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ABSTRACT 

 

SOFTWARE CAPACITY PLANNING: A METHODOLOGY FOR A PORTFOLIO OF HIGH 

TECHNOLOGY PRODUCT DEVELOPMENT PROJECTS 

 

 

Rajiv Malhotra, PhD. 

 

The University of Texas at Arlington, 2009 

 

Supervising Professor: Don Liles  

High technology product development projects make extensive use of engineering 

software during the product development process. The suite of engineering software tools 

deployed during product development represents a significant portion of the product 

development costs. The ability to forecast the engineering software license capacity required to 

support product development plans is crucial for budgeting, return on investment (ROI) 

calculations, contract negotiations with the software suppliers, and the provision of an IT 

infrastructure necessary to support the execution of the software tools.  

This research shows that the usage of engineering application software in high 

technology is cyclical due to the characteristics of high technology product development. A 

rigorous methodology to compute the cycle boundaries based on usage history is proposed.  

Information of the usage cycles is used to modify the existing trend forecast to increase the 

prediction accuracy of future usage predictions. Data of the current usage of the projects in 

execution is then used to forecast the overall software capacity needed to support all current 



 vi

projects. Cyclic usage patterns also predict how the usage is expected to change in the future 

for the time period under study.  

Usage data is collected for the three main projects concurrently in execution. Of the 

three, one of the projects goes through its full development cycle. In this research we show (a) a 

rigorous methodology using Fourier analysis to extract the cyclical variations of the project that 

goes through its full development cycle and (b) the application of the cyclical variations to a 

trend forecast to improve the quality of the forecast. 

Single project forecasts are then combined to generate an overall engineering software 

capacity forecast for the enterprise. All engineering software licenses for both project and non-

project work are shared by the enterprise from a central license pool. To determine the 

enterprise capacity requirement, the relationship between the key individual projects and the 

total usage is determined and used to predict future capacity.  
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CHAPTER 1 

INTRODUCTION 

1.1 Statement of Purpose and Background 

Engineers use software tools extensively in high technology product development. In a 

large high technology enterprise, development of new high technology products is a core 

competency. There is high demand from engineers for engineering application software tools.  

Engineering software tools are used in nearly all phases of product development. 

During the concept phase, they may be used to capture (a) the constraints of the external 

environment that the product must meet, (b) the expected behavior of the product when it 

receives stimuli from the external environment, and (c) the performance goals that must be met. 

Similarly, at the architecture development stage, software tools are used to capture successive 

levels of architectural details and to develop the verification environment used to test the 

product during the design phase and after fabrication. During the design phase, software tools 

are used to implement and verify the detailed design, manage design data, and create design 

data in a format suitable for the next step, which is usually the manufacturing of the product. 

Software tools may further be used for the creation and debugging of prototypes, sample and 

product testing, quality control, and reliability on the production floor.  

The high technology product development enterprise faces forecasting future demand 

for licenses for the engineering application software (EAS). Deployment and utilization of the 

EAS vary according to the phase of the product development. At any given time, a large 

enterprise typically develops multiple products, which may be in varying stages of development. 

From the EAS usage perspective, usage patterns appear to be erratic when the aggregate 

usage across multiple products is viewed.  
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The software vendor or supplier authorizes software usage through a licensing 

mechanism. A software application, upon invocation, has a built-in mechanism to request 

authentication from a designated license server. Besides authenticating the request, the license 

server, maintains a count of all license requests granted. The license request is granted if the 

maximum number of licenses available has not been exceeded. Similarly, once an application 

terminates, it informs the license server so that it may update its license count to reflect the 

availability of an additional license for the next license request. Usually, the license server 

maintains a log of all check-in and check-out requests in a file. The log file is processed to 

generate usage data for usage reporting.  

It is common for an enterprise to serve licenses from a central pool shared by all the 

projects. This is done to maximize utilization of the available licenses and to facilitate the 

administration of licenses. License Administration is the function of installing and deleting 

licenses to maintain contractual compliance with the software suppliers, administer any 

corporate license policies, and implement safeguards against unauthorized usage.  

Each high technology product development project has a demand for EAS licenses. 

This demand may be implicit or explicitly forecasted by the project team. The aggregate 

demand for software licenses of all the projects motivates the need for a software capacity plan. 

The objective of the software capacity plan is to determine the number of licenses to be made 

available on the license servers in order to meet the demand from all the projects.  

High technology product development projects are characterized by a high degree of 

technological uncertainty that reflects itself as uncertainty in planning for the project resources 

and schedules. Project resources and schedules for most high technology product development 

projects are difficult to forecast, due to the diminished relevance of historical data from previous 

projects. Due to the increased technological complexity of the current project, as compared to 

the previous projects, there is an increase in technological uncertainty. This increase in 

technological uncertainty is a driver for the innovation and deployment of new development 
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methodologies. New development methodologies may lead to both the deployment of new 

engineering software not previously used and changes in the patterns of usage of engineering 

software deployed in previous projects.  Software licenses are a vital but expensive resource 

and must be deployed judiciously.   

 

1.2 Research Objectives 

Engineering software tools are created to perform specific engineering functions. 

Depending on the stage of development of a high technology product, the usage level of a 

particular engineering software tool may be high, low, or somewhere in between. The concept 

of high or low is relative and, in this case, means high or low compared to the recent past. In 

this research, high will be referred to as the peak, and it may be over a specified period of time. 

Factors such as the technological complexity of the project and the time-to-market goals, 

among others, may influence the level of peak usage. In the course of product development, 

engineering software tool usage goes through peaks and lows, thus creating a cyclical usage 

pattern over time. There may be multiple cyclical usage patterns of varying duration and 

intensity. 

The first key contribution of this dissertation is to propose a methodology to extract the 

cyclical usage patterns for a given EAS deployed on a product development project for the 

purpose of forecasting future project EAS usage. An enterprise typically has multiple product 

development projects in the pipeline. Each project may have its own cyclical usage pattern that 

can be used to forecast demand. Once there is a forecast of future demand for each ongoing 

project and there has been a strategic decision to meet this demand, the next step is to make 

adequate software capacity available. This is the function of software capacity planning.  

The second contribution of this dissertation is to develop a model to create a software 

capacity plan based on the cyclical forecasts of each individual project. Software usage data is 

collected for one engineering software tool over a period of time that encompasses one 
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complete project. Usage data is also collected for all the other projects in execution during the 

same time period. A segment of the data is used to extract the dominant usage cycles for each 

project and to build models of the forecasted demand and software capacity plan. The models 

are then validated with the remaining usage data.  

 
1.3 Organization of the Dissertation 

The work in this dissertation shows how the concepts of demand forecasting and 

capacity planning, although well established in the traditional services and manufacturing 

industries, may be developed in the dynamic high technology product development industry.  

The basic concepts used in this work are derived from various disciplines, some of which have 

not traditionally been used for the purpose of demand forecasting and capacity planning. 

Chapter 2 covers the reviewed literature related to the problem space and the basic 

disciplines used in this dissertation for demand forecasting and software capacity planning. It 

covers the key concepts and unique characteristics of high technology product development 

and explains how it affects the deployment of software engineering tools. This chapter also 

covers the traditional time series forecasting approaches and establishes the need for a fresh 

approach to high technology product development projects, a new method to forecast cyclical 

demand, and the need for neural nets.  

Chapter 3 covers the development of the software usage forecasting model for each 

project when the usage of software is cyclical. It develops a method to extract cyclical usage 

patterns from the logged historic usage data and to use this information to modify the trend 

forecast. Chapter 4 develops a model to combine the usage data from multiple projects to 

develop a software capacity plan for a centralized license service configuration. Chapter 5 

analyzes and validates the models developed with the actual software usage data for each 

project and the capacity plan. Chapter 6 presents the conclusions and the future directions for 

this research. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Introduction 

As a first step, we conduct a review of the body of research to categorize high 

technology product development. The next step is to review the key characteristics of high 

technology product development. An understanding of the key attributes of high technology 

product development leads to the fundamental role of software usage in high technology 

product development. Software usage is directly influenced by the product development 

methodology.  

The software usage data that is recorded is pre-processed and may be viewed as a 

time series data. To forecast software demand, we survey the techniques used for time series 

forecasting. Once a demand forecast is in place, techniques used for developing software 

capacity plans are reviewed.  

2.2 High Technology Product Development 

Product development projects spanning a varied cross section of industries and 

organizations, including construction, defense, chemicals, electronics, banking, or 

semiconductors, vary considerably in how they are planned, executed, and managed. The 

variation may be due to differences in size, complexity, time span, customers, and technological 

uncertainty. Each of these parameters merits close examination; however, in this section, we 

examine the impact of technological uncertainty on product development. The objective of this 

section is to frame the concept of high technology product development and to illustrate how 

this may culminate in certain types of EAS usage cycles during the product development phase.  
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2.2.1 Classification Framework for High Technology Product Development Projects 

A framework for the classification of projects enables us to highlight the salient features 

of high technology projects. These features lead us to develop an understanding of the product 

development characteristics of such projects. A parameter of differentiation of product 

development projects may be the technological uncertainty of the technology employed, which 

we will examine in more detail after briefly reviewing other approaches.  

 Very well-known taxonomies have been developed by Cash, McFarlan, and McKenney 

(1988); Ahituv and Neumann (1984); Pearson (1990); and Wheelwright and Clark (1992).  

The classification of Cash et al. (1998) selected three parameters and combined them 

to develop a framework for classifying projects. The parameters are (a) Project Size, (b) 

Experience with the Technology, and (c) Project Structure. Project size refers to the cost of the 

project, level of staffing, elapsed time to implement the project, and the number of departments 

involved with or affected by the project. The greater the project size, the greater the risk 

associated with the project. Experience with the technology refers to the prior experience of the 

project team with the technology. Such experience decreases the likelihood of unexpected 

technical problems. Project structure refers to the degree of precision with which the output of a 

project can be defined at the time of conceptualization. A well-defined output entails lower risk 

and the project is regarded as highly structured. The risk increases for projects that are not well 

structured.  

Ahituv and Neumann (1984) identify several factors to be considered as part of a 

general framework for planning Information Systems Development projects. The key factors are 

Organizational Scope, Importance, Organizational Maturity, Structuredness Level, 

Technological Environment, and Development Type.  

• Organizational Scope: Refers to the number of organizations involved with the 

project. The more organizations involved, the more prior planning is needed. 

• Importance: The higher the significance of the project’s contribution to the 

operation of the organization, the higher the risk associated with the project. 
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• Structuredness Level: A very structured system requires less user participation 

as the project output is well defined. 

• Technological Environment: The use of more advanced technology is riskier 

than using the technology with which the organization is familiar. 

• Development Type: Refers to the type of product being developed. The 

development of new products will be riskier than the modification or 

enhancement of existing products. 

Pearson (1990) has considered two parameters—uncertainty about the market focus 

and uncertainty about the technological approach—as key for the management of innovative 

projects. A high degree of uncertainty about the market focus and the technology means the 

project is of an exploratory or speculative nature. A project with a clear focus (low uncertainty) 

but a high degree of uncertainty about the technology is directed toward known potential 

markets where the cost and performance targets of the project are difficult to achieve. Projects 

with a high degree of uncertainty about the market focus but with a very low degree of 

uncertainty about the technology being used usually imply that a new scientific discovery 

reduces the uncertainty in an area of technology and opens up a range of possible 

opportunities. Projects with a low degree of uncertainty about the market focus and technology 

are low-risk projects.  

Wheelwright and Clark (1992) have used the degree of change in the product and the 

degree of change in the manufacturing process as the two parameters for classifying projects. A 

greater change in any of these two parameters means a higher risk. Using these parameters, 

product development projects have been divided into five types. 

• Derivative projects are usually cost-reduced versions or enhancements of 

existing products. 
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• Breakthrough projects involve significant changes to existing products and 

manufacturing processes. They establish core products and processes that 

differ fundamentally from the previous generation.  

• Platform projects entail more product and/or product changes than derivatives, 

but they do not introduce new technologies.  

• Research and development projects involve the creation of know-how and 

know-why of new technologies that may eventually translate into commercial 

products.  

• Alliances and partnerships can be formed to pursue any type of product            

development. As a result, the resource requirements for these projects may 

vary widely. 

 
Shenhar (1993) and Temponi and Malhotra (2002) used technological uncertainty as 

the main parameter to distinguish among various types of projects and to understand its impact 

on modern project management approaches. Shenhar suggested a conceptual framework that 

divides the entire spectrum of projects into four categories based upon their technological 

uncertainty.  

Before defining the four categories, it is important to understand the assumptions made 

by Shenhar.  

• Projects combine multiple resources—including materials, components, and 

information—into a final outcome that is either a piece of hardware, a service, 

or an organization, and is not merely the creation of new information or the 

production of a piece of paper. 

• There is an existing or potential customer for the project’s outcome. 

• Projects of experimental nature or research projects for the purpose of 

evaluating, learning, or developing technological infrastructure are not 

considered.  
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The project classification scheme shown in Table 1 has been adapted from the one 

proposed by Shenhar (1993) and Temponi and Malhotra (2002).  

During the execution of high tech projects, several new key technologies are 

integrated. Typically, either the new technologies exist in-house or can be acquired from outside 

before the beginning of the project. Although the technologies may exist, the integration of these 

technologies creates the product’s value in the market. Instances of high tech projects may 

include the development of a new family of products or the incorporation of advanced 

technology into the product for the first time. 

In this paper we will focus our analysis on the key attributes of high tech projects and 

how these projects lead to cyclical usage patterns for the engineering software deployed for 

product development. 
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Table 2.1 Project Classification by Technological Uncertainty 
 

Project Type Low-Tech Medium-Tech High-Tech Super High-
Tech 

Degree of 
Technical 

Uncertainty 

No new technology is 
incorporated. 

