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ABSTRACT 

ANALYSIS OF HAT-SECTIONED REINFORCED COMPOSITE  

BEAMS INCLUDING THERMAL EFFECTS 

Publication No. _________ 

 

Kashif Ali Nayyer Syed, Ph.D. 

 

The University of Texas at Arlington, 2006 

 

Supervising Professor:  Wen S. Chan  

A simple analytical method for analyzing fiber reinforced polymeric composite 

beams with hat cross-section is presented. The method includes development of closed-

form expression of the axial, bending and their coupling stiffness matrices for the 

composite beams. The stiffness matrices are obtained by transforming the actual 

geometrical cross-section of the beam into an equivalent plate using transformation 

matrices and Parallel Axis theorem. Ply stresses due to mechanical as well as thermal 

load can easily be obtained at any given location of the beam section. In this approach, 

the effect of induced in-plane deformation due to bending for an unsymmetrical cross-

section is included while the conventional analysis, using the smeared properties, 

ignores this coupling effect. Finite element analysis was conducted to obtain the results 

for comparison. It is concluded that the axial and bending stiffness obtained by the 

present method gives excellent agreement to the finite element results as compared

 v



 with the conventional method. Significant error is observed for axial stiffness 

comparison between conventional and finite element results. Experimental bending 

stiffness values of I-beams are also used for comparison and good conformity is 

observed using present method. 

A simple closed form solution is derived based on the extensional application of 

developed method to obtain ply stresses due to thermal loading. Results were validated 

and excellent agreement is observed with the finite element model. 

Location of centroid and shear center plays an important role in engineering 

analysis as extension/bending and bending/twisting are decoupled at these locations, 

respectively. For composite material, these locations are dependent not only on cross 

sectional geometry but also on the material properties. Based on the stiffness matrices 

obtained, a simple methodology is developed to determine these locations. Results are 

validated by comparing with isotropic materials and also by observing the behavior of 

composite material for symmetric and unsymmetric cases. It is concluded that the 

present method provides generic solution for the design and analysis of laminated 

composite beams with significant accuracy and ease. The developed tool is handy in 

providing the parametric study for composite structural design. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

The civil engineering industry is constantly striving for ways to improve design 

and construction technologies to obtain a more economical solution to engineering 

problems. Fiber Reinforced Polymer (FRP) Composites are very attractive for use in 

civil engineering applications due to their unique benefits. FRP composites have been 

widely used in the aerospace, military and the automotive industries for many years. 

They are used routinely and extensively in structural components of both military and 

commercial aircraft.  Recently, civil and off-shore structures just began using composite 

material as an alternative to the conventional materials. Their basic advantages are free-

form and tailored design characteristics, high strength-weight and stiffness-weight 

ratios, good corrosion and fatigue resistance, ease of manufacturing and construction, 

and low maintenance cost, compared to steel and concrete, the traditional construction 

materials. However, FRP composites usually exhibit complicated mechanical behavior 

due to the anisotropic material properties. 

During the 1990s and into the new millennium the utilization of advanced 

polymer composite materials have made large advances in civil engineering 

construction field, specifically bridges. A couple of all-composite bridge decks are 
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already in use, such as, Laurel Lick Bridge in Lewis County, WV and Wickwire Run 

Bridge in Taylor County, WV [1]. 

Despite their availability and diversity, civil engineers are hesitant to design 

with FRP composites because the design of composite structures is quite complicated 

and need specialized training, also due to the absence of design criteria and guidelines. 

Engineers have to use expensive tools, such as the finite element method, in order to 

analyze and optimize their designs. The use of sophisticated analyses can be time 

consuming, and therefore, simple but yet sufficiently accurate analytical tools are 

needed to be able to predict the response of FRP structural components and systems. 

1.2 Literature Review on Composite Beams 

 In structural applications, beam with thin-walled cross-section is one of the 

most efficient structural members that can achieve the required stiffness with minimum 

weight.  In structural analysis, most structures are often analyzed as beams as one-

dimensional structural members if one dimension (the length) is much larger than the 

other two dimensions (width and thickness). The foundation of the beam analysis is 

based upon the moment-curvature relationship along the longitudinal axis of the beam.  

This approach used for laminated composite beam is not different from the isotropic 

beam.  However, in evaluation of the moment-curvature relationship, so-called the 

bending stiffness of the beam, laminated composite beam possesses a unique behavior 

that is different from the isotropic beam.  
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The analysis of composite beam has been extensively studied for sometimes. 

Several textbooks that included composite beam analysis were published [2-6]. Analytical 

methods presented in those books are too complicated to be used in design practice. In 

composite beam analysis of civil structural applications, McGhee et al. [7] performed a 

numerical analysis on fiber reinforced plastics decks of different shapes based on the 

experimental studies carried out by Henry [8] and Ahmad and Plecnik [9]. Zurieck [10] 

has conducted a finite-element analysis on simply supported FRP decks. Among those 

studies, smeared property of composite section was used in their analysis. In analysis of 

composite tubular beams, Chan and his co-workers [11, 12] include ply orientation change 

due to the beam section contour in formulating their stiffness model. Their results 

indicated that using smear property for computing bending stiffness of composite tubular 

section can results in significant error in bending stiffness.   

Stresses are induced in composite laminates when subjected to temperature 

change. Hussein, Fazio, and Ha [14] studied the effects of bonding stiffness in sandwich 

panels subjected to uniform temperature change and gradient temperature change. 

Sandwich panels were made of thin skins and a lightweight core, which have different 

coefficient of thermal expansion. Experimental results were in good agreement with 

theory. It was found that thermal stresses are a function of material properties of 

sandwich skin and core, and also the rigidity between skin and core. A sandwich panel 

with a flexible core may not produce significant thermal stresses. If the core had some 

rigidity then temperature change will induce thermal stresses. Also difference in 
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coefficient of thermal expansion of skin and core play an important role in thermal 

stresses [15] 

Finite element method is often used in the analysis of composite structures. 

Although the computer capability has been tremendously increased in the past decades, 

analysis by using FEM is still not an efficient method because of structural 

configuration dependent. Hence, finite element analysis is not an effective method to 

perform a parametric study, particularly in the preliminary design stage in which final 

configuration of composite structure is not well determined yet. 

Therefore, designing composite beams has a need for analytical methods that 

not only provide accurate evaluation of sectional property for better prediction of 

structural response but also can be easily used for parametric study. 

1.3 Objective of the Research 

The fundamental objective of the research is to develop a closed form solution 

for composite beams, using lamination theory and translation of axis theorem by 

simplifying the three-dimensional beam into a two dimensional plate. The focus of this 

study is on understanding the behavior of hat-sectioned reinforced composite beam due 

to various loading. Results are compared and validated by performing finite element 

analysis of fully three-dimensional constructed models in ANSYS software.  

In the present approach, the effect of induced in-plane deformation due to 

bending for an unsymmetrical cross-section is included while the conventional analysis 

ignores this coupling effect. Equations are derived for inclined composite laminate and 

simple methodology of dividing entire cross-section into individual laminates and then 
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mapping them to a common axis is used. Once the stiffness matrices of the entire cross-

section are obtained, important properties of beam like axial stiffness, bending stiffness, 

centroid and shear center can easy be extracted. In addition, ply stress of each layer can 

be obtained for given loading case. Thermal loading is also applied and ply stresses are 

obtained. In isotropic material, thermal strains are produced due to applied thermal 

loading and thermal stresses are produced only when there is a constraint. However, 

composite materials exhibit complicated behavior under thermal loading, thermal stress 

is a function of stacking sequence and it is produced in addition of thermal strains even 

without global constraint.  

AS4/3501-6 Graphite/Epoxy is selected for analysis. In finite element analysis, 

axial and bending stiffness are obtained by applying the corresponding axial and 

bending loads. Ply stresses are obtained for the applied bending load and thermal 

loading. 

1.4 Outline of the Dissertation 

Chapter 2 gives a detail description of the analytical method developed and 

equations derived using lamination theory.  

Chapter 3 contains the description of analytical method developed for thermal 

analysis.  

Chapter 4 deals with the methodology developed to evaluate centroid and shear 

center of the hat cross-section. 

Chapter 5 lists the conclusions and recommendations. 
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CHAPTER 2 

ANALYTICAL STIFFNESS MATRIX SOLUTION OF  
COMPOSITE HAT-SECTION 

 
This chapter is devoted to the development of an analytical solution for 

composite beams with hat cross-section using lamination theory and parallel axis 

theorem. Conventionally, in the analysis of composite beam, the smeared mechanical 

properties of the composite beam cross-section were often used. In doing so, the effect of 

induced in-plane deformation due to bending for an unsymmetrical cross-section is 

ignored. The present analysis takes this effect into account in development of structural 

stiffness. 

2.1 Geometry of Composite Hat Cross-Section 
           

Hat cross-section is divided into individual laminates. As shown in Figure 2.1, 

let btf be the width of top flange, bbf is the width of bottom flanges, bb is the width of 

bottom laminate, tply is the thickness of each ply, bw is the width of web and H is the 

vertical height.  It should be noted that btf, bbf and H are kept constant, where as bw and 

bbl varies according to web angle, sin-1(H/bw). Hence, bb is dependent of the angle. 

 



 

b

tf

bb

b

b

H

bf bfbl

w CLWeb Laminate

CLTop Flange

CLLower Flange Laminate

CLBottom Laminate
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d_tf

d_bf d_bl

 
Figure 2.1 Geometry of Hat Cross-Section 

2.2 Stress-Strain Relationship for Orthotropic Lamina 

For a thin layer of composite lamina, it can be assumed that the lamina is under 

plane stress condition in the direction of lamina thickness [16]. Under plane stress 

condition, all the stress components in the out-of-plane direction are zero. That is, 

023133 =τ=τ=σ  

Therefore, the stress-strain relationship in principal material coordinates can be 

expressed in matrix as follows:   
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Where [Q1-2] is called as reduced stiffness matrix and the subscripts 1,2 and 6 

refer to the properties along the fiber, transverse to the fiber and shear in the plane, 

respectively. 

The matrix [Q1-2] in terms of engineering constants is given as: 
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Where E1 and E2 are the Young’s moduli of lamina along and transverse to the 

fiber direction, respectively. ν12 is the Poisson’s ratio and G12 is the shear modulus of 

lamina under a loading along the fiber direction. 

2.3 Classical Lamination theory 

 Laminated composite is composed of multiple thin orthotropic plies of 

anisotropic material. Classical Lamination Theory (CLT) is most commonly used to 

analyze the behavior of laminated composite and also to evaluate strains and stresses of 

plies in the laminate. To analyze the behavior of laminate, CLT treats laminate as an 

equivalent single layered plate. The structural response of laminate is represented by the 

strains and curvatures about its mid-plane. Strains and stresses at any point in the kth ply 

can be calculated using the following relationship: 
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0
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0

 and γxy
0

 are the mid-plane strains, κx, κy and κxy are the mid-plane 

curvatures, z is the coordinate measured from the mid-plane to the lamina and εx, εy and 

γs are the strains in the kth ply. 
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Where kyxQ ][ −  is a symmetric matrix and is obtained by transforming [Q1-2] 

matrix of lamina from 1-2 material coordinates to the laminate x-y coordinates. The 

details on obtaining kyxQ ][ −  are shown in Appendix A. 

2.3.1 Laminate Constitutive Equation 

The in-plane forces [N] and moments [M] (per unit length) are obtained by 

integrating forces of each ply through the laminate thickness, that is, integrating 

equation 2.4 as shown below: 

       ∫
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Where ‘h’ is the distance from the reference plane to the plate’s surfaces. Ply 

stresses are related in terms of mid-plane strains and curvatures; hence, general load-

deformation relation of laminate is obtained in terms of mid-plane strain and curvature 

as shown below: 
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Where zk and zk-1 represent the z-coordinate of the top and bottom surface of the 

kth layer, respectively.  [ ]
kyxQ − is the stiffness matrix of kth layer, which is function of the 

material constant and its ply orientation. [A], [B], and [D] are the sub-matrices of global 

stiffness matrix. They refer to the in-plane stiffness (also called as extensional stiffness), 

the coupling stiffness, and the bending stiffness for the laminate, respectively. 

2.3.2 Parallel Axis Theorem applied for Laminate Axis Transformation 

Using lamination theory, stiffness matrices are usually obtained about the mid-

plane of a laminate. If a structural component is an assembly of laminates, oriented on 

different locations, it becomes necessary to translate stiffness matrices to a common 

reference axis in order to obtain stiffness matrix of entire structure. Parallel axis 

theorem is used for this purpose. If “d” is the distance measured from the old reference 

axis to the new reference axis as shown in figure, we have 

                   (2.12) dzz kk +='
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Therefore, the modified stiffness matrices, [ ] [ ] [ ]'',' DandBA , which are referred 

to the new axis, can be obtained as,   
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Figure 2.2 Axis Translation 

[ ] [ ]AA ='  

[ ] [ ] [ ]AdBB ⋅+='                   (2.13) 

[ ] [ ] [ ] [ ]AdBdDD ⋅+⋅+= 22'  

2.4 Stiffness Model of Composite Hat-Section 

 In this section, equations are derived for inclined laminate by considering the 

reference axis about the mid-height and about the base of the web. Then the stiffness 

matrices for the top and bottom laminates as well as web laminates are translated to the 

reference axis of the hat-section. 

2.4.1 Axial and Bending Stiffness of the Flange and Bottom Laminates 

The [A], [B], and [D] matrices for the top and bottom flange laminates with 

respect to its own mid-plane of each laminate can be easily obtained by the composite 

lamination theory (CLT). These matrices calculated by CLT are based upon the unit 

width of laminates. Hence, the total stiffness matrices of the flange laminates can be 

obtained by multiplying the width of each laminate.  

z’ 

zk   z kth
 

CL 

d 

New Axis 



 

2.4.2 Stiffness of Web Laminates about Mid-height 

The mid-height axis of the web laminate is selected as the reference axis for the 

stiffness derivation. The web laminate is inclined at an angle θ with respect to reference 

axis. Consider an infinitesimal element of the web laminate along the width direction, as 

shown in Figure 2.3. Let “ds” be the width of infinitesimal element of the laminate at a 

distance S from the reference axis. The element is first rotated about x’-axis (onto y’-z’ 

coordinate system) and then translated to the selected reference axis of the cross-section. 

After this process, the axial and bending stiffness can be obtained by integration of the 

stiffness of the element along the entire length of the web laminate. 

y

z

dsS
h = S·(Sin   )

0

z' y'

w  

2  
 

 b 
   w  

2  
 

z"

y"

 

Figure 2.3 Infinitesimal Section of Web laminate (about Mid-height) 

Using parallel axis theorem, transformed stiffness matrices for the element are 

given as, 
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2.4.3 Reduced ply stiffness of web laminate 

Let 1-2-3 (or z’) be the material principal coordinates, x’-y’-z’ be the inclined 

web laminate coordinates (see Fig. 2.3), x”-y”-z” be the web laminate coordinates 

parallel to the x-y-z coordinates, the coordinates of the global cross section. The 3- and 

x’- axes are coincided to the z’- and x-axes, respectively. [Q1-2] is the reduced stiffness 

matrix of a composite ply. The subscripts, 1and 2 refer to the properties along the fiber 

and transverse to the fiber direction, respectively. The 3- or z’- axis is normal to 1-2 

plane. 

