
NONLINEAR CONTROL OF MICROELECTROMECHANICAL 

 SYSTEMS (MEMS) DEVICES. 

 

by 

 

KWADWO OSEI OWUSU 

 

Presented to the Faculty of the Graduate School of 

The University of Texas at Arlington in Partial Fulfillment 

of the Requirements 

for the Degree of 

 

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING 

 

 

THE UNIVERSITY OF TEXAS AT ARLINGTON 

August 2006



 

 

 

 

 

 

 

 

 

 

Copyright © by Kwadwo Osei Owusu 2006 

All Rights Reserved 

 

 

 



 iii

ACKNOWLEDGEMENTS 
 

I am especially grateful to my advisor Dr. Frank L. Lewis for his enthusiasm, 

dynamism, guidance and support. I extend my appreciation to Dr. Jeongsik Sin for his 

tremendous help and ideas on pressure microsensors. I benefited enormously from his 

abundant knowledge of microsystems. Thanks are also due to Dr. Bruno Borovic and 

Dr. Ai Qun Liu, for useful discussions and encouragement. Further, I would like to 

thank Dr. Kai Yeung for being in my thesis committee. I thank all ARRI staff for 

providing a conducive and exciting learning environment. Finally, I wish to dedicate 

this work to my parents, for their lifelong support.  

July 20, 2006 

 

 

 

 

 

 

 

 

 

 



 iv

ABSTRACT 

 

NONLINEAR CONTROL OF MICROELECTROMECHANICAL 

 SYSTEMS (MEMS) DEVICES. 

 

Publication No. ______ 

 

Kwadwo Owusu, M.S. 

 

The University of Texas at Arlington, 2006 

 

Supervising Professor:  Dr. Frank L. Lewis 

Different actuation principles have been developed for MEMS but electrostatic 

actuators are the most common. A significant drawback in the use of electrostatic 

actuators for some applications is their nonlinear voltage to position characteristics. 

Analog operation of these devices requires the use of feedback to stabilize and linearize 

them. Controlling and optimizing the operation of electrostatic controllers using 

feedback requires the establishment of the complete and accurate dynamical model of 

the device. In this thesis, we show how an optical switch driven by a MEMS 

electrostatic comb drive is controlled to guarantee its performance, stability and 



 v

reliability for use in optical networks. Analog control of electrostatically actuated 

MEMS devices is also discussed and analyzed. A simple 1-DOF actuator model is used 

to derive a nonlinear control scheme which eliminates “snap through” and improves the 

dynamic performance of electrostatic microactuators. 

Finally, a novel fiber-optic pressure sensor design that employs a misaligned 

fiber-axis with respect to diaphragm center is discussed. It is shown that such a 

configuration increases the sensor sensitivity and pressure measurement range 

appreciably. 
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CHAPTER 1 

INTRODUCTION 

Microelectromechanical systems (MEMS) are the microscopic structures 

integrated onto silicon that combines mechanical elements, sensors and actuators with 

electronics. In a typical MEMS configuration, integrated circuits (ICs) provide the 

“thinking” part of the system, while MEMS complement this intelligence with active 

perception and control functions. MEMS are usually divided into two broad categories 

– sensor and actuators. Sensors gather local information from the environment including 

but not limited to mechanical, thermal, biological, chemical and optical phenomena. 

The electronics of the devices then process the information and direct actuators to 

respond and control the environment for some desired outcome.  

The use of microfabrication techniques to create miniaturized sensors has 

become a subject of interest in many areas of science and engineering. The dominant 

micromachined sensors are pressure sensors. Compared to conventional macro scale 

sensors, micromachined sensors have improved performance, reduced size and reduced 

cost. Typically, the sensing element is a thin diaphragm which deflects with applied 

pressure. To measure the deflection, several sensing techniques including capacitance, 

piezoelectric and optical can be used. Using fiber-optic sensing has many inherent 

advantages including high sensitivity and immunity to electromagnetic interference 
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noise. Most fiber-optic sensors have fiber axis aligned with respect to the center of the 

diaphragm.  

Numerous actuation methods have been developed for MEMS. They include 

magnetic, piezoelectric, thermal, optical and electrostatic actuators. Electrostatic 

actuators are the most common type of MEMS actuators because they are very low 

power, relatively simple in structure, flexible in operation and simple to fabricate. The 

fundamental principle behind electrostatic actuators is the coulomb force of attraction of 

two oppositely charged plates. Electrostatically actuated devices are used in such 

applications as optical switching, image projection, variable capacitors and 

accelerometers. 

MEMS actuators are typically driven in an open loop fashion employing simple 

actuation signals. There are a number of techniques to improve the dynamic 

performance of MEMS devices under actuation. The simplest is to improve the 

mechanical design of the actuator to optimize its performance. Also, the dynamical 

model of the device can be used to construct pre-shaped actuation signals that have the 

potential to enhance the device performance appreciably. The lack of accurate 

dynamical models for pre-shaped input signal control and device fabrication limitations 

coupled with more stringent performance requirements have resulted tin the 

introduction of feedback control in MEMS. The first MEMS device employing 

feedback was closed-loop capacitive sensors, with the objective of enhancing 

measurement accuracy. 
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This thesis focuses primarily on MEMS actuators and sensors. Nonlinear 

control theory is used to design control systems for MEMS devices. Whereas linear 

control methods rely on the key assumption of small range operation for the linear 

model to be valid and are unsuitable for large range operation, nonlinear controllers can 

handle the nonlinearities in large range operation directly. Specifically, the reasons for 

using nonlinear control techniques are that the dynamics of the MEMS devices are 

inherently nonlinear, model uncertainties can be considered in the controller design and 

improved performance and robustness can be found. Controlling and optimizing the 

operation of MEMS devices with guaranteed performance, stability and reliability using 

nonlinear feedback control techniques requires the establishment of the complete and 

accurate dynamical model of the device. 

Chapter 2 describes the design of a control scheme for an electrostatically 

actuated MEMS optical switch. The switch uses optical feedback for position sensing. 

The position cannot be easily obtained when the switch is near the fully opened or 

closed position due to the saturation in the available optical detector measurements. 

Also, the linear velocity of the switch required for feedback is very difficult and 

expensive to measure. A nonlinear full – order observer is therefore designed to provide 

reliable estimates of the position and velocity for feedback control. The designed 

controller is simulated on the actual device model and the results are presented. 

In chapter 3, a nonlinear control method for analog control of electrostatic 

microactutators is presented. A simple 1-DOF model which completely captures the 

highly nonlinear voltage-to-position characteristics of electrostatic microactuators is 
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used in the analysis. This characteristic, often referred to as “pull-in” occurs due to 

destabilizing positive feedback in electrostatic actuation. The 1-DOF model is analyzed 

from a nonlinear controls perspective and an effective control law is established. The 

advantages of this controller include extending the range of motion, improved transient 

performance and improved analog control. 

Chapter 4 describes the design of a novel fiber-optic pressure sensor that 

employs a misaligned fiber-axis with respect to diaphragm center. The primary 

objective is to try and eliminate multiple fringe ambiguity whilst extending the pressure 

measurement range and sensitivity of the device. It is shown that such a configuration 

increases the sensor sensitivity appreciably. 
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CHAPTER 2 

NONLINEAR CONTROL OF A MEMS OPTICAL SWITCH 

2.1 Introduction 

The applications of Micro electro mechanical systems (MEMS) in optical 

networks have seen tremendous growth in recent years.  This is partly due to the need 

for micro optomechanical switches (optical switches), a key component in optical 

communication networks. 

 Optical fibers in optical communication networks have very wide bandwidth. 

Large scale matrix switches that are mostly used in optical networks now are realized 

by optical – electronic conversion / electronic switching / electronic – optical 

conversion (O-E-O). These switches are very expensive and have slow bit rates capacity 

than fiber transmission lines due to the limited switching capacity of the electronics 

involved. With the increased demand for bandwidth due to the rapid growth of the 

information superhighway, it has become absolutely imperative to confront the 

bandwidth limitation problem. The obvious solution is to avoid the transitions between 

optical and electronic transmitters by using optical switches which operates in an all 

optical medium. 

 The optical switch is a device that switches an optical signal from one optical 

fiber to another, without having to first convert the optical signal into an electrical 

signal. This leads to the total exclusion of electronics and thus makes possible the 
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realization of all-optical networks (AON). The motivation of all-optical networks is 

evident from the bandwidth of an optical communication link. 

 MEMS technology has become a promising approach for optical switches. With 

this approach, micro mirrors are fabricated to perform the switching function in an all 

optical medium. MEMS optical switches are very attractive because of its small size 

and weight. In addition, they are inherently fast, have low power consumption [1] and 

have low insertion loss. The batch processing techniques applied to fabricate MEMS 

optical switches lead to high-volume, low cost production [2]. More importantly, 

MEMS technology allows large matrix switches to be monolithically integrated on a 

single chip [1].  

 With increasing complexity of modern optical networks, controlling and 

optimizing the operation of optical switches with guaranteed performance, stability and 

reliability becomes a challenging task. Controlling the device requires the establishment 

of its full models, including the optical, mechanical and electrical models. The optical 

models deal with the relationship between the mirror position and the attenuation, while 

the mechanical and electrical models link the driving voltage with the mirror position. 

