMQ/OSM, respectively.  The normalized aft peak force is reduced 

from 1.27 to 0.774 and 0.772 using SRMQ and SRMQ/OSM, respectively.  Figures 5.8 

(a) and 5.8 (b) show the normalized crossbeam deformation of the initial baseline model 

and optimum design for fwd crossbeam and aft crossbeam, respectively.  Both fwd and 

aft crossbeam deformations are increased.  This implies that the structural stiffness of 

the optimum skid landing gear design is softer as compared to the initial baseline 

Pulse Duration 

Onset Rate 

Peak acceleration 

Increase in Duration 
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model.  Therefore more energy is allowed to dissipate through the plastic deformation 

of the crossbeams when the hard landing events take place.  The fuselage rebounds at 

approximately at 120 msec and 220 msec for the initial design and the optimum design, 

respectively. 
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(b) 

Figure 5.7 Normalized Crossbeam Attachment Fitting Force (Initial vs.  
Optimum): (a) Fwd Crossbeam, (b) Aft Crossbeam 
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(b) 

Figure 5.8 Normalized Crossbeam Deformation (Initial vs. Optimum): 
(a) Fwd Crossbeam, (b) Aft Crossbeam 
 
Figure 5.9 compares the normalized strain energy dissipated by the crossbeams 

for designs obtained by the SRMQ and SRMQ/OSM methods as compared to the 
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baseline model.  The impact performance of the optimum design is improved, 

evidenced by the increase in energy absorption.  The impact animations of the initial 

design and optimum design for simulation time at 0 msec, 100 msec, 200 msec and 300 

mesc are shown statically in Figures 5.10 (a) and 5.10 (b), respectively.  Since the 

optimum design is structurally softer than the initial design, the fuselage does not 

rebound as early as it does in the initial design.  Depending on the design requirements, 

the maximum allowable deformation can be constrained in the optimization 

formulation.  Namely, a trade-off curve between the energy absorption and structural 

weight can be obtained by performing a set of optimization problems with different 

constraint values. 
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Figure 5.9 Normalized Crossbeam Strain Energy (Initial vs. Optimum) 
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(a)      (b)  

Figure 5.10 Structural Impact Sequence of Helicopter Skid Landing Gear 
(Initial vs. Optimum): (a) Initial, (b) Optimum 

Time=0 

Time=100 msec 

Time=200 msec 

Time=300 msec 
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The optimal design obtained using the SRMQ and SRMQ/OSM methods is 

shown in Table 5.1.  The optimum design obtained by both methods is slight different 

and is highlighted in the table.  The response design history matrix using the SRMQ and 

SRMQ/OSM methods is illustrated in Tables 5.2 and 5.3, respectively.  The SIE 

obtained by the SRMQ method is improved by 12.3% while the one obtained by the 

SRMQ/OSM method is improved by 13.1%.  Both designs are feasible and there is no 

constraint violation as indicated in the tables. 

Table 5.1 Design Variable Design History for Helicopter Skid Landing Gear  
Optimization Problem 

Design Variable Initial Final (SRMQ) Final (SRMQ/OSM)
1 1.000 0.800 0.800
2 1.000 0.800 0.800
3 1.000 0.846 0.858
4 1.000 0.800 0.806
5 1.000 0.800 0.800
6 1.000 0.925 0.906
7 1.000 0.937 0.922
8 1.000 0.800 0.800
9 1.000 0.800 0.800

10 1.000 0.800 0.800
11 1.000 1.059 1.083
12 1.000 0.921 0.929
13 1.000 1.007 1.021
14 1.000 0.831 0.816
15 1.000 1.045 1.042
16 1.000 0.987 0.983  
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Table 5.2 Response Design History Using SRMQ Optimization Algorithm 

Iteration No. Weight Energy Fwd Force Aft Force Fwd Disp Aft Disp SIE
Baseline 1.000 1.000 0.000 0.000 -0.481 -0.429 1.000

1 0.943 1.070 -0.490 -0.408 -0.053 0.014 1.134
2 0.944 1.061 -0.469 -0.396 -0.072 -0.003 1.124
3 0.948 1.063 -0.472 -0.395 -0.076 -0.007 1.122
4 0.943 1.059 -0.472 -0.391 -0.076 -0.009 1.123

(Obj & Constr) N/A N/A ≤ 1.0 ≤ 1.27 ≤ 1.0 ≤ 1.0 Maximize  

 

Table 5.3 Response Design History Using SRMQ/OSM Optimization Algorithm 

Iteration No. Weight Energy Fwd Force Aft Force Fwd Disp Aft Disp SIE
Baseline 1.000 1.000 0.000 0.000 -0.481 -0.429 1.000

1 0.943 1.070 -0.490 -0.408 -0.053 0.014 1.134
2 0.945 1.058 -0.456 -0.396 -0.088 -0.018 1.120
3 0.937 1.059 -0.470 -0.383 -0.085 -0.019 1.130
4 0.937 1.060 -0.470 -0.392 -0.081 -0.017 1.131

(Obj & Constr) N/A N/A ≤ 1.0 ≤ 1.27 ≤ 1.0 ≤ 1.0 Maximize  

5.1.5 Concluding Remarks 

In this section, we have successfully demonstrated the feasibility of using the 

SRMQ and SRMQ/OSM methods to improve the energy absorption efficiency for a 

genetic helicopter skid landing gear in reserve-energy of 12 ft/s level landing events.  

Both methods converged to a feasible design with no constraint violation.  The optimal 

design obtained by the SRMQ/OSM method is shown to be slightly better than the one 

obtained by the SRMQ method.  The proposed SRMQ/OSM method achieved an 

improved design that reduced the original vehicle structural weight by 15.8 lb and 

increased the SIE by 13.1%.  While the SRMQ reduced the original vehicle structural 

weight by 14.3 lb and increased the SIE by 12.3%.  For the demonstrated helicopter 

skid landing gear crashworthiness optimization problem, the proposed method used 21 
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(N+1+4) finite element evaluations, compared to the traditional method DOE/RSM 

optimization method that would require about 52 (3N+1+3) to 68 (4N+1+3) evaluations.  

