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ABSTRACT

A NEW METHOD FOR NONRIGID REGISTRATION OF 3D IMAGES

MEHMET ALI AKINLAR, Ph.D.

The University of Texas at Arlington, 2009

Supervising Professor: Guojun Liao

In this dissertation we present a novel method for the nonrigid registration of

3D images using a well-established mathematical framework mostly known as the

deformation based grid generation method. The deformation based grid generation

method is able to generate a grid with desired grid density distribution that is free

from grid folding. This method gives direct control over the cell size of the adaptive

grid and determines the node velocities directly. The adaptive grid system naturally

distributes more grids to deprived areas. The positive monitor function disallows grid

folding and provides a mean to control the ratio of the areas between the original and

transformed domain. Based on these, we have successfully developed a new non-rigid

registration method that has many advantages: Firstly, it is based on a solid math-

ematical foundation. In particular, it accounts for local volume changes through the

divergence of the transformation; and it accounts for local rotation through the curl

vector of the transformation. Secondly, the method is based on a linear differential

system; its numerical implementation is fast, stable, simple and robust. Thirdly, it

does not require to use of any regularization term. Finally, the method is general

in the sense that it may be used in any optimization problem that involves motion
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estimation. Thus, it has the potential to be the numerical kernel for a wide range of

applications.
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CHAPTER 1

INTRODUCTION TO IMAGE REGISTRATION

This dissertation provides a systematic method for the nonrigid registration of

3D images using some techniques of the grid deformation and multigrid optimization.

Image registration can be defined as a process of determining the optimal trans-

form that maps points from one image to the corresponding points in another image.

The images could be of the same or different individuals and imaging modalities, and

possibly taken at different distances, angles and times. In basic terms, the image

registration can be described as finding a special correspondence between pixels (or

voxels) of two images, i.e. finding special grids. Figure 1.1 illustrates an example of

template and reference images. Image registration has a broad applications areas in

medical and nonmedical images, some of which are to detect tumors and locate dis-

eases, monitoring of changes in an individual, drug discovery, combining information

from multiple sources and motion tracking. The most well-known medical imaging

modalities are magnetic resonance imaging (MRI), ultrasound (US), computed to-

mography (CT), single emission computed tomography (SPECT), positron emission

tomography (PET), functional MRI (fMRI), X-Ray, diffusion tensor imaging (DTI)

and to name a few more.

The methodology behind the image registration concept can be described as to

determine the optimal transformations that maximize the “similarity” or minimize

the “dissimilarity” between images. The subject of medical image registration, as

mentioned above, has broad application areas, some of which are cardiac motion [12],

neuro-degenerative brain imaging [13], breast imaging [14], liver and prostate imaging

1
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Figure 1.1. An example for template and reference images.

[16], and to name a few more.

Pictures of the brain obtained using some different imaging modalities are il-

lustrated in figure 1.2.

In the literature there are a large amount of work for the problem of nonrigid

image registration. For instance, image registration methods based on image cor-

relation have been studied [27]. Medical image registration methods are presented

in References ([18], [19], [20], [21]). In Reference [22] the surface based registration

methods in medical imaging are reviewed. Some other types of image registration

methods are described in ([24], [25], [26]).

In this thesis our aim is to present a systematic method for the nonrigid regis-

tration of 3D images using some special techniques of the grid deformation method

and multigrid optimization. Our method for nonrigid registration of 3D images is de-

veloped by adjusting divergence and curl of an intermediate vector field from which

the deformation field is computed using Lagrange multipliers method. Numerical so-
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Figure 1.2. Imaging modalities.

lutions of the 3D Poisson equations (decoupling system) is obtained by means of the

finite-difference approximations method. The sum of square differences (SSD) is em-

ployed as the similarity measure in the cost minimization of the existing registration

framework.

In order to better understand the strength of our method, we can list some of

the merits of our method as follows:

• It is based on a solid mathematical foundation. In particular, it accounts for

local volume changes through the divergence of the transformation; and it ac-

counts for local rotation through the curl vector of the transformation.

• The method is based on a linear differential system; its numerical implementa-

tion is fast, stable, simple and robust.
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• The method is general in the sense that it may be used in any optimization

problem that involves motion estimation. Thus, it has the potential to be the

numerical kernel for a wide range of applications.

• It does not require to use of any regularization term.

The main contribution of this thesis to the subject is to present and

implement a systematic method for the nonrigid registration of 3D images using

some special techniques of the grid deformation and multigrid optimization methods.

Although we emphasize the work in 3D case in this thesis, our method works quite

well in the registration of 2D images.

This dissertation is organized as follows: In the first chapter we give an intro-

duction to the concept of the image registration. The second chapter considers the

image registration problem as a computer programming algorithm and overview the

concepts of transformation models, similarity measures, and optimization methods.

In the chapter three we describe the grid deformation method and then set up the un-

constrained optimization problems using Lagrange multipliers method. In the same

chapter we give our method for the nonrigid registration of 3D images. We obtain nu-

merical solution of the optimization problems using finite-difference approximations

method. Finally we apply our method to a 3D and a 2D example in our order to

illustrate our method.



CHAPTER 2

IMAGE REGISTRATION ALGORITHM

The purpose of this chapter is to describe the image registration as an optimiza-

tion problem and then overview the components of the image registration algorithm.

The registration problem may be phrased as

J [R, T ;u] := min {Csim + βCreg},

where Csim is the similarity metric between template and reference images and Creg is

the regularization term due to cracks, folding, or other unwanted deformations, and

β is the regularization constant. Typical regularizer are the fluid, elastic, diffusive,

and curvature smoother.

We can consider the image registration problem as a computer programming

algorithm that consists of three major components:

• Transformation models: Rigid, Nonrigid.

• Similarity measures: Intensity-based, Geometry-based.

• Optimization methods: Lagrange multipliers method, Gradient Descent

method, Levenberg-Marquardt method, Deterministic Anealing optimization

method, Downhill Simplex method, Quasi-Newton, Newton-Raphson method,

etc.