Their combination predicts the optical performances of the switch under electrostatic 

actuation. 

 In the control of the optical switch, it is necessary to dynamically estimate the 

switch position and velocity. These states cannot be easily obtained when the switch is 

near the fully opened or closed position due to the saturation in the available optical 

detector measurements. To overcome this obstacle, a full-order nonlinear state observer 
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is constructed to provide a reliable estimate of the optical switch position and velocity 

based on the optical detector measurement of the output light intensity (power). The 

application of state observers in MEMS control is not new. In [4] a reduced-order 

observer is used to estimate the velocity for feedback control of electrostatically 

actuated MEMS to eliminate “snap-through”. The observer design in this paper is 

effective for the saturated output system and utilizes the Lipschitz property of the 

nonlinearities in the state and output equations of the MEMS switch. Observer design 

for systems with Lipschitz nonlinearities have been dealt with in [5] and [6]. These 

designs assumed that the system output is linear. In this paper, we present a simple 

nonlinear observer for a system with a Lipschitz nonlinearity in the output 

characteristics.  

 The estimated state variables are then used to design a controller for the optical 

switch. The controller designed has two components. A nonlinear control design 

approach called feedback linearization [3] is applied to compensate the nonlinearity in 

the system dynamics and a linear tracking controller component which ensures that the 

switch position tracks a desired reference trajectory generated by a desired command 

generator. 

 This chapter will be organized as follows. Section 2.2 will present a 

mathematical model of the MEMS device and dynamics for the observer and controller 

design. Section 2.3 will present a nonlinear observer design based on the MEMS device 

model, and the analysis of convergence is carried out based on Lyapunov stability 

analysis. Section 2.4 will present an integrated control scheme combining the nonlinear 
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controller and the observer design presented in section 2.3. Simulation results will be 

discussed in section 2.5 and conclusions are presented in section 2.6. 

2.2 MEMS Device Model and Dynamics 

The SEM of the MEMS optical switch is shown in Figure 1 [9]. It consists of an 

electrostatic comb drive actuator, the suspension beam, a shuttle to which is attached a 

shutter (micromirror) and optical fiber grooves.  

 

Figure 1.1 SEM of the MEMS Optical Switch showing its components. 
 

 
The comb drive actuator consists of two sets of fingers with uniform gaps.  One 

set of fingers is fixed and the other set of fingers is connected to the suspension and free 

to move relative to the fixed fingers. A voltage applied to the actuator generates an 

electrostatic force that moves the micromirror into the optical fiber beam path 

regulating the output power.  

To model the system, it is assumed that the shuttle has only one degree of 

freedom. The mathematical model has three main components – mechanical, electrical 
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and optical models. The system can be described with a second order differential 

equation with input, output and system nonlinearities as  

( ) ( )xhPxvfxkxxdxm ==++ ;,)(),(&&&     (2.1) 

where m  is the effective moving mass of the shuttle, d  is the damping, k  is the 

stiffness of the suspension, f is the induced electrostatic force, P  is the light intensity 

and x  the shuttle position. 

2.2.1 Electrical Model 

The electrical model considers the generation of the induced electrostatic force 

when a driving voltage is applied to the actuator. To find an expression for the force 

acting between the comb drive electrodes, the capacitance of the comb drive as a 

function of position is first determined. The capacitance of the comb drive is calculated 

as a sum of parallel capacitances among pairs of comb electrodes. Each pair of fingers 

forms a parallel capacitor. The total capacitance as a function of position x , is given by 

[7] 

( ) ( )0
00 2 xx

d
Tn

d
AxC

GG

+== εε     (2.2) 

where 112
0 10854.8 −−×= Fmε  is the dielectric constant of vacuum, n is the number of 

movable comb fingers ( )150=n  , T  is the thickness of the structural layer ( )mT μ35= , 

Gd  is the length of the gap between fingers ( )mdG μ6.2=  and 0x  is the overlapped 

length of fingers at no applied voltage ( )mx μ150 = . The capacitance of the comb drive 

at rest position is ( ) .5363.00 pFC =  The capacitance increases when the fingers are 
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attracted as a result of the electrostatic force induced on the application of a driving 

voltage. The electrostatic force between the electrodes of the capacitor is given as  

x
Cvxvf

∂
∂= 25.0),(     (2.3) 

where v  is the applied voltage. Substituting (2) into (3), the electrostatic force can be 

expressed as  

( ) 2
2

0, vk
d
Tvnxvf e
G

== ε     (2.4) 

where 2/8.17 VnNke =  is a constant. 

The capacitance varies linearly with displacement, resulting in an electrostatic 

driving force which is independent of the position of the moving fingers (relative to the 

fixed ones) except at the ends of the range of travel.  

2.2.2 Mechanical Model 

To obtain the mechanical model of the system, the effective moving mass m , 

the damping coefficient d , and the stiffness of the suspension k are estimated. The 

effective mass of the movable structure can be expressed as [9] 

beamrigidmirror mmmm 74.25.0 ++=      (2.5) 

From the geometry of the device and using the density of silicon 33103.2 −×= kgmSiρ , the 

effective mass of the system is calculated as .1035.2 9 kgm −×=  

The stiffness of the suspension beam is assumed to be a linear function of the 

position i.e. ( ) kxxk =  and its coefficient is given as [9] 
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( )
( )3

3

3

224
BL

BWET
L
EIk z ==     (2.6) 

where T is the thickness of the beam, E  is the Young’s modulus ( )GPaE 160= , BW  

width of the suspension beams ( )mBW μ2= , BL  is length of suspension 

beams ( )mBL μ530=  and ZI  moment of inertia around deflecting axis of the beam. 

Calculation gives 16.0 −= Nmk .  

Damping is the parameter that is most difficult to determine analytically, even 

through FEA. The reason lies in the number of different mechanisms that cause it, 

including friction, viscous forces, drag etc. The contribution of viscous forces to 

damping is much more pronounced. Four different mechanisms could contribute to 

damping, Couette flow, Poiseuille flow, Stokes flow, and squeeze film damping [11]. 

They can be summarized as ( ) ( ) ., 0 xdxdxxd x && +=  All four mechanisms contribute to 

0d , but only Couette flow and squeeze film damping contribute to xd . Poiseuille and 

Stokes flows are difficult to estimate due to the complex geometry of the device. 

Squeeze film damping is negligible.  Hence, only Couette damping is considered. 

Couette damping is given as 

( ) ( ) ( ) ( )xdxdxxdxdx
d

xxnT
x

d
Axxd xxx

GG

&&&&& 00
0, +=+=⎥
⎦

⎤
⎢
⎣

⎡ +
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

ηη     (2.7) 

where sPa.18μη = is the viscosity of the air surrounding the switch. The damping 

coefficients are calculated as 0363.0=xd and .104519.5 7
0

−×=d  
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The complete analytical model is given by 

( ) 2879 1078.16.0104519.50363.01035.2 vxxxx −−− ×=+×++× &&&   (2.8) 

2.2.3 Optical Model 

The optical model relates the position of the mirror to the light intensity 

attenuation. Figure 2.2 shows the optical mirror and the input and output single mode 

fibers (SMF). Light beam from the input SMF propagates to the mirror plane and is 

partially blocked by the mirror. It is then diffracted to the receiving facet of the output 

SMF. 

 

Figure 2.2 Diagram of Optical Model [8]. 

 
The model employed here is the Raleigh-Sommerfeld diffraction formula [10] 

which assumes a Gaussian distribution for the fundamental mode of the light beam from 

the SMFs. As illustrated in figure 2.2, the waist radius of the Gaussian beam coming 

from the input SMF is ow . After passing through a distance 1z , the waist radius 1w  of 

the Gaussian beam is given by [8] 

22
11 /1 Ro zzww +=     (2.9) 
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where Rz  denotes the Raleigh range given by λπ /2
oR wz = , λ  represents the 

wavelength of light. In this example, ,1.50 mw μ= mμλ 55.1=  and .101 mz μ=  These 

parameters give .191.51 mw μ=  

The coupled power P ( inout PP / ) is obtained [10] as  

( )( )[ ]10  / 21
2
1 wxErfP η−−=     (2.10) 

where 0η  is the initial distance between the mirror and the fiber axis, x  is the 

displacement of the mirror and Erf is the error function. In this set up .2.110 mμη =  It is 

important to note that the shape of the attenuation curve (2.10) is saturated by the error 

function which makes it difficult to reconstruct the states in the saturation region for 

control design purposes. 

2.2.4 Experimental Verification of the Model 

The analytically obtained model is compared with experimental results obtained 

from the MEMS optical switch for accuracy. 

The constant ek  in (2.4) can be verified by conducting static experiment 

i.e. 0== xx &&& . Static conditions reduce (2.1) and (2.4) to 2v
k
kx e= . Different driving 

voltages are applied across the comb drive and its corresponding deflections observed 

through an optical microscope. Experimentally and analytically obtained static voltage-

deflection curves are shown in Figure 2.3. 
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Figure 2.3 Static characteristics 

 

The difference between the curves may be due to the estimation error of the gap 

between fingers Gd or the width of the suspension beam BW used in calculating the 

values of ek and k respectively. The width of the suspension beam may be the likely 

culprit as it has a cubic effect on the stiffness, k . 