Therefore, the total number of finite element simulations was significantly reduced and 

the total computational time was reduced by 60~70%.  The proposed method has the 

potential to handle large number of design variables and is more efficient to tackle with 

large-scale engineering problems. 
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5.2 Full Vehicle Frontal Impact Optimization 

The second problem in this Chapter is to optimize a large-scale full vehicle 

frontal impact problem using the proposed SRMQ/OSM method.  Figure 5.11 shows the 

LS-DYNA finite element model of the 1994 model C2500 pick-up truck, which was 

originally developed by the FHWA/NHTSA National Crash Analysis Center (NCAC) 

of the George Washington University […]. 

5.2.1 Finite Element Model 

The finite element model has been correlated with the test data, shown in Figure 

5.12.  The model consists of about 58,000 elements and 66,000 nodes.  The vehicle 

crashes into a rigid 90°-barrier wall with an impact speed of 35 mph.  The total 

computational time takes about 6 hours running on an IBM Intellistation (2.8 GHz 

speed) using single CPU. 

 

 

Figure 5.11 C2500 Pick-Up LS-DYNA Frontal Impact Finite Element Model 
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Figure 5.12 C2500 Pick-Up 35 mph Frontal Impact Test Correlation 

 

5.2.2 Problem Definition 

Ten important design variables, which are significant to the energy absorption 

attributes, are selected in this frontal impact optimization problem.  The design 

variables include seven sheet metal gauge thickness and three plastic strength scale 

factors, as shown in Figure 5.13.  The components for thickness design variables are: 

inner front rail, outer front rail, inner fender, outer fender, engine cradle, wheelhouse, 

and bumper.  Among these components, the material plastic strength of the front rail, 

fender and engine cradle is allowed to alter using a scale factor.  Namely, by changing 

the material property, the structures can either be stiffer or softer depending on the 

energy absorption management of each component necessary to meet the 

crashworthiness requirements as defined in the optimization formulation. 
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Figure 5.13 Thickness and Material Design Variables for Full Vehicle Frontal  
Impact Optimization Problem 

The optimization problem is to improve the energy absorption efficiency by 

increasing the structural energy absorption while maintaining the structural weight and 

peak acceleration (or impact force).  The optimization problem is formulated as: 

Find the design variables xi (i=1~10) to 

Maximize:  SIE 

Subject to:  g1: W ≤ W0 

   g2: EAR ≤ EAR0 

ε

P=σ

Plastic 
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Figure 5.14 Full Vehicle Frontal Impact Design Domain and DOE Sampling for  
Design Variables 7 and 10 Generated by Halton Sequence 

To reduce or maintain the peak rigid wall force (or acceleration), the energy 

absorption rate between 40 msec and 50 msec is constrained in the optimization 

formulation.  The SRMQ/OSM starts with N+1 Halton Sequence sample runs, namely 

11 LS-DYNA finite element simulations are initially.  To ensure the sampling points 

cover the boundary domain, we use ±30% of the nominal design in selecting the 

uniformly distributed sampling points using the Halton Sequence DOE method.  In the 

SRMQ/OSM optimization process, we reduce the design domain to ±25%.  Figure 5.14 

depicts the DOE domain and design domain for variables 7 and 10. 

5.2.3 Numerical Results 

The design history of the objective function, SIE, is shown in Figure 5.15.  Note 

that iterations 1, 3, 5, 7 are the design obtained by the SRMQ method while iterations 2, 

4, 6, 8 are the design obtained by the OSM method to fine-tune the SRMQ objective 

and constraint functions.  Design iteration 0 represents the initial baseline model.  After 
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8 design iterations, the SIE is increased by 10% as compared to the baseline design.  

The improvement of the SIE is mainly contributed by the structural weight reduction, 

which is reduced by 11.8 Kg.  The design history of the normalized constraint functions 

(i.e. structural weight and energy absorption rate) is shown in Figure 5.16.  The design 

starts with a feasible design.  After 8 design iterations, a feasible design with no 

constraint violation is achieved. 
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Figure 5.15 Objective Function Design History for Full Vehicle Frontal Impact  
Using SRMQ/OSM Optimization Algorithm 
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Figure 5.16 Constraint Function Design History for Full Vehicle Frontal Impact  
Using SRMQ/OSM Optimization Algorithm 

Figure 5.17 shows the SIE comparison (baseline vs. optimum) in time domain 

history after 8 design iterations.  The total rigid wall force of the baseline and optimum 

is shown in Figure 5.18.  Note that the peak force is reduced from 1,023 KN to 940KN 

by imposing the energy absorption rate constraint between 40 msec and 50 msec, as 

shown in Figure 5.17, where the peak force occurs.  Comparing the rigid wall force of 

the baseline and optimal designs in Figure 5.18, it implies that the optimal design 

absorbs about the same internal energy but the structural weight is reduced by 11.8 Kg 

as shown in Figure 5.17.   
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Figure 5.17 Original and Final Specific Internal Energy Comparison for Full  
Vehicle Frontal Impact Using SRMQ/OSM Optimization Algorithm 
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Figure 5.18 Original and Final Rigid Wall Force Comparison for Full  
Vehicle Frontal Impact Using SRMQ/OSM Optimization Algorithm 
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Figure 5.19 Left Seat Velocity (Original vs. Final) Comparison  
for Full Vehicle Frontal Impact Using SRMQ/OSM Optimization Algorithm 
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Figure 5.20 Left Seat Acceleration (Original vs. Final) Comparison  
for Full Vehicle Frontal Impact Using SRMQ/OSM Optimization Algorithm 
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Figures 5.19 and 5.20 shows the velocity and acceleration comparison at the 

occupant left seat between the two designs, respectively.  The DOE matrix for the 

design variables and design history are shown in Tables 5.4 and 5.5, respectively. 