Some new 
technology is 
used. 

Integrates new, 
but existing, 
technology. 

Key 
technologies 
do not exist at 
the start of the 
project.  

Typical 
Projects 

Construction of 
roads, buildings, and 
bridges.  

Derivatives or 
additional 
models of an 
existing product 
in the 
electronics, 
aerospace, 
mechanical, or 
electrical 
industries. 

New military 
systems, new 
commercial 
product family 
in computers, 
aerospace, or 
electronics.  

Space 
exploration, 
concept and 
technology 
breakthrough 
projects. 

Technology 
Development 

None required.  Some 
development 
and testing.  

Substantial 
development, 
integration, and 
testing.  

Very large 
amount of 
development 
required.  

Design 
Maturity  

Design specifications 
well defined before 
start of project. 

Design 
specifications 
finalized early.  

Design 
specifications 
finalized late. 

Design 
specifications 
may change 
almost to the 
end of the 
project.  

Project Risk Very limited. Some limited 
risk due to use 
of new 
technology.  

Added risks 
due to 
integration of 
new 
technologies.  

Very high risks 
due to new 
technology 
and 
integration. 

 

2.2.2 Key Attributes of High Technology Projects 

A project may be defined as a collection of interrelated and independent tasks to be 

executed. The development of a successful project plan requires that the list of tasks required to 

complete the project is defined comprehensively. The tasks must be well understood. This 

implies a clear understanding and documentation of the scope, time to completion, resources 

required, interdependencies with other tasks, and a metric of completion for each task. These 

conditions are universally applicable to all types of projects. Tasks in high technology projects, 

however, have additional challenges that must be negotiated.  
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• Tasks may be defined while specifications are still preliminary and not finalized. 

• Tasks with mutual dependencies may have to be overlapped in time. 

• Tasks may go through several iterations before they are considered complete.  

 
Among several factors affecting the product development projects, market position is 

the most important. The market position refers to the market potential and penetration of the 

product and its compatibility with current marketing channels. In a high technology environment, 

the overall project schedule is driven primarily by the target market window (Johnson, 1995). 

The three additional challenges listed above are the result of the need for faster time to market 

and management of technical complexity.  

2.2.2.1 Task Definition Based on Preliminary Specifications 

Developing the product specifications is a very critical function. Product specifications 

that address the market or customer requirements and simultaneously define a product to be 

built that is feasible within the constraints of time and resources available are the foundation of 

a successful product development project. While a major portion of the specification can be 

quickly defined based on the customer requirements, it may take longer to finalize all the 

specific features. The developer of specifications may have to carry out some feasibility studies 

to confirm if certain features are practical to implement for the current project. However, there 

may be several tasks not closely related to the features that are not yet finalized. It may be 

possible to start these tasks immediately.  

By beginning execution of tasks before the product specifications are finalized, the 

project team incurs a risk that some of these tasks may be modified or eliminated. The benefit 

versus cost of such tasks must be thoroughly reviewed by the experienced project team 

members.  

2.2.2.2 Overlapping of Tasks 

As product development schedules face persistent schedule pressure from the markets 

they serve, there is always a need to find techniques to compress the schedule. One such 
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technique is the deployment of Concurrent Engineering (CE). CE involves simultaneous 

execution of coupled product development phases. Krishnan ( 1996) has proposed a 

conceptual framework for identifying the phases of a project that can be overlapped.  

As previously defined, a project is a collection of interrelated and independent tasks to 

be executed. In the context of high technology projects, the interrelated or dependent tasks may 

be viewed as an aggregate of upstream and downstream tasks; the implication is that the 

upstream task must be completed to complete the downstream task. On closer analysis, 

however, this may not always be necessary, and the only constraint may be for the upstream 

task to be completed before the downstream task can be completed.  

Overlapping of upstream and downstream tasks requires a careful analysis of their 

relationship. Once started, the upstream task may evolve to its final form either rapidly or slowly. 

The downstream task, if begun before the upstream task is completed, may vary in its degree of 

sensitivity to changes in the upstream task. The best case for overlapping is when the upstream 

task, once started, evolves very rapidly and the downstream task has very low sensitivity to 

changes in the upstream task. In this case, it is possible both to start the downstream task as 

soon as some preliminary information from the upstream task is available and to finalize the 

exchanged information early. The worst case for overlapping of tasks occurs when the 

upstream phase evolves very slowly to its final form and the downstream task is very sensitive 

to any changes of information in the upstream task. In this case, it is not desirable to start the 

downstream phase with the preliminary information available in the upstream phase. The other 

cases of task coupling lies somewhere in the middle of these two scenarios.  

2.2.2.3 Iterative Tasks 

It is important to summarize a high tech product development flow with its inherent risks 

due to technical uncertainty. Schedule deadlines dictate that upstream and downstream tasks 

must overlap and the flow of information between them must be managed very closely. At first 

glance, it may appear that the case of iterative tasks is the same as that of the overlapping 

tasks. The fundamental distinction between the two is that overlapping tasks are tasks that can 
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be executed sequentially, but we try to find ways to execute them in parallel to shorten the 

product development cycle. Iterative Tasks must be executed in parallel because the 

information from the execution of one dynamically impacts the execution of the other. 

2.2.3 Usage of Engineering Software Tools in High Technology Product Development 

The previous sections discuss the complex interactions of tasks and subtasks in a high 

technology product development project. Tasks and subtasks have complex dependencies 

manifested by the ongoing flow of information between them. As the completion of each task 

progresses, it affects the progress of other tasks.  

In high technology product development projects, a large number of the tasks are 

executed using engineering software. The software may be deployed for building simulation 

models for analysis at varying degrees of abstraction, creation and management of the product 

design database, the release of the product design to manufacturing, complex mathematical 

computations, and several other applications.   

The concurrent and iterative nature of product development tasks usually requires each 

product development task to be executed multiple times. In fact, without the ability to automate 

the execution of the product development tasks, it is impractical to implement time to market 

strategies and to manage product development complexity. As many product development 

tasks as possible are executed concurrently. This increases the usage of software for a longer 

duration during the product development cycle. However, due to task dependencies and 

evolving product specifications, product development tasks have a dominant phase. The 

dominant phase creates longer software usage cycles, and the iterative and overlapping tasks 

create shorter duration software usage cycles. The next section is a brief survey of demand 

forecasting techniques, followed by an approach to forecast the demand cycle by using 

Frequency Domain analysis.  
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2.3 Demand Forecasting 

To predict the software capacity to be implemented to support the software demand, 

we review the techniques that may be used to forecast the software demand. Software demand 

may be forecasted based on historical usage of the current and past projects. In the framework 

of this research, software usage is captured and stored in a database. The weekly peak usage 

data is then computed to monitor usage and plan capacity.  

General methods for demand forecasting are regression models and time series 

analyses, which require sufficient historical data (Saito and Kakemoto, 2004). Due to rapid 

changes in the market, applying these traditional methods tends to be challenging in today’s 

development of multiple new products, short product lifecycles, and highly erratic demand. 

Therefore, new forecasting methods for high technology product development are necessary for 

demand planners. In the next section, we survey the traditional time series forecasting methods. 

2.3.1 Time Series Forecasting 

In time series analysis, the measurements are taken at a regular interval. Although time 

series data generally exhibits random fluctuations, the time series may still show gradual shifts 

to relatively higher or lower values over an extended period of time. The gradual shifting of the 

time series is referred to as the trend in the time series. Although a time series may exhibit a 

trend over long periods of time, all future values of the time series may not fall exactly on the 

trend line. Any recurring sequence of points above and below the trend line can be attributed to 

the cyclical component of the time series. Similarly, there may be a seasonal component in 

which the time series data varies due to seasonal influences. Finally, a time series has a 

random component that accounts for deviations of the actual values from those expected, given 

the effects of the trend, cyclical, and seasonal components (Anderson, Sweeney, and Williams, 

2004).  

The following sections survey the techniques available to forecast demand based on a 

historical record of a time series of discrete numbers.  
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2.3.2 General Forecasting Methods 

Using a moving average of the values may smooth the random component in a time 

series. The sensitivity of the moving average to changes in the trend and cycles depends on the 

lag associated with the moving average and the relative weights assigned to the data of each 

time series.  

A simple moving average (SMA) is one where the data for the lag period of each time 

series is assigned equal weights. In contrast, the weighted moving average (WMA) is one in 

which the data of each time series may be assigned a different weight as long as the sum of the 

weights adds up to 1. Exponential smoothing average (EMA) uses a weighted moving average 

of the past time series values as the forecast; it is a special case of the weighted moving 

average in which only one weight is selected—the weight for the most recent observation. The 

weights for the older data values are automatically computed and get smaller as the 

observations move further into the past.  
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Ft+1 = forecast of the time series for period t+1 

Yt = actual values of the time series in period t.  

Ft = forecast of the time series for period t 

=α smoothing constant )10( ≤≤ α  

Causal forecasting methods are based on the assumption that the variable we are 

trying to forecast exhibits a cause-effect relationship with one or more other variables. 

Regression analysis is a technique used to develop a model that shows how variables are 

related.  The variable that is being predicted is called the dependent variable. The variable or 

variables being used to predict the value of the dependent variable are called the independent 
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variables. Regression analysis involving two or more independent variables is called multiple 

regression analysis. If only the past values of the variable being forecast are used to create the 

forecast, then the use of regression analysis is not a causal forecasting method. In this 

research, we investigate and construct a model to forecast future demand for licenses without 

directly studying the factors that may cause the variation in demand. The factors that may cause 

the variation in demand for licenses are a topic for further research and are beyond the scope of 

this research.  

2.3.3 Neural Networks 

An Artificial Neural Network (ANN) is an information-processing paradigm that is based 

on the way biological nervous systems, such as the brain, process information. The key element 

of this paradigm is the novel structure of the information-processing system. It is composed of a 

large number of highly interconnected processing elements (neurons) working in unison to solve 

specific problems. ANNs, like humans, learn by example. An ANN is configured for a specific 

application, such as a pattern recognition or data classification, through a learning process.  

Neural networks, with their uncanny ability to derive meaning from complicated or 

imprecise data, can be used to extract patterns and detect trends that are too complex to be 

noticed by either humans or other computer techniques. A trained neural network can be 

thought of as an “expert” in the category of information it has been given to analyze. This expert 

can then be used both to provide projections when given new situations of interest and to 

answer “what if” questions.  

Neural networks provide several other key advantages: 

• Adaptive learning: An ability to learn how to do tasks based on the data given 

for training or initial experience. 

• Self-Organization: An ANN can create its own organization or representation of 

the information it receives during the learning time.  
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• Real Time Operation: ANN computations may be carried out in parallel. Special 

hardware devices that take advantage of this capability are being designed and 

manufactured. 

• Fault Tolerance via Redundant Information Coding: Partial destruction of a 

network leads to the corresponding degradation of performance. However, 

some network capabilities may be retained even with major network damage.  

An ANN consists of three groups, or layers, of units: input units, which are connected to 

a layer of hidden units, which is connected to a layer of output units.  

• They receive the raw information that is fed into the network. 

• The processing at each hidden unit is dependent on the output from the hidden 

units and the weights of the connections between the input and hidden units.  

• The processing at each output unit is a function of the processing activity at 

each hidden unit and the weights between the hidden and output units.  

In a single-layer organization, all units are connected to each other. In a multilayer 

network, units are grouped into layers instead of a flat structure. There are many functions that 

cannot be represented by a single-layer network. The limitations can be overcome by adding 

more layers, as in a multilayer network.  

A multilayer network has two or more layers of units, with the output from one layer 

serving as the input to the next. The layers with no external connections are referred to as 

hidden layers. Any multilayer system with fixed weights that has a linear activation function is 

equivalent to a single-layer linear system. In a two-layer linear system, the input vector to the 

first layer is X, and the output Y=W1*X of the first layer is given as input to the second layer. 

The second layer produces output Z=W2*Y. Thus,  

Z = W2*(W1*X) = (W2*W1)*X      Equation 2.3 

The system is equivalent to a single-layer network with weight matrix W= W2*W1. By 

induction, a linear system with any number n of layers is equivalent to a single-layer linear 
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system in which the weight matrix is the product of the n intermediate weight matrices. A 

multilayer system that is not linear can provide more computational capability than a single-layer 

system. Any Boolean function can be implemented by a multilayer network (McClelland and 

Rumelhart, 1988). 

2.3.3.1 Forecasting with Neural Networks 

Neural networks have been used for time series modeling and forecasting for quite 

some time. Since neural networks are best at identifying trends in data, they are well suited for 

prediction or forecasting. The power and usefulness of artificial neural networks have been 

demonstrated in several applications, including speech synthesis, diagnostic problems, 

medicine, business and finance, robotic control, signal processing, computer vision, and many 

other problems that fall under the category of pattern recognition. To forecast, neural networks 

learn past patterns from historical data and recognize these patterns when they reoccur.  

The common method to train a neural network is called supervised learning and 

provides a set of inputs and expected outputs to a multilayer network. No learning algorithm had 

been available for multilayer networks until Rumelhart, Hinton, and Williams introduced the 

backpropagation training algorithm, also called the generalized delta rule (Rumelhart et al., 

1988). At the output layer, the output vector is compared to the expected output. If the 

difference is zero, no changes are made to the weights of the connections. If the difference is 

not zero, the error is calculated from the delta rule and is propagated back through the network. 

The idea, similar to that of the delta rule, is to adjust the weights to minimize the difference 

between the real output and the expected output. Such networks can learn arbitrary 

associations by using differentiable activation functions. A theoretical foundation of 

backpropogation can be found in McClelland and Rumelhart (1986) and in Rumelhart et al. 

(1988). 