2.1 Transformation Models

The goal of transformation models is twofold: Firstly, controlling movement

of image features relative to one another to improve the image similarity. Secondly,

interpolation between those features. Our method to register 3D images is based on

5
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the deformation based grid generation method which will be described in the next

chapter. We divide the transformation models into two main groups: Rigid and

nonrigid.

An image transformation is called rigid, only if rotations, translations, pro-

jections, scaling are used. In particular, if the transformation maps parallel lines

onto parallel lines it is called affine. Finally, if it maps lines onto curves, it is called

nonrigid. Next we briefly study each of these transformations.

Rigid Transformations: A rigid image registration mainly consists of rota-

tions, translations, projections, scaling. A rigid transformation maps a line onto a

line. Rigid transformations are global and linear, hence they can be represented by

matrices. Because affine and projective transformations can be represented by means

of matrices, we consider them as a part of rigid transformations. In the literature

rigid transformations have found application areas in orthopedic imaging because of

the rigid-transformations do not consider soft tissue deformations. Bone growth can

be given as a specific example for rigid image registration.

Nonrigid image registration: Nonrigid image registration is an essential

tool required for overcoming, for example, soft tissue deformations in medical images.

Unlike rigid transformations, nonrigid transformations do not map a line onto a line

and, in general, maps a line onto a curve. Nonrigid registrations are mostly local

and are not linear, so they can not be represented by means of matrices. The most

well-known nonrigid image registrations types are the viscous fluid algorithm ([3],

[29], [30], [31], [32]), elastic methods [33], Optical flow methods [34], [35], Thin-Plate

Spline and cubic B-spline [37], [12], and the references therein.
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2.2 Similarity Metrics

Similarity metric is the most important component in the registration process.

Corresponding features in two images may be different from one to another due to

the different imaging modalities and imaging conditions. A good similarity measure

has to take into account these factors and it should be efficient and stable. We

can separate similarity metrics into two major components as intensity-based and

geometry based. Next we briefly overview both of these components.

Intensity-based methods: Intensity-based image registration methods match

intensity patterns in each image using mathematical or statistical criteria such as

entrophy. Although intensity-based image registration methods are more difficult

image registration method than geometry based image registration methods, the main

advantage of the intensity-based methods is all (or a large portion of) data is used in

reference and template images. The most well-known intensity-based method is the

mutual information method [38] proposed by Shannon in his theory of information as

a measure of entropy of the information shared between two signals.

Geometry-based methods: Geometry-based methods uses some feature val-

ues such as local curvature, local maximum/minimum, corner, cusp points etc. in the

reference and template images. The most popular geometry-based methods are sum

of square differences and cross-correlation.

Sum of Square Differences (SSD): SSD is one of the simplest and most popular

similarity measures. In this thesis we use the sum of square difference method in the

L2 norm sense as

SSD =
1

2

∫
Ω

(Toφ(x)−R(x))2 dx,

where φ(x) = x+u(x), and u(x) is the displacement. The SSD has several advantages

as a similarity metric such as it is fast, robust and simple. SSD provides an indirect
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measure of the registration quality: The smaller value of SSD is, the better the images

are matched.

2.3 Optimization methods

Optimization methods play significantly important role in computer vision and

image analysis. Image registration problem can be formulated as an optimization

problem whose goal is to minimize a cost function that consists of a first term that

characterizes the similarity between the reference and template images and a regu-

larization term.

The optimization problem for nonlinear registration is ill posed, hence a regular-

ization term Creg is often added to Csim. The optimization problem can be stated as:

optimize the cost function C = Csim + kCreg, where k is a parameter that represents

the tradeoff between the similarity and regularity. In our method we do not need

to use any regularization term, which is one of the powers of method. We can list

the shortcomings with the regularization term as follows: By adding a regularization

term, the resulting transformations do not optimize the similarity measure alone; in

fact, if the weighting parameter k is too small, the algorithm will be unstable. If k is

too large, the regularity will be too strong and the resulting transformations will not

accurately optimize the similarity measure.

Some of the most popular optimization techniques are Lagrange multipliers

method, Gradient Descent method, Levenberg-Marquardt method, Deterministic Aneal-

ing optimization method, Downhill Simplex method, Quasi-Newton, Newton-Raphson

method, etc.



CHAPTER 3

SOME OTHER RELATED METHODS

In this chapter we first overview some other image registration method which

uses the grid deformation method and secondly we mention some other important

nonrigid image registration methods.

M. Gunzburger and E. Lee proposed [50] a method to solve 2D image registra-

tion method using the grid deformation method. Perhaps this is the closest work with

our method. Both method uses the GDM. The major differences between our method

and [50] are: our method works for 3D case and it does not contain some ordinary

differential equations (ODEs) as constraints, but the problem in [50] has been studied

for the 2D case and includes some ODEs appearing in the GDM. Optimality systems

in each work are different not only in the number of Poisson equations appearing in

the optimality system but also in the way of obtaining them. Numerical methods and

computational examples are also quite different in these two work.

Another approach for nonrigid image registration using mutual information

was introduced in [14]. This is a fast parametric method for nonrigid registration

which was developed by adjusting divergence and curl of the intermediate vector

field in the grid deformation method from which the deformation field is computed

using finite-cental difference method. This method incorporates mutual information

with gradient descent optimization into the nonrigid image registration for dynamic

contrast-enhanced breast MRI. The authors point out that the multi resolution strat-

egy cuts down the registration time which makes the method feasible for clinical

practice. This algorithm is scalable to handle 3D real image data and capable to

9
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register between different image modalities. Mei Yi Chu presented a similar work in

her Ph.D thesis [60].

Using deformation based grid generation C.-Y. Hsieh, et al. gave another

method [54], namely, “NiRuDeGG” which stands for “Nonrigid Image registration

Using Deformation based Grid Generation” which involves no regularization term.