 
Table 5.4 DOE Matrix and Design Variable History for Full Vehicle Frontal  
Impact Using SRMQ/OSM Optimization Algorithm 

 

DOE
No. x1 x2 x3 x4 x5 x6 x7 x8 x9 x10
1 3.1000 3.1000 0.7530 0.8040 3.6000 0.6960 2.7000 1.0000 1.0000 1.0000
2 3.3325 2.4025 0.6683 0.7437 3.3300 0.6177 2.0925 0.8500 0.9250 1.0000
3 3.5650 2.2863 0.5836 0.8040 4.4100 0.6438 3.3075 1.0375 1.0375 1.0375
4 3.1000 3.1000 0.6965 0.9246 3.0600 0.8004 2.4975 0.8875 1.0000 1.2250
5 2.6350 2.7513 0.5553 0.6834 2.6550 0.5394 2.9025 1.0750 1.2250 0.7375
6 2.8675 3.7975 0.6401 0.6231 4.1400 0.7221 2.3963 0.9250 1.1500 0.8875
7 2.4025 2.6350 0.8095 0.8643 3.7350 0.5916 2.2950 0.7375 0.7750 0.7750
8 3.7975 3.5650 0.7812 0.5930 3.1950 0.7482 3.1050 0.7750 0.8500 1.1500
9 2.7513 3.2163 0.7530 0.8342 3.8700 0.8526 2.7000 1.1500 0.7375 1.0750
10 3.2163 2.8675 0.9224 0.7136 2.7900 0.6960 1.9913 1.2250 1.0750 0.8500
11 2.2863 3.3325 0.8660 0.9849 3.6000 0.5133 2.8013 1.0000 0.8875 0.9250

Iter. No.
1 3.4190 2.5135 0.6101 0.7522 3.3620 0.5645 2.025 (L) 1.0869 1.0430 1.0740
2 3.3939 2.5171 0.6300 0.7423 3.3517 0.5588 2.025 (L) 1.0654 1.0367 1.0438
3 3.4684 2.6140 0.5647 0.7755 3.4787 0.522 (L) 2.025 (L) 1.2500 (U) 1.8870 1.1760
4 3.5045 2.6213 0.5647 0.7898 3.4934 0.522 (L) 2.025 (L) 1.2500 1.2097 1.2216
5 3.4008 2.4932 0.5901 0.6624 3.2532 0.5415 2.025 (L) 1.0477 0.8645 0.8611
6 3.4017 2.4927 0.5895 0.6623 3.2528 0.5418 2.025 (L) 1.0478 0.8637 0.8610
7 3.4148 2.5393 0.5647 (L) 0.6248 3.2437 0.522 (L) 2.029 (L) 1.0949 0.7997 0.7773
8 3.4109 2.5310 0.5647 (L) 0.6221 3.2437 0.522 (L) 2.025 (L) 1.0955 0.7915 0.7708

Lower Bound 2.3250 2.3250 0.5647 0.6030 2.7000 0.5220 2.0250 0.7500 0.7500 0.7500
Upper Bound 3.8750 3.8750 0.9412 1.0050 4.5000 0.8700 3.3750 1.2500 1.2500 1.2500

Design Variables

Design History
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Table 5.5 Response Matrix and Design History for Full Vehicle Frontal  
Impact Using SRMQ/OSM Optimization Algorithm 

Weight (Kg) Energy (N-mm) Energy Rate SIE Improvement %
89.04 1.0058E+08 6.0600E+07 1129650 N/A
79.61 9.1640E+07 5.9610E+07 1151117 1.9
92.03 9.7532E+07 5.9430E+07 1059784 -6.2
87.56 9.7803E+07 6.0310E+07 1116983 -1.1

89.56 1.0015E+08 6.1260E+07 1118189 -1.0
79.58 8.4102E+07 6.3720E+07 1056828 -6.4
96.12 1.0144E+08 6.2280E+07 1055347 -6.6
90.37 1.0172E+08 6.2270E+07 1125628 -0.4
81.54 9.1661E+07 5.9750E+07 1124123 -0.5
86.31 9.6685E+07 5.9390E+07 1120202 -0.8

SRMQ prediction 81.21 9.4120E+07 5.9470E+07 1159042 2.6
1 Validation 79.88 9.6840E+07 5.9410E+07 1212318 7.3

OSM prediction 80.58 9.3380E+07 5.8240E+07 1158848 2.6
2 Validation 79.45 9.6530E+07 5.9840E+07 1214978 7.6

SRMQ prediction 82.16 1.0028E+08 5.8930E+07 1220545 8.0
3 Validation 80.41 8.8830E+07 5.8610E+07 1104713 -2.2

OSM prediction 82.93 1.0058E+08 5.8650E+07 1212801 7.4
4 Validation 80.88 8.8890E+07 5.8330E+07 1099036 -2.7

SRMQ prediction 80.23 9.7360E+07 6.1100E+07 1213511 7.4
5 Validation 78.93 9.5500E+07 6.0020E+07 1209933 7.1

OSM prediction 80.25 9.7380E+07 6.1100E+07 1213473 7.4
6 Validation 78.95 9.5520E+07 6.0020E+07 1209880 7.1

SRMQ prediction 79.09 9.4770E+07 6.0150E+07 1198316 6.1
7 Validation 77.33 9.5570E+07 6.0030E+07 1235872 9.4

OSM prediction 79.11 9.4610E+07 6.0200E+07 1195937 5.9
8 Validation 77.21 9.5930E+07 5.9640E+07 1242456 10.0

≤ 89.04 N/A ≤ 6.06×107
Maximize N/A

8
9
10
11

Evaluation No.

DOE No.
1
2
3

Design History

Objective or Constraint

4
5
6
7

Simulation is discarded due to large mass scaling
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5.2.4 Concluding Remarks 

We have successfully demonstrated the feasibility of using the SRMQ/OSM to 

improve the 35 mph frontal impact energy absorption efficiency of the C2500 pick-up 

truck.  The SRMQ/OSM solution converged to a feasible design with no constraint 

violation.  The proposed method achieved an improved design that reduced the original 

vehicle structural weight by 11.8 Kg and increased SIE by 10%.  For the demonstrated 

C2500 pick-up frontal impact optimization problem, the method used 19 (N+1+8) finite 

element evaluations, compared to the traditional DOE/RSM optimization method that 

would require about 34 (3N+1+3) to 44 (4N+1+3) evaluations.  Therefore, the total 

number of finite element simulations was significantly reduced and the total 

computational time was reduced by 44~55%.  The proposed method has the potential to 

handle large number of design variables and is therefore more efficient to tackle with 

large-scale engineering problems. 
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CHAPTER 6 

