DETERMINATION OF SAFE BUFFER WIDTH OF ROADWAY TO PROTECT HUMAN HEALTH FORM HARMFUL NO_X EXPOSURE

by

Hetal H. Bhatt

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN CIVIL ENGINEERING

THE UNIVERSITY OF TEXAS AT ARLINGTON

December 2005

Copyright © by Hetal H. Bhatt 2005

All Rights Reserved

ACKNOWLEDGEMENTS

This thesis could not have been completed without all the valuable help, advice and motivation from Dr. Melanie L. Sattler, who guided and encouraged me in carrying out this research. I also thank Dr. Andrew P. Kruzic and Dr. Stephen P. Mattingly for serving in my thesis committee and for their valuable comments, suggestions and advice.

I am also very grateful for my research colleagues Rupangi Munshi, Kamesh V. Sista, and Auttawit Upayoin for their unwavering support, encouragement and well wishes. I thank Civil and Environmental Engineering (CEE) department at UTA for providing the department van, for on-road data collection. I thank UTA technical assistants, Paul Shover in setting up the data measurement system in the department van and Lewis Crow for his technical support.

Last, but not the least I appreciate the encouragement from my family to whom all of my successes are dedicated.

November 18, 2005

ABSTRACT

DETERMINATION OF SAFE BUFFER WIDTH OF ROADWAY TO PROTECT HUMAN HEALTH FORM HAZARDOUS NO_X EXPOSURE

Publication No.

Hetal H. Bhatt, M.S.

The University of Texas at Arlington, 2005

Supervising Professor: Melanie L. Sattler

According to the 2004 EPA Trends Report, US on-road transportation sources emit 36% of nitrogen oxides (NOx), 63% of carbon monoxide (CO), and 29% of volatile organic compounds (VOCs). This research determines a safe roadway buffer width to protect human health from air pollutant (NOx) exposure.

The method was used to determine a buffer width for NO_x along Great Southwest Parkway in Grand Prairie, Texas. NO_x health effects include eye, nose, throat, and lung irritation; cough; shortness of breath; tiredness and nausea. In the Dallas Fort Worth region, where Grand Prairie is located, on-road vehicles contribute over 50 % of NO_x emissions.

Vehicle NO_x emission rates along Great Southwest Parkway were measured using a Horiba 1300 OBS on-board emission measurement system, to determine a maximum 2.02 g/mile emission factor for the corridor. Hourly DFW meteorological data for a 5-year period was processed using Cal3qhcr to determine the 10 worst-case meteorological combinations for a 1-hour averaging time, and the 5 worst for an 8-hour averaging time. The maximum emission factor and worst-case meteorological conditions were input into the line source dispersion model CALINE4 to determine worst-case concentrations at 5-m intervals away from the roadway. CALINE4 output was post-processed in Arc View GIS to plot concentrations at receptor locations. Worst-case concentrations were compared to 1-hour NO_x standards implemented in Hong Kong. For the current Great Southwest traffic volume, it was found that 1-hour NO_x standards would not be exceeded. Additional CALINE4 runs were conducted to determine how much the traffic volume could increase, and still avoid exceedances outside a 20-foot buffer width, which is a common setback distance in residential areas. It was determined that the traffic volume could increase by a factor of 15 and still protect human health from NO_x impacts, using a 20-foot buffer.

TABLE OF CONTENTS

ACKNOWLEDGEMENTS	iii
ABSTRACT	iv
LIST OF ILLUSTRATIONS	ix
LIST OF TABLES	xi
Chapter	
1. INTRODUCTION	1
1.1 Introduction	1
1.2 Dispersion Modeling.	2
1.3 Line Source Dispersion Modeling and its Role in Transportation Planning	2
1.4 Purpose of the Research and Organizational Structure.	3
2. LITERATURE REVIEW	4
2.1 Background	4
2.1.1 Transportation Sources and Impacts	4
2.2 Air Quality Standards	6
2.2.1 National Ambient Air Quality Standards (NAAQS)	6
2.2.2 Hong Kong Air Quality Standards	8
2.3 Dispersion Modeling & Roadway/Line	

	Source Modeling - The Caline4 Model	10
	2.3.1 Model Description	11
	2.3.2 Intersection Link Option	14
	2.3.3 NO ₂ Option.	15
	2.4 Emission Data Collection	15
	2.4.1 Background	15
	2.4.2 Dynamometer	16
	2.4.3 Remote Sensing	16
	2.4.4 Macroscopic Emission Models	17
	2.4.5 Microscopic Emission Models	18
	2.4.6 On-Board Emission Measurement	19
	2.5 Literature Review	19
3.	METHODOLOGY	30
	3.1 Overview	30
	3.2 Measurement of Emission Factor	30
	3.3 Data Collection Procedure	32
	3.3.1 Great Southwest Parkway	32
	3.3.2 Data Collection Procedure	34
	3.4 Computer Estimation of NOx Concentrations	35
	3.4.1 Job Options	37
	3.4.1 Job Options	37 40

3.4.4 Link Options	46
3.4.5 Receptor Options	48
3.5 Post-Processing of Output in GIS	48
4. RESULTS AND DISCUSSION	50
4.1 Overview	50
4.1.1 Introduction	50
4.1.2 Data Interpretation and Emission Factor Calculation	50
4.2 Determination of the Worst-Case Meteorology	52
4.2.1 Observation/Discussion of Table 4.3 – Table 4.6 and Figures 4.1 and 4.2	59
4.2.2 Observation/Discussion of Table 4.8 and Figure 4.3	62
4.3 Caline4 Analysis	63
4.3.1 Observations/Discussions of Table 4.10	65
4.3.2 Finding the Traffic Volume which Exceeds the Threshold limit of 0.19 ppm, Considering 20 Foot Buffer Width	67
4.4 GIS Analysis	68
5. CONCLUSIONS AND RECOMMENDATIONS	76
5.1 Conclusions	76
5.2 Recommendations for Future Research	78

Appendix

A. SAMPLE CALINE4 OUTPUT	79
REFERENCES	92
BIOGRAPHICAL INFORMATION	95

LIST OF ILLUSTRATIONS

Figure Pag	ge
1.1 NO _X Emissions by Source	2
2.1 Percent Emission of VOC, NO _X and CO from Transportation Sources	5
2.2 Standard Gaussian Coordinate System 11	
2.3 Finite Line Source (FLS) of Caline Series Models 12	2
2.4 Mixing Zone	;
2.5 Chassis Dynamometer)
2.6 Typical Remote Sensing Setup	7
3.1 Schematic Diagram of Chevy Astro Van Outfitted with OBS-1300 and Accessories	L
3.2 Layout of Great Southwest Parkway between Study Signals	;
3.3 Flow Chart for Caline4 Runs	5
3.4 The Job Options Screen	7
3.5 Meteorological Option Screen)
3.6 The Output Options Screen	5
4.1. Comparison of Rural and Urban Mixing Heights for 1-Hour Time Average.55	5
4.2. Comparison of Rural and Urban Mixing Heights for 8-Hour Time Average	3
4.3 Frequency of Worst-Case Meteorological Occurrence by Season	2

4.4 Contour Map of Maximum 1-hour NO _X	69
4.5 3-Dimensional NOx Distribution, 1-Hour Time Average	70
4.6 NOx Concentration Distribution in North Zone, 1-Hour time Average	72
4.7 NOx Concentration Distribution in South Zone, 1-Hour time Average	73
4.8 NO _X Concentration Frequency Distribution	74
4.9 Contour Map Superimposed with Aerial Photograph	75

LIST OF TABLES

Table	age
2.1 National Ambient Air Quality Standards	7
2.2 Hong Kong Air Quality Objectives for Seven Pollutants and Potential Health Effects of Pollutants	9
2.3 Literature Review	20
3.1 OBS-1300 and Accessories and their Use	31
3.2 Emission Factor (EF) Summary	35
3.3 Surface Roughness Length	39
3.4 Summary of Input for Job Options 4	40
3.5 Rammet Output File 4	42
3.6 Worst-Case Meteorology for -Hour Time Average	43
3.7 Worst-Case Meteorology for 8-Hour Time Average	43
3.8 Summary of Meteorological Data (Hourly Averages)	45
3.10 Link Geometry 4	48
4.1 OBS-1300 Parameters	50
4.2 Typical Summary Data Sheet for Each Day 5	51
4.3 Summary of Emission Factors 5	52
4.4 Meteorological Conditions Giving Highest Concentrations for 1 Hour Time Average	53

4.5 Top Ten Worst-Case Meteorological Conditions for 1 Hour Time Average	54
4.6 Meteorological Conditions giving Highest Concentrations for 8 Hour Time Average	56
4.7 Top Five Worst-Case Meteorological Concentrations for 8 Hour Time Average	57
4.8 Worst-Case Meteorological Occurrences by Season	59
4.9 Caline4 Output – NO ₂ Concentrations	63
4.10 Caline4 Output – NO ₂ Concentration with Position of Occurrence and	65
4.11 Concentration in ppm as a Function of Traffic Volume	67

Chapter 1

INTRODUCTION

1.1 Introduction

"According to the World Health Organization (WHO), 4–8% of deaths occurring annually in the world are related to air pollution." (*Kathuria, 2002*)

Dallas/Fort Worth, Texas (DFW) is one of the most polluted regions across the nation due to significant vehicular growth in the past 2-3 decades. To restore the air quality and refurbish its image, numerous command and control policy instruments have been implemented in DFW by the state and the local governments. The Texas State Implementation Plan (SIP) contains legally enforceable provisions bringing the region into attainment with the federal national ambient air quality standard (NAAQS) for ozone. Ozone is formed in the atmosphere from the interaction between volatile organic compounds (VOCs) and nitrogen oxides (NO_x) from various sources like industrial stacks, natural sources, area sources and on-road and off-road vehicles. In the DFW region, 50 % of NO_X is contributed by on-road vehicles (see Fig. 1). This research attempts to determine a safe roadway buffer width to protect human health from exposure to NO_X vehicular pollution. Not only is NO_X a precursor to ozone formulation, but it is also a pollutant in and of itself. Its health effect includes irritation to eyes, nose, throat, and lungs. It can also cause cough and shortness of breath, tiredness and nausea. The health effects of NO_X are discussed in detail in Chapter 2.

Fig.1.1 NO_X Emissions by Source http://www.tnrcc.state.tx.us/oprd/sips/sip101.pdf

1.2 Dispersion Modeling

Dispersion modeling is a method for estimating pollutant concentrations at a given distance from a source, over a time average. A Gaussian dispersion equation has been developed from statistical rationale, as well as derived from the mass balance principle, to estimate pollutant concentrations. Modeling of various sources and receptors can then be readily conducted by incorporation of the dispersion equation into computer programs. Dispersion modeling offers numerous advantages over ambient concentration measurement, like the ability to asses the impact of new sources, the ability to test the "what if scenarios", and reduced cost.

1.3 Line Source Dispersion Modeling and its Role in Transportation Planning

Line source models are used to simulate the dispersion of pollutants near the roadways, where vehicles continuously emit pollutants of varying characteristics. Various highway dispersion models have been developed using different methodologies/techniques and encompassing roadway geometry, traffic characteristics and atmospheric conditions. These models have been continuously upgraded and modified based on field experiments and numerical and physical modeling results. These models, despite several assumptions and limitations, are used throughout the world. Air quality models enable regulatory agencies to carry out air pollution prediction analysises due to vehicular traffic near the roadways as a part of the environmental impact assessment (EIA) procedure, and thus play a key role in development of air quality management strategies. (Sharma, 2000)

1.4 Purpose of the Research and Organizational Structure

A disadvantage of line source dispersion modeling computer programs is that the output is not always oriented toward the needs of transportation planners. In particular, appropriate graphical output can facilitate decision making and engineering judgment. Geographical information systems (GIS) can be a great aid to mitigate the above mentioned shortcoming of the line source dispersion modeling computer programs.

The purpose of this research is to determine, for a given traffic volume, a roadway buffer width needed to protect human health from exposure to NO_X . In particular, measured vehicle emission data will be input into the line source dispersion model CALINE4 and post processed in ArcGIS to determine the roadway buffer width.

Chapter 2 includes a literature review and background theories underlying the research. The methodology, results, and conclusions & recommendations are covered in Chapters 3, 4 and 5, respectively.

3

CHAPTER 2

LITERATURE REVIEW

2.1 Background

2.1.1 Transportation Sources and Impacts

Transportation facilities are considered to be the backbone of a country and essential for its socioeconomic advance and national defense. They reflect the economical and technological development of the country. On a personal level, vehicles enable an individual to enjoy their freedom of 'self-being' to its fullest. Vehicles increase the quality of life. However, the downside of vehicles is impossible to overlook. Accidents, congestion, sprawl, and air pollution are issues which demand serious thoughts and strict actions. The undesirable effects of the transportation facilities on environmental degradation create serious worries. They consume high levels of non-renewable sources like energy and fossil fuel. Vehicle induced air pollution has serious negative effects on human health and environment from local to regional scales. Figure 2.1 shows emission of major pollutants form transportation sources in year 1999.

1999 National Emissions by Source: Carbon Monoxide On-Road Mobile Sources

Some percentage totals do not equal 100 due to rounding.

1999 National Emissions by Source: Hydrocarbons On-Road Mobile Sources

Some percentage totals do not equal 100 due to rounding.

http://www.epa.gov/otaq/invntory/overview/pollutants/nox.htm#

Fig. 2.1 Percent Emission of VOC, NO_X and CO from Transportation Sources

2.2 Air Quality Standards

2.2.1 National Ambient Air Quality Standards (NAAQS)

The Clean Air Act, which was last amended in 1990, requires the Environmental Protection Agency (EPA) to set National Ambient Air Quality Standards (NAAQS) for pollutants which are harmful to public health and the environment. The Clean Air Act established two types of national air quality standards. *Primary standards* set limits to protect public health, including the health of "sensitive" populations such as asthmatics, children, and the elderly. *Secondary standards* set limits to protect public welfare, including protection against decreased visibility, damage to animals, crops, vegetation, and buildings.

The EPA has set NAAQS for six principal pollutants, which are called "criteria pollutants". They are listed in Table 2.1 below. Units of measure for the standards are parts per million (ppm) by volume, milligrams per cubic meter of air (mg/m^3), and micrograms per cubic meter of air ($\mu g/m^3$).

Pollutant Averaging Period		Standard	Primary NAAQS	Secondary NAAQS
Ozone	8-hr	The average of the annual fourth highest daily eight-hour maximum over a three-year period is not to be at or above this level.	85 ppb	85 ppb
Carbon	1-hr	Not to be at or above this level more than once per calendar year.	35.5 ppm	35.5 ppm
Monoxide	8-hr	Not to be at or above this level more than once per calendar year.	9.5 ppm	9.5 ppm
	3-hr	Not to be at or above this level more than once per calendar year.	_	550 ppb
Sulfur Dioxide	24-hr	Not to be at or above this level more than once per calendar year.	145 ppb	_
	Annual	Not to be at or above this level.	35 ppb	_
Nitrogen Dioxide	Annual	Not to be at or above this level.	54 ppb	54 ppb
Respirable Particulate	24-hr	Not to be at or above this level on more than three days over three years with daily sampling.	155 μg/m ³	155 μg/m ³
Matter (10 microns or less) (PM10)	Annual	The three-year average of annual arithmetic mean concentrations at each monitor within an area is not to be at or above this level.	51 µg/m ³	51 μg/m ³
Respirable Particulate	24-hr	The three-year average of the annual 98th percentile for each population-oriented monitor within an area is not to be at or above this level.	66 μg/m ³	66 μg/m ³
(PM2.5)	Annual	The three-year average of annual arithmetic mean concentrations from single or multiple community-oriented monitors is not to be at or above this level. Not to be at or above this level	$15.1 \ \mu g/m^3$	$15.1 \ \mu g/m^3$
Loud	Yuurtor		1.55 µ6/11	1.55 µ5/11

Table 2.1 National Ambient Air Quality Standards (TCEQ, 2005)

The U.S. NO_X standard is based on an annual averaging time. This research used Caline4 as a dispersion modeling tool, which is able to predict NO_X concentration with time average of 1-hour and 8 hours but unable to produce result a with a time average of

1 year. To resolve this challenge, Hong Kong air quality standards with 1-hour averaging time were used as a basis for comparison in this study. Section 2.2.2 discusses this standard briefly. The Hong Kong standards are the only standard to my knowledge which considers a 1-hour time average concentration of NO_X .