The success or failure of neural networks models in time series forecasting may depend 

on (a) the type of data, (b) the skill of the analyst in selecting a suitable neural network model, 

and/or (c) the numerical methods used to fit the model and compute predictions (Chatfield, 



 

 19

1998). Chatfield and Faraway (1996) and Faraway and Chatfield (1998) published two case 

studies that analyze some sales data and airline data. Both series were fairly short by neural 

network standards (83 and 144 observations, respectively) and might be thought by some 

computer scientists to be too short for ANN modeling. However, the lengths of the series were 

typical of data found in many forecasting situations.  

Kuvulmaz et al. (2005) published a comparative assessment of some well known linear 

and nonlinear techniques in modeling and forecasting financial time series with trend and 

seasonal patterns. Then they investigated the effect of pre-processing procedures, such as 

seasonal adjustment methods, to the improvement of the modeling capability of a nonlinear 

structure implemented as ANNs in comparison to the classical Box-Jenkins seasonal 

autoregressive integrated moving average (ARIMA) model. There was no significant statistical 

difference between forecasting performances of ANN trained with unprocessed data or ARIMA 

models. However, the results improved considerably after applying seasonal adjustment to the 

ANN input data (Kuvulmaz, Usanmaz, and Engin, 2005). 

2.3.4 Forecasting of Cyclical Events 

In section 2.3, we discussed the concept of a cyclical component in time series data. 

Prior to that, in section 2.2.2, we reviewed the fundamental nature of high technology product 

development and the usage of engineering software tools. If we accept the premise that the 

usage of software engineering tools on a product development project is cyclical, we need a 

way to forecast the cycles. This motivates us to review techniques to forecast cycles in time 

series data.  

2.3.4.1 ARMA 

Autoregressive moving average (ARMA) models are mathematical models of the 

persistence, or autocorrelation, in a time series. ARMA models are widely used in many areas 

and are also known as the Box-Jenkins approach.  

ARMA models can be described by a series of equations. The equations are usually 

simplified if the time series is first reduced to zero-mean by subtracting the sample mean.  
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tt Yy = Y ,   t = 1,……N     Equation 2.4 

where tY  is the original time series, Y  is its sample mean, and ty  is the mean-adjusted 

series. One subset of ARMA models is the so-called autoregressive, or AR models. An AR 

model expresses a time series as a linear function of its past values. The order of the AR model 

tells how many lagged values are included. The first-order AR model, AR(1), is  

ttt eyay =+
−11        Equation 2.5

 

where ty is the mean-adjusted series in time interval t, 1−ty is the series in the previous time 

period, 1a is the lag-1 autoregressive coefficient, and 1e is the noise, also known as the random-

shock or residual. The residuals 
te are assumed to be random in time (not autocorrelated) and 

normally distributed. If we rewrite the AR(1) model as  

ttt eyay
+−

−= 11        Equation 2.6
 

we see that ty is regressed on its previous value and that ie is analogous to the regression 

residuals. The term autoregressive refers to regression on self (auto). 

Higher-order autoregressive models include more lagged ty  terms as predictors. The 

pth order autoregressive model, AR(p), includes lagged terms for time periods t-1 to t-p. 

The moving average (MA) model is a form of ARMA model in which the time series is 

regarded as a moving average of a random shock series et. MA(1) is the first order moving 

average model and is given by  

1−+= tttt ecey
       Equation 2.7

 

As with AR models, the higher-order MA models include higher lagged terms. A qth 

order moving average model is denoted by MA(q).  
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The autoregressive moving average model includes lagged terms on the time series 

itself, and the moving average model includes lagged terms on the residuals. If both types of 

lagged terms are included, the model is called autoregressive-moving-average, or ARMA. An 

ARMA(1,1) model is  

111 −−
+=+ ttttt eceyay

      Equation 2.8
 

ARMA models have traditionally been used for forecasting, but these models require 

sufficient historical data. Due to rapid changes in the business environment, applying traditional 

methods is more challenging, particularly due to short product lifecycles and erratic demand 

(Saito & Kakemoto, 2004).  

2.3.4.2 Frequency Domain Analysis 

In its simplest form, any time series data varies over time. If the variation is periodic 

and the same pattern repeats itself over time, the data is periodic. A sine wave is a simple 

example of a periodic date. The time series data is periodic if and only if 

s(t+T) = s(t)    -∞ < t < +∞     Equation 2.9 

where the constant T is the period of the time series data. A general periodic data 

series can be represented by three parameters: amplitude (A), frequency (f), and phase (ø). 

The amplitude is the peak value of the data series over a period; this is typically measured in 

the unit of the data series. The frequency is the rate at which the signal repeats. An equivalent 

parameter is the period (T) of a signal, which is the amount of time it takes for one repetition; 

therefore, T=1/f. Phase is a measure of the relative position in time within a single period of a 

signal. The general sine wave can be written as 

���� � �����2
�� � 
                 Equation 2.10 

It can be shown, using Fourier analysis, that any periodic data series is made up of 

components at various frequencies, in which each component is a sinusoid. For example, the 

periodic data series 
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���� � sin �2
��� � ��sin �2
�3�����      Equation 2.11 

 

contains two individual components of frequencies f1 and 3f1.  

 

Figure 2.1 Sine wave with frequency f1, )2sin( 1tfπ  
 

 

Figure 2.2 Sine wave with frequency 3f1, ))3(2sin( 1 tfπ  
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Figure 2.3 Composite sine wave, ))3(2sin(
3

1
)2sin( 11 tftf ππ +  

 
There are two key points to note about this figure: (a) the second frequency is an 

integer multiple of the first frequency (when all of the frequency components of a signal are 

integer multiples of one frequency, the latter frequency is referred to as the fundamental 

frequency) and (b) the period of the total signal is equal to the period of the fundamental 

frequency.  

It can be shown, using the discipline of Fourier analysis, that any signal is made up of 

components at various frequencies, in which each component is a sinusoid. Therefore, the 

effects of various time series data may be expressed in terms of frequencies (Stallings, 1997).  

2.3.4.3 Fourier Analysis 

Any period signal can be represented as a sum of sinusoids, known as a Fourier 

series.  

���� �  ∑ ��∞��� cos�2
����� � ∑ ��∞��� sin �2
�����                    Equation 2.12 

where f0 = 1/T, where T is the period of the signal. The frequency f0 is referred to as the 

fundamental frequency; multiples of f0 are referred to as harmonics. Thus, a periodic signal of 

period T consists of the fundamental frequency f0 plus harmonics of that frequency.  

The value of the coefficients is calculated as follows: 
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�� �  �
�  ��� ���!�                     Equation 2.13 

�� �  "
�   ��� ���cos �2
�#��!�                    Equation 2.14 

�� �  "
�   ����sin �2
�� ��!�                    Equation 2.15 

Fourier analysis techniques have been applied in time series forecasting, usually to 

improve results obtained from using other techniques. Saito et al. (2004) proposed a new 

demand forecasting method using ANN and Fourier Transform. In this method, the time series 

data of sales is transformed into a combination of frequency data and identified from objective 

indexes, which consist of product properties or economic indicators. The results demonstrated 

that the proposed method was superior to forecasting that uses only the Neural Network. The 

reason for superior results was attributed to the fact that the complex relationship between the 

objective indexes and the sales amount data was easier to learn by replacing the sales amount 

data with the frequency parameter.  

In this research, Fourier analysis is used to extract the dominant usage cycles of 

engineering software used in high technology product development.  

2.4 Software License Capacity Planning 

Capacity is the amount of output that a system is capable of achieving over a specified 

period of time. Insufficient capacity may result in a decline in the level of service, while excess 

capacity may result in unproductive assets. Managing capacity, therefore, is a balancing act and 

must be aligned with the organization’s stated objectives and policies.  

The discipline of capacity planning has been applied extensively in the manufacturing 

and service industry. This section covers some applications of this discipline in the high 

technology area. Forecasting the demand for each individual project allows for the development 

of a capacity plan for software license capacity for a software package used in high technology 

product development. Once there is a forecast of future demand for each ongoing project and 

there has been a strategic decision to meet this demand, the next step is to make available 

adequate software capacity. This is the function of software license capacity planning.  
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The literature on capacity planning is directed at three planning levels: strategic, 

tactical, and operational. Most of the research is concentrated on the tactical and operational 

levels, using analytical modeling (Yang, Haddad, and Chow, 2001). Laguna (1998) examines 

expanding the capacity of a single facility of a telecommunication network. The approach uses 

dynamic programming and the shortest path procedure. A stochastic dynamic programming 

model is deployed to determine the amount of current technology needed to meet future growth 

in demand (Rajagopalan, Singh, and Morton, 1998).  Kennington et al. (1999) use a node-arc 

network programming model for the spare capacity allocation problem in a self-healing, mesh 

SONET telecommunication network.  

Strategic problems tend to be broader and more complex in scope to allow for ease of 

analytical modeling. Simulation modeling has been used to model strategic aspects of capacity 

planning (Yang, Haddad, and Chow, 2001). Simulation involves designing a model that 

captures the essential features of a real world system as much as possible. Meimban et al. 

(1992) use a probabilistic investment model and Monte Carlo simulation to evaluate the 

feasibility of various design options of wood-fired cogeneration facility.  

An approach to developing a capacity planning model for multimedia service systems 

was proposed by Park and Kim (2002). Multimedia systems are deployed by network access 

providers, such as public switched telephone networks (PSTN), cable TV networks’ asymmetric 

digital subscriber lines (ADSL), or cable modems, to provide services such as video on demand. 

The capacity plan model was developed using an open queuing network. Based on the arrival 

rates of the clients and the failure rates of the multimedia resources, a model of the service 

capacity of the system was developed. The analytically developed model was validated by 

using a simulation approach.  

2.4.1 Software Licensing  

A license checkout takes place every time a user invokes an application and the  

Application Software queries the license server for a license. If a license is available, it is 

granted, and a checkout is recorded. When the application is terminated, the license is checked 
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back into the license pool and is available to any other user who may invoke the same 

application. In an enterprise, a large number of users are typically checking in and out the 

licenses for any given application. The objective is to forecast demand to ensure that sufficient 

licenses have been procured to meet the maximum expected demand. A license denial may or 

may not be acceptable, depending on the policy in place for the given project. Therefore, the 

key statistic to be monitored is the peak demand for the time period of interest. 

The selected time period for a single data point for this research was one week. A log 

was kept of all licenses checked in and out during the week, and the peak usage was recorded. 

Thus, the license usage history consists of a sequence of discrete numbers over time even 

though the licenses may be used continuously. 

 



 

 27

CHAPTER 3 

SOFTWARE LICENSE USAGE FORECASTING MODEL 

The first objective of this chapter is to propose a usage model for the EAS (Engineering 

Application Software) that is used concurrently on multiple projects. As described in chapter 2, 

usage data is collected on a weekly basis. Each data point represents peak usage for the week. 

The usage data is used to develop models to predict project usage.  

The second objective is to utilize the proposed usage model to predict the future license 

requirements. In this chapter, we detail the methodology used to collect usage data and 

construct project usage models for the projects that are in execution concurrently. In chapter 4, 

the concurrent project usage models, in conjunction with capacity data are utilized to forecast 

capacity requirements.  

To achieve the objectives outlined in the previous paragraph, the first step is to collect 

the software usage data for one EAS for a period of time that encompasses one complete 

project. Usage data is also collected for all of the other projects in execution during the same 

time period for the same EAS. The second step uses a segment of the usage data to propose a 

rigorous approach to establish the dominant usage cycles for each project and to build models 

to predict the EAS demand. The last step is to analyze and validate the models with the 

remaining usage data. This will be the topic of discussion for chapter 5. Figure 3.1 shows the 

methodology to develop the ESA usage models and a capacity plan.  



 

 

Figure 3.2 is a detailed flowchart that shows how the methodology to build a forecast 

model for a single project is implemented.

steps outlined in the flowchart. 
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Figure 3.1 Proposed Methodology 

detailed flowchart that shows how the methodology to build a forecast 

a single project is implemented. The following sections discuss in detail the process 

 

 

detailed flowchart that shows how the methodology to build a forecast 

The following sections discuss in detail the process 
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Figure 3.2 Project License Usage Methodology 

3.1 Software Usage Data Collection 

Usage data is essentially a record of the license check-out and check-in time of an 

Application Software.  

 

 

When Application Software is invoked, it requests a license from a License Manager 

program. The License Manager software runs perpetually in the background on a License 

Server. It is the function of the License Manager to grant or deny a license request from an 

EAS.  

To assist the License Manager, the publisher of the EAS provides another background 

program commonly referred to as the Vendor Daemon. The key function of the Vendor Daemon 

is to track the total number of licenses available and the number that have been checked out. 

Project - Time 
Series Usage 

Data 

Show seasonality in 
data  

Fourier Analysis -
Extract dominant 

cycle

Construct linear trend
Construct quadratic 

trend

Extract seasonal 
variations

Neural Model with 
ARIMA & Seasonal 

Models

OR

MSE_Lin MSE_Quad

Min(MSE_Lin,MSE_Quad)

Neural Model 
Seasonal trend  

Model ARIMA

Raw Usage 
Data 

Max Usage /week

MSE_Season MSE_ARIMA MSE_NMMSE_NSeason

Neural Model with 
Seasonal Models

MSE_Integrated

OR Min(ALL MSE)

Check-out time – check-in time = time duration of software usage 



 

 

When requested by the License Manager

communicate this information. 

Figure 3.

The License Manager grants or denies the license based on the information r

from the Vendor Daemon. A license grant means 

Publisher and that licenses are available. A denial means that either all 

are checked out or the requested EAS is unauthorized. 

license request results in a license grant. A check

license.  

3.1.1 Raw Data 

The License Manager records each check

and time stamp in a Usage Report Log. The Usage Report Log contains the raw data that is 

then read into a database for further processing.
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by the License Manager, the Vendor Daemon uses an established protocol to 

communicate this information.  

