
A GLOBALLY CONVERGENT NUMERICAL METHOD FOR

COEFFICIENT INVERSE PROBLEMS

by

NATEE PANTONG

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT ARLINGTON

August 2009



ACKNOWLEDGEMENTS

I would like to acknowledge and extend my heartfelt gratitude to my supervis-

ing professor Dr. Jianzhong Su for his constant motivation, encouragement and for

making the completion of this dissertation possible.

I wish to thank my programming advisor Dr. Hua Shan for providing me

invaluable resources and techniques in programming which is a significant portion of

this dissertation and Dr. Hanli Liu for providing biomedical information. I also wish

to thank Dr. Guojun Liao, Dr. Ren-Cang Li, Dr. Hristo V. Kojouharov and Dr.

Gaik Ambartsoumian for their invaluable support and for taking time to serve on my

dissertation committee.

I would like to extend my appreciation to Group Captain Utis Siricupt, Group

Captain Prakasit Jareunying and Group Captain Vipada Koonkontod, the Royal

Thai Air Force Officers, for their support, encouragement and for giving me an op-

portunity to pursue graduate studies. I am especially grateful to my programming

languages instructors, Wing Commander Sompong Pokaseam and Wing Commander

Tewa Kanchanachom.

I am grateful to all the teachers who taught me during the years I spent in

school both in Thailand and in the Unites States. I also thank several of my friends

who have supported me throughout my education.

Finally, I would like to express my deep gratitude to my mother Supatra, my

brother Kua and my wife Isarinthip who have encouraged and inspired me. I am

extremely grateful to my mother for her sacrifice, encouragement and patience.

June 29, 2009

ii



ABSTRACT

A GLOBALLY CONVERGENT NUMERICAL METHOD FOR

COEFFICIENT INVERSE PROBLEMS

NATEE PANTONG, Ph.D.

The University of Texas at Arlington, 2009

Supervising Professor: Jianzhong Su

In our terminology “globally convergent numerical method” means a numeri-

cal method, whose convergence to a good approximation for the correct solution is

independent of the initial approximation. A new numerical imaging algorithm of

reconstruction of optical absorption coefficients from near infrared light data with

a continuous-wave has been purposed to solves a coefficient inverse problem for an

elliptic equation with the data generated by the source running along a straight line.

A regularization process, so-called “exterior forward problem”, for preprocessing data

with noise on the boundary has also been purpose for the problem related to match-

ing fluid in experiment. A rigorous convergence analysis shows that this method

converges globally. A heuristic approach for approximating “tail-function” which is a

crucial part of our problem has been performed and verified in numerical experiments,

so as the global convergence. Applications to both electrical impedance and optical

tomography are discussed. Numerical experiments in the 2D case are presented.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

In our terminology “globally convergent numerical method” means a numeri-

cal method, whose convergence to a good approximation for the correct solution for

any initial approximation is guaranteed by mathematics proof. For commonly used

locally convergent numerical method, the phenomenon of multiple local minima and

ravines of least squares residual functions represent the major obstacle for reliable

numerical solutions of Coefficient Inverse Problems (CIPs) for Partial Differential

Equations (PDEs). Due to the applied nature of the discipline of Inverse Problems,

the issue of addressing the problem of local minima has vital importance for this

discipline. Indeed, any gradient-like optimization method of such a functional would

likely to have convergence to a local minimum located far from the correct solution.

The vast majority of current numerical method for CIPs are locally convergent ones,

like, for example Newton-like method, see, e.g., [1][2][3][4] and many issues of Inverse

Problems. That is, convergence of such a method to the true solution is rigorously

guaranteed only if the initial guess is located sufficiently close to that solution. How-

ever, in the majority of applications such as e.g., medical and military ones, the

optical media of interest is highly heterogeneous, which means that a good first guess

is unknown. The latter naturally raises the question about the reliability of locally

convergent numerical method for those applications, and this question is well known

to many practitioners working on computations of real world Inverse Problems.

1



2

Thus, we are interested in the issue of globally convergent numerical methods for

CIPs. We call a numerical method globally convergent if the following two conditions

are in place: (1) a rigorous convergence analysis ensures that this method leads to a

good approximation of the true solutions regardless on the availability of a first good

guess, and (2) numerical experiments confirm the said convergence properly.

In this paper we present an globally convergent method for an CIP for the

equation

∆w(x,x0)− a(x)w(x,x0) = −δ(x− x0) (1.1)

lim
|x|→∞

w(x,x0) = 0 . (1.2)

Here x0 is the source position that runs along a line to generate the data for the

inverse problem. We assume throughout this paper that the function a(x) ∈ Cα(R2),

a ≥ const. > 0 where α ∈ (0, 1). Uniqueness and existence of the solution of the

problem (1.1) and (1.2) is such that w ∈ C2+α(|x − x0| ≥ ε), for all ε > 0 follows

from classic arguments, see [5] for further reference.

The first generation of globally convergent numerical methods has stated from

the so-called convexification algorithm [5]. This algorithm was developed for the

case of Coefficient Inverse Problems (CIPs) for hyperbolic and parabolic equations

with incomplete data, the studies are based on frequency/time-dependent data. In

particular, the convexification is used to treat CIPs for the elliptic equations, which

are Laplace transforms of hyperbolic and parabolic ones. Here the seeked coefficients

were dependent on the running parameter, i.e., the so-called ‘pseudo frequency’. In

the case of of optimal imaging of diffuse media this corresponds to the so-called

constant wave (CW) light, theory and numerical implementations can be found in

our work in [6]. At the same time, there is an applied interest in CIPs for elliptic

equations with the data depending on the running source. This corresponds to the
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constant current in the case of imaging of undersurface objects (e.g., land mines and

underground bunkers) using the method electrical impedance tomography (EIT).

The essential difference between the frequency/time-dependent data and data

depending on the running source, say CW, is that the effect of light distribution from

far away light source (the so-called ‘tail’) cannot be neglected in the CW case while

it can be set to zero in the frequency/time-dependent because of the clear asymptotic

behavior of the Laplace transform of the solution of the forward problem.

In the past the authors have made several attempts to work out a globally

convergent numerical method for this CIP. In our first publication [6], a heuristic

approach of approximating the tail in CW case has been introduced where good

numerical reconstruction of target coefficients a(x) are obtained. We had developed

the idea of heuristic iterative “accelerator” for convergence of tail and to confirm the

desired globally convergence in [7]. Another version of globally convergence has been

developed in [8]. Unlike all previous case where the globally convergent numerical

methods are considered in rectangular domain, we have successfully implemented

this method for a realistic physical domain (arbitrary convex shape domain). The

approximation of the tail-function in the latter case is much more difficult because of

the irregularity of unstructured mesh. The steps of converting the inverse problem for

a realistic shape to an equivalent problem in an artificial rectangular region had been

added to the algorithm in [7], the numerical results in our latest work still showed

that the globally convergent numerical methods still holds in the arbitrary convex

shape domain.

In Our previous work [6][7][8], we had rigorously prove global convergence by

assuming that we know a good approximation for the tail-function, subsection 3.3.2,

i.e. we assume that we know a good approximation of the forth term of the asymp-

totic behavior of the function ln[w(x,x0)] for |x0| → ∞, equation 3.18. Contrary to
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those previous results, the new idea of making the tail-function small are presented

in this paper and another version of globally convergence theorem are also proved.

This idea is motivated by a globally convergent numerical method that was recently

developed in [9]. However, the main difference of [9] with the current result is that

in [9] the time dependent data were used. Because of that, the tail-function in [9] is

small automatically as a high “pseudo frequency” limit of the solution of an associ-

ated forward problem resulting from the Laplace transform of the original hyperbolic

equation.

We also purpose a new regularization method for filtering noisy boundary con-

dition. This idea is originally from our work in [8]. Its basic idea is to use a “contin-

uation” or “homotopy” method [10]. The homotopy method connects the system we

want to solve with a different but related system that is easier to solve. In our case,

our inverse reconstruction is a continuation of the reconstruction of an other diffusion

tomography problem where the light source is very far away, called “tail-function”.

1.2 Statement of the Inverse Problem and Applications

1.2.1 The Inverse Problem

Denote x = (x, y). Let Ω ⊂ R2 be a bounded domain and Γ = ∂Ω. Let B be a

constant. Suppose that in equation (1.1) x 0 = (B, s) 6∈ Ω. Determine the coefficient

a(x ) for x ∈ Ω, assuming that the following function ϕ(x ,x 0) is given

w(x,x0) = ϕ(x,x0), ∀x ∈ Γ, ∀s ∈ [s, s], (1.3)

where s is a sufficient large number, s < s is a certain fixed number and

{x0 ∈ (B, s), s ≥ s} ∩ Ω = ∅ .

We consider the 2-D case for the sake of simplicity only for this complicated problem.

Generalizations of our method on the 3-D case are feasible. We are unaware about
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a existence and uniqueness result for this Inverse Problem. Nevertheless, because of

applications, it is a priority to develop a globally convergent numerical method for

this problem. The latter is the goal of this dissertation.

1.2.2 Applications

1.2.2.1 Electrical impedance tomography (EIT)

One of applications of the EIT is in search of land mines and underground

bunkers via probing the ground by the constant current at different source locations.

Let v(x,x0) be the voltage generated by the source of the constant current located at

x0 and let σ(x) be the electric conductivity of the medium, σ(x) ≥ const. > 0. Then

the function v(x,x0) satisfies the following equation

∇ · [σ(x)∇v(x,x0)] = −δ(x− x0) .

Replacing the function v with the function w = v
√

σ and assuming that σ(x) = 1

in a neighborhood of the source position x0 reduces above equation to equation (1.1)

where

a(x) =
∆

(√
σ(x)

)
√

σ(x)
.

Hence we arrive at the inverse problem (1.1) with the unknown coefficient in the latter

form.

1.2.2.2 Optical diffusion tomography

In optical tomography, there are several types of light source to probe the light

absorption and scattering media, figure 2.2. In our case, we use lasers with the CW

light as the light source. The first application of the optical diffusion tomography

is in optical medical imaging of tumor-like abnormalities both in human organs and

small animals using near-infrared (NIR) light with the wavelength of light somewhere

between 500 and 1000 nm [11]. The second feasible application is in optical imaging
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Domain of Interested

Light Source

Absorption and Scattering Media

Figure 1.1. Optical Tomography Scheme.

of targets on battlefields via smog and flames using propagation of light originated

by lasers. Both cases of transmitted and back reflected light are feasible in both

applications. The light source should move along a straight line and the measurements

of the output light should be performed at the boundary of the domain of interest.

Interestingly, the diffuse-like propagation of light would be helpful, because the direct

light can miss the target, one might still image it because photons would still ‘sense’

that target due to diffusion of light.

In this paper, we focus on the inverse problem of this application. The main

purpose is to using NIR to probe light propagation in a diffuse medias in order to
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distint derive images of their reduced scattering and absorption coefficient (µs and

µa, respectively). The governing equation is Diffusion equation

∇ · [D(x)∇w(x,x0)]− µaw(x,x0) = −δ(x− x0) (1.4)

where w(x) be the light intensity (solution of the diffusion equation) due to the light

source located at x0, D(x) = 1/[3µ′s(x)]. Both coefficients are measured in (1/cm).

Details of simplifying above diffusion equation to equation (1.1) has been deduced in

following.

1.3 Studying of Inverse Reconstruction Algorithm on Optical Diffusion
Tomography

Near-infrared light (NIR) studies in biomedical fields have been quite extensive

in resent years. Various efforts in NIR breast and brain imaging have been made by

several research groups [12][13][14][15][16][17] in either laboratory or clinical studies.

The targeted areas including detection of brain injury/trauma [18], determination of

cerebrovascular hemodynamics and oxygenation [19][20], and functional brain imaging

in response to a variety of neurological activations [21][22]. Frequency-domain (FD)

breast imagers have been developed, and there have been reports of in vivo results of

optical properties of abnormalities from female volunteers and patients [23].

The main biophysical mechanism of optical signals of NIR techniques is based

on changes in the concentration of oxygenated hemoglobin (HbO) and deoxygenated

hemoglobin (Hb). Moreover, increasing evidence points to the feasibility of NIR study

of other human organs, such as the prostate and others [24][25][26][27]. As a low-cost

alternative to FD imaging systems, continuous-wave NIR breast imaging systems have

been developed in [14][28].
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To spatially quantify light absorption and reduced scattering coefficients from

NIR measurements, one needs to extract these quantities from mathematical mod-

els. Since these physical properties are described by coefficients in the corresponding

diffusion model (1.4) or [29], one needs to solve an inverse problem based on the

diffusion partial differential equation. Some of our work on the inverse reconstruction

algorithm used for NIR tomographic imaging have been introduced in [6][7][8] where

our latest results is the implementation of this algorithm in a real physical domain

or arbitrary convex shape domain.

As mentioned earlier, this technique has been extended to the case of the run-

ning source instead of changing time or frequency. The original diffusion equation

(1.4) has been studied as in [6][7][8], where the scattering coefficient µ′s is assumed

to be constant. This assumption is justified by the fact that in NIR applications the

coefficient µ′s usually changes quite slowly with respect to x ∈ Ω for the wavelength

between 500 to 1000 nm, whereas the absorption coefficient µa changes significantly,

see, e.g., experimental studies in [30]. Furthermore, µa can be used for the diagnostics.

By this assumption, one can set the coefficient a(x) in (1.1) as

a(x) = 3(µ′sµa)(x) . (1.5)

In chapter 2, we obtain a nonlinear integral differential equation, which is gen-

erated by the above Inverse Problem. This equation is independent on the unknown

coefficient. Although a similar equation was obtained in [6][7][8], our current equation

is the main novelty of this publication. This is because we divide both sides of the

equation for the function ln w by s2; which eventually leads to small tails. The main

difficulty of our method consists in an approximate solution of that integral differ-

ential equation. We derive a layer stripping procedure for this solution and prove

the convergence theorem. In chapter 3 we describe the numerical implementation
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including our filtering technique, procedure of an enhanced approximation of tails,

numerical computing of layer stripping and backward substitution. Results of nu-

merical experiments are presented in chapter 4. Conclusion and discussion about this

technique are presented in chapter 5.