The angle ply stiffness can be obtained by first rotating the infinitesimal element 

θ (the web angle) about x’-axis. The infinitesimal element is then rotated with its fiber 

orientation β angle around the z’- axis. The overall ply stiffness in the x-y-z coordinates 

can be written as: 

[ ] ( )[ ] ( )[ ] [ ] ( )[ ] ( )[ ]zxxzkyx TTQTTQ βθθβ εεσσ +⋅+⋅⋅−⋅−= −− 21

"
            (2.16) 

[Tσ] and [Tε] in the above equation are the stress and strain transformation 

matrices, respectively.  The subscripts, x and z in [Tσ] and [Tε] indicate the axes where 

the stiffness matrix is rotated. The expression of [Tσ] and [Tε] matrices are given in 

Appendix. The explicit form of the stiffness matrix in equation 2.16 for the ply in the 

web is given in Appendix (A.17). 
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2.4.4 Stiffness of Web Laminates about Base 

 In certain cross-sections like hexagonal cross section it may be convenient to use 

the base of the laminate as the reference axis to find the stiffness matrices. Consider 

laminate of length ‘L’ inclined at an angle θ with respect to local x axis. Let ‘ds’ be the 

width of infinitesimal element of the laminate at a distance ‘S’ from the base of 

laminate as shown in figure below. The vertical distance of the element is represented 

as ‘h’. 

y

z

dsS
h =  S ·(Sin   )

0

z' y'

 b    w  

z"

y"

 
Figure 2.4 Infinitesimal Section of Web laminate (about Base) 

Integrating along the length of the laminate, we have, 
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WwW

b

WwW ASin
b

BbAdsSinSBbB
w

]"[
2

]"[]"[)("
2

0

⋅⋅+⋅=⋅⋅⋅+⋅= ∫ θθ  

 

[ ] [ ] ∫∫ ⋅⋅⋅+⋅⋅⋅⋅+⋅=
ww b

WW

b

WwW AdsSinSBdsSinSDbD
0

2

0

]"[)(]"[)(2" θθ  

 15



 

       W
w

WwWw ASin
b

BSinbDb ]"[
3

]"[]"[ 2
3

2 ⋅⋅+⋅⋅+⋅= θθ   

 
Hence, 
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b
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3

]"[" 2
3

2 ⋅⋅+⋅⋅+⋅= θθ  

2.4.5 Overall Constitutive Equation of Hat Cross-section  

The overall stiffness matrices of the hat-section are the sum of the stiffness 

matrices of each laminates. The stiffness matrices of each laminates have to be 

translated to the common reference axis before the summation. The bending stiffness of 

a beam section depends on the location of the bending axis. In obtaining this stiffness of 

isotropic material beam with any given cross section, it is customarily to select the neutral 

axis as a reference axis where no axial stress/strain exists. For the case of isotropic 

material, the location of the neutral axis is only dependent on geometry of the cross-

section. However, for laminated composite beam, the location of this axis depends not 

only on the geometry of the cross section but also on the ply orientation, the stacking 

sequence and material properties of each segment of the laminate. Hence, for the 

composite beam with a hat cross-section, the reference axis can be arbitrarily selected. In 

doing so, the axial stress/strain at this location may not be zero. In the derivation of the 

following stiffness matrices, the reference axis for the hat cross-section is initially selected 

as the mid-height of the web. The overall section stiffness is then evaluated at neutral axis. 
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2.4.6 Axial and Bending Stiffness of Narrow Beam 

The structural response of the beam is dependent on ratio of the width to the 

height of the cross-section [17]. If the width to height ratio of the beam cross section is 

very large, the induced transverse curvature along the edge due to bending is 

insignificant. This kind of the beam is termed as a wide flange beam. For this case, a 

non-zero moment, My is induced to constraining the induced curvature in the transverse 

direction. Conversely, if the width to height ratio is small, the beam is then termed as a 

narrow flange beam.  For this case, κy can not be constrained. As a result, no moment, 

My is induced.  For all of the cases studied, the width to height ratio ranges from 3 to 6, 

approximately, which is considered as a small value. Hence, the present beam will be 

considered as a narrow beam. The constitutive equation shown above was based upon 

the laminated plate theory. Equation 2.6 can be rewritten as: 
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⎦
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Where,  
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 For a narrow beam, Equation 2.18 is written as  
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The axial and bending stiffness of the beam are then given as:  

( ) 2
111111

11
bda

dEA beam
−⋅

=                  (2.21) 

( ) 2
111111

11
bda

aEI beam
−⋅

=                  (2.22) 

Above equations enforces zero curvature and zero axial strain when evaluating 

EA and EI, respectively. Hence, (EI)beam in equation 2.22 will be considered as the 

bending stiffness at the neutral axis. This equation was also used to calculate the axial 

and bending stiffness of a laminated beam with a delamination [18]. 
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Figure 2.5 Flow chart to calculate Axial and Bending Stiffness 



 

2.5 Ply Stress Calculation 

Stress in any kth ply at a distance zk from mid-plane is computed using the 

Stress-Mid plane strain-curvature relationship shown in equation 2.4. The mid-plane 

strains and curvatures are acquired using equation 2.19. General form of equation 2.4 to 

compute stress in any ply is given below: 

 [ ] [ ] [ ]kkyxk Q εσ ⋅=−    [ ] [ ] [ ]( )00 κε ⋅+⋅= kk zQ                       (2.23) 

Where, [ ]kQ  is the transformed ordinary reduced stiffness matrix of the kth layer 

corresponding to the vertical distance zk from mid-plane.  

2.6 Finite Element Analysis 

Finite element model (FEM) was developed to obtain the results which were 

used to compare the results obtained by the present closed form solution. Since interests 

of this study were on the stiffness and in-plane ply stresses of the beam, a two-

dimensional finite element model was employed.  

2.6.1 Model Description 

The model is generated in ANSYS [19]. Input file is used to create the model 

and Graphical User Interface (GUI) is used for post processing. The mesh of the model 

is built using bottom-up construction procedure, that is, key points are defined first and 

then areas are formed by connecting those key points, lines are automatically generated 

from areas. The model contains 12 key points, 18 lines, 6 areas, 4046 nodes and 1320 

elements. The length of the model is 20 inches long.  

Two-dimensional shell element, SHELL91 was selected. The element has eight 

nodes and each node has six degrees of freedom: three translations and three rotations in 
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x, y, and z directions. The property of the element is defined by layer thicknesses, layer 

material direction angles, and orthotropic material properties. The lay-up sequence of 

each segment of the hat section is shown in result section. However, it should be noted 

that the bottom layer of the cross-section is unsymmetrical; figure 2.5 shows the lay-up 

sequence of the bottom anti-symmetric laminate. The entire cross-section is not 

symmetric with respect to the reference axis of the cross-section. Hence, the coupling 

effects between bending and in-plane load exist.   

 

Figure 2.6 Layer stacking sequence of bottom anti-symmetric laminate 

For the axial load case, the model is fixed at one end and an axial load is applied 

at the other end. Command CP is used to ensure uniform displacement across the hat 

section along the loading direction. Figure 2.7 gives a graphical representation of 

applied end conditions to evaluated axial stiffness. 
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Figure 2.7 Applied End Conditions for Axial Load Case 

For the bending case, the model is fixed at one end and the moment is applied by 

a couple of forces in the opposite direction at the other end. Command CERIG is used 

to create rigid region connecting given set of nodes to one node called ‘master node’. 

This connection ensures relative constraints in displacements and rotations. Figure 2.6 

gives a pictorial representation of the loading end conditions. 

Convergence study was conducted in order to obtain optimum mesh size. 

Meshing that generates elements ranging from 300 to 2000 at an approximate increment 

of 300 where used. Insignificant variation in the bending stiffness value was observed, 

however, the convergence was observed to be near 1320 elements. This mesh is used in 

the study for all the beams. 

 21



 

 

Figure 2.8 Applied End Conditions for Bending Case 

2.6.2 Stiffness Calculation from FEM model 

The bending stiffness for any given hat section beam is obtained by relating the 

curvature of the deformed beam to the applied moment. The curvature of the deformed 

beam is calculated by recording the displacements in x and z directions of any three 

points on the same plane. From these displacements, the curvature of the deformed 

beam can be obtained [20]. Hence,  

( ) appliedMbeamEI ⋅= ρ                 (2.24) 

Where, ρ is the radius of curvature and M is the applied moment.  

The axial stiffness is simply obtained by dividing the applied axial load by 

strain along that direction as given by, 

 ( )
x

appliedP
beamEA ε=                 (2.25) 
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2.6.3 Verification of the FEM model 

 To validate the FEM model and the present approach, aluminum material was 

first used to implement to all of the models. Data and dimension of the model are shown 

in table 2.1   

TABLE 2.1 
 

MATERIAL PROPERTIES AND DIMENSIONS OF THE ISOTROPIC MODEL 

Name Values 

Elastic Modulus, E (psi) 10E+06 

Poisson’s Ratio, ν 0.33 

Widths, btf  and bbf  (in) 1 

Thickness, ttf, tbf, tw and tbl (in) 0.03, 0.05, 0.02 and 0.03 respectively 

Web Height, H (in) 1 

Coupling Force 100 lb 

 
The comparison of axial and bending stiffness between strength of mechanics 

approach and finite element results are tabulated in tables 2.2 and 2.3, respectively. The 

value obtained from FEM model of the laminated hat-section beam shows good 

agreement with one calculated using solid mechanics. This clearly proves the validity of 

the finite element model using isotropic material. Hence, this model can be applied to 

orthotropic material. 
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TABLE 2.2 

COMPARISON OF AXIAL STIFFNESS OF HAT SECTION MADE OF 
ISOTROPIC MATERIAL 

AXIAL STIFFNESS, EA, kips 

Web Angle, θ Strength of Mechanics 
Approach 

FEM Solution  Difference 

90 2000 2035 +1.7 % 

75 2175 2215 +1.8 % 

60 2410 2454 +1.8 % 

45 2762 2821 +2.1 % 

30 3440 3515 +2.1 % 
 

 
TABLE 2.3 

COMPARISON OF BENDING STIFFNESS OF HAT SECTION MADE OF 
ISOTROPIC MATERIAL 

BENDING STIFFNESS, EI, 103 lb-in2

Web Angle, θ Strength of Mechanics 
Approach 

FEM Solution  Difference 

90 324.4 312.6 -3.8 % 

75 337.3 322.2 -4.7 % 

60 356.3 339.3 -5.0 % 

45 388.0 368.4 -5.3 % 

30 452.1 427.3 -5.8 % 
 

 
 

 



 

2.7 Numerical Examples and Results 

 The geometry and lay-up sequence used for composite hat section are shown in 

section 2.7.1. The results are presented in section 2.7.2 and 2.7.3.  

2.7.1 Geometry and Lay-up Sequence of Composite Section 

Results of analytical solution are obtained by the code written in MATLAB. On 

the other hand, finite element results are obtained by ANSYS. The beams with various 

web angles, θ, were studied but the height of the cross-section remains constant. The 

width of the bottom laminate varies with respect to θ. The geometry of hat-section 

studied is shown in figure 2.9. The material used in this study was AS4/3501 graphite 

epoxy laminates. Its properties are listed in table 2.4  

1"

1" 1"

1"

 [45°/-45°/0°/0°/-45°/45°]

 [45°/-45°/-45°/45°]

 [45°/-45°/-45°/45°]

 [45°/-45°/-45°/45°]

 [0°/0°]

T

T

T

 
Figure 2.9 Geometry and Lay-up sequence of Composite Hat-Section 

2.7.2 Deflection and Deformation of Composite Beams 

Figure 2.10 shows the contour plot of the deformed shape of the beam subjected 

to an axial load. As indicated, the beam exhibit a uniform axial deformation with a very     
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small curvature induced due to its unsymmetry across the thickness of the cross-section. 

Figure 2.11 shows the deflected shape of the cross-section due to bending. A negligible 

twisting deformation is observed. 

TABLE 2.4 

MATERIAL PROPERTIES FOR AS4/3501-6 
GRAPHITE/EPOXY LAMINATE 

AS4/3501-6 Graphite/Epoxy 

Properties Value 

E11 18.2E6 psi 

E22 1.41E6 psi 

G12 0.92E6 psi 

ν12 0.274 

tply 0.005” 
 

  
2.7.3 Stiffness Comparison between Conventional, Present and FEM Model of  
         Composite Section 

 
Bending and axial stiffness of composite hat-section with various web angles are 

investigated. The web angle is varied at 15 degrees ranging from 30˚ to 90˚ as tabulated 

below. Table 2.5 and Table 2.6 list the axial stiffness and bending stiffness of the cross 

section, respectively. As indicated, the results obtained by the present method are in an 

excellent agreement with the FEM results for both axial and bending cases. Moreover, 

the results obtained from the conventional method are far from the FEM results for the 

case of axial load. Since each laminate segment of the cross section in the FEM model 

is well connected. In the present and conventional methods, no constraint between 
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segments is involved. Hence, the FEM results are in a higher bound. For the bending 

case, the great amount of bending stiffness for the entire cross-section is contributed by 

the top and bottom flanges. Hence, the difference between the FEM results compared to 

the conventional and present methods are relative small with respect to the web angle 

change. Furthermore, the conventional method ignored the coupling effect between 

axial and bending of the entire cross-section.   

TABLE 2.5 

COMPARISON OF EFFECTIVE AXIAL STIFFNESS BETWEEN 
CONVENTIONAL, PRESENT AND FEM RESULTS 

 
AXIAL STIFFNESS, EA, 103 lb 

 
Web 

Angle, θ 
Conventional 
Method [a] 

Present 
Method  

[b] 

FEM 
Result  

[c] 

Difference 
between 
[c]& [a] 

Difference 
between 
[c]& [b] 

90 937.0 1182.7 1230.0 +23.8 % +3.8 % 

75 1020.0 1317.4 1370.0 +25.6% +3.8 % 

60 1126.0 1478.5 1540.0 +26.9 % +4.0 % 

45 1283.0 1705.2 1780.0 +27.9 % +4.2 % 

30 1571.0 2107.3 2220.0 +29.2 % +5.1 % 
 
 

The time required to run ANSYS input file and extract axial and bending 

stiffness value, for a given beam case, is approximately 23 minutes. Where as, the time 

required to run MATLAB code and extract axial and bending stiffness value, for a 

given beam case, is just 2 seconds. 

 



 

TABLE 2.6 

COMPARISON OF EFFECTIVE BENDING STIFFNESS BETWEEN 
CONVENTIONAL, PRESENT AND FEM RESULTS 

 

BENDING STIFFNESS, EI, 103 lb-in2

Web Angle, 
θ 

Conventional 
Method  

[a] 

Present 
Method   

[b] 

FEM 
Result  

[c] 

Difference 
between  
[c] & [a] 

Difference 
between  
[c] & [b] 

90 196.0 210.8 210.8 7.0 % 0.0 % 

75 205.3 219.0 219.0 6.3 % 0.0 % 

60 215.9 230.4 230.4 6.3 % 0.0 % 

45 230.7 247.8 247.8 6.9 % 0.0 % 

30 257.0 278.9 278.9 7.9 % 0.0 % 
 
 
 

`  
 

Figure 2.10 Contour Plot of Deformed Shape due to Axial Load 
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Figure 2.11 Deflected Shape due to Applied Moment at Free End 
 
2.7.4 Ply Stress Comparison 

The stresses in any ply of the hat beam with a web angle of 45˚ were 

investigated. A coupling force of 100 lb is applied at the free end resulting in pure 

bending across the length of the beam. Consequently, ply stresses at any cross-section 

along the length of the beam remains constant.  