Figure 3.3 EAS License Architecture 

The License Manager grants or denies the license based on the information r

from the Vendor Daemon. A license grant means that the EAS is authorized by the Software 

licenses are available. A denial means that either all of the available licenses 

are checked out or the requested EAS is unauthorized. A license check-out happens when a 

license request results in a license grant. A check-in occurs when an EAS relinquishes the 

The License Manager records each check-in and check-out with the appropriate date 

Report Log. The Usage Report Log contains the raw data that is 

then read into a database for further processing. 

uses an established protocol to 
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Figure 3.4 Raw Data Format 

3.1.2 Processed Data 

The raw data is processed to compute the weekly peak usage for each week for the 

two-year period under study for the EAS. The data is exported to a Microsoft Excel 

spreadsheet. Figure 3.4 shows the generation of processed data from raw data.  
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Project 2 
EAS

Project 3 
EAS

USAGE
REPORT

LOG

Raw Data from License Manager

Feature Event Time End Duration # User "IP Address" Host  AppVer Project "Shared Group" 
Reason 

SIM_L Used "Nov 05, 2007 12:26:19" "Nov 05, 2007 15:16:56" "00d 02:50:37" 1 joeg 172.28.15.52 
lx-deskh191 6.1 proj-name 0Xa0a Normal
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Figure 3.5 Processed Data Generation 

3.2 License Usage Cycles 

As a first step, to ensure that the data is not random and to visualize the trend and 

cyclical components we create a correlogram that shows the autocorrelation of the time series 

data with different time lags.  In the analysis of the time series, a correlogram, also known as an 

autocorrelation plot, is a plot of the sample autocorrelations  versus , the time lags. The 

correlogram is a tool commonly used for checking randomness in a data set. This randomness 

is ascertained by computing autocorrelations for data values at varying time lags. If random, 

such autocorrelations should be near zero for any and all time lag separations. If non-random, 

then one or more of the autocorrelations will be significantly non-zero. Figures 3.6 to 3.8 show 

the non-random nature of the usage data for all three projects.  

Feature Event Time End Duration # User "IP Address" Host  AppVer Project "Shared Group" 
Reason 

SIM_L Used "Nov 05, 2007 12:26:19" "Nov 05, 2007 15:16:56" "00d 02:50:37" 1 joeg 172.28.15.52 
lx-deskh191 6.1 proj-name 0Xa0a Normal

Raw Data

Value (P) Value(p1) Value (p2) Value (p3)

01/01/06 2708 2812 1105 2708

01/08/06 8134 3080 1893 8134

01/15/06 4067 3243 1923 4067

01/22/06 4564 3309 1856 4564

01/29/06 4888 4188 1909 4888
02/05/06 5067 3376 1899 5067

Processed Data

Database
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Figure 3.6 Correlogram of p1 project usage 

 

Figure 3.7 Correlogram of p2 project usage 
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Figure 3.8 Correlogram of p3 project usage 

We propose to extract the cyclical behavior over time of the weekly peak license usage 

variable to predict future usage of licenses. This is to ensure that an adequate number of 

licenses are available to meet the project’s requirements. We show that Fourier Analysis is an 

effective tool to capture the cyclical behavior that could be due to several factors discussed in 

chapter 2, section 2.2. Key attributes of high technology product development projects are that 

the development tasks may be either iterative to drive convergence to the desired results or 

repetitive to respond to changes in the specifications, requirements, and evolving knowledge of 

the problem domain. Executing various EAS at each step is usually required to complete the 

product development in high technology. Due to the attributes of high technology projects, an 

EAS may be executed periodically and repeatedly, thus exhibiting cyclical usage patterns.  

The Fourier analysis is a form of multiple regression analysis. The cycle is described by 

a sine function with the general form of  

$ � �� � % &�' cos�2jπt� � �' sin�2πjt* � Є�+
'��      Equation 3.1 

where 
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y = weekly peak license usage parameter 

�� = intercept of the regression equation 

�' = coefficient of the cosine variable 

�' = coefficient of the sine variable 

Є = residual term 

For the cyclical variation over a period of time equal, the function takes the form 

 $ � �� � , -�' cos�".π/
012� � �' sin�"π./

0123 � Є�+
'��    Equation 3.2 

where t = Julian days  

y = weekly peak license usage parameter 

We will use this form to analyze the cyclical variation of license usage.  

3.2.1 Extraction of Cycles 

To extract the dominant cycles, the spreadsheet is structured in the Excel spreadsheet 

software as shown in Table 3.1.  

Table 3.1 Snapshot of Excel spreadsheet Fourier Analysis 

 

01/01/00 is the reference date used in the calculations; column t shows the Julian days. 

The formulas used to compute the values for the Fourier analysis in the Excel spreadsheet are 

shown below in Table 3.2.  

 

 

 

01/01/00 t 2pi*t/365 cos(e) sin(e) cos(2e) sin(2e)
Value 
(P)

Value(
p1)

Value 
(p2)

Value(
p3) reg (P) reg (p1) reg(p2) reg(p3)

01/01/06 38717 666.482426 0.893919 0.448229 0.59818091 0.801361 2708 2812 1105 2708 18176.90354 6167.044347 4420.6076 18176.904
01/08/06 38724 666.602926 0.833556 0.552435 0.38963045 0.920971 8134 3080 1893 8134 17572.45189 5963.294387 4243.4868 17572.452
01/15/06 38731 666.723425 0.761104 0.64863 0.15855939 0.987349 4067 3243 1923 4067 16959.03008 5768.770086 4133.1818 16959.03
01/22/06 38738 666.843924 0.677615 0.735417 -0.0816764 0.996659 4564 3309 1856 4564 16353.27341 5593.423411 4092.7854 16353.273
01/29/06 38745 666.964424 0.584298 0.811539 -0.3171913 0.948362 4888 4188 1909 4888 15771.56851 5446.482266 4121.6543 15771.569
02/05/06 38752 667.084923 0.482508 0.875892 -0.5343726 0.845249 5067 3376 1899 5067 15229.37631 5335.93027 4215.4891 15229.376
02/12/06 38759 667.205423 0.37372 0.927542 -0.7206671 0.693281 4866 4531 1923 4866 14740.60176 5268.052699 4366.6211 14740.602
02/19/06 38766 667.325922 0.259512 0.96574 -0.8653073 0.501242 5512 4204 2038 5512 14317.04299 5247.074714 4564.4885 14317.043
02/26/06 38773 667.446422 0.14154 0.989932 -0.9599327 0.280231 5670 4717 2318 5670 13967.94797 5274.912768 4796.2728 13967.948
03/05/06 38780 667.566921 0.021516 0.999769 -0.9990741 0.043022 5805 4634 2412 5805 13699.70095 5351.053628 5047.6599 13699.701
03/12/06 38787 667.687421 -0.09882 0.995105 -0.9804692 -0.19667 5911 4589 2317 5911 13515.6534 5472.568148 5303.6811 13515.653
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Table 3.2 Formula view of Excel spreadsheet Fourier analysis 

 

The next step in the analysis is to perform the multiple linear regression (MLR) analysis 

to calculate the values for the coefficients a0, aj and bj in equation 3.2. In the Excel spreadsheet 

software, we use the built-in Regression function under the “Data Analysis” menu. The values 

under the column headings cos(e), sin(e), cos(2e), and sin(2e) are the independent variables. 

For each of the three projects, the historical actual usage data is under the column headings 

Value(p1), Value(p2), and Value(p3). Value(P) is the historical actual usage for the enterprise 

during the time period in which the three projects p1, p2, and p3 were active. The predicted 

values for each of the three projects are under the column headings reg(p1), reg(p2), and 

reg(p3).  

We use Fourier Analysis to capture the cyclical component of the EAS usage on each 

project. Equation 3.2 was expanded for the values of j=1 and j=2. The value of j=1 gives the 

longest cycle that can be extracted from the data. Similarly, the value of j=2 gives the next cycle 

of shorter length. This process may be continued for subsequent values of j=3, j=4, etc. as long 

as the period of the cycle is relevant in the context of the data. The graphs in Figure 3.5, Figure 

3.6, and Figure 3.7 show the dominant cycle when j=1 and the next cycle when j=2. The cycles 

are plotted with the actual license usage data.  

  

1 t 2pi*t/365 cos(e) sin(e) cos(2e) sin(2e)
38718 =A2-$A$1 =2*PI()*B2/365 =COS(D2) =SIN(D2) =COS(2*D2) =SIN(2*D2)
=A2+7 =A3-$A$1 =2*PI()*B3/365 =COS(D3) =SIN(D3) =COS(2*D3) =SIN(2*D3)
=A3+7 =A4-$A$1 =2*PI()*B4/365 =COS(D4) =SIN(D4) =COS(2*D4) =SIN(2*D4)
=A4+7 =A5-$A$1 =2*PI()*B5/365 =COS(D5) =SIN(D5) =COS(2*D5) =SIN(2*D5)
=A5+7 =A6-$A$1 =2*PI()*B6/365 =COS(D6) =SIN(D6) =COS(2*D6) =SIN(2*D6)
=A6+7 =A7-$A$1 =2*PI()*B7/365 =COS(D7) =SIN(D7) =COS(2*D7) =SIN(2*D7)
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Figure 3.9 Graph of usage cycles and actual usage for project p1. 
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Figure 3.10 Graph of usage cycles and actual usage for project p2. 
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Figure 3.11 Graph of usage cycles and actual usage for project p3. 
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From the graphs we make the following observations about the first dominant cycle and the 
second minor cycles for each of the three projects. 
 

Table 3.3 Cycles in EAS usage 
 

Projects Start Date End Date Duration  
P1 3/1/2006 3/1/2007 12 months Dominant cycle – 12 mo 
 3/1/2007 3/1/2008 12 months  
 3/1/2006 9/1/2006  Minor cycle – 6 mo 
 9/1/2006 3/1/2007   
 3/1/2007 9/1/2007   
 9/1/2007 3/1/2008   
     
P2 2/1/2006 2/1/2007 12 months Dominant cycle – 12 mo 
 2/1/2007 2/1/2008 12 months  
 2/1/2006 8/1/2006  Minor cycle – 6 mo 
 8/1/2006 2/1/2007   
 2/1/2007 8/1/2007   

 8/1/2007 2/1/2008   
     
P3 51/2006 10/1/2006  Dominant cycle – 5mo 
 10/1/2006 3/1/2007   
 3/1/2007 8/1/2007   
 8/1/2007 1/1/2008   

 

  

3.3 Project Cycles Forecasts 

We use trend forecasting techniques based on the actual usage data to predict future 

values. In the previous section, we established the presence of cyclical variations in the usage 

data. For forecasting, these cyclical variations can be treated the same way as trend forecasting 

with seasonal variations. Fourier analysis, utilized in the previous section to compute the cycles 

and the cycle period, establishes the length of the “seasons.” 

In the following sections, we develop forecasts by using linear and quadratic trends for 

project p1. Using the Mean Square Error (MSE) criteria, we select the trend that has the smaller 

MSE. We then apply the seasonal variations to obtain a better fit as measured by the MSE.  

The same methodology is used for projects p2 and p3. 

3.3.1 Project Forecast using Linear and Quadratic Trends 

The first step in creating a forecast is to formulate a trend that can then be extrapolated 

to predict the future value of the dependent variable. We illustrate the methodology for project 
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p1. The same methodology is applied to projects p2 and p3, and the results are summarized in 

Appendix 3.  

Consider the following linear regression model, where time is used as an independent 

variable. 

4�= 50+5161�+7�          Equation 3.3 

where  

61�= t and represents the time period t (X11 = 1, X12 = 2, and so on) 

 7� = error term that represents the random variation in the time series 

50 = Y intercept of the regression line 

51 = slope of regression line 

4� = dependent variable, whose systematic variation can be described by the regression 

function 50+5161�. 
The best estimate of �� using the least squares to estimate the parameters in equation 

3.3 for any time period t is: 

4′�= �0+�161�        Equation 3.4 

where  

4′� is the best estimate of Yt. 

�0 = best estimate of 50 

�1 = best estimate of 51 
To fit a curved trend line to the data, we use the following quadratic model: 

4�= 50+5161�+5262�+7�       Equation 3.5 

where  

61�=t and 62�=t2 

52 = quadratic regression parameter 

The rest of the terms are the same as in Equation 3.3. 

The resulting estimated regressions function for this model is:  
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4′�= �0+�161�+�262�           Equation 3.6 

where 

�2 = is the best estimate of 52 

The rest of the terms are the same as in Equation 3.4. 

Table 3.4 Excel setup to compute Linear and Quadratic trends 

 

The columns in Table 3.4 represent: 

Linear Trend = 4′�, the best estimate of 4� 

Actual Usage (p1) = 4�, dependent variable 

t = independent time variable 

t^2 = squared value of t 

The Linear and Quadratic trends are calculated using the equations 3.4 and 3.6 and 

plotted against the actual usage as shown in figure 3.8. The mean MSE for the linear trend is 

2953683 and the MSE for the quadratic trend is 2915088.  Therefore: 

MSE(Quadratic Trend) < MSE(Linear Trend) 

We elect to apply the seasonal or cyclic adjustments to the quadratic trend to further 

decrease the MSE. 