CHAPTER 2

MATHEMATICAL MODEL

According to the inverse problem in subsection 1.2.1, the parameter B in x0 =

(B, s) is constant. We rewrite equation (1.1) to depend on x and s as following:

∆w(x, s)− a(x)w(x, s) = −δ(x−B, y − s) (2.1)

lim
|x|→∞

w(x, s) = 0 . (2.2)

And let’s rewrite the inverse problem as following:

The inverse problem

Denote x = (x, y). Let Ω ⊂ R2 be a bounded domain and Γ = ∂Ω. Let B be a

constant. Determine the coefficient a(x ) in equation (2.1) for x ∈ Ω, assuming that

the following function ϕ(x , s) is given

w(x, s) = ϕ(x, s), ∀x ∈ Γ, ∀s ∈ [s, s], (2.3)

where s is a sufficient large number, s < s is a certain fixed number and

{x0 ∈ (s,B), s ≥ s} ∩ Ω = ∅ .

Now we consider the mathematical model for the inverse problem.

2.1 Nonlinear Integral Differential Equation

Since the source x0 = (B, s) 6∈ Ω and our inverse problem is performed in Ω

domain, equation (2.1) can be written as

∆w(x, s)− a(x)w(x, s) = 0, x ∈ Ω (2.4)

10
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Figure 2.1. Show the geometry of inverse problem.

Function w is positive by the maximum principle, we can consider the function u =

ln w and obtain the following equation from equation (2.4)

∆u(x, s) + [∇u(x, s)]2 = a(x) (2.5)

u(x, s) = φ(x, s) ∀ (x, s) ∈ Γ× (s, s) , (2.6)

where φ = ln ϕ. To eliminate the unknown coefficient a(x) from equation (2.5), we

differentiate it with respect to s and let

u(x, s) = −
∫ s

s

p(x, τ) dτ + u(x, s) , x ∈ Ω , s ∈ [s, s] (2.7)

where p(x, s) = ∂
∂s

u(x, s). The second term in equation (2.7), u(x, s), is the so-

called “tail-function”. We know only the first term of equation (2.7). As it was

pointed out in the Introduction, if we would know the second term also, as it is

the case of the time dependent data of [9], then we will have a standard integral
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differential equations. However, the absence of the knowledge of this term significantly

complicates the matter compared with [9]. Our development of heuristic procedure of

an iterative approximation of the function u(x, s) in section 4.2 and result in section

7.2 of [7] showed good results of the inverse reconstruction of following nonlinear

integral differential equation

∆p(x, s)− 2∇p(x, s)

∫ s̄

s

∇p(x, τ) dτ + 2∇p(x, s) · ∇u(x, s) = 0 . (2.8)

This paper is focused on the new technique of making tail-function small as in the

globally convergent numerical methods [9] where the nonlinear integral differential

equation are different from equation (2.8). We deduce the another form on inverse

problem as following. Let

v(x, s) =
u(x, s)

s2
. (2.9)

Equation (2.5) becomes

∆v(x, s) + s2[∇v(x, s)]2 =
a(x)

s2
(2.10)

Denote

q(x, s) =
∂

∂s
v(x, s) . (2.11)

We have

∆q(x, s) + 2s2∇q(x, s) · ∇v(x, s) + 2s[∇v(x, s)]2 = −2
a(x)

s3
, (2.12)

x ∈ Ω , s ∈ (s, s]

where

v(x, s) = −
∫ s

s

q(x, τ) dτ + v(x, s) , x ∈ Ω , s ∈ [s, s] (2.13)

where s is a large number which will be chosen in numerical experiments. The new

small tail-function in equation (2.13) is obtained by

v(x, s) =
u(x, s)

s2 . (2.14)
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We obtain from equation (2.10), (2.12) and (2.13) the following “Nonlinear

Integral Differential Equation”

∆q + 2s2∇q ·
(
−

∫ s

s

∇q dτ +∇v̄

)
+ 2s

(
−

∫ s

s

∇q dτ +∇v̄

)2

= −2

s

(
−

∫ s

s

∆q dτ + ∆v̄

)
− 2s

(
−

∫ s

s

∇q dτ +∇v̄

)2

, (2.15)

where v̄ = v(x, s).

In addition, equation (2.3),(2.9) and (2.11) imply that the following Dirichlet

boundary condition is given for the function q

q(x, s) = ψ(x, s) , ∀ (x, s) ∈ ∂Ω× [s, s] , (2.16)

where

ψ(x, s) =
∂

∂s

(
ln ϕ(x, s)

s2

)
. (2.17)

The problem (2.15), (2.16) is nonlinear. In addition both functions q and v̄ are

unknown here. Now the main question is How to approximate well both functions q

and v̄ using (2.15), (2.16)? The reason why we can approximate both these function

is that we treat them differently. If we approximate them well (in a certain sense,

specified below), then the target coefficient a(x) would be reconstructed easily via

backwards calculations, see subsection 3.3.4.

2.2 Layer Stripping with Respect to the Source Position

We now describe in detail how to discretize for s-variable. An analogue of

the nonlinear equation of this section for a different CIP, in which the original PDE

was either hyperbolic or parabolic was previous derived in [9]. However there are

substantial different because [9] is a piecewise constant function but ours is piecewise

linear continuous functions.
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Figure 2.2. Show the geometry of layer stripping.

2.2.1 Nonlinear Equation

We approximate the function q(x, s) as a piecewise linear continuous function

with respect to the pseudo frequency s. That is, we assume that there exists a

partition

s = sN < sN−1 < · · · < s1 < s0 = s, sn−1 − sn = h (2.18)

of the interval [s, s] with sufficient small grid step size h such that

q(x, s) =
sn−1 − s

h
qn(x) +

s− sn

h
qn−1(x) for s ∈ [sn, sn−1) . (2.19)

where qn(x) = q(x, sn). We have following approximation by trapezoidal rule:
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− for s ∈ [sn, sn−1), n ≥ 2,

∫ s

s

q(x, τ) dτ =
sn−1 − s

2

(
q(x, s) + qn−1(x)

)
+

h

2

(
q0(x) + 2

n−2∑
j=1

qj(x) + qn−1(x)

)
.

− for s ∈ [s1, s0), ∫ s

s

q(x, τ) dτ =
s0 − s

2

(
q(x, s) + q0(x)

)
.

− and for s = s0, ∫ s

s

q(x, τ) dτ = 0 .

Hence for s ∈ [sn, sn−1), n ≥ 1, we have

∫ s

s

q(x, τ) dτ =
sn−1 − s

2

(
q(x, s) + qn−1(x)

)

+





0 , n = 1

h

2

(
q0(x) + 2

n−2∑
j=1

qj(x) + qn−1(x)
)

, n ≥ 2
(2.20)

We approximate the boundary condition (2.16) as a piecewise linear continuous

function,

ψ(x, s) =
sn−1 − s

h
ψn(x) +

s− sn

h
ψn−1(x), for s ∈ [sn, sn−1) and x ∈ ∂Ω , (2.21)

where

ψn = ψ(x, sn) . (2.22)

We write equation (2.15) as

∆q − 2s2∇q ·
(∫ s

s

∇q dτ −∇v̄

)
+ 4s

(∫ s

s

∇q dτ −∇v̄

)2

=
2

s

(∫ s

s

∆q dτ −∆v̄

)
, (2.23)
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and we have that, for n ≥ 0

qs
n (x) =





∫

q0(x) , n = 0∫
sn−1 − s

h
qn(x) +

s− sn

h
qn−1(x) , n ≥ 1 and s ∈ [sn, sn−1)

, (2.24)

ψs
n (x) =





∫

ψ0(x) , n = 0∫
sn−1 − s

h
ψn(x) +

s− sn

h
ψn−1(x) , n ≥ 1 and s ∈ [sn, sn−1)

(2.25)

and

Tn =





0 , n = 1

h

2

(
q0(x) + 2

n−2∑
j=1

qj(x) + qn−1(x)

)
, n ≥ 2




− v̄ . (2.26)

We substitute equations (2.19), (2.20) and (2.21) to (2.23) to obtain

− for n = 0

∆qs
0 + 2s2

0∇qs
0 · ∇v̄ + 4s0(∇v̄)2 = − 2

s0

(∆v̄) , (2.27)

note that we obtain above linear equation since
∫ s

s

q(x, τ) dτ = 0 ,

− and for n ≥ 1

∆qs
n (x)− 2s2∇qs

n (x) · ∇
[
sn−1 − s

2

(
qs
n (x) + qn−1(x)

)
+ Tn

]

+4s

{
∇

[
sn−1 − s

2

(
qs
n (x) + qn−1(x)

)
+ Tn

]}2

=
2

s
∆

[
sn−1 − s

2

(
qs
n (x) + qn−1(x)

)
+ Tn

]
. (2.28)

Simplify equation (2.28) to obtain

∆qs
n (x)− An(∇qs

n )2 −Bn∇qs
n∇qn−1 − Cn∇qs

n∇Tn

= Dn∆qn−1(x) + En∆Tn − Fn(∇qn−1)
2 −Gn∇qn−1∇Tn −Hn(∇Tn)2 (2.29)
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where those new notations are defined here
∫

An =
s(sn−1 − s)(2s− sn−1)(

1− sn−1−s
s

) = (sn−1 − s)s2 , |An| < hs2

∫

Bn =
s(sn−1 − s)(3s− 2sn−1)(

1− sn−1−s
s

) =
(sn−1 − s)(3s− 2sn−1)s

2

2s− sn−1

, |Bn| < 2hs2

∫

Cn =
(2s2 − 4s(sn−1 − s))(

1− sn−1−s
s

) =
2s2(3s− 2sn−1)

2s− sn−1

, |Cn| < 4s2

∫

Dn =
sn−1−s

s(
1− sn−1−s

s

) =
sn−1 − s

2s− sn−1

, |Dn| < h
∫

En =
2
s(

1− sn−1−s
s

) =
2

2s− sn−1

, |En| < 1
∫

Fn =
s(sn−1 − s)2

(
1− sn−1−s

s

) =
s2(sn−1 − s)2

2s− sn−1

, |Fn| < hs2

∫

Gn =
4s(sn−1 − s)(
1− sn−1−s

s

) =
4s2(sn−1 − s)

2s− sn−1

, |Gn| < hs2

∫

Hn =
4s(

1− sn−1−s
s

) =
4s2

2s− sn−1

, |Hn| < s2 .

(2.30)

From the inequalities in (2.30), we have

max
1≤n≤N

{|An|, |Bn|, |Cn|, |Dn|, |En|, |Fn|, |Gn|, |Hn|}

are bounded. And especially

max
1≤n≤N

{|An|} < hs2 .

With the latter term, by taking h small, we mitigate the influence of the nonlinear

term with (∇qs
n )2 in equation (2.29), and we use this in our iterative algorithm via

solving a linear problem on each iterative step.
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2.2.2 Reconstruction of the Target Coefficient

Suppose that function {qn}N−1
n=0 = {qs

n}N−1
n=0 , where parameter s of qs

n is evaluated

at sn, are approximated via solving problems (2.24), (2.25) and (2.29) and that the

tail-function is also approximated. Then we construct the target coefficient a(x) by

backward calculation as follows. First we reconstruct the function un(x) = u(x, sn)

by (2.9) as

un(x) =





s2
0v∞(x) , n = 0∫

s2
n

[
−h

2

(
q0(x) + 2

n−1∑
j=1

qj(x) + qn(x)

)
+ v∞(x)

]
, n ≥ 1

, (2.31)

where v∞(x) is approximation of tail-function v̄(x), the heuristic approach of approx-

imation v∞ are explained in subsection 3.3.2. In principle we can reconstruct the

target coefficient a(x) from equation (2.5). However, it is unstable to take second

derivative. Hence, we first reconstruct the function wn(x) = w(x, sn) as

wn(x) = exp[un(x)] . (2.32)

Next, we use equation (2.4) to obtain the coefficient an(x) by numerical method,

details are described in subsection 3.3.4.

2.2.3 The Algorithm for Approximating Function qs
n

In this subsection we describe an algorithm of sequential solutions for n =

0, . . . , N of boundary value problem (2.25), (2.29), assuming that an approximation

v∞(x) for the tail-function is found, see subsection 3.3.2. For the sake of convenience

of our analysis of our convergence analysis, we assume here and in section 2.3 that

our domain of interest Ω is such that its boundary ∂Ω ∈ C2+α, α =const.> 0.

We also assume that functions ψs
n (x) ∈ C2+α(∂Ω), v∞ ∈ C2+α(∂Ω), We rely on

the classic Schauder theorem (§1 of Chapter 3 of [31]), which we reformulate in
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subsection 2.3.2. In addition, we assume that for each n we make infinitely many

inner iterations to ensure convergence of functions qs
n,k ∈ C2+α(Ω), k →∞ to function

qs
n in space C2+α(Ω). This convergence is established in Theorem 2.3.2. Since it is

practically impossible to arrange infinitely many iterations, this is one of discrepancies

between our theory and computational practice. We describe all major discrepancies

in subsection 3.3.3.

Step 0. We need to find an approximation for the function qs
0 . To do this, we

solve equation (2.27) for qs
0 with boundary condition (2.25) and use v∞ instead of v̄

as follows

∆qs
0 + 2s2

0∇qs
0 · ∇v∞ + 4s0(∇v∞)2 = − 2

s0

(∆v∞) (2.33)

Note that we obtain above linear equation since

∫ s

s

q(x, τ) dτ = 0 .

The reconstruction of a0(x) is obtained using equations (2.31),(2.32) and (2.4).

Before beginning of Step 1, we substitute the actual v̄ in equation (2.26) with

approximation v∞ as following:

Tn =





0 , n = 1

h

2

(
qs
0 (x) + 2

n−2∑
j=1

qs
j (x) + qs

n−1(x)

)
, n ≥ 2




− v∞ .