Figures 2.12 and 2.13 shows the ANSYS result of σx distribution of hat-section. 

A uniform stress distribution along the beam axis (longitudinal axis) is observed.  A 

comparison of σx distribution calculated by the FEM and the present method is shown 

in figures 2.14 and 2.15. The excellent agreement is observed in the figure. The location 

of the neutral axis where σx=0 is in agreement between two different approach.   
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Figure 2.12 Contour Plot of σx in Top Plies with 45˚ Web Angle 

 

Figure 2.13 Contour Plot of σx in Top 0˚ Ply with 45˚ Web Angle 
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Figure 2.14 Comparison of σx in all plies of hat-section with 45˚ web angle 
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Figure 2.15 Comparison of σx in 45˚ ply of Hat-Section with 45˚ web angle 
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2.8 Experimental Bending Stiffness of I-Beam  

Bending stiffness of I-beam obtained experimentally by [20] is compared using 

the present approach. Excellent agreement is observed between the present approach 

and experimental values as tabulated below: 

TABLE 2.7 

COMPARISON OF EFFECTIVE BENDING STIFFNESS VALUES OF 
EXPERIMENTAL I-BEAM 
 

BENDING STIFFNESS, EI, 103 lb-in2

 
Top Flange 
Width (in.) 

Bottom Flange 
Width (in.) 

EIexp *
11D  Present 

Method 
 

2.460 
 

2.458 
 

587 697 (15.7 %) 596 (-1.5%) 

2.195 
 

2.203 
 

530 611 (13.3 %) 520 (1.9%) 

1.936 
 

1.924 
 

480 568 (15.5 %) 477 (0.6%) 

1.471 
 

1.480 
 

424 462 (8.2 %) 413 (2.6%) 

1.257 
 

1.263 
 

364 397 (8.2 %) 355 (2.5%) 

1.141 1.330 350 393 (8.2 %) 352 (-0.6%) 

0.774 0.788 256 288 (11.0 %) 248 (3.1%) 
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2.9 Delamination 

 Delamination is defined as the fracture of the plane separating two plies of 

laminated composite structure. This fracture occurs within the thin resin-rich layer that 

forms between plies during the manufacturing process or when subjected to load. It is a 

major concern in the structural performance of composite materials. Delamination often 

results in a loss of stiffness and strength, and may lead to safety and reliability 

problems, making this one of the major obstacles in achieving the full weight saving 

potential of advanced composite materials.  

 Delaminations occur at stress free edges due to the mismatch in properties of the 

individual layers, at ply drops where thickness must be reduced, at regions subjected to 

out-of-plane loading such as bending of curved beams. Delaminations form due to some 

combination of three basic fracture modes. These include the opening mode (Mode I), 

the sliding shear mode (Mode II), and the scissoring shear mode (Mode III). Usually, to 

predict the onset and growth of delamination, the interlaminar fracture toughness (IFT) 

associated with each of the fracture modes is characterized and the corresponding strain 

energy release rates for each mode associated with the configuration and loading of 

interest is calculated. Chan and Chou [18] developed an analytical method using sub-

laminate approach to quantify the loss of stiffness due to presence of delamination in 

laminate. Lin and Chan [12] applied the same approach to elliptical cross-section and 

validated using Finite Element Analysis to study the loss of stiffness due to 

delamination.  



 

The most common sources of delamination are the material and structural 

discontinuities.  Figure 2.16 shows the common sources of delamination at geometric 

and material discontinuities. 

 

Figure 2.16 Delamination Sources at Geometric and Material Discontinuities 

For the Hat-Cross Section studies, the expected type of delamination is due to 

the “Skin stiffener interaction” as shown in the figure, which is the debonding of the 

foot of the stiffener from the plate.  
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CHAPTER 3 

ANALYTICAL SOLUTION FOR THERMAL ANALYSIS 

Fiber-reinforced composite materials are generally processed at an elevated 

temperature and then cooled down to room temperature. If an unconstrained composite 

laminate is subjected to a uniform change in temperature, in-plane stresses will be 

induced due to the constraint configuration of each lamina of the cross section and also 

due to the coefficients of thermal expansion. Consequently, most modern composite 

laminates where laminas are placed at different angles are subjected to a significant 

state of stress prior to the application of any external mechanical loading.  

In chapter 2, an analytical solution for calculating ABD matrix for hat-section 

was developed. The ABD matrix is not altered by inclusion of thermal loading since the 

ABD matrix is only dependent of laminate elastic properties and geometry. However, 

the stress-strain relationship and residual stresses in plies will be altered. 

3.1 Free Thermal Response of Composite Hat-section 

The geometry, lay-up sequence and material properties of hat-section studied 

here are the same as the one studied in chapter 2. A uniform temperature, ∆T, of 100˚F 

is applied and ply stresses will be induced. It should be noted that for graphite/epoxy 

lamina coefficient of thermal expansion (CTE), which relates strains to temperature 

change, along the fiber direction (α1) is -0.5e-6 in/in/˚F and transverse to the fiber 

direction (α2) is 15e-6 in/in/˚F. Therefore, increase in temperature will cause decrease



 

in fiber direction. However, stress produced along the fiber direction will be negligible 

because of the negligible CTE value. For 0˚ ply, the dominate thermal stress will be 

along y-direction (σy) and for angle ply, say 45˚, the dominate thermal stress is the shear 

stress caused due the shear stains and the secondary stress will be along the y-direction. 

3.1.1 Unit Thermal Force and Moment Resultants 

By integrating stresses through the thickness of the laminate, force and moment 

resultants can be defined as [13]: 
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These quantities are material properties, just as the ABD is, and they yield the 

thermal stress and moment resultants by simply multiplying them by the temperature 

change, ∆T. [ ]kQ  is the transformed reduced stiffness matrix for z-axis rotation only 

and [ ]α  is the transformed coefficient of thermal expansion matrix.  
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3.1.2 Parallel Axis theorem applied to transfer Force and Moment resultants 

Force and Moment resultant obtained using equation 3.1 act along the mid-plane 

of the laminate. Parallel axis theorem is used to transfer these resultants to a reference 

axis, which is the mid-plane of the web laminate for the entire hat-section. If “d” is the 

distance measured from the old reference axis to the new reference axis as shown in 

figure 2.2 of chapter 2, 

We have, 

  dhh kk += ; dhh kk += −− 11      (3.2) 
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3.1.3 Overall Force and Moment Resultants  

 The overall force and moment resultants are obtained by summing the resultants 

of each laminate about the mid-height of the web. Referring figure 2.1 of chapter 2, 

 [ ] [ ] [ ] [ ] [ ]BLTBFTWEBTTFTTotalT NNNNN +⋅+⋅+= 22    (3.9) 

[ ] [ ] [ ]{ } [ ] [ ] [ ]{ }BFTTWEBTTFTTTotalT NbfdMMNtfdMM ⋅−⋅+⋅+⋅+= _22_  

                   [ ] [ ]{ }BLTT NbldM ⋅−+ _                (3.10) 
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3.1.4 Ply Stress Calculation 

Ply stresses are obtained using the mid-plane and curvature obtained by 

multiplying [abd] matrix of the equivalent plate formed at the mid-height of the web 

with the resultants. Mechanical strain is obtained by subtracting the thermal strain from 

the total strain. Finally, stresses in any ply are obtained by multiplying the ordinary 

[ ]kQ matrix with the mechanical strain. 
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[ ] [ ] [ ] [ ] Tz kk ∆⋅−⋅+= ακεε 0  

[ ] [ ] [ ]kkk Q εσ ⋅=                   (3.12) 

3.2 Finite Element Analysis 

 Finite element analysis is carried out to validate the present closed form 

solution. The same hat-section model developed in chapter 2 is used and sole uniform 

temperature load of 100˚F is applied. The validity of the model confirmed in chapter 2 

itself. In addition to the details of the model listed in chapter 2, including material 

properties, following values of coefficient of thermal expansion are used: 
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TABLE 3.1 

COEFFICIENTS OF THERMAL EXPANSION 
 

AS4/3501-6 Graphite/Epoxy 

Coefficient of Thermal Expansion Value (in/in/˚F) 

Along the Fiber direction (α1) -0.5E-6 

Transverse to the Fiber direction (α2) 15E-6 
 

  
3.3 Results and Discussions  

Results of analytical solution are obtained by the code written in MATLAB. On 

the other hand, finite element results are obtained by ANSYS. The beam with a web 

angle of 90˚ is used in study to investigate ply stresses due to thermal loading. For angle 

plies in laminated composites, the dominate stresses are the shear stresses (τxy) and the 

secondary stresses are the stresses in y-direction (σy). Due to the negligible coefficient 

of thermal expansion along the fiber direction, the values of stresses along x-direction 

(σx) were observed to be insignificant. Hence, they are not used in the comparison. For 

a 0˚ ply, the dominate stress is observed to be in y-direction (σy). Ply stresses of FEM 

model are obtained by taking average of nodal values of elements located far from the 

constrained area. Figure 3.1 shows FEM contour plot of shear stresses in top plies of 

hat-cross section composite beam for applied uniform temperature of 100˚F. 



 

 
 

Figure 3.1 Contour Plot of τxy in Top Plies 

Table 3.2 lists the comparison of shear stress values obtained from FEM and 

present method. As seen in the table, shear stresses are dominant in angle plies; on the 

other hand, they have null value for 0˚ ply. Excellent conformity was observed between 

FEM and present method.  
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TABLE 3.2 

COMPARISON OF SHEAR STRESSES BETWEEN FEM AND PRESENT 
METHOD FOR BOTTOM FLANGE LAMINATE 

 
 Layer 

 
FEM Results 
τxy (psi) 

Present Method 
τxy (psi) 

% Error 

 
Top 

 
2128.5 

 
2161.0 

 
-1.5 % 

 
45 

 
Bottom 

 
2128.2 

 
2160.7 

 
-1.5 % 

 
Top 

 
-2136.3 

 
-2160.7 

 
-1.1 % 

 
-45 

 
Bottom 

 
-2134.6 

 
-2160.4 

 
-1.2 % 

 
Top 

 
-2134.6 

 
-2160.4 

 
-1.2 % 

 
-45 

 
Bottom 

 
-2132.8 

 
-2160.1 

 
-1.3 % 

 
Top 

 
2127.7 

 
2160.1 

 
-1.5 % 

 
45 

 
Bottom 

 
2127.4 

 
2159.8 

 
-1.5 % 

 
Top 

 
0.0 

 
0.0 

 
0.0 % 

 
0 

 
Bottom 

 
0.0 

 
0.0 

 
0.0 % 

 
Top 

 
0.0 

 
0.0 

 
0.0 % 

 
0 

 
Bottom 

 
0.0 

 
0.0 

 
0.0 % 

 
Top 

 
2126.9 

 
2159.2 

 
-1.5 % 

 
45 

 
Bottom 

 
2126.6 

 
2158.9 

 
-1.5 % 

 
Top 

 
-2126.1 

 
-2158.9 

 
-1.5 % 

 
-45 

 
Bottom 

 
-2124.4 

 
-2158.6 

 
-1.6 % 

 
Top 

 
-2124.4 

 
-2158.6 

 
-1.6 % 

 
-45 

 
Bottom 

 
-2122.7 

 
-2158.3 

 
-1.7 % 



 

TABLE 3.2 - Continued 

 
Top 

 
2126.1 

 
2158.3 

 
-1.5 % 

 
45 

 
Bottom 

 
2125.8 

 
2158.0 

 
-1.5 % 

 

 

Figure 3.2 Contour Plot of σy in Top Plies 

The stresses in y-direction (σy) are observed to have significant value for angle 

plies and these stresses are dominant for 0˚ ply. Figure 3.2 gives a pictorial 

representation of σy stresses in top plies of the cross-section. Excellent agreement was 
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observed in the values obtained for 0˚ ply. However, in angle plies, the difference seems 

to be high. This may be due to the effect of edge constraint of the laminate.  

TABLE 3.3 

COMPARISON OF σy STRESSES BETWEEN FEM AND PRESENT    
METHOD FOR BOTTOM FLANGE LAMINATE 
 

 Layer 
 

FEM Results 
σy (psi) 

Present Method 
σy (psi) 

% Error 

 
Top 

 
445.4 

 
511.6 

 
-14.9 % 

 
45 

 
Bottom 

 
445.4 

 
511.0 

 
-14.7 % 

 
Top 

 
452.6 

 
511.0 

 
-12.9 % 

 
-45 

 
Bottom 

 
451.4 

 
510.4 

 
-13.1 % 

 
Top 

 
451.4 

 
510.4 

 
-13.1 % 

 
-45 

 
Bottom 

 
450.1 

 
509.8 

 
-13.2 % 

 
Top 

 
445.5 

 
509.8 

 
-14.4 % 

 
45 

 
Bottom 

 
445.5 

 
509.2 

 
-14.2 % 

 
Top 

 
-1783.7 

 
-1763.5 

 
1.1 % 

 
0 

 
Bottom 

 
-1783.8 

 
-1763.7 

 
1.1 % 

 
Top 

 
-1783.6 

 
-1763.7 

 
1.1 % 

 
0 

 
Bottom 

 
-1783.9 

 
-1763.9 

 
1.1 % 

 
Top 

 
445.6 

 
508.0 

 
-14.0 % 

 
45 

 
Bottom 

 
445.7 

 
507.4 

 
-14.0 % 

 
Top 

 
445.2 

 
507.4 

 
-14.0 % 

 
-45 

 
Bottom 

 
444.0 

 
506.8 

 
-14.1 % 



 

TABLE 3.3 - Continued 

 
Top 

 
444.0 

 
506.8 

 
-14.1 % 

 
-45 

 
Bottom 

 
442.7 

 
506.1 

 
-14.3 % 

 
Top 

 
445.7 

 
506.1 

 
-13.6 % 

 
45 

 
Bottom 

 
445.8 

 
505.5 

 
-13.4 % 
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CHAPTER 4 

EVALUATION OF CENTROID AND SHEAR CENTER 

The location of centroid and shear center in a thin-walled laminated composite, 

closed-section beam is a function of the geometry and the material properties of the 

section. For isotropic material, by definition, centroid is located such that an axial load 

does not cause a change in curvature and a bending moment does not produce axial 

strain. Likewise, shear forces acting at the shear center do not cause twist. In other 

words, centroid decouples axial extension and bending, where as, shear center 

decouples bending and twisting, mechanisms of a beam. However, composite material 

exhibit unique structural coupling characteristic. For a composite beam subjected to 

axial force at centroid there exists an extension/twist coupling and for applied pure 

bending moment there exists a bending/twisting coupling. That is, the beam may also 

twist when subjected to such loads. 

 In general, extension/twist coupling is obtained in beams with antisymmetric 

lay-up, while bending/twist coupling is obtained in beams with symmetric lay-up 

configuration. In section 4.1, centroid and shear center are evaluated based on the 

extensional application of analytical solution developed in chapter 2.  

4.1 Centroid and Shear Center 

 Determining the location of centroid and shear center plays an important role in 

the engineering analysis. The methodology developed to determine these locations is 
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first applied to a closed cross section with varying web angles. After validating the 

results with isotropic material and observing the behavior for symmetric and anti-

symmetric laminate, the methodology is applied to the hat cross-section.  