To verify the optical model, a voltage is applied to the comb drive and light 

intensity is measured. Experimentally and analytically obtained coupled power-

deflection curves are shown in figure 2.4. The difference in the two curves may be due 

to error in estimating 0η in (2.10). This error can be modeled as an offset offη which is 

determined to be about mμ2 . 
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Figure 2.4 Verification of optical model. 

 
For dynamic verification of the model, the open loop dynamic response of the 

switch is obtained by applying a square-wave driving voltage of 5-30V and measuring 

the light intensity. The obtained profile is compared with simulation results of the open 

loop dynamic response obtained from the developed model. The results are shown in 

figure 2.5. 
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Figure 2.5 Experiment (top) and model (bottom) open loop dynamic response. 
 

The results clearly show the underestimation of the damping component. This 

necessitates an identification of accurate model components. 

2.2.5. Identification of Accurate Model Parameters 

An identification of accurate parameters from the experimental results is carried 

out. The parameter identification procedure used in [12] is employed yielding the 

accurate dynamical model 

( ) 2859 108.16.0106.10363.01035.2 vxxxx −−− ×=+×++× &&&    (2.11) 

The parameters identified match closely with the analytical model except for the 

damping term which was underestimated. 

 

 

 



 

 17

2.3 Nonlinear Observer Design for the Saturated Output MEMS Optical Switch System 

In this section, we will discuss a nonlinear observer design for the optical switch 

to estimate the switch position for feedback control. The problem is a saturated output, 

i.e. when the switch is completely closed or opened, due to the error function in the 

output measurement (2.10), position information required for feedback control cannot 

be obtained from the output measurement. The nonlinear observer presented here 

confronts this problem and serves to provide a reliable estimate of the switch position 

both inside and outside of the saturation region. 

2.3.1. Observer Design  

The dynamical model of the optical switch can be described by the nonlinear 

system 

)(xBuAxx φ++=&     (2.12) 

)(xCxy θ+=     (2.13) 

where CBA ,, are known linear parts about an equilibrium point, ox  and )(xφ  and 

)(xθ  are known locally Lipschitz nonlinearities at ox  i.e., 

xxxx ˆ)ˆ()( −≤− γφφ      (2.14) 

xxxx ˆ)ˆ()( −≤− βθθ      (2.15) 

{ }rxxRxrxDxx n
o ≤−∈=∈∀ ˆ),(ˆ, |  with γ and β  known Lipschitz constants.  

)(xθ  is obtained by linearizing the system output equation about ox . The 

nonlinearity in the switch state dynamics can be regarded as Lipchitz, at least locally, 
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provided the operating range of x and x&  are guaranteed to be bounded. We assume that 

the pair ),( CA is observable. This is the case for the optical switch. 

We create an observer with linear output injection of the form 

[ ])()ˆ(ˆ)ˆ(ˆˆ
.

xCxxxCLxBuxAx θθφ −−++++=     (2.16) 

 The estimation error dynamics are then seen to be given by 

[ ])ˆ()()ˆ()(~)(~. xxLxxxLCAx θθφφ −+−++=     (2.17) 

where xxx ˆ~ −= . Equation (2.17) is linear with nonlinear perturbations and does not 

depend on the control input ).(tu  

2.3.2. Stability Analysis 

The stability of the proposed observer (2.16) is here analyzed. Since the pair 

),( CA  is completely observable, we can find a matrix L  such that all eigenvalues of 

the matrix )( LCA +  are in the desired locations in the open left half plane. If we choose 

)( LCA +  to be Hurwitz, then for any positive definite oQ , there exists a unique 

symmetric positive definite oP  which satisfies the Lyapunov equation  

ooo
T QLCAPPLCA 2)()( −=+++     (2.18) 