Step 1. We now find an approximation for the function qs
1 . To do this, we solve

equation (2.28) with the boundary condition (2.25) at n = 1 iteratively for qs
1 . That

is, we should solve

∆qs
1 (x)− A1(∇qs

1 )2 −B1∇qs
1∇qs

0 − C1∇qs
1∇T1

= D1∆qs
0 (x) + E1∆T1 − F1(∇qs

0 )2 −G1∇qs
0∇T1 −H1(∇T1)

2 . (2.34)
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We solve equation (2.34) iteratively as

∆qs
1,k(x)−A1∇qs

1,k∇qs
1,k−1−B1∇qs

1,k∇qs
0 −C1∇qs

1,k∇T1

= D1∆qs
0 (x) + E1∆T1 − F1(∇qs

0 )2 −G1∇qs
0∇T1 −H1(∇T1)

2 . (2.35)

with qs
1,k(x) having same boundary condition as qs

1 (x) and qs
1,0 = qs

0

We proceed with calculating the function qs
1,k+1 as in (2.35). We iterate in (2.35)

until the process converges, i.e.,

lim
k→∞

‖qs
1,k − qs

1,k−1‖L2(Ω)
= 0 .

We set qs
1 := qs

1,k. The next reconstruction a1(x) is obtained using equations (2.31),(2.32)

and (2.4).

Step n. We now find an approximation for the function qs
n assuming that

function qs
0 , . . . , qs

n−1 with respect to s0, . . . , sn−1, respectively, are found. We solve

iteratively equation (2.28) with the boundary condition (2.25) at arbitrary n > 1 as

following

∆qs
n,k(x)−An∇qs

n,k∇qs
n,k−1−Bn∇qs

n,k∇qs
n−1−Cn∇qs

n,k∇Tn

= Dn∆qs
n−1(x) + En∆Tn − Fn(∇qs

n−1)
2 −Gn∇qs

n−1∇Tn −Hn(∇Tn)2 . (2.36)

with qs
n,k(x) having same boundary condition as qs

n (x) and qs
n,0 = qs

n−1. We iterate

until the precess converges, i.e., until

lim
k→∞

‖qs
n,k − qs

n,k−1‖L2(Ω)
= 0 .

We set qs
n = qs

n,k. Then an(x) is obtained using equations (2.31),(2.32) and (2.4).

Then we find function a0, . . . , aN−1 where N is the number of subintervals of

the interval [s, s]. Finally, the resulting function a(x) is

a(x) =
1

N

N−1∑
n=0

an(x) . (2.37)



21

2.3 Convergence

Below we follow the concept of Tikhonov for ill-posed problems [32], which is

one of backbones of this theory. By this concept one should assume first that there

exists an “ideal” exact solution of the problem with the exact data. Next, one should

assume the presence of an error in the data of the level ζ, where ζ > 0 is a small

parameter. Suppose that an approximate solution is constructed for an sufficiently

small ζ. This solution is called a “regularized solution”, if the ζ-dependent family

of these solutions tends to that exact solution as ζ tends to zero. Hence, one should

prove this convergence (Theorem 2.3.2).

In this section we use the Schauder’s theorem [31] to estimate function qs
n,k.

Since the Schauder’s theorem requires C2+α smoothness of the boundary ∂Ω, we

assume in this section that Ω ∈ R2 is a convex bounded domain with ∂Ω ∈ C2+α. This

is in a disagreement with our domain Ω is rectangle. However we use the rectangle

only because of the problem of tail-function, in which we cannot approximate it well

heruistically for the case of a more general domain. However, an analogue of our

convergence result (Theorem 2.3.2) can be proven for the case when Ω is rectangle

and an FEM (i.e. discrete) version of equation (2.27) and (2.29) is considered with

a fixed number R of finite elements. To do this, one need to consider the weak

formulation of equation (2.27) and (2.29) and to use the Lax-Migram theorem [33]

instead of the Schauder’s theorem. Although the Lax-Migram theorem would provide

only estimates of H1 norms of functions qs
n rather than more desirable C2 norms, but

using the equivalency of norm in finite dimensional spaces, we can still get estimates

of C2 norms and these estimates would naturally depend on R.
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2.3.1 Exact Solution

Following the Tikhonov concept, we need to introduce the definitions of the

exact solution first. We assume that there exists an exact coefficient function a∗(x) ∈
Cα(Ω), where constant α ∈ (0, 1), which is a solution of our Inverse Problem. Let the

function

w∗(x, s) ∈ C2+α(|x− x0| ≥ ε) , ∀ ε > 0 , ∀x0 = (B, s) > 0 ,∀ s ∈ [s, s]

be the solution of the problem (2.1), (2.2) with a(x) := a∗(x). Let

u∗(x, s) = ln w∗(x, s) , q∗(x, s) =
∂u∗(x, s)

∂s
, u∗∞(x) = u∗(x, s) .

By equation (2.5)

∆u∗(x, s) + [∇u∗(x, s)]2 = a∗(x) . (2.38)

Also, the function q∗ satisfies the following analogue of equation (2.23)

∆q∗ − 2s2∇q∗ ·
(∫ s

s

∇q∗ dτ +∇v̄∗
)

+ 4s

(∫ s

s

∇q∗ dτ −∇v̄∗
)2

=
2

s

(∫ s

s

∆q∗ dτ −∆v̄∗
)

(2.39)

with the boundary condition (2.16)

q∗(x, s) = ψ∗(x, s) , ∀ (x, s) ∈ ∂Ω× [s, s] , (2.40)

where ψ∗(x, s) = ∂
∂s

ln ϕ∗(x, s), where ϕ∗(x, s) = w∗(x, s) for (x, s) ∈ ∂Ω× [s, s] .

Definition. We call the function q∗(x, s) the exact solution of the problem

(2.23), (2.16) with the exact boundary condition ψ∗(x, s). Naturally, the function

a∗(x) from equation (2.38) is called the exact solution of our Inverse Problem.

Therefore

q∗(x, s) ∈ C2+α(Ω)× C1[s, s] . (2.41)
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We now approximate the function q∗n(x), n ≥ 0, for representing the function q∗(x, s)

as follows

− for n = 0

q∗0(x) = q∗(x, s0)

− and for n ≥ 1, for any s ∈ [sn, sn−1) by averaging

q∗n(x) =
1

h

∫ sn−1

sn

q∗(x, s) ds , ψ∗n(x) =
1

h

∫ sn−1

sn

ψ∗(x, s) ds

Then by (2.41) for n ≥ 1

q∗(x, s) = q∗n(x) + Qn(x, s) , ψ∗(x, s) = ψ∗n(x) + Ψn(x, s) (2.42)

s ∈ [sn, sn−1), where functions Qn, Ψn are such that for s ∈ [sn, sn−1)

‖Qn(x, s)‖C2+α(Ω) ≤ C∗h , ‖Ψn(x, s)‖C2+α(Ω) ≤ C∗h ,

∀ s ∈ [sn, sn−1) , n = 1, . . . , N , (2.43)

where the constant C∗ > 0 depends only on C2+α(Ω)×C1[s, s] and C2+α(Ω)×C1[s, s]

norms of function q∗ and ψ∗ respectively. Hence

q∗n(x) = ψ∗n(x) , x ∈ ∂Ω , (2.44)

and the following analog of equations (2.33) and (2.36) hold

∆q∗0 + 2s2
0∇q∗0 · ∇v̄∗ + 4s0(∇v̄∗)2 = − 2

s0

(∆v̄∗) (2.45)

and

∆q∗n(x)−An(∇q∗n)2−Bn∇q∗n∇q∗n−1−Cn∇q∗n∇T ∗
n

= Dn∆q∗0(x)+En∆T ∗
n −Fn(∇q∗0)

2−Gn∇q∗0∇T ∗
n −Hn(∇T ∗

n)2 +Rn(x, h) (2.46)
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with

T ∗
n =





0 , n = 1

h

2

(
q∗0(x) + 2

n−2∑
j=1

q∗j (x) + q∗n−1(x)

)
, n ≥ 2




− v̄∗ ,

respectively, where the function Rn(x, h) ∈ Cα(Ω) and

max
1≤n≤N

‖Rn(x, h)‖C2+α(Ω) ≤ C∗h , n = 1, 2, . . . , N (2.47)

We also assume that the data ϕ(x, s) in (2.3) are given with error. This naturally

produces an error in the function ψ(x, s) in (2.16). An additional error is introduced

due to taking the average value of ψ∗(x, s) over the interval [sn, sn+1). Hence, it is

reasonable to assume that

‖ψ∗n(x)− ψs
n (x)‖C2+α(∂Ω) ≤ C1(σ + h) , (2.48)

where σ > 0 is a small parameter characterizing the level of the error in the data

ϕ(x, s) and the constant C1 > 0 is independent on numbers σ, h and n.

Remark It should be noted that usually the data ϕ(x, s) in (2.3) are given a

random noise. Although the differentiation of the noisy data is an ill-posed prob-

lem, but there exist effective numerical regularization methods of its solution, see

subsection 3.3.1 for our way of handling it.

2.3.2 Convergence Theorem

First, we reformulate the Schauder’s theorem in a way, which is convenient for

our case, see §1 of Chapter 3 of [31] for this theorem. Introduce the positive constant

M∗ by letting

B∗ = 12s2 ·max{S∗, 1}

and

M∗ = B∗ ·max

{
max

0≤n≤N
‖q∗n‖C2+α(Ω), max

0≤m,n≤N
‖q∗m‖C2+α(Ω)‖q∗n‖C2+α(Ω), C

∗, C1, 2

}
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where C∗, C1 are constants from (2.47), (2.48), respectively, and S∗ = s−s. Consider

the Dirichlet boundary value problem

∆q̃ +
3∑

j=1

bj(x)q̃xj
− d(x)q̃ = f(x) , x ∈ Ω ,

q̃
∣∣∣
∂Ω

= g(x) ∈ C2+α(Ω) ,

where functions

bj, d, f ∈ Cα(Ω) , d(x) ≥ 0; max
(
‖bj‖C2+α(Ω), ‖d‖C2+α(Ω)

)
≤ M∗ .

By the Schauder theorem there exists unique solution q̃ ∈ C2+α(Ω) of this problem

and with a constant K = K(M∗, Ω) > 0 the following estimate holds

‖q̃‖C2+α(Ω) ≤ K
[
‖g‖C2+α(Ω) + ‖f‖C2+α(Ω)

]
.

For the tail-function, we choose a small number ξ ∈ (0, 1) and by equation

(2.14) we can choose such s2 = s2(ξ) >> 1 such that

‖v̄∗‖C2+α(Ω) ≤ ξ .

Theorem 2.3.2

Let Ω ⊂ R2 be a convex bounded domain with the boundary ∂Ω ∈ C2+α.

Suppose that an approximation v∞ for the tail is constructed in such a way that

‖v∞‖C2+α(Ω) ≤ ξ , (2.49)

where ξ ∈ (0, 1) is a sufficient small number and that this function v∞ is used in

(2.33),(2.35) and (2.36). Denote η = max{σ, h, ξ}, σ is noise level of data and h is

step size, and suppose that the number Nh = s− s is such that

Nh <
1

20KM∗ . (2.50)
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Then there exists a sufficiently small number η0 = η0(K(M∗, Ω),M∗, c, s, s) ∈ (0, 1)

such that for all η ∈ (0, η0) and for every integer n ∈ [0, N−1] the following estimates

hold

‖qs
n − q∗n‖C2+α(Ω) ≤ KM∗(20η) , (2.51)

‖qs
n‖C2+α(Ω) ≤ 2M . (2.52)

2.3.3 Proof of Theorem 2.3.2

This proof basically consists in estimating differences between our constructed

functions qs
n,k, and function q∗n. We are doing this using the Schauder theorem. In

this proof we assume that η ∈ (0, η0). Denote

q̃n,k(x) = qs
n,k(x)− q∗n(x) , ṽ∞(x) = v∞(x)− v̄∗(x) ,

ψ̃n(x) = ψs
n (x)− ψ∗n(x) , T̃n(x) = Tn(x)− T ∗

n(x) . (2.53)

Note that, in this theorem ‖·‖ is equivalent to ‖·‖C2+α(Ω). The proof basically consists

in estimating these differences. (Detail of derivations of their estimated are shown in

appendix A).

First we show the approximation of Tn, T ∗
n and T̃n. For n = 1 we have

‖T1‖ ≤ ξ , ‖T ∗
1 ‖ ≤ ξ and ‖T̃1‖ ≤ 2ξ .

And for n ≥ 2 we have

‖Tn‖ ≤ h

n−1∑
j=0

‖q̃j‖+ S∗ max
0≤j≤n−1

‖q∗j‖+ ξ

‖T ∗
n‖ ≤ S∗ max

0≤j≤n−1
‖q∗j‖+ ξ

‖T̃n‖ ≤ h

n−1∑
j=0

‖q̃j‖+ 2ξ .
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First, we estimate q̃0. Subtract equation (2.45) from (2.33). We obtain

∆q̃0+2s2
0∇q̃0∇v∞ = −2s2

0∇q∗0∇(v∞− v̄∗)−4s0∇(v∞− v̄∗)∇(v∞+ v̄∗)− 2

s0

∆(v∞− v̄∗) ,

(2.54)

q̃0 = ψ̃0 , on ∂Ω .