4.1.1 Geometry of Closed Cross-Section   

Box cross-section is divided into individual laminates. As shown in Figure 4.1, 

let btf be the width of top flange, bbf is the width of bottom flange, tply is the thickness 

of each ply, bw is the width of webs and H is the vertical height between the middle of 

top and bottom laminates.  It should be noted that btf and H are kept constant, where as 

bw and bbf varies according to web angle, sin-1(H/bw). Hence, bbf is dependent of the 

angle. Also, for web angle of 90˚, the box becomes a square cross section of unit 

dimensions. 

tf

b

b

b

H

bf

w

CLTop Flange

CLBottom Laminate

b
w

 
Figure 4.1 Geometry of box cross-section 
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4.1.2 The Procedure of the Approach   

 In this section, the methodology developed for the determination of centroid and 

shear center is presented. 

4.1.2.1 Centroid  

The centroid is located such that the beam’s axis remains straight when an axial 

force is applied at the centroid. Although this axis remains straight, the beam may twist 

about the axis of twist [5]. 

Recalling equation 2.20, we have  
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 According to the definition of the “neutral” plane, 0
xε depends only on xN  and 

xκ depends only on xM . Therefore, for applied pure moment, xN  = 0, hence equation 

2.20 reduces to, 

 0
xε  = xMb ⋅11  and xκ  = xMd ⋅11                   (3.1)

 from equation 2.3, strain at any location is given as 

 xcx z κεε ⋅+= 0                          

Substituting equation 3.1 in above equation and xε must be equal to zero at 

neutral plane. Thus, we write 

 00 =⋅+= xcx z κεε  

      0)( 1111 =⋅⋅+⇒ xc Mzdb                   ( )0≠xMΘ  
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11

11

d
bzc −=         (3.2) 

Where, 11b  and 11d  are evaluated at the chosen reference plane, which is the 

mid-height of the web. 

4.1.2.2 Shear Center  

Shear center is defined such that transverse load acting at the shear center of an 

orthotropic beam does not cause twist. In thin-walled, closed-section beams the torque 

due to the induced twist moment is small compared with the torque due to the induced 

shear force. In the following we neglect the twist moment [5]. 

From chapter 2, for closed-section beams, equation 2.18 can be written as,  
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      (3.3) 

According to the definition of the “torque neutral” surface, 0
xyγ depends only of 

xyN  and xyκ depends only on xyM . Therefore, for applied torque, xyN  = 0, hence 

equation 3.3 reduces to, 

 0
xyγ  = xyMb ⋅66     and      xyκ  = xyMd ⋅66                  (3.4)

 from equation 2.3, shear strain at any location is given as 

 xyscxyxy z κγγ ⋅+= 0                               (3.5) 

Substituting equation 3.4 in equation 3.5 and xyγ must be equal to zero at torque 

neutral plane. Thus, we write 

 00 =⋅+= xyscxyxy z κγγ  
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      0)( 6666 =⋅⋅+⇒ xysc Mzdb                 ( )0≠xyMΘ  

             
66

66

d
b

zsc −=         (3.5) 

Where, 66b  and 66d  are evaluated at the chosen reference plane, which is the 

mid-height of the web. 

4.1.3 Verification of the Present Approach 

 The approach is verified in two ways: one is by comparing the results of an 

isotropic cross-section of aluminum material and the also by observing the results of 

composite cross-section for symmetric and unsymmetric cases. Data and dimension of 

the model are shown in table 4.1. 

TABLE 4.1 

MATERIAL PROPERTIES AND DIMENSIONS OF THE ISOTROPIC MODEL 

Name Values 

Elastic Modulus, E (psi) 10E+06 

Poisson’s Ratio, ν 0.33 

Widths, btf and bbf  (in) 1 

Thickness, ttf, tbf, and tw (in) 0.03, 0.03, and 0.02 respectively 

Web Height, H (in) 1 

 
The dimensions of the cross-section are shown in figure 4.1 and the web angle is 

varied at 15 degrees ranging from 30˚ to 90˚. It should be noted that for a web angle of 

90˚ the cross-section is doubly symmetrical, and both the centroid and the shear center 
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coincide with the center of the cross section. For other web angles, the cross-section 

becomes singly symmetrical; hence the centroid and shear center will lie along the 

symmetric y-axis and the y-coordinates as listed in table 4.2.  

TABLE 4.2 

COMPARISON BETWEEN CONVENTIONAL AND PRESENT APPROACH 
FOR CLOSED CROSS SECTIONS MADE OF 

ISOTROPIC MATERIAL 
  

 
 

Neutral Axis Location from 
Mid-plane of Bottom Laminate 

Torque Neutral Axis Location 
from Mid-plane of Bottom 

Laminate 
Web 

Angle, 
θ 

Convention- 
al Method 

(in) 

Present 
Method 

(in) 

% 
Error 

Convention-
al Method 

(in) 

Present 
Method 

(in) 

% 
Error 

 
90˚ 

 
0.500 

 
0.500 

 
0.0 % 

 
0.500 

 
0.500 

 
0.0 % 

 
75˚ 

 
0.432 

 
0.434 

 
-0.6 % 

 
0.375 

 
0.398 

 
-6.3 % 

 
60˚ 

 
0.377 

 
0.380 

 
-0.8 % 

 
0.325 

 
0.337 

 
-3.8 % 

 
45˚ 

 
0.330 

 
0.332 

 
-0.4 % 

 
0.309 

 
0.298 

 
3.6 % 

 
30˚ 

 
0.287 

 
0.287 

 
-0.1 % 

 
0.290 

 
0.268 

 
7.6 % 

 
4.2 Present Approach Applied to Closed Composite Cross-Section 

Two cases are studied for composite cross-sections. The material used in this 

study was AS4/3501 graphite epoxy laminates. Its properties are listed in table 2.4 of 

chapter 2.  
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Case 1: Symmetric Lay-up 

A closed thin-walled composite beam with orthotropic and symmetrical lay-up 

behaves similarly to an isotropic beam [5]. The geometry and lay-up sequence used to 

study composite beam is shown in figure 4.2. It should be noted that for a web angle of 

90˚, the beam becomes square cross-section with unit dimensions as shown in figure 

4.2, for which the centroid and shear center will coincide with the center of the cross-

section.  The centroid and shear center will lie along the symmetric z-axis of the cross-

sections; table 4.3 lists the location of z-coordinate of neutral and torque neutral axis. 

1"

1"

 [45°/-45°/0°/0°/-45°/45°]

 [45°/-45°/-45°/45°] [45°/-45°/-45°/45°]
T

T

T

 [45°/-45°/0°/0°/-45°/45°]T

 
Figure 4.2 Geometry and Lay-up Sequence of Symmetric Composite Sections 

 52



 

 

[45°/-45°/0°/0°/-45°/45°]
T

 

[45°/-45°/0°/0°/-45°/45°]T

 
[45°/-45°/-45°/45°]

T

1"

1"

 
 

Figure 4.3 Composite Cross-Section for 90˚ Web Angle 
 

TABLE 4.3 

PRESENT APPROACH APPLIED TO CLOSED CROSS SECTION  
SYMMETRIC LAY-UP COMPOSITE BEAMS 

 
Web 

Angle, θ 
Neutral Axis Location 

from Mid-plane of 
Bottom Laminate (in) 

Torque Neutral Axis 
Location from Mid-plane 
of Bottom Laminate (in) 

90˚ 0.500 0.500 

75˚ 0.398 0.439 

60˚ 0.328 0.388 

45˚ 0.273 0.346 

30˚ 0.223 0.308 

 
Case 2: Bottom Unsymmetric Lay-up 

 The bottom laminate is kept unsymmetric to study its effect on the 

location of centroid and shear center for the geometries studied in case 1. The geometry 

and lay-up sequence are shown in figure 4.4. From table 4.4, it was observed that the 

 53



 

shear center and centroid does not coincide with the center of cross-section of the beam 

for the web angle of 90˚ for which the geometry of cross-section is symmetric about the 

both the axis.    

1"

1"

 [45°/-45°/0°/0°/-45°/45°]

 [45°/-45°/-45°/45°] [45°/-45°/-45°/45°]
T

T

T

 [45°/-45°/-45°/45°]T

 [0°/0°]T

 
Figure 4.4 Geometry and Lay-up Sequence of Unsymmetric Composite Sections 

 
TABLE 4.4  

PRESENT APPROACH APPLIED TO CLOSED CROSS SECTION 
UNSYMMETRIC LAY-UP COMPOSITE BEAMS 
 

Web 
Angle, θ 

Neutral Axis Location 
from Mid-plane of 

Bottom Laminate (in) 

Torque Neutral Axis 
Location from Mid-plane 
of Bottom Laminate (in) 

90˚ 0.497 0.501 

75˚ 0.394 0.440 

60˚ 0.324 0.390 

45˚ 0.269 0.348 

30˚ 0.219 0.310 
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4.3 Present Approach Applied to Hat Sectioned Composite Beam 

Finally, the centroid and shear center of hat-cross section composite beams with 

the geometry and lay-up sequence shown in figure 2.8 and with the material properties 

given in chapter 2 are investigated. Table 4.5 lists the values: 

TABLE 4.5 

PRESENT APPROACH APPLIED TO HAT CROSS SECTION  
COMPOSITE BEAMS 

 
Web 

Angle, θ 
Neutral Axis Location 

from Mid-plane of 
Bottom Laminate (in) 

Torque Neutral Axis 
Location from Mid-plane 
of Bottom Laminate (in) 

90˚ 0.244 0.267 

75˚ 0.221 0.251 

60˚ 0.204 0.240 

45˚ 0.189 0.233 

30˚ 0.174 0.232 
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CHAPTER 5 

CONCLUSION AND RECOMMENDATION 

A simple analytical method for analyzing composite beams with hat-section is 

presented. The current model includes the effect of induced in-plane deformation due to 

bending for an unsymmetrical cross-section while the conventional analysis using the 

smeared mechanical properties of laminate ignores this coupling effect. Finite element 

analysis was conducted to obtain the results for comparison.  It is concluded that the 

axial and bending stiffness obtained by the present method give an excellent agreement 

with the finite element results. However, the results obtained by the conventional 

method in axial load case give significant differences from the finite element results.  

The stiffness matrices obtained using the developed method is extended for 

thermal analysis. A simple closed form solution is developed to obtain ply stresses due 

to thermal loading. Results were validated and excellent agreement is observed with the 

finite element calculation. Based on the stiffness matrices obtained, a simple 

methodology is developed to determine the location of centroid and shear center for a 

closed cross-section. Results are validated by comparing with isotropic materials and 

also by observing the behavior of composite material for symmetric and anti-symmetric 

cases. 

 It is concluded that with the present method, analysis of hat-section reinforced 

composite beams can easily be performed with significant accuracy. The developed tool
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is handy in providing the parametric study for composite structural design.   

For the usage of the closed form expression of the stiffness matrices, a full 

model test is necessary to validate the developed model and to investigate the failure 

mechanism of the laminate. The response of structure due to combined loading such as 

mechanical and thermal, force and moment, moment and torque etc. is also an 

interesting area to study. Stiffnesses and thermal response of other cross-sections such 

as I-section, J-section, C-section, Triangular section, Honey-comb cross-section etc. can 

also be investigate using approach developed in this dissertation. However, at least one 

new such cross-section geometry should to be validated with finite element analysis and 

experimental testing. Further, the approach can be extended for the analysis of bridge 

structures. Hence, the present method can provide a generic solution to various cross-

sectional beams.  
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STIFFNESS MATRIX TRANSFORMATION EQUATIONS 
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A.1  Stress-Strain relationship 

 According to Hooke’s law, the linear elastic stress-strain constitutive 

relationship in material and global coordinates are given as 

  [ ] [ ] 212121 ][ −−− ⋅= εσ Q  
                       (A.1) 
  [ ] [ ] yxyxyx Q −−− ⋅= εσ ][  
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 The subscripts, 1 and 2 refer to the material coordinate system, x and y refer to 

global coordinate system, [Q1-2] and [ ]yxQ −  are the stiffness matrices of zero degree ply 

with respect to 1-2 and x-y coordinate system, respectively. Stress-strain relationship in 

global coordinate is obtained using transformation matrices given in section A.2. 

A.2  Transformation Matrices 

 In this section stress and strain transformation matrices for x-axis rotation and z-

axis rotation are listed. 

A.2.1     Stress Transformation Matrices 

Rotated θ about x axis 

 3D stress transformation matrix rotated a positive angle θ about x-axis is given 

as 
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Where cx = cos θ and sx = sin θ 

 For plane stress condition, 6x6 stress transformation matrix reduces to 3x3 

matrix, obtained by crossing out the 3rd, 4th and 5th rows and columns of the 

matrix. Therefore, [ ] D
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Rotated β about z axis 

 3D stress transformation matrix rotated a positive angle β about z-axis is given 

as 
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 Where cz = cos β and sz = sin β 

2D stress transformation matrix about z-axis is written as 
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Also, 
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A.2.2     Strain Transformation 

Rotated θ about x axis 

 3D strain transformation matrix rotated a positive angle θ about x-axis is given 

as 
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 2D strain transformation matrix about x-axis is written as 
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Rotated β about z axis 

 3D strain transformation matrix rotated a positive angle β about z-axis is given 

as 
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2D strain transformation matrix about x-axis is written as 
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A.3 Transformation of stress and strain from material coordinate system to 
laminate coordinate system 

 
 The stress and strain transformations from the global coordinate to the material 

coordinate are given as 

  [ ] [ ] yxT −− ⋅= σσ σ ][21  

  [ ] [ ] yxT −− ⋅= εε ε ][21                  (A.12) 

 Rewriting equation A.12, we have 

  [ ] [ ] 21
1][ −

−
− ⋅= σσ σTyx  

  [ ] [ ] 21
1][ −
−

− ⋅= εε εTyx                  (A.13) 

A.4 General Transformation equation of stiffness matrix from material to 
global coordinate system  

 
 Using equations A.13, A.1 and A.12, we have 

  [ ] [ ] 21
1][ −

−
− ⋅= σσ σTyx = [ ] [ ] [ ] 21

1
−

− ⋅⋅ εσ QT  

  [ ] [ ] [ ] [ ] yxyx TQT −
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1][                (A.14) 

 Comparing equations A.14 and A.1, stiffness transformation matrix is, 

  [ ] [ ] [ ] [ ]εσ TQTQ yx ⋅⋅= −
−

1                 (A.15) 

A.5 Stiffness Transformation matrix for θ rotation about x-axis 

 Stress-strain relationship in global coordinate is given as 
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A.6 Stiffness Transformation matrix for β rotation about z-axis 

  Modified stiffness matrix for first rotating angle θ about x-axis and then 

β about z-axis is written as, 

  [ ] [ ] [ ] [ T
zz TQTQ )(ˆ)(" β−⋅⋅β−= σσ ]   
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A.7 Transformation matrix for coefficient of thermal expansion 
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APPENDIX B 
 

CURVATURE CALCULATIONS (11)
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This section describes how to obtain curvature from the deflected curved shape of the 

beam. The obtained curvature and the applied moment will be used to compute the 

bending rigidity of the beam. Any three points selected on the same line can be used to 

determine the curvature of this line by geometrical calculations. Points A, B, and C in 

Figure B.1 represent these arbitrary points used for the curvature calculation and their 

coordinates are (x1,y1), (x2,y2) and (x3,y3), respectively. 