Consider the Lyapunov function candidate 

( ) xPxxV o
T

obs
~~~ =     (2.19) 

Its derivative along the trajectories of (2.17) is  

[ ] [ ] [ ])ˆ()(~2)ˆ()(~2~)()(~ xxLPxxxPxxLCAPPLCAxV o
T

o
T

oo
TT

obs θθφφ −+−++++=&  (2.20) 

Using the Lipschitz property of )(xφ  and )(xθ , we have 
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[ ] 2
22

2)ˆ()(~2 xPxxPx oo
T γφφ ≤−     (2.21) 

[ ] 2
222

~2)ˆ()(~2 xPLxxLPx oo
T βθθ ≤−     (2.22) 

Substituting into (2.20), we get 

2
222

2
22

22~~2 xPLxPxQxV ooo
T

obs βγ ++−≤&     (2.23) 

Since oQ  is positive definite, 2
2min

~)(~~ xQxQx oo
T λ≥ where )(min oQλ  is the 

smallest eigenvalue of oQ . Also, since oP  is symmetric positive definite, 

)(max2 oo PP λ=  where )(max oPλ  is the maximum eigenvalue of oP . Substituting these 

into (2.23) yields 

[ ] 2
2max2min )()(2)(2 xPLQV ooobs λβγλ +−−≤&     (2.24) 

Hence 0<obsV&  if 

)(
)(
)(

2
max

min L
P
Q

o

o βγ
λ
λ +>     (2.25) 

The ratio in (2.25) is a maximum when oQ  is the identity matrix [7]. Set 2IQo = , then a 

sufficient condition for obsV& to be negative is  

( ) ⎥
⎦

⎤
⎢
⎣

⎡
−< γ

λβ P
L

max
2

11        (2.26) 

If (2.26) is satisfied, then 0~ =x is an asymptotically stable equilibrium point of (2.17) 

and the observer accurately reconstructs the state estimates. 
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2.3.3 Observer for MEMS Optical Switch 

For the MEMS optical switch system
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−−=

m
d

m
kA o

10
, 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

m
kB e

0
, ( )

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−=

m
xxdx x 21

0
φ .  An 

equilibrium point for the system is 0,
6.0 2

0
1 == xUkx e where 0U = 2v  is the equilibrium 

control input. Selecting a suitable point 6
1 102.11 −×=x in the linear region of the output 

light intensity curve, we compute the equilibrium control input as 33.3730 =U . 

Linearizing the output characteristics about the equilibrium point, we obtain 

]024593.0[−=C . We then design the observer gain matrix such that the eigenvalues 

of )( LCA −  are appropriately placed and (2.26) is satisfied.  

2.4 Nonlinear Observer-Controller Design 

This section shows how we can replace the state x  with the estimated state x̂  

from the observer in a nonlinear full state feedback linearization controller and still 

guarantee the stability of the closed loop observer-controller system. 

2.4.1 Feedback Linearization Controller 

Feedback linearization control is proposed to control the switch position. An 

estimate of the switch states from the observer is needed for feedback linearization 

compensation. With the nonlinear observer design discussed in section 2.3, an 

integrated control scheme is presented to combine the nonlinear controller and the 

observer. Figure 2.6 shows the block diagram of the integration of the nonlinear 

controller and the observer. A smooth desired trajectory T
dddd xxxx ],,[ &&&=  is generated 

from a proper reference trajectory generator. The objective of the controller is to 
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provide proper control action that enables the switch position to track the desired 

trajectory.  

 

 

Figure 2.6 Block Diagram of the integration of the Controller and Observer. 
 

The dynamics of the optical switch are 

( )[ ]{ }2
2112

21

1 vkxdxdkx
m

x

xx

eox ++−−=

=

&

&

    (2.27) 

where the voltage term 2v  is the control input. 

The dynamics in (2.27) can be put in the form ( ) ( )uxgxfx +=& . According to 

[8], any nonlinear system whose state space has dimension 2=n can be transformed 
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into a linear system, via state feedback and change of coordinates, around a point ox , if 

and only if the matrix ( ) ( )( )ofo xgadxg  has rank 2. This condition is satisfied for the 

switch dynamics in (2.27). 

We choose a nonlinear feedback control law of the form 

( )[ ]⎥⎦
⎤

⎢⎣
⎡ +−−−= 211

2 ˆˆˆ1 xdxdxk
m

w
k
mv ox

e

    (2.28) 

where the term w  guarantees the tracking of the desired trajectory and 1x̂ , 2x̂  are state 

estimates from the nonlinear observer. Since it is desired to have the switch position 1x , 

track a prescribed trajectory dx , the term w  in the control law can be specified as 

111 ˆˆ eaeaxw od −−= &&&     (2.29) 

where dxxe −= 11 ˆˆ . 

 We define the tracking error as dxxe −= 11  and dxxe &−= 22 . The tracking error 

dynamics is given by 

)ˆˆ(

~)(~)(

2121

2112112

21

xxxx
m
d

x
m
dax

m
kaeaeae

ee

x

o
oo

−−

−+−+−−=

=

&

&

    (2.30) 

The tracking error dynamics can be written as 

[ ])ˆ()(~ xxxbeAe c φφ −++=&     (2.31) 

where  
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2.4.2 Stability Analysis 

Here, the stability analysis based on the closed loop system is performed. It is 

important to realize that the tracking error dynamics is driven by the observer 

estimation error terms which are exponentially decaying. It is also clear that as long as 

cA  is asymptotically stable, the tracking error will be bounded as long as the estimation 

errors are. The magnitude of the tracking error depends on the degree of stability of cA  

as well as the magnitude of the estimation errors. A more stable cA  and proper observer 

convergence results in a smaller error.  

 To show the stability of the feedback linearization controller with estimated 

states, consider the Lyapunov function candidate for the controller 

( ) ePeeV c
T

con =     (2.32) 

Select cA  to be Hurwitz, then for any positive definite cQ  there exists a unique 

symmetric positive definite cP  which satisfies the Lyapunov equation  

ccc
T

c QAPPA 2−=+     (2.33) 

The derivative of conV  along the trajectories of (30) is given by 

( )[ ])ˆ(2~2 xxPexbPeeQeV c
T

c
T

c
T

con φφ −++−=&     (2.34) 

Hence, 
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( ) ( )( )γλλ ++−≤
2max22

2

2min
~2 bPxeeQV cccon

&     (2.35) 

where ( )cQminλ  and ( )cPmaxλ  are minimum and maximum eigenvalues of cQ  and cP  

respectively. 

 Now consider the composite Lyapunov function 

( ) )~()(,~ xVeVexV obscon +=     (2.36) 

for the total system (observer and controller). Then 

( ) ( ) ( )( )
( ) ( ) ( )[ ] 2

21max2min

2max22

2

2min

~2

~2,~

xPLQ

bPxeeQexV

o

cc

λβγλ

γλλ

+−−

++−≤&
    (2.37) 

Manipulation of (2.37) results in 

[ ][ ] ⎥
⎦

⎤
⎢
⎣

⎡
−≤

2

2
22

~
~),~(

e
x

MexexV&     (2.38) 

 

where  

( ) ( )
( )[ ]

( )[ ] ( ) ⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

+−
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+
−
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o

QbP
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M

min2max
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max2
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2
)(

λγλ

γλ
λβγ

λ

    (2.39) 

For ( )exV ,~&  to be negative, it is sufficient that the leading principal minors of the 22x  

matrix M  be positive, that is 

( ) ( ) 02)( max2min >+− oo PLQ λβγλ     (2.40) 

and 
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( ) ( ) ( ) ( )[ ] ( )( ) 02 2

2max
2

max2minmin >++− γλλβγλλ bPPLQQ cooc    (2.41) 

Selecting 2IQQ co == , in order for equations (2.40) and (2.41) to be satisfied, it is 

enough that 

( ) ⎥
⎦

⎤
⎢
⎣

⎡
−< γ

λβ P
L

max
2

11      (2.42) 

and 

( ) ( )[ ]
γ

λ
λβγ

−
+−

<
)(

21

max

2
1

max2
2

c

o

P
PL

b      (2.43) 

A nonlinear separation principle is not valid in this case as the controller parameters 

specified by 
2

b  are selected based on the observer gain. 

2.5 Simulation Results 

The performance of the proposed control scheme is simulated on the MEMS 

optical switch. The numerical simulation reported here is performed over a time interval 

of 2ms, with a variable integration step.  

 The reference signal used in the simulation is the output of the second order 

transfer function ( )21
1
+sτ

 driven by a pulse wave input. The choice of the time constant 

τ  which determines the speed of motion from the initial to the final position is limited 

by the constraint on the magnitude of the control input ( )VV 35max = .  

 The true initial state is ][ Tx 000 = while the observed initial state 

is ][ Tmx 010 μ= . Zero initial velocity is assumed for both observer and MEMS device to 
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mimic the practical situation of the MEMS device and the estimation process switching 

on at the same time. 

 The observer gain matrix used in the simulation is 

[ ]TL 116 10019.2106255.1 ××= and the tracking error components of the controller used 

were 12
0 101×=a and 6

1 102×=a . 

 The time response of the system for a desired trajectory of amplitude 10μm and 

25μm are shown in figures 2.7 and 2.8 respectively.  

 

 

Figure 2.7 Response of the system to a desired reference signal of amplitude 10μm. 
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Figure 2.8 Response of the system to a desired reference signal of amplitude 25μm 

 

 The response shows a very fast response time with the rise time and falling time 

less than 0.6ms. The overshoot is almost negligible. It is observed that although the 

observer starts with different initial conditions its states converge to the actual states 

very quickly and the tracking of the reference signal is almost perfect. Also, the system 

performance is worse for small reference signals. 

Now, we assume that the estimation of the model parameters used in the 

feedback linearization term and observer model have 20% error, specifically the 
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parameters ex kkddm ,,,, 0 were reduced by 20%. Figures 2.10 and 2.11 show the time 

response for a desired trajectory of amplitude 10μm and 25μm respectively. 

 

 

Figure 2.9 Observer model and feedback linearization has 20% error 
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Figure 2.10 Observer model and feedback linearization has 20% error 

 

 A similar performance of the nonlinear observer-controller design is observed 

even for very large modeling uncertainties. This clearly demonstrates the robustness of 

this proposed design scheme. 

2.6 Conclusions 

A MEMS optical switch has been developed. Its dynamical model has been 

established based on the electrical, mechanical and optical models of the device. The 

model is verified by experimental results. 

 A nonlinear observer was designed to estimate the dynamic variables of the 

optical switch. Feedback linearization controller with estimated states from a nonlinear 

observer has been introduced to improve the dynamic closed loop performance of the 



 

 30

optical switch. The simulation demonstrates that even with large estimation error of the 

observer model and feedback linearization term, the nonlinear controller can still 

achieve the desired performance. 
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CHAPTER 3 

NONLINEAR CONTROL OF ELECTROSTATIC MICROACTUATORS 

3.1 Introduction 

Parallel-plate electrostatically actuated devices play a vital role in MEMS. 

Compared with other types of microactuators, electrostatic actuators are the most 

common in use apparently because of the fact that they generate modest force and 

consume relatively no electrical power. Electrostatic actuators are normally driven by 