Since ‖2s2
0v∞‖ ≤ 4s2‖v̄∗‖ ≤ M∗, by Schauder theorem, we have

‖q̃0‖ ≤ KM∗(5η) . (2.55)

And hence

‖qs
0 ‖ = ‖q̃0 + q∗0‖ ≤ ‖q̃0‖+ ‖q∗0‖ ≤ KM∗(5η) + M∗ ≤ 2M∗ . (2.56)

Second, we estimate q̃1,1. Set in equation (2.46) n = 1 and subtract it from

(2.35) at k = 1, recalling that qs
1,0 = qs

0 . We obtain

∆q̃1,1 − A1∇q̃1,1∇q̃0 − A1∇q̃1,1∇q∗0 −B1∇q̃1,1∇q̃0 −B1∇q̃1,1∇q∗0 − C1∇q̃1,1∇T1

= A1∇q∗1∇q̃0 + A1∇q∗1∇q∗0 − A1∇q∗1∇q∗1 + B1∇q∗1∇q̃0 + C1∇q∗1∇T̃1

+D1∆q̃0 + E1∆T̃1 − F1∇q̃0∇q̃0 − 2F1∇q̃0∇q∗0

−G1∇q̃0∇T1 −G1∇q∗0∇T̃1 −H1∇T̃1∇T1 −H1∇T̃1∇T ∗
1 −R1 , (2.57)

qs
1,1 = ψ̃1 , on ∂Ω .

Since

‖A1∇q̃0‖ ≤ hs2‖q̃0‖ ≤ M∗

‖A1∇q∗0‖ ≤ hs2‖q∗0‖ ≤ M∗

‖B1∇q̃0‖ ≤ 2hs2‖q̃0‖ ≤ M∗

‖B1∇q∗0‖ ≤ 2hs2‖q∗0‖ ≤ M∗

‖C1∇T1‖ ≤ 8s2‖T1‖ ≤ M∗ ,
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by Schauder theorem, we have

‖q̃1,1‖ ≤ KM∗(16η) . (2.58)

Hence

‖qs
1,1‖ = ‖q̃1,1 + q∗1‖ ≤ ‖q̃1,1‖+ ‖q∗1‖ ≤ KM∗(16η) + M∗ ≤ 2M∗ . (2.59)

Now we estimate q̃1,k. Assume that

‖q̃1,k−1‖ ≤ KM∗(16η) and ‖qs
1,k−1‖ ≤ 2M∗ . (2.60)

Set in equation (2.46) n = k and subtract it from (2.35). We obtain

∆q̃1,k − A1∇q̃1,k∇q̃1,k−1 − A1∇q̃1,k∇q∗0 −B1∇q̃1,k∇q̃0 −B1∇q̃1,k∇q∗0 − C1∇q̃1,k∇T1

= A1∇q∗1∇q̃1,k−1 + A1∇q∗1∇q∗0 − A1∇q∗1∇q∗1 + B1∇q∗1∇q̃0 + C1∇q∗1∇T̃1

+D1∆q̃0 + E1∆T̃1 − F1∇q̃0∇q̃0 − 2F1∇q̃0∇q∗0

−G1∇q̃0∇T1 −G1∇q∗0∇T̃1 −H1∇T̃1∇T1 −H1∇T̃1∇T ∗
1 −R1 . (2.61)

qs
1,k = ψ̃1 , on ∂Ω .

Since

‖A1∇q̃1,k−1‖ ≤ hs2‖q̃1,k−1‖ ≤ M∗

‖A1∇q∗0‖ ≤ hs2‖q∗0‖ ≤ M∗

‖B1∇q̃0‖ ≤ 2hs2‖q̃0‖ ≤ M∗

‖B1∇q∗0‖ ≤ 2hs2‖q∗0‖ ≤ M∗

‖C1∇T1‖ ≤ 8s2‖T1‖ ≤ M∗ ,

by Schauder theorem, we have

‖q̃1,k‖ ≤ KM∗(16η) . (2.62)
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Hence

|qs
1,k‖ = ‖q̃1,k + q∗1‖ ≤ ‖q̃1,k‖+ ‖q∗1‖ ≤ KM∗(16η) + M∗ ≤ 2M∗ . (2.63)

And therefore we finally have

‖q̃1‖ ≤ KM∗(16η) and ‖qs
1 ‖ ≤ 2M∗ . (2.64)

Now we estimate q̃2,1. Set in equation (2.46) n = 2 and subtract it from (2.36)

at n = 2, k = 1, recalling that qs
2,0 = qs

1 . We obtain

∆q̃2,1 − A2∇q̃2,1∇q̃1 − A2∇q̃2,1∇q∗1 −B2∇q̃2,1∇q̃1 −B2∇q̃2,1∇q∗1 − C2∇q̃2,1∇T2

= A2∇q∗2∇q̃1 + A2∇q∗2∇q∗1 − A2∇q∗2∇q∗2 + B2∇q∗2∇q̃1 + C2∇q∗2∇T̃2

+D2∆q̃1 + E2∆T̃2 − F2∇q̃1∇q̃1 − 2F2∇q̃1∇q∗1

−G2∇q̃1∇T2 −G2∇q∗1∇T̃2 −H2∇T̃2∇T2 −H2∇T̃2∇T ∗
2 −R2 , (2.65)

qs
2,1 = ψ̃2 , on ∂Ω .

Since

‖A2∇q̃1‖ ≤ hs2‖q̃1,k−1‖ ≤ M∗

‖A2∇q∗1‖ ≤ hs2‖q∗1‖ ≤ M∗

‖B2∇q̃1‖ ≤ 2hs2‖q̃1‖ ≤ M∗

‖B2∇q∗1‖ ≤ 2hs2‖q∗1‖ ≤ M∗

‖C2∇T2‖ ≤ 4s2‖T2‖ ≤ 4s2
[
Nh ·KM∗(16η) + max

0≤j≤1
‖q∗j‖+ ξ

]

≤ 4s2
[
η + max

0≤j≤1
‖q∗j‖+ ξ

] ≤ M∗ ,

by Schauder theorem, we have

‖q̃2,1‖ ≤ KM∗(20η) . (2.66)
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Hence

‖qs
2,1‖ = ‖q̃2,1 + q∗2‖ ≤ ‖q̃2,1‖+ ‖q∗2‖ ≤ KM∗(20η) + M∗ ≤ 2M∗ . (2.67)

Now we estimate q̃2,k. Assume that

‖q̃2,k−1‖ ≤ KM∗(16η) and ‖qs
2,k−1‖ ≤ 2M∗ . (2.68)

Set in equation (2.46) n = 2 and subtract it from (2.36) at n = 2. We obtain

∆q̃2,k − A2∇q̃2,k∇q̃2,k−1 − A2∇q̃2,k∇q∗1 −B2∇q̃2,k∇q̃1 −B2∇q̃2,k∇q∗1 − C2∇q̃2,k∇T2

= A2∇q∗2∇q̃2,k−1 + A2∇q∗2∇q∗1 − A2∇q∗2∇q∗2 + B2∇q∗2∇q̃1 + C2∇q∗2∇T̃2

+D2∆q̃1 + E2∆T̃2 − F2∇q̃1∇q̃1 − 2F2∇q̃1∇q∗1

−G2∇q̃1∇T2 −G2∇q∗1∇T̃2 −H2∇T̃2∇T2 −H2∇T̃2∇T ∗
2 −R2 , (2.69)

qs
2,k = ψ̃2 , on ∂Ω .

Since

‖A2∇q̃2,k−1‖ ≤ hs2‖q̃1,k−1‖ ≤ M∗

‖A2∇q∗1‖ ≤ hs2‖q∗1‖ ≤ M∗

‖B2∇q̃1‖ ≤ 2hs2‖q̃1‖ ≤ M∗

‖B2∇q∗1‖ ≤ 2hs2‖q∗1‖ ≤ M∗

‖C2∇T2‖ ≤ 4s2‖T2‖ ≤ 4s2
[
Nh ·KM∗(16η) + max

0≤j≤1
‖q∗j‖+ ξ

]

≤ 4s2
[
η + max

0≤j≤1
‖q∗j‖+ ξ

] ≤ M∗ ,

by Schauder theorem, we have

‖q̃2,k‖ ≤ KM∗(20η) . (2.70)
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Hence

‖qs
2,k‖ = ‖q̃2,k + q∗2‖ ≤ ‖q̃2,k‖+ ‖q∗2‖ ≤ KM∗(20η) + M∗ ≤ 2M∗ . (2.71)

And therefore we finally have

‖q̃2‖ ≤ KM∗(20η) and ‖qs
2 ‖ ≤ 2M∗ . (2.72)

We now estimate the function q̃n,k. Assume that

‖q̃n−1‖ ≤ KM∗(20η) , ‖qs
n−1‖ ≤ 2M∗ (2.73)

and

‖q̃n,k−1‖ ≤ KM∗(20η) , ‖qs
n,k−1‖ ≤ 2M∗ . (2.74)

Subtract equation (2.46) from (2.36), we obtain

∆q̃n,k−An∇q̃n,k∇q̃n,k−1−An∇q̃n,k∇q∗n−1−Bn∇q̃n,k∇q̃n−1−Bn∇q̃n,k∇q∗n−1−Cn∇q̃n,k∇Tn

= An∇q∗n∇q̃n,k−1 + An∇q∗n∇q∗n−1 − An∇q∗n∇q∗n + Bn∇q∗n∇q̃n−1 + Cn∇q∗n∇T̃n

+Dn∆q̃n−1 + En∆T̃n − Fn∇q̃n−1∇q̃n−1 − 2Fn∇q̃n−1∇q∗n−1

−Gn∇q̃n−1∇Tn −Gn∇q∗n−1∇T̃n −Hn∇T̃n∇Tn −Hn∇T̃n∇T ∗
n −Rn , (2.75)

qs
n,k = ψ̃n , on ∂Ω .

Since

‖An∇q̃n,k−1‖ ≤ hs2‖q̃n,k−1‖ ≤ M∗

‖An∇q∗n−1‖ ≤ hs2‖q∗n−1‖ ≤ M∗

‖Bn∇q̃n−1‖ ≤ 2hs2‖q̃n−1‖ ≤ M∗

‖Bn∇q∗n−1‖ ≤ 2hs2‖q∗n−1‖ ≤ M∗

‖Cn∇Tn‖ ≤ 4s2‖Tn‖ ≤ 4s2
[
Nh ·KM∗(16η) + max

0≤j≤n−1
‖q∗j‖+ ξ

]

≤ 4s2
[
η + max

0≤j≤n−1
‖q∗j‖+ ξ

] ≤ M∗ ,
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by Schauder theorem, we have

‖q̃n,k‖ ≤ KM∗(20η) . (2.76)

Hence

‖qs
n,k‖ = ‖q̃n,k + q∗n‖ ≤ ‖q̃n,k‖+ ‖q∗n‖ ≤ KM∗(20η) + M∗ ≤ 2M∗ . (2.77)

And therefore we finally have

‖q̃n‖ ≤ KM∗(20η) and ‖qs
n‖ ≤ 2M∗ . (2.78)

Estimates (2.78) completes the proof of this theorem. ¤



CHAPTER 3

NUMERICAL METHODS

3.1 Introduction

This chapter presents the numerical method of our simulation. According to the

inverse problem in subsection 1.2.1, the boundary condition w(x,x0) = ϕ(x,x0) for

all x ∈ ∂Ω is required to solve equation (1.1). These boundary data will be obtained

from the measurement at the boundary of ∂Ω by the CCD Camera, CCD stands

for a “Charge-Coupled Device”, where measurement data contains a noise influence.

We had presented a technique to filter these noise component by using least-square

polynomial [6][7][8]. In this paper we purpose an alternative way of filtering noise

on boundary, this idea is taken from our publication [8]. The technique is similar to

the conversion of of the arbitrary shape domain to a rectangular domain and solving

equation (1.1), (1.2) on rectangular domain, so called computation domain for the in-

verse problem. The equation and its boundary data for the latter conversion is named

the “exterior forward problem”. By employing this technique, we slightly modify the

inverse problem and make the whole process correspond to the mathematical model

in chapter 2. The new inverse problem is

Denote x = (x, y). Let A ⊂ R2 be a bounded domain and Γ = ∂A. Let B be a

constant. Determine the coefficient a(x ) in equation (2.1) for x ∈ A, assuming that

the following function ϕ̃(x , s) is given

w(x, s) = ϕ̃(x, s), ∀x ∈ Γ, ∀s ∈ [s, s], (3.1)

33
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where s is a sufficient large number, s < s is a certain fixed number and

{x0 ∈ (s,B), s ≥ s} ∩ A = ∅ .

The domain of interest is no longer Ω domain, see figure 3.1. The difference is in Ω

domain after applying the exterior forward problem. To clarify, the inverse problem

in subsection 1.2.1 is still present but we will now solve the inverse problem using the

result of the exterior forward problem. Hence, the boundary data w(x,x0) = ϕ(x,x0)

on ∂Ω in the inverse problem of subsection 1.2.1 is not from the measurement directly

but it is from the exterior forward problem base on the measurement. By applying

this technique, the computation with noisy data on ∂A will provide a smooth and

continuous data on ∂Ω, detail in subsection 3.3.1 and see its scheme in figure 3.2.

Such a method is analogous to the matching fluid in experiments.

The simulation process includes five steps:

(i) Generating measurement data: We obtain our simulated measurement data

by solving the forward problem of equation (1.1), (1.2) in Ω0 domain with known

a(x). This Ω0 domain is a rectangular domain satisfying Ω0 ⊃ Ω ⊃ A. The reason

for considering the rectangular Ω0 along with the rectangular Ω and A is that it is

natural to approximate the solution of the problem (1.1), (1.2) in the infinite domain

by the solution of equation, (1.1) in Ω0 with Robin boundary conditions at ∂Ω0. We

have established numerically that for the range of parameters we use, the solution of

(1.1), (1.2) is close in A to the solution of equation (1.1) in the bigger rectangle Ω0

with the Robin boundary conditions at its sides. Figure 3.1 illustrates rectangular Ω0

,Ω and A.

(ii) Filtering measurement data: After the forward problem of equation (1.1),

(1.2) in Ω0 is solved, we assign the measurement data plus noise on ∂A. Figure 3.1

shows the domain of interest A. Then we solve the exterior forward problem in Ω0−A
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Ω0

A
Ω

y

x

Figure 3.1. Three domains layout.

with the Robin boundary condition on ∂Ω0 and Dirichlet condition on ∂A. Function

a(x) in Ω0 −A is set to the background value k2.