O(x  , y )
0 0

A(x  , y )
1 1

B(x  , y )
2 2

C(x  , y )
3 3

R

R

R

M(a  , b )
1 1

N(a  , b )
1 1

L1 L2

 
Figure B.1. Geometrical representation of the curvature calculation 

 Using x and y coordinates of the points A and B, slope and center point of the 

line AB can be defined, as shown below: 

Slope of Line AB = 
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yyS AB −

−
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 The equation of the line, L1, which is perpendicular to Line AB at point M can 

be expressed as: 

111 )( baxSy L +−=         (B.3) 

where 

Slope of the Line L1 = 
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L S
S 1
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Using the procedure mentioned above, the equation of line L2, which is 

perpendicular to Line BC at point N can be expressed as: 
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 The lines, L1 and L2 intersect at the center of the curve in figure B.1. The 

coordinate of the center point, O, can be obtained using equations B.3 and B.4 and 

expressed as: 
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 The distance from the center point, O, to any of the three points, A, B, and C is 

the radius of the curve in figure B.1. The radius and the curvature of this curve can be 

expressed as: 
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APPENDIX C 
 

MATLAB PROGRAMS FOR NUMERICAL SOLUTION 
AND PARAMETRIC STUDY 
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C1. Closed form Solution to Evaluate Effective Bending and Axial Stiffnesses of Hat 
Cross-Sections – Matlab Program 
 
%%%**inputs**%%% 
 
global angle nply tply r Q11 Q12 Q22 Q66 k theta A1 B1 D1  
 
%%% Laminate 1 - Top Flange Laminate%%% 
%%% If laminate is unsymmetric, input laminae in reverse order, %%% 
angle = [45 -45 0 0 -45 45]*pi/180;           % Fiber angle - Z-axis rotation 
nply = 6;                                                   % Number of plies  
tply = 0.005;                                               % Ply thickness 
theta_web = 90*pi/180;                              % Web Angle 
b1 = 1;                                                         % Width of Top Flange Laminate 
H = 1;                                                  % Web Height 
L = H/sin(theta_web);                                 % Length of Web Laminate - Changes with  

        % Web Angle 
b4 = 1;                                                 % Width of Bottom Flange Laminate  
b5 = b1 + 2*H/tan(theta_web);                   % Width of Bottom Laminate 
d1 = (H/2) + (nply*tply/2);                         % Vertical distance between Mid-plane of  

        % Top Laminate and Web Mid-height  
theta = 0*pi/180;                                         % X-rotation for top Laminate is zero 
 
%%% Material Properties- AS4/3501-6 Graphite/Epoxy %%% 
 
E1 = 18.2e6; 
E2 = 1.41e6; 
G12 = 0.92e6; 
v12 = 0.274; 
v21 = (E2/E1)*v12; 
 
%%% Calculation of Q-Matrix%%% 
 
Q11 = E1/(1-v12*v21); 
Q22 = E2/(1-v12*v21); 
Q12 = (E2/(1-v12*v21))*v12; 
Q66 = G12; 
 
%%% ABD Matrix (per unit length) at Mid-Plane of Top Laminate %%% 
 
A1 = A; 
B1 = B; 
D1 = D; 
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%%% Multiplying with width of laminate and Axis translation to Mid-height of Web 
%%% 
 
A1_bar = b1*A1; 
B1_bar = b1*(B1 + d1*A1); 
D1_bar = b1*(D1 + 2*d1*B1 + (d1^2)*A1); 
 
%%% Laminate 2 - Left Web Laminate %%% 
 
angle = [45 -45 -45 45]*pi/180;                    % Fiber angle - Z-axis rotation 
nply = 4;                                                      % Number of plies 
theta = 90*pi/180;                                         % X-Axis rotation for Web laminate                                 
 
%%% ABD Matrix (per unit length) %%% 
 
A2 = A; 
B2 = B; 
D2 = D; 
 
%%% ABD Matrix at Mid-Height of Web Laminate after integrating along the length 
%%% 
 
A2_bar = L*A2; 
B2_bar = L*B2; 
D2_bar = L*D2 + (1/12)*(L^3)*((sin(theta)).^2)*A2; 
 
%%% Laminate 3 - Right Web Laminate %%% 
 
angle = [45 -45 -45 45]*pi/180;                   % Fiber angle - Z-axis rotation 
nply = 4;                                                     % Number of plies 
theta = 90*pi/180;                                        % X-Axis rotation for Web laminate 
 
%%% ABD Matrix (per unit length) %%% 
 
A3 = A; 
B3 = B; 
D3 = D; 
 
%%% ABD Matrix at Mid-Height of Web Laminate after integrating along the length 
%%% 
 
A3_bar = L*A3; 
B3_bar = L*B3; 
D3_bar = L*D3 + (1/12)*(L^3)*((sin(theta)).^2)*A3; 
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%%% Laminate 4 - Left Bottom Flange Laminate%%% 
 
angle = [45 -45 -45 45 0 0 45 -45 -45 45]*pi/180;   % Fiber angle - Z-axis rotation 
nply = 10;                                            % Number of plies 
theta = 0*pi/180;                                    % X-Axis rotation for Web laminate     
d4 = -((H/2) + (nply*tply/2));                         % Vertical Distance between bottom  

%Flange laminate and Web Mid-height 
 
%%% ABD Matrix (per unit length) at Mid-Plane of Top Laminate %%% 
 
A4 = A; 
B4 = B; 
D4 = D; 
 
%%% Multiplying with width of laminate and Axis translation to Mid-height of Web 
%%% 
 
A4_bar = b4*A4; 
B4_bar = b4*(B4 + d4*A4); 
D4_bar = b4*(D4 + 2*d4*B4 + (d4^2)*A4); 
 
%%% Laminate 5 - Right Bottom Flange Laminate%%% 
 
angle = [45 -45 -45 45 0 0 45 -45 -45 45]*pi/180;  % Fiber angle - Z-axis rotation 
nply = 10;                                           % Number of plies 
theta = 0*pi/180;                                   % X-Axis rotation for Web laminate   
 
%%% ABD Matrix (per unit length) at Mid-Plane of Top Laminate %%% 
 
A5 = A; 
B5 = B; 
D5 = D; 
 
%%% Multiplying with width of laminate and Axis translation to Mid-height of Web 
%%% 
 
A5_bar = b4*A5; 
B5_bar = b4*(B5 + d4*A5); 
D5_bar = b4*(D5 + 2*d4*B5 + (d4^2)*A5); 
 
%%% Laminate 6 - Bottom Laminate%%% 
 
angle = [45 -45 -45 45 0 0]*pi/180;                 % Fiber angle - Z-axis rotation 
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nply = 6;                                             % Number of plies 
theta = 0*pi/180;                                    % X-Axis rotation for Web laminate 
bot_fl_th_6 = nply*tply;                             % Thickness of Bottom Laminate 
d5 = -((H/2) + (nply*tply/2) + (4*0.005));      % Vertical Distance between bottom 
laminate and Web Mid-height 
 
%%% ABD Matrix (per unit length) at Mid-Plane of Top Laminate %%% 
 
A6 = A; 
B6 = B; 
D6 = D; 
 
%%% Multiplying with width of laminate and Axis translation to Mid-height of Web 
%%% 
 
A6_bar = b5*A6; 
B6_bar = b5*(B6 + d5*A6); 
D6_bar = b5*(D6 + 2*d5*B6 + (d5^2)*A6); 
 
%% Summing Stiffnesses about Mid-Height of the Web %% 
 
A_total = A1_bar + A2_bar + A3_bar + A4_bar + A5_bar + A6_bar; 
 
B_total = B1_bar + B2_bar + B3_bar + B4_bar + B5_bar + B6_bar; 
 
D_total = D1_bar + D2_bar + D3_bar + D4_bar + D5_bar + D6_bar; 
 
ABD_total = [A_total B_total;B_total D_total]; 
 
abd_total = inv(ABD_total); 
 
%% Axial and Bending Stiffnesses about the Mid-Height of the Web %% 
 
Axial_stiffness_MP = abd_total(4,4)/((abd_total(1,1)*abd_total(4,4)) - 
abd_total(1,4)^2) 
 
Bending_stiffness_MP = abd_total(1,1)/((abd_total(1,1)*abd_total(4,4)) - 
abd_total(1,4)^2) 
 
%% Location of Centroid and Shear Center from Mid-Plane of the Web %% 
 
Centroid_from_MidPlane = -(abd_total(1,4)/abd_total(4,4)); 
 
Shear_Center_from_MidPlane = -(abd_total(3,6)/abd_total(6,6)); 
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Midplane_from_bottom = bot_fl_th_6 + (4*0.005) + (H/2); 
 
%% Location of Centroid and Shear Center from Middle of Bottom Laminate %% 
 
centroid_from_bottom = Midplane_from_bottom + Centroid_from_MidPlane; 
 
ShearCenter_from_bottom = Midplane_from_bottom + Shear_Center_from_MidPlane; 
 
%% Shifting ABD from Mid-Plane to Neutral Axis %% 
 
A_total_NA = A_total; 
 
B_total_NA = B_total + (-Centroid_from_MidPlane)*A_total; 
 
D_total_NA = D_total + (-2*Centroid_from_MidPlane)*B_total + 
((Centroid_from_MidPlane)^2)*A_total; 
 
ABD_total_NA = [A_total_NA B_total_NA;B_total_NA D_total_NA]; 
 
abd_total_NA = inv(ABD_total_NA); 
 
%% Axial and Bending Stiffness of the Hat Cross-Section %% 
 
Axial_stiffness_NA = abd_total_NA(4,4)/((abd_total_NA(1,1)*abd_total_NA(4,4)) - 
abd_total_NA(1,4)^2) 
 
Bending_stiffness_NA = abd_total_NA(1,1)/((abd_total_NA(1,1)*abd_total_NA(4,4)) - 
abd_total_NA(1,4)^2) 
 
%% Unit Force and Moment Resultants obtained from program %% 
 
NT_MT = [128.7447;226.3593;0;-34.5170;-61.2390;0]; 
 
e0_k0 = abd_total*NT_MT; 
 
e0 = [e0_k0(1,1);e0_k0(2,1);e0_k0(3,1)];                 % Mid-Plane Strains  
 
k0 = [e0_k0(4,1);e0_k0(5,1);e0_k0(6,1)];                 % Mid-Plane Curvature 
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C2. Matlab Program to compute Unit Force and Moment Resultants of Equivalent Plate  
 
%%%**inputs**%%% 
 
global angle nply tply r Q11 Q12 Q22 Q66 k theta A1 B1 D1  
 
%%% Laminate 1 %%% 
%%% If laminate is unsymmetric, input laminae in reverse order, %%% 
angle = [45 -45 0 0 -45 45]*pi/180;  %fiber angle 
nply = 6;    %number of plies 
tply = 0.005; %ply thickness 
theta_web = 90*pi/180; 
b1 = 1; 
H = 1; 
L = H/sin(theta_web); 
b4 = 1; 
b5 = b1 + 2*H/tan(theta_web); 
d1 = (H/2) + (nply*tply/2); 
theta = 0*pi/180; 
 
T = 100; 
MC = 0.01; 
Nx = [0;0;0]; 
 
%%%Material Properties%%% 
 
E1 = 18.2e6; 
E2 = 1.41e6; 
G12 = 0.92e6; 
v12 = 0.274; 
v21 = (E2/E1)*v12; 
 
%%% Calculation of Q-Matrix%%% 
 
Q11 = E1/(1-v12*v21); 
Q22 = E2/(1-v12*v21); 
Q12 = (E2/(1-v12*v21))*v12; 
Q66 = G12; 
 
Q = [Q11 Q12 0;Q12 Q22 0;0 0 Q66]; 
 
h = [-0.015 -0.01 -0.005 0 0.005 0.01 0.015]; 
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QsumNTxx_1 = 0; 
QsumNTyy_1 = 0; 
QsumNTxy_1 = 0; 
QsumMTxx_1 = 0; 
QsumMTyy_1 = 0; 
QsumMTxy_1 = 0; 
 
for k = 1:nply 
QBAR11 = cos(angle(k)).^4*Q11 + sin(angle(k)).^4*cos(theta).^4*Q22 + 
2*cos(angle(k)).^2*sin(angle(k)).^2*cos(theta).^2*Q12 + 
4*cos(angle(k)).^2*sin(angle(k)).^2*cos(theta).^2*Q66; 
QBAR12 = cos(angle(k)).^2*sin(angle(k)).^2*Q11 + 
cos(angle(k)).^2*sin(angle(k)).^2*cos(theta).^4*Q22 + (cos(angle(k)).^4 + 
sin(angle(k)).^4)*cos(theta).^2*Q12 - 
4*cos(angle(k)).^2*sin(angle(k)).^2*cos(theta).^2*Q66; 
QBAR16 = cos(angle(k)).^3*sin(angle(k))*Q11 - 
cos(angle(k))*sin(angle(k)).^3*cos(theta).^4*Q22 +(cos(angle(k))*sin(angle(k)).^3 - 
cos(angle(k)).^3*sin(angle(k)))*cos(theta).^2*Q12 + 2*(cos(angle(k))*sin(angle(k)).^3 
- cos(angle(k)).^3*sin(angle(k)))*cos(theta).^2*Q66; 
QBAR22 = sin(angle(k)).^4*Q11 + cos(angle(k)).^4*cos(theta).^4*Q22 + 
2*cos(angle(k)).^2*sin(angle(k)).^2*cos(theta).^2*Q12 + 
4*cos(angle(k)).^2*sin(angle(k)).^2*cos(theta).^2*Q66; 
QBAR26 = cos(angle(k))*sin(angle(k)).^3*Q11 - 
cos(angle(k)).^3*sin(angle(k))*cos(theta).^4*Q22 + (cos(angle(k)).^3*sin(angle(k)) - 
cos(angle(k))*sin(angle(k)).^3)*cos(theta).^2*Q12 + 2*(cos(angle(k)).^3*sin(angle(k)) 
- cos(angle(k))*sin(angle(k)).^3)*cos(theta).^2*Q66;  
QBAR66 = cos(angle(k)).^2*sin(angle(k)).^2*Q11 + 
cos(angle(k)).^2*sin(angle(k)).^2*cos(theta).^4*Q22 - 
2*cos(angle(k)).^2*sin(angle(k)).^2*cos(theta).^2*Q12 + (cos(angle(k)).^2 - 
sin(angle(k)).^2).^2*cos(theta).^2*Q66; 
 