2.2.2 Hong Kong Air Quality Standards

Air quality in Hong Kong is badly affected by the high density of vehicles on the roads, coupled with the hilly geography and cavernous streets. Regional air pollution has increasingly affected visibility. Also, air pollution topped the list of complaints to the Environmental Protection Department (EPD) with 14,554 in year 2003, almost double that of 1998.

2.2.2.1 Air Quality Objectives

Air Quality Objectives (AQOs) for seven widespread air pollutants were established in 1987 under the Air Pollution Control Ordinance (APCO). In 1989, the entire territory was declared as air control zone, with a set of Air Quality Objectives (AQOs) for seven pollutants: sulfur dioxide, total suspended particulates (TSP), respirable suspended particulates (RSP), nitrogen dioxide, carbon monoxide, photochemical oxidants (ozone) and lead. The AQOs derive from scientific analyses of the relationship between pollutant concentrations in the air and the associated adverse effects of the polluted air on the health of the public. The established AQOs, as shown in Table 2.2, apply to the whole territory.

Pollutant	Concentration in Micrograms per Cubic				ic	Health effects of	
	Meter					pollutant at elevated	
	Averaging Time			ambient levels			
	1hr	8hr	24hr	3mths	1yr		
Sulphur Dioxide	800		350		80	Respiratory illness; reduced lung function; morbidity and mortality rates increase at higher levels.	
Total Suspended Particulates			260		80	Respirable fraction has effects on health.	
Respirable Suspended Particulates (v)			180		55	Respiratory illness; reduced lung function; cancer risk for certain particles; morbidity and mortality rates increase at higher levels.	
Nitrogen Dioxide	350		150		80	Respiratory irritation; increased susceptibility to respiratory infection; lung development impairment.	
Carbon Monoxide	30,000	10,000				Impairment of co- ordination; deleterious to pregnant women and those with heart and circulatory conditions.	
Photochemical Oxidants (as ozone)	240					Eye irritation; cough; reduced athletic performance; possible chromosome damage.	
Lead				1.5		Affects cell and body processes; likely neuro-psychological effects, particularly in children; likely effects on rates of incidence of heart attacks, strokes and hypertension.	

Table 2.2 Hong Kong Air Quality Objectives for Seven Pollutants and Potential Health Effects of Pollutants

(Reference:- http://resources.emb.gov.hk/envir-ed/text/lifewide/e_m3_3_3_n0.htm)

2.3 Dispersion Modeling & Roadway/Line Source Modeling - The Caline4 Model

Most dispersion models are based on the Gaussian plume dispersion model. The Gaussian plume model gives concentration of a pollutant at position (x,y,z) as follows:

$$C(z, y, z) = \frac{Q}{2\pi u \sigma_y \sigma_z} \exp\left(\frac{\cdot y^2}{2\sigma_y^2}\right) \cdot \left\{ \exp\left[\frac{-(z \cdot H)^2}{2\sigma_z^2}\right] + \exp\left[\frac{\cdot (z + H)^2}{2\sigma_z^2}\right] \right\}$$
(2.1)

Where

C(x, y, z) = contaminant concentration at the specified coordinate [ML⁻³],

- σ_y = lateral dispersion coefficient function [L],
- σ_z = vertical dispersion coefficient function [L],

$$u = wind speed [L/T]$$

- H = effective stack height [L],
- x = downwind distance [L],
- y = crosswind distance [L],
- z = vertical distance [L].

The standard Gaussian coordinate system is shown in Fig. 2.2

Fig. 2.2 Standard Gaussian Coordinate System

2.3.1 Model Description

The **Ca**lifornia **line** source Dispersion model (Caline) is one of those models based on the Gaussian plume dispersion model. Caline was developed first by DOT California (Caltran) to estimate CO concentration.

CALINE4 is latest version of the series. **CALINE4** divides individual highway links into a series of elements from which incremental concentrations are computed and summed, as shown in Fig. 2.3.

Fig. 2.3 Finite Line Source (FLS) of Caline Series Models (adopted from Benson, 1991)

Each element is modeled as an "equivalent" finite line source (FLS) positioned normal to the wind direction and centered at the element midpoint. Element size increases with distance from the receptor to improve computational efficiency.

The emissions from an element are released uniformly along the **FLS** and dispersed in a Gaussian manner by the model. Incremental downwind concentration is computed by using the crosswind Gaussian formulation for a line source of finite length (Equation 2) (Benson, 1991). Each finite length element is considered to be a series of point sources; concentrations from each differential "point source" are integrated over the length of the segment, as shown in Eq. 2.

$$C(x, y) = \frac{q}{\pi \sigma_z u} \int_{y_1 - y}^{y_2 - y} \exp\left(\frac{-y^2}{2\sigma_y^2}\right) dy$$
(2.2)

where q is the lineal source strength, u is the wind speed, and $y_1 \& y_2$ are the **FLS** endpoint y coordinates.

The EPA version of the model permits the specification of up to 20 links and 20 receptors. This short-coming has been nullified by CalRoadView and enables the user to use the number of links and length of his/her desire. Each link defines a relatively straight segment of roadway with a constant width, height, traffic volume and vehicle emission factor.

CALINE4 treats the region directly above the highway as a zone of uniform mixing with uniform emissions and turbulence. This "mixing zone" is defined as the region over the traveled way plus 3 m (almost two vehicle widths) on each side, as shown in Fig. 2.4.

Fig. 2.4 Mixing Zone (adopted from Benson, 1991)

The additional width accounts for the initial horizontal dispersion imparted to pollutants by the vehicle wake. Within the mixing zone, the mechanical turbulence created by moving vehicles and the thermal turbulence created by hot vehicle exhaust are treated as significant dispersive mechanisms.

CALINE4 assumes that initial vertical dispersion at the edge of the mixing zone, $\sigma_{z,}$ is determined by the length of time air resides in the mixing zone, t_r . Equation 3, which is empirically derived, is used to calculate σ_z

$$\sigma_z = 1.5 + (t_r/10) \tag{2.3}$$

where σ_z in meters and t_r in seconds.

Horizontal dispersion is estimated directly from the wind direction standard deviation, to account for site specific conditions and unique meteorological regimes.

2.3.2 Intersection Link Option

At controlled intersections, the operational modes of deceleration, idle, acceleration and cruise have a significant effect on the rate of vehicle emissions. Traffic parameters such as queue length and average vehicle delay define the location and duration of these emissions. The net result is a concentration of emissions near the intersection which cannot be modeled adequately using a single, composite emission factor. For this reason, a specialized intersection link option has been added to **CALINE4**. (Benson, 1991)

14

$2.3.3 NO_2 Option$

A number of methods have been developed to expand the use of the Gaussian plume formulation for reactive species such as NO₂. These include the exponential decay, ozone limiting and photo stationary state methods. An unfortunate weakness of these methods is their assumption that reactants mix instantaneously as they disperse and that the resulting time averaged concentrations determine the reactions rates. Because the component reactants, NO and ambient O₃, are not mixed instantaneously by the relatively large scale dispersive processes of the atmosphere, the assumption leads to overestimates of NO₂ production. Discrete parcel NO₂ concentrations are computed by CALINE4 for each element-receptor combination because of the variable travel time involved. These concentrations are not, of course, the same as time-averaged NO₂ concentrations. To arrive at time averaged values, the link source strength is adjusted by element to yield an initial NO₂ mixing zone concentration equal to the discrete parcel concentration at the receptor. The model then proceeds to compute the time average concentration exactly as the concentration for a non-reactive species such as CO would be computed.

2.4 Emission Data Collection

2.4.1 Background

Various methods for measuring or modeling vehicular emissions in order to develop emission factors for input into Caline4 are discussed below.

2.4.2 Dynamometer

In dynamometer testing, the federal test procedure is used to determine compliance of light-duty vehicles and light-duty trucks with federal emission standards. The vehicle is "driven" on a dynamometer over a simulated urban driving trip, intended to represent typical driving patterns in urban areas. Exhaust (tailpipe) emissions are measured during the trip. A vehicle is driven on a simulated cycle involving stops, starts, acceleration, deceleration, constant speed and idling. All these driving modes are characterized based on overall time-weighted average speed. (Munshi, 2005)

Figure 2.5 Chassis Dynamometer (adopted from Munshi, 2005)

2.4.3 Remote Sensing

Remote sensing is a method to measure pollutant levels in a vehicle's exhaust while the vehicle is traveling down the road. These devices are not attached to the vehicle. Remote sensing helps in collection of trend data for entire vehicle populations, identifies gross polluters between inspection cycles, and does not interfere with the commuter.

Fig 2.6 Typical Remote Sensing Setup (adopted from Munshi, 2005)

Figure 2.6 shows the typical setup of Remote Sensing Devices (RSD). The RSD system uses an infrared (IR) or ultraviolet (UV) absorption concept to measure emissions. To measure CO, CO_2 , or HC, the system projects a beam of IR radiation across a roadway continuously. Two scenarios may be observed:

• When the RSD's detectors are receiving infrared light signals through the air with no vehicle emissions in the path, the signals maintain their strength.

• If there is some amount of CO, CO₂, or HC, present in the path, signals will get absorbed, which weakens the signals.

"In the case of NOx, the RSD uses an ultraviolet (UV) light source in addition to the infrared beam. This is due to the fact that NOx absorption characteristics are stronger and more selective in the ultraviolet light spectrum." (Munshi, 2005).

2.4.4 Macroscopic Emission Models

Macroscopic modeling uses a model that has been developed for freeway and arterial road networks for an entire region. There are various macroscopic models but MOBILE6 is the most widely used because it is more efficient and detailed compared to other models. It is used by North Central Texas Council of Governments (NCTCOG) for estimating DFW mobile source emission reductions associated with the SIP and in determining transportation conformity. MOBILE6 estimates on-road vehicle emissions under various conditions. In MOBILE6, emission rates can be combined with activity from a travel demand model to develop highway emission inventories expressed in tons per time period. Further, it calculates region wide emission factors (EF) in grams/mile for arterials, freeways, ramps and other major road connectors. (Munshi, 2005)

2.4.5 Microscopic Emission Models

Numerous microscopic models also exist that simulate traffic on different roadway facility types such as freeway segments, freeway on-ramps, arterial intersections, and rural highways. For example, CORSIM was developed for the Federal Highway Administration. This model is made up of two principal modules, a preprocessor and simulator. Emission data is provided from dynamometer testing. An urban street is represented as a set of nodes and directed links. Total emissions on each link are determined by applying default emission rates (based on speed and acceleration from look-up tables) to each driving vehicle second by second traveling on the link. CORSIM can accommodate a variety of traffic control conditions. Each vehicle which enters the simulation network is stochastically assigned a set of performance characteristics, which include a vehicle type as well as driver behavior characteristics. Microscopic models are more accurate than region-wide macroscopic models but may still be inaccurate if not calibrated for local conditions. Also, vehicle operating history can impact emissions, but speed-acceleration tables sometimes used in microsimulation models cannot account for this. Microscopic models, however, represent the best strategy for estimating benefits of emission reduction pre-implementation. (Munshi, 2005)

2.4.6 On-Board Emission Measurement

On-board emission measurement is a "micro-scale" technique for quantifying vehicular emissions since the data is collected under real-world conditions at any point of time and location where the vehicle is driven. Real-world emissions are measured during various driving situations (accelerations and decelerations), which is an advantage over dynamometer testing. Also, on-board measurement proves advantageous over RSDs since remote sensing gives an instantaneous snap-shot in time and space; in addition, RSDs cannot be used across multiple lanes of heavy traffic. Improvements at individual intersections, which are too small to observe in a macroscopic model but are significant when aggregated, can be measured using on-board systems. Also, on-board systems measure real-world emissions for actual driving conditions rather than model simulated conditions, which proves advantageous over micro scale modeling. (Munsh, 2005)

This study used data from on-board measurement to develop emissions for use in Caline4.

2.5 Literature Review

Table 2.3 summarizes articles reviewed related to air quality and GIS.

No.	Research Title	Year	Author	Objective	Major Findings	Remarks
1	The use of GIS in climatology and meteorology	2003	Lee Chapman & John E. Thornes	To review GIS ability in capturing, modeling, analyzing and displaying special data.	This is article reviews uses of GIS in fields of Climatology and Meteorology.	A distinction is made between the derivation of spatial datasets from their subsequent modified applications.
2	A qualitative tool combining an interaction matrix and a GIS to map vulnerability to traffic induced air pollution	2004	Maria Mavroulidou, Susan J. Hughes, and Emma E. Hellawell	To define 'interaction matrix' using key parameters such as traffic, meteorology, and buildings, and locate hot spots where detailed air quality monitoring is required.	Interaction matrix works well at local scale.	
3	Rapid urban growth, land use changes and air pollution in Santiago Chile	1999	H. Romero, M. Ihl, A. Rivera, P. Zalzar, P. Azocar	To observe air quality impact of urban growth using satellite images and digital terrain model.	Urban heat island, Normal Difference Vegetation Index (NDVI), and thermal inversion layers were mapped using GIS. Heavy traffic and wind direction has	

Table 2.3 Literature Review

					caused maximum CO concentration in southern part of city. Ozone exceedances were observed throughout the year, with maximum frequency in summer and spring.	
4	An integrated simulation system for traffic induced air pollution	1998	Matthias Schmidt, Ralf Peter Schalfer	To model vehicle induced pollution for local agencies to conduct air quality planning.	High accuracy in case of macroscale modeling (150km * 150km).	SIMTRAP project is currently funded by the European community. It simulates realistic traffic data using DYNEMO model and air pollution data using DYMOS model. Interpretation and visualization of results are readily conducted in GIS but it demands High Performance Computing Network (HPCN).

Table 2.3 - continued

5	Comparative study of 3D numerical and puff models for dense air pollution	1999	Ni Bin Chang, C. Y. J. Kao, Y. L. Wei , C. C. Tseng	To conduct risk assessment and establish an emergency response system for hazardous chemical release using 3D mathematical model integrated with GIS.	This research has considered seven industrial zones in the Kaohsiung metropolitan area. Release and dispersion of various hazardous chemicals were predicted using developed 3D numerical model and then results were compared with output of puff model. Developed 3D model predictions were found to be conservative compared to puff	Can be applicable for Title V permitting (future recommendation)
6	GIS based mathematical modeling of urban air pollution	1999	E.A. Zakarin, B.M. Mrkarimova	To develop GIS based mathematical model of urban air pollution.	Researchers claim that their derived mathematical model gives more control over variables and can be used as an air pollution predicting system for areas other than considered in this study.	