IMPLICIT SPACE MAPPING CRASHWORTHINESS OPTIMIZATION 

 

6.1 Introduction 

An efficient design optimization methodology for solving large-scale 

Crashworthiness problems using the Implicit Space Mapping (ISM) methodology is 

proposed in this section of the dissertation.  The Space Mapping (SM) was originally 

developed by John Bandler [7, 8, 9, 10] as an efficient approach for optimizing 

microwave devices and systems to avoid computationally expensive engineering system 

simulations.  Two models are required in the SM based optimization method: a high-

fidelity (fine) model and a low-fidelity (coarse) model.  The fine model is typically 

computational intensive but more accurate while the coarse model is computational 

efficient but provides less reliable analytical predictions.  The SM approach takes 

advantage of these two models by using the ‘physics-based’ efficient coarse model to 

perform the design optimization while using the accurate fine model for design response 

validation.  The coarse model is calibrated through the parameter extraction process in 

order to match with the fine model responses.  The process repeats until the 

optimization solution converges. 

Conceptually, SM is very similar to RSM.  But there are two major differences.  

In RSM, we approximate the responses using various mathematical functions, while the 



 

 152

surrogates used in SM are physics-based models.  Essentially any simplified model can 

be used as a surrogate model.  For RSM, many high-fidelity function evaluations are 

required to construct a surrogate sufficiently accurate for design optimization purposes.  

In SM, only one high-fidelity function evaluation (or finite element analysis) is required 

each of the design iteration in the optimization process.  This makes SM much more 

efficient than the traditional RSM approach. 

While most of SM applications have been on the electromagnetic and circuit 

optimization, there are several papers reported the use of SM techniques for the 

crashworthiness design optimization.  Redhe et al. [71] investigated the feasibility of 

using the space mapping technique in combination with the response surface 

methodology for a thin-walled beam impact optimization problem and a vehicle impact 

optimization problem.  In their implementation, they employed LS-OPT, a commercial 

optimization code by Livermore Software Technology Corporation using successive 

approximation optimization method, to approximate the mapping between the coarse 

model and fine model sequentially by constructing the response surface using linear 

approximations around the current set of parameters.  Essentially the coarse model 

determines the search direction while the fine model determines the design point for the 

next iteration.  They found that the optimization algorithm using space mapping, in 

general, works reasonably well and reduces the computational time significantly.  

However, the algorithm appears to be less stable and might not converge when the 

initial mapping between the coarse model and fine model is very poor. 
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6.2 Review of Space Mapping Optimization Algorithms 

6.2.1 Space Mapping Optimization Basic Concepts 

Space mapping establishes a mathematical link (mapping) P between two 

spaces: 

( )fc xPx =         6.1 

such that 

( )( ) ( )fffc xRxPR ≈              6.2 

where 1×ℜ∈ n
cx  and 1×ℜ∈ n

fx  denote the design parameters of the coarse model and 

fine model, respectively.  The corresponding response vectors are denoted by 

1×ℜ∈ m
cR  and 1×ℜ∈ m

fR  respectively.  The mapping P  is valid over a region of 

interest.   

The general design optimization problem can be formulated as: 

( )( ){ }xRx
x

Uminarg* =             6.3 

where *x  is the design parameters, U  is the scalar objective function, and 1×ℜ∈ mR  is 

the vector of the model responses.  For complex engineering systems, direct 

optimization by solving Equation 6.3 may be prohibitive.  The thrust of SM is to avoid 

direct optimization and declare  

( )*1
cf xPx −=        6.4 

where fx  is a good estimate of *
fx , *

cx  is the optimal design based on the coarse 

model. 
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The Jacobian of P  is given by: 

( ) ( )
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

==
f

TT
c

f

T

fPP x
x

x
PxJJ          6.5 

An approximation to the mapping Jacobian is designated by the matrix 

nn×ℜ∈B  and can be derived as: 

( ) f
T
cc

T
c JJJJB 1−

=           6.6 

The mapping can then be established through the foregoing equation provided 

that cJ  is full rank and nm ≥ . 

6.2.2 Original Space Mapping Optimization Algorithm 

In this approach, an initial approximation of the mapping ( )0P  is obtained by 

performing fine model analyses at a pre-selected set of at least 10 +≥ nm  base points.  

One base point may be taken as the optimal coarse model solution, ( ) *1
cf xx =  and the 

remaining 10 −m  base points are chosen by perturbation.  A corresponding set of coarse 

model points is then constructed through the Parameter Extraction (PE) process: 

( ) ( )( ) ( ){ }cc
j

ff
j

c
c

xRxRx
x

−= minarg           6.7 

for which 

( )( ) ( )cc
j

ff
c

xRxR
x

−= minε       6.8 

is the PE error. 
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The additional 10 −m  points apart from ( )1
fx  are required to establish full-rank 

conditions leading to the first mapping approximation ( )0P .  Bandler et al. assumed a 

linear mapping between the two spaces, i.e. 

( ) ( ) ( )j
f

j
f

j
c cxBxPx +==      6.9 

where ( ) nnj ×ℜ∈B  and ( ) 1×ℜ∈ njc . 

At the jth iteration, the sets of points in the two spaces may be expanded to 

contain jm  points, which are used to establish the updated mapping ( )jP .  Since the 

analytical form of P  is not available, SM uses the current approximation ( )jP  to 

estimate *
fx  at the jth iteration as: 

( ) ( )( ) ( )*11
c

jm
ff

j xPxx −+ =≈              6.10 

The process continues iteratively until ( )( )1+/ jm
ff xR  is close enough to ( )*

cc xR .  If 

so, ( )jP  is assumed close enough to the desired P .  If not, the set of base points in the 

fine space is augmented by ( )1+jm
fx  and ( )1+jm

cx .  Upon termination, the space-mapped 

design is set as in Equation 6.10. 