QBAR = [QBAR11 QBAR12 QBAR16;QBAR12 QBAR22 QBAR26;QBAR16 
QBAR26 QBAR66]; 
 
alpha12 = [-0.5e-6;15e-6;0]; 
 
alphaxx = cos(angle(k)).^2*alpha12(1,1) + sin(angle(k)).^2*cos(theta).^2*alpha12(2,1) 
- cos(angle(k))*sin(angle(k))*cos(theta)*alpha12(3,1); 
alphayy = sin(angle(k)).^2*alpha12(1,1) + cos(angle(k)).^2*cos(theta).^2*alpha12(2,1) 
+ cos(angle(k))*sin(angle(k))*cos(theta)*alpha12(3,1); 
alphaxy = 2*cos(angle(k))*sin(angle(k))*(alpha12(1,1) - cos(theta).^2*alpha12(2,1)) + 
(cos(angle(k)).^2-sin(angle(k)).^2)*cos(theta)*alpha12(3,1); 
 
alphabarxy = [alphaxx;alphayy;alphaxy]; 
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QsumNTxx_1 = QsumNTxx_1 + ((QBAR11*alphaxx + QBAR12*alphayy + 
QBAR16*alphaxy)*(h(k+1)-h(k))); 
QsumNTyy_1 = QsumNTyy_1 + ((QBAR12*alphaxx + QBAR22*alphayy + 
QBAR26*alphaxy)*(h(k+1)-h(k))); 
QsumNTxy_1 = QsumNTxy_1 + ((QBAR16*alphaxx + QBAR26*alphayy + 
QBAR66*alphaxy)*(h(k+1)-h(k))); 
QsumMTxx_1 = QsumMTxx_1 + 0.5*((QBAR16*alphaxx + QBAR26*alphayy + 
QBAR66*alphaxy)*((h(k+1).^2)-(h(k).^2))); 
QsumMTyy_1 = QsumMTyy_1 + 0.5*((QBAR12*alphaxx + QBAR22*alphayy + 
QBAR26*alphaxy)*((h(k+1).^2)-(h(k).^2))); 
QsumMTxy_1 = QsumMTxy_1 + 0.5*((QBAR16*alphaxx + QBAR26*alphayy + 
QBAR66*alphaxy)*((h(k+1).^2)-(h(k).^2))); 
 
end 
 
NTxx_mid_1 = T*QsumNTxx_1; 
NTyy_mid_1 = T*QsumNTyy_1; 
NTxy_mid_1 = T*QsumNTxy_1; 
 
MTxx_mid_1_NTxx_1 = T*QsumNTxx_1*d1; 
MTyy_mid_1_NTyy_1 = T*QsumNTyy_1*d1; 
MTxy_mid_1_NTxy_1 = T*QsumNTxy_1*d1; 
 
MTxx_mid_1 = T*QsumMTxx_1; 
MTyy_mid_1 = T*QsumMTyy_1; 
MTxy_mid_1 = T*QsumMTxy_1; 
 
%%% Laminate 2 and 3 %%% 
 
angle = [45 -45 -45 45]*pi/180;  %fiber angle 
nply = 4;    %number of plies 
theta = 0*pi/180; 
h = [-0.01 -0.005 0 0.005 0.01]; 
 
QsumNTxx_2 = 0; 
QsumNTyy_2 = 0; 
QsumNTxy_2 = 0; 
QsumMTxx_2 = 0; 
QsumMTyy_2 = 0; 
QsumMTxy_2 = 0; 
 
for k = 1:nply 
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QBAR11 = cos(angle(k)).^4*Q11 + sin(angle(k)).^4*cos(theta).^4*Q22 + 
2*cos(angle(k)).^2*sin(angle(k)).^2*cos(theta).^2*Q12 + 
4*cos(angle(k)).^2*sin(angle(k)).^2*cos(theta).^2*Q66; 
QBAR12 = cos(angle(k)).^2*sin(angle(k)).^2*Q11 + 
cos(angle(k)).^2*sin(angle(k)).^2*cos(theta).^4*Q22 + (cos(angle(k)).^4 + 
sin(angle(k)).^4)*cos(theta).^2*Q12 - 
4*cos(angle(k)).^2*sin(angle(k)).^2*cos(theta).^2*Q66; 
QBAR16 = cos(angle(k)).^3*sin(angle(k))*Q11 - 
cos(angle(k))*sin(angle(k)).^3*cos(theta).^4*Q22 +(cos(angle(k))*sin(angle(k)).^3 - 
cos(angle(k)).^3*sin(angle(k)))*cos(theta).^2*Q12 + 2*(cos(angle(k))*sin(angle(k)).^3 
- cos(angle(k)).^3*sin(angle(k)))*cos(theta).^2*Q66; 
QBAR22 = sin(angle(k)).^4*Q11 + cos(angle(k)).^4*cos(theta).^4*Q22 + 
2*cos(angle(k)).^2*sin(angle(k)).^2*cos(theta).^2*Q12 + 
4*cos(angle(k)).^2*sin(angle(k)).^2*cos(theta).^2*Q66; 
QBAR26 = cos(angle(k))*sin(angle(k)).^3*Q11 - 
cos(angle(k)).^3*sin(angle(k))*cos(theta).^4*Q22 + (cos(angle(k)).^3*sin(angle(k)) - 
cos(angle(k))*sin(angle(k)).^3)*cos(theta).^2*Q12 + 2*(cos(angle(k)).^3*sin(angle(k)) 
- cos(angle(k))*sin(angle(k)).^3)*cos(theta).^2*Q66;  
QBAR66 = cos(angle(k)).^2*sin(angle(k)).^2*Q11 + 
cos(angle(k)).^2*sin(angle(k)).^2*cos(theta).^4*Q22 - 
2*cos(angle(k)).^2*sin(angle(k)).^2*cos(theta).^2*Q12 + (cos(angle(k)).^2 - 
sin(angle(k)).^2).^2*cos(theta).^2*Q66; 
 
QBAR = [QBAR11 QBAR12 QBAR16;QBAR12 QBAR22 QBAR26;QBAR16 
QBAR26 QBAR66]; 
 
alpha12 = [-0.5e-6;15e-6;0]; 
 
alphaxx = cos(angle(k)).^2*alpha12(1,1) + sin(angle(k)).^2*cos(theta).^2*alpha12(2,1) 
- cos(angle(k))*sin(angle(k))*cos(theta)*alpha12(3,1); 
alphayy = sin(angle(k)).^2*alpha12(1,1) + cos(angle(k)).^2*cos(theta).^2*alpha12(2,1) 
+ cos(angle(k))*sin(angle(k))*cos(theta)*alpha12(3,1); 
alphaxy = 2*cos(angle(k))*sin(angle(k))*(alpha12(1,1) - cos(theta).^2*alpha12(2,1)) + 
(cos(angle(k)).^2-sin(angle(k)).^2)*cos(theta)*alpha12(3,1); 
 
alphabarxy = [alphaxx;alphayy;alphaxy]; 
 
QsumNTxx_2 = QsumNTxx_2 + ((QBAR11*alphaxx + QBAR12*alphayy + 
QBAR16*alphaxy)*(h(k+1)-h(k))); 
QsumNTyy_2 = QsumNTyy_2 + ((QBAR12*alphaxx + QBAR22*alphayy + 
QBAR26*alphaxy)*(h(k+1)-h(k))); 
QsumNTxy_2 = QsumNTxy_2 + ((QBAR16*alphaxx + QBAR26*alphayy + 
QBAR66*alphaxy)*(h(k+1)-h(k))); 
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QsumMTxx_2 = QsumMTxx_2 + 0.5*((QBAR16*alphaxx + QBAR26*alphayy + 
QBAR66*alphaxy)*((h(k+1).^2)-(h(k).^2))); 
QsumMTyy_2 = QsumMTyy_2 + 0.5*((QBAR12*alphaxx + QBAR22*alphayy + 
QBAR26*alphaxy)*((h(k+1).^2)-(h(k).^2))); 
QsumMTxy_2 = QsumMTxy_2 + 0.5*((QBAR16*alphaxx + QBAR26*alphayy + 
QBAR66*alphaxy)*((h(k+1).^2)-(h(k).^2))); 
 
end 
 
NTxx_mid_2_3 = 2*T*QsumNTxx_2; 
NTyy_mid_2_3 = 2*T*QsumNTyy_2; 
NTxy_mid_2_3 = 2*T*QsumNTxy_2; 
 
MTxx_mid_2_3 = 2*T*QsumMTxx_2; 
MTyy_mid_2_3 = 2*T*QsumMTyy_2; 
MTxy_mid_2_3 = 2*T*QsumMTxy_2; 
 
%%% Laminate 4 and 5%%% 
 
angle = [45 -45 -45 45 0 0 45 -45 -45 45]*pi/180;  %fiber angle 
nply = 10;    %number of plies 
theta = 0*pi/180; 
d4 = -((H/2) + (nply*tply/2)) 
bot_fl_th_4 = nply*tply; 
 
h = [-0.025 -0.02 -0.015 -0.01 -0.005 0 0.005 0.01 0.015 0.02 0.025]; 
 
QsumNTxx_4 = 0; 
QsumNTyy_4 = 0; 
QsumNTxy_4 = 0; 
QsumMTxx_4 = 0; 
QsumMTyy_4 = 0; 
QsumMTxy_4 = 0; 
 
for k = 1:nply 
QBAR11 = cos(angle(k)).^4*Q11 + sin(angle(k)).^4*cos(theta).^4*Q22 + 
2*cos(angle(k)).^2*sin(angle(k)).^2*cos(theta).^2*Q12 + 
4*cos(angle(k)).^2*sin(angle(k)).^2*cos(theta).^2*Q66; 
QBAR12 = cos(angle(k)).^2*sin(angle(k)).^2*Q11 + 
cos(angle(k)).^2*sin(angle(k)).^2*cos(theta).^4*Q22 + (cos(angle(k)).^4 + 
sin(angle(k)).^4)*cos(theta).^2*Q12 - 
4*cos(angle(k)).^2*sin(angle(k)).^2*cos(theta).^2*Q66; 
QBAR16 = cos(angle(k)).^3*sin(angle(k))*Q11 - 
cos(angle(k))*sin(angle(k)).^3*cos(theta).^4*Q22 +(cos(angle(k))*sin(angle(k)).^3 - 
 79



 

cos(angle(k)).^3*sin(angle(k)))*cos(theta).^2*Q12 + 2*(cos(angle(k))*sin(angle(k)).^3 
- cos(angle(k)).^3*sin(angle(k)))*cos(theta).^2*Q66; 
QBAR22 = sin(angle(k)).^4*Q11 + cos(angle(k)).^4*cos(theta).^4*Q22 + 
2*cos(angle(k)).^2*sin(angle(k)).^2*cos(theta).^2*Q12 + 
4*cos(angle(k)).^2*sin(angle(k)).^2*cos(theta).^2*Q66; 
QBAR26 = cos(angle(k))*sin(angle(k)).^3*Q11 - 
cos(angle(k)).^3*sin(angle(k))*cos(theta).^4*Q22 + (cos(angle(k)).^3*sin(angle(k)) - 
cos(angle(k))*sin(angle(k)).^3)*cos(theta).^2*Q12 + 2*(cos(angle(k)).^3*sin(angle(k)) 
- cos(angle(k))*sin(angle(k)).^3)*cos(theta).^2*Q66;  
QBAR66 = cos(angle(k)).^2*sin(angle(k)).^2*Q11 + 
cos(angle(k)).^2*sin(angle(k)).^2*cos(theta).^4*Q22 - 
2*cos(angle(k)).^2*sin(angle(k)).^2*cos(theta).^2*Q12 + (cos(angle(k)).^2 - 
sin(angle(k)).^2).^2*cos(theta).^2*Q66; 
 
QBAR = [QBAR11 QBAR12 QBAR16;QBAR12 QBAR22 QBAR26;QBAR16 
QBAR26 QBAR66]; 
 
alpha12 = [-0.5e-6;15e-6;0]; 
 
alphaxx = cos(angle(k)).^2*alpha12(1,1) + sin(angle(k)).^2*cos(theta).^2*alpha12(2,1) 
- cos(angle(k))*sin(angle(k))*cos(theta)*alpha12(3,1); 
alphayy = sin(angle(k)).^2*alpha12(1,1) + cos(angle(k)).^2*cos(theta).^2*alpha12(2,1) 
+ cos(angle(k))*sin(angle(k))*cos(theta)*alpha12(3,1); 
alphaxy = 2*cos(angle(k))*sin(angle(k))*(alpha12(1,1) - cos(theta).^2*alpha12(2,1)) + 
(cos(angle(k)).^2-sin(angle(k)).^2)*cos(theta)*alpha12(3,1); 
 
alphabarxy = [alphaxx;alphayy;alphaxy]; 
 
QsumNTxx_4 = QsumNTxx_4 + ((QBAR11*alphaxx + QBAR12*alphayy + 
QBAR16*alphaxy)*(h(k+1)-h(k))); 
QsumNTyy_4 = QsumNTyy_4 + ((QBAR12*alphaxx + QBAR22*alphayy + 
QBAR26*alphaxy)*(h(k+1)-h(k))); 
QsumNTxy_4 = QsumNTxy_4 + ((QBAR16*alphaxx + QBAR26*alphayy + 
QBAR66*alphaxy)*(h(k+1)-h(k))); 
QsumMTxx_4 = QsumMTxx_4 + 0.5*((QBAR16*alphaxx + QBAR26*alphayy + 
QBAR66*alphaxy)*((h(k+1).^2)-(h(k).^2))); 
QsumMTyy_4 = QsumMTyy_4 + 0.5*((QBAR12*alphaxx + QBAR22*alphayy + 
QBAR26*alphaxy)*((h(k+1).^2)-(h(k).^2))); 
QsumMTxy_4 = QsumMTxy_4 + 0.5*((QBAR16*alphaxx + QBAR26*alphayy + 
QBAR66*alphaxy)*((h(k+1).^2)-(h(k).^2))); 
 
end 
 
NTxx_mid_4_5 = 2*T*QsumNTxx_4; 
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NTyy_mid_4_5 = 2*T*QsumNTyy_4; 
NTxy_mid_4_5 = 2*T*QsumNTxy_4; 
 
MTxx_mid_4_5_NTxx_4_5 = 2*T*QsumNTxx_4*d4; 
MTyy_mid_4_5_NTyy_4_5 = 2*T*QsumNTyy_4*d4; 
MTxy_mid_4_5_NTxy_4_5 = 2*T*QsumNTxy_4*d4; 
 
MTxx_mid_4_5 = 2*T*QsumMTxx_4; 
MTyy_mid_4_5 = 2*T*QsumMTyy_4; 
MTxy_mid_4_5 = 2*T*QsumMTxy_4; 
 
%%% Laminate 6 %%% 
 
angle = [45 -45 -45 45 0 0]*pi/180;  %fiber angle 
nply = 6;    %number of plies 
theta = 0*pi/180; 
bot_fl_th_6 = nply*tply; 
d5 = -((H/2) + (nply*tply/2) + bot_fl_th_4) 
 
h = [-0.015 -0.01 -0.005 0 0.005 0.01 0.015]; 
 