The divergence-curl system in the grid deformation method is solved by LSFEM

method. C.-Y. Hsieh uses the same ideas in his Ph.D thesis [61]. Another nonrigid

image registration method based on Helmholt’s theorem was given [55] by the same

set of the authors. Helmholtz’s theorem states that, with suitable boundary condi-

tion, a vector field is completely determined if both of its divergence and curl are

specified everywhere. Based on this, the method in [55] was developed. Instead of

the displacements of regular control grid points, the curl and divergence at each grid

point are employed as the parameters. the authors point out that this method allows

for a more efficient optimization scheme over the NiRuDeGG method.

B. B. Avants, et al., presented [56] a Lagrangian reference frame diffeomorphic

image and landmark registration method. The algorithm uses the fixed Lagrangian

reference frame to define the map between coordinate systems, but also generates and

stores the inverse map from the Eulerian to the Lagrangian frame. Computing both

maps allows facile computation of both Eulerian and Lagrangian quantities. The

authors apply this algorithm to estimating a putative evolutionary change of coordi-

nates between a population of chimpanzee and human cortices. Instead of basing the

inter-species study on a single species atlas, the authors diffeomorphically connect the

mean shape and intensity templates for each group. The human statistics then map

diffeomorphically into the space of the chimpanzee cortex providing a comparison

between species. The population statistics show a significant doubling of the relative

prefrontal lobe size in humans, as compared to to chimpanzees.
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A. Leow et al. point out [57] that maps of local tissue compression or ex-

pansion are often computed by comparing magnetic resonance imaging (MRI) scans

using nonlinear image registration. The resulting changes are commonly analyzed us-

ing tensor-based morphometry to make inferences about anatomical differences, often

based on the Jacobian map, which estimates local tissue gain or loss. In [57], A. Leow

et al., provide rigorous mathematical analysis of the Jacobian maps, and use them to

motivate a new numerical method to construct unbiased nonlinear image registration.

First, they argue that log-arithmic transformation is crucial for analyzing Jacobian

values representing morphometric differences. They then examine the statistical dis-

tributions of log-Jacobian maps by defining the Kullback-Leibler (KL) distance on

material density functions arising in continuum-mechanical models. With this frame-

work, unbiased image registration can be constructed by qualifying the symmetric

KL-distance between the identity map and the resulting deformation.

M. Miller et al. examines [39] the Euler-Lagrange equations for the solution of

the large deformation diffeomorphic metric mapping problem. They compute metric

mappings via geodesic flows of diffeomorphisms. Using Lie group ideas A. Trouve

construct [40] a distance between deformations defined through a metric given the

cost of infinitesimal deformations. Then he proposes a numerical scheme to solve

a variational problem involving this distance and leading to a sub-optimal gradient

pattern matching. He established its links with fluid models. In another article [41]

by A. Trouve and L. Younes analyze a computational problem using the techniques

of Lie group actions which has important applications in image understanding and

shape analysis.

J. Modersitzki et al. give [51] an image registration method using curvature.

They show that their curvature based registration not only produces accurate and

smooth solutions but also allows for an automatic rigid alignment.



CHAPTER 4

OPTIMAL CONTROL OF IMAGE REGISTRATION

In this chapter we first describe the grid deformation method and then give the

optimal control formulation of image registration using this method. Grid generation

plays an essential role in all numerical methods that employ finite differences, finite

volume and finite elements. It is the process of discretizing the solution domain into

small cells and solutions are obtained at each nodal point. The Grid deformation

method (or deformation based grid generation method) that we use in this thesis was

outlined by Liao et al. [42]. It uses some ideas in Moser’s deformation method in

differential geometry which constructs a differentiable and invertible transformation

between two domains equipped with Riemannian metrics, which deforms the volume

element from one to the other. In order to show the strength of this method, we

can list the advantages of our method as follows: Instead of adding new nodes to the

regions where the need arises and removing the nodes where they are not needed,

the adaptive grid generation method moves grid points such that dense grids are

resulting in the regions with large variation in solution and coarse grids where the

solution variation is small without causing any mesh tangling. The theoretically

guaranteed no mesh tangling property of this adaptive grid generation method is

achieved by enforcing the Jacobian determinant of the final transformation is equal

to a prescribed positive monitor function.

In this thesis we use the adaptive grid generation to register 3D images. By

adjusting the divergence and curl parameters, the grid move in a desired way. The

positive monitor function f(x) disallows grid folding and provides a mean to control

12
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the ratio of the areas between the original and transformed domain. The flexibility of

the adaptive grid allocation could dramatically reduce processing time with quality

preserved. The SSD facilitates robust registration between different image modalities.

Next we describe the grid deformation method and then set-up the optimization

problem using the grid deformation method.

4.1 The Grid Deformation Method

In this section we overview the grid generation method (GDM) that is used for

construction of differentiable and invertible transformations to solve mesh adaption

problems. A moving-grid algorithm is formulated using the deformation method.

The idea of this method is to move the nodes with correct velocities so that the

nodal mapping has a desirable Jacobian determinant. This method was developed

in ([43], [44] ), it was improved in [45] and used with a finite-volume solver in flow

calculations in [46]. A 2D dimension version of the method was proposed in [47] and

used with a discontinuous Galerkin finite-element method in solving a convection-

diffusion problem in [48].

Three versions of the grid deformation method are available in the literature

and can be seen in [49].

First version of the grid deformation method: This is one of the steady

versions of deformation method where the transformation Jacobian determinant is

specified on the old grid x before adaption.

Description of the problem: Let Ω ⊂ Rn be a bounded convex set with Lipschitz

continuous boundary ∂Ω, and a differentiable function f : Ω→ R+, namely, monitor

(or weight) function, is given such that∫
Ω

(f − 1) = 0, or equivalently

∫
Ω

f = |Ω|,
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where |Ω| is the volume of the domain Ω. Find a mapping function

φ1 : Ω→ Ω, ∂Ω→ ∂Ω, (4.1.1)

such that

J(φ1) := det∇φ1(x) = f(x). (4.1.2)

Construction of such a map: Using the following steps, we construct φ1.