 

Date Cycle (p1) t t^2
Actual Usage 

(p1) Linear Trend
Quadratic 

Trend
01/01/06 4 1 1 2812 2988 3416
01/08/06 4 2 4 3080 3049 3454
01/15/06 4 3 9 3243 3109 3493
01/22/06 4 4 16 3309 3169 3532
01/29/06 4 5 25 4188 3230 3571
02/05/06 4 6 36 3376 3290 3610
02/12/06 4 7 49 4531 3350 3650
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Figure 3.12 Linear and Quadratic trends against actual usage 

3.3.2 Project Forecast using Cyclic Variations 

In this section, we attempt to further refine the predictions by including the effect of 

cyclic variation in the usage of EAS. We incorporate the effect of cycles in trend forecasting, 

similar to the effect of seasons in forecasting trends. To use the seasonal approach, we view 

the seasons as phases of the cycles computed using the Fourier analysis approach. Refer to 

Figure 3.9, which shows the four phases of the cycles in project p1. For the purpose of 

modifying the trend to include the effects of the four phases, we consider these phases to be 

analogous to seasonality effects.  
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Figure 3.13 Phases of the cycles for seasonal effect 

Table 3.5 Excel setup for forecasting with seasonal effects 

 

In Table 3.5, under the column “Actual as % of trend,” we calculate the % deviation of 

the Quadratic Trend value from the actual usage. For each cycle phase, 1 through 4, we 

calculate the average of the deviation listed under the column “Seasonal Index.” Each Quadratic 

Trend value is multiplied by the Seasonal Index of the corresponding phase. The new trend 

forecast is shown in Figure 3.10 and gives a MSE of 2451997.  

MSE(Quadratic Trend with seasonal effects) < MSE(Quadratic Trend) 
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01/01/06 4 1 1 2812 3416 82% 2998 1 108.67%
01/08/06 4 2 4 3080 3454 89% 3031 2 113.72%
01/15/06 4 3 9 3243 3493 93% 3065 3 93.55%
01/22/06 4 4 16 3309 3532 94% 3099 4 87.74%
01/29/06 4 5 25 4188 3571 117% 3133
02/05/06 4 6 36 3376 3610 94% 3168
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Figure 3.14 Quadratic trend with seasonal variation 

In the next section, we use an ARIMA model to investigate if we can achieve a lower 

MSE.  

3.3.3 Project Forecast using ARIMA 

ARIMA models can be described by a series of equations. The equations are somewhat 

simpler if the time series is first reduced to zero-mean by subtracting the sample mean. 

Therefore, the mean-adjusted series is represented by 

$9 �  49 :  4,<                        t = 1, …..N      Equation 3.7 

where 

 49  is the original time series 

 4=  is the sample mean  

 $9 is the mean-adjusted series.  
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One subset of ARMA models are so-called autoregressive, or AR, models. An AR model 

expresses a time series as a linear function of its past values. The order of the AR model tells 

how many lagged past values are included. The simplest AR model is the first-order 

autoregressive, or AR(1), model. The equation for this model is 

$9 �  �9$9>� �  ?9     Equation 3.8 

where 

$9 is the mean-adjusted series in t 

$9>1 is the series in the t-1 

�9 is the lag-1 autoregressive coefficient 

?9 is the residual.  

The residuals �� are assumed to be random in time (not autocorrelated) and normally 

distributed. By rewriting the equation for the AR(1) model as 

$9 �  : �9$9>� �  ?9     Equation 3.9 

we see that the AR(1) model has the form of a regression model in which $9 is regressed on its 

previous value and ?9  is analogous to the regression residuals. The name autoregressive refers 

to the regression on self.  

The moving average (MA) model is a form of ARMA model in which the time series is 

regarded as a moving average of a random shock series, �� . The first order moving average, 

or MA(1), model is given by 

$9 �  ?9 �  @�?9>�     Equation 3.10 

where 

 ?9  and  ?9>1 are the residuals at times t and t-1 and 

 @1 is the first-order moving average coefficient  

The autoregressive model includes lagged terms on the tie series itself, and the moving 

average model includes lagged terms on the residuals. By including both types of lagged terms, 

we arrive at the autoregressive integrated moving average (ARIMA) models. The order of the 
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ARIMA model is included in parentheses as ARIMA(p,q), where p is the autoregressive order 

and q is the moving-average order. The simplest and most frequently used ARIMA model is 

ARIMA(1,1) model 

$9 �   ��?9>� �  ?9 �  @�?9>�               Equation 3.11 

In this approach, we use ARIMA on the project p1 usage data using a built-in Excel 

macro. Table 3.6 shows the setup in Excel build an ARIMA model of autoregressive order (p) of 

1 and moving average order (q) of 1. We obtain the graph shown in Figure 3.15.  

The critical value of t for degrees of freedom equal to 100 and α equal to 0.05 is 1.9840. 

Since the t-statistic at 78.11231596>t0.05,100=1.984, we reject the null hypothesis that there is no 

correlation between autoregressive variable AR(1) and the fitted model. Similarly, we reject the 

null hypothesis that there is no correlation between the moving average variable MA(1) and the 

fitted model. The R-squared value of 0.800132 shows that 80% of the variation in the model can 

be explained by the variables AR(1) and MA(1).  

Table 3.6 Excel setup for an ARIMA model 

 

p1 ARIMA
timeseries: y
Method: Nonlinear Least Squares (Levenberg-Marquardt)
date: 02-21-09 time: 12:17
Included observations: 115 102
p = 1 - q = 1 - no constant - manual selection

Coefficient Std. Error t-Statistic R-squared

AR(1) 0.996331853 0.01275512 78.11231596 0.800132
MA(1) -0.214429051 0.09314654 2.302061344
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Figure 3.15 Plot of fitted ARIMA model against actual usage 

The MSE for the ARIMA model is 1466147.  

Therefore 

MSE(ARIMA) < MSE(Quadratic Trend with seasonal effects) 

Table 3.7 MSE values for projects p1, p2 and p3 

 

An inspection of Table 3.7 reveals that introducing seasonal variations improves the 

MSE for all three projects. For instance the value of MSE(seasonal) for p1 is 2,451,997, which 

is less than the MSE(Quadratic) of 2,915,088. Also, the ARIMA models give the least MSE for 

all three projects. The Linear, Quadratic, Seasonal, and ARIMA forecasting models for projects 

p2 and p3 are attached in Appendix C. Figures 3.16, 3.17, and 3.18 show the residual plots of 

the forecasting models for projects p1, p2, and p3. The plots show the errors to be random. 
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Figure 3.16 Residual plot of p1 

 

Figure 3.17 Residual plot of p2 
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Figure 3.18 Residual plot of p3 

We analyzed the characteristics of high technology product development projects and 

concluded that tasks were executed multiple times due to their iterative nature and the need for 

convergence. As a result, EAS usage had a cyclic component. Even though the cyclic 

component may not be apparent from a casual inspection of the usage data, the cycles were 

extracted using Fourier analysis. From the extracted cycles, we were able to compute the 

duration of the cycles. The cyclic variations were used to obtain a better fit of the model. We 

also built an ARIMA model for each of the three projects. In the next section, we develop a 

capacity forecast for the enterprise.  
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CHAPTER 4 

SOFTWARE LICENSE CAPACITY PLANNING MODEL 

In any manufacturing or service enterprise, the type and size of capacity to install have 

a strong direct influence on the company’s bottom line. Capacity adjustments are required to 

accommodate a change in the total volume or the product mix of demand (Hopp and Spearman, 

2001).  In a high technology product development enterprise, EAS license capacity has a strong 

direct influence on engineering productivity. Adjustments to the license capacity are required to 

support changes in the number of product development projects, the complexity of the projects, 

and the cyclical variations inherent in high technology projects.  

There are several options available for a manufacturing or service facility to adjust 

capacity. In the short term, this may be done through the use of overtime, addition or deletion of 

shits, subcontracting, and workforce size changes (Hopp and Spearman, 2001). The options 

available to a high technology enterprise to adjust EAS license capacity may be procurement of 

additional short-term peak-demand licenses or allocation of existing licenses among projects 

based on project priority or some other policy.  

Besides the short-term aspects of managing capacity, there are also some strategic 

considerations. Before an enterprise can decide how much and what type of capacity to install, 

it must articulate a capacity strategy. For a manufacturing or service enterprise, the strategic 

considerations may be whether to enter a new market or remain in an existing market, to lead or 

follow in the product innovation process, or to make or outsource a product. Strategic 

considerations also include what segment of the market to pursue and several other questions. 

For a high technology product development enterprise, planning EAS capacity, the strategic 

considerations may be whether to lease or purchase the software, acquire the software from a 

sole source or multiple suppliers, acquire adequate sustained capacity with a plan to add peak-
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demand licenses, negotiate a large capacity at a volume discount to cover worst-case scenario, 

or develop the EAS in-house. For the purpose of this research, we assume that the above 

strategic decisions have been made and the issue is how to forecast the EAS capacity to 

support the strategic direction.  

Once the decision has been made to add additional capacity, the next step is to decide 

how much capacity should be added and when to add it. Should capacity be added to meet the 

demand that has already emerged or to account for the anticipation of future demand? If we 

choose not to anticipate demand, should the periods of overcapacity be addressed by procuring 

peak-demand licenses? If we decide to anticipate demand, how far into the future should we try 

to cover?  Adding capacity in large increments will satisfy demand farther into the future, cause 

future disruptions due to lack of EAS licenses, and take advantage of volume discounts. 

However, large increments require a larger upfront financial commitment, poor utilization of 

capacity, and greater exposure to risk if the anticipated demand does not materialize. The 

appropriate approach also depends on how the licenses are administered by the enterprise. We 

discuss the various license administration approaches in section 4.1. 

4.1 Enterprise Software License Administration Model 

EAS licenses in an enterprise may be shared from a central pool or restricted to a local 

network, a group, or an individual user. The capacity planning process and the capacity plan are 

directly influenced by how the enterprise plans to administer the licenses. Another possibility is 

that the EAS licenses in an enterprise may be completely unrestricted, regardless of how they 

are administered. This is a special case where no capacity plan is required, as the enterprise 

has access to an unlimited number of EAS licenses. Most enterprises use a combination of 

administration models, depending on the scope and breadth of deployment of the EAS. 

Typically, licenses for an EAS with a large deployment across an enterprise are administered 

centrally through a central license pool. For the purpose of this research, we will focus on the 
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central license pool (CLP) model and will briefly discuss why other license administration 

models result in a different capacity plan. 

4.1.1 Central License Pool     

In a CLP administration model, all EAS license are served from a central license 

server. All requests for EAS licenses, irrespective of where they originate in the enterprise, are 

serviced by one license server. This means that there is only one count of all EAS licenses. The 

key reason to implement a CLP is to maximize utilization. EAS license utilization in a CLP is 

higher because in practice not all projects reach peak demand levels at the same time. Thus, 

instead of implementing capacity to meet the aggregate peak demand of all concurrent projects, 

less capacity will be required.  

Another reason to implement a CLP is to benefit from the time zone differences in a 

global enterprise. The peak requests from users across the globe will now be seen as a rolling 

peak, rather than a single peak, during a 24-hour period.  

Figure 4.1 shows a CLP server model for three locations that collectively host three 

projects. A project may be at one or several locations, but EAS licenses are shared from a 

central pool. 
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Figure 4.1 Central License Pool (CLP) server model 

The key disadvantages to a CLP are lack of redundancy and latency. The lack of 

redundancy becomes an issue when the EAS cannot communicate with the License Server due 

to a network failure or License Server failure. Latency may become an issue when a license 

request originates from a location that is geographically far away. The long network latency may 

cause the license request to time out. Both of these issues can be addressed by dividing the 

EAS licenses across multiple License Servers located in different geographical locations. In this 

scheme, the user requests a license from the geographically nearest License Server. If an EAS 

license is not available, the request rolls over to the next closest geographical location. It is 

important to note that, although there are multiple License Servers, this is still a conceptual CLP 

approach for the purpose of capacity planning.   
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4.1.2 Other License Administration Models     

In addition to the CLP approach, there are also decentralized approaches to EAS 

license approaches. Licenses may be decentralized based on a Local Area Network (LAN), a 

geographic region, a group, or a project. Licenses may also be locked to a specific computer 

system or user. The primary reason to decentralize licenses is cost. EAS suppliers charge less 

for decentralized licenses because they are perceived to deliver less value to the customer. 

Licenses may be decentralized if enterprise-wide deployment is not required. This may realize 

savings for the enterprise at the expense of increased license administration complexity. The 

scope of this research is to create the capacity plan for a CLP model.  

  4.2 Central License Pool capacity plan 

As discussed in section 4.1.1, the CLP server model maximizes utilization. EAS 

licenses are shared by multiple projects across multiple locations. Due to projects reaching their 

cyclical peaks at different times and the random nature of license access, the aggregate 

number of licenses required is less than the sum of the peak demand for each project. In this 

section, we propose an approach to develop a short-term capacity forecast. A short-term 

capacity forecast will anticipate demand and allow a plan to be put in place to provide adequate 

EAS license capacity.  In the next section, we propose a methodology to develop a capacity 

plan for a CLP server. 

4.2.1 Capacity plan methodology 

In chapter 2 and chapter 3 we investigated the fundamental characteristics of high 

technology product development and proposed that EAS usage is cyclical due to these 

characteristics. The characteristics discussed were the iterative and repetitive nature of product 

development tasks to achieve product design convergence and reduce time to market 

(Krishnan, 1996). A capacity plan requires forecasting of the aggregate EAS usage of multiple 

projects and all non-project related usage. Multiple projects may peak in arbitrary cycles based 

on their development schedules, as the development cycle of one project may be orthogonal to 
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another project. Non-related usage could be due to the work required to (a) support legacy 

products, (b) investigate errata and bug fixes to support field staff, and (c) research and 

investigate tasks in support of the definition of future projects.  

We cannot make a case from a fundamental perspective about the presence of EAS 

usage cycles in a CLP server. This is confirmed by running a correlogram of the time series 

data, as shown in Figure 4.2. Visual inspection shows a clear trend, but no evidence of cyclic 

usage. Therefore, we propose the use of neural nets to forecast the capacity required for a 

CLP. Neural nets capture the complex nonlinear relationships that may exist between the 

project EAS usage and the aggregate capacity required in a CLP (Saito and Kakemoto, 2004).  