Table 2.3 - continued

7	Integration of the global positioning system (GPS) and GIS for traffic congestion studies	2000	Michael A. P. Taylor, Jeremy E. Woolley, Rocco Zito	To develop an integrated system of GIS and GPS which can be installed in a probe vehicle to collect traffic data, engine data and pollution data.	Research proves effectiveness and efficiency of GIS in facilitating multi- faceted data collection and analysis for traffic planning.	
8	Estimating urban air pollution levels from road traffic in TRAEMS	1999	Dr. Joseph Kwame Affum, Prof. Lex Brown	To provide an overview of design and development of Transport Add-on Environmental Modeling System (TRAEMS).	NO _X emissions up to 2011 are predicted for line sources in the City of Brisbane, Australia.	It is not clear that the authors have considered atmospheric reactions of NOx in modeling.
9	Estimation of car fuel consumption in urban traffic	1986	D. C. Biggs, R. Akcelik	To derive a mathematical model for fuel consumption.	Various functions and graphs are presented to predict fuel consumption based on various parameters.	Applicable to macro and meso scale traffic.
1	0 Travel time study with GPS and GIS: An integrated methodology	1998	Cesar A. Quiroga, Darcy Bullock	To assimilate various transportation data related to travel time studies, using developed GIS -GPS system.	Median speed, harmonic mean speed and other parameters were found based on functional class.	Research shows GPS' ability for extensive data collection (second by second logging), and GIS' ability for data handling and filtration.
Table 2.3 - continued

11	On-road measurement of vehicle tailpipe emission using a portable instrument.	2003	Christopher Frey, Nagui Rouphail	To measure CO, NO and HC from a fleet of 11 vehicles.	Emission comparison based on driver behavior. The article found that the phases of the driving cycle, in order from greatest pollutant generation to least, are acceleration, cruising, deceleration, and idling.	This kind of work can be useful to check the accuracy of Sate Implementation Plan (SIP) Transportation Control Measures (TCM).
12	A review of the development and application of the CaLine3 and 4 models	1991	Paul E. Benson	To provide scholarly review of CaLine3 and 4 models, their advancement and application.	Article discusses background theories in development of model and integration of these theories in model.	
13	Development and verification of the California Line source dispersion models	1988	Paul E. Benson	To verify CaLine4 model results by conducting independent studies.	Error is reported as a function of wind direction for CaLine3. 75% of Caline predictions fall within a factor 2 of measured values. This error has been reduced by 66% in CaLine4.	
14	CALINE4 - A dispersion model for	1984 1989	State of California	Comprehensive technical report		

Table 2.3 - continued

	predicting air pollutant concentrations near roadways	(revised)	Department of Transportation Division of New Technology and Research	focusing on each and every parameter of model, including a CO, NO and HC sensitivity analysis of model and field tracer study.		
15	User's guide for CL4: A user-friendly interface for the Caline4 model for transportation project impact assessments	1998	Dana L. Coe, Douglas S. Eisinger, Jeffrey D. Prouty, Tom Kear	Shows use of all components within the Caline4.		
16	User's Guide for CALRoads View	2001	Jeese L. The, Cristiane L. The, Michael A. Johnson	Provides detailed descriptions of various CAL-series and other associated software, with their GUI applications and screen shots of interfaces.		
17	Impact of Signal Synchronization on Vehicular Emission – An On-Board Measurement Case Study.	2005	Rupangi Prakash Munshi	To determine the impacts of signal synchronization on real-world, on-road emissions of NO _x .	Signal re-timing, opposite to popular belief, has not reduced NO_X emissions for the particular corridor studied. In all cases except one, there was	

Table 2.3 - continued

					no statistical difference in emissions before and after retiming. In the one case, emissions increased due to increased average speed.	
18	Determination of the Meteorological Conditions Responsible for the Worst-case Odor Impacts from Area Sources Using Two Dispersion Models – ISC3 and AEROMOD	2005	Sapna Devanathan	To determine meteorology responsible for worst- case odor concentrations from a wastewater treatment plant.	High temperatures in summer cause the worst-case situations.	
19	Vehicular pollution control in Delhi	2002	Vinish Kathuria	Research investigates the effectiveness of the policy enhancements made in order to control vehicular pollution in New Delhi, the capital city of India.	Research concluded that against uncontrolled vehicular growth (360-400 vehicles per day), all the enhancements are falling short of controlling vehicle induced air pollution.	
20	GIS applications in air pollution modeling	2000	Niraj Sharma	This research mainly explores the potential	Integration of GIS and air quality dispersion	

Table 2.3 - continued

	of GIS applications in field of air quality to meet transportation planning needs.	models can facilitate and improve decision making.	
--	---	--	--

Articles 2 to 6 focus on GIS applications in the field of air quality. They focus on behavior of various air quality parameters/concepts in time and space. They model these parameters/concepts in a GIS environment using various techniques. Articles 7 and 10 discuss use of GPS system in real time data collection, which has provided a bigger picture for use of GPS in the data collection of current study.

In his research Mr. Niraj Sharma (Article 20) has adopted a macro-scale dispersion modeling approach. The real time concentrations for various pollutants like carbon monoxide (CO), hydrocarbons (HC), nitrogen oxides (NO_X), sulfur dioxide (SO₂), and Suspended Particulate Matter (SPM) were measured at six different locations on a highway segment of almost 200 km, using air quality sampling devices. Meteorological data like wind speed, wind direction, temperature, and humidity were collected from the local meteorological department. Traffic characteristic data were also measured at the same locations where pollutant concentrations were measured. All these real time data were used as an input to the Caline4 model. The researcher assumed that CO can be used as indicator of vehicular pollution. The Caline4 model was run for CO with multi run worst-case condition (i.e. time average of 8 hours and worst-case wind angle). Using output of Caline4 model, pollution dispersion maps were developed using ArcGIS. This study has highest resemblance in methodology with this research. Sharma's study does not consider health impacts of the pollutant, nor does it compare concentrations with any standard threshold value. In a broad sense, one can say that this study goes beyond the point where Sharma concludes his research.

Devnathan (2005) (article 18) has exported ISC3 and AERMOD output into an ArcGIS environment. Exceedance contours of odors from a wastewater treatment plant were prepared using various GIS tools.

From the above literature review and to best of my knowledge, only this research takes NO_X in exclusive consideration in terms of health effect and subsequent requirement of buffer width of roadway required to protect human health from harmful exposure of NO_X .

CHAPTER 3

METHODOLOGY

3.1 Overview

The research was carried out in two parts; one was real-time data collection and the second was computer modeling. This chapter describes briefly how an emission factor was measured for use in Caline4, and in greater detail the methodology for computer modeling of ambient concentrations.

3.2 Measurement of Emission Factor

The emission factor is one of the most critical parameters of dispersion modeling. For line source modeling, it is expressed in units of 'mass of pollutant/vehicle miles traveled'. There are various ways to derive an emission factor, depending upon the kind of pollution source being considered: area source, point source or line source. In the case of line sources, computer models, dynamometer testing or on-road testing can be used to generate the emission factors. To ensure the highest degree of accuracy in this research, the emission factor was derived from real-time data.

Student Ms. Rupangi P. Munshi (Graduate student of Department of Civil and Environmental Engineering UTA) carried out her research "Impact of Signal Synchronization on Vehicular Emission - An On-Board Measurement Case Study." The emission factors used in this research result from this previous research. The author was a member of the on-board data collection and analysis team. The emission data was collected using the department 2000 Chevrolet Astro van out fitted with a tailpipe emission analyzer, On-Board System OBS-1300, provided by the Horiba Instruments, Inc. Fig. 3.1 shows the experimental setup and Table 3.1 describes all accessories that were used in measurement of emission factor.

Fig. 3.1 Schematic Diagram of Chevy Astro Van Outfitted with OBS-1300 and Accessories (Munshi, 2005)

Tuble 5.1 ODS 1500 and Accessories and then 0.5c							
Unit	Use						
Chevy Astro Van	This vehicle is used to collect emission data.						
The OBS 1300	An on-board emission measurement system which performs						
	simple analysis of exhaust gases.						
The Data	An interface between sensor, data analyzer and data logging PC						
Interpretation Unit							
(DIU)							
Mexa720 NO _x	This instrument attaches NO _x probe and provides NO _x						
Analyzer	concentration readings in ppm.						
Data logging PC	A DELL laptop is provided with data logging software. The						
	software that is used in conjunction with OBS logs the pollutant						
	emissions, A/F ratio, exhaust pipe temperature and ambient						
	temperature and ambient humidity data.						
GPS system	A GPS system is used to determine velocity, altitude and position						
	of vehicle on the roadway.						
Battery	Two 12V – 24V batteries are provided for power supply.						
Tail pipe attachment	An attachment is provided for the exhaust pipe to hold the tubing						
	and wiring that connects to MEXA-1170 HNDIR and DIU.						

Table 3.1 OBS-1300 and Accessories and their Use	s and their Use	and Accessories	OBS-1300	Table 3.1
--	-----------------	-----------------	-----------------	-----------

3.3 Data Collection Procedure

3.3.1 Great Southwest Parkway

"Great Southwest (GSW) Parkway is a road in the city of Grand Prairie, Texas. The stretch of Great Southwest Parkway under study is from the signalized intersections of GSW and Abram Street to GSW and Fairmont Street. This stretch of road has multiple facets such as a school zone, two railroad crossings, commercial zone and residential neighborhood. It also runs perpendicular to an approach road of I-20 at one signalized intersection. These facets impact the flow of traffic and thereby the traffic volume is unique at each signalized intersection. For example, at the intersection connecting to I-20, the traffic volume is higher compared with the GSW intersections connecting to residential neighborhoods. Also, the school zone lowers the speed limit for a small stretch of GSW from the normal speed limit of 45 mph to 20 mph. A detailed map of the Great Southwest Parkway between the signalized intersections under study is shown in Figure 3.2". (Munishi, 2005)

Figure 3.2 Layout of Great Southwest Parkway between Study Signals (Munshi, 2005)

3.3.2 Data Collection Procedure

The OBS-1300 and its accessories were installed in the Chevy Astro van. Runs were made to ensure that the system worked properly and a data check was also conducted. After the pilot runs, detailed data collection began. Runs were made for three different traffic conditions:

- 1. AM Peak 7:00 to 8:30 AM
- 2. Off-Peak 8:30 to 11:00 AM and 4:00 to 4:30 PM
- 3. PM Peak 4:30 to 6:30 PM

"The peak hours were determined by Kimley-Horn and Associates Inc. from the traffic count data. These runs were made before and after signal retiming. The signal retiming was implemented by Kimley-Horn Associates Inc., a consulting firm hired by the North Central Texas Council of Governments. The before signal retiming runs were made in December and January, which are considered to be winter months, and the after signal retiming runs were made in April and May, which are spring months." (Munshi, 2005)

In her research Ms. Munshi assumed that signal synchronization and retiming reduce vehicular emissions, so in the present research we have considered emission factors for before signal synchronization to model a worst-case scenario. The emission factor data used from Ms. Munshi's research is shown in table 3.2.

		AM		PM
	Overall	Peak	Off Peak	Peak
Max. EF (g/vmt)	2.02	1.22	2.02	1.74
Min. EF (g/vmt)	0.36	0.58	0.58	0.77
Avg. EF (g/vmt)	1.08	0.81	0.78	1.30

Table 3.2 Emission Factor (EF) Summary

3.4 Computer Estimation of NOx Concentrations

The computer modeling process is preformed in two parts:

- 1. Creation of pollutant concentration data base using Caline4 software.
- Post processing of output from Caline4→ Creation of pollution concentration distribution maps using ESRI ArcGIS 9.0.

To perform Task 1, the software used was CalroadView designed by Lakes Environmental Inc. The reason for using CalroadView over the free version of Caline4 is the GUI provided by Calroadview and NO₂ modeling ability. In this section whenever and where ever Caline4 is mentioned, CalroadView software is meant.

In order to determine worst-case ambient concentrations, the following assumption was made:

Max. Ambient Concentration = Function (Max. Emission Factor, Worst-Case Meteorology) (3.1)

The flow chart shown in Fig. 3.3 explains how, the above assumption was incorporated in order to obtain pollution concentration using Caline4.

Figure 3.3 Flow Chart for Caline4 Runs

Caline4 is broadly divided into five parts.

- 1. Job options
- 2. Meteorological options
- 3. Output options
- 4. Links
- 5. Receptors

Each of these parts is discussed in greater detail below.

3.4.1 Job Options

Figure 3.4 below shows the job option screen.

🚰 CALRoads View - [C:\Documents and Settings\bhatt\Desktop\thesis\calineanalysis\8hr_greatsouthwest_1_90_10_29_06.clv]	- 🗆 🗙
File Model View Import Export Data Run Output Tools Help	
New Open Print Run Job/Met Link G-Link Receptor Grid Patterns	Help
Model: CALINE4 CAL3QHC CAL3QHCR Units:	vleters
Job Options -4000 -3000 -2000 1000 2000 3000 4000 Met Options	0.17
Grid Receptors (1080)	0.16
Job Title: greatsouthwest Pollutant Type: NO2 Pollutant Name: Ntrogen Dioxide	0.14
Run Type C Standard (1 Hour) C Warst Case Wind Apple (1 Hour) Averaging Time	-0.13
C Multi-Run (8-Hour) C Worst-Case Vinitia Angle (1-Hour) C Multi-Run (8-Hour) C Multi-Run (8-Hour) Run Title: gr8southwest C	0.12
Surface Roughness Length C Rural (10 cm) C Suburban (100 cm) C Other (Specify) 100 [cm] Additional Values	0.10
Job Parameters Settling Velocity: 0 [cm/s] Attitude above Sea Level: 177.85 [m]	0.09
Deposition Velocity: 0 [cm/s]	- 0.08
Help Servicus Next S Cancel QK	- 0.07
	0.05
🏄 Start 📃 result_1hr_2 📓 Book1 🖉 greatsouthwe 🗑 CHAPTER 3 🗑 Methodology 🗑 caine4 presa 👹 CALRoads Vi 🗁 thesis 🤘	10:21 PM

Fig. 3.4 The Job Options Screen

The following items are defined as job options:

- 1. Run Information
 - Job title (optional)
 - Pollutant Type

Select one from CO, PM, NO₂, Inert Gases (such as SF₆)

- 2. Run Type
 - Standard Calculates 1-hour average NO₂ concentrations at the receptors.
 The user must input a wind direction on the Run Conditions Screen.
 - Multi-Run Calculates 8-hour average NO₂ concentrations at the receptors. The user must input wind angles for each hour.
 - Worst-case wind angle Calculates 1-hour average NO₂ concentrations at the receptors. The model selects the wind angles that produce the highest NO₂ concentrations at each of the receptors. This is the most appropriate choice for most users.
 - Multi-Run/Worst-Case hybrid Calculates 8-hour average NO₂ concentrations at the receptors. The model selects the wind angles that produce the highest NO₂ concentrations at each of the receptors.
- Surface Roughness Length This is a measure of the amount of local air turbulence that affects the spread of the plune. There are four radio buttons for quick selections :
 - Rural: Roughness Coefficient = 10 cm
 - Suburban: Roughness Coefficient = 100 cm
 - Central Business District: Roughness Coefficient = 400 cm
 - Other (see Table 3.3 below)

Roughness	
Coefficient	Landscape
(cm)	Туре
.002	Sea, paved areas, snow-covered flat plain, tide flat, smooth desert
.5	Beaches, pack ice, morass, snow-covered fields
3	Grass prairie or farm fields, tundra, airports, heather
10	Cultivated areas with low crops and occasional obstacles (such as bushes)
25	High crops, crops with varied height, scattered obstacles (such as trees or
	hedgerows), vineyards
50	Mixed far fields and forest clumps, orchards, scattered buildings
100	Regular coverage with large obstacles, open spaces roughly equal to obstacle
	heights, suburban houses, villages, mature forests
≥ 200	Centers of large towns or cities, irregular forests with scattered clearings.

Table 3.3 Surface Roughness Length

4. Job Parameters

- Settling Velocity This is the rate at which a particle falls with respect to its immediate surroundings. It is the actual physical velocity of the particle in the downward direction.
- Deposition Velocity- This is a measure of the rate at which a pollutant can be absorbed/adsorbed by a surface.
- Altitude above Sea Level This gives the site altitude for the run. This data was taken from OBS 1300 data collection. The mean of all values for all runs is taken as input.

The following is the summary of job option inputs for this research.

Field Name	Value	Comments
		Comments
Job Title	Great Southwest	
Pollutant Type	NO ₂	
Run Type	Worst-case Wind Angle	1-hour time average
	• Worst-case Wind Angle	8 hr time average
	Multi Run	
Surface Roughness	100 cm	Suburban
Settling Velocity	0 cm/s	NO_2 is a gas which does not
		have settling velocity
Deposition	0 cm/s	Conservative Assumption
Velocity		
Altitude above sea	177.85 m	From OBS -1300 data
level		

Table 3.4 Summary of Input for Job Options

3.4.2 Meteorological Options

Figure 3.5 below shows the Meteorological Options screen.