(iii) Computing the tail function: The tail function in this paper is slightly

changed from [6][7][8]. The tail function is considered to be a crucial in our numerical

computation, our design in such the tail function is more precise. The four side tail

version is introduced in this paper. The idea of the four side tail function is to average

of tail functions from (1) the original tail function (angle#1) as in [6][7][8] and (2)

additional tail functions (angle#2, #3 and #4), see figure 3.5 for the location of light

source.

(iv) Numerical Layer stripping : This computation is directly related to our layer

stripping in section 2.2. Since the convergence of this technique has been proved for
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qs
n (x) for all s ∈ [sn, sn−1). In the numerical method we set s = sn, this makes

qs
n (x) = qn(x) and equation (2.29) becomes simpler. The first s-derivatives function

(2.17), for computing qn, are on the boundary ∂Ω since it is our basic computation

domain for inverse problem. Subsection 3.3.1 describes how these values are obtained.

(v) Backward substitution: This is also related to subsection 2.2.2, the purpose

is to obtain the target coefficient a(x).

The details of the fives step above are explained in the following section.

3.2 Generating Measurement Data with the Forward Problem

The simulated measurement data on the boundary of ∂A is generated using

equation (2.1). We numerically compute the “forward problem” of equation (2.1)

with condition (2.2) on Ω0 using the finite element method (FEM) where the Robin

boundary condition ~n · ∇w(x, s) + w(x, s) = 0 is applied on ∂Ω0. The solution of

(2.1) on Ω0 is computed with the known a(x). This a(x) function represent the

required coefficient what is needed to perform the reconstruction stage in the inverse

problem. In fact, the measurement data is obtained from the CCD camera where

a(x) is unknown. Hence the presence of a(x) in our forward problem is just for the

simulation purpose. We assume that in our inverse problem, a(x) is still unknown.

This known a(x) plays an important role in giving an example of cofficient µ′s

and µa that we need to perform the reconstruction. In chapter 4, we evaluate some

examples of these coefficient as we discussed in section 1.3.

For each light source s = (B, s), we solve equation (2.1) using Weak Formulation

of FEM. Let η be the test function. Multipling both side of equation (2.1) by η and

integrating over Ω0 gives

∫

Ω0

η∆w dx−
∫

Ω0

ηaw dx = −
∫

Ω0

ηδ dx (3.2)
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or ∫

∂Ω0

η(~n · ∇w) dx−
∫

Ω0

∇η · ∇w dx−
∫

Ω0

ηaw dx = −
∫

Ω0

ηδ dx (3.3)

With the Robin boundary condition ~n ·∇w(x, s)+w(x, s) = 0 then we have ~n ·∇w =

−w(x, s) on ∂Ω0. We then numerically solve weak form of the following equation

∫

∂Ω0

ηw dx +

∫

Ω0

∇η · ∇w dx +

∫

Ω0

ηaw dx =

∫

Ω0

ηδ dx . (3.4)

for each light source s.

After the solution w(x, s) on Ω0 are computed, we can extract the boundary data

of A to be our simulated measurement data for each light source s. We introduce the

random noise as the random process with respect to the detector locations, this noise

is added to the extracted data on ∂A. Let ϕ̄(x, s) be the extracted data on ∂A. We

compute ϕ̃(x, s) = ϕ̄(x, s)[1 + χ(x)] on ∂A where χ(x) is the random variable, which

we introduce as χ = 0.02W , where W is a white noise with the equal distribution at

[−1, 1]. Hence, ϕ̃(x, s) represents the 2% multiplicative random noise on ∂A. We will

use this boundary data with noise as simulated data in our inverse problem.

3.3 Reconstruction of the Coefficient a(x) from Measurement Data

The reconstruction of the coefficient a(x), the inverse problem, employed the

algorithm so-called layer stripping which was mentioned in section 2.2. In section 3.2,

Ω domain is mentioned as the computation domain, its boundary data on Ω domain

is not the actual measurement from the CCD camera, it is obtained via the exterior

forward problem for pre-processing the noise in measurement data on ∂A. After we

obtain the boundary on Ω domain we compute the tail function, subsection 3.3.2. We

then compute the layer stripping, subsection 3.3.3, and the target coefficient a(x) is

the result of applying the backward substitution, subsection 3.3.4.
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Ω0 x

A

Ω

Figure 3.2. Exterior forward problem scheme.

3.3.1 Filtering Measurement Data

The regularization method which was introduced in this paper to pre-process

the noise in measurement data differs from the one we used in [6][7][8]. Our technique

employs the property of the diffusion equation that gives the smooth and continuous

solution within the domain of computation. Hence by computing (2.1) on Ω0 − A
with w(x, s) = ϕ̃(x, s) on A (interior boundary of Ω0 −A) and the Robin condition

~n · ∇w(x, s) + w(x, s) = 0 on ∂Ω0 (exterior boundary of Ω0 −A) will give a smooth

and continuous data on ∂Ω, see figure 3.2.

Recall that the full forward problem for equation (2.1) is for the entire domain

Ω0. Figure 3.3(a) shows the solution of the forward problem (2.1) which was done to

obtain the “measurement data” on A in the numerical experiment. Note that in a
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Figure 3.3. The forward problem solution shows no visible difference on Ω0 − A
between the solution of the full forward problem (a) and the solution extrapolated
from the boundary-value data at ∂A via an exterior forward problem (b).

real application, the solution to the full forward problem is not available. The data

on A can only be obtained from measurement. But in both the numerical experiment

and the real application, the exterior forward problem of equation (2.1) can be solved

to obtain a numerical solution in domain Ω0−A, figure 3.3(b) displays this solution.

The approximation error of the solution of the exterior forward problem against the

full forward problem on ∂Ω can be found in subsection 4.1.6. A very good agreement

of those two solution is found comparing the two results on ∂Ω, indicating that solving

the exterior forward problem is a precise and stable way to filter the measurement

data to the computational domain Ω.

For the exterior forward problem, we solve (2.1) on Ω0 −A with the boundary

condition as mentioned above. The weak form of exterior problem is slightly different
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from (3.4). Let η be the test function. Multiplying both side of equation (2.1) by η

and integrating over Ω0 −A give

∫

Ω0−A
η∆w dx−

∫

Ω0−A
ηaw dx = −

∫

Ω0−A
ηδ dx

or ∫

∂(Ω0−A)
η(~n · ∇w) dx−

∫

Ω0−A
∇η · ∇w dx−

∫

Ω0−A
ηaw dx = −

∫

Ω0−A
ηδ dx .

Since ~n · ∇w = −w on ∂Ω0 and the Dirichlet boundary condition is imposed on ∂A.

We then numerically solve the weak form of the following equation

∫

∂Ω0

ηw dx +

∫

Ω0−A
∇η · ∇w dx +

∫

Ω0−A
ηaw dx =

∫

Ω0−A
ηδ dx . (3.5)

by imposing the Dirichlet condition on ∂A for each light source s.

Once the filtering process is complete, let ϕ(x, s) be the boundary value of ∂Ω.

This boundary value is used to compute the tail function and compute the layer

stripping procedure where the first s-derivatives, see (2.17), are processed on ∂Ω by

the formula

ψn(x) =
1

s2
n

(
ln ϕn+1(x)− ln ϕn(x)

sn+1 − sn

)
(3.6)

where n = 0, 1, 2, 3 and ϕn(x) = ϕ(x, sn), n = 0, . . . , 3 are the boundary value of Ω.

3.3.2 Computing the Tail Function

A crucial part of our problem is finding a good quality approximation of the tail-

function u(x, s). In our case, however, the free parameter s in (B, s) is the location of

the light source. For real world applications, the source location cannot be very far

from the domain of interest, this is due to both the restriction in size and the limit

of the light intensity. We have undertaken to understand the behavior of solutions

when the location of light sources moves at realistic scales.
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Figure 3.4. Distance of light source s′ = |(x−B, y − s)|.

3.3.2.1 The Mathematical Model of Tail

First, we consider the fundamental solution of the 2D diffusion equation for the

case a(x) ≡ k2 where k2 is background value of our domain, or we simply say the

case with no inclusions in domain Ω. This solution is

w̃0(x, s) =
1

2π
K0(ks′) (3.7)

where K0 is a modified Bessel function and s′ = |(x − B, y − s)|, see figure 3.4. Its

asymptotic behaviors is

K0(ks′) =

√
π

2s′
e−ks′

[
1 + O(

1

s′
)
]

, s′ →∞ . (3.8)
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Represent solution of equation (2.4) with

w(x, s) = w̃0(x, s) + W (x, s) . (3.9)

Since w̃0 satisfies ∆w̃0 − k2w̃0 = 0 in Ω, then equation (2.4) becomes

∆W − [a(x)− k2]w̃0 − [a(x)− k2]W − k2W = 0 . (3.10)

Therefore we have

∆W − k2W = [a(x)− k2]w . (3.11)

This is the Inhomogeneous Helmholtz equation where the solution can be written as

follows

W (x, s) = − 1

2π

∫

Ω

K0 (k|x− ξ|) [a(ξ)− k2]w(ξ, s) dξ . (3.12)

Substituting equation (3.12) into equation (3.9), the solution of equation (2.4) be-

comes the following integral equation

w(x, s) = w̃0(x, s)− 1

2π

∫

Ω

K0 (k|x− ξ|) [a(ξ)− k2]w(ξ, s) dξ . (3.13)

We introduce the function

W (x, s) = 2
√

2πs′eks′w(x, s) . (3.14)

Hence, multiplication of
√

s′eks′ to equation (3.13) gives

W (x, s) =
[
1+O(

1

s′
)
]
− 1

2π

∫

Ω

K0 (c|x− ξ|) [a(ξ)−k2]
2
√

2πs′eks′

2
√

2πs̃eks̃
W (ξ, s) dξ , (3.15)

where s̃ = |ξ − s|, s = (B, s). From equation (3.15), we have the asymptotic term

√
s′eks′

√
s̃eks̃

→ 1 as s →∞ .

Therefore W has a unique solution decaying at infinity, and equation (3.15) becomes

W (x, s) = 1 + g̃(x) + O(
1

s′
) , as s′ →∞ . (3.16)
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Another form of equation (3.16) based on equation (3.14) is the asymptotic behavior

of w as s′ →∞

w(x, s) =
e−ks′

2
√

2πs′
(1 + g̃(x) + O(

1

s′
)) , as s′ →∞ . (3.17)

The function g̃(x) is unknown and is independent of s′. Since we are interested in the

function u = ln w, we have

u(x, s) = −ks′ − ln 2
√

2π − 1

2
ln s′ + g(x) + O(

1

s′
) , as s′ →∞ , (3.18)

where g(x) is also independent of s′. If we can approximate g(x) we can also ap-

proximate u(x, s) and hence v(x, s). Since function u(x, s) can be obtained only at

the boundary, no information of u(x, s) within the interior of Ω, we will explain the

heuristic approach of approximation g(x) with the incomplete u(x, s) in next section.

3.3.2.2 The First Guess of Tail

We approximate the unknown tail function by four different angles, figure 3.5,

and the final approximation is the average of four. The four different angles are

denoted by the location of light sources, where we put the sets of light source in four

different locations. The first location is called angle#1 there are N +1 light sources in

total, number N are corresponding to the subintervals (2.18), where M < N +1 light

sources are used for construct u(1), see below. For angle#2, angle#3 and angle#4,

the number of light sources are all equal to M , these are used to construct u(2), u(3)

and u(4), respectively. Angle#1, angle#2, angle#3 and angle#4 are located at the

top-right, bottom-right, top-left and bottom-left of Ω domain.

For the approximation of tail function, the term −ks′− ln 2
√

2π− 1
2
ln s′+O( 1

s′ )

in (3.18) is the natural log of the fundamental solution

ln w̃0(x, s) = ln
1

2π

√
π

2s′
e−ks′

[
1 + O(

1

s′
)
]
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Figure 3.5. Four different angles denoted by light sources.

where the term k2 is the background value. By numerical method we can get this

fundamental solution by computing the forward problem on Ω0 without inclusions

(only background value). Hence in the computation of the first guess of tail, we

replace those term by the latter forward solution. With this scheme, we modify

equation (3.18) to

u(x, s) = ln w(x, s) = ln w̃0(x, s) + g(x) . (3.19)

The approximation procedure for finding the first guess of tail , ū0(x), follows the

following steps:

(i) Compute g(n), n = 1, 2, 3, 4, in Ω which represent four different functions

g(x) of each angle. We compute them as follows, see figure 3.5.
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− For g(1), we use the left boundary of ∂Ω where x = x0 for si, i = 0, 1, . . . , M−
1. This boundary data is known for all y, that is w(x0, y, si) = ϕ(x0, y, si) is known

for all i. The function g
(1)
i (x0, y) is computed as follows

g
(1)
i (x0, y) = ln w(x0, y, si)− ln w̃0(x0, y, si) .

Then the final g(1)(x0, y) is computed by

g(1)(x0, y) =
1

M

M−1∑
j=0

g
(1)
i (x0, y).

We then use the bottom boundary of ∂Ω where y = y0 for si, i = 0, 1, . . . , M − 1.

This boundary data is known for all x, that is w(x, y0, si) = ϕ(x, y0, si) is known for

all i. The function g
(1)
i (x0, y) is computed as follows

g
(1)
i (x, y0) = ln w(x, y0, si)− ln w̃0(x, y0, si) .

Then the final g(1)(x0, y) is computed by

g(1)(x, y0) =
1

M

M−1∑
j=0

g
(1)
i (x, y0).

The required function g(1) is computed by

g(1)(x) =
1

2

[
g(1)(x0, y) + g(1)(x, y0)

]
, where x ∈ Ω . (3.20)

− For g(2), we use the left boundary of ∂Ω where x = x0 for si, i = N, N +

1, . . . , N + M − 1. This boundary data is known for all y that is w(x0, y, si) =

ϕ(x0, y, si) is known for all i. The function g
(2)
i (x0, y) is computed as follows

g
(2)
i (x0, y) = ln w(x0, y, si)− ln w̃0(x0, y, si) .