 

Figure 4.2 CLP server usage correlogram 

In Figure 4.2, the correlogram for a CLP server shows that the usage data is non-

random and has a linear trend. 

An Artificial Neural Network (ANN) is an information-processing paradigm that is based 

on the way biological nervous systems, such as the brain, process information. Neural networks 

have an uncanny ability to derive meaning from complicated or imprecise data and can be used 
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to extract patterns or detect trends that are too complex to be noticed by either humans or other 

computer techniques.  

An ANN consists of a set of highly interconnected entities called units. Each unit is 

designed to mimic its biological counterpart, the neuron. Each accepts a weighted set of inputs 

and responds with an output.  

X = (x1, x2, ……,xn)       Equation 4.1 

where  

X is the input vector 

xi are real numbers, represent the set of inputs presented to the unit U 

Each unit has an associated weight that represents the strength of that particular connection.  

W = (w1, w2, …., wn)        Equation 4.2 

where  

W is the weight vector 

wi are real numbers that represent the weight vector corresponding to the to the input vector X.  

Applied to U, these weighted inputs produce a net sum at U given by 

 S = SUM(wi*xi)        Equation 4.3 

where 

S is the net sum 

The state of a unit U is represented by a numerical value A, the activation value of U. An 

activation function f determines the new activation value of a unit from the net sum to the unit 

and the current activation value. A neural network is composed of such units and weighted 

unidirectional connections between them. The output of one unit typically becomes an input for 

another. There may also be units with external inputs and/or outputs. For a simple linear 

network, the activation function f is a linear function, so that 

 f(cS) = cf(S)        Equation 4.4 

 f(S1 + S2) = f(S1) + f(S2)      Equation 4.5 
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 A single layer network consists of a set of units organized in a layer. Each unit Ui 

receives a weighted input xj with weight wji. The m x n weight matrix is 

 W=A B�� B�" B��B"� B"" B"�BC� BC" BC�
D      Equation 4.6 

Thus, the output Yk at unit Uk is 

 Yk = (w1k, w2k, …., wmk) A ���"�C
D      Equation 4.7 

So the output vector Y = (y1, y2, ….,yn)T is given by 

 Y = WT*X        Equation 4.8 

 The ANN used to predict the EAS capacity is a multilayer network, an extension of the 

single-layer network. A multilayer network has two or more layers of units, with the output from 

one layer serving as input to the next. The layers with no external connections are referred to as 

hidden layers.  See Figure 4.3.  
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Figure 4.3 Multilayer ANN for CLP capacity plan 

The ANN to predict CLP capacity has multiple inputs and a single output. The multiple 

inputs are the project usage data for projects p1, p2, and p3, and the output is the aggregate 

capacity P for the training data. During the training, the ANN will adjust its connection weights in 

order to associate given input vectors with the corresponding output vectors. In the training 

phase, the input vectors are repeatedly presented, and the weights are adjusted according to 

the learning rule until the network learns the associations, i.e. until Y = WT*X.  

 Let X = (x1, ….xm) be the input vectors and Y = (y1,…..yn)T be the output vectors. 

Then, in each training the weights are adjusted by 

dwij =  e*xi*yj         Equation 4.9   

where e is a constant called the learning rate.   

Input Layers Hidden Layers Hidden Layers Output Layer

Capacity Plan P

EAS Usage p1

EAS Usage p2

EAS Usage p3

Weights

Weights



 

 60

Consistent with the methodology deployed in building integrated models to improve the 

ANN forecast, we develop an ARIMA model. The flowchart in Figure 4.4 shows the 

methodology in detail. 

 

Figure 4.4 Software License Capacity forecast methodology 

4.2.2 Capacity plan development 

The methodology described in section 4.2.1 is implemented using the Microsoft Excel 

spreadsheet software. There are two key steps in this process.  

a)  Train a neural net to predict software capacity by using the model data for all three 

projects. The neural net used is a Microsoft Excel add-in macro. 

b) Use the trained neural net from the previous step, but instead of using the actual 

data, use the forecasted data for the three projects to forecast the capacity for the subsequent 

cycles.  

The setup to train the neural nets is shown in Table 4.1. Actual(P) is the license usage 

from the CLP. Actual(p1), Actual(p2), and Actual(p3) are the license usage for projects p1, p2, 
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and p3, respectively. To train the neural nets, the EAS usage of projects p1, p2, and p3 are the 

inputs to the neural net and the usage of CLP is the output. 

Table 4.1 Neural net training for capacity plan 

 

From the 116 weeks of recorded data, 101 weeks of data were used to train the neural 

nets. Once the neural nets were trained, they were used to predict the CLP values for the 

subsequent 15 weeks. A 15-week forecast was selected to accommodate a planning horizon of 

one calendar quarter. Figure 4.1 shows the screen shot of the NeuroXL-Predictor software used 

to train the neural net and predict CLP values. 

Actual (P) Actual(p1) Actual (p2) Actual(p3)
2708 2812 1105 3780
8134 3080 1893 3880
4067 3243 1923 3811
4564 3309 1856 3742
4888 4188 1909 3981
5067 3376 1899 2899
4866 4531 1923 3011
5512 4204 2038 2721
5670 4717 2318 2441
5805 4634 2412 1998
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Figure 4.5 Screen shot of NeuroXL-Predictor software 

In Figure 4.5, the blue line shows Actual(P), the actual CLP usage, and the red line 

shows the usage predicted by the neural net software. NeuroXL-Predictor provides a powerful 

mechanism for making multiple successive predictions, known as Bulk Predictions. With this 

mechanism, each successive prediction is based on a range of data, either shifted or expanded 

by a single cell from the previous range. The following options were used to control the training 

and bulk predictions. 

Learning rate: a value between 0 and 1 that affects the rate at which the network 

learns.  The larger the learning rate, the faster the network will converge.  Oscillation and non-

convergence can occur if the learning rate is set too high. 

Error %: specifies the point at which the neural network will stop training.  Reducing this 

value can improve accuracy, but the prediction will take longer. 
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Lag: specifies the number of predicted values to return (e.g. 1 will return next week’s 

predicted closing price, 2 will return the next two weeks, etc.).  

Momentum: High learning rates often lead to weight change oscillations in the training 

process, which can cause non-convergence or return a non-optimal solution. Momentum makes 

it less likely for such undesirable cases to occur by making the next weight change a function of 

the previous weight change to provide a smoothing effect.   The value for momentum (between 

0 and 1) determines the proportion of the last weight change that is added to the next weight 

change.  

Expanded Range: increases the range by one cell for each step. With "Down" 

selected, the range "A1:A10" will become "A1:A11" in the next step. Selecting "Up" will expand 

the range in the opposite direction.  

Number of rows:  specify here the exact number of moves/expansions desired.  The 

number of resulting predictions will be 1 more than this number.  

Table 4.2 shows the Excel setup to compute the predicted values. The predicted values 

are shown under the column “Usage fcast,” and the column “Abs Error” shows the absolute 

values of the error. Also shown are the average values of the error and the standard deviation.  
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Table 4.2 Neural network predicted values and error 

 

Table 4.3 shows the setup to compute the ARIMA model for the capacity forecast. In 

this approach, we use ARIMA on the capacity usage data using a built-in Excel macro. Table 

4.3 shows the setup in Excel build an ARIMA model of autoregressive order (p) of 1 and moving 

average order (q) of 1. We obtain the graph shown in Figure 4.6.  

The critical values of t for degrees of freedom equal to 100 and α equal to 0.05 is 

1.9840. Since the t-statistic at 112.2213>t0.05,100=1.984, we reject the null hypothesis that there 

is no correlation between autoregressive variable AR(1) and the fitted model. Similarly, we 

reject the null hypothesis that there is no correlation between the moving average variable 

MA(1) and the fitted model. The R-squared value of 0.91554 shows that 91% of the variation in 

the model can be explained by the variables AR(1) and MA(1).  

 

 

 

 

Actual (P) Actual(p1) Actual (p2) Actual(p3) Usage fcast Abs Error
29410 10543 8088 4814 28171 1239
31365 10026 8213 3718 27526 3839
24078 7407 6933 5028 29364 5286
24260 8475 4815 5117 28137 3877
26725 8364 3084 5201 29038 2313
30611 9288 5359 5211 28662 1949
28842 9198 5807 6512 29023 181
30718 9141 5129 7014 28958 1760
29254 8444 8156 7213 29890 636
27850 7882 7258 7610 27882 32
29765 8748 7894 8640 28906 859
23606 7665 5867 8789 27769 4163
29582 8585 8529 9233 29844 262
30955 7690 8257 9017 27042 3913
29687 8264 8865 8756 28603 1084

Avg Err 2093
Std dev 1650
MSE 7,103,833
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Table 4.3 ARIMA estimation of Capacity time series 

 

 

 

Figure 4.6 ARIMA capacity forecast model 

 

 

 

 

Capacity ARIMA
timeseries: y
Method: Nonlinear Least Squares (Levenberg-Marquardt)
date: 02-21-09 time: 12:54
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Coefficient Std. Error t-Statistic R-squared

AR(1) 1.006131777 0.008965601 112.2213467 0.915545551
MA(1) -0.275274525 0.090874034 3.02918792
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Table 4.4 ARIMA predicted and values and error 

 

 

Table 4.5 Neural network predicted values and error with ARIMA input 

 

 

 

Actual (P) ARIMA fcast Abs Error
29410 30092.89 683
31365 30277.42 1088
24078 30463.07 6385
24260 30649.87 6390
26725 30837.80 4113
30611 31026.89 416
28842 31217.14 2375
30718 31408.56 691
29254 31601.15 2347
27850 31794.92 3945
29765 31989.88 2225
23606 32186.04 8580
29582 32383.39 2801
30955 32581.96 1627
29687 32781.75 3095

Avg Abs Err 3117
Std Dev 2396.43
MSE 16,869,054

ARIMA Actual (P) Actual(p1) Actual (p2) Actual(p3) Usage fcast Abs Error
27780 29410 10543 8088 4814 29235 175
38395 31365 10026 8213 3718 30596 769
25979 24078 7407 6933 5028 28022 3944
22467 24260 8475 4815 5117 26424 2164
22509 26725 8364 3084 5201 27507 782
31407 30611 9288 5359 5211 28431 2180
27362 28842 9198 5807 6512 28849 7
31962 30718 9141 5129 7014 29767 951
31180 29254 8444 8156 7213 29851 597
26635 27850 7882 7258 7610 29510 1660
35772 29765 8748 7894 8640 29571 194
19428 23606 7665 5867 8789 29002 5396
27240 29582 8585 8529 9233 29013 569
31768 30955 7690 8257 9017 30340 615
30092 29687 8264 8865 8756 29175 512

Avg Abs Err 1368
Std Dev 1519.07
MSE 4,024,005
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Table 4.6 MSE of capacity plan model 

 

Table 4.6 summarizes the three prediction models. We get the least MSE with the ANN 

model integrated with ARIMA. In chapter 5, we analyze and validate the results. 

 

 
 

 

MSE capacity plan

MSE (ARIMA) MSE (ANN)
MSE 
(ANN_ARIMA)

p1 16,869,054 7,103,833 4,024,005
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CHAPTER 5 

ANALYSIS AND VALIDATION OF THE MODELS 

 In this chapter, we validate the EAS project forecast and the CLP EAS capacity plan. 

We collected the weekly peak EAS usage data for a high technology product development 

project, p1, for the complete development cycle. The data for p1 was collected over a period of 

116 weeks. EAS usage data for the other key product development projects, p2 and p3, was 

also collected during the 116-week period. In chapter 3, we developed a model to forecast the 

project usage for an EAS; in chapter 4, a model to forecast the EAS capacity requirements 

when multiple projects share a central license pool.  

EAS usage data was collected for 116 weeks. 101 weeks of data were used to build 

the project forecast and capacity models. The remaining 15 weeks of data were predicted using 

the developed models. For the purpose of validation, the predicted data was compared to the 

actual usage. In section 5.1, we validate and analyze the results for the EAS forecasting model; 

in section 5.2, we do the same for the capacity plan. 

5.1 Validation of EAS Project Forecast Model    

A forecasting error, or residual, is a difference between the actual and the fitted 

observation that was produced using a forecasting method: 

 ?9 �  $9 : E9       Equation 5.1 

where 

?9= residual at the period ‘t’ 

$9= actual observation in the original time series in the period ‘t’ 

E9= forecast for the period ‘t’ 

� = number of errors 
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?F = the mean value of all errors in the series 

$= = the mean value of all original observations in the series 

The first and most common statistic that can be calculated is called the mean error (ME): 

        

  GH �  ∑ IJKJL��         Equation 5.2 

The formula for ME implies that, by definition, all the positive deviations are eliminated 

by all the negative ones. This means that if there are dramatic fluctuations in both directions, the 

end result could still be zero, despite large fluctuations. Therefore, we introduce the next 

statistic called mean absolute deviation (MAD): 

  G�M �  ∑ |IJ|KJL��        Equation 5.3 

MAD measures deviations from the series in absolute terms, which means that, regardless of 

whether the errors are positive or negative, we observe them as positive. 

The next error statistic is the mean square error (MSE): 

  GOH �  ∑ IJPKJL��        Equation 5.4 

MSE is dimensionless and is used when comparing with MSE values calculated for other 

forecasts. It has a tendency to prefer a series of small errors and penalizes forecasts if there are 

one or two large errors in the series. It encourages safe forecasting that produces smoother 

forecasting lines, rather than a bolder approach that tries to follow the dynamic pattern of the 

series, even at the expense of making one or two bigger mistakes. 