QsumNTxx_6 = 0; 
QsumNTyy_6 = 0; 
QsumNTxy_6 = 0; 
QsumMTxx_6 = 0; 
QsumMTyy_6 = 0; 
QsumMTxy_6 = 0; 
 
for k = 1:nply 
QBAR11 = cos(angle(k)).^4*Q11 + sin(angle(k)).^4*cos(theta).^4*Q22 + 
2*cos(angle(k)).^2*sin(angle(k)).^2*cos(theta).^2*Q12 + 
4*cos(angle(k)).^2*sin(angle(k)).^2*cos(theta).^2*Q66; 
QBAR12 = cos(angle(k)).^2*sin(angle(k)).^2*Q11 + 
cos(angle(k)).^2*sin(angle(k)).^2*cos(theta).^4*Q22 + (cos(angle(k)).^4 + 
sin(angle(k)).^4)*cos(theta).^2*Q12 - 
4*cos(angle(k)).^2*sin(angle(k)).^2*cos(theta).^2*Q66; 
QBAR16 = cos(angle(k)).^3*sin(angle(k))*Q11 - 
cos(angle(k))*sin(angle(k)).^3*cos(theta).^4*Q22 +(cos(angle(k))*sin(angle(k)).^3 - 
cos(angle(k)).^3*sin(angle(k)))*cos(theta).^2*Q12 + 2*(cos(angle(k))*sin(angle(k)).^3 
- cos(angle(k)).^3*sin(angle(k)))*cos(theta).^2*Q66; 
QBAR22 = sin(angle(k)).^4*Q11 + cos(angle(k)).^4*cos(theta).^4*Q22 + 
2*cos(angle(k)).^2*sin(angle(k)).^2*cos(theta).^2*Q12 + 
4*cos(angle(k)).^2*sin(angle(k)).^2*cos(theta).^2*Q66; 
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QBAR26 = cos(angle(k))*sin(angle(k)).^3*Q11 - 
cos(angle(k)).^3*sin(angle(k))*cos(theta).^4*Q22 + (cos(angle(k)).^3*sin(angle(k)) - 
cos(angle(k))*sin(angle(k)).^3)*cos(theta).^2*Q12 + 2*(cos(angle(k)).^3*sin(angle(k)) 
- cos(angle(k))*sin(angle(k)).^3)*cos(theta).^2*Q66;  
QBAR66 = cos(angle(k)).^2*sin(angle(k)).^2*Q11 + 
cos(angle(k)).^2*sin(angle(k)).^2*cos(theta).^4*Q22 - 
2*cos(angle(k)).^2*sin(angle(k)).^2*cos(theta).^2*Q12 + (cos(angle(k)).^2 - 
sin(angle(k)).^2).^2*cos(theta).^2*Q66; 
 
QBAR = [QBAR11 QBAR12 QBAR16;QBAR12 QBAR22 QBAR26;QBAR16 
QBAR26 QBAR66]; 
 
alpha12 = [-0.5e-6;15e-6;0]; 
 
alphaxx = cos(angle(k)).^2*alpha12(1,1) + sin(angle(k)).^2*cos(theta).^2*alpha12(2,1) 
- cos(angle(k))*sin(angle(k))*cos(theta)*alpha12(3,1); 
alphayy = sin(angle(k)).^2*alpha12(1,1) + cos(angle(k)).^2*cos(theta).^2*alpha12(2,1) 
+ cos(angle(k))*sin(angle(k))*cos(theta)*alpha12(3,1); 
alphaxy = 2*cos(angle(k))*sin(angle(k))*(alpha12(1,1) - cos(theta).^2*alpha12(2,1)) + 
(cos(angle(k)).^2-sin(angle(k)).^2)*cos(theta)*alpha12(3,1); 
 
alphabarxy = [alphaxx;alphayy;alphaxy]; 
 
QsumNTxx_6 = QsumNTxx_6 + ((QBAR11*alphaxx + QBAR12*alphayy + 
QBAR16*alphaxy)*(h(k+1)-h(k))); 
QsumNTyy_6 = QsumNTyy_6 + ((QBAR12*alphaxx + QBAR22*alphayy + 
QBAR26*alphaxy)*(h(k+1)-h(k))); 
QsumNTxy_6 = QsumNTxy_6 + ((QBAR16*alphaxx + QBAR26*alphayy + 
QBAR66*alphaxy)*(h(k+1)-h(k))); 
QsumMTxx_6 = QsumMTxx_6 + 0.5*((QBAR16*alphaxx + QBAR26*alphayy + 
QBAR66*alphaxy)*((h(k+1).^2)-(h(k).^2))); 
QsumMTyy_6= QsumMTyy_6 + 0.5*((QBAR12*alphaxx + QBAR22*alphayy + 
QBAR26*alphaxy)*((h(k+1).^2)-(h(k).^2))); 
QsumMTxy_6 = QsumMTxy_6 + 0.5*((QBAR16*alphaxx + QBAR26*alphayy + 
QBAR66*alphaxy)*((h(k+1).^2)-(h(k).^2))); 
 
end 
 
NTxx_mid_6 = T*QsumNTxx_6; 
NTyy_mid_6 = T*QsumNTyy_6; 
NTxy_mid_6 = T*QsumNTxy_6; 
 
MTxx_mid_6_NTxx_6 = T*QsumNTxx_6*d5; 
MTyy_mid_6_NTyy_6 = T*QsumNTyy_6*d5; 
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MTxy_mid_6_NTxy_6 = T*QsumNTxy_6*d5; 
 
MTxx_mid_6 = T*QsumMTxx_6; 
MTyy_mid_6 = T*QsumMTyy_6; 
MTxy_mid_6 = T*QsumMTxy_6; 
 
NTxx_total = NTxx_mid_1 + NTxx_mid_2_3 + NTxx_mid_4_5 + NTxx_mid_6; 
NTyy_total = NTyy_mid_1 + NTyy_mid_2_3 + NTyy_mid_4_5 + NTyy_mid_6; 
NTxy_total = NTxy_mid_1 + NTxy_mid_2_3 + NTxy_mid_4_5 + NTxy_mid_6; 
 
MTxx_NTxx = MTxx_mid_1_NTxx_1 + MTxx_mid_4_5_NTxx_4_5 + 
MTxx_mid_6_NTxx_6; 
MTyy_NTyy = MTyy_mid_1_NTyy_1 + MTyy_mid_4_5_NTyy_4_5 + 
MTyy_mid_6_NTyy_6; 
MTxy_NTxy = MTxy_mid_1_NTxy_1 + MTxy_mid_4_5_NTxy_4_5 + 
MTxy_mid_6_NTxy_6 
 
MTxx_total = MTxx_mid_1 + MTxx_mid_2_3 + MTxx_mid_4_5 + MTxx_mid_6 + 
MTxx_NTxx; 
MTyy_total = MTyy_mid_1 + MTyy_mid_2_3 + MTyy_mid_4_5 + MTyy_mid_6 + 
MTyy_NTyy; 
MTxy_total = MTxy_mid_1 + MTxy_mid_2_3 + MTxy_mid_4_5 + MTxy_mid_6 + 
MTxy_NTxy; 
 
NT = [NTxx_total;NTyy_total;NTxy_total] 
MT = [MTxx_total;MTyy_total;MTxy_total] 
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C3. Matlab Program to Compute Ply Stresses due to Thermal Loading 
 
%%%**inputs**%%% 
%% web angle = 90 degrees 
%%%Material Properties%%% 
 
E1 = 18.2e6; 
E2 = 1.41e6; 
G12 = 0.92e6; 
v12 = 0.274; 
v21 = (E2/E1)*v12; 
tply = 0.005; 
 
%%% Calculation of Q-Matrix%%% 
 
Q11 = E1/(1-v12*v21); 
Q22 = E2/(1-v12*v21); 
Q12 = (E2/(1-v12*v21))*v12; 
Q66 = G12; 
 
Q = [Q11 Q12 0;Q12 Q22 0;0 0 Q66]; 
 
%% angle of ply 
angle1 = 45*pi/180; 
 
QBAR11 = cos(angle1).^4*Q11 + sin(angle1).^4*Q22 + 
2*cos(angle1).^2*sin(angle1).^2*Q12 + 4*cos(angle1).^2*sin(angle1).^2*Q66; 
QBAR12 = (Q11 + Q22 - 4*Q66)*sin(angle1).^2*cos(angle1).^2 + 
Q12*(cos(angle1).^4 + sin(angle1).^4); 
QBAR16 = (Q11 - Q12 - 2*Q66)*cos(angle1).^3*sin(angle1) - (Q22 - Q12 - 
2*Q66)*sin(angle1).^3*cos(angle1); 
QBAR22 = sin(angle1).^4*Q11 + cos(angle1).^4*Q22 + 2*(Q12 + 
2*Q66)*sin(angle1).^2*cos(angle1).^2; 
QBAR26 = (Q11-Q12-2*Q66)*cos(angle1)*sin(angle1).^3 - (Q22-Q12-
2*Q66)*cos(angle1).^3*sin(angle1); 
QBAR66 = (Q11+Q22-2*Q12-2*Q66)*sin(angle1).^2*cos(angle1).^2 + 
Q66*(sin(angle1).^4 + cos(angle1).^4); 
 
QBAR = [QBAR11 QBAR12 QBAR16;QBAR12 QBAR22 QBAR26;QBAR16 
QBAR26 QBAR66]; 
 
alpha12 = [-0.5e-6;15e-6;0]; 
 
alphaxx = cos(angle1).^2*alpha12(1,1) + sin(angle1).^2*alpha12(2,1); 
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alphayy = sin(angle1).^2*alpha12(1,1) + cos(angle1).^2*alpha12(2,1); 
alphaxy = 2*cos(angle1)*sin(angle1)*(alpha12(1,1) - alpha12(2,1)); 
 
alphabarxy = [alphaxx;alphayy;alphaxy]; 
 
T = 100; 
zk_top = 0.53; 
zk_bottom = zk_top-tply; 
 
%% Mid-plane strain and curvature 
 
e0 = [-0.0379e-3;0.2679e-3;-5.8857e-010]; 
k0 = [-0.1906e-4;0.3338e-4;-2.1982e-009]; 
 
ek_top = e0 + zk_top*k0; 
 
ek_bottom = e0 + zk_bottom*k0; 
 
stressxy_top = QBAR*(ek_top - T*alphabarxy) 
stressxy_bottom = QBAR*(ek_bottom - T*alphabarxy) 
 
stress11_top = cos(angle1).^2*stressxy_top(1,1) + sin(angle1).^2*stressxy_top(2,1) + 
2*cos(angle1)*sin(angle1)*stressxy_top(3,1); 
stress22_top = sin(angle1).^2*stressxy_top(1,1) + cos(angle1).^2*stressxy_top(2,1) - 
2*cos(angle1)*sin(angle1)*stressxy_top(3,1); 
stress12_top = -cos(angle1)*sin(angle1)*stressxy_top(1,1) + 
cos(angle1)*sin(angle1)*stressxy_top(2,1) + (cos(angle1).^2 - 
sin(angle1).^2)*stressxy_top(3,1); 
 
stress_12_top = [stress11_top;stress22_top;stress12_top]; 
 
stress11_bottom = cos(angle1).^2*stressxy_bottom(1,1) + 
sin(angle1).^2*stressxy_bottom(2,1) + 
2*cos(angle1)*sin(angle1)*stressxy_bottom(3,1); 
stress22_bottom = sin(angle1).^2*stressxy_bottom(1,1) + 
cos(angle1).^2*stressxy_bottom(2,1) - 
2*cos(angle1)*sin(angle1)*stressxy_bottom(3,1); 
stress12_bottom = -cos(angle1)*sin(angle1)*stressxy_bottom(1,1) + 
cos(angle1)*sin(angle1)*stressxy_bottom(2,1) + (cos(angle1).^2 - 
sin(angle1).^2)*stressxy_bottom(3,1); 
 
stress_12_bottom = [stress11_bottom;stress22_bottom;stress12_bottom]; 
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C4. Matlab Program to Compute Ply Stresses due to Applied Moment 
 
%%%**inputs**%%% 
%% web angle = 45 degrees %% 
%%%Material Properties%%% 
 
E1 = 18.2e6; 
E2 = 1.41e6; 
G12 = 0.92e6; 
v12 = 0.274; 
v21 = (E2/E1)*v12; 
tply = 0.005; 
 
%%% Calculation of Q-Matrix%%% 
 
Q11 = E1/(1-v12*v21); 
Q22 = E2/(1-v12*v21); 
Q12 = (E2/(1-v12*v21))*v12; 
Q66 = G12; 
 
Q = [Q11 Q12 0;Q12 Q22 0;0 0 Q66]; 
 
%% angle of ply 
angle1 = 45*pi/180; 
 
QBAR11 = cos(angle1).^4*Q11 + sin(angle1).^4*Q22 + 
2*cos(angle1).^2*sin(angle1).^2*Q12 + 4*cos(angle1).^2*sin(angle1).^2*Q66; 
QBAR12 = (Q11 + Q22 - 4*Q66)*sin(angle1).^2*cos(angle1).^2 + 
Q12*(cos(angle1).^4 + sin(angle1).^4); 
QBAR16 = (Q11 - Q12 - 2*Q66)*cos(angle1).^3*sin(angle1) - (Q22 - Q12 - 
2*Q66)*sin(angle1).^3*cos(angle1); 
QBAR22 = sin(angle1).^4*Q11 + cos(angle1).^4*Q22 + 2*(Q12 + 
2*Q66)*sin(angle1).^2*cos(angle1).^2; 
QBAR26 = (Q11-Q12-2*Q66)*cos(angle1)*sin(angle1).^3 - (Q22-Q12-
2*Q66)*cos(angle1).^3*sin(angle1); 
QBAR66 = (Q11+Q22-2*Q12-2*Q66)*sin(angle1).^2*cos(angle1).^2 + 
Q66*(sin(angle1).^4 + cos(angle1).^4); 
 
QBAR = [QBAR11 QBAR12 QBAR16;QBAR12 QBAR22 QBAR26;QBAR16 
QBAR26 QBAR66]; 
 
Mx = 100; 
zk_top = 0.53; 
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zk_bottom = zk_top-tply; 
 
%% Mid-plane strain and curvature 
 
e0 = [0.1394e-5;-0.1021e-5;0]*Mx; 
k0 = [0.4035e-5;-0.2845e-5;0]*Mx; 
 
ek_top = e0 + zk_top*k0; 
 
ek_bottom = e0 + zk_bottom*k0; 
 
%% e = [0.6682e-3;-0.2895e-3;0]; 
 
stressxy_top = QBAR*ek_top 
stressxy_bottom = QBAR*ek_bottom 
 
%%stress11 = cos(angle1).^2*stressxy(1,1) + sin(angle1).^2*stressxy(2,1) + 
2*cos(angle1)*sin(angle1)*stressxy(3,1); 
%%stress22 = sin(angle1).^2*stressxy(1,1) + cos(angle1).^2*stressxy(2,1) - 
2*cos(angle1)*sin(angle1)*stressxy(3,1); 
%%stress12 = -cos(angle1)*sin(angle1)*stressxy(1,1) + 
cos(angle1)*sin(angle1)*stressxy(2,1) + (cos(angle1).^2 - sin(angle1).^2)*stressxy(3,1); 
 
stress11_top = cos(angle1).^2*stressxy_top(1,1) + sin(angle1).^2*stressxy_top(2,1) + 
2*cos(angle1)*sin(angle1)*stressxy_top(3,1); 
stress22_top = sin(angle1).^2*stressxy_top(1,1) + cos(angle1).^2*stressxy_top(2,1) - 
2*cos(angle1)*sin(angle1)*stressxy_top(3,1); 
stress12_top = -cos(angle1)*sin(angle1)*stressxy_top(1,1) + 
cos(angle1)*sin(angle1)*stressxy_top(2,1) + (cos(angle1).^2 - 
sin(angle1).^2)*stressxy_top(3,1); 
 
stress_12_top = [stress11_top;stress22_top;stress12_top]; 
 
stress11_bottom = cos(angle1).^2*stressxy_bottom(1,1) + 
sin(angle1).^2*stressxy_bottom(2,1) + 
2*cos(angle1)*sin(angle1)*stressxy_bottom(3,1); 
stress22_bottom = sin(angle1).^2*stressxy_bottom(1,1) + 
cos(angle1).^2*stressxy_bottom(2,1) - 
2*cos(angle1)*sin(angle1)*stressxy_bottom(3,1); 
stress12_bottom = -cos(angle1)*sin(angle1)*stressxy_bottom(1,1) + 
cos(angle1)*sin(angle1)*stressxy_bottom(2,1) + (cos(angle1).^2 - 
sin(angle1).^2)*stressxy_bottom(3,1); 
 
stress_12_bottom = [stress11_bottom;stress22_bottom;stress12_bottom]; 
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C5. Functions Used in the Matlab Programs 
 