Then the final g(2)(x0, y) is computed by

g(2)(x0, y) =
1

M

N+M−1∑
j=N

g
(2)
i (x0, y).
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We then use the top boundary of ∂Ω where y = ym for si, i = N, N +1, . . . , N +M−1.

This boundary data is known for all x that is w(x, ym, si) = w(x, ym, si) is known for

all i. The function g
(2)
i (x, ym) is computed as follows

g
(2)
i (x, ym) = ln w(x, ym, si)− ln w̃0(x, ym, si) .

Then the final g(2)(x0, y) is computed by

g(2)(x, ym) =
1

M

N+M−1∑
j=N

g
(2)
i (x, ym).

The required function g(2) is computed by

g(2)(x) =
1

2

[
g(2)(x0, y) + g(2)(x, ym)

]
, where x ∈ Ω . (3.21)

− For g(3), we use the right boundary of ∂Ω where x = xn for si, i = N +

M, N + M + 1, . . . , N + 2M − 1. This boundary data is known for all y that is

w(xn, y, si) = ϕ(xn, y, si) is known for all i. The function g
(3)
i (xn, y) is computed as

follows

g
(3)
i (xn, y) = ln w(xn, y, si)− ln w̃0(xn, y, si) .

Then the final g(3)(xn, y) is computed by

g(3)(xn, y) =
1

M

N+2M−1∑
j=N+M

g
(3)
i (xn, y).

We then use the bottom boundary of ∂Ω where y = y0 for si, i = N + M, N + M +

1, . . . , N + 2M − 1. This boundary data is known for all x that is w(x, y0, si) =

ϕ(x, y0, si) is known for all i. The function g
(3)
i (xn, y) is computed as follows

g
(3)
i (x, y0) = ln w(x, y0, si)− ln w̃0(x, y0, si) .

Then the final g(3)(xn, y) is computed by

g(3)(x, y0) =
1

M

N+2M−1∑
j=N+M

g
(3)
i (x, y0).
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The required function g(3) is computed by

g(3)(x) =
1

2

[
g(3)(xn, y) + g(3)(x, y0)

]
, where x ∈ Ω . (3.22)

− For g(4), we use the left boundary of ∂Ω where x = xn for si, i = N +

2M, N + 2M + 1, . . . , N + 3M − 1. This boundary data is known for all y that is

w(xn, y, si) = ϕ(xn, y, si) is known for all i. The function g
(4)
i (xn, y) is computed as

follows

g
(4)
i (xn, y) = ln w(xn, y, si)− ln w̃0(xn, y, si) .

Then the final g(4)(xn, y) is computed by

g(4)(xn, y) =
1

M

N+3M−1∑
j=N+2M

g
(4)
i (xn, y).

We then use the top boundary of ∂Ω where y = ym for si, i = N,N +2M +1, . . . , N +

3M−1. This boundary data is known for all x that is w(x, si) = ϕ(x, ym, si) is known

for all i. The function g
(4)
i (x, ym) is computed as follows

g
(4)
i (x, ym) = ln w(x, ym, si)− ln w̃0(x, ym, si) .

Then the final g(4)(xn, y) is computed by

g(4)(x, ym) =
1

M

N+3M−1∑
j=N+2M

g
(4)
i (x, ym).

The required function g(4) is computed by

g(4)(x) =
1

2

[
g(4)(xn, y) + g(4)(x, ym)

]
, where x ∈ Ω . (3.23)
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(ii) Once we know g(n), n = 1, 2, 3, 4, we compute u(n), n = 1, 2, 3, 4, which

represent the first guess of tail from each angle. We compute them by

u(1)(x) = ln w̃0(x, s0) + g(1)(x)

u(2)(x) = ln w̃0(x, sN) + g(2)(x)

u(3)(x) = ln w̃0(x, sN+M) + g(3)(x)

u(4)(x) = ln w̃0(x, sN+2M) + g(4)(x)

on Ω where s0, sN , sN+M and sN+2M are the farthest light source location of each

angle. Then we compute function w(i)(x) = exp
(
u(i)(x)

)
, i = 1, 2, 3, 4 and solve for

a(i) from the equation

∆w(i)(x)− a(i)(x)w(i)(x) = 0

by the weak form of FEM. Let η be the test function. Multiplying both side of above

equation by η and integrating over Ω. We obtain

∫

Ω

η∆w(i) dx−
∫

Ω

ηa(i)w(i) dx = 0
∫

∂Ω

η(~n · ∇w(i)) dx−
∫

Ω

∇η · ∇w(i) dx−
∫

Ω

ηa(i)w(i) dx = 0 .

Since there is no Robin condition on domain Ω, the first terms is dropped. We then

numerically solve the weak form of the following equation

∫

Ω

∇η · ∇w(i) dx +

∫

Ω

ηa(i)w(i) dx = 0, , a(i) = k2 on ∂Ω .

(iii) After a(i), i = 1, 2, 3, 4 are computed, we average them to get atail by

a∗(x) =
1

4
[a(1)(x) + a(2)(x) + a(3)(x) + a(4)(x)] , where x ∈ Ω . (3.24)

Note: in iterations for improving quality of tail, subsection 3.3.2.3, we had observed

that this a∗(x) consists of a background noise, see figure 3.6(a), which make iterations
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did not give a good approximation of tail. We solve this problem by removing this

background as following. Let H1 = 1
2
max{a∗(x)− k2} in Ω. We set

a∗∗(x) =





k2 , if a∗(x) < k2 + H1

a∗(x)−H1 , otherwise
. (3.25)

Above is cutting of 50% of the portion that greater than k2, see figure 3.6(b). Then

we rescale a∗∗(x) to have the maximum height that is suitable for the iterations in

subsection 3.3.2.3 for any inclusion examples. This maximum height are numerical

found to be k2 ∗ 1.1, and we rescale it as following. Let H2 = max{a∗∗(x)− k2} in Ω

and V = k2 ∗ 0.1. We set

atail(x) = k2 + (a∗∗(x)− k2) ∗ V

H2

. (3.26)

After the rescale process, see figure 3.6(c), we solve the weak form of FEM for wtail

on Ω by

∫

Ω

∇η · ∇wtail dx +

∫

Ω

ηatailwtail dx = 0, , wtail = ϕ(x, s0) on ∂Ω .

Note that, s0 = s which is the farthest light source in our layer stripping, see section

2.2.

(iv) We compute the first guess for tails

v̄0(x) =
ū0(x)

s2 =
ln wtail

s2 , x ∈ Ω . (3.27)

This tail v̄0(x) is known as the first guess. By using v̄0(x) as a tail function for

the inverse problem, it has provided most of the information about locations of the

inclusions. These locations were reconstructed precisely. However the peak value of

the reconstructed coefficient within inclusions was too low compared to the peak of

original inclusions. Hence an iteration procedure for improving the quality of v̄0(x)

is required and is explained in the following section.
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Figure 3.6. (a) Show the distribution of a∗(x) in Ω and its cross section profile. (b)
Show the distribution of a∗∗(x) and its cross section profile. (c) Show the distribution
of atail(x) and its cross section profile.
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3.3.2.3 The Iterations for Improving Quality of Tail

An improving procedure in this section is introduced to calibrate the tail func-

tion, so that its limiting solution (when it exists) will satisfy the original diffusion

model. This involves an iterative process that enhances the reconstructed inclusion.

This idea is motivated by letting the following two diffusion equation be evaluated at

light source x0 = (B, s)

∆w̄i−1 − ai−1w̄i−1 = δ , (3.28)

∆w̄i − aiw̄i = δ . (3.29)

The difference of above two equation can be written as follows

∆pi − aipi = (ai − ai−1)w̄i−1 . (3.30)

where pi = w̄i − w̄i−1. The purpose of this iteration scheme is to improve the quality

of w(x, s). We expecting that w̄i(x, s) will converge to a value close to the exact

value w∗(x, s) discussed in subsection 2.3.1 resulting in the tail function u∞(x) which

is close to u∗(x, s). The iteration process is done by the following procedure:

Step 0. The iteration is initiated with w̄0(x, s) being the solution of the uniform

background a0(x) = k2 on Ω and a1(x) obtained from a1(x) = max{atail(x), k2}.
Step 1. We solve equation (3.30) by setting i = 1 using the weak form of FEM.

Let η be the test function. Multiplying both side of the equation (3.30) by η and

integrating over Ω. We obtain

∫

Ω

η∆p1 dx−
∫

Ω

ηa1p1 dx =

∫

Ω

η(a1 − a0)w̄0 dx
∫

∂Ω

η(~n · ∇p1) dx−
∫

Ω

∇η · ∇p1 dx−
∫

Ω

ηa1p1 dx =

∫

Ω

η(a1 − a0)w̄0 dx .
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Since there is homogeneous Robin condition on domain Ω, the first terms is dropped.

We then numerically solve the weak form of the following equation

∫

Ω

∇η · ∇p1 dx +

∫

Ω

ηa1p1 dx = −
∫

Ω

η(a1 − a0)w̄0 dx . (3.31)

The Dirichlet condition in the above equation is p1(x, s) = ϕ(x, s)− w̄0(x, s) on ∂Ω.

Once we have p1 on Ω we can compute w̄1(x, s) = p1(x, s) + w̄0(x, s) on Ω. And then

compute ā(x) from w̄1(x) using the similar weak form as above equation (3.31) except

the right hand side is zero as follows

∫

Ω

∇η · ∇w̄1 dx +

∫

Ω

ηāw̄1 dx = 0 . (3.32)

with Dirichlet condition ā(x) = k2 on ∂Ω. Now move to step 2 by setting a2(x) =

max{ā(x), k2}.
Step 2 : This step is similar to step 1, but the Dirichlet condition of solving

(3.30) is different. We solve equation (3.30) by setting i = 2 using the weak form

∫

Ω

∇η · ∇p2 dx +

∫

Ω

ηa2p2 dx =

∫

Ω

η(a2 − a1)w̄1 dx . (3.33)

The Dirichlet condition in the above equation is p2(x, s) = 0 on ∂Ω. This is because

w̄i(x, s) for i > 0 is the solution of non uniform background, we use w̄i(x, s) = ϕ(x, s)

on ∂Ω for i > 0. Once we have p2 on Ω we compute w2(x, s) = p2(x, s) + w̄1(x, s) on

Ω. And then compute ā(x) using the weak form

∫

Ω

∇η · ∇w2 dx +

∫

Ω

ηāw2 dx = 0 . (3.34)

with Dirichlet condition ā(x) = k2 on ∂Ω. Now we move to step i > 2 by setting

a3(x) = max{ā(x), k2}.
Step i : This step is similar to step 2, note that ai−1 is obtained from step i− 1.

We solve equation (3.30) by setting i = n using the weak form

∫

Ω

∇η · ∇pi dx +

∫

Ω

ηaipi dx =

∫

Ω

η(ai − ai−1)w̄i−1 dx . (3.35)
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The Dirichlet condition in the above equation is pi(x, s) = 0 on ∂Ω. Once we have pi

on Ω we compute w̄i(x, s) = pi(x, s) + w̄i−1(x, s) on Ω. And then compute ā(x) using

the weak form ∫

Ω

∇η · ∇w̄i dx +

∫

Ω

ηāw̄i dx = 0 . (3.36)

with dirichlet condition ā(x) = k2 on ∂Ω. Now we move to the general step i + 1 by

setting ai+1(x) = max{ā(x), k2}.
From the above iteration process, the numerical implementation shows that

ai(x) > 0 for all i. In fact, the contrast of ai(x) improves as i increases. This also

results in the improvement of w̄i(x, s) as i increases.

To accelerate convergence, we slightly modify the iterative scheme in equation

(3.30) by the term λi(x) where

λi(x) = exp[Lei−1
(
ai(x)− ai−1(x)

)2
] .

Now equation becomes

∆pi − aipi = λi(ai − ai−1)w̄i−1 . (3.37)

With the introduction of λi(x) for acceleration of convergence, the right hand side

of equation (3.37) become an exponential function. The value L is used to control

the growth of this exponential function. Furthermore, in our numerical computation

we also remove background noise, equation (3.25), and rescale, equation (3.26), a1(x)

before step 1 to have a certain peak corresponding to L which is set to 7.5 in our

numerical computation. One benefit we obtain is that this value L and certain value

peak of a1(x) are common for all cases with the same background value. That means

in the actual application, we need only single calibration of L for each background

value.



54

As i increases in the iteration, we control the growth of ai(x) by computing the

forward problem

∆ŵ(x, s)− aiŵ(x, s) = δ(x− x0) ,x0 = (B, s) , x ∈ Ω0 (3.38)

with the same FEM formulation and condition as equation (3.4). And then we com-

pare ŵ(x, s) with ϕ(x, s) at the middle point on the left boundary of Ω, say point

xmid. That is, if the peak value of ai(x) is high enough to make the light intensity

of ŵ(x, s) at xmid less than ϕ(x, s), ϕ(xmid, s) − ŵ(xmid, s) > 0, we change the λi

to be λi = eM−i where M is the number of iteration before we meet this criterion.

With this scheme of iteration, we had observed in our numerical implementation that

before ϕ(xmid, s) − ŵ(xmid, s) > 0, the light intensity w̄i(x, s) is closed to the actual

w∗(x, s). The second choice of λi = eM−i will force the iteration to converge. The

introduction of λi makes equations (3.31), (3.33) and (3.35) change to (3.39),

∫

Ω

∇η · ∇pi dx +

∫

Ω

ηaipi dx =

∫

Ω

ηλi(ai − ai−1)w̄i−1 dx , (3.39)

where i = 1, 2, . . . . After i ≥ M , we iterate until the process converges, i.e., we stop

iteration at i = i1, where i1 is defined via

‖āi1(x)− āi1−1(x)‖L2(Ω)

‖āi1−1(x)‖L2(Ω)

< ε (3.40)

for a small ε > 0 of our choice.