(1) Find a vector field u(x) which satisfies

div u(x) = f(x)− 1 in Ω

n · u(x) = 0 on ∂Ω.

(2) Form a velocity vector field,

h(t,x) =
u(x)

t+ (1− t)f(x)
, 0 < t ≤ 1

and then, find φt(x) = φ(t,x), φ1(x) = φ(1,x) by solving the ordinary differ-

ential equation

dφ(t,x)

dt
= h(t, φ(t,x)), 0 < t ≤ 1 (4.1.3)

φ(0,x) = x, (4.1.4)

In [49], J. Liu proved that the map φ1 constructed in this way satisfies the equality

(4.1.2) by showing that the equality given as

∂H(t,x)

∂t
= 0, where H(t,x) = J(φt(x))[t+ (1− tf(φt(x))]

holds for each t ∈ [0, 1]. Notice that f can be chosen any function with the properties

described above. In realistic situations, however, f is subject to some additional

constraints. Bochev, et al. inform us that for example, f should reflect the need

for grid refinement of the underlying problem, i.e., one has to choose the mechanism
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under which the changes in the exact or approximate solution will be accounted for

by the monitor function. Here we give some examples for possible relations between

solutions u and the monitor function f :

f(t,x) =
C

1 + α1|∇u(t,x)|2 + α2|u(t,x)|2
,

where C is a normalizing factor that may depend on t. Another possibility is to

consider relations of the form

f(t,x) =
C√

1 + α|∇u(t,x)|2
,

or even simpler monitor function

f(t,x) =
C

1 + |u(t,x)|
.

Interested reader can read [49] in conjunction with this thesis to have more informa-

tion about this version of the grid adaption method and further properties of it.

Second version of the grid deformation method:

This is another static version of deformation method where the transformation

Jacobian determinant is specified on the new grid φ(x) after adaption.

Problem: Given f normalized by
∫

Ω
1
f

= |Ω|, find a mapping

φ1 : Ω→ Ω, ∂Ω→ ∂Ω, (4.1.5)

such that

J(φ1) := det∇φ1(x) = f(φ1(x)) x ∈ Ω. (4.1.6)

To find such a transformation, we can use the following two steps:

(1) Compute u(x) such that

∇ · u(x) = 1− 1

f(x)
, x ∈ Ω, (4.1.7)

and

u(x) · n = 0, x ∈ ∂Ω. (4.1.8)
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(2) For each fixed node x, solve the ordinary differential equation

dφ(t,x)

dt
= h(t, φ(t,x)), 0 ≤ t ≤ 1 (4.1.9)

with φ(0,x) = x, where

h(t, φ(t,x)) =
u(φ(t,x))

t 1
f(φ(t,x))

+ (1− t)
. (4.1.10)

Define φ1(x) = φ(1,x), then φ1(x) is the solution. The proof of above approach can

be found in [49].

Third version of the grid deformation method: This is the version of deforma-

tion method with real time adaption.

Problem: Given a monitor function f(t,x) > 0, normalized with∫
Ω

1

f(t, w)
dw = |Ω(t = 0)|,

find a mapping φ(t, ·) : Ω(t = 0)→ Ω(t) such that

J(φ(t,x)) = f(t, φ(t,x)), t > 0. (4.1.11)

The transformation φ can be found by the following two steps:

(1) Find a vector field u(t,x) such that

∇ · u(t,x) = − ∂

∂t

1

f(t,x)
(4.1.12)

and u(t,x) · n = 0 on ∂Ω.

(2) Solve the ordinary differential equation for φ(t,x)

dφ(t,x)

dt
= h(t, φ(t,x)) = f(t, φ(t,x))u(t, φ(t,x)) (4.1.13)

In [49] it is shown that the φ(t,x) found in this way satisfies the equation (4.1.11).
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4.2 Nonrigid Registration of 3D Images Using GDM

In this section we study the image registration method using the first version

of the grid deformation method. The deformation based grid generation method is

able to generate a grid with desired grid density distribution which is free from grid

folding. This is achieved by devising a positive monitor function describing the antic-

ipated grid density in the computational domain. Based on it, we have successfully

developed a new nonrigid image registration method, which has many advantages.

Firstly, the functional to be optimized consists of only one term, a similarity mea-

sure, namely, sum of square differences (SSD). Thus, no regularization functional is

required in this method. In particular, there is no weight to balance the regularization

functional and the similarity functional as commonly required in many nonrigid image

registration methods. Nevertheless, the regularity (no mesh folding) of the resulting

deformation is theoretically guaranteed by controlling the Jacobian determinant of

the transformation. Secondly, because no regularization term is introduced in the

functional to be optimized, the resulting deformation field is highly flexible that large

deformation frequently experienced in inter-patient or image-atlas registration tasks

can be accurately estimated. Detailed description of the nonrigid image registration

method based on adaptive grid generation method is presented. Firstly we remark

basic notations and definitions.

Notations and definitions:

x = (x1, x2, x3), u(x) = (u1(x), u2(x), u3(x)), v(x) = (v1(x), v2(x), v3(x), v4(x))

φ(x) = (φ1(x), φ2(x), φ3(x))

= x + u(x) = (x1 + u1(x), x2 + u2(x), x3 + u3(x)) : Ω ⊂ R3 → R+

∇ = (∂x1 , ∂x2 , ∂x3)
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Theorem 4.2.1 Let Ω ⊂ R3 be a domain. For φ defined above, the equality J(φ) ∼=

1 + div (εu) +O(ε2) holds for every ε > 0 in Ω.