static open-loop voltage control schemes. A serious drawback in this control strategy is 

that a voltage source provides positive feedback in the electrostatic actuation. An 

increase in the constant voltage source results in a corresponding increase in 

electrostatic force due to an increase in the charge. The increased force decreases the 

gap, which, in turn, increases the capacitance and thus the charge and the electric field 

due to the applied voltage. This positive feedback causes the actuator to deflect further. 

At a distance of two-thirds of the zero-bias capacitive gap, the actuator position 

becomes unstable and collapses. This phenomenon is known as “snap-through” or 

“pull-in” [13], [14]. 

Thus, open-loop constant voltage drive is unable to provide stable and 

controllable deflection beyond 33% of the zero bias capacitive gap. This prohibits the 

suitability of this control scheme for devices that require an analog control of stable 

positions within the entire gap such as variable capacitors, wavelength division 
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multiplexing (WDM) filters and tunable LEDs [15]. For such applications, it is 

desirable to extend the stable and controllable stable range to the full gap. 

It has been demonstrated that by placing a series capacitance in the DC path of 

the MEMS bridge circuit, the instability in the electrostatic actuation can be reduced 

and even eliminated [13]. A serious drawback with this actuation approach is the need 

for higher supply voltage required to reach any equilibrium position. Also, the 

performance of this control scheme is seriously affected by the natural damping of the 

device. Other suggested methods are based on structural design modifications such as, 

extending the capacitive gap to be much larger than the desired operating range [4], 

leverage and nonlinear stiffening springs [16], [17]. The tradeoff in employing these 

mechanical modifications is the need for higher voltages and a more tedious and 

complex fabrication process. 

The significant limitations of the aforementioned control schemes have resulted 

in the gradual incorporation of closed-loop feedback control system driving techniques 

in extending the desired operation range of electrostatic microactuators. In [18] it is 

shown that any position in the gap may be globally asymptotically stabilized with 

output feedback of voltage and charge. A current drive control stabilization strategy that 

uses charge feedback to extend the range of electrostatic microactuators beyond the 

voltage pull-in point is proposed in [19].  

The primary objective of this chapter is to demonstrate the feasibility of a robust 

nonlinear control scheme for electrostatic miroactuators using feedback. Stability and 

convergence analysis of the proposed controller is presented analytically. Simulation 
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results on the performance of the proposed feedback nonlinear controller on a MEMS 

electrostatic microactuator are presented. 

This chapter will be organized as follows. Section 3.2 will present a 

mathematical model of the MEMS device and dynamics and discuss “pull-in” 

instability under electrostatic actuation. Section 3.3 will present a nonlinear controller 

design with model based feedback linearization and the analysis of convergence is 

carried out based on Lyapunov stability analysis. Section 3.4 will present a nonlinear 

reduced order velocity observer design required to implement the controller in section 

3.3. Section 3.5 will analyze the stability of the integrated control scheme combining 

the nonlinear controller and observer design. Simulation results will be discussed in 

section 3.6 and conclusions are presented in section 3.7. 

3.2 MEMS Device Model and “Pull-in” Instability Analysis 

3.2.1 Device Model 

The microactuator is modeled as a parallel plate capacitor consisting of a 

movable top plate and a fixed plate as shown in figure 3.1. The mechanical part of the 

microactuator is modeled as a spring-mass-damper system. 
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Figure 3.1 1 - Dimensional Model of MEMS Electrostatic Microactuator 

 
When a voltage is applied between the plates, an electrostatic force is induced 

on the movable plate. The governing equation for the 1-D model is 

eFkxxbxm =++ &&&     (3.1) 

where eF  is the electrostatic pull-down force exerted on the movable plate by the 

applied voltage sV , k is the mechanical stiffness, b  is the damping factor and m  the 

equivalent mass of the movable plate. The deflection of the movable plate is given by 

( )tggx −= 0  where 0g is the zero-bias capacitive gap and ( )tg  it the applied voltage 

bias capacitive gap. Considering the electrostatic force in terms of the applied electric 

field, 2QEFe =  where Q  is the charge and GVE =  is the electric field due to the 

applied voltage. The capacitance of the device is given by gAC ε=  where ε  is the 

permittivity in the gap and A  is the plate area. Incorporating the expressions for 

CandEFx e ,, in (3.1), the complete equation of motion is given by (3.2) 

( ) ( ) ( )( ) AtQgtgktgbtgm ε2)(2
0 −=−++ &&&     (3.2) 
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Applying Kirchoff’s Voltage law, the current through the input resistance is  

( ) ( ) ( ) ( )
⎥⎦
⎤

⎢⎣
⎡ −=

A
tgtQtV

R
tQ s

s ε
1&     (3.3) 

The complete model given by (3.2) and (3.3) is of third order. 

3.2.2 “Pull-in” Instability Analysis 

At equilibrium, the distance )(tx  traveled by the movable plate for any applied 

constant voltage is determined by the elastic stiffness and the magnitude of the applied 

voltage. From (3.2), the equilibrium relationship is   

( )( ) eFgtgk =− 0     (3.4) 

 The electrostatic force applied to the movable plate is found by considering the 

power delivered to a time-dependent capacitance and is given by [20] 

2

2
2

2
1

2
1

g
AV

dg
dCVF s

se
ε−==     (3.5) 

From (3.4) and (3.5), the applied voltage at equilibrium is 

( )ggg
A
kVs −= 0

22
ε

    (3.6) 

Figure 3.2 shows a plot of applied voltage versus normalized plate deflection at 

equilibrium for a microactuator with plate area, 28104 mA −×= , mg 6
0 106 −×= , and 

110 −= Nmk . 
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Figure 3.2 Normalized Plate Deflection vs. Applied Voltage 

 

 The plot shows that the system has two equilibrium points for applied voltages 

less than the “pull-in” voltage PIV  and zero beyond. At 03
1 gx = , the increase in the 

electrostatic force is greater than the increase in the restoring force resulting in the 

collapse of the movable plate to the fixed plate position. Taking the derivative of (3.6) 

with respect to g  and setting to zero, the plate deflection at which “pull-in” instability 

occurs is found to be exactly one-third of the zero-bias capacitive gap and the “pull-in” 

voltage is found to be 

VPI 

31  
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3
027

8 g
A

kVPI ε
=     (3.7) 

The point 03
1 gx =  at which “pull-in” instability occurs corresponds to a saddle-node 

bifurcation phenomenon with respect to the equilibrium voltage [4]. Thus, under 

equilibrium conditions with constant voltage operation, the movable plate can only 

move 31  of the entire capacitive gap. Violating this restriction results in the plates 

snapping together which is undesirable for some applications. 

 One approach to overcome this travel range limitation whilst improving the 

dynamic performance of the MEMS device is to employ closed-loop feedback control 

voltage actuation techniques. For control design purposes, we perform a normalization 

of variables as follows [15]. 

SPISPI RCRandVVuQQqTwtgxX 0,00 ,, =====    (3.8) 

where 00 gAC ε=  is the capacitance at rest, T is the time and  

0
0

0

2
00

2
,,

27
8,

2
3

mw
b

m
kw

C
kgVVCQ PI

PI
PI ==== α     (3.9) 

Using the above normalization, equations (3.2) and (3.3) can be transformed into the 

normalized differential equations governing the moving plate dynamics as  

32 2qXXX =++ &&& α      (3.10) 

( )⎥⎦
⎤

⎢⎣
⎡ −−= Xqu

R
q 1

2
3

3
2

&     (3.11) 
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Imposing the state transformation, ,, 321 qxandXxXx === &  the system (3.10), 

(3.11) can be put in the state space form 

( ) ( )
u

RRxx
xxx

x

x
x
x

⎥
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⎦

⎤

⎢
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⎣
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⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−
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⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

32
0
0

1
32

13

2
312

2

3

2

1

α
&

&

&

    (3.12) 

Since it is possible and relatively inexpensive to accurately measure the voltage and 

capacitance across the device, we consider as the system output, the normalized voltage, 

Dv  and normalized charge, q  (deduced from voltage and capacitance measurements) 

across the actuator. The system output is thus defined as 

( ) 213 131 xxy −=     (3.13) 

32 xy =       (3.14) 

 Under equilibrium conditions, let the state x  be denoted by *x . For a given 

constant applied voltage, the equilibrium points are seen from (3.12), (3.13) and (3.14) 

to be given by [ ]Txxx *
3

*
1

* ,0,=  and ( ) 213 *
1

*
3

* xxvD −= . Also, for a given *
1x , *

3x  is given 

by ( ) 21*
1

*
3 3xx ±= . Therefore, for a given constant applied voltage, the system has three 

equilibrium points. The equilibrium point containing ( ) 21*
1

*
3 3xx −=  lies below the fixed 

plate which is outside the operation region of the device and is not considered. The 

other two equilibrium points lie inside the operation region. As shown in section 3.2.2 

equilibrium points corresponding to an upper plate deflection less than one-third of the 

zero-voltage gap are stable, while those corresponding to an upper plate deflection 

greater than one-third of the zero-voltage gap are unstable points. 
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3.3 Nonlinear Controller Design with Model Based Feedback Linearization 

The considered control problem is set-point control from any point in the gap to 

any other point between the plates. For a greater degree of freedom in designing a 

suitable controller, the system is considered as a SISO system with the output redefined 

as 

2

1
1 3

21
y
yxy −==      (3.15) 

We consider the set point tracking problem with 1xy = as output. To generate a linear 

input-output relation, we differentiate the output function y  repeatedly until the input 

u  appears and then design u  to cancel the nonlinearities in the system [3]. From the 

system dynamics, define 

( )
( ) ( )

1

13

2
312

2

)(,
32
0
0

)(,
1

32 xxhand
R

xg
Rxx

xxx
x

xf =
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−
+−−= α  

Denoting the Lie derivative by L  we have, 

( ) ( ) ( ) 3
2

9
4,0,0 x
R

xhLLxhLLxhL fgfgg ===  

( ) 2
312

2
2 3

12)(, xxxxhLxxhL ff +−−== α  

( ) 2
31

2
32

2
1

3

3
21

3
2142)( xx

R
x

R
xxxhL f +⎟

⎠
⎞

⎜
⎝
⎛ +−−+= ααα  

From the Lie derivatives, for the input u to appear, the output function 1xy = has to be 

differentiated three times to obtain 