EALRoads View - [C:\Docur	ment	ts and Data	l Settings\l Run_Outr	ohatt\Desktop\th	esis\calin	eanalysis\8l	nr_greatsou	thwest_1_9	0_10_29_0	6.clv]					<u>_ ×</u>
New Open Print	F	Run	Job/Met	Link G-Link	ີ່ <mark>ໄ</mark> ດີ2 Receptor	Grid	ETS.								2 Help
Model: CALINE4 CAL3QH	нс	CAL	BQHCR										Units:	N	leters
Job Options		/	3 🗱 🗍	-4000 - ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ	-300) -2000 	-1000 		1000 	2000	3000	4000		udd	
Links (0)	-	Opt	ions		1	1				A	×				0.17
H-G G-Links (13)	-	+	odel: CALI	NE4 CAL3QHC	CAL3QH	ICR		h	AET OPTIONS		Mizard				
🗄 🚖 Grid Receptors (1080)		≣ Jol	Options M	let Options Output (Options										-0.16
			eteorological	Parameters	64	Hour 1	Hour 2	Hour 3	Hour 4	Hour 5	Hour				
			Vind Speer	d [m/s]		3.6011	2.0578	2.0578	2.0578	2.5722	1			-	0.14
		-	Atmospheri	ic Stability Class		E (5)	F (6)	F (6)	F (6)	F (6)					
			Mixing Heig	ht [m]		290.6	44	44	44	44					0.13
			Wind Direct	ion Std. Deviation [de	:g]	15.87	15.87	15.87	15.87	15.87					0.13
			Ambient Te	mperature [deg C]		18.5	17.4	16.8	15.2	14.6					
	1		O3 Backgro	ound Concentration [p	opm]	0.112	0.112	0.112	0.112	0.112	(0.12
			NO Backgro	ound Concentration [opm]	0.31	0.31	0.31	0.31	0.31					
		-	NO2 Backg	round Concentration	(ppm)	0.05	0.05	0.05	0.05	0.05					0.10
		ľ	NO2 Photor	ysis Rate Constant		0.08	0.08	0.08	0.08	0.08					
	•	Ŀ									▶				-0.09
			Clear <u>A</u> ll	Copy Column	🔒 Past	e Column									0.08
			Help				Previous	Next 📎	Canc	el 🤇	<u>x</u>				0.07
		T		-								-			
		1		-										ours	-0.05
				1										Conto	0.05
		- 6	+												5.05
		_		10	1	-	1.0		11.000				_		
🍠 Start 🛛 🙀 result_1hr_2 - W	. 2	X 3 M	licrosoft Exce	🛛 🕶 🚾 🛛 CHAPTER 3	- Mic	💌 🛾 Methodolo	gy Mi 🛛 🕅	caline4 pres	antat 🛛 📥	CALRoads	View	🗀 thesis		**	3:53 PM

Fig. 3.5 Meteorological Option Screen

As shown in equation 3.1, meteorology is a key parameter in determining ambient pollutant concentrations. Thus it is very essential to consider 3 to 5 years meteorological data on an hourly basis. Caline4, however, does not have ability to process hourly meteorological data. In order to derive worst-case meteorology, 'Cal3hcqr' (intersection dispersion modeling software in CALROADS family, which has the ability to handle hourly meteorological data) was run with a unit emission factor for carbon monoxide (CO). The five meteorological conditions giving the highest CO concentrations were selected for years 1984, 1987, 1988, 1989, and 1990. The meteorological data was taken from the www.weblakes.com; the upper air data was not available for 1986 and CAL3HCQR was unable to process 1985 data, so these years were skipped. From these five years of data analyzed, the 10 worst-cases for time average 1-hour and 5 worst-cases for time average 8-hour were selected for modeling in Caline4. In order to do so, the following assumptions were made:

- Meteorological conditions creating the worst-case concentration for an intersection give the same effects for a segment.
- Meteorological conditions creating the worst-case concentration for CO create the same effects for NO₂.

These should be reasonable assumptions.

The meteorological files obtained from www.weblakes.com were not in a format which could be input into the model. PCRAMMET is a meteorological preprocessor used in the Cal3qhcr model. Rammet View, the Lakes Environmental interface for PCRAMMET, was used to preprocess the data for Cal3qhcr. The operations performed by Rammet View are:

- Calculation of hourly values for atmospheric stability from meteorological surface observations, and
- Interpolating the twice daily mixing heights to hourly values.

The inputs to Rammet View include an hourly surface data file and a mixing height data file. The hourly file and mixing height data file were obtained from the Lakes website in the SCRAM (MET 144) file format.

The meteorological stations chosen were Stephenville (upper air) and Dallas Fort Worth International Airport (surface, station number 03927). The default ASCII format was chosen for the files, to obtain a sequential hourly file. The anemometer height was 22 ft for upper air and the option to use the default values for the wind speed categories was chosen. An example of the Rammet output file with the various meteorological parameters is illustrated in Table 3.5. Table 3.6 and Table 3.7 summarize the worst-case meteorology for 1 -hour and 8-hour time averages, respectively.

Year	Month	Day	Hour	Random Flow Vector	Wind Speed (m/s)	Ambient Temperature (K)	Stability Category	Rural Mixing Height (m)	Urban Mixing Height (m)
88	1	1	1	171	5.14	272	5	50	89

Table 3.5 Rammet Output File

				Wind	Amb.		Rural Mixing	
				Speed	Temp	Stability	Height	Urban Mixing
Year	Month	Day	Hour	(m/s)	(K)	Class	(m)	Ht.(m)
84	1	8	7	1.54	275.9	7	834.5	43
84	2	3	24	1.54	282	7	1432.9	61
84	3	3	19	5.66	294.3	4	998	998
84	3	28	4	12.35	282	4	1972.8	1972.8
87	4	17	2	1.54	289.8	7	1959.6	49
87	12	10	2	1.54	279.8	7	1115	45
87	12	29	21	1.03	272	7	660	437
88	6	12	5	2.57	289.3	6	1510.2	112
88	7	23	5	3.09	294.3	6	2253.1	82
88	9	11	24	7.20	301.5	4	1910.9	1910.9
88	11	14	5	6.69	291.5	4	1102.4	1102.4
89	3	13	4	5.14	287.6	5	953.5	103
89	4	17	2	6.17	290.9	4	828.3	828.3
89	12	10	2	6.17	281.5	4	1030.5	1030.5
89	12	29	23	6.17	279.8	4	377.6	377.6
90	1	10	2	2.06	279.3	6	835.4	38
90	2	1	1	1.03	285.9	4	503.2	503.2
90	2	2	1	2.57	283.2	6	778.1	54
90	12	14	7	1.54	281.5	4	421.8	421.8

Table 3.6 Worst-Case Meteorology for 1-Hour Time Average

Table 3.7 Worst-Case Meteorology for 8-Hour Time Average

				Wind	Amb.		Rural Mixing	
				Speed	Тетр	Stability	Height	Urban mixing
Year	Month	Day	Hour	(m/s)	(K)	Class	(m)	Ht. (m)
84	2	17	7	1.03	272	7	660	437
84	9	21	4	3.09	293.7	5	1048.8	674
84	10	11	10	5.14	296.5	3	198	536.4
84	11	13	7	2.06	279.3	6	1211.1	142
84	11	13	8	1.5	280.9	5	169	291.1
87	1	28	4	2.57	280.9	6	924.4	36
87	4	4	4	3.09	277.6	6	1823.5	114
87	9	2	23	2.57	296.5	6	1815.3	378.3
87	11	3	8	0	287.6	5	219.5	267.4
87	12	4	21	2.57	285.9	6	926.8	769.7
88	3	5	24	3.09	279.8	6	925.1	50
88	5	27	7	1.54	290.4	4	347.2	418.4
88	6	2	23	4.1155	293.2	4	426.7	426.7
88	9	12	1	7.72	300.4	4	1872.9	1872.9

88	10	11	6	4.63	286.5	5	1186.3	93
89	1	28	4	5.14	284.3	4	215.3	215.3
89	6	21	11	5.69	304.8	3	1224.3	1299.7
89	9	2	23	3.61	303.7	5	2249	577.9
89	11	3	8	2.57	275.9	5	192.4	215
89	11	21	11	4.12	296.5	3	738.6	778.4
90	2	24	23	3.09	284.3	6	1830.9	342.8
90	2	25	2	3.61	283.2	5	1865.6	40
90	10	29	6	2.57	285.4	6	1624.9	44

Table 3.7 - continued

The following parameters are defined as meteorological inputs:

1. Wind Speed (m/s)

2. Atmospheric Stability class – This is a measure of the turbulence of the atmosphere and defined by numbers 1-7 (1 most unstable and 7 most stable)

3. Mixing Height – It is defined as the altitude to which thermal turbulence occurs due to solar radiation. Mixing height is a cap to vertical mixing.

4. Pollutant Background Concentration

Maritime tropical wind blows most frequently from the south in Texas (Arya, 1999) so Arlington Municipal Airport (C61) http://www.tnrcc.state.tx.us serves as the best station for background concentrations for Great Southwest Parkway. Table 3.8 summarizes data obtained from this station. This station provides data as an hourly average and average, maximum, minimum, and standard deviation of 24 hours of a day. Since Caline4 can handle only one value, average, maximum, minimum, and standard deviation of 24 hours from Jan-04 to May-05 were considered and their average, maximum and minimum values are shown in Table 3.8. From this station pollutant background concentrations for Great Southwest, wind speed, and wind direction standard deviation were taken. After various trials, it was concluded that the

maximum background concentration and minimum standard deviation of wind angle produce the maximum concentration at receptors.

			5								
V	Vind Di	ection (Degrees	5)	Ozone (ppm)						
Obse	rved fro	m Jan-0	4 to Ma	ıy-05	Observed from Jan-04 to May-05						
	Max.	Avg.	Min.	Stdev.		Max.	Avg.	Min.	Stdev.		
Max.	22.0	18.5	15.9	1.9	Max.	112	67.6	46.0	17.0		
Avg.	10.4	7.90	5.67	1.43	Avg.	35.1	24.3	14.3	7.01		
Min.	2.78	1.30	0.77	0.62	Min. 1.00 0.41 0.00						
	N	IO (ppm)			N	IO ₂ (ppr	n)			
Obse	rved fro	m Jan-0	4 to Ma	ıy-05	Observed from Jan-04 to May-05						
	Max.	Avg.	Min.	Stdev.		Max.	Avg.	Min.	Stdev.		
Max.	309.5	138.2	37.2	71.8	Max.	18.3	8.54				
Avg.	vg. 25.1 17.3 7.14 6.18 Avg. 15.1 10.9 5.77							5.77	3.03		
Min.	2.50	1.20	0.00	0.76	Min.	2.60	1.17	0.00	0.66		

Table 3.8 Summary of Meteorological Data (Hourly Averages)

3.4.3 Output Options

This option enables user to define link and receptor nomenclature. By default the system assigns capital alphabet letters to the links and numbers to the receptors. This pattern was maintained in this research. Fig. 3.6 below shows the screen of output options.

Fig. 3.6 The Output Options Screen

3.4.4 Link Options

1. Link Geometry

The roadway segment of the Great Southwest Parkway under consideration was divided into 13 segments based upon the signalized intersections. The longitude and latitude data of every signalized intersection was taken from the Transportation Department of the North Central Texas Council of Governments (NCTCOG); this data was converted into an X-Y coordinate system, which is Caline4 compatible. This information is illustrated in Table 3.9. Caline4 has the ability to identify various kinds of

link types, as discussed in Chapter 2. In the present research, all links were considered 'at grade'.

2. Link Activity

<u>Traffic Volume</u>: The hourly traffic volume anticipated to travel on each link, in units of vehicles per hour. If a multi-run scenario is selected, traffic volume must be defined for 8 hours. This data was obtained from NCTCOG. The maximum traffic volume per hour was 1428 on Great Southwest at the Bardin Street intersection. The maximum was used as a conservative assumption to model the worst-case scenario.

<u>Emission Factor</u>: The weighted average emission rate of the local vehicle fleet, expressed in terms of grams per mile per vehicle. The value used was 2.02 gram per vehicle mile traveled, which was the overall maximum from the on-road data collection, as discussed in Section 3.3.

					After Settin at (g First links 0,0)
Longitude (Degrees)	Latitude (Degrees)	Radian Conversion of Latitude	X coordinate (Meters)	Y coordinate (Meters)	X coordinate (Meters)	Y coordinate (Meters)
97.0	32.7	0.571	93368	3633909	0.00	0
97.0	32.7	0.571	93371	3633596	3.00	-313
97.0	32.7	0.571	93379	3632791	10.6	-1118
97.0	32.7	0.571	93386	3631983	18.2	-1926
97.0	32.7	0.571	93395	3631004	27.4	-2905
97.0	32.7	0.571	93401	3630374	33.4	-3535
97.0	32.7	0.571	93417	3628743	48.7	-5166
97.0	32.7	0.570	93424	3627928	56.4	-5981
97.0	32.7	0.570	93430	3627374	61.6	-6535
97.0	32.7	0.570	93431	3627237	62.9	-6672
97.0	32.7	0.570	93434	3626909	66.0	-7000
97.0	32.7	0.570	93437	3626632	68.6	-7277
97.0	32.7	0.570	93443	3625908	75.4	-8001
97.0	32.7	0.570	93447	3625577	78.6	-8332

Table 3.9 Link Geometry

3.4.5 Receptor Options

Grid receptors were used to define receptor locations 1080 receptors were defined with longitudinal spacing of 500 m and lateral spacing of 5 m. The origin of the grid was set at the southwest corner with coordinates (-150,-8300).

3.5 Post-Processing of Output in GIS

With all above input, Caline4 runs were conducted and no exceedances were observed; therefore vehicle volume was increased to see at what traffic volume an exceedance occurs at a buffer width of 20 feet. With this data contours were generated in ArcGIS as follows:

- 1. Output from Caline4 was saved in .rtf format.
- 2. Data from the .rtf file was then imported in to a spreadsheet.

- The spreadsheet was saved in .csv format, since .xls format is not compatible with M.S. Access.
- 4. The .csv was then converted into M.S. Access data base.
- 5. Using the entire data base a shape file was created using ArcCatalog. The set of the data base and shape file were jointly known as 'personal geodata base'.
- 6. Using ArcMap and ArcSeen, various maps were created (see Chapter 4).

CHAPTER 4

RESULTS AND DISCUSSION

4.1 Overview

4.1.1 Introduction

As discussed in Chapter 3, NO_x emissions data was collected on Great Southwest Parkway. The emissions data were used as an input to Caline4. This chapter presents dispersion modeling results.

4.1.2 Data Interpretation and Emission Factor Calculation

Using various variables mentioned in Table 4.1, Munshi et al. developed a database and calculated the emission factor for NO_X for the Great Southwest Parkway corridor for every run. Table 4.2 shows the typical summary sheet developed by the research team and Table 4.3 shows the summary of emission factors.

1. Date and time	2. NO _x concentration (ppm)
3. Air to Fuel Ratio (AFR)	4. Exhaust flow rate (L/min)
5. Exhaust Temperature (°C)	6. Exhaust Pressure (kPa)
7. Ambient Temperature (°C)	8. Ambient Pressure (kPa)
9. Humidity (%)	10. Velocity (km/hour)
11. Latitude (degree)	12. Longitude (degree)
13. Altitude (m)	14. GPS Velocity (km/hour)
15. North/South	16. East/West
17. No of Satellites	

Table 4.1 OBS-1300 Parameters

(Munshi, 2005)

Date:	11/16/2	004				
	A	M	PN	Л		
Driver:	Vvet	Vvethavva				
2	, je				1	
		AM	Off-			
		Peak	Peak			
No of Runs in North		2	3			
No of Runs in South		2	3			
Trip Duration		3054.00	4185.00			
AM Peak Run	N	S	Ν	S		
Parameters	Run1	Run2	Run3	Run4		
Trip Duration (seconds)	686.00	768.00	776.00	824.00		
Total Speed (miles/hour)	28.24	25.24	24.96	23.42		
Control Delay (seconds)	133.00	140.00	197.00	198.00		
Total No. of Stops per Run	5.00	6.00	6.00	7.00		
Concentration of NOx						
(g/mile)	0.88	0.62	0.88	0.66		
					-	
Off-Peak Run	N	S	Ν	S	Ν	S
Parameters	Run1	Run2	Run3	Run4	Run5	Run6
Trip Duration (seconds)	686.00	686.00	755.00	686.00	686.00	686.00
Total Speed (miles/hour)	30.20	35.31	25.53	31.48	32.26	30.98
Control Delay (seconds)	110.00	53.00	177.00	111.00	77.00	66.00
Total No. of Stops per Run	3.00	2.00	6.00	1.00	4.00	6.00
Concentration of NOx						
(g/mile)	0.95	0.62	0.69	0.62	0.75	0.68

Table 4.2 Typical Summary Data Sheet for Each Day

(Munshi, 2005)

Tweit ne oun	indi j el El	mooreming		
Emission Factor (EF),		A.M.	Off-	P.M.
gram/mile	Overall	peak	peak	peak
Max. EF	2.02	1.22	2.02	1.74
Min. EF	0.36	0.58	0.58	0.77
Average EF	1.08	0.81	0.78	1.30

Table 4.3 Summary of Emission Factors

This research aims to model the worst-case concentration; hence the maximum emission factor from all runs was used. This emission factor is associated with the Northbound Off-Peak run taken on November 14th, 2004.