To calculate the percentage deviation of a forecast from the original series, the mean 

absolute percentage error (MAPE) statistic is used. MAPE does not take into account positive or 

negative variations, but rather a typical percentage deviation expressed as a percentage. 

G�QH �  ∑ RSJTJRKJL�
� 100        Equation 5.5 
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The standard error (SE) statistic is used to measure the dispersion of the error from the 

mean.  

 OH �  U∑ �IJVIF�PKJL� �         Equation 5.6 

The error variance s, the standard error of the mean estimate, is  

 �" � �OH�"       Equation 5.7 

As SE measures the dispersion of errors around their mean values 

�" � GOH :  �?F�"       Equation 5.8 

GOH � �" �  �?F�"       Equation 5.8 

Thus, MSE is the sum of two factors. One measures the variability of errors around their mean 

value, and the other measures how much the errors are biased by calculating the mean. 

Although we do not want the errors to be too far from the original values, we do not want them 

to fluctuate too much either. In this respect, MSE as a statistic provides a good measure about 

the quality of our forecasts. 

Another measure of the degree of a successful forecast is the correlation coefficient (r). 

Because we are not dealing with forecasts calculated on the basis of the least square method, 

we use the following formula: 

  W �  U∑ �XJ>Y=��ZJ>Y=�KJL�
U∑ YJPKJL� ∑ ZJPKJL�

      Equation 5.6 

The coefficient of correlation takes values between -1 and +1. The closer the value is to +1, the 

closer the correlation between the actual series and the forecasts. If the value is closer to -1, the 

two series are completely opposite to each other. If the value is close to zero, there is no 

correlation.  

The coefficient of determination, R, is given by: 

[ � W"        Equation 5.7 



 

 71

The coefficient of determination gives us a proportion of the described variance. If we multiply it 

by 100, it gives us the percentage of deviations of the forecasts from the actual series.  These 

statistics are calculated for the forecasts for projects p1, p2, and p3 and are shown in Tables 

5.1, 5.2, and 5.3.  

Figures 5.1 to 5.4 show the forecasted values shown with the actual usage values from 

week #102 to week #116 for project p1. 

 

Figure 5.1 Linear and Quadratic values against the actual usage 
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Figure 5.2 Seasonal average forecast against the actual usage 

 

 

Figure 5.3 ARIMA forecast against the actual usage 
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Figure 5.4 ANN forecasts against the actual usage 

Table 5.1 summarizes the error statistics for the predicted values from week #102 to 

week # 116 for project p1. As discussed in the previous section, the EAS usage forecast model 

was constructed using the data from week #1 to week #101.  From Table 5.1, we see that the 

ARIMA, ANN-ARIMA, and ANN-Integrated models have the lowest values for ME, MAD, and 

MSE — (-254), 390, and 340,806. As discussed earlier, the MSE is a good statistic because 

although we do not want the errors to be too far from the original values, we do not want them 

to fluctuate too much either. The ANN-integrated model has the lowest MSE value. It also 

shows an r value of 0.95. The closer the value is to +1, the closer the relation between the two 

series. Also, the R value, the coefficient of determination, for the ANN-Integrated model is 91%. 

This means that 91% of the variations in the forecast are caused by variations in the actual 

series and are inherent in our forecasting model. Only 9% of all variations in the forecasts are 

not attributed to the actual time series and come from an unexplained source. In the next 

section, we will discuss if this forecast is meaningful for predicting the EAS usage for high 

technology product development projects.  
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Table 5.1 Comparison of predicted vs. actual EAS usage data for project p1 

 

Figures 5.5 to 5.8 show the forecasted values shown with the actual usage values from 

week #102 to week #116 for project p2. 

 

 

Figure 5.5 Linear and quadratic forecasts against the actual usage 

Project p1
Seasonal ARIMA ANN ANN-Seasonal ANN-Arima ANN-Integrated

ME -367.83 -159.53 -257.50 -638.20 -513.63 -254
MAD 1242.75 660.29 964.29 885.64 625.09 390
MAPE 14.48 7.52 11.94 10.79 7.76 5
MSE 2731384 819347 2013152 1096558 774021 340806
Std Err 846.53 379.95 893.53 853.78 756.20 562.04
r 0.3673951 0.9087 0.19042771 0.546559022 0.556534184 0.956569
R 0.13497916 0.8257356 0.03626271 0.298726765 0.309730298 0.915025
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Figure 5.6 Seasonal forecast against the actual usage 

 

Figure 5.7 ARIMA forecast against actual usage data 
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Figure 5.8 ANN forecasts against the actual usage 

Table 5.2 summarizes the error statistics for the predicted values from week #102 to 

week # 116 for project p2. From Table 5.2, we see that the ANN-ARIMA and ANN-Integrated 

models have the lowest values for ME, MAD, and MSE. The ANN-integrated has the lowest 

MSE value. It also shows an r value of 0.95 so the original and predicted series are closely 

related. Also the R value, the coefficient of determination, for ANN-Integrated is 90%. This 

means that 90% of the variations in the forecast are caused by variations in the actual series 

and are inherent in our forecasting model. Only 10% of all variations in the forecasts are not 

attributed to the actual time series and come from an unexplained source.  
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Table 5.2 Comparison of predicted vs. actual EAS usage data for project p2 

 

Figures 5.9 to 5.12 show the forecasted values shown with the actual usage values 

from week #102 to week #116 for project p3. 

 

 

Figure 5.9 Linear and quadratic forecasts against actual usage 
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Figure 5.10 Seasonal forecasts against actual usage 

 

Figure 5.11 ARIMA forecasts against actual usage 
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Figure 5.12 ANN Integrated forecasts against actual usage 

Table 5.3 summarizes the error statistics for the predicted values from week #102 to 

week # 116 for project p3. From Table 5.3, we see that the ARIMA model and all of the ANN 

models have low MSE values. This is due to the highly regular nature of the usage patterns. 

However, the ANN-integrated model still has the lowest MSE value. It also shows an r value of 

0.99, so the original and predicted series are very closely related. Also, the R value, the 

coefficient of determination, for the ANN-Integrated model is 98%. This means that 98% of the 

variations in the forecast are caused by variations in the actual series and are inherent in our 

forecasting model. Only 2% of all variations in the forecasts are not attributed to the actual time 

series and come from an unexplained source. 
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Table 5.3 Comparison of predicted vs. actual EAS usage data for project p3 

 

5.2 Validation of Capacity Planning Model 

Figure 5.13 shows the forecasted values against with the actual usage values from 

week #102 to week #116 for the CLP server. 

 

 

Figure 5.13 ANN and ARIMA forecasts against actual usage 

Table 5.4 shows the absolute errors for the predicted values from week #102 to week # 

116. As discussed in the previous section, the EAS usage forecast model for CLP was 

constructed using the data from week #1 to week #101. 
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Seasonal ARIMA ANN ANN-Seasonal ANN-Arima
ANN-
Integrated

ME -288.35 205.10 689.65 532.34 670.90 573.96
MAD 1638.28 479.75 817.23 672.45 741.12 578.05
MAPE 27.72 8.63 12.87 10.88 11.57 8.37
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Std Err 1892.88 579.97 633.64 651.96 488.82 233.04
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Table 5.4 Comparison of predicted vs. actual EAS usage data for CLP 

 

 

Table 5.4 summarizes the error statistics for the predicted values from week #102 to 

week # 116 for EAS usage on the CLP server. From Table 5.4, we see that both of the ANN 

models have the lower MSE values. However, the ANN-integrated model still has the lowest 

MSE value. It also shows an r value of 0.92, so the original and predicted series are very closely 

related. Also, the R value, the coefficient of determination, for the ANN-Integrated model is 

84%. This means that 84% of the variations in the forecast are caused by variations in the 

actual series and are inherent in our forecasting model. Only 16% of all variations in the 

forecasts are not attributed to the actual time series and come from an unexplained source. 

5.3 Analysis of results 

As a first step, we want to have a measure of how much we can rely on the predictions 

based on the values forecasted by the project usage and capacity usage models. To compute 

our level of confidence, we use the t-statistic in conjunction with the SEe, the standard error 

around the estimates. The confidence interval (CI) is given by 

4\  ] �√GOH        Equation 5.8 

where 

4\ is the predicted value  

t is the t-statistic 

As 

Project p3
ARIMA ANN ANN-Arima

ME -217.87 259.61 -172.29
MAD 2465.07 1559.59 967.58
MAPE 8.77 5.56 3.57

MSE 9,739,203 3,523,703 1,487,826
Std Err 1474.70 1909.75 1044.45
r 0.83681131 0.70520451 0.92176078
R 0.70025317 0.4973134 0.849642936
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OHI �  √GOH        Equation 5.9 

we calculate SEe  directly from 

    OHI&4\* � U 1 �  �
� � �X> X�====P

∑�X_>X�====P           Equation 5.10 

In Figures 5.14 to 5.19, we show the 95% confidence interval for all of the forecasts for 

project p1. In Figures 5.20 and 5.21, we show the 95% confidence intervals for the ANN-

Integrated forecasts for projects p2 and p3. 

 

 

Figure 5.14 95% CI for Seasonal Trend forecast for p1 

 

Figure 5.15 95% CI for ARIMA forecast for p1 
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Figure 5.16 95% CI for ANN forecast for p1 

 

Figure 5.17 95% CI for ANN with Seasonal input forecast for p1 
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Figure 5.18 95% CI for ANN with ARIMA input forecast for p1 

 

Figure 5.19 95% CI for ANN with Integrated input forecast for p1 

We can see that, although the ARIMA forecast is within a narrower range, the ANN-

Integrated forecast does not fluctuate as much. For planning purposes, the ANN-Integrated 

model has a higher level of confidence. 
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Figure 5.20 95% CI for ANN with Integrated input forecast for p2 

 

Figure 5.21 95% CI for ANN with Integrated input forecast for p3 

Figures 5.20 and 5.21 show the forecasted values within their 95% CI bands for 

projects p2 and p3. 

Figure 5.22 shows the 95% CI band for the Capacity Plan model for the CLP server. 
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Figure 5.22 95% CI for ANN-ARIMA forecast for CLP Server capacity 

The 15-week prediction cycle was selected to enable capacity planning for the length of 

one calendar quarter. A calendar quarter is 13 weeks. A 15-week cycle extends two weeks into 

the following quarter and provides continuity for planning the capacity. At the end of every 

calendar quarter, it allows a two-week overlap to develop the next quarter’s forecast. For the 

purposes of planning EAS capacity, this is a short-range forecast.  

In chapter 6, we discuss how the forecast for a calendar quarter may be used to 

develop both a medium- and long-term forecast. This is a topic for future research.  

  

20000

22000

24000

26000

28000

30000

32000

34000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Actual (Capacity Plan)

ANN-Arima

95% Interval +

95% Interval -

alpha = 0.5

t-value = 2.1603

df = 13



 

 87

CHAPTER 6 

CONCLUSIONS AND FUTURE RESEARCH 

Technology companies are well known for their innovation. In some instances, the 

process of innovation may not lend itself to forecasting the resources needed in a predictable 

manner. However, as technology companies mature, they are introducing rigorous processes to 

manage their resources effectively. By effectively deploying their precious resources, they can 

improve their bottom line and ensure smooth execution of projects. Key resources for 

engineering projects in high technology product development may include computer hardware, 

software, storage, network bandwidth, and human resources.  It is essential to forecast the 

resources required so that they are available when needed and projects under execution are 

not starved. The resource forecast is also required to drive the contract negotiations to acquire 

these resources from suppliers in the supply chain or to develop internally. In this research, we 

proposed a methodology for one common resource needed for high technology product 

development projects. 

6.1 Conclusions 

This research introduced a methodology to forecast license requirements for the 

projects in an enterprise. The project license requirements were then translated into a capacity 

plan for the organization. An understanding of the cyclic nature of the EAS usage by projects 

was used to enhance the quality of the forecast. We demonstrated that the usage patterns have 

a trend component, a cyclic component, and a random component. A rigorous methodology to 

extract the de-trended cyclic component was developed by applying Fourier analysis. Modifying 

the linear trend forecast with the cycles yielded a better forecast, as presented in Tables 5.1 to 

5.4. However, including the cyclically modified trend forecast and an ARIMA forecast as inputs 

to the neural forecasting approach yielded even better results. The value of R, the coefficient of 
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determination that quantifies the amount of variations in the forecast caused by variations in the 

actual series, for projects p1, p2, and p3 was 91.5%, 90.6%, and 98.5%, respectively. For the 

capacity plan, the R value was 84.9%.  In the following section on the areas of future research, 

we propose the exploration of other approaches that may in some cases enhance the quality of 

the forecasts.  

The methodology deployed to forecast EAS licenses was based on historical data. 

While the historical data is essential for developing forecasts, it does have some limitations. The 

accuracy of the forecast is a function of how well the current trends, whether linear or cyclical, 

persist into the future. Hence, any forecast obtained from historical data must be viewed in 

conjunction with other fundamental events. Fundamental events may be the cancellation of a 

project, resource rebalancing among projects based on the re-evaluation of priorities, or the 

consolidation of projects to align with changing market conditions or unforeseen technological 

challenges. 

The Figure 6.1 usage data shows the occurrence of a fundamental event for project p1. 

Project p1 was a high priority for the enterprise but was running behind schedule. Around the 

April 2007 timeframe, the executive management decided to cancel a lower priority project and 

apply those resources to p1. The ability to forecast such events is beyond the scope of this 

methodology. 
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Figure 6.1 Project 1 usage data 

Forecasts may be short-range, medium-range, or long-range. The exact meaning of 

short-range, medium-range, and long-range depends on the business practices of the 

enterprise. We need to consider what follow-on actions are possible, depending on the 

information given by the forecast. Let us consider a scenario where the duration of projects is 

between one to two years, the length of the business contract with the EAS suppliers is three 

years, and the contracts provide a mechanism to change the mix of EAS tools once every 

quarter. Table 6.1 lists the range of forecasts, the significance of the selected range, and the 

possible follow-on steps.  