To obtain more precise approximation of tail, we repeat above procedure with

respect to light source sN which is the farthest light source located on the bottom-

right of Ω domain. (the latter iteration is computed with respect to s = s0.) Let’s

denote that this iteration give ãi2(x) as a results from same equation as equation

(3.39). Then we compute function w̃ by

∫

Ω

∇η · ∇w̄ dx +

∫

Ω

η

(
āi1 + ãi2

2

)
w̄ dx = 0 . (3.41)



55

5 6 7 8 9 10
5

6

7

8

9

10

11

12

13

14

15

0.0253
0.0235
0.0216
0.0198
0.0180
0.0162
0.0144
0.0125
0.0107
0.0089
0.0071
0.0053
0.0035
0.0016

-0.0002
-0.0020
-0.0038
-0.0056
-0.0075
-0.0093
-0.0111
-0.0129
-0.0147

x

y

v

5 6 7 8 9 10
5

6

7

8

9

10

11

12

13

14

15

0.0253
0.0235
0.0216
0.0198
0.0180
0.0162
0.0144
0.0125
0.0107
0.0089
0.0071
0.0053
0.0035
0.0016

-0.0002
-0.0020
-0.0038
-0.0056
-0.0075
-0.0093
-0.0111
-0.0129
-0.0147

x

y

v

(a) (b)

Figure 3.7. Comparison between (a) actual tail, v(x, s) and (b) approximated tail,
v∞(x).

Above equation is the weak form of FEM, see equation (??). The boundary condition

is w̃(x) = ϕ0(x) on ∂Ω which is the boundary with respect to s = s0 where s is the

farthest light source in the inverse problem. Now we can compute the tail function

by

v∞(x) =
ln w̄

s2 (3.42)

Then we proceed by calculating the functions qn in the following section.

Remark. Unfortunately we cannot yet prove that functions ai(x) > 0. There-

fore, we cannot prove analytically neither the existence of solutions of the above

Dirichlet boundary value problems for function pi(x, s) nor the positivity of function

w̄i(x, s). Neither can we analytically prove that functions w̄i(x, s) converge, nor that

our tail u∞(x) is close to the actual u∗(x). Nevertheless, we observe all these “nice”



56

properties in our computations. Figure 3.7 displays the comparison of graphs of tails

side by side, and shows there is little visible difference.

3.3.3 Numerical Computing of Layer Stripping

All the detail of Layer Stripping was given in section 2.2. In this section we focus

on solving equation (2.29) for function qs
n (x). Theorem 2.3.2 proves that the algorithm

in subsection 2.2.3 will converge for all s ∈ [sn, sn−1). Hence, to simplify the numerical

computing of layer stripping, we can set parameter s of qs
n (x) to be s = sn. By

considering equations (2.24) and (2.25), at s = sn we have qs
n (x) = qn(x) = q(x, sn).

We then solve the equation

∆qn(x)− An(∇qn)2 −Bn∇qn∇qn−1 − Cn∇qn∇Tn

= Dn∆qn−1(x)+En∆Tn−Fn(∇qn−1)
2−Gn∇qn−1∇Tn−Hn(∇Tn)2 (3.43)

with the boundary condition qn(x) = ψn(x) = ψ(x, sn) on ∂Ω.

Actually, the formation of equation (3.43) above is for the purpose of proving

theorem 2.3.2. In our numerical implementation, we solve the equivalent equation

but in a simpler expression as discussed in the following. First we rewrite equation

(2.15) as

∆q + 2s2∇q ·
(
−

∫ s

s

∇q dτ +∇v̄

)
+ 4s

(
−

∫ s

s

∇q dτ +∇v̄

)2

+
2

s

(
−

∫ s

s

∆q dτ + ∆v̄

)
= 0 . (3.44)

By discretizing the light souce, s, into

s = s0 > s1 > · · · > sN−1 > sN = s, si − si−1 = h,
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where in above statement, h is negative value, unlike section 2.2. With qn(x) =

q(x, sn), we represent the integral term in equation (3.44) by Trapezoidal rule as

follows

−
∫ s

sn

q dτ = −
∫ s0

sn

q dτ :=
1

2
q0 · h +

n−1∑
i=1

qi · h +
1

2
qn · h , n = 1, 2, . . . , N − 1 .

Hence, for each light source we have the following equations:

• for n = 0: the integral term will become zero, hence from equation (3.44)

∆q0 + 2s2
0∇q0 · ∇v∞ + 4s0∇v∞ · ∇v∞ +

2

s0

∆v∞ = 0 . (3.45)

• for n = 1, 2, . . . , N−1: Applying the Trapezoidal rule to equation (3.44) gives

∆qn + 2s2
n∇qn ·

(
1

2
q0 · h +

n−1∑
i=1

qi · h +
1

2
qn · h +∇v∞

)

+4sn

(
1

2
q0 · h +

n−1∑
i=1

qi · h +
1

2
qn · h +∇v∞

)2

+
2

sn

(
1

2
q0 · h +

n−1∑
i=1

qi · h +
1

2
qn · h + ∆v∞

)
= 0 . (3.46)

Note that in the above equations (3.45) and (3.46), for numerical implementa-

tion purposes, we replace the tail function v̄ with v∞. Now, let

Tn = q0 · h + 2
n−1∑
i=1

qi · h + 2∇v∞ , (3.47)

and note that this Tn is different from Tn in section 2.2. Substituting the latter into

equation (3.46) and simplifying, we have

∆qn+s2
n∇qn·(∇qn · h +∇Tn)+sn (∇qn · h +∇Tn)2+

1

sn

(∆qn · h + ∆Tn) = 0 . (3.48)

We distribute all power terms in (3.48) and simplify again to obtain

(
1 +

h

sn

)
∆qn +

(
s2

nh + snh
2
)
∇qn · ∇qn
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+
(
s2

n + 2snh
)
∇qn · ∇Tn + sn∇Tn · ∇Tn +

1

sn

∆Tn = 0 (3.49)

The computation of equations (3.45) and (3.49) are done by weak form of FEM. Let

η be the test function. Multiplying both side of equations (3.45) and (3.49) by η and

integrating over Ω. We obtain:

• for n = 0:

−A0

∫

Ω

η∆q0 dΩ + C0

∫

Ω

η∇q0 · ∇T0 dΩ = D0

∫

Ω

η∇T0 · ∇T0 dΩ + E0

∫

Ω

η∆T0 dΩ

Integrating by part gives

−A0

(∫

∂Ω

η(~n · ∇q0) dΩ−
∫

Ω

∇η · ∇q0 dΩ

)
+ C0

∫

Ω

η∇q0 · ∇T0 dΩ

= D0

∫

Ω

η∇T0 · ∇T0 dΩ + E0

∫

Ω

η∆T0 dΩ .

Since we have only the Dirichlet BC, then

A0

∫

Ω

∇η · ∇q0 dΩ + C0

∫

Ω

η∇q0 · ∇T0 dΩ

= D0

∫

Ω

η∇T0 · ∇T0 dΩ + E0

∫

Ω

η∆T0 dΩ . (3.50)

• for n = 1, 2, . . . , N − 1

−An

∫

Ω

η∆qn dΩ + Bn

∫

Ω

η∇qn · ∇qn dΩ + Cn

∫

Ω

η∇qn · ∇Tn dΩ

= Dn

∫

Ω

η∇Tn · ∇Tn dΩ + En

∫

Ω

η∆Tn dΩ

Integrating by part gives

−An

(∫

∂Ω

η(~n · ∇qn) dΩ−
∫

Ω

∇η · ∇qn dΩ

)

+Bn

∫

Ω

η∇qn · ∇qn dΩ + Cn

∫

Ω

η∇qn · ∇Tn dΩ

= Dn

∫

Ω

η∇Tn · ∇Tn dΩ + En

∫

Ω

η∆Tn dΩ .
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Since we have only the Dirichlet BC, we then have

An

∫

Ω

∇η · ∇qn dΩ + Bn

∫

Ω

η∇qn · ∇qn dΩ + Cn

∫

Ω

η∇qn · ∇Tn dΩ

= Dn

∫

Ω

η∇Tn · ∇Tn dΩ + En

∫

Ω

η∆Tn dΩ . (3.51)

The new notation in equations (3.50) and (3.51) are defined below

T0 = 2v∞ , Tn = q0 · h + 2
n−1∑
i=2

qi · h + 2v∞ , n = 1, . . . , N − 1

∫

A0 = −1 , An = −
(

1 +
h

sn

)
, n = 1, . . . , N − 1

∫

B0 = 0 , Bn =
(
s2

nh + snh
2
)

, n = 1, . . . , N − 1

∫

C0 = s2
0 , Cn =

(
s2

n + 2snh
)

, n = 1, . . . , N − 1

∫

D0 = −s0 , Dn = −sn , n = 1, . . . , N − 1

∫

E0 = − 1

s0

, En = − 1

sn

, n = 1, . . . , N − 1 .

∫

The Dirichlet boundary condition for solving equation (3.50) and (3.51) is qn(x) =

ψn(x) on Ω where ψn(x) is defined in equation (3.6).

Equations (3.50) and (3.51) which we derived above are used to solve the al-

gorithm in section 2.2.3. Equation (3.50) is used to solve equation (2.33). Equation

(3.51) is for solving equations (2.35) and (2.36) where qs
i,k are evaluated at s = si,

i = 1, . . . , N − 1, hence we solve for qi,k. The convergence criterion for

lim
k→∞

‖qi,k − qi,k−1‖L2(Ω) = 0 , i = 1, . . . N − 1

is replaced by

‖qi,k − qi,k−1‖L2(Ω)

‖qi,k‖L2(Ω)

< ε (3.52)
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for a small ε > 0 of our choice same as inequality (3.40). And when the above criterion

is met, we set qi = qi,k.

Once qn’s are obtained for all N − 1, we use the backward substitution in next

section to obtain the target coefficient a(x).

3.3.4 Backward Substitution

Suppose that function {qi}N−1
i=0 are approximated via solving problems (3.50)

and (3.51) with the boundary condition in (3.6). First we compute function un(x) =

u(x, sn)

un(x) =





s2
0v∞(x) , n = 0∫

s2
n

[
−h

2

(
q0(x) + 2

n−1∑
j=1

qj(x) + qn(x)

)
+ v∞(x)

]
, n ≥ 1

, (3.53)

Then we compute function wn(x) = w(x, sn) by

wn(x) = exp[un(x)] . (3.54)

Next, we use weak form of equation

∆wn(x)− an(x)wn(x) = 0 , x ∈ Ω

by the similar FEM formulation as in (??)

∫

Ω

∇η · ∇wn dx +

∫

Ω

ηanwn dx = 0 . (3.55)

where an(x) = k2 on ∂Ω to obtain the coefficient an(x). And once an is obtained for

all n = 0, 1, . . . , N − 1, we compute the target coefficient a(x) by

a(x) =
1

N

N−1∑
n=0

an(x) . (3.56)



CHAPTER 4

NUMERICAL IMPLEMENTATIONS AND RESULTS

We have performed numerical experiments in 2D on several cases of reconstruc-

tions using the numerical methods discussed in chapter 3. We have chosen the range

of geometrical parameters of the rectangle A, which is typical for optical imaging of

small animals and have chosen the range of optical parameters typical for biological

tissues [1][11][30].

4.1 Details of Numerical Implementations

4.1.1 Domains

In our numerical simulation, according to our numerical method, we need to do

the computing in three different types of domain, i.e., Ω0, Ω and A. We define these

three domains in the following, see also figure 4.1, and use them for all examples.

− Domain A, the domain of interest, is defined as

A = {(x) = (x, y) : 6cm < x < 9cm, 6cm < y < 14cm} .

− Domain Ω, the computing domain, is defined as

Ω = {(x) = (x, y) : 5cm < x < 10cm, 5cm < y < 15cm} .

− Domain Ω0, the simulating domain, is defined as

Ω0 = {(x) = (x, y) : 0cm < x < 15cm, 0cm < y < 20cm} .

Dimension of these three domains are clearly defined, the relation of them is A ⊂
Ω ⊂ Ω0. Our simulations are based on the assumptions, see also figure 4.2,that

61
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Figure 4.1. The dimension of Ω0, Ω and A.

(i) We assume that we know the background value of coefficients µ′s and µa

inside domain of interested, A, but for the inclusions we don’t know anything about

them, i.e., location and shape.

(ii) For the domain Ω0 − A, we assume that we can fill in the matching fluid

where its coefficients µ′s and µa have the same properties as the background of A.

(iii) Light sources are merged into the matching fluid in Ω0 − A where their

locations will be defined later in this chapter.

(iv) We can use the CCD Camera to measure the light intensity on ∂A.
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Figure 4.2. Schematic sketch of physical setting of our assumption.
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4.1.2 Light Sources

The light sources are located in several positions x0 = (12cm, si) along the left

and x0 = (3cm, si) along the right hand side of the rectangle A (in domain Ω0). In our

simulations, we have used an ideal light source modeled by the function −δ(x − x0)

in the 2D case of (1.1). In numerical simulation δ(x − x0) = cη(x), where η is the

finite element at the location and c is the scaling constant to ensure that the integral

of δ in Ω0 equal one.

In our setting, we use totally fourteen, 14, light sources to generate the mea-

surement. Let’s denote si as a representation of light source. The measurement data

from light sources si, i = 0, 1, 2, 3, 4 located above and right of A, first three, 3, are

used for computation of tail from angle#1 and all five, 5, are used for the inverse

problem. The light sources si, i = 5, 6, 7 located below and right of A are use for

computation of tail from angle#2. The light sources si, i = 8, 9, 10 located above and

left of A are use for computation of tail from angle#3. And lastly, the light sources

si, i = 11, 12, 13 located below and left of A are use for computation of tail from

angle#4, see figure 4.2. Note that, only light sources si, i = 0, 1, 2, 3, 4, are use for

inverse problem, parameter B in x0 = (B, s) is the fixed location of x for these light

sources.