4.2 Determination of the Worst-Case Meteorology

In order to determine worst-case meteorology, CAL3QHCR was run using five years meteorological data (see Chapter 3). Worst-case meteorology was determined based on concentration of CO. To identify the 10 worst-cases of meteorology for 1-hour time average, all results of CAL3QHCR were observed. The top 5 worst-cases were extracted from each year (first 3 if CO concentration was considerably low with respect to CO concentration of other years). This exercise is summarized in Table 4.4. The top 10 worst-cases of meteorology derived from Table 4.4 are summarized in Table 4.5. A similar procedure was repeated for 8-hour time average, and results are summarized in Tables 4.6 and 4.7. Table 4.8 and Figure 4.3 break out worst-case meteorology occurrences according to season.

					Wind	Ambient				
Serial					Speed	Temp	Stability	Rural Mixing	Urban Mixing	Concentrations
Number	Year	Month	Day	Hour	(m/sec)	(K)	Class	Ht. (m)	Ht. (m)	(ppm)
1	84	1	8	7	1.54	275.9	7	835	43	30.6
2	84	2	3	24	1.54	282	7	1433	61	27.4
3	84	3	3	19	5.66	294.3	4	998	998	23.8
4	84	3	28	4	12.3	282	4	1973	1972.8	26.1
5	87	4	17	2	1.54	289.8	7	1960	49	29
6	87	12	10	2	1.54	279.8	7	1115	45	31.6
7	87	12	29	21	1.03	272	7	660	437	27.2
8	88	6	12	5	2.57	289.3	6	1510	112	22.6
9	88	7	23	5	3.09	294.3	6	2253	82	26.5
10	88	9	11	24	7.20	301.5	4	1911	1910.9	27.7
11	88	11	14	5	6.69	291.5	4	1102	1102.4	26.7
12	89	3	13	4	5.14	287.6	5	954	103	29
13	89	4	17	2	6.17	290.9	4	828	828.3	26.4
14	89	12	10	2	6.17	281.5	4	1031	1030.5	31.6
15	89	12	29	23	6.17	279.8	4	378	377.6	27.2
16	90	1	10	2	2.06	279.3	6	835	38	27.6
17	90	2	1	1	1.03	285.9	4	503	503.2	27
18	90	2	2	1	2.57	283.2	6	778	54	25.9
19	90	10	28	24	2.06	290.4	6	1620	44	25.5
20	90	12	14	7	1.54	281.5	4	422	421.8	20.6

Table 4.4 Meteorological Conditions Giving Highest Concentrations for 1 Hour Time Average

			•		Wind	Ambient		Rural	Urban	
Order					Speed	Temp	Stability	Mixing	Mixing	Concentrations
Number	Year	Month	Day	Hour	(m/sec)	(K)	Class	Ht (m)	Ht (m)	(ppm)
1	87	12	10	2	1.54	279.8	7	1115	45	31.6
2	89	12	10	2	6.17	281.5	4	1031	1031	31.6
3	84	1	8	7	1.54	275.9	7	834.5	43	30.6
4	89	3	13	4	5.14	287.6	5	953.5	103	29
5	87	4	17	2	1.54	289.8	7	1960	49	29
6	88	9	11	24	7.20	301.5	4	1911	1911	27.7
7	90	1	10	2	2.06	279.3	6	835.4	38	27.6
8	84	2	3	24	1.54	282	7	1433	61	27.4
9	87	12	29	21	1.03	272	7	660	437	27.2
10	89	12	29	23	6.17	279.8	4	378	378	27.2

 Table 4.5 Top Ten Worst-Case Meteorological Conditions for 1 Hour Time Average

Fig. 4.1. Comparison of Rural and Urban Mixing Heights for 1-Hour Time Average

55

Serial Number	Year	Month	Day	Hour	Wind Speed (m/sec)	Ambient Temp (K)	Stability Class	Rural Mixing Ht. (m)	Urban Mixing Ht. (m)	Concentrations (ppm)
1	84	2	17	7	1.03	272	7	660	437	13.1
2	84	9	21	4	3.09	293.7	5	1049	674	12.6
3	84	10	11	10	5.14	296.5	3	198	536.4	15.2
4	84	11	13	7	2.06	279.3	6	1211	142	15.0
5	84	11	13	8	1.54	280.9	5	169	291.1	13.6
6	87	1	28	4	2.57	280.9	6	924	36	12.3
7	87	4	4	4	3.09	277.6	6	1824	114	9.3
8	87	9	2	23	2.57	296.5	6	1815	378.3	11.2
9	87	11	3	8	0.00	287.6	5	220	267.4	13.1
10	87	12	4	21	2.57	285.9	6	927	769.7	9.4
11	88	3	5	24	3.09	279.8	6	925	50	13.3
12	88	5	27	7	1.54	290.4	4	347	418.4	11.1
13	88	6	2	23	4.12	293.2	4	427	426.7	12.2
14	88	9	12	1	7.72	300.4	4	1873	1872.9	13.3
15	88	10	11	6	4.63	286.5	5	1186	93	12.8
16	89	1	28	4	5.14	284.3	4	215	215.3	12.3
17	89	6	21	11	5.66	304.8	3	1224	1299.7	10.6
18	89	9	2	23	3.60	303.7	5	2249	577.9	11.3
19	89	11	3	8	2.57	275.9	5	192	215	9.2
20	89	11	21	11	4.12	296.5	3	739	778.4	9.7
21	90	2	24	23	3.09	284.3	6	1831	342.8	10.7
22	90	2	25	2	3.60	283.2	5	1866	40	12.5
23	90	10	29	6	2.57	285.4	6	1625	44	17.0

Table 4.6 Meteorological Conditions Giving Highest Concentrations for 8 Hour Time Average.

Order Number	Year	Month	Day	Hour	Wind Speed (m/sec)	Ambient Temp (K)	Stability Class	Rural Mixing Ht (m)	Urban Mixing Ht (m)	Concentrations (ppm)
1	90	10	29	6	2.57	285.4	6	1625	44	17.0
2	84	10	11	10	5.14	296.5	3	198	536.4	15.2
3	84	10	11	10	5.14	296.5	3	198	536.4	15.2
4	84	11	13	8	1.54	280.9	5	169	291.1	13.6
5	84	11	13	7	2.06	279.3	6	1211	142	15.0

Table 4.7 Top Five Worst-case Meteorological Concentrations for 8 Hour Time Average

Fig. 4.2. Comparison of Rural and Urban Mixing Heights for 8-Hour Time Average.

								Frequency	
			1091	1097	1000	1020	1000	of	Total
	Mar. 21- June	March	28	1987	1988	1989	1990	1	Total
		April	20			17		1	
		May			27			1	
Spring	21	June			2,12	21		3	6
	June	June						0	
		July			23			1	
	22 –	August						0	
G	Sept.	G (1	0.1		11,1	2		-	6
Summer	21	September	21	2	2	2		5	6
		September						0	
	Sept. 22 – Dec.	October	11		11		12,2 8,29	5	
		November	13	3	14	3,21		5	
Fall	21	December		4,10		8,10	14	5	15
		December				29		1	
	Dec.	January	8			28	10	3	
	22-						1,2,2		
	Mar.	February	3,17				4,25	6	
Winter	20	March	3	4,17	5	13		5	15

Table 4.8 Worst-Case Meteorological Occurrences by Season

(Note:- Numbers in columns headed 1984-1990 show dates of occurrence)

- 4.2.1 Observations/Discussion of Table 4.3 Table 4.6 and Figures 4.1 & 4.2
 - From Table 4.3, 16 out of 20 cases of worst-case meteorology occurred between mid-night to early morning 7 a.m. (hours 24 to 7). Only 3 cases of worst-case meteorology occurred during rush hours (hours 7 to 17). During the night, traffic volumes are generally lower than during the day, and lower than volumes used as Caline4 inputs. Thus, pairing worst-case meteorology (which occurs from hours
24 to 7) with worst-case emissions (which occurs from hours 7 to 17) was a conservative assumption since the two are not likely to occur at the same time.

- Worst-case concentration for 8 hour time average in Cal3qhr indicates concentration at the end of the 8th hour. From Table 4.6, 13 out of 23 worst-case meteorological occurrences range from mid night to early morning (7 a.m.).
- The higher the turbulence in the atmosphere, the lower is the pollutant concentration in atmosphere due to higher mixing/dispersion. Temperature gradient causes thermal turbulence and horizontal component of wind velocity causes mechanical turbulence in atmosphere. Out of the 43 cases of worst-case meteorology (20 from Table 4.3 and 23 from Table 4.5), only 4 cases have a wind velocity greater than or equal to 7 m/s; most wind speeds vary between 1 3 m/s, both inclusive. Out of the 43 cases, only 2 cases have temperatures greater than 25° C (77° F), and the majority of cases have temperature between -2 13°C (35.6° F 55.4°F). Warmer temperatures are often associated with solar heating of the ground surface, which generates temperature gradients that cause instability and thermal turbulence. Hence we can say that conditions with lower wind speed and low temperatures favor low mechanical and thermal turbulence.
- Stability class is a measure of atmospheric turbulence. As discussed earlier, conditions are favoring low mechanical and thermal turbulence, so stability class varies form 4 (Neutral) to 7 (extremely stable). The most prevailing stability class is 7 (5 cases out of 10). However, one outlier observation is the 2nd from Table 4.6, which has wind speed of nearly 5 m/s, temperature more than 20°C and

urban mixing height higher than rural mixing height (mixing height is discussed later in this section). This may explained by the argument that the worst-case wind angle is causing the higher concentration rather than simply meteorology.

Mixing height is defined as the altitude to which thermal mixing occurs due to solar heating of the ground. In other words, it defines the vertical limit of mixing. The lower the mixing height, the higher is the possibility of a pollutant being trapped, causing a higher concentration of the pollutant. An interesting observation is made that in majority for cases, urban mixing height is much lower than rural mixing height (6 out of 10 cases in Table 4.4 and 3 out of 5 in Table 4.7). Comparisons are made between urban and rural mixing heights in Figures 4.1 and 4.2. Land is much more open and uncovered in rural areas, while asphalt and concrete roads cover the majority of lands in urban areas. Concrete and asphalt have lower heat absorbing capacities than open land/soil, which means they liberate infrared radiation more quickly at night. This means the Earth's surface could be cooler than the overlying air, which would lead to a radiation inversion, which could explain the lower mixing height.

Fig 4.3 Frequency of Worst-Case Meteorological Occurrence by Season

4.2.2 Observation/Discussion of Table 4.8 and Figure 4.3

In summer, strong solar radiation heats the ground surface, which causes thermal turbulence in the atmosphere. In summer thermal turbulence typically prevails and the atmosphere remains well mixed. These are favorable conditions for high dispersion and low pollution concentrations. This is the reason why Figure 4.3 shows minimum frequency of worst-case meteorology in summer. Fall and winter have exactly the opposite situation to summer, with stable conditions occurring more frequently; hence, maximum frequencies of worst-cases happened during October to January (i.e. fall to

winter). On-road testing showed that in fall vehicular pollution was higher (the maximum emission factor was observed on November 14, 2004). All the rush hour worst-case meteorology for 1-hour time average were observed in fall and winter (November, December and January) except, one in September, which was during fall.

4.3 Caline4 Analysis

Worst-case meteorological data given in Table 4.5 for 1-hour time average and Table 4.7 for 8-hour time average were used as meteorological inputs (see Chapter 3 for more information on input to Caline4). Table 4.9 shows the Caline4 output of NO₂ concentrations at 90 receptors. Appendix A shows NO₂ concentrations in ppm at all 1080 receptors in the receptor grid. Table 4.10 summarizes the maximum concentration and its receptor location for all 10 runs for 1-hour time average and 5 runs for 8-hour time average.

			PRED
		BRG	CONC
REC	REPTOR	(DEG)	(ppm)
1	G1_1	11	0.07
2	G1_2	11	0.07
3	G1_3	11	0.07
4	G1_4	11	0.07
5	G1_5	11	0.07
6	G1_6	11	0.07
7	G1_7	12	0.07
8	G1_8	12	0.07
9	G1 9	12	0.07

Table 4.9 Caline4 Output – NO₂ Concentrations

		BRG	PRED CONC
REC	REPTOR	(DEG)	(ppm)
46	G1_46	167	0.07
47	G1_47	168	0.07
48	G1_48	168	0.07
49	G1_49	169	0.07
50	G1_50	169	0.07
51	G1_51	170	0.07
52	G1_52	170	0.07
53	G1_53	170	0.07
54	G1_54	170	0.07

Table 4.9 - continued

10	G1_10	167	0.07
11	G1_11	168	0.07
12	G1_12	168	0.07
13	G1_13	168	0.07
14	G1_14	169	0.07
15	G1_15	169	0.07
16	G1_16	169	0.07
17	G1_17	170	0.07
18	G1_18	170	0.07
19	G1_19	11	0.07
20	G1_20	11	0.07
21	G1_21	11	0.07
22	G1_22	11	0.07
23	G1_23	11	0.07
24	G1_24	11	0.07
25	G1_25	12	0.07
26	G1_26	12	0.07
27	G1_27	12	0.07
28	G1_28	167	0.07
29	G1_29	168	0.07
30	G1_30	168	0.07
31	G1_31	169	0.07
32	G1_32	169	0.07
33	G1_33	169	0.07
34	G1_34	170	0.07
35	G1_35	170	0.07
36	G1_36	170	0.07
37	G1_37	10	0.07
38	G1_38	10	0.07
39	G1_39	11	0.07
40	G1_40	11	0.07
41	G1_41	11	0.07
42	G1_42	11	0.07
43	G1_43	11	0.07
44	G1_44	12	0.07
45	G1_45	12	0.07

55	G1_55	10	0.07
56	G1_56	10	0.07
57	G1_57	11	0.07
58	G1_58	11	0.07
59	G1_59	11	0.07
60	G1_60	11	0.07
61	G1_61	11	0.07
62	G1_62	11	0.07
63	G1_63	12	0.07
64	G1_64	168	0.07
65	G1_65	168	0.07
66	G1_66	169	0.07
67	G1_67	169	0.07
68	G1_68	169	0.07
69	G1_69	170	0.07
70	G1_70	170	0.07
71	G1_71	170	0.07
72	G1_72	170	0.07
73	G1_73	10	0.07
74	G1_74	10	0.07
75	G1_75	11	0.07
76	G1_76	11	0.07
77	G1_77	11	0.07
78	G1_78	11	0.07
79	G1_79	11	0.07
80	G1_80	11	0.07
81	G1_81	12	0.07
82	G1_82	168	0.07
83	G1_83	168	0.07
84	G1_84	169	0.07
85	G1_85	169	0.07
86	G1_86	169	0.07
87	G1_87	170	0.07
88	G1_88	170	0.07
89	G1_89	170	0.07
90	G1 90	171	0.07

Where

REC = Record

BRG (DEG) = Worst-case wind angle in degree

PRED CONC (ppm) = Predicted concentration in ppm

	-				
]	Position	
		Max			Exceedance
Run	Run	Conc.	Х	Y	Threshold
No.	Туре	(ppm)	(m)	(m)	(ppm)
1	1 Hour	0.16	0	-300	0.19
2	1 Hour	0.12	0	-800	0.19
3	1 Hour	0.15	0	-300	0.19
4	1 Hour	0.18	5	-300	0.19
5	1 Hour	0.13	5	-1000	0.19
6	1 Hour	0.14	0	-300	0.19
7	1 Hour	0.16	10	-1000	0.19
8	1 Hour	0.16	0	-300	0.19
9	1 Hour	0.12	0	-300	0.19
10	1 Hour	0.15	0	-300	0.19
11	8 Hour	0.17	0	-300	
12	8 Hour	0.17	0	-300	
13	8 Hour	0.15	0	-300	
14	8 Hour	0.15	0	-300]
15	8 Hour	0.15	0	-300	

Table 4.10 Caline4 Output – NO₂ Concentration with Position of Occurrence and Threshold Value

4.3.1 Observations/Discussions of Table 4.10

• As discussed in Chapter 3, the entire roadway was centered at X=0; as expected, most maximum concentrations occurred at X=0 (i.e. centerline). Some variation in position of the maximum concentration was because of the curvilinear profile

of Great Southwest Parkway corridor. Due to worst-case wind angle selection, almost all maximum concentrations occurred at X=0 and Y=-300; this also includes contribution from all individual links.