This algorithm is simple but has pitfalls: 

1. It requires 0m  up-front high-cost fine model analyses. 

2. A linear mapping may not be valid for significantly misaligned models. 

Nonuniqueness in the PE process may lead to an erroneous mapping estimation 

and algorithm breakdown. 
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6.2.3 Aggressive Space Mapping (ASM) Optimization Algorithm 

The aggressive space mapping (ASM) incorporates a quasi-Newton iteration 

using the classical Broyden formula.  A rapidly improved design is anticipated 

following each fine model simulation, while the majority of the computational effort is 

carried out in the coarse model space.  The ASM technique iteratively solves the 

following nonlinear system: 

( ) ( ) 0* =−= cfff xxPx             6.11 

The quasi-Newton step in the fine space is given by: 

( ) ( ) ( )jjj fhB −=       6.12 

where ( )jB , the approximation of the mapping Jacobian PJ , is updated using Broyden’s 

rank one update.  Solving the foregoing equation for ( )jh  provides the next iterate 

( )1+j
fx : 

( ) ( ) ( )jj
f

j
f hxx +=+1        6.13 

The algorithm terminates if ( )jf  becomes sufficiently small.  The output of the 

algorithm is an approximation to ( )*1
cf xPx −=  and the mapping matrix B .  The matrix 

B  can be obtained in several ways.  In the Broyden-like updates, an initial 

approximation to B  can be taken as ( ) IB =0 , the identity matrix.  When ( )jh  is the 

quasi-Newton step, the ( )jB  can be updated using Broyden’s rank one formula and 

further simplified as: 

( ) ( )
( )

( ) ( )
( )Tj

jTj

j
jj h

hh
fBB

1
1

+
+ +=     6.14 
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6.2.4 Thrust Region Aggressive Space Mapping (TRASM) Optimization Algorithm 

The idea of trust-region methods is to adjust the length of the step taken at each 

of the iteration based on how well an approximate linear or quadratic model predicts the 

objective function.  The approximate model is trusted to represent the objective function 

only within a region of specific radius around the current iteration.  The local model 

minimum inside the trust region is found by solving a trust-region subproblem.  If the 

model minimum achieves sufficient actual reduction in the objective function, the trust-

region size is increased.  If insufficient reduction is achieved, the trust region is 

reduced.  Otherwise the trust region is kept unchanged. 

The Trust-Region ASM algorithm integrates a trust-region with the ASM 

technique.  Instead of using a quasi-Newton step in the ASM, a trust-region subproblem 

is solved within a certain trust region to minimize ( ) 2

2

1+jf .  The linearized objective 

function is thus given by: 

( ) ( ) ( )( ) ( ) ( ) ( )jjjjjj hBfhxL +=,     6.15 

The next step is obtained by solving the following trust-region subproblem: 

( ) ( ) ( ){ }2

2
minarg hBfh

h

jjj +=     6.16 

Subject to: 

( )jδ≤
2

h      6.17 

Therefore, the step taken is constrained by a suitable trust region ( )jδ .  Solving 

the foregoing equations is equivalent to solving: 

( ) ( )( ) ( ) ( ) ( )jTjjjTj fBhIBB −=+ λ      6.18 
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6.3 Rectangular Tube Crush Optimization Using Implicit Space Mapping 

The implicit space mapping (ISM) based optimization algorithm is presented 

and applied to solve for a rectangular tube crush optimization problem in this section.  

Two models are required in the ISM optimization algorithm: coarse model and fine 

model.  ISM takes advantage of the efficiency of the coarse model and accuracy of the 

fine model.  The optimization process is conducted in the “cheap-to-run” optimization 

space based on the coarse model while the validation process is performed on the 

validation space using the fine model.  A space mapping is established implicitly 

between the optimization space and validation space, as shown in Figure 6.1.  The main 

advantage of the ISM method is that only one high-fidelity LS-DYNA finite element 

analysis is required for each of the design iteration.  This implies that the total number 

of analyses required for the optimization process to achieve the optimal design and meet 

the crashworthiness requirements can significantly be reduced as compared to the 

traditional DOE/RSM based optimization methodology.  
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Optimization Space
(Coarse Model)

Validation Space
(Fine Model)

Mapping

xc

xf

 

Figure 6.1 Schematic of Implicit Space Mapping Optimization Algorithm Concepts 

 

6.3.1 Implicit Space Mapping Optimization Algorithm 

The general design optimization problem can be formulated as: 

( )( )
⎭
⎬
⎫

⎩
⎨
⎧= fff U

f

xRx
x

minarg*      6.19 

where *
fx  is the optimal fine model design, ( )( )ffU xR  is the scalar objective function, 

and fR  is the fine model response.  For complex engineering systems, direct solving 

Equation 6.19 may be prohibitive. 

ISM takes advantage of the accuracy of fine model and efficiency of coarse 

model to match the coarse model responses with fine model responses.  That is, at the 

jth iteration, ISM seeks to establish an implicit mapping Q between fine model space 
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fx  and coarse mode space ( )px ,c .  The preassigned parameter )( jp  is obtained 

indirectly by solving an optimization problem w.r.t. p for the mapping: 

( )pxxQ ,, cf =0                6.20 

such that 

( ) ( ))()1(*)1(* , jj
cc

j
cf pxRxR −−

≈     6.21 

ISM then utilizes the mapping to obtain a prediction of fx  by optimizing a 

mapped coarse model as in the following: 

( )( ){ })()(* ,minarg j
cc

j
c U

c

pxRx
x

=                  6.22 

We then set the fine model design variables as  

)(* j
cf xx =              6.23 

The process is repeated iteratively until 

( ) ( ) ε≤−
−− )()1(*)1(* , jj

cc
j

cf pxRxR          6.24 

In the next section, we demonstrate how to employ the ISM methodology to 

improve the energy absorption of a rectangular tube crush problem.  Figure 6.2 

illustrates the flowchart of the ISM optimization algorithm. 
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Find X* to optimize coarse
model Rc(X, P) subject to constraints

Perform LS-DYNA analysis (fine model)
to evaluate responses at X*, i.e. Rf(X*)

Convergence
Check

Calculate error norm at X*
ε=||Rf(X*)-Rc(X*)||

Find preassigned parameter P
of coarse model to minimize ε

Update design parameters
X0=X*, P0=P

STOP
Yes

No

Start from initial design
X0, P0

 

Figure 6.2 Implicit Space Mapping Optimization Algorithm 

6.3.2 Finite Element Models 

A rectangular tube crush model is developed using the explicit nonlinear finite 

element code, LS-DYNA, to demonstrate Crashworthiness optimization using Implicit 