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( ) ( ) ( )uxhLLxhLy fgf
233 +=     (3.16) 

Thus, with respect to this output, the system has a well-defined relative degree of 3 

(equal to the system order) at each point such that .03 ≠x  Around any of such points, 

there is no internal dynamics associated with the input-output linearization and the 

system can be transformed into a linear and controllable system by means of the 

feedback control law [3].  

( ) ( )( )vxhL
xhLL

u f
fg

+−= 3
2
1     (3.17) 

Substituting (3.17) into (3.16) yields the simple linear relation 

( ) vy =3      (3.18) 

 To design the tracking controller, we assume that a desired trajectory 

( )[ ]3,,, rrrrr yyyyy &&&=  is generated from a proper reference trajectory generator. A 

linear control law is constructed for the system (3.19) as 

( ) ekekekyv r 123
3 −−−= &&&     (3.19) 

where  ryye −=  is the tracking error. The tracking error dynamics is seen to be given 

by 

( ) 0123
3 =+++ ekekeke &&&  (3.20) 

The error function ( )te  satisfies a linear differential equation of order 3, whose 

coefficients can be arbitrarily preset. The coefficients ( )3,2,1=iki  are chosen such that 

the characteristic equation associated with (3.20)  

( ) 12
2

3
3 kskskssA +++=  (3.21) 
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has all its roots strictly in the left hand plane. Using the Routh-Hurwitz stability 

criterion, the coefficients should be selected as 31231 ,0,0 kkkkk >>> . Therefore, under 

the effect of an input of the form (3.17), the output of the system tracks the desired 

output ( )tyr  with an error which can be made to converge to zero, as ∞→t , with 

arbitrarily fast exponential decay. 

The physical control input u  is given by 

( )

( )
⎥
⎦

⎤−−−+⎟
⎠
⎞

⎜
⎝
⎛ ++

⎢⎣
⎡ −−−−=

ekekekyx
R

xx
R

xx
x
Ru

r 123
32

3

2
312

2
1

3

1
3
2

3
2142

4
9

&&&α

αα
    (3.22) 

The feedback control input u  is undefined at .03 =x  03 =x  means there is no charge 

across the device and hence the induced electrostatic force and applied voltage are zero. 

Under these conditions, the system is at rest with 0321 === xxx . The system (3.12) is 

inherently stable at the origin under zero voltage bias. Therefore, the control (3.22) will 

stabilize the system in all gaps except at the origin, where it is adequate to remove the 

control input. 

The implementation of this feedback control law requires the measurement of 

the device velocity 2x . The measurement of the velocity is very costly and difficult. A 

reduced order nonlinear state observer is thus constructed to provide a reliable estimate 

of the velocity for feedback. 
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3.4 Nonlinear Reduced-Order State Observer Design for Velocity 

 The voltage and capacitance across the device can be easily and accurately 

measured at a relatively low cost. From these measurements, the charge across the 

device ( )3x  and the deflection of the movable plate ( )1x  are easily deductible. However, 

the measurement of the device velocity is relatively costly and difficult. A reduced 

order state observer that reliably and accurately estimates the device velocity with 

arbitrarily fast error dynamics is constructed to confront this problem.  

 A possible reduced order observer for 2x  is constructed by prior coordinate 

transformation similar to that used in linear reduced order observer design [21]. We 

define a state observer utilizing the nonlinear model for the device velocity with a linear 

injection term as 

2
2
3122 ˆ3ˆ2 xkxxxx d−+−−= α&      (3.23) 

122ˆ xkxx d+=        (3.24) 

where 2x̂  is the observer estimate. 

3.4.1 Observer Estimation Error Dynamics 

 Differentiating (3.24) results in the observer dynamics 

( )22
2
3122 ˆ3ˆ2ˆ xxkxxxx d −++−−= α&     (3.25) 

Even though the dynamics of 2x̂&  contains 2x  (the unknown state variable), the actual 

computation of the observer is done using (3.23) and (3.24) and hence 2x  is not 

explicitly used. The observer estimation error dynamics is given by  
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( ) 22
~2~ xkx d+−= α&     (3.26) 

where 222 ˆ~ xxx −= is the estimation error. 

3.4.2 Stability Analysis 

The stability of the proposed observer (3.23), (3.24) is here analyzed using 

Lyapunov theory. Consider the Lyapunov function candidate 

( ) 2
22

~
2
1~ xxVobs =     (3.27) 

Its derivative along the trajectories of (3.26) is  

( ) ( ) 2
2222

~2~~~ xkxxxV dobs +−== α&&     (3.28) 

Utilizing the useful property ( ) ( ) 2
2

2
2

~ txtx ≤  and letting ( )dk+= αβ 2  we obtain 

( ) ( ) 2
22

~~ txxVobs β−≤&      (3.29) 

where .  denotes the 2L - norm. If ,0>β  we see that ( ) ,0~
2 <xVobs

&  0~
2 ≠∀ x  and the 

equilibrium point 0ˆ~
222 =−= xxx is uniform globally exponentially stable. 

3.5 Cascaded Nonlinear Observer-Controller Design 

In this section, we show how we can replace the state 2x  with the estimated 

state 2x̂  from the observer in the nonlinear full state feedback linearization based 

controller and still guarantee the stability of the closed-loop observer-controller system. 

 The tracking error dynamics (3.20) can be put in the equivalent state space form 

Aee=&  where 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−−
=

321

100
010

kkk
A  . If we replace the state 2x  with the estimated state 



 

 44

2x̂  from the nonlinear reduced order observer in the feedback control law (3.22), the 

perturbed system is given by 

2
~xbAee +=&     (3.30) 

where ( )[ ]T
d kkkb 2

2
3 14200 −+−+= αα . 

 It is important to realize that the tracking error dynamics is driven by the 

observer estimation error term which is exponentially decaying. It is also clear that as 

long as A  is asymptotically stable, the tracking error will be bounded as long as the 

estimation error is. The magnitude of the tracking error depends on the degree of 

stability of A  as well as the magnitude of the estimation error. A more stable A  and 

proper observer convergence results in a smaller tracking error. From a practical point 

of view, we impose a stringent, critical condition limiting the growth rate of 2
~x . It is 

assumed that the perturbation term 2
~xb  satisfies the relation 

222
~~ xxbx ∀≤ δ     (3.31) 

where δ  is a nonnegative constant. This translates to δ≤b . 

 Lyapunov stability analysis is used to show the stability of the feedback 

linearization controller with the estimated state 2x̂ . If the zero state equilibrium of the 

nominal system tracking error dynamics is exponentially stable, then there exist a 

Lyapunov function ( )eVcon  and strictly positive constants 4,...,1, =iiα  that satisfies 

( ) 2
2

2
1 eeVe con αα ≤≤     (3.32) 

( ) 2
3 eeVcon α−≤&      (3.33) 
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( )
e

e
eVcon

4α≤
∂

∂      (3.34) 

 The derivative of ( )eVcon  along the trajectories of the perturbed system, (3.30) is 

given by 

( ) ( ) ( )
2

~xb
e

eVeVeV connom
concon ∂

∂+= &&    (3.35) 

where ( )eV nom
con
&  is given by (3.33). 

Substituting (3.33) into (3.35) and simplifying gives 

( ) ( )
2

2
3

~x
e

eV
eeV con

con ∂
∂

+−≤ δα&     (3.36) 

Further simplification results in, 

( ) exeeVcon 24
2

3
~αδα +−≤&     (3.37) 

Now consider the composite Lyapunov function 

( ) ( ) ( )xVeVexV obscon +=,~
2     (3.38) 

for the total system (observer and controller). Then 

( ) 2
224

2
32

~~,~ xexeexV βαδα −+−≤&     (3.39) 

where β  is given by (3.29). Manipulation of (3.39) results in 

( ) [ ] ⎥
⎦

⎤
⎢
⎣

⎡
−≤

2
22 ~

~,~
x
e

MxeexV&     (3.40) 

where  

⎥
⎦

⎤
⎢
⎣

⎡
−

−
=

βδα
δαα

4
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5.0
5.0

M      (3.41) 
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For ( )exV ,~
2

&  to be negative, it is sufficient that the leading principal minors of the 22x  

matrix M  be positive [22], that is 

03 >α      (3.42) 

2
4

32 4
α

βαδ <     (3.43) 

Condition (3.42) is already satisfied. If δ satisfies (3.43), we see that 

( ) 0,0~,0,~
22 ≠≠∀< exexV& and the equilibrium point ( ) ( )0,0,~

2 =ex  is uniform globally 

exponentially stable. 

3.6 Simulation Results 

The performance of the proposed control scheme is simulated on the MEMS 

electrostatic microactuator using MATLAB/SIMULINK. The reference signal used in 

the simulation selected such that ry  is the desired final equilibrium position and 

thus ( ) 03 === rrr yyy &&& .  

 For purposes of comparison and demonstration of the effectiveness of the 

controller, the open-loop system is first simulated under constant voltage actuation 

conditions. In Figure 3.3, the open – loop system is simulated with an applied voltage of 

PIs VV = . 
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 Figure 3.3 Open-loop System under Constant Voltage Actuation with  PIs VV =  

 

Figure 4 shows results of simulations for the open-loop system under constant voltage 

actuation with an applied voltage of PIs VV 1.1= . 

1/3 
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Figure 3.4 Open-loop System under Constant Voltage Actuation with PIs VV 1.1=  

 

The responses in figures 3.3 and 4.4 show that with an applied voltage equal to 

the pull-in voltage, the system has 1 equilibrium position at a deflection of 31  the 

nominal gap and the system has a very slow response time. Also, for an applied voltage 

greater than the pull-in voltage, the system has no stable equilibrium position and the 

electrostatic force acting on the movable plate is much greater than the restoring force 

resulting in its collapse to the stationary plate position. 

 Figure 3.5 shows results of MATLAB/SIMULINK simulations using the 

proposed control method for responses corresponding to a deflection of 30%, 60% and 
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90% of the nominal capacitive gap for a system with a damping ratio 1=α . It is 

assumed that initially the movable plate is at the equilibrium position ( )000  ie. the 

rest position of the microactuator. To initiate motion from the rest position, a relatively 

small voltage is momentarily applied to the system. A saturation block is employed to 

impose upper and lower bounds on the control input signal. Note that all units are non-

dimensional corresponding to the normalized state space representation (3.12).  
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Figure 3.5 Normalized Plate Deflection vs. Normalized Time for a 
microactuator with a damping ratio 1=α  

 



 

 50

 Figure 3.6 show the results of simulations corresponding to a deflection of 30%, 

60% and 90% of the normalized gap for three systems with damping ratios 0.1, 0.5 and 

2.5. 
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Figure 3.6 Normalized Plate Deflection vs. Normalized Time for electrostatic 
microactuators with damping ratio variations 

 

 The time responses in figures 3.5 and 3.6 show a fast response time with almost 

negligible overshoot and no oscillations. This clearly demonstrates an immense 

improvement in the dynamic performance of the microactuator system beyond the 

“pull-in” instability point. Also, the effect of damping on the system dynamic response 

is relatively out of merit but more pronounced for larger deflections. All simulations 