Table 6.1 Forecasting ranges 
 

Range Period Follow-on actions Other Inputs 
Short-
range 

13 to 15 weeks Change EAS Pool mix Forecasts  for all 
EAS 

Medium-
range 

1 to 2 years Align forecast with project plan Project Plan 

Long-
range 

3 years Drive contract negotiations Strategic Plan 

 

In this research, we have concentrated on 15 weeks as the longest time period for 

forecasting project and enterprise capacity plans. As shown in Table 6.1, this is to address 

short-range requirements. The short-range forecast data enables rebalancing of the quantities 
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of the various EAS tools required by the enterprise for the next quarter. To execute the 

rebalancing, we need forecasts of all of the various EAS tools in use by the enterprise from the 

same supplier.  

The history of EAS forecasts and actual usage data can also form the foundation of the 

medium-range project and capacity forecasts. Once the complete usage history of a project is 

available, it may form the basis for subsequent projects. The project usage data is particularly 

relevant for products developed using the platform-derivative approach. Derivative projects 

based on the same platform are expected to be closely related in their EAS usage patterns. 

Projects based on different platforms may not exhibit similar usage patterns. This topic is also 

beyond the scope of this research and will be discussed in the next section on future research. 

Long-range forecasts are necessary to develop a capacity forecast for long-term 

contract negotiations with the supply chain partners. Therefore, these forecasts impact the 

strategic plans of all of the suppliers in the supply chain. Suppliers can allocate R&D costs to 

align with the expected market size for their products. They can also better prepare for the 

challenges ahead. This is not a one-way process, as the suppliers also share their plans with 

the enterprise. The enterprise may then refine its strategic plan to align with the suppliers. If 

such alignment is not mutually beneficial, this may lead to the termination of the business 

relationship. 

Figure 6.2 summarizes the impact of this research on the enterprise and the supply 

chain. In the next section, we review areas of future research. 



 

 91

 

Figure 6.2 License forecasting in the high technology supply chain 

6.2 Future Research 

The areas for future research may be classified broadly into two categories. The first is 

the expansion of the scope of the research within the high technology supply chain, and the 

second is the investigation of other forecasting methodologies. In this section, we cover both of 

these categories.  

6.2.1 Scope of future research in high technology supply chain 

This research was focused on the forecasting of EAS licenses for high technology 

product development projects.  There is potential to expand the scope of this research to 

include all of the variable resources required to complete a high technology product 

development project. In addition to software licenses, some other resources required by a 

product development project are human resources, computer hardware resources, disk storage, 

and third-party Intellectual Property (IP). Each of these resources, except third-part IP, may 

require unique forecasting approaches where historical data may be necessary.  
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Historical data plays a key role in creating human resource forecasts for projects. 

However, it may not be straightforward to deploy the historical data to high technology product 

development forecasts. This is due to the technological uncertainty and evolving development 

methodologies inherent in product development projects. Successive high technology product 

development projects are encumbered with increasing complexity and decreasing time to 

market. This is offset by the development of new, more efficient product development 

methodologies. The contradictory influences of increasing complexity and more efficient 

development methodologies make it extremely tenuous to forecast the human resource 

requirements.  

In a global enterprise, not all of the skills required may be available at one location or 

even within the enterprise. Therefore, a human resource plan must take these factors into 

account.  

As discussed earlier in chapters 2 and 3, high technology product development projects 

involve successive execution of EAS to converge to the desired result. The computer hardware 

is therefore an essential resource for projects. Here, the historical data also plays a key role in 

forecasting. However, the historical data must be applied carefully to come up with forecasts. 

For each successive project, the hardware available may be faster and more efficient. It may be 

necessary to normalize the performance of the new hardware available to the previous 

generation of hardware. Changes in product development methodology may also influence the 

computer hardware required for the project.  

In a typical enterprise, the amount of disk storage increases regularly. This is because 

previous projects must be archived to support future errata work. New projects require 

additional storage. The storage history of past projects provides helpful estimates. However, the 

storage management solution in place also greatly influences what is required to support the 

project. 
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Another interesting factor is the interdependencies between the project resources. An 

increase in human resources may require an increase in EAS licenses, computer hardware, and 

disk storage. This relationship may be true for some type of EAS applications more so than 

others. For instance, EAS that is interactive may be directly correlated to the number of project 

team members of the relevant skill set deployed on the given project. For batch runs, the 

correlation between the number of project team members and the EAS licenses required may 

not be as strong.  

The maximum number of EAS licenses that can be executed concurrently cannot 

exceed the total number of compute slots available. Another factor is the type of computer 

hardware, which must match the EAS job requirements. A typical example is the amount of 

memory installed on the machine to support the type of runs that are required to be made.  

In general 

E = f(C, S, T, P) 

where 

E = EAS forecast 

C = number of compute slots available 

S = available storage 

T = size of project team 

P = raw project forecast 

In this research, besides regression-based trend forecasting techniques in the 

forecasting methodology, we also used the ARIMA and ANN techniques.  

6.2.2 Other forecasting methodologies 

Another area of future research is to explore other techniques. Some other techniques 

that may provide additional insights into forecasting for high technology product development 

include state space models, combined fuzzy logic and ANN, and application of chaos theory.  
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State space modeling is a traditional engineering approach to optimization and 

prediction with potential application to time series analysis. Measurements of various variables 

are taken, and these variables are used to define the “state” of the system. If all of the variables 

that define the state of the system are known, we can define the state of the system. 

Unfortunately, many business and economic phenomenon cannot be well defined in the state 

space because either not all variables are known or the relationships are obscure and ill-

defined. If we can define indicators that serve as a proxy of the system, we may be able to use 

the Kalman filter to address not only discrete models using linear stochastic difference 

equations but also much more complicated relationships.   

Fuzzy logic is a way to represent the ambiguity of a particular situation we are trying to 

define. Neural networks have frequently been combined with fuzzy logic in several applications. 

In the area of forecasting, we may be able to use neural networks as a forecasting tool with 

fuzzy variables as inputs. All of the principles of forecasting with neural networks are preserved; 

the only difference is that variables are not crisp, but fuzzy. A lot of the forecasting problems in 

the engineering and IT domain are intrinsically nonlinear, which is very difficult to model. In such 

cases, model-free approaches, such as fuzzy neural networks, may be the only answer.  

What might appear to be random, probabilistic behavior could, in fact, be a behavioral 

pattern driven not by chance, but by a deterministic system. If the deterministic system is 

nonlinear, then potentially what appears to be random behavior is, in fact, chaotic behavior. 

Chaos theory that surrounds this approach is all about establishing these properties of the time 

series. In other words, establishing that the underlying process is linear, generated by a white 

noise process, or nonlinear. There is no single formula that we may use to produce forecasts by 

adopting this approach. However, chaotic time series may help us develop a better 

understanding of the time series to produce a more accurate forecast.  
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APPENDIX A 
 
 

USAGE DATA FOR THE ENTERPRISE AND ALL PROJECTS 
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Week 
Enterprise (P) 

Usage 
Project (p1) 

Usage 
Project (p2) 

Usage 
Project (p3) 

Usage 

1 2708 2812 1105 3780 

2 8134 3080 1893 3880 

3 4067 3243 1923 3811 

4 4564 3309 1856 3742 

5 4888 4188 1909 3981 

6 5067 3376 1899 2899 

7 4866 4531 1923 3011 

8 5512 4204 2038 2721 

9 5670 4717 2318 2441 

10 5805 4634 2412 1998 

11 5911 4589 2317 2081 

12 6067 4769 2587 1986 

13 6093 4699 2417 2244 

14 6067 4785 2389 1941 

15 6289 4893 2578 1723 

16 6767 3921 2689 1929 

17 7108 5398 2689 1850 

18 5838 3862 2378 1920 

19 5706 3119 3487 1936 

20 7117 5490 3389 1955 

21 8139 6389 3789 2206 

22 8710 5412 3892 2786 

23 9866 7671 3795 2928 

24 10068 7275 4275 3782 

25 10068 7390 4489 3556 

26 9068 3128 5584 4084 

27 7015 1837 2657 4731 

28 11406 3622 2739 4201 

29 11375 3712 2128 4101 

30 12763 3997 1987 3986 

31 13097 5089 2128 4089 

32 14614 4893 6008 3689 

33 12926 3982 5982 3561 

34 11193 3431 5817 2689 

35 12545 3632 5967 2709 

36 12691 4012 5834 2108 

37 13818 4832 6026 2250 

38 16712 4541 6834 2101 

39 17037 4123 6978 1989 

40 10852 3342 5745 3838 
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Week 
Enterprise (P) 

Usage 
Project (p1) 

Usage 
Project (p2) 

Usage 
Project (p3) 

Usage 

41 13109 4034 5992 4314 

42 11779 3522 6239 3731 

43 12665 3677 6176 3946 

44 12696 3968 5945 4410 

45 13765 4142 6851 4609 

46 14413 4821 6360 4519 

47 13777 5433 6215 4704 

48 13745 4650 6961 4981 

49 14528 4674 8020 5899 

50 15627 4652 5188 5976 

51 14697 4593 4768 5901 

52 12001 3609 3516 5521 

53 15097 5189 2813 5432 

54 12433 3711 2232 5117 

55 14800 4673 1707 4591 

56 14202 4516 1823 4780 

57 13480 4011 2812 4211 

58 6842 3104 5018 3601 

59 8014 3459 6589 3882 

60 13275 3989 6927 3654 

61 16058 5672 7912 3010 

62 16622 5782 7845 2992 

63 6608 3113 5758 2423 

64 9295 3490 5983 2216 

65 10287 3310 6028 3704 

66 16057 4872 7578 3711 

67 20288 8923 8634 4989 

68 25712 10012 9027 4403 

69 25535 10192 9878 5778 

70 20754 10322 8218 6080 

71 18902 9982 8126 5989 

72 20773 8543 8321 6211 

73 21191 8622 8441 7301 

74 21348 7505 7706 7614 

75 23732 10093 7978 5770 

76 23787 10409 8403 5681 

77 24291 8555 9510 4915 

78 23619 8949 9160 4231 

79 24976 9533 6999 3901 

80 25371 10911 4306 3710 
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APPENDIX B 
 
 

FOURIER ANALYSIS REGRESSION RESULTS
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SUMMARY OUTPUT Project  p1

Regression Statistics
Multiple R 0.268297388
R Square 0.071983488
Adjusted R Square0.038541452
Standard Error 2611.448053
Observations 116

ANOVA
df SS MS F Significance F

Regression 4 58716876.7 14679219.17 2.1524852 0.079046802
Residual 111 756982364 6819660.935
Total 115 815699240

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%
Intercept 6559.139019 245.323686 26.73667238 3.439E-50 6073.013773 7045.264265 6073.013773 7045.264265
X Variable 1 -328.9287938 352.416984 -0.933351141 0.3526646 -1027.266552 369.4089641 -1027.26655 369.4089641
X Variable 2 -557.8336744 340.411416 -1.63870437 0.1041063 -1232.381598 116.7142495 -1232.3816 116.7142495
X Variable 3 631.7592528 345.255423 1.829831512 0.0699588 -52.38739509 1315.905901 -52.3873951 1315.905901
X Variable 4 -281.9303506 345.177384 -0.816769474 0.4158097 -965.9223593 402.0616581 -965.922359 402.0616581

SUMMARY OUTPUT Project p2

Regression Statistics
Multiple R 0.410179883
R Square 0.168247537
Adjusted R Square0.138274475
Standard Error 2207.168867
Observations 116

ANOVA
df SS MS F Significance F

Regression 4 109382720 27345680.1 5.6132916 0.000375057
Residual 111 540746979 4871594.407
Total 115 650129700

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%
Intercept 5705.863278 207.34504 27.51868705 2.125E-51 5294.995251 6116.731304 5294.995251 6116.731304
X Variable 1 21.1320642 297.859187 0.070946491 0.943568 -569.0957812 611.3599096 -569.095781 611.3599096
X Variable 2 -772.2760185 287.712205 -2.684196236 0.0083842 -1342.396942 -202.155095 -1342.39694 -202.155095
X Variable 3 -159.883745 291.80631 -0.547910513 0.5848535 -738.1174111 418.349921 -738.117411 418.349921
X Variable 4 -1076.106403 291.740353 -3.688575795 0.0003509 -1654.20937 -498.003437 -1654.20937 -498.003437
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SUMMARY OUTPUT Project p3

Regression Statistics
Multiple R 0.214358384
R Square 0.045949517
Adjusted R Square0.011569319
Standard Error 1883.470397
Observations 116

ANOVA
df SS MS F Significance F

Regression 4 18964883.1 4741220.771 1.3365111 0.260893251
Residual 111 393768142 3547460.736
Total 115 412733025

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%
Intercept 4554.013147 176.936279 25.73815378 1.314E-48 4203.40211 4904.624184 4203.40211 4904.624184
X Variable 1 531.8007738 254.175822 2.092255546 0.0386955 28.13442956 1035.467118 28.13442956 1035.467118
X Variable 2 -252.6406011 245.516974 -1.029014805 0.3057098 -739.1488602 233.8676579 -739.14886 233.8676579
X Variable 3 -36.39664818 249.010647 -0.146165028 0.8840562 -529.8278527 457.0345563 -529.827853 457.0345563
X Variable 4 55.64912719 248.954362 0.22353144 0.8235328 -437.670546 548.9688003 -437.670546 548.9688003
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APPENDIX C 
 
 

FORECASTING MODELS FOR PROJECTS P2 AND P3 
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