Space Mapping (ISM) technique.  Two finite element models are required in the ISM 

optimization: fine (high- fidelity) model and coarse (low-fidelity).  Figure 6.3 shows the 

fine model of the rectangular tube.  Note that this model is same as the one presented in 
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Figure 4.11.  Figure 6.4 shows the coarse model of the rectangular tube, which is 

imposed by a rigid body with the same velocity and mass as in the fine model.  The fine 

model contains 3,197 shell elements and 3,261 nodes while the coarse model contains 

857 shell elements and 895 nodes.  Note that the fine model not only has more number 

of elements but also has more details in crush trigger or crush initiator modeling.  The 

critical time step 0.52 μsec and 2.24 μsec for the fine model and coarse model 

respectively.  The simulation time is selected to be 20 msec.  The computational time 

for the fine model is 5 minutes and 30 seconds while the coarse model is 30 seconds 

running on an IBM Intellistation with 2.8 GHz speed using 1 CPU.  That is, the fine 

model is 11 times more expensive than the coarse model computationally.   
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Figure 6.3 Fine LS-DYNA Finite Element Model for Rectangular Tube Crush Problem 

 

 

Figure 6.4 Coarse LS-DYNA Finite Element Model Rectangular Tube Crush Problem 
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6.3.3 Problem Definition 

The main thrust of this problem is to increase the impact performance by 

increasing the internal energy while reducing or maintaining the initial crush peak force 

and structural weight.  Four thickness design variables are selected as shown in Figures 

6.1 and 6.2.  The optimization problem is formulated as: 

Find the thickness design variable xi (i=1~4) to 

Maximize:  IE          6.25 

Subject to:  g1: W ≤ 3.1 kg 

   g2: IE2ms ≤ 850 J 

   g3: IE3 ≤ IE4 

Side constraints  0.7 ≤ xi ≤ 3.0 

IE2ms: Internal energy in the first 2 msec       

 IE3: Internal energy of design variable component 3 

 IE4: Internal energy of design variable component 4Note that we impose 15% 

structural weight penalty on the constraint g1. Constraint g2 is imposed to control the 

initial peak force within the peak value of the baseline model.  Constraint g3 is used to 

manage the energy distribution so that the progressive collapse mode will not initiated 

at the rear end of the rectangular tube.  Note that the design domain in this problem is 

larger than the one presented in Chapter 4. 

After the optimal design is found by the optimization process as shown in 

formulation of 6.25, the next step in the ISM optimization algorithm is to perform the 

parameter extraction.  A preassigned (or auxiliary) parameter p needs to be selected for 
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the coarse model in the ISM optimization.  The preassigned parameter is used to tune 

the coarse model so that the responses match with the fine model.  Therefore the 

preassigned parameter must be influential to the responses.  The preassigned parameters 

can be geometry, material property, density, dynamic property etc.  In this paper, we 

propose to select the scale factor of the plastic strength in the material stress-strain 

curve as the preassigned parameter in the ISM optimization process, as shown in Figure 

6.5. 

 

 

 

 

 

Figure 6.5 Plastic Strength Scale Factor for the Preassigned Parameter in the ISM  
Optimization Algorithm 
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Specifically, the optimization problem of the parameter extraction in the ISM 

process can be formulated as: 

Find the preassigned parameter p to 

Minimize: ( ) ( )p,xRxR *
c

*
f −          6.26 

where:  fR : Fine model responses 

  cR : Coarse model responses 

6.3.4 Numerical Results 

As discussed earlier, there are two optimization processes in the ISM 

optimization algorithm.  The first optimization process, as formulated 6.25, is to find 

the optimal design of the design variables by performing the optimization on the coarse 

model.  The second optimization process is the parameter extraction to find the optimal 

preassigned parameter for minimal error norm of the responses between the fine and 

coarse models, as formulated in 6.26.  While any optimization technique can be applied 

to solve these two formulations, we choose the SQP gradient-based direct optimization 

algorithm.  Using direct optimization to solve crash problem involves several technical 

challenges.  One of the challenges is that the responses (such as forces, accelerations 

etc.) in the impact problem are typically very noisy due to the complex physics 

phenomena involved such as impact-contact algorithm, large deformation, large 

rotation, transient, dynamics, failure etc.  The noisy behavior of these responses results 

in tremendous difficulty in computing ‘reliable’ sensitivity to perform direction 

optimization using finite difference method.  To encounter the difficulty, we choose to 

formulate the crashworthiness optimization formulation using energy responses and 
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select larger step size (5%) for computing sensitivity using finite difference method in 

both optimization processes for formulations 6.25 and 6.26 

The ISM optimization results for the rectangular tube crush problem are given 

in this section.  Figure 6.6 shows design history of the objective functions internal 

energy and the error norm in the parameter extraction process.  The ISM optimization 

process converges in three design iterations to a feasible design with no constraint 

violation, as shown in Figure 6.7 (design history for the normalized constraint 

functions) and Table 6.2.  Constraint g3 is violated in the 1st design iteration and is 

corrected in the 2nd and 3rd design iterations.  After 3 design iterations, the total internal 

energy (objective function) of the design variable components is increased from 5,633 J 

to 9,073 J (or 67% improvement) as shown in Table 6.1. 
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Figure 6.6 Objective Function Design History for Rectangular Tube Crush 
Problem Using ISM Optimization Algorithm 
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Figure 6.7 Constraint Function Design History for Rectangular Tube Crush  
Problem Using ISM Optimization Algorithm 
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Table 6.1 Design History of Structure Weight and Internal Energy for Rectangular  
Tube Crush Problem Using ISM Optimization Algorithm 

Iteration Weight IE1 IE2 IE3 IE4

No. (Kg) (J) (J) (J) (J)
Baseline 2.7 5633 843 1888 186

1 3.1 7784 394 471 759
2 3.1 9073 493 1626 377
3 3.1 9073 493 1626 377

Obj. or Constr. ≤  3.1 Maximize ≤ 843 ≥  IE 4 ≤  IE 3  

 
Table 6.2 Design History of Normalized Constraints, SIE and Error Norm for  
Rectangular Tube Crush Problem Using ISM Optimization Algorithm 