Proof:

J(φ) =

∣∣∣∣∣∣∣∣∣∣
1 + εu1x1

εu1x2
εu1x3

εu2x1
1 + εu2x2

εu2x3

εu3x1
εu3x2

1 + εu3x3

∣∣∣∣∣∣∣∣∣∣
,

= 1 + εu1x1
+ εu2x2

+ εu3x3

+ ε2(u2x2
u3x3
− u2x3

u3x2
+ u1x1

u3x3
+ u1x1

u2x2
− u1x2

u2x1
− u1x3

u3x1
) + ε3 J(u),

∼= 1 + εu1x1
+ εu2x2

+ εu3x3
+O(ε2),

= 1 + div (εu) +O(ε2).

Lemma 1: The following equalities hold for any scalar function h defined on Ω and

a vector −→υ . ∫
Ω

∇ · (h−→υ ) =

∫
Ω

∇h · −→υ +

∫
Ω

h∇ · −→υ∫
Ω

∇ · (h−→υ ) =

∫
∂Ω

(h−→υ ) · −→n = 0, if h = 0 on ∂Ω,

where −→n is the outward and unit normal vector to ∂Ω.

We simplify the first version of the grid deformation method by letting h(t, x) =

h(1, x) = u(x). In order to make the transformed template image “similar” to the

reference image, we look for a mapping φ(t, x) which minimizes the L2−norm of the
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difference between T (φ(1, x)) and R(x) over Ω. First we define the functional J(φ, f, g)

as follows:

J(φ, f 1, f 2, f 3, f 4) = min
1

2

∫
Ω

[Toφ(x)−R(x)]2 dx,

subject to

div u = ∇ · u = u1x1
+ u2x2

+ u3x3
:= f 1, f 1 = f − 1

curl u = (curlx1u, curlx2u, curlx3u)

= (u3x2
− u2x3

, u1x3
− u3x1

, u2x1
− u1x2

)

curl u := (f 2, f 3, f 4)

u = 0 on ∂Ω

∂u = 0 on ∂Ω

We now look for the controls f 1, f 2, f 3, f 4 and states φ(t, x) and u(x) such that

J(·, ·, ·, ·, ·) is minimized subject to the constraints defined above. Our goal here is to

minimize
∫

Ω
[Toφ(x)−R(x)]2 dx, therefore, we penalize the objective functional with

H1−norms of f 1 − f 4. With such a penalization, we are able to show the existence

of optimal solutions.

In order to solve this constraint optimization problem, we express it as an

unconstraint optimization problem using Lagrange multipliers method where v =

(v1, v2, v3, v4) are Lagrange multipliers. Specializing an abstract theorem concerning

the existence of Lagrange multipliers for minimizations on Banach space [51], we

obtain the following theorem:

Theorem 4.2.2 Let V1 and V2 be two Hilbert spaces, F a functional on V1, and

G a mapping from V1 to V2. Assume û is a solution of the following constrained

minimization problem:
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Find u ∈ V1 that minimizes F(u) subject to G(u) = 0. Assume further that the

following conditions are satisfied:

(i) F : Nbhd(û) ⊂ V1 → R is Frechet-differentiable at û;

(ii) G is continuously Frechet-differentiable at û;

(iii) G ′(û) : V1 → V2 is onto.

Then, there exists a µ ∈ (V2)∗ such that

F ′(û)v − 〈µ,G ′(û)v〉 = 0, ∀v ∈ V1.

PROOF: See [51], Theorem 43.19.

Here, 〈·, ·〉 denotes the duality pairing between V2 and (V2)∗ and F ′(û)v and

G ′(û)v denote the actions of F ′(û) as an operator mapping v ∈ V1 into R and G ′(û)

as an operator mapping v ∈ V1 into V2, respectively. We will fit our optimization

problem into the above abstract framework.

We penalize f = (f 1, f 2, f 3, f 4). With such a penalization, we, in fact, penalize

v = (v1, v2, v3, v4) and we are able to show the existence of optimal solutions. We

apply the Lagrange multiplier method to get the optimality system, the state and

adjoint systems and optimality conditions. M. Gunzburger and E. Lee proves [50]

the existence of optimal solution and proper Lagrange multipliers using some special

techniques of the functional analysis and interested reader can read [50] in conjunction

with present work. Let f := (f 1, f 2, f 3, f 4).

L[u; v; f ] =
1

2

∫
Ω

[Toφ(x)−R(x)]2 dx +
w1

2

∫
Ω

(f 1)2(x)dx +
w2

2

∫
Ω

(f 2)2(x)dx

+
w3

2

∫
Ω

(f 3)2(x)dx +
w4

2

∫
Ω

(f 4)2(x)dx +

∫
Ω

v1(x)(div u(x)− f 1(x))dx

+

∫
Ω

v2(x)(curlx1 u(x)− f 2(x))dx +

∫
Ω

v3(x)(curlx2 u(x)− f 3(x))dx

+

∫
Ω

v4(x)(curlx3 u(x)− f 4(x))dx.
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Solution of the Lagrange functional satisfies the optimality system which consists of

state equations, costate equations, and the optimality conditions.

State Equations: The state equations are obtained from Lv1 = 0, Lv2 = 0, Lv3 =

0 and Lv4 = 0.

Lv1 =
d

dε

∣∣∣
ε=0

L[v1 + εδv1] =
d

dε

∣∣∣
ε=0

∫
Ω

(v1 + εδv1)(div u− f 1)

=

∫
Ω

δv1(div u− f 1) = 0 for every δv1.

Then,

div u(x) = f 1(x). (4.2.14)

Lv2 =
d

dε

∣∣∣
ε=0

L[v2 + εδv2] =
d

dε

∣∣∣
ε=0

∫
Ω

(v2 + εδv2)(curlx1 u− f 2)

=

∫
Ω

δv2(curlx1 u− f 2) = 0 for every δv2.

Then,

curlx1 u(x) = f 2(x). (4.2.15)

Lv3 =
d

dε

∣∣∣
ε=0

L[v3 + εδv3] =
d

dε

∣∣∣
ε=0

∫
Ω

(v3 + εδv3)(curlx2 u− f 3)

=

∫
Ω

δv3(curlx2 u− f 3) = 0 for every δv3.