%%%Calculation of [A] stiffness matrix 
 
function Aprime = A() 
 
global angle nply tply r Q11 Q12 Q22 Q66 k theta Aprime A11 A12 A22 A16 A26 A66 
 
A11 = 0; 
A12 = 0; 
A22 = 0; 
A16 = 0; 
A26 = 0; 
A66 = 0; 
 
for k = 1:nply 
        A11 = A11 + (hk(k) - hk(k-1))*(qbar11(k)); 
end 
 
for k = 1:nply 
        A12 = A12 + (hk(k) - hk(k-1))*(qbar12(k)); 
end 
 
for k = 1:nply 
        A22 = A22 + (hk(k) - hk(k-1))*(qbar22(k)); 
end 
 
for k = 1:nply 
        A16 = A16 + (hk(k) - hk(k-1))*(qbar16(k)); 
end 
 
for k = 1:nply 
        A26 = A26 + (hk(k) - hk(k-1))*(qbar26(k)); 
end 
 
for k = 1:nply 
        A66 = A66 + (hk(k) - hk(k-1))*(qbar66(k)); 
end 
 
Aprime = [A11 A12 A16;A12 A22 A26;A16 A26 A66]; 
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%%%Calculation of [B] stiffness matrix 
 
function Bprime = B() 
 
global angle nply tply r Q11 Q12 Q22 Q66 k theta Bprime B11 B12 B22 B16 B26 B66 
 
B11 = 0; 
B12 = 0; 
B22 = 0; 
B16 = 0; 
B26 = 0; 
B66 = 0; 
 
for k = 1:nply 
        B11 = B11 + (1/2)*(hk(k)^2 - hk(k-1)^2)*(qbar11(k)); 
end 
 
for k = 1:nply 
        B12 = B12 + (1/2)*(hk(k)^2 - hk(k-1)^2)*(qbar12(k)); 
end 
 
for k = 1:nply 
        B22 = B22 + (1/2)*(hk(k)^2 - hk(k-1)^2)*(qbar22(k)); 
end 
 
for k = 1:nply 
        B16 = B16 + (1/2)*(hk(k)^2 - hk(k-1)^2)*(qbar16(k)); 
end 
 
for k = 1:nply 
        B26 = B26 + (1/2)*(hk(k)^2 - hk(k-1)^2)*(qbar26(k)); 
end 
 
for k = 1:nply 
        B66 = B66 + (1/2)*(hk(k)^2 - hk(k-1)^2)*(qbar66(k)); 
end 
 
Bprime = [B11 B12 B16;B12 B22 B26;B16 B26 B66]; 
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%%%Calculation of [D] stiffness matrix 
 
function Dprime = D() 
 
global angle nply tply r Q11 Q12 Q22 Q66 k theta Dprime D11 D12 D22 D16 D26 D66 
 
D11 = 0; 
D12 = 0; 
D22 = 0; 
D16 = 0; 
D26 = 0; 
D66 = 0; 
 
for k = 1:nply 
        D11 = D11 + (1/3)*(hk(k)^3 - hk(k-1)^3)*(qbar11(k)); 
end 
 
for k = 1:nply 
        D12 = D12 + (1/3)*(hk(k)^3 - hk(k-1)^3)*(qbar12(k)); 
end 
 
for k = 1:nply 
        D22 = D22 + (1/3)*(hk(k)^3 - hk(k-1)^3)*(qbar22(k)); 
end 
 
for k = 1:nply 
        D16 = D16 + (1/3)*(hk(k)^3 - hk(k-1)^3)*(qbar16(k)); 
end 
 
for k = 1:nply 
        D26 = D26 + (1/3)*(hk(k)^3 - hk(k-1)^3)*(qbar26(k)); 
end 
 
for k = 1:nply 
        D66 = D66 + (1/3)*(hk(k)^3 - hk(k-1)^3)*(qbar66(k)); 
end 
 
Dprime = [D11 D12 D16;D12 D22 D26;D16 D26 D66]; 
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%% Function hk for calculation of layer distance from the center line of the 
laminate%% 
 
function y = hk(x) 
global nply tply 
y = -(nply/2)*tply + x*tply; 
 
 
%%QBAR Functions%% 
 
function y = QBAR11(x) 
 
global angle Q11 Q12 Q22 Q66 k theta 
 
y = cos(angle(k)).^4*Q11 + sin(angle(k)).^4*cos(theta).^4*Q22 + 
2*cos(angle(k)).^2*sin(angle(k)).^2*cos(theta).^2*Q12 + 
4*cos(angle(k)).^2*sin(angle(k)).^2*cos(theta).^2*Q66; 
 
function y = QBAR12(x) 
 
global angle Q11 Q12 Q22 Q66 k theta 
 
y = cos(angle(k)).^2*sin(angle(k)).^2*Q11 + 
cos(angle(k)).^2*sin(angle(k)).^2*cos(theta).^4*Q22 + (cos(angle(k)).^4 + 
sin(angle(k)).^4)*cos(theta).^2*Q12 - 
4*cos(angle(k)).^2*sin(angle(k)).^2*cos(theta).^2*Q66; 
 
function y = QBAR16(x) 
 
global angle Q11 Q12 Q22 Q66 k theta 
 
y = cos(angle(k)).^3*sin(angle(k))*Q11 - 
cos(angle(k))*sin(angle(k)).^3*cos(theta).^4*Q22 +(cos(angle(k))*sin(angle(k)).^3 - 
cos(angle(k)).^3*sin(angle(k)))*cos(theta).^2*Q12 + 2*(cos(angle(k))*sin(angle(k)).^3 
- cos(angle(k)).^3*sin(angle(k)))*cos(theta).^2*Q66; 
 
function y = QBAR22(x) 
 
global angle Q11 Q12 Q22 Q66 k theta 
 
y = sin(angle(k)).^4*Q11 + cos(angle(k)).^4*cos(theta).^4*Q22 + 
2*cos(angle(k)).^2*sin(angle(k)).^2*cos(theta).^2*Q12 + 
4*cos(angle(k)).^2*sin(angle(k)).^2*cos(theta).^2*Q66; 
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function y = QBAR26(x) 
 
global angle Q11 Q12 Q22 Q66 k theta 
 
y = cos(angle(k))*sin(angle(k)).^3*Q11 - 
cos(angle(k)).^3*sin(angle(k))*cos(theta).^4*Q22 + (cos(angle(k)).^3*sin(angle(k)) - 
cos(angle(k))*sin(angle(k)).^3)*cos(theta).^2*Q12 + 2*(cos(angle(k)).^3*sin(angle(k)) 
- cos(angle(k))*sin(angle(k)).^3)*cos(theta).^2*Q66; 
 
function y = QBAR66(x) 
 
global angle Q11 Q12 Q22 Q66 k theta 
                              
y = cos(angle(k)).^2*sin(angle(k)).^2*Q11 + 
cos(angle(k)).^2*sin(angle(k)).^2*cos(theta).^4*Q22 - 
2*cos(angle(k)).^2*sin(angle(k)).^2*cos(theta).^2*Q12 + (cos(angle(k)).^2 - 
sin(angle(k)).^2).^2*cos(theta).^2*Q66; 
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D1. Ansys Input file to compute Bending Stiffness of Hat Cross-Sections 
 
!**** Enables Prompt to Input Variables 
 
*ASK,FLANGBOT, LENGTH OF BOTTOM FLANGE,1 
*ASK,WEBH, HEIGHT OF OPEN SECTION,1 
*ASK,THETA, ANGLE OF WEB,90 
*ASK,FLANGTOP,LENGTH OF TOP FLANGE,1 
*ASK,LENGTH, LENGTH OF THE BEAM,20 
 
THETA1 = THETA*3.1415926535897932384626433832795/180 
 
WEBL = WEBH/SIN(THETA1) 
WEBW = WEBH/TAN(THETA1) 
SECNODE3X = FLANGBOT + WEBW 
SECNODE4X = SECNODE3X + FLANGTOP 
SECNODE5X = SECNODE4X + WEBW 
SECNODE6X = SECNODE5X + FLANGBOT 
 
TPLY = 0.005 
 
E11 = 18.2E6 
E22 = 1.41E6 
V12 = 0.274 
G12 = 0.92E6 
 
/PREP7 
ET,1,SHELL91 
KEYOPT,1,2,1 
KEYOPT,1,5,2 
KEYOPT,1,8,1 
! DEFINE REAL CONSTANTS HERE 
R,1 
R,2 
R,3 
R,4 
 
RMODIF,1,1,6,0 
RMODIF,1,13,1,45,TPLY,TPLY,TPLY,TPLY 
RMODIF,1,19,1,-45,TPLY,TPLY,TPLY,TPLY 
RMODIF,1,25,1,-45,TPLY,TPLY,TPLY,TPLY 
RMODIF,1,31,1,45,TPLY,TPLY,TPLY,TPLY 
RMODIF,1,37,1,0,TPLY,TPLY,TPLY,TPLY 
RMODIF,1,43,1,0,TPLY,TPLY,TPLY,TPLY 
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RMODIF,2,1,4,1 
RMODIF,2,13,1,45,TPLY,TPLY,TPLY,TPLY 
RMODIF,2,19,1,-45,TPLY,TPLY,TPLY,TPLY 
RMODIF,2,25,1,-45,TPLY,TPLY,TPLY,TPLY 
RMODIF,2,31,1,45,TPLY,TPLY,TPLY,TPLY 
 
 
RMODIF,3,1,6,1 
RMODIF,3,13,1,45,TPLY,TPLY,TPLY,TPLY 
RMODIF,3,19,1,-45,TPLY,TPLY,TPLY,TPLY 
RMODIF,3,25,1,0,TPLY,TPLY,TPLY,TPLY 
RMODIF,3,31,1,0,TPLY,TPLY,TPLY,TPLY 
RMODIF,3,37,1,-45,TPLY,TPLY,TPLY,TPLY 
RMODIF,3,43,1,45,TPLY,TPLY,TPLY,TPLY 
 
RMODIF,4,1,10,1 
RMODIF,4,13,1,45,TPLY,TPLY,TPLY,TPLY 
RMODIF,4,19,1,-45,TPLY,TPLY,TPLY,TPLY 
RMODIF,4,25,1,-45,TPLY,TPLY,TPLY,TPLY 
RMODIF,4,31,1,45,TPLY,TPLY,TPLY,TPLY 
RMODIF,4,37,1,0,TPLY,TPLY,TPLY,TPLY 
RMODIF,4,43,1,0,TPLY,TPLY,TPLY,TPLY 
RMODIF,4,49,1,45,TPLY,TPLY,TPLY,TPLY 
RMODIF,4,55,1,-45,TPLY,TPLY,TPLY,TPLY 
RMODIF,4,61,1,-45,TPLY,TPLY,TPLY,TPLY 
RMODIF,4,67,1,45,TPLY,TPLY,TPLY,TPLY 
 
 
! DEFINE MATERIAL HERE 
UIMP,1,EX,EY,EZ,E11,E22,E22 
UIMP,1,PRXY,,,V12,,, 
UIMP,1,GXY,,,G12,,, 
 
! *CREATE KEYPOINTS FOR BEAM 
 
K,1,0,0,0 
K,2,FLANGBOT,0,0 
K,3,SECNODE3X,WEBH,0 
K,4,SECNODE4X,WEBH,0 
K,5,SECNODE5X,0,0 
K,6,SECNODE6X,0,0 
K,7,0,0,-LENGTH 
K,8,FLANGBOT,0,-LENGTH 
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K,9,SECNODE3X,WEBH,-LENGTH 
K,10,SECNODE4X,WEBH,-LENGTH 
K,11,SECNODE5X,0,-LENGTH 
K,12,SECNODE6X,0,-LENGTH 
 
!CREATE AREAS 
 
A,2,5,11,8 
A,1,2,8,7 
A,5,6,12,11 
A,2,3,9,8 
A,3,4,10,9 
A,5,11,10,4 
 
/VIEW,1,1,1,1 
APLOT 
!UCS 11 FOR FLANGE 
!UCS 12 FOR WEB LEFT 
!UCS 13 FOR WEB RIGHT 
!UCS 14 FOR NORMAL 
/TRAID,RBOT 
LOCAL,11,0,,,,0,0,90 
LOCAL,12,0,,,,THETA,0,90 
LOCAL,13,0,,,,-THETA,0,90 
LOCAL,14,0,,,,0,0,0 
 
! NAME FLANGE SECTIONS AND APPLY PROPERTIES 
! THIS IS THE LOWER BOTTOM FLANGE 
ASEL,S,AREA,,1 
AATT,1,1,1,11 
! THIS IS THE LOWER LEFT FLANGE 
ASEL,S,AREA,,2 
AATT,1,4,1,11 
! THIS IS THE LOWER RIGHT FLANGE 
ASEL,S,AREA,,3 
AATT,1,4,1,11 
! THIS IS THE LEFT WEB 
ASEL,S,AREA,,4 
AATT,1,2,1,12 
! THIS IS THE RIGHT WEB 
ASEL,S,AREA,,6 
AATT,1,2,1,13 
! THIS IS THE UPPER FLANGE 
ASEL,S,AREA,,5 
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AATT,1,3,1,11 
ALLSEL 
 
! DEFINE SEGMENT PER LINE FOR LONG LINES 
LSEL,S,,,2,4,2 
LSEL,A,,,7,9,2 
LSEL,A,,,12,15,3 
CM,LONGLINE,LINE 
LESIZE,ALL,,,30,,1 
! DEFINE SEGMENT PER LINE FOR WEB LINES 
LSEL,S,,,11,13,2 
LSEL,A,,,17,18,1 
CM,WEBLINE,LINE 
LESIZE,ALL,,,6,,1 
 
! DEFINE SEGMENT PER LINE FOR FLANGE LINES 
ALLSEL 
CMSEL,U,LONGLINE 
CMSEL,U,WEBLINE 
LESIZE,ALL,,,8,,1 
ALLSEL 
/VIEW,1,1,1,1 
/ANG,1 
! MESH HERE 
AMESH,ALL 
EPLOT 
ESYS,14 
 
!APPLY FORCE 
 
!FORM RIGID SECTIONS AT THE ENDS 
NSEL,,LOC,Z,0 
CERIG,2830,ALL,ALL 
F,2830,FZ,100 
F,10,FZ,-100 
ALLSEL 
 
! BFUNIF,TEMP,100 
 
!FORM RIGID SECTIONS AT THE ENDS 
NSEL,,LOC,Z,0 
D,ALL, , , , , ,UX,, , , , 
ALLSEL 
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NSEL,,LOC,Z,-LENGTH 
D,ALL,ALL 
ALLSEL 
 
/SOLU 
SOLVE 
FINISH 
 
!AVPRIN,0,0, 
 
!PLNSOL,S,Z,2,1 
 
NSEL,S,LOC,Z,-10 
NSEL,A,LOC,Z,(-10-(2/3)) 
NSEL,A,LOC,Z,(-10-(4/3)) 
ESLN 
 
!ESEL,R,REAL,,1,4,1 
!ESEL,U,REAL,,3 
/REPLOT 
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