Iteration Objective g1 g2 g3 SIE Improvement Error Norm
No. IE W ≤  3.1 IE 2 ≤ 843 IE 4 ≤ IE 3 (J/Kg) (%) ||Rc-Rf||/Rf

0 5633 -0.13 0.00 -0.90 2091 0 67.4
1 7784 -0.02 -0.53 0.61 2551 22.0 -2.9
2 9073 -0.01 -0.42 -0.77 2954 41.3 -1.0
3 9073 -0.01 -0.42 -0.77 2954 41.3 -1.0  

Initially, the coarse model is much stiffer than the fine model primarily due to 

the fact that the mesh size of the coarse model is too large.  The discrepancy results in 

67% of error norm of the internal energy.  This error norm is minimized in the 

parameter extraction process by selecting a proper preassigned parameter p in the 

optimization process.  Figure 6.6 shows that the error norm is reduced to within 1% 

after 3 design iterations.  Figure 6.8 and Table 6.3 show the design history of the design 

variables and preassigned parameter.  Note that the preassigned parameter is reduced 

from 1.0 initially to 0.634 after the 1st iteration.  This also implies the stress strength of 

the coarse model material needs to be decreased to reduce its structural stiffness or 

energy absorption capability in order to match with the fine model.  
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Table 6.3 Design Variables and Preassigned Parameter Design History for  
Rectangular Tube Crush Problem Using ISM Optimization Algorithm 

No. X1 X2 X3 X4 P

0 1.500 1.500 1.500 1.500 1.000

1 1.440 0.907 3.000 1.883 0.634
2 2.220 1.027 2.340 1.757 0.634
3 2.220 1.027 2.340 1.757 0.634  
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Figure 6.8 Design Variables and Preassigned Parameter Design History for  
Rectangular Tube Crush Problem Using ISM Optimization Algorithm 

Figure 6.9 shows internal energy comparison for the design variable 

components between baseline and optimal designs.  The optimal design absorbs 67% 

more energy than the baseline.  With the 15% weight penalty, the optimal design 

improves the energy absorption efficiency by 41% in terms of SIE.  It is noted that the 

internal energy of the optimal design in the first 2 msec is less than the baseline, which 
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also implies that the initial peak force is lowered, as shown in Figure 6.10.  The 

buckling collapse mode of the optimal design is altered.  It is also indicated that the 

second and third buckling modes of the optimal design are much higher and thus the 

tube is more crashworthy (i.e. more energy absorption).  

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 2 4 6 8 10 12 14 16 18 20

Time (msec)

In
te

rn
al

 E
ne

rg
y 

(J
)

Fine (Baseline) Fine (Final)

Fine (Final)

Fine (Baseline)

 

 

Figure 6.9 Original and Final Internal Energy Comparison for Rectangular 
Tube Crush Problem Using ISM Optimization Algorithm  



 

 172

0

20

40

60

80

100

120

140

160

0 2 4 6 8 10 12 14 16 18 20

Time (msec)

R
ig

id
 W

al
l F

or
ce

 (K
N

)
Fine (Baseline) Fine (Final)

Fine (Final)

Fine (Baseline)

 

Figure 6.10 Original and Final Rigid Wall Force Comparison for Rectangular 
Tube Crush Problem Using ISM Optimization Algorithm 

 

Figures 6.11 (a) and 6.11 (b) show the rigid wall force comparison of the 

baseline rectangular tube fine and coarse models before and after performing ISM 

optimization, respectively.  The internal energy comparison before and after ISM is 

shown in Figures 6.12 (a) and 6.12 (b), respectively.  It can be seen that the there is 

significant difference in both models as the coarse model is much stiffer resulting in 

higher rigid wall force as well as internal energy.  The internal energy of the coarse 

model is about 67% more than the fine model.  In the parameter extraction process 

during the ISM optimization, the preassigned parameter p is iteratively tuned so that the 

coarse model responses match with the fine model within a tolerance limit.  Table 6.3 
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shows the design history of the preassigned parameter whose initial design is 1.0.  After 

performing ISM optimization, p converges to 0.634.  The value implies how much the 

structural stiffness of the coarse model needs to be adjusted to favorably represent the 

fine model in terms of crush responses.  It is clearly shown that the discrepancy is 

improved significantly.  The error norm is reduced from 67% initially, as shown in 

Figure 6.12 (a), to 1% in Figure 6.12 (b) for the mapped coarse model. 
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(b) 

Figure 6.11 Rigid Wall Force for Rectangular Tube Crush Problem 
Using ISM Optimization Algorithm: (a) Before ISM, (b) After ISM 
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(b) 

Figure 6.12 Internal Energy for Rectangular Tube Crush Problem 
Using ISM Optimization Algorithm: (a) Before ISM, (b) After ISM 
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The total structural deformation history of the baseline and optimal designs is 

given in Figure 6.13.  While the deformation is not constrained in the optimization 

formulation, the total deformation of the optimal design is reduced by 2.6 mm from 

166.1 mm to 163.5 mm.  Figures 6.14 and 6.15 show the crash mode animation 

sequence for the fine model and coarse model, respectively. 
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Figure 6.13 Original and Final Structural Deformation Comparison for  
Rectangular Tube Crush Problem Using ISM Optimization Algorithm 
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t=0 ms t=6 ms t=12 ms t=20 ms

Baseline:Baseline:

Optimal:Optimal:

 
Figure 6.14 Original and Final Structural Crash Mode Comparison of Fine Model  
for Rectangular Tube Crush Problem Using ISM Optimization Algorithm 
 
 
 

t=0 ms t=6 ms t=12 ms t=20 ms

Baseline:Baseline:

Optimal:Optimal:

 
Figure 6.15 Original and Final Structural Crash Mode Comparison of Coarse  
Model for Rectangular Tube Crush Problem Using ISM Optimization Algorithm 
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6.4 Conclusions 

In this Chapter, we have successfully demonstrated the feasibility of employing 

the Implicit Space Mapping (ISM) optimization methodology to improve the structural 

energy absorption efficiency of a rectangular tube crush problem.  For the demonstrated 

problem, the ISM solution converged to a feasible design in three design iterations with 

no constraint violation.  The design improved the energy absorption efficiency and 

increased the Specific Internal Energy (SIE) by 41% while reducing the initial peak 

force and maintaining the progressive collapse mode.  The optimal design was achieved 

by using only 1N high-fidelity finite element analyses as compared to the traditional 

DOE/RSM based methodology which typically requires at least 3N to 4N analyses.   