- The method used for finding worst-case meteorology using Cal3qhcr is valid. The 8-hour concentration of NO_X follows the degree of worseness of meteorology. However, 1-hour time average NO_X concentration does not quite following this pattern, but 1-hour time average is a relatively small averaging period, so we can consider the discrepancy as an exception.
- Calculation of Threshold Value

Hong Kong air quality standards (see Chapter 2) give an air quality health impact threshold 350 μ g/m³ for NOx. The following procedure was adopted to convert this value into ppm.

$$C_{mass} = \frac{1000^*MW^*C_{ppm}^*P}{RT}$$

MW = NOx molecular weight which is 31.6 g/gmole (assuming 90% NO and 10% NO₂)

Cppm = Concentration in units of ppm

P = Ambient Pressure (atm)

T = Ambient Temperature (Kelvin)

R = 0.08206 atm-l/gmol-K

Using the above formula, the 1-hour NOx standard of 350 μ g/m³ was found to equal to 0.19 ppm. No NOx standard was found with an 8-hour averaging time; thus, no 8-hour

value is given in Table 4.10. In Table 4.10, the highest 1-hour concentration is 0.18 ppm; thus, the 0.19 ppm standard is not exceeded.

4.3.2 Finding the Traffic Volume which Exceeds the Threshold limit of 0.19 ppm, Considering 20 Foot Buffer Width

Since there was not any exceedance of the 0.19 ppm 1-hour standard with the current traffic volume, the traffic volume was increased to determine the theoretical level of traffic which would produce an exceedance of the standard 20' from the roadway edge. Twenty feet is a buffer width or setback distance required by some cities in residential and/or commercial areas. A filter strip made up of close-growing grasses or other vegetation used to convey sheet runoff from impervious surfaces. To achieve effective pollution removal from storm water runoff a 20 feet of filter strip is recommended; i.e. 20 foot buffer width (Storm Water Fact Sheets NCTCOG, 1998). Structures must be built a minimum 20 foot from the edge of the pavement.

Three discrete receptors were located at the centerline and on the both sides of the roadway at 20 foot from roadway edge (13.41 m from centerline). The following results were obtained by increasing the traffic volume, with first worst-case meteorological conditions.

Receptor	Location	Concentration in ppm			
	$(x,y) m \downarrow$	5000	10000	21000	20000
	Traffic				
	volume→				
1	(0,-300)	0.21	0.27	0.33	0.38
2	(-13.41,-300)	0.13	0.16	0.18	0.20
3	(13.41,-300)	0.13	0.16	0.18	0.20

Table 4.11 Concentration in ppm as a Function of Traffic Volume

4.3.2.1 Observations/Discussion of Table 4.11

Health effect exceedance first takes place at centerline with traffic volume of 5000 vehicles/hr. Health effect exceedance is observed beyond the buffer width, when the traffic volume reaches 31,000 vehicles/hr, which is not realistic for Great Southwest Parkway. Hence, 20 feet (nearly 6 m) buffer width is adequate to protect human health from NO_X exposure on Great Southwest Parkway. The methodology used was conservative. Emission factor was highest observed in van; however, van is a fairly new vehicle with relatively low emission factor.

4.4 GIS Analysis

CalroadView can plot concentration isopleths; however, to obtain more control over output format, ArcGIS had been chosen to plot dispersion maps. The following maps were developed using ArcGIS 9.0. Figure 4.4 shows the contour map of maximum concentrations of NOx with 1-hour time average. Figure 4.5 shows 3-D NOx distribution for 1-hour time average.

Contours at Location with Maximum Concentration

Fig. 4.4 Contour Map of Maximum 1-hour NO_X

Pollutant Distribution

Fig. 4.5 3-Dimensional NOx Distribution, 1-Hour Time Average

Fig 4.5 was developed using ArcSCENE to generate the 3-D effect. To make the figure aesthetically pleasant, the figure is divided in two zones viz. North zone and South zone. To develop a 3-D effect, a Triangulated Irregular Network was created using surface analysis functionality of ArcGIS in the geostatistical analyst extension. Since contour values are small, it was not possible to make the 3-D effect visible plotting x, y and z to scale; thus z values were increased by a factor of 1000. Figures 4.6 and 4.7 show NOx dispersion in North zone and South zone, respectively. The pollutant concentration is highest at the center and decreases away from the center, following the bell-shaped curve typical of Gaussian dispersion behavior.

Fig. 4.6 NOx Concentration Distribution in North Zone, 1-Hour time Average

Pollutant Distribution in South Zone

Fig. 4.7 NOx Concentration Distribution in South Zone, 1-Hour time Average

Fig. 4.8 NO_X Concentration Frequency Distribution

Figure 4.8 shows a frequency distribution of the maximum 1-hour NOx concentration observed at each of the 1080 receptor. Geostatistical analyst of ArcGIS was used to obtain the distribution. The most frequently observed 1-hour maximum concentrations fall between 0.061 ppm and 0.083 ppm; in fact, over 700 of the 1080 values fall within this range. Figure 4.9 shows the contour map at the intersection of Great Southwest Parkway and Abrams street, superimposed on aerial photograph.

UPPER N Legend contours_1_1hr Contour 0.07 - 0.09 ---- 0.11 - 0.13 - 0.09 - 0.11 - 0.13 - 0.15 0.06 - 0.07 -

Contours at Intersection of Abrams street and Great Southwest Parkway

Fig. 4.9 Contour Map Superimposed with Aerial Photograph

CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

This research aimed to model NOx concentrations and determine a safe buffer width of roadway to protect human health from harmful exposure of NO_X . A number to Caline4 runs were made in order to model NO_X concentration. After making careful observations in Chapter 4, the following conclusions can be drawn.

- A roadway buffer width of 20 feet (nearly 6 m) is adequate to protect human health from NO_X along Great Southwest Pathway, assuming that the van is representative of vehicles on the roadway. This is non-conservative assumption since the van is relatively new and thus a relatively clean vehicle. Every individual with normal health is safe during this exposure. Traffic volumes on the roadway could increase by a factor of 15, and the 20 foot buffer width would still be sufficient to protect human health. The data used for the model were conservative, in that worst-case emission and meteorology were modeled simultaneously; this buffer width would thus likely be valid for any corridor with a similar traffic volume and number of signals.
- Worst-case meteorology for 1-hour time average is most likely to occur during night hours (Table 4.4); these are the hours when traffic tends to be at minimum.

76

Hence, it is highly unlikely that worst-case meteorology and maximum traffic volume could couple together and create maximum pollution concentrations.

- A distinct pattern was observed for worst-case meteorology when divided according to season. Fall and winter showed maximum frequency of worst-case meteorology; spring and summer showing the least. On-road testing showed that in fall vehicular pollution was higher (the maximum emission factor was observed on November 14, 2004). All the rush hour worst-case meteorology for 1-hour time average were observed in months of November, December and January, except one in September.
- The method used for finding worst-case meteorology using Cal3qhcr is valid. The 8-hour concentration of NO_X follows the degree of worseness of meteorology. However, 1-hour time average NO_X concentration does not quite following this pattern, but 1-hour time average is relatively small averaging period, so we can consider the discrepancy as an exception.

5.2 Recommendations for Future Research

- A relationship between vehicular activity and emission factor should be developed. The emission factor will change with increased traffic volume due to increased dispersion parameters due to increased mechanical and thermal turbulence. In the present research to determine safe buffer width, only the traffic volume was increased but the EF was kept constant. This approach contains some error, which may or may not be significant.
- Photolysis rate defines rate of NO₂ generation in atmosphere; this rate depends on solar radiation, which is not constant across the globe. Yet, to our knowledge no research work has been done to find out this constant for Dallas-Fort Worth area. This could be a great aid to all permitting and regulatory agencies to model NO₂ generation in the area of concern.
- A buffer width of 20 feet was sufficient to protect human health from the NO_X exposure given the roadway and vehicle modeled in this research; however, a 20 feet buffer width may not be sufficient to protect against health impacts of other potential pollutants like CO, HC, and SO₂ further research should consider all the pollutants and quantify their combined effect in order to determine safe buffer width.
- A comprehensive modeling effort should take into account all kinds of sources like area, point and line and considering all possible exposure path-ways.

APPENDIX A

SAMPLE CALINE4 OUTPUT

			PRED
		BRG	CONC
REC	REPTOR	(DEG)	(PPM)
1	G1_1	11	0.07
2	G1_2	11	0.07
3	G1_3	11	0.07
4	G1_4	11	0.07
5	G1_5	11	0.07
6	G1_6	11	0.07
7	G1_7	12	0.07
8	G1_8	12	0.07
9	G1_9	12	0.07
10	G1_10	167	0.07
11	G1_11	168	0.07
12	G1_12	168	0.07
13	G1_13	168	0.07
14	G1_14	169	0.07
15	G1_15	169	0.07
16	G1_16	169	0.07
17	G1_17	170	0.07
18	G1_18	170	0.07
19	G1_19	11	0.07
20	G1_20	11	0.07
21	G1_21	11	0.07
22	G1_22	11	0.07
23	G1_23	11	0.07
24	G1_24	11	0.07
25	G1_25	12	0.07
26	G1_26	12	0.07
27	G1_27	12	0.07
28	G1_28	167	0.07
29	G1_29	168	0.07
30	G1_30	168	0.07
31	G1_31	169	0.07
32	G1_32	169	0.07
33	G1_33	169	0.07
34	G1_34	170	0.07
35	G1_35	170	0.07
36	G1_36	170	0.07
37	G1_37	10	0.07
38	G1_38	10	0.07
39	G1_39	11	0.07
40	G1_40	11	0.07
41	G1_41	11	0.07
42	G1_42	11	0.07
43	G1_43	11	0.07
44	G1_44	12	0.07

45	G1_45	12	0.07
46	G1 46	167	0.07
47	G1 47	168	0.07
48	G1 48	168	0.07
49	G1 49	169	0.07
50	G1 50	169	0.07
51	G1 51	170	0.07
52	G1 52	170	0.07
53	G1 53	170	0.07
54	G1 54	170	0.07
55	G1 55	10	0.07
56	G1_55	10	0.07
57	G1_50	10	0.07
57	G1_57	11	0.07
58	G1_58	11	0.07
59			0.07
60	G1_60	11	0.07
61	G1_61	11	0.07
62	G1_62	11	0.07
63	G1_63	12	0.07
64	G1_64	168	0.07
65	G1_65	168	0.07
66	G1_66	169	0.07
67	G1_67	169	0.07
68	G1_68	169	0.07
69	G1_69	170	0.07
70	G1_70	170	0.07
71	G1_71	170	0.07
72	G1_72	170	0.07
73	G1 73	10	0.07
74	G1 74	10	0.07
75	G1 75	11	0.07
76	G1 76	11	0.07
77	G1 77	11	0.07
78	G1 78	11	0.07
79	G1 79	11	0.07
80	G1 80	11	0.07
81	G1 81	12	0.07
82	G1 82	168	0.07
83	G1 83	169	0.07
Q/	G1 94	160	0.07
95	C1 05	160	0.07
00	G1_00	160	0.07
00		170	0.07
<u>8/</u>		170	0.07
88	G1_88	1/0	0.07
89	G1_89	1/0	0.07
90	G1_90	171	0.07
91	G1_91	10	0.07
92	G1_92	10	0.07

93	G1_93	10	0.07
94	G1_94	10	0.07
95	G1_95	11	0.07
96	G1_96	11	0.07
97	G1_97	11	0.07
98	G1_98	11	0.07
99	G1_99	11	0.07
100	G1_100	168	0.07
101	G1_101	168	0.07
102	G1_102	169	0.07
103	G1_103	169	0.07
104	G1_104	170	0.07
105	G1_105	170	0.07
106	G1_106	170	0.07
107	G1_107	170	0.07
108	G1_108	171	0.07
109	G1 109	10	0.07
110	G1 110	10	0.07
111	G1 111	10	0.07
112	G1 112	10	0.07
113	G1 113	11	0.07
114	G1 114	11	0.07
115	G1 115	11	0.07
116	G1 116	11	0.07
117	G1 117	11	0.07
118	G1 118	168	0.07
119	G1 119	169	0.07
120	G1 120	169	0.07
121	G1 121	169	0.07
122	G1 122	170	0.07
123	G1 123	170	0.07
124	G1 124	170	0.07
125	G1 125	170	0.07
126	G1 126	172	0.07
127	G1 127	10	0.07
128	G1 128	10	0.07
129	G1 129	10	0.07
130	G1 130	10	0.07
131	G1 131	10	0.07
132	G1 132	10	0.07
133	G1 133	11	0.07
134	G1 134	11	0.07
135	G1 135	11	0.07
136	G1 136	168	0.07
137	G1 137	160	0.07
132	G1 138	160	0.07
130	G1 120	170	0.07
1/0	G1 140	170	0.07
140	01_140	170	0.07

141	G1_141	170	0.07
142	G1 142	170	0.07
143	G1 143	171	0.07
144	G1_144	172	0.07
145	G1 145	10	0.07
146	G1_146	10	0.07
147	G1_147	10	0.07
148	G1_148	10	0.07
149	G1_149	10	0.07
150	G1_150	10	0.07
151	G1_151	10	0.07
152	G1_152	11	0.07
153	G1_153	11	0.07
154	G1 154	168	0.07
155	G1_155	169	0.07
156	G1_156	169	0.07
157	G1_157	170	0.07
158	G1_158	170	0.07
159	G1_159	170	0.07
160	G1_160	171	0.07
161	G1_161	172	0.07
162	G1_162	172	0.08
163	G1_163	10	0.07
164	G1_164	10	0.07
165	G1_165	10	0.07
166	G1_166	10	0.07
167	G1_167	10	0.07
168	G1_168	10	0.07
169	G1_169	10	0.07
170	G1_170	10	0.07
171	G1_171	11	0.07
172	G1_172	169	0.07
173	G1_173	169	0.07
174	G1_174	169	0.07
175	G1_175	170	0.07
176	G1_176	170	0.07
177	G1_177	170	0.07
178	G1_178	171	0.07
179	G1_179	172	0.08
180	G1_180	172	0.08
181	G1_181	10	0.07
182	G1_182	10	0.07
183	G1_183	10	0.07
184	G1_184	10	0.07
185	G1_185	10	0.07
186	G1_186	10	0.07
187	G1_187	10	0.07
188	G1 188	10	0.07

189	G1_189	10	0.07
190	G1_190	169	0.07
191	G1_191	169	0.07
192	G1_192	170	0.07
193	G1_193	170	0.07
194	G1_194	170	0.07
195	G1_195	171	0.07
196	G1_196	172	0.07
197	G1_197	172	0.08
198	G1_198	173	0.08
199	G1_199	10	0.07
200	G1_200	10	0.07
201	G1_201	10	0.07
202	G1 202	10	0.07
203	G1 203	10	0.07
204	G1_204	10	0.07
205	G1 205	10	0.07
206	G1 206	10	0.07
207	G1 207	10	0.07
208	G1 208	169	0.07
209	G1 209	169	0.07
210	G1 210	170	0.07
211	G1 211	170	0.07
212	G1 212	170	0.07
213	G1 213	172	0.07
214	G1 214	172	0.08
215	G1 215	172	0.08
216	G1 216	173	0.08
217	G1 217	9	0.07
218	G1 218	9	0.07
219	G1 219	10	0.07
220	G1 220	10	0.07
221	G1 221	10	0.07
222	G1 222	10	0.07
223	G1 223	10	0.07
224	G1 224	10	0.07
225	G1 225	10	0.07
226	G1 226	169	0.07
227	G1 227	170	0.07
228	G1 228	170	0.07
229	G1 229	170	0.07
230	G1 230	170	0.07
231	G1 231	172	0.08
232	G1 232	172	0.08
233	G1 233	172	0.08
234	G1 234	173	0.08
235	G1 235	9	0.07
236	G1 236	9	0.07
200	21_200	5	0.01