Then,

curlx2 u(x) = f 3(x). (4.2.16)

Lv4 =
d

dε

∣∣∣
ε=0

L[v4 + εδv4] =
d

dε

∣∣∣
ε=0

∫
Ω

(v4 + εδv4)(curlx3 u− f 4)

=

∫
Ω

δv4(curlx3 u− f 4) = 0 for every δv4.

Then,

curlx3 u(x) = f 4(x). (4.2.17)
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In summary, the state equations are given by

Lv1 = 0 ⇒ div u = f 1,

Lv2 = 0 ⇒ curlx1 u = f 2,

Lv3 = 0 ⇒ curlx2 u = f 3,

Lv4 = 0 ⇒ curlx3 u = f 4.

Costate equations: The costate equations are obtained by solving the equations

Lu1 = 0, Lu2 = 0 and Lu3 = 0.

Lu1 =
d

dε

∣∣∣
ε=0

[1

2

∫
Ω

[T (x + (u1(x) + εδu1(x), u2(x), u3(x)))−R(x)]2

+

∫
Ω

v1(div (u1 + εδu1, u2, u3)− f 1) +

∫
Ω

v3(curlx2 (u1 + εδu1, u2, u3)− f 3)

+

∫
Ω

v4(curlx3 (u1 + εδu1, u2, u3)− f 4)
]

=

∫
Ω

(T (x + u(x))−R(x))Tφ1 δu1 +

∫
Ω

v1(δu1)x1 +

∫
Ω

v3(δu1)x3 +

∫
Ω

v4(−δu1)x2

=

∫
Ω

(T (x + u(x))−R(x))Tφ1 δu1 +

∫
Ω

(v1,−v4, v3) · ∇δu1

=

∫
Ω

[(T −R)Tφ1 δu1 −∇ · (v1,−v4, v3)δu1] (by lemma 1 and h = δu1 = 0 on ∂Ω)

=

∫
Ω

[(T −R)Tφ1 −∇ · (v1,−v4, v3)] δu1 = 0 for every δu1,

which gives us the first costate equation

∇ · (v1,−v4, v3) = (T −R)Tφ1 . (4.2.18)
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Lu2 =
d

dε

∣∣∣
ε=0

[
1

2

∫
Ω

[T (x + (u1, u2(x) + εδu2(x), u3(x)))−R(x)]2

+

∫
Ω

v1(div (u1, u2 + εδu2, u3)− f 1)

+

∫
Ω

v2(curlx1 (u1, u2 + εδu2, u3)− f 3)

+

∫
Ω

v4(curlx3 (u1, u2 + εδu2, u3)− f 4)]

=

∫
Ω

(T (x + u(x))−R(x))Tφ2 δu2 +

∫
Ω

v1(δu2)x2 +

∫
Ω

v2(−δu2)x3 +

∫
Ω

v4(δu2)x1

=

∫
Ω

(T (x + u(x))−R(x))Tφ2 δu2 +

∫
Ω

(v4, v1,−v2) · ∇δu2

=

∫
Ω

[(T −R)Tφ2 δu2 −∇ · (v4, v1,−v2)δu2] (by lemma 1 and h = δu2 = 0 on ∂Ω)

=

∫
Ω

[(T −R)Tφ2 −∇ · (v4, v1,−v2)] δu2 = 0 for every δu2,

which gives us the second costate equation

∇ · (v4, v1,−v2) = (T −R)Tφ2 . (4.2.19)

Lu3 =
d

dε

∣∣∣
ε=0

[
1

2

∫
Ω

[T (x + (u1, u2, u3(x) + εδu3(x)))−R(x)]2

+

∫
Ω

v1(div (u1, u2, u3 + εδu3)− f 1)

+

∫
Ω

v2(curlx1 (u1, u2, u3 + εδu3)− f 2)]

+

∫
Ω

v3(curlx2 (u1, u2, u3 + εδu3)− f 3)

=

∫
Ω

T (x + u(x)−R(x))Tφ3 δu3 +

∫
Ω

v1(δu3)x3 +

∫
Ω

v2(δu3)x2 +

∫
Ω

v3(−δu3)x1

=

∫
Ω

T (x + u(x)−R(x))Tφ3 δu3 +

∫
Ω

(−v3, v2, v1) · ∇δu3

=

∫
Ω

[(T −R)Tφ3 δu3 −∇ · (−v3, v2, v1)δu3] (by lemma 1 and h = δu3 = 0 on ∂Ω)

=

∫
Ω

[(T −R)Tφ3 −∇ · (−v3, v2, v1)] δu3 = 0 for every δu3,

which gives us the third costate equation

∇ · (−v3, v2, v1) = (T −R)Tφ3 . (4.2.20)
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Hence, the costate equations are given by

(T −R)Tφ1 = ∇ · (v1,−v4, v3),

(T −R)Tφ2 = ∇ · (v4, v1,−v2),

(T −R)Tφ3 = ∇ · (−v3, v2, v1).

Optimality conditions: The optimality conditions are obtained by solving the

equations Lf1 = 0, Lf2 = 0, Lf3 = 0 and Lf4 = 0.