Modeling the coarse finite element model is non-trivial and sometimes is very 

time-consuming since the ISM might not converge if the difference of the initial 

response between the fine model and coarse model is significant.  A straightforward 

way to construct a coarse crash model for the nonlinear explicit analysis is to employ 

the mass-scaling technique by adding a lumped mass at the critical element that controls 

the overall numerical time step.  By doing so, the computational time can be reduced 

significantly while the dynamic responses of the coarse model may be deviated 

depending on the mass scaling value.  However, the responses can later be corrected in 

the ISM parameter extraction process through the preassigned parameter process. 
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CHAPTER 7 

CONCLUSIONS AND RECOMMENDATIONS 

 

7.1 Conclusions 

This dissertation has presented the crashworthiness optimization algorithms and 

frameworks using efficient surrogate models in lieu of expensive simulation based finite 

element analyses to solve for large-scale systems.  The method overcomes several key 

technical barriers over the traditional gradient-based optimization method for nonlinear 

transient-dynamic crashworthiness applications: long computational time, noisy crash 

responses, unavailability of reliable sensitivity analysis etc.  In addition, the method 

offers several advantages over the DOE/RSM based optimization method: large number 

of function evaluations or analyses for large number of design variables, low response 

surface accuracy for small DOE sample size. 

The original contributions of this dissertation are: 

1. Proposed, developed and implemented an effective and robust framework based on 

the Sequential Regularized Multiquadric with Output Space Mapping 

(SRMQ/OSM) algorithm for solving large-scale, computational expensive 

simulation-based design optimization problems. 
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2. Developed and implemented an efficient optimization framework based on the 

Implicit Space Mapping (ISM) technique for large-scale, nonlinear crashworthiness 

design optimization problems. 

The proposed method has been demonstrated on several real-world 

crashworthiness applications including the large-scale full vehicle frontal impact 

optimization, hard landing of helicopter skid landing gear optimization, and rectangular 

tube crush optimization.  The method has proven to be effective.  For the demonstrated 

problems, as much as up to 50~70% of computational time has been reduced when 

compared to the traditional DOE/RSM or gradient-based optimization method.   

7.2 Recommendations for Future Study 

The following studies are recommended to broaden the application of the 

proposed SRMQ/OSM and ISM based crashworthiness optimization algorithms: (1) 

conduct numerical convergence study; (2) systematic approach to find optimal 

regularization parameter; (3) systematic method to construct coarse model. 
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APPENDIX A 
 

DERIVATION OF THE GENERAL FORM OF THE  
REGULARIZATON THEORY 
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In regularization problems, the cost function to be minimized is the summation 

of the standard error (or empirical error) and the structural error.  That is, find the 

function ( )xF  to minimize the overall cost function ( )Fε : 

( ) ( )( ) ( ) ( )FrFDFrxFyF cs

N

i
ii εεε +=+−= ∑

=

2

1

2

2
1            A.1 

where iy  is the thi  desired response, ix  is the thi  input vector, and ( )⋅F  is the system 

output, r  is the regularization parameter, D  is a differential operator. 

Note that the standard error is essentially the mean square error of the total 

difference between the desired response and system output where the structural error is 

related to the geometric property of the approximating function ( )⋅F .  By differentiating 

Equation B.1 we obtain: 

( ) ( )( ) ( )∑
=

−−=
N

i
ii xxxFY

r
xDFD

1

1* δ             A.2 

where ( )⋅δ  is the Dirac’s function.  One can show that the solution of Equation B.2 is: 

( ) ( )( ) ( )∑
=

−=
N

i
ii xxGxFY

r
xF

1
,1          A.3 

where ( )⋅G  is the Green’s function.  Therefore, regularization theory leads to an 

approximator that is an expansion on a set of Green’s function ( )ixxG ,  of the operator 

DD * .  By definition, Green’s function of the operation P  centered in ix  is: 

( ) ( )ii xxxxPG −= δ,              A.4 

The shape of these functions depends only on the differential operator D , i.e. 

on the former assumptions about the characteristics of the mapping between input and 
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output space.  Thus the choice of D  completely determines the basis functions of the 

approximator.  In particular if D  is invariant for rotation and translation Green’s 

function is: 

( ) ( )ii xxGxxG −=,             A.5  

Note that the function is the radial basis distance that depends on the distance ixx − .  

The coefficients of the approximation in the matrix form can be expressed as: 

( )FY
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GCF =                A.7 
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Finally we obtain the following expression from Equations A.6 and A.7: 

( ) YCrIG =+                A.10 

Note that the matrix G  is symmetric and for some operator is positive definite.  It is 

always possible to choose a proper value of the regularization parameter r  such that 

( )rIG +  is invertible that leads to: 



 

 184

( ) YrIGC 1−+=                 A.11 

The optimal coefficients (or weights) can be expressed as: 

( ) YGrIGGC TT 1−
+=                     A.12 

Note that the expression is same as Equation 4.10. 
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APPENDIX B 
 
 

COMPUTER INTEGRATION IMPLEMENTATION FOR IMPLICIT SPACE 
MAPPING OPTIMIZAION ALGORITHM
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Figure B.1 shows the flow chart the computer implementation of the ISM based 

crashworthiness optimization as described in Chapter 6. 

 

Pre-Processing
• Read design variables X and 

Preassigned parameter P
• Execute dv.for Fortran code

to write LS-DYNA input deck

LS-DYNA Solver
• Execute LS-DYNA

Post-Processing
• Execute LS-PREPOST
• Read d3plot files
• Post-process responses:

• Internal energy (low-pass
Filtered by SAE J211 300-Hz

• Deformation
• Determine weight from d3hsp

Write design variables X and 
preassigned parameter P

Execute MATLAB
• Setup optimization problem
• Objective function
• Constraints
• SQP solver

Execute post.for Fortran to write
responses into a text file

LS-DYNA

batch or shell script

 
 

Figure B.1 Flow Chart for Implementation of ISM Based Crashworthiness Optimization 
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