237	G1_237	9	0.07
238	G1 238	9	0.07
239	G1 239	9	0.07
240	G1 240	10	0.07
241	G1 241	10	0.07
242	G1 242	10	0.07
243	G1 243	10	0.07
244	G1 244	169	0.07
245	G1 245	170	0.07
246	G1 246	170	0.07
240	$G1_{240}$	170	0.07
248	$G1_247$	170	0.07
240	$G1_{240}$	172	0.07
249	G1_249	172	0.00
250	G1_250	172	0.00
251	G1_251	173	0.08
252	G1_252	1/3	0.08
253	<u>G1_253</u>	9	0.07
254	G1_254	9	0.07
255	G1_255	9	0.07
256	G1_256	9	0.07
257	G1_257	9	0.07
258	G1_258	9	0.07
259	G1_259	10	0.07
260	G1_260	10	0.07
261	G1_261	10	0.07
262	G1_262	169	0.07
263	G1_263	170	0.07
264	G1_264	170	0.07
265	G1_265	171	0.07
266	G1_266	172	0.08
267	G1_267	172	0.08
268	G1_268	172	0.08
269	G1_269	173	0.08
270	G1_270	174	0.08
271	G1_271	9	0.07
272	G1_272	9	0.07
273	G1_273	9	0.07
274	G1_274	9	0.07
275	G1_275	9	0.07
276	G1_276	9	0.07
277	G1_277	9	0.07
278	G1 278	9	0.07
279	G1 279	10	0.07
280	G1 280	170	0.07
281	G1 281	170	0.07
282	G1 282	170	0.07
283	G1 283	172	0.07
284	G1 284	172	0.08

285	G1_285	172	0.08
286	G1_286	173	0.08
287	G1_287	173	0.08
288	G1_288	174	0.08
289	G1_289	9	0.07
290	G1_290	9	0.07
291	G1_291	9	0.07
292	G1_292	9	0.07
293	G1_293	9	0.07
294	G1_294	9	0.07
295	G1_295	9	0.07
296	G1 296	9	0.07
297	G1_297	9	0.07
298	G1 298	170	0.07
299	G1 299	170	0.07
300	G1 300	170	0.07
301	G1 301	172	0.08
302	G1 302	172	0.08
303	G1 303	173	0.08
304	G1 304	173	0.08
305	G1 305	173	0.08
306	G1 306	174	0.08
307	G1 307	9	0.07
308	G1 308	9	0.07
309	G1 309	9	0.07
310	G1 310	9	0.07
311	G1 311	9	0.07
312	G1 312	9	0.07
313	G1 313	9	0.07
314	G1 314	9	0.07
315	G1 315	9	0.07
316	G1 316	170	0.07
317	G1 317	170	0.07
318	G1 318	172	0.07
319	G1 319	172	0.08
320	G1 320	172	0.08
321	G1 321	173	0.08
322	G1 322	173	0.08
323	G1 323	173	0.08
324	G1 324	174	0.08
325	G1 325	9	0.07
326	G1 326	9	0.07
327	G1 327	9	0.07
328	G1 328	9	0.07
329	G1 329	9	0.07
330	G1 330	9	0.07
331	G1 331	9	0.07
332	G1 332	9	0.07
002		5	0.01

333	G1_333	9	0.07
334	G1_334	170	0.07
335	G1_335	172	0.07
336	G1_336	172	0.08
337	G1 337	172	0.08
338	G1 338	173	0.08
339	G1 339	173	0.08
340	G1 340	173	0.08
341	G1 341	173	0.08
342	G1_342	175	0.08
343	G1 343	9	0.07
344	G1_344	9	0.07
345	G1_345	9	0.07
346	G1 346	9	0.07
347	G1 347	9	0.07
348	G1_348	9	0.07
349	G1_349	9	0.07
350	G1_350	9	0.07
351	G1 351	9	0.07
352	G1 352	170	0.07
353	G1 353	172	0.08
354	G1 354	172	0.08
355	G1 355	173	0.08
356	G1 356	173	0.08
357	G1 357	173	0.08
358	G1 358	173	0.08
359	G1 359	173	0.08
360	G1 360	175	0.08
361	G1 361	9	0.07
362	G1 362	9	0.07
363	G1 363	9	0.07
364	G1 364	8	0.07
365	G1_365	9	0.07
366	G1_366	9	0.07
367	G1 367	9	0.07
368	G1 368	9	0.07
369	G1 369	9	0.07
370	G1 370	171	0.07
371	G1 371	172	0.08
372	G1 372	172	0.08
373	G1 373	173	0.08
374	G1 374	173	0.08
375	G1 375	173	0.08
376	G1 376	173	0.08
377	G1 377	174	0.08
378	G1 378	175	0.08
379	G1 379	8	0.07
380	G1_380	8	0.07

381	G1_381	8	0.07
382	G1_382	8	0.07
383	G1_383	8	0.07
384	G1_384	8	0.07
385	G1_385	9	0.07
386	G1_386	8	0.07
387	G1_387	9	0.07
388	G1 388	172	0.08
389	G1 389	172	0.08
390	G1 390	173	0.08
391	G1 391	173	0.08
392	G1 392	173	0.08
393	G1 393	173	0.08
394	G1 394	174	0.08
395	G1 395	174	0.09
396	G1 396	176	0.08
397	G1 397	8	0.07
398	G1 398	8	0.07
399	G1 399	7	0.07
400	G1 400	7	0.07
401	G1 401	7	0.07
402	G1 402	7	0.07
403	G1 403	7	0.07
404	G1 404	7	0.07
405	G1 405	7	0.07
406	G1 406	172	0.08
407	G1 407	173	0.08
408	G1 408	173	0.08
409	G1 409	173	0.08
410	G1 410	173	0.08
411	G1 411	173	0.08
412	G1 412	174	0.08
413	G1 413	174	0.09
414	G1 414	176	0.08
415	G1 415	7	0.07
416	G1 416	7	0.07
417	G1 417	7	0.08
418	G1 418	7	0.08
419	G1 419	7	0.08
420	G1 420	7	0.08
421	G1 421	7	0.08
422	G1 422	7	0.08
423	G1 423	7	0.08
424	G1 424	172	0.08
425	G1 425	173	0.08
426	G1 426	173	0.08
427	G1 427	173	0.08
428	G1 428	173	0.08
120			0.00

429	G1 429	174	0.08
430	G1 430	174	0.09
431	G1 431	174	0.09
432	G1 432	359	0.05
433	G1 433	7	0.08
434	G1 434	7	0.08
435	G1 435	7	0.08
436	G1 436	7	0.08
437	G1 437	7	0.08
438	G1 438	7	0.08
439	G1 439	7	0.08
440	G1 440	7	0.08
441	G1 441	7	0.08
442	G1 442	172	0.08
443	G1 443	173	0.08
444	G1 444	173	0.08
445	G1 445	173	0.08
446	G1 446	173	0.08
447	G1 447	174	0.09
448	G1 448	174	0.09
449	G1 449	174	0.09
450	G1 450	359	0.05
451	G1 451	7	0.08
452	G1 452	7	0.08
453	G1 453	7	0.08
454	G1 454	7	0.08
455	G1 455	7	0.08
456	G1 456	7	0.08
457	G1 457	6	0.08
458	G1 458	6	0.08
459	G1 459	6	0.08
460	G1 460	173	0.08
461	G1 461	173	0.08
462	G1 462	173	0.08
463	G1 463	173	0.08
464	G1 464	174	0.09
465	G1 465	174	0.09
466	G1 466	174	0.09
467	G1 467	174	0.09
468	G1 468	359	0.05
469	G1 469	7	0.08
470	G1 470	7	0.08
471	G1 471	7	0.08
472	G1 472	6	0.08
473	G1 473	7	0.08
474	G1 474	6	0.08
475	G1 475	6	0.08
476	G1 476	6	0.08
•		-	

477	G1_477	6	0.08
478	G1_478	173	0.08
479	G1_479	173	0.08
480	G1_480	173	0.08
481	G1_481	174	0.09
482	G1_482	174	0.09
483	G1_483	174	0.09
484	G1_484	174	0.09
485	G1_485	174	0.1
486	G1_486	359	0.05
487	G1_487	7	0.08
488	G1_488	6	0.08
489	G1_489	6	0.08
490	G1_490	6	0.08
491	G1_491	6	0.08
492	G1_492	6	0.08
493	G1_493	6	0.08
494	G1_494	6	0.08
495	G1 495	173	0.08
496	G1 496	173	0.08
497	G1 497	173	0.08
498	G1 498	173	0.09
499	G1 499	174	0.09
500	G1 500	174	0.09
501	G1 501	174	0.09
502	G1 502	174	0.1
503	G1 503	174	0.11
504	G1 504	359	0.05
505	G1 505	6	0.08
506	G1 506	6	0.08
507	G1 507	6	0.08
508	G1 508	6	0.08
509	G1 509	6	0.08
510	G1 510	6	0.08
511	G1 511	6	0.08
512	G1 512	6	0.08
513	G1 513	173	0.08
514	G1 514	173	0.08
515	G1 515	173	0.08
516	G1 516	174	0.09
517	G1 517	174	0.09
518	G1 518	174	0.09
519	G1 519	174	0.1
520	G1 520	174	0.11
521	G1 521	174	0.12
522	G1 522	359	0.05
523	G1 523	6	0.08
524	G1 524	6	0.08
	·		

525	G1_525	6	0.08
526	G1 526	6	0.08
527	G1 527	6	0.08
528	G1 528	6	0.08
529	G1 529	6	0.08
530	G1 530	6	0.08
531	G1 531	173	0.08
532	G1 532	173	0.00
533	G1 533	174	0.00
534	$G1_{534}$	174	0.03
535	$G1_{535}$	174	0.09
535	G1_536	174	0.09
530	$G1_{530}$	174	0.1
537	G1_537	174	0.11
538	GI_538	174	0.12
539	G1_539	1/5	0.14
540	G1_540	359	0.05
541	G1_541	6	0.08
542	G1_542	6	0.08
543	G1_543	6	0.08
544	G1_544	6	0.08
545	G1_545	6	0.08
546	G1_546	6	0.08
547	G1_547	6	0.08
548	G1_548	6	0.08
549	G1_549	173	0.08
550	G1_550	174	0.09
551	G1_551	173	0.09
552	G1_552	174	0.09
553	G1_553	174	0.1
554	G1_554	174	0.11
555	G1_555	174	0.12
556	G1_556	175	0.14
557	G1 557	178	0.16
558	G1 558	180	0.08
559	G1 559	6	0.08
560	G1 560	6	0.08
561	G1 561	6	0.08
562	G1 562	6	0.08
563	G1 563	6	0.08
564	G1 564	6	0.08
565	G1 565	6	0.08
566	G1 566	6	0.08
567	G1 567	173	0.09
568	G1 568	173	0.00
569	G1 560	174	0.00
570	G1 570	174	0.00
571	G1 571	174	0.1
572	G1 572	17/	0.17
512	01_012	1/4	0.12

573	G1_573	175	0.14
574	G1_574	1	0.14
575	G1_575	180	0.16
576	G1_576	180	0.08
577	G1_577	6	0.08
578	G1_578	6	0.08
579	G1_579	6	0.08
580	G1_580	6	0.08
581	G1_581	5	0.08
582	G1_582	6	0.08
583	G1_583	5	0.09
584	G1_584	5	0.09
585	G1_585	173	0.09
586	G1 586	174	0.09
587	G1 587	174	0.1
588	G1_588	174	0.11
589	G1 589	174	0.12
590	G1 590	175	0.15
591	G1 591	1	0.15
592	G1 592	181	0.16
593	G1 593	184	0.15
594	G1 594	180	0.08
595	G1 595	6	0.08
596	G1 596	6	0.08
597	G1 597	5	0.08
598	G1 598	5	0.08
599	G1 599	5	0.08
600	G1 600	5	0.09
601	G1 601	5	0.09
602	G1 602	5	0.09
603	G1 603	173	0.09
604	G1 604	174	0.1
605	G1 605	173	0.11
606	G1 606	174	0.12
607	G1 607	175	0.15
608	G1 608	360	0.15
609	G1 609	181	0.16
610	G1 610	184	0.14
611	G1 611	185	0.12
612	G1 612	181	0.08
613	G1 613	5	0.08
614	G1 614	5	0.08
615	G1 615	5	0.08
616	G1 616	5	0.00
617	G1 617	5	0.09
618	G1 618	5	0.09
610	G1 610	5	0.03
620	G1 620	5	0.09
020	01_020	5	0.08

621	G1_621	174	0.1
622	G1 622	173	0.11
623	G1 623	174	0.12
624	G1 624	176	0.15
625	G1 625	360	0.15
626	G1 626	181	0.16
627	G1 627	184	0.14
628	G1 628	185	0.12
629	G1 629	185	0.11
630	G1 630	181	0.08
631	G1 631	5	0.08
632	G1 632	5	0.08
633	G1 633	5	0.00
634	G1 634	5	0.00
635	G1 635	5	0.00
636	G1_000	5	0.03
637	$C1_{030}$	5	0.03
620	<u>G1_037</u>	5	0.09
620	G1_030	172	0.1
039	G1_639	173	0.11
040	G1_640	174	0.12
041	G1_641	3	0.15
642	<u>G1_642</u>	360	0.16
643	G1_643	181	0.16
644	G1_644	184	0.14
645	G1_645	185	0.12
646	G1_646	185	0.11
647	G1_647	185	0.1
648	G1_648	182	0.08
649	G1_649	5	0.09
650	G1_650	5	0.09
651	G1_651	5	0.09
652	G1_652	5	0.09
653	G1_653	5	0.09
654	G1_654	5	0.1
655	G1_655	5	0.1
656	G1_656	6	0.11
657	G1_657	173	0.12
658	G1_658	3	0.15
659	G1_659	360	0.16
660	G1_660	181	0.16
661	G1_661	185	0.14
662	G1_662	185	0.12
663	G1_663	185	0.11
664	G1_664	185	0.1
665	G1_665	185	0.1
666	G1_666	182	0.08
667	G1_667	5	0.09
668	G1_668	5	0.09

669	G1_669	5	0.09
670	G1_670	5	0.09
671	G1_671	5	0.1
672	G1_672	5	0.1
673	G1_673	6	0.11
674	G1_674	5	0.12
675	G1_675	3	0.15
676	G1_676	360	0.16
677	G1_677	181	0.16
678	G1_678	185	0.13
679	G1_679	185	0.11
680	G1_680	185	0.1
681	G1_681	185	0.1
682	G1_682	185	0.09
683	G1_683	185	0.09
684	G1_684	183	0.08
685	G1_685	5	0.09
686	G1_686	5	0.09
687	G1 687	5	0.09
688	G1 688	5	0.1
689	G1 689	5	0.1
690	G1_690	5	0.11
691	G1 691	5	0.13
692	G1 692	3	0.15
693	G1 693	360	0.16
694	G1 694	182	0.16
695	G1 695	185	0.13
696	G1 696	186	0.11
697	G1 697	184	0.1
698	G1 698	185	0.1
699	G1 699	185	0.09
700	G1 700	185	0.09
701	G1 701	185	0.09
702	G1 702	183	0.08
703	G1 703	5	0.09
704	G1 704	5	0.09
705	G1 705	5	0.1
706	G1 706	5	0.1
707	G1 707	5	0.11
708	G1 708	5	0.13
709	G1 709	2	0.15
710	G1 710	360	0.16
711	G1 711	182	0.15
712	G1 712	185	0.13
713	G1 713	186	0.10
714	G1 714	185	0.1
715	G1 715	185	0.1
716	G1 716	185	
110		100	0.09