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were performed with the same controller designed using a nominal plant model with a 

damping ratio 1=α  . It can thus be inferred from the simulation results that the 

proposed nonlinear controller and observer design approaches presented have extremely 

good parameter robustness. Another interesting observation is that the initial control 

signal spikes due to the initial small value of charge on the movable plate makes the 

plates of the electrostatic microactuator initially attract each other strongly, speeding up 

the system response. 

 Because feedback and state estimation based on the measurement of the output 

of a system are inherently noisy, we simulate the proposed control scheme in the 

presence of measurement noise to investigate its noise rejection capabilities. The 

measurement noise is modeled as discrete-time white Gaussian distributed noise. Figure 

3.7 shows the system response corresponding to 30%, 60% and 90% of the nominal 

capacitive gap for a system having a damping ratio of 1 under output measurement 

noise conditions. 
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Figure 3.7 Normalized Plate Deflection vs. Normalized Time for a 
microactuator under output measurement noise conditions. 

 

 It is observed that in the presence of output measurement noise, the system 

performance deteriorates. The performance depreciation is most significant for small 

displacements. The relatively poor system dynamic performance may be attributed to 

the fact that, the measurement noise is multiplied by the observer gain in the observer. 

This implies that the observer gain should be carefully tuned to prevent the effect of 

noise from “blowing up” while not compromising on the overall system performance.   
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3.7 Conclusions 

 This paper primarily focused on the development of a nonlinear tracking control 

system that stabilizes electrostatic microactuators and increased the range of stable and 

controllable motion to the entire capacitive gap under suitable operation conditions.  

 An input-output feedback linearization approach to nonlinear state feedback 

controller design is illustrated and implemented with the aid of a nonlinear reduced-

order velocity observer. The numerical simulations demonstrate explicitly that the 

proposed control scheme has extremely good tracking performance even in the presence 

of output measurement noise inherent in feedback control. The effect of the natural 

damping of the mechanical system on the microactuator dynamics is also appreciably 

diminished with this control strategy. 
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CHAPTER 4 

A NEW DESIGN FOR FIBER-OPTIC PRESSURE MICROSENSORS 

4.1 Introduction 

The inherent, natural Micro electro mechanical systems (MEMS) properties of 

small size and potentially low cost is encouraging the liberal usage of MEMS devices in 

many applications hitherto dominated by macro devices. One such application which 

has seen tremendous increase in interest in both industry and academia is the 

development of fiber-optic MEMS pressure sensors. 

 Fiber-optic pressure microsensors offer unique benefits over electrical sensors 

which usually employ capacitive or piezoelectric detection schemes [23]. They are more 

suitable for harsh environmental applications characterized by high temperatures, high 

levels of electromagnetic interference, chemical attack, or in the presence of explosive 

materials. They feature excellent repeatability, high accuracy and reliability under 

varying environmental conditions. In addition operation conditions are highly consistent 

from one sensor to the other and they feature high resolution and sensitivity. These 

advantages make them suitable for delicate in-vivo and in vitro applications to aid in 

medical diagnosis and prognosis [24]. Fiber optic pressure sensors are mostly classified 

into two main categories: interferometers in which optical phase is affected and 

intensity-based devices in which optical intensity is modulated. 
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Fiber-optic microsensors contain sensing elements that mostly consists of a thin 

diaphragm. In the interferometers, the optical fiber is positioned close to the fiber to 

create a Fabry-Perot cavity. Optical interference detected with the aid of the optical 

fiber and optical detector is used to determine the deflection of the diaphragm, which is 

proportional to the applied fluid pressure. Microsensors based on Fabry-Perot 

interferometry fabricated directly on the tip of the optical fiber have been developed in 

various research studies [23] - [25]. These interferometric sensors have the advantages 

of ultra high resolution, accuracy and configuration versatility [32]. However, they have 

the disadvantages of relative measurement, fringe direction ambiguity, and costly signal 

processing [33]. To eliminate fringe direction ambiguity and relative measurement 

limitations associated with interferometric sensors, the interferometric sensors are 

normally designed such that it is operated over the linear range between a valley and a 

peak of one interference fringe. This limits the pressure sensing range. 

In contrast to fiber interferometers, the intensity-based devices have the 

advantages of simple signal demodulation, absolute measurement, and high frequency 

response. Its main limitations are that, in addition to the measurand, the sensor output is 

also sensitive to source power variations and fiber bending losses, which are often 

misinterpreted as measurand changes. Real-time self-calibration to compensate for these 

unwanted changes is thus imperative.  

 In this work, a novel miniature fiber-optic pressure sensor which utilizes both 

optical interference and optical intensity modulation is presented. Our primary objective 

is to eliminate fringe direction ambiguity and relative measurement limitations 
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associated with interferometric sensors by the incorporation of optical intensity 

modulation. In the design, the fiber axis is misaligned with respect to the center of the 

deflecting diaphragm. In this misaligned position, when the diaphragm deflects, the 

light coupling from diaphragm to fiber occurs on the slope of the deformed diaphragm 

reducing coupling efficiency significantly. This modulated intensity is used in 

combination with the optical interference pattern to determine the applied pressure. 

Experimental results demonstrate the advantages of this improved design. 

4.2 Sensor System Design and Principle of Operation 

The structure of the complete fiber-optic pressure sensor system is shown in figure 4.1. 

It consists of the sensor, a 50/125μm graded index multimode fiber with a numerical 

aperture of 0.2, a 633nm HeNe laser source, and an optical detector. The multimode 

fiber has 2 x 2 coupler with a 50/50 split ratio. 

 

 

Figure 4.1 Complete Sensor System 
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The light from the HeNe laser source is launched into the one end of the optical 

fiber through a 20X objective microscope attached to a 3-DOF (degree of freedom) 

micro translation stage for alignment. The laser light passes through the optical fiber 

coupler to the sensor. The light reflected from the sensor passes through the optical 

fiber coupler to the optical detector which is used to get the interference pattern with the 

aid of a data acquisition card. With the 2 x 2 coupler with a 50/50 split ratio used, 

choosing any of the four legs as the input, the output is split equally between the 

opposite two legs. In this application, the fourth leg is unused. The reflected light which 

is used for pressure monitoring is split 50/50 between the two fibers on the left side of 

the coupler in figure 4.1. 50% of the return signal would be sent to the optical detector 

and 50% returned on the original input fiber connected to the source.  

 The sensor is formed at the tip of the optical fiber. The design of the sensor head 

is as shown in figure 4.2. The sensor head has a circular diaphragm with a diameter 

much greater than the diameter of the optical fiber core. The complete system consists 

of the Si diaphragm and a micromachined glass substrate with a cavity and a hole for 

the fiber. The Si diaphragm and glass substrates are bonded together by anodic wafer 

bonding. The optical fiber is placed in a capillary tube and inserted into the hole in the 

glass substrate. The width of the cavity between the glass surface and the fiber end is 

made smaller than the fiber diameter so that it serves as a stop for positioning the fiber.  

The fiber core axis is misaligned by a distance d from the center of the diaphragm. 
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Figure 4.2 Sensor Head Design 

 

The gap between the tip of the optical fiber and the diaphragm constitute a 

Fabry – Perot interferometer. The Fabry-Perot interferometer works on the principle of 

constructive interference. Applying pressure to the diaphragm causes a deflection of the 

diaphragm and modulates the air gap length. The incident light from the HeNe laser 

source is first partially reflected at the output fiber end glass-air interface. The 

remainder of the light is then modulated at the Fabry-Perot interferometer of the sensor. 

The light reflected by the sensor travels back along the same fiber with the light 

reflected from the glass-air interface to the optical detector. The interferometric 

superposition of the multiple reflections generates the output signal which is a function 

of the Fabry-Perot cavity length. A schematic of a Fabry-Perot cavity between an 

optical fiber and a reflective mirror is shown in figure 4.3. 
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Figure 4.3 Illustration of a Fabry Perot Cavity 

 

 For an interferometric-intensity based pressure sensor, the intensity of the sensor 

output will change sinusoidally with the air-gap changes. In order to eliminate fringe 

direction ambiguity, the sensor can be designed such that it is operated within a linear 

range of one fringe as shown in figure 4.4. This decreases the sensing range. 

In this work, we try to eliminate this limitation by designing the sensor with the 

fiber misaligned with respect to the center of the diaphragm. The consequence of 

misaligning the fiber axis with the center of the diaphragm is the introduction of more 

losses in the light coupling from diaphragm to fiber. This occurs because the light from 

the laser is reflected along the slope of the deformed diaphragm. The tradeoff is a more 

tedious fabrication process as a misalignment to a micron scale precision is not easy to 

achieve. 
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Figure 4.4 Interference Fringes versus Sensor Air-Gap 
 
  

4.3 Diaphragm Deflection Analysis 

 The out-of-plane deflection w of a clamped circular diaphragm under a uniform 

applied pressure P is a function of the pressure difference and the radial distance and is 

given by [26], [31].      

( )
224

1
64 ⎥

⎥
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⎤

⎢
⎢
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⎡
⎟