Lf1 =
d

dε

∣∣∣
ε=0

[
w1

2

∫
Ω

(f 1 + εδf 1)2 +

∫
Ω

v1(div u− (f 1 + εδf 1))

]
=

∫
Ω

w1f
1δf 1 − v1δf

1

=

∫
Ω

(w1f
1 − v1)δf 1 = 0 for every δf 1,

which gives us the first optimality condition

w1f
1 = v1. (4.2.21)

Lf2 =
d

dε

∣∣∣
ε=0

[
w2

2

∫
Ω

(f 2 + εδf 2)2 +

∫
Ω

v2(curlx1 u− (f 2 + εδf 2))

]
=

∫
Ω

(w2f
2 − v2)δf 2 = 0 for every δf 2,

which gives us the second optimality condition

w2f
2 = v2. (4.2.22)

Lf3 =
d

dε

∣∣∣
ε=0

[
w3

2

∫
Ω

(f 3 + εδf 3)2 +

∫
Ω

v3(curlx2 u− (f 3 + εδf 3))

]
=

∫
Ω

(w3f
3 − v3)δf 3 = 0 for every δf 3,

which gives us the third optimality condition

w3f
3 = v3. (4.2.23)



25

Lf4 =
d

dε

∣∣∣
ε=0

[
w4

2

∫
Ω

(f 4 + εδf 4)2 +

∫
Ω

v4(curlx3 u− (f 4 + εδf 4))

]
=

∫
Ω

(w4f
4 − v4)δf 4 = 0 for every δf 4,

which gives us the fourth optimality condition

w4f
4 = v4. (4.2.24)

Hence, the optimality conditions are given by

Lf1 = 0 ⇒ w1f
1 = v1,

Lf2 = 0 ⇒ w2f
2 = v2,

Lf3 = 0 ⇒ w3f
3 = v3,

Lf4 = 0 ⇒ w4f
4 = v4.

Now we write the optimality system as follows:

State equations:

div u = f 1,

curlx1 u = f 2,

curlx2 u = f 3,

curlx3 u = f 4.

Costate equations:

(T −R)Tφ1 = ∇ · (v1,−v4, v3),

(T −R)Tφ2 = ∇ · (v4, v1,−v2),

(T −R)Tφ3 = ∇ · (−v3, v2, v1).
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Optimality conditions:

w1f
1 = v1,

w2f
2 = v2,

w3f
3 = v3,

w4f
4 = v4.

Decoupling:

We will solve this system of equations by multi-grid optimization method using the

Poisson equations defined in the following way:

Define

F1 := f 1, F2 := f 2, F3 := f 3, F4 := f 4.

Then, the state equations give us

∆u1 = F1x1
+ F3x3

− F4x2
,

∆u2 = F1x2
− F2x3

+ F4x1
,

∆u3 = F1x3
+ F2x3

− F3x1
.

Define G := (G1, G2, G3) as

G1 := (T −R)Tφ1 ,

G2 := (T −R)Tφ2 ,

G3 := (T −R)Tφ3 .

Then, we write the costate equations as

∇ · (v1,−v4, v3) = G1,

∇ · (v4, v1,−v2) = G2,

∇ · (−v3, v2, v1) = G3.
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Further, using the optimality conditions and the the fact that div curl u = 0, where

curl u = (f 2, f 3, f 4), we have

1

w2

v2x1
+

1

w3

v3x2
+

1

w4

v4x3
= 0

Hence, we write the costate equations as

G1 = v1x1
− v4x2

+ v3x3
,

G2 = v4x1
+ v1x2

− v2x3
,

G3 = −v3x1
+ v2x2

+ v1x3
,

0 =
1

w2

v2x1
+

1

w3

v3x2
+

1

w4

v4x3
,

from which we write the Poisson equations as

∆v1 = G1x1
+G2x2

+G3x3
,

∆v2 = −G2x3
+G3x2

+

(
1− w2

w4

)
v4x1 x3

+

(
1− w2

w3

)
v3x1 x2

,

∆v3 = G1x3
−G3x1

+

(
1− w3

w4

)
v4x2 x3

+

(
1− w3

w2

)
v2x1 x2

,

∆v4 = −G1x2
+G2x1

+

(
1− w4

w3

)
v3x2 x3

+

(
1− w4

w2

)
v2x1 x3

.

For simplicity, letting w2 = w3 = w4, we get

∆v1 = G1x1
+G2x2

+G3x3
,

∆v2 = −G2x3
+G3x2

,

∆v3 = G1x3
−G3x1

,

∆v4 = −G1x2
+G2x1

.
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4.3 Numerical Implementation

A simple iterative scheme for solving the state and costate equations and opti-

mality conditions in a decoupled manner is follows:

• Suppose that at the kth step, we have found (f 1)k, (where f 1 =div u) and

((f 2)k, (f 3)k, (f 4)k), where (curl u= (f 2, f 3, f 4)).

• Obtain uk = (uk1, u
k
2, u

k
3) from the state equations.

• Obtain vk1 , v
k
2 , v

k
3 , v

k
4 from the costate equations.

• Next get new controls ((f 1)k+1, (f 2)k+1, (f 3)k+1, (f 4)k+1) from the optimality

conditions.

• Normalize controls and repeat the same process until the error condition is

satisfied or as many as iteration you want.

Although there are a few sophisticated methods to solve this type of problems

numerically, we use the finite-difference method to solve the Poisson equations ap-

pearing in the decoupling system. Let us consider a general Poisson equation given by

∆u = rhs, where rhs stands for a function. Then, in 3D case using finite-differences

method we can express this Poisson equation in a discrete form as

ui−1,j,k−2ui,j,k+ui+1,j,k

∆x2 +
ui,j−1,k−2ui,j,k+ui,j+1,k

∆y2
+

ui,j,k−1−2ui,j,k+ui,j,k+1

∆z2
= rhsi,j,k

Suppose that ∆x = ∆y = ∆z = h, then we can represent any interior point as

ui,j,k =
1

6

(
ui−1,j,k + ui+1,j,k + ui,j−1,k + ui,j+1,k + ui,j,k−1 + ui,j,k+1 − h2 × rhsi,j,k

)
.