717	G1_717	185	0.09
718	G1 718	185	0.09
719	G1 719	185	0.09
720	G1 720	183	0.08
721	G1 721	5	0.09
722	G1 722	5	0.1
723	G1 723	5	0.1
724	G1 724	5	0.11
725	G1 725	5	0.13
726	G1 726	2	0.16
727	G1 727	350	0.16
728	G1 728	182	0.15
720	G1 720	353	0.13
720	$G1_720$	186	0.10
731	$G1_730$	185	0.11
731	$G1_{731}$	105	0.1
732	G1_732	105	0.1
733	GI_733	100	0.09
734	G1_734	100	0.09
735	GI_735	105	0.09
736	G1_736	185	0.09
/3/	G1_/3/	185	0.09
738	G1_/38	184	0.08
739	G1_739	5	0.1
740	G1_740	4	0.1
741	G1_741	5	0.11
742	G1_742	5	0.13
743	G1_743	2	0.16
744	G1_744	180	0.16
745	G1_745	182	0.15
746	G1_746	354	0.13
747	G1_747	353	0.11
748	G1_748	185	0.1
749	G1_749	185	0.1
750	G1_750	185	0.09
751	G1_751	185	0.09
752	G1_752	185	0.09
753	G1_753	185	0.09
754	G1_754	185	0.09
755	G1_755	185	0.08
756	G1_756	184	0.08
757	G1_757	4	0.11
758	G1_758	5	0.12
759	G1_759	5	0.13
760	G1_760	2	0.16
761	G1_761	180	0.15
762	G1_762	183	0.15
763	G1_763	354	0.13
764	G1_764	353	0.11

<u>76</u> 5	G1_765	354	0.1
766	G1_766	185	0.09
767	G1_767	185	0.09
768	G1_768	185	0.09
769	G1_769	185	0.09
770	G1_770	185	0.09
771	G1_771	185	0.08
772	G1_772	185	0.08
773	G1_773	185	0.08
774	G1_774	184	0.08
775	G1_775	5	0.12
776	G1_776	5	0.14
777	G1_777	2	0.16
778	G1_778	180	0.15
779	G1_779	356	0.15
780	G1_780	354	0.13
781	G1_781	353	0.11
782	G1_782	354	0.1
783	G1_783	353	0.09
784	G1_784	185	0.09
785	G1_785	185	0.09
786	G1_786	185	0.09
787	G1_787	185	0.09
788	G1_788	185	0.08
789	G1 789	185	0.08
790	G1_790	186	0.08
791	G1_791	186	0.08
792	G1_792	185	0.08
793	G1_793	5	0.14
794	G1_794	1	0.16
795	G1_795	180	0.15
796	G1_796	356	0.15
797	G1_797	354	0.12
798	G1_798	353	0.11
799	G1 799	354	0.1
800	G1 800	354	0.09
801	G1 801	353	0.09
802	G1 802	185	0.09
803	G1 803	185	0.09
804	G1 804	186	0.08
805	G1 805	186	0.08
806	G1 806	186	0.08
807	G1 807	186	0.08
808	G1 808	186	0.08
809	G1 809	186	0.08
810	G1 810	185	0.08
811	G1 811	1	0.16
812	G1 812	358	0.16
512		500	0.10

813	G1_813	356	0.15
814	G1 814	354	0.12
815	G1_815	354	0.11
816	G1_816	354	0.1
817	G1 817	354	0.09
818	G1 818	353	0.09
819	G1 819	354	0.09
820	G1 820	186	0.09
821	G1 821	186	0.08
822	G1_822	186	0.08
823	G1 823	186	0.08
824	G1_824	186	0.08
825	G1_825	186	0.08
826	G1 826	186	0.08
827	G1 827	186	0.08
828	G1_828	185	0.08
829	G1_829	358	0.16
830	G1_830	356	0.15
831	G1_831	354	0.12
832	G1 832	354	0.11
833	G1 833	354	0.1
834	G1_834	354	0.1
835	G1 835	354	0.09
836	G1 836	354	0.09
837	G1 837	353	0.08
838	G1 838	186	0.08
839	G1 839	186	0.08
840	G1_840	186	0.08
841	G1 841	186	0.08
842	G1_842	186	0.08
843	G1_843	186	0.08
844	G1_844	186	0.08
845	G1_845	186	0.08
846	G1_846	186	0.08
847	G1_847	356	0.15
848	G1_848	354	0.12
849	G1_849	354	0.11
850	G1_850	354	0.1
851	G1_851	354	0.1
852	G1_852	354	0.09
853	G1_853	354	0.09
854	G1_854	353	0.09
855	G1_855	353	0.08
856	G1_856	186	0.08
857	G1_857	186	0.08
858	G1_858	186	0.08
859	G1_859	186	0.08
860	G1_860	186	0.08

861	G1_861	186	0.08
862	G1_862	186	0.08
863	G1_863	186	0.08
864	G1_864	186	0.08
865	G1_865	354	0.12
866	G1_866	354	0.11
867	G1_867	354	0.1
868	G1_868	354	0.1
869	G1_869	354	0.09
870	G1_870	354	0.09
871	G1_871	353	0.09
872	G1_872	353	0.08
873	G1_873	353	0.08
874	G1_874	186	0.08
875	G1_875	186	0.08
876	G1_876	186	0.08
877	G1_877	186	0.08
878	G1_878	186	0.08
879	G1_879	186	0.08
880	G1_880	186	0.08
881	G1_881	186	0.08
882	G1_882	186	0.08
883	G1_883	354	0.11
884	G1_884	354	0.1
885	G1_885	354	0.1
886	G1_886	354	0.09
887	G1_887	354	0.09
888	G1_888	354	0.09
889	G1_889	353	0.08
890	G1_890	353	0.08
891	G1_891	353	0.08
892	G1_892	186	0.08
893	G1_893	186	0.08
894	G1_894	186	0.08
895	G1_895	186	0.08
896	G1_896	186	0.08
897	G1_897	186	0.08
898	G1_898	186	0.08
899	G1_899	187	0.08
900	G1_900	186	0.08
901	G1 901	354	0.1
902	G1 902	354	0.1
903	G1 903	354	0.09
904	G1 904	354	0.09
905	G1 905	354	0.09
906	G1 906	353	0.08
907	G1 907	353	0.08
908	G1 908	353	0.08

909	G1_909	353	0.08
910	G1_910	186	0.08
911	G1_911	186	0.08
912	G1_912	186	0.08
913	G1_913	187	0.08
914	G1_914	186	0.08
915	G1_915	187	0.08
916	G1_916	187	0.08
917	G1_917	187	0.08
918	G1_918	187	0.08
919	G1_919	354	0.1
920	G1_920	354	0.09
921	G1_921	354	0.09
922	G1_922	354	0.09
923	G1_923	353	0.08
924	G1_924	353	0.08
925	G1_925	353	0.08
926	G1_926	353	0.08
927	G1_927	353	0.08
928	G1_928	187	0.08
929	G1_929	186	0.08
930	G1_930	187	0.08
931	G1_931	187	0.08
932	G1_932	187	0.08
933	G1_933	187	0.08
934	G1_934	187	0.08
935	G1_935	187	0.08
936	G1_936	187	0.08
937	G1_937	354	0.09
938	G1_938	354	0.09
939	G1_939	354	0.09
940	G1_940	354	0.08
941	G1_941	353	0.08
942	G1_942	353	0.08
943	G1_943	353	0.08
944	G1_944	353	0.08
945	G1_945	352	0.08
946	G1_946	187	0.08
947	G1_947	187	0.08
948	G1_948	187	0.08
949	G1_949	187	0.08
950	G1_950	18/	0.08
951	G1_951	18/	0.08
952	G1_952	18/	0.08
953	G1_953	187	0.08
954	G1_954		0.08
955	G1_955	354	0.09
956	GI 956	J 354	0.09

957	G1 957	354	0.09
958	G1 958	354	0.08
959	G1 959	353	0.08
960	G1 960	353	0.08
961	G1 961	353	0.08
962	G1 962	352	0.08
963	G1 963	352	0.08
964	G1 964	187	0.08
965	G1 965	187	0.08
966	G1 966	187	0.08
967	G1 967	187	0.08
968	G1 968	187	0.08
969	G1 969	187	0.08
970	G1 970	187	0.07
971	G1 971	187	0.07
972	G1 972	187	0.07
973	G1 973	354	0.09
974	G1 974	354	0.09
975	G1 975	354	0.08
976	G1 976	353	0.08
977	G1 977	353	0.08
978	G1 978	353	0.08
979	G1 979	353	0.08
980	G1 980	352	0.08
981	G1 981	352	0.08
982	G1 982	187	0.07
983	G1 983	187	0.07
984	G1 984	187	0.07
985	G1 985	187	0.07
986	G1 986	187	0.07
987	G1 987	187	0.07
988	G1 988	188	0.07
989	G1 989	188	0.07
990	G1 990	187	0.07
991	G1 991	354	0.09
992	G1 992	354	0.08
993	G1 993	353	0.08
994	G1 994	353	0.08
995	G1 995	353	0.08
996	G1 996	353	0.08
997	G1 997	352	0.08
998	G1 998	352	0.08
999	G1 999	350	0.07
1000	G1 1000	189	0.07
1001	G1 1001	189	0.07
1002	G1 1002	188	0.07
1003	G1 1003	188	0.07
1004	G1 1004	188	0.07

1005	G1_1005	188	0.07
1006	G1_1006	188	0.07
1007	G1_1007	188	0.07
1008	G1_1008	188	0.07
1009	G1_1009	354	0.08
1010	G1_1010	353	0.08
1011	G1_1011	353	0.08
1012	G1_1012	353	0.08
1013	G1_1013	353	0.08
1014	G1_1014	353	0.08
1015	G1_1015	352	0.08
1016	G1_1016	352	0.07
1017	G1_1017	350	0.07
1018	G1_1018	189	0.07
1019	G1_1019	189	0.07
1020	G1_1020	189	0.07
1021	G1_1021	189	0.07
1022	G1_1022	189	0.07
1023	G1_1023	189	0.07
1024	G1_1024	189	0.07
1025	G1_1025	189	0.07
1026	G1_1026	188	0.07
1027	G1_1027	353	0.08
1028	G1_1028	353	0.08
1029	G1_1029	353	0.08
1030	G1_1030	353	0.08
1031	G1_1031	353	0.08
1032	G1_1032	352	0.08
1033	G1_1033	352	0.08
1034	G1_1034	350	0.07
1035	G1_1035	350	0.07
1036	G1_1036	189	0.07
1037	G1_1037	189	0.07
1038	G1_1038	189	0.07
1039	G1_1039	189	0.07
1040	G1_1040	189	0.07
1041	G1_1041	189	0.07
1042	G1_1042	189	0.07
1043	G1_1043	189	0.07
1044	G1_1044	189	0.07
1045	G1_1045	353	0.08
1046	G1_1046	353	0.08
1047	G1_1047	353	0.08
1048	G1_1048	353	0.08
1049	G1_1049	352	0.08
1050	G1_1050	352	0.08
1051	G1_1051	352	0.07
1052	G1_1052	350	0.07

1053	G1_1053	350	0.07
1054	G1_1054	189	0.07
1055	G1_1055	189	0.07
1056	G1_1056	189	0.07
1057	G1_1057	189	0.07
1058	G1_1058	189	0.07
1059	G1_1059	189	0.07
1060	G1_1060	189	0.07
1061	G1_1061	189	0.07
1062	G1_1062	189	0.07
1063	G1_1063	353	0.08
1064	G1_1064	353	0.08
1065	G1_1065	353	0.08
1066	G1_1066	353	0.08
1067	G1_1067	352	0.08
1068	G1_1068	352	0.08
1069	G1_1069	350	0.07
1070	G1_1070	350	0.07
1071	G1_1071	350	0.07
1072	G1_1072	189	0.07
1073	G1_1073	189	0.07
1074	G1_1074	189	0.07
1075	G1_1075	189	0.07
1076	G1_1076	189	0.07
1077	G1_1077	189	0.07
1078	G1_1078	189	0.07
1079	G1_1079	189	0.07
1080	G1 1080	189	0.07

REFERENCES

AFFUM, Dr. J. K., BROWN, Prof. L. (1999). "Estimating urban air pollution levels from road traffic in TRAEMS". Journal of the Eastern Asian Society for transportation studies. 3(1), pp.139-149.

Banson, P. E, (1991). "A review of the development and application of the CaLine3 and 4 models". <u>Atmospheric Environment Part-B</u> (26), 379-390.

Benson P.E. (1988). "Development and verification of the California line source dispersion model". <u>California department of Transportation.</u>

Biggs, D. C., Akcelik, R., Aust, M.I.E. (1986). "Estimation of car fuel consumption in urban traffic". 13th Australian Road Research Board.

Chapman, L., Thornes, J. E. (2003). "The use of Geographical Information System in climatology and meteorology". <u>Ingenta</u>, 27 (3), pp. 313-33.

Devanathan, S., <u>Determination of the Meteorological Conditions Responsible for</u> <u>the Worst-case Odor Impacts from Area Sources Using Two Dispersion Models – ISC3</u> <u>and AEROMOD</u>, thesis presented to the University of Texas at Arlington , U.S. in partial fulfillment of the requirement of degree of Masters of Engineering.

Frey, C. H., Unal, A., Rouphail, N. M., Colyar, J. D., North Carolina State University (2003). "On-Road Measurement Of Vehicle Tailpipe Emissions Using A Portable Instrument". <u>Journal of the Air and Waste Management Association</u>, 53, pp. 992-1002. Kathuria, V. (2002). "Vehicular pollution control in Delhi". <u>Transportation</u> <u>Research part D (7)</u>, pp. 373-387.

Lakes Environmental Inc, Ltd. "User's Guide CALRoads View", 2001 – 2004. Mavroulidou, M, Hughes, S.J., Hellawell, E. E. (2004). "A qualitative tool combining an interaction matrix and a GIS to map vulnerability to traffic induced air pollution" <u>Elsevier</u> 70 (4), pp. 283-90.

Michael A. P. T., Jeremey, E. W., Rocco, Z. (2000). "Integration of the global position system and geographical information systems for traffic congestion studies". <u>Transportation Research Part C</u> (8), pp. 257-285.

Munshi, R.P., <u>Impact of Signal Synchronization on Vehicular Emission – An On-</u> <u>Board Measurement Case Study</u>, thesis presented to the University of Texas at Arlington, U.S. in partial fulfillment of the requirement of degree of Masters of Engineering.

Ni-Bin Chang, Kao, c.-Y.J., Y. L. Wei, C. C. Tseng (1999). "Comparative study of 3D numerical and puff models for dense air pollutants". <u>Journal of Environmental</u> Engineering 125 (2), pp. 175-184.

Quiroga, C. A., Darcy, B. (1998). "Travel time studies with global positioning and geographic information systems: an integrated methodology". <u>Transportation</u> <u>Research Part C (6)</u>., pp. 101-127.

Romero, H., Ihl M., Rivera, A., Zalazar, P., Azocar, P. (1999) "Rapid urban growth, land-use changes and air pollution in Santiago, Chile". <u>Atmospheric Environment 33</u>, pp. 4039-4047. Elsevier Science Ltd.

93

Zakarin, E. A. and Mirkarimova, B. M. (2000); "GIS-based mathaematical modeling of urban air pollution". Journal of Izvestiya. Atmospheric and Oceanic Physics 36, pp. 334-342.

BIOGRAPHICAL INFORMATION

Hetal Bhatt was born on September 05, 1980 in Vadodara, Gujarat, India, the son of Mr. H. K. Bhatt and Mrs. C. H. Bhatt. He completed his high school education at Vadodara, India in 1998. Subsequantly, he enrolled in the Maharaja Sayajirao University of Baroda, Vadodara, Guajarat, India, in 1999 and earned his B. E. (Bachelor of Engineering) in Civil Engineering in May 2003.

Hetal Bhatt had started his M.S. (Master of Science) degree in Environmental Engineering at The University of Texas at Arlington, Arlington, Texas in January 2004 and earned M.S. Degree in Civil Engineering in December 2005. During his tenure as a master's student, he was appointed as the Graduate Research Assistant. His thesis was based on NO_X dispersion modeling and looked at the safe buffer width of roadway to protect human health from harmful NO_X exposure. Also during his study, he did an internship in the Transportation Department of the North Central Texas Council of Governments (NCTCOG).