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⎞

⎜
⎝
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D
Parw     (4.1) 

where r and a  are the radial coordinate and diaphragm radius respectively. D  is the 

flexural rigidity, which is a measurement of stiffness and is given by 

( )2
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112 v
EhD

−
=      (4.2) 
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where vandhE ,,  are Young’s modulus, diaphragm thickness and Poisson’s ratio 

respectively.  

For a clamped circular diaphragm, the deflection varies from zero at the edges 

to the maximum value at its center. The deflection curve under pressure is obtained 

from (4.1) by putting it in the form 

( )
22

max 1
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−=

a
rwrw     (4.3) 

where maxw  is the maximum deflection which occurs at the centre of the diaphragm. 

Equations (4.1) and (4.3) are valid only when the deflection is less than 30% of the 

thickness of the diaphragm [31], which implies hy 3.0max < . 
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Figure 4.5 Deflection Curve of the Diaphragm under Pressure 
 
 
The slope of the deformed diaphragm is given by 
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( ) ( )32

16
rra

D
P

dr
rw +−=∂     (4.4) 

The slope is maximum when 3ar = . This implies that maximum coupling loss of the 

reflected light from the diaphragm due to misalignment would be obtained when the 

fiber is positioned at a distance of 3a  from the center of the diaphragm. A plot of the 

slope of the deformed diaphragm is shown in figure 6.  
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Figure 4.6 Slope of Deformed Diaphragm 
 
 

4.4 Optical Analysis 

 The novel pressure microsensor design utilizes the increased optical intensity 

modulation due to the reflection from the slope of the deformed diaphragm. The main 

losses in the fiber coupling can be categorized into intrinsic and extrinsic losses. Due to 

the fact that only one optical fiber is used, Fresnel reflection loss at the fiber glass-air 

interface in the sensor is the only intrinsic loss in the system. The difference in the 
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refractive indices of the fiber glass and air reduces the optical power getting out of the 

optical fiber by the factor [27] 

2

1

1
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
−

=
nn
nnR      (4.5) 

where R is the Fresnel reflection or the reflectivity at the fiber core end face, 1n  is the 

refractive index of he fiber core and n is the refractive index of air. Fresnel reflection is 

calculated to be about 4% of the incident optical power which results in a loss of 

0.14dB. 

 To estimate the extrinsic losses in the system, the light coupling between the 

fiber and diaphragm is modeled as fiber to fiber coupling with an air gap of twice the 

length of the sensor cavity as in figure 4.7. 

 

Figure 4.7 Fiber Coupling Model showing Extrinsic Mismatches 

 The extrinsic losses occurring in the system is a combination of losses due to 

radial offset, air gap separation and angular misalignment. It should be noted that the 

losses due to radial offset and angular misalignment are a consequence of the 

misalignment between the fiber axis and the center of the diaphragm. 
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 From the sensor head design in figure 4.2 and the coupling model in figure 4.7, 

applying a pressure P  causes a deflection w  of the diaphragm reducing the air gap 

length to wz −  and causing a fiber coupling tilt angle of α  with a corresponding axial 

displacement of ( )αwz − . There is no general equation describing the combinations of 

extrinsic mismatches. Therefore, the behavior of losses in the presence of single 

coupling errors is discussed.  

Longitudinal (end) separation occurs when the fibers have the same axis, but 

have a gap z2  between their end faces. [28], [29]. Using a geometrical optics approach, 

the coupling efficiency of two identical graded index fibers with a gap is [29] 

With 
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( )ar=ρ     (4.8) 

where g is the profile exponent ( 2=g  for parabolic index profile), ( )a
z2=ζ  is the 

normalized air gap distance, a is the core radius, N is the on-axis numerical aperture of 

the fiber and r  is the distance from the fiber axis. 

Angular misalignment results when the two fiber axes form an angle so that the 

fiber end surfaces are no longer parallel. Using geometrical optics, the coupling 

efficiency of two identical graded index fibers with a parabolic index profile is found to 

be [28] 
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where Δ  is the relative refractive index difference and ( )2sin αγ =  with α being the 

fiber tilt angle. 

 Radial offset (axial or lateral displacement) results when the axes of the two 

fibers are parallel but separated by a distance d2 radially. The fiber coupling efficiency 

of two identical graded index fibers with parabolic index profile is [28] 
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Plots of the coupling efficiencies and corresponding attenuations in dB are shown in 

[28, 29, 30]. From the plots it can be inferred that radial offset and angular 

misalignment have equal effect on the coupling loss, and they lead to greater losses than 

end separation. Thus, with the introduction of radial offset and angular misalignment 

losses in the microsensor system, the optical intensity modulation with changes in 

applied pressure and hence the sensitivity would increase appreciably. 

4.5 Experimental Setup 

 An experimental set up which mimics the behavior of the actual pressure 

microsensor was used to investigate the performance characteristics of the microsensor. 

The setup is similar to figure 4.1 except that the sensor head was not fabricated at the tip 

of the optical fiber. In the experiment, the end of the optical fiber (connected to the 

sensor head in figure 4.1) was attached to a 2-DOF precision stage motorized and set 

against a fine Au/Cr plated fixed silicon piece. The precision motorized stage comprises 



 

 

 

66

a motorized actuator and a motorized rotator for varying the air gap length between the 

fiber and mirror and the fiber tilt angle respectively. The laser light generated by the 

HeNe source is modulated in the sensor cavity and reflected back along the same fiber 

to an optical detector. The reflected signal data obtained from the detector is captured 

with a data acquisition card for analysis. 

 The central idea behind this experimental procedure is that when pressure acts 

on the actual diaphragm, the corresponding deflection of the diaphragm changes the air 

gap length and the reflection occurring on the slope of the deformed diaphragm means a 

change in angular misalignment of the reflected light with respect to the fiber axis. This 

is equivalent to having a fixed diaphragm and changing the fiber position and tilt angle 

with respect to the diaphragm. The pressure – deflection characteristics of (4.1) and 

(4.3) is comparable to the distance and tilt angle variation of the optical fiber in this 

experiment. 

4.6 Experimental Results 

The diaphragm deflection relation of equation (4.1) was simulated with the fiber 

at different radial locations to show the effect of the extrinsic mismatches on the 

coupling efficiency. The system parameters used in the simulations are: 

Initial cavity length z = 30μm. 

Relative refractive index difference ∆ = 0.01 

Numerical Aperture N = 0.2 

Profile exponent g = 2 (parabolic index profile) 

Fiber Core radius b = 25 x 10-6m 
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Young's modulus of silicon E = 160 x 109Nm-2 

Poisson’s ratio v = 0.22 

Diaphragm thickness h = 4 x 10-6m 

Diaphragm radius a = 300 x 10-6m 

Wavelength of laser source λ = 633nm. 

Figure 4.8 shows the effect of changes in the air gap separation due to applied pressure 

on the coupling efficiency simulated at different radial locations.  
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Figure 4.8 Simulated Coupling Efficiency due to End Separation at Different 
Radial Locations 
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Figure 4.9 shows the effect of angular misalignment on the coupling efficiency due to 

applied pressure simulated at different radial locations. 
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Figure 4.9 Simulated Coupling Efficiency due to Angular Misalignment at 
Different Radial Locations 

 
 
The effect of radial offset is comparable to that of angular misalignment. From figures 

4.8 and 4.9, it is seen that when pressure increases, the air gap separation reduces and 

there is a gain in optical intensity, whilst angular misalignment increases resulting in a 

decrease in intensity. Also, the effects of angular misalignment and radial offset are 

more pronounced than gap separation. This results in a net coupling efficiency loss with 

applied pressure. Note that the effect of angular misalignment is maximum at 3ar =  
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which agrees with the diaphragm deflection analysis presented in section 4.3. The 

transmitted power of the reflected signal from the mirror was measured for a 10 μm 

change in air gap at preset fiber tilt angles. The tilt angles were preset because it was not 

possible to accurately estimate the air gap length when the fiber tilt angle and the air 

gap length were changed simultaneously. This is to mimic the behavior of the actual 

sensor which has both the gap and fiber tilt angles changing with applied pressure. The 

measured power in volts after signal processing is shown in figure 4.10. 
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Figure 4.10 Power Variations at Various Tilt Angles and Cavity Lengths 
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It is observed that the periodic length of the oscillating phenomenon is roughly half the 

optical wavelength, which is 316.5 nm and it agrees with that of a Fabry-Perot Cavity. 

Also the intensity decreases as the tilt angle increases. Figure 4.11 shows the 

combination of experimental results of transmission loss (power change) with respect to 

simulated pressure-diaphragm characteristics.  
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Figure 4.11 Experimentally obtained Transmission Loss with respect to 
Simulated Pressure Changes 

 

According to figure 4.11, the sensor with the fiber located at a radial distance of 

3ar =  has the highest sensitivity with respect to applied pressure. Compared to the 

fiber located at the centre of the diaphragm, the increase in sensitivity is about 66%.  
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4.7 Conclusions 

 A new design for a fiber optic pressure sensor was designed, analyzed and 

experimentally tested. This design has the potential to reduce the limitations of fringe 

direction ambiguity in interferometric-intensity based pressure sensors. The sensitivity 

of this design is about 66% higher than conventional interferometric-intensity based 

pressure sensors. This sensor can be fabricated with simple micromachining processes 

compatible with MEMS.   
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