The resulting system of linear algebraic equations is then solved by using successive

overrelaxation method in the following way:

ũi,j,k =
1

6

(
unewi−1,j,k + unewi+1,j,k + unewi,j−1,k + unewi,j+1,k + unewi,j,k−1 + unewi,j,k+1 − h2 × rhsi,j,k

)
unewi,j,k = (1− µ)uoldi,j,k + µũi,j,k
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The cube has 8 corners, 12 edges and 6 faces on the boundary. On the boundary, the

second type boundary condition (Neumann boundary condition) is implemented by

∂u
∂n

= 0. For instance, we implement the corner (0, 0, 0) as

u0,0,0 =
1

6

(
u−1,0,0 + u1,0,0 + u0,−1,0 + u0,1,0 + u0,0,−1 + u0,0,−1 + u0,0,1 − h2 × rhs0,0,0

)
=

1

6

(
2u1,0,0 + 2u0,1,0 + 2u0,0,1 − h2 × rhs0,0,0

)
Here we used the facts that

u1,0,0 − u−1,0,0

2∆x
= 0 ⇒ u1,0,0 = u−1,0,0

u0,1,0 − u0,−1,0

2∆y
= 0 ⇒ u0,1,0 = u0,−1,0

u0,0,1 − u0,0,−1

2∆z
= 0 ⇒ u0,0,1 = u0,0,−1

We can implement the other corners in the same way. It is clear that

ui,1,0 − ui,−1,0

2∆y
= 0 ⇒ ui,1,0 = ui,−1,0

ui,0,1 − ui,0,−1

2∆z
= 0 ⇒ ui,0,1 = ui,0,−1

ui,0,0 =
1

6

(
ui−1,0,0 + ui+1,0,0 + u0,−1,0 + u0,1,0 + u0,0,−1 + u0,0,1 − h2 × rhs0,0,0

)
=

1

6

(
ui−1,0,0 + ui+1,0,0 + u0,1,0 + u0,1,0 + u0,0,1 + u0,0,1 − h2 × rhs0,0,0

)
=

1

6

(
ui−1,0,0 + ui+1,0,0 + 2u0,1,0 + 2u0,0,1 − h2 × rhsi,0,0

)
Implementing the other edges in the similar way, we have the following:

ui,0,j =
1

6

(
ui−1,0,j + ui+1,0,j + ui,−1,j + ui,1,j + ui,0,j−1 + ui,0,j+1 − h2 × rhsi,0,j

)
=

1

6

(
ui−1,0,j + ui+1,0,j + ui,1,j + ui,1,j + ui,0,j−1 + ui,0,j+1 − h2 × rhsi,0,j

)
=

1

6

(
ui−1,0,j + ui+1,0,j + 2ui,1,j + ui,0,j−1 + ui,0,j+1 − h2 × rhsi,0,j

)
Because the other boundary faces are implemented in the same way, we skip the

details inhere.



CHAPTER 5

COMPUTATIONAL EXAMPLES

Example 1: Our first example is in 3D and we use 16×16×16 initial uniform

grid on reference and template images. We define the reference and template images

in 3D as follows:

reference =


10, d≤ 0;

9.5 + 5(0.1 + 1.5d), 0 ≤ d ≤ 2;

25, 2 ≤ d.

where

d =
√

(x− 8)2 + (y − 8)2 + (z − 9)2 − 3.

template =


10, d≤ 0;

9.5 + 5(0.1 + 3d), 0 ≤ d ≤ 1;

25, 1 ≤ d.

where

d =
√

(x− 8)2 + (y − 8)2 + (z − 9)2 − 2.

After iterating SSD 230 steps (in less than 2 minutes), SSD is reduced from 140.9 to

3.2 which shows one of the strengths of our method.

Example 2: Our second example is in 2D and we are using 64 × 64 initial

uniform grid on reference and template images. We define the reference and template

images in 2D as follows:

30
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Table 5.1. Example in 3D: SSD vs Iterations

Iterations SSD
1 149.6
10 145.1
30 132.3
50 120.1
70 108.7
90 96.3
110 83.5
130 70.1
150 55.9
170 43.1
190 30.2
210 16.4
230 3.3

reference =


10, d≤ 0;

9.5 + 5(0.1 + 1.5d), 0 ≤ d ≤ 2;

25, 2 ≤ d.

where

d =
√

1.6(x− 30)2 + (y − 30)2 − 12

template =


10, d≤ 0;

9.5 + 5(0.1 + 3d), 0 ≤ d ≤ 1;

25, 1 ≤ d.

where

d =
√

(x− 35)2 + 1.5(y − 35)2 − 7.
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Figure 5.1. Slices through x and z-axes.
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Figure 5.2. Representation of 2d registration.
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Figure 5.3. Adaptive grids after 1 step.
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Figure 5.4. Adaptive grids after 10 steps.



CHAPTER 6

SUMMARY

Nonrigid image registration is a very important branch of the image processing

concept. It has broad application areas in medical and non-medical imaging. For

instance, it can be used in analyzing local anatomical variations that exist between

images acquired from different individuals or atlases. It can serve as a powerful tool

for combining information from multiple sources, monitoring changes in an individ-

ual, detect tumors and locate disease, motion correction and many more. In medical

imaging, nonrigid image registrations are mostly used in modeling of soft tissue defor-

mations. Major challenges in the nonrigid image registration are: noisy and distorted

data, 3D large nonlinear deformation, occlusion, finding reliable similarity measures

for inter-subjects and multi-modalities, high computational costs, etc.

In this thesis we have presented a systematic method for the nonrigid regis-

tration of 3D medical images using some special techniques of the grid deformation

and multi-grid optimization methods. The Lagrange Multipliers method to write

the constrained optimization problem as an unconstrained optimization problem was

used. Poisson equations appearing in the optimality system were solved by means

of finite-difference approximations method. Preliminary experiments show promising

results and great potential for future extension. We can list some of the merits of our

method as follows:

• It is based on a solid mathematical foundation. In particular, it accounts for

local volume changes through the divergence of the transformation; and it ac-

counts for local rotation through the curl vector of the transformation.
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• The method is based on a linear differential system; its numerical implementa-

tion is fast, stable, simple and robust.

• The method is general in the sense that it may be used in any optimization

problem that involves motion estimation. Thus, it has the potential to be the

numerical kernel for a wide range of applications.

• It does not require to use of any regularization term.

In the future, the proposed algorithm is going to be applied to some other possible

applications.
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