The value of si’s are numerically show as follows

s0 = 17cm, si = si−1 − 0.2cm, i = 1, 2, 3, 4 ,

s5 = 3cm, si = si−1 + 0.2cm, i = 6, 7 ,

s8 = 17cm, si = si−1 − 0.2cm, i = 9, 10 and

s11 = 3cm, si = si−1 + 0.2cm, i = 12, 13 ,

where x0 = (B, si), i = 0, . . . , 7 for light source on the right of A and x0 = (B̃, si),

i = 8, . . . , 13 for light source on the left of A. We set B = 12cm and B̃ = 3cm.
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Although si’s shown above are not too large to satisfies the condition we men-

tion in subsection 3.3.2 but our numerical results have shown that the tail-function

generated by using those values of si are approximated well, this reflects from the

well reconstruction of a(x). In fact, these value of si’s cannot be set too large because

the limitation of the size of space and the location of light source which cannot be

located too far from A. Another reason is about the background value in Ω0. If

the background value is large (which is our case), then si need to be close to to the

domain of interest A, otherwise the light intensity on the boundary of A is too small.

The number of total light sources for inverse problem in our numerical imple-

mentation is five, hence N = 4, see subintervals (2.18). Hence, we have computed

four functions qn, see subsection 3.3.3. An increase of the number N did not result

in significant improvements of results.

4.1.3 CCD Camera (Charge-Coupled Device Camera)

The receivers, which mimic the so-called CCD camera, are located around do-

main A. A CCD camera is an image sensor, consisting of an integrated circuit con-

taining an array of linked, or coupled, light-sensitive capacitors. A typical CCD

camera can take up to 512 × 512 data points simultaneously, which will provide an

adequate amount of data for our reconstruction.

The measurements of light intensity on ∂A are taken when the light source si

is turned on, only one light source can be turned on at a time. That means, the

measurement for si is kept in ϕ̄(x, si), x ∈ ∂A. For each detector position on the

CCD camera, we introduce the random noise as the random process with respect

to the detector locations, this noise was added to the measurement data from the

forward problem. After we add noise, the measurement with noise will be kept in

ϕ̃(x, si), x ∈ ∂A, see subsection 3.3.1 for the corresponding of this boundary data.
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(a) (b)

Figure 4.3. (a) Serendipity type of rectangular elements. (b) Quadratic triangular
element.

Please note that, actually our measurement data are from the simulations where we

compute the forward problem in domain Ω0.

4.1.4 The Finite Element Mesh

In this study, we use a serendipity type of rectangular elements, see figure 4.3(a).

The reason that we use rectangular element is because of the tail problem. According

to equations (3.20), (3.21), (3.22) and (3.23), the element type should be rectangular.

The serendipity type of rectangular element is selected because, bilinear type is not

good for the high order equation and the other rectangular types with more point

having a smooth high derivative will take too much time for computation.

The detail of finite element mesh are required to be taken into account of the

calculation. We know that the dense-grids usually give better results than the coarse-

grid but the cost of computational time is another issue that we have to consider. We

discuss these details in subsection 5.2.1.

First we show in our simulation the computation in dense-grid, total of 150×200,

x, y direction, rectangular elements of Ω0 is used for forward calculations, see figure

4.4. We test our reconstruction method by using very dense grid for all calculation

(see Chapter 5 for discussion of grid size). The total of 30× 80 rectangular elements
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Figure 4.4. Domain mesh of Ω0 (dense grid).
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Figure 4.5. Domain mesh of A (dense grid).
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Figure 4.6. Domain mesh of Ω (dense grid).
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Figure 4.7. Domain mesh of Ω0 −A (dense grid).
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is used for the domain of interest A, see figure 4.5, and 50×100 rectangular elements

is used for computing domain Ω, see figure 4.6. Note that both A and Ω are sub

domain of Ω0. The number of measurement points on left, right, top and bottom

of rectangular A are 161, 161, 61 and 61 respectively. The measurement points at

the corners of rectangular are shared by each sides and therefore the total number of

independent measuring points is 440.

There is another domain in our computation which is Ω0 − A, see figure 4.7.

This domain is used for the exterior forward problem. It has the same grid size as Ω0,

there are totally 27,600 elements in (Ω0 − A). The domain for computing equation

(3.38) in subsection 3.3.2.3, the iterations for improving quality of tail, is also Ω0.

4.1.5 Forward Problem

In our reconstruction simulation, we use the solution of the forward problem to

generate the measurement data for the inverse problem, add noise to the measurement

data, and reconstruct the absorption coefficient a(x) in A. Our new approach which

different from [6][7][8] is that the domain A is not our basic computational domain

for our inverse calculations.

For the forward problem, we calculated the solution of the diffusion equation

∇ · [D(x)∇w(x, s)]− µaw(x, s) = −δ(x− x0) , x ∈ Ω0 (4.1)

with the conventional boundary condition at the infinity

lim
|x|→∞

w(x, s) = 0 . (4.2)

Note that parameter s represents x0 = (B, s) where B = 3cm or 12cm are constants in

our numerical implementation. In our simulation, the setting of coefficients µ′s and µa

are according to what we mention in section 1.3. The reduced scattering coefficient µ′s
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are assumed to be constant. By typical value for biological tissues [1][11][30], we set

the the diffusion coefficient D(x) = 1/(3µ′s(x)) = 0.05̇cm, where optical coefficients

µ′s(x) = 6.0 and µa(x) = 0.06cm−1 at all grid except of the inclusions, and in inclusions

µa ranges from 0.06 to 0.18cm−1. The maximum inclusion/background contrast for

µa is 3:1 in our computations. For this case, we let a(x) = 3(µ′sµa)(x). Hence, instead

of solving (4.1) we solve equation (1.1) with condition (1.2).

To simulate the measurement data, we calculate the forward problem with

Robin boundary conditions at ∂Ω0, given the distribution of the absorption coeffi-

cients. And assign the simulated measurement with noise to the boundary of A.

4.1.6 Exterior Forward Problem

The purpose of exterior forward problem is to replace our previous technique

[6][7][8] in using the least-square polynomial to filter the noise in the measurement

data. We compute equation (1.1) with condition (1.2) by assign dirichlet boundary

which is measurement data with noise on ∂A and use Robin condition on ∂Ω0. This

technique will provide us the smooth and continuous solution within domain of com-

putation, i.e. area between ∂A and ∂Ω0 where ∂Ω ∈ Ω0 − A. From our numerical

observation, we has noticed that the distance between ∂A and ∂Ω is relevant for the

smoothness, i.e., the longer distance and the finer grid, the more smoothness on ∂Ω.

But we have also noticed that the longer the distance will give the worse quality of

tail-function. Hence with this tradeoff, we select this distance to be 1cm on each side

of rectangular and use the fine grids between ∂A and ∂Ω. This fine grid consists of

100 elements per 1cm2 in Ω0 −A, see figure 4.7.

The approximation error of the solution of the exterior forward problem against

the full forward problem on ∂Ω can be found in tables 4.1, 4.2 and see figure 4.8(b)
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Figure 4.8. (a) Forward solution versus forward solution + 2% noise on left boundary
of A. (b) Forward solution versus exterior forward solution on left boundary of Ω.
(c) Expansion of figure (a) for area inside the box. (d) Expansion of figure (b) for
area inside the box.

for the visual comparison of forward solution versus exterior forward solution on left

boundary of Ω.

The Relative Root-Mean-Squared-Error (RMSE), Relative Absolute-Mean-Error

(AME) and Relative Mean-Error (ME) are calculated as follows

RMSE =

√∑N(node)

k=1 (wk − ŵk)2

N (node) maxk |wk| , AME =

∑N(node)

k=1 |wk − ŵk|
N (node) maxk |wk| ,

ME =

∑N(node)

k=1 (wk − ŵk)

N (node) maxk |wk| . (4.3)
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where wk and ŵk represent the solution at corresponding points of the full and exterior

forward problem on ∂Ω, respectively. N (node) is the total number of nodes on ∂Ω.

RMSE measures better these larger differences, MAE is more indicative of average

difference and ME compares with mean value difference.

Table 4.1. Errors of the exterior forward problem versus the full forward problem on
∂Ω of example #1, these are from 2% noise data

LIGHT# RMSE AME ME
0 0.010811944064180 0.113783524730592 -0.059132289694731
1 0.009962963939674 0.104101115455916 -0.054046018358486
2 0.009279277734762 0.095243911278493 -0.049798762431824
3 0.008717856751564 0.086997793330275 -0.046267735122905
4 0.008239909575044 0.079331705596536 -0.043301401012661

Table 4.2. Errors of the exterior forward problem versus the full forward problem on
∂Ω of example #2, these are from 2% noise data

LIGHT# RMSE AME ME
0 0.010812290171345 0.113800827755339 -0.059121912651744
1 0.009963693619538 0.104125490127432 -0.054040469590143
2 0.009279664383769 0.095261564648831 -0.049793150524432
3 0.008718135743947 0.087012215475611 -0.046259640974663
4 0.008239903972777 0.079339044475956 -0.043290319044263

This shows that our scheme of filtering is reasonable and that data on ∂Ω can

be use for the reconstruction process.

4.1.7 Reconstruction (Inverse Problem)

This process simply follows the one we discuss in 3.2.2 for computing tail and

3.2.3 for the layer stripping. Note that, we use light sources located on 4 different
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angles (3 lights source on each angle), see figure 4.2, for computing tail and we has

been using 5 light sources (including 3 of tail) on top right of Ω for computing the

layer stripping. Since five light source are used in the backward substitution (3.3.4),

we will obtain four reconstructions, {ai(x)}3
i=0. After we average to get a(x), the

coefficient µa can be computed by, see equation (1.5),

µa(x) = a(x)/(3µ′s)(x) .

4.2 Numerical Results

In the following numerical examples, we illustrate the results in a few different

shapes of the two inclusions. Our method has shown its success in dealing with those

cases.

The convergence criterion for function ai(x) in the condition (3.40) in the iter-

ation of improving quality of tail, subsection 3.3.2 is

‖ai1(x)− ai1−1(x)‖
‖ai1−1(x)‖ ≡

√∑N(node)

j=1 (ai1,j − ai1−1,j)2

N (node) maxj |ai1−1,j| < ε (4.4)

where N (node) is number of finite element node in Ω domain. In all examples, ε = 10−5.

The convergence criterion for function qi,k in the condition (3.52) in Numerical

Computing of Layer stripping, subsection 3.3.3 is

‖qi,k − qi,k−1‖
‖qi,k‖ ≡

√∑N(node)

j=1 (qi,k,j − qi,k−1,j)2

N (node) maxj |qi,k−1,j| < ε (4.5)

where N (node) is number of finite element node in Ω domain In all examples, ε = 10−5.

In all example, we assume µ′s being a constant of value 6.0cm−1. The only

distribution at inclusion are µa and a(x) = (3µ′sµa)(x).
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4.2.1 Examples #1

Inclusions are two circles with a radius of 0.65cm, with their center are (7.5cm, 7.5cm)

and (7.5cm, 12.5cm). The coefficient is µa(x) = 0.18 inside inclusions and µa(x) =

0.06 outside of inclusions. Hence coefficient a(x) = 3.24 inside of inclusions and

a(x) = 1.08 outside of inclusions.

Total number of iterations for improving tail, subsection 3.3.2.3, are shown in

table 4.3.

Table 4.3. Number of iterations for improving tail of examples #1

With respect to s0 With respect to sN

13 13

Figures 4.9(a) displays the original distribution and their 1D cross section. Fig-

ure 4.9(b) shows reconstruction from the noisy data and its 1D cross section, see

additional figure in appendix B.1.

The relative errors of the reconstruction which are Root-Mean-Square-Error

(RMSE), Absolute-Mean-Error (AME) and Relative Mean-Error (ME) are calculated

as follows

RMSE =

√∑N(node)

k=1 (ak − âk)2

N (node) maxk |ak| , AME =

∑N(node)

k=1 |ak − âk|
N (node) maxk |ak| ,

ME =

∑N(node)

k=1 (ak − âk)

N (node) maxk |ak| . (4.6)

Note that {a1, . . . , aN(node)} are the original distribution data in Ω and {â1, . . . , âNnode}
are its approximation, the values of them are taken at each of the grid points of the

computation domain Ω, N (node) is the total number of nodes in domain Ω.
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Figure 4.9. (a) Displays the original coefficient a(x) of example #1. (b) Shows its
reconstruction result with 2% noise.
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The relative errors of the reconstruction of this examples set are shown in

following table.

Table 4.4. Relative errors of reconstructions of examples #1

RMSE AME ME
0.131168841277846 0.069546136198822 -0.003235976174744

4.2.2 Examples #2

Inclusions are two circles with a radius of 0.65cm, with their center are (7.5cm, 7.5cm)

and (7.5cm, 12.5cm). The coefficient µa(x) is

µa(x) =





max[0.3 cos d̃(x)(1 + 0.01%2(x)), 0.06] , inside inclusions

0.06 , outside of inclusions
, (4.7)

where d̃(x) = d(x)(1+0.1%1(x)), d(x) is the minimum to center of each of circle radius

r defining the inclusions. The inclusions also have random shape within the distance

d̃(x). Function %1 and %2 are a realization of a white noise valued between [−1, 1].

Hence coefficient a(x) ∈ [1.08, 3.24 + 1%] inside of inclusions and a(x) = 1.08 outside

of inclusions. The random pattern is introduced to test the ability of our method to

handle complex shapes.

Total number of iterations for improving tail, subsection 3.3.2.3, are show in

table 4.5.

Table 4.5. Number of iterations for improving tail of examples #2

With respect to s0 With respect to sN

11 11
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Figures 4.10(a) displays the original distribution and their 1D cross section.

Figure 4.10(b) shows reconstruction from the noisy data and its 1D cross section, see

additional figure in appendix B.2.

The relative errors of the reconstruction are as follows

Table 4.6. Relative errors of reconstructions in examples #2

RMSE AME ME
0.093793827273663 0.046578415964705 -0.002205327187045
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Figure 4.10. (a) Displays the original coefficient a(x) of example #2. (b) Shows its
reconstruction result with 2% noise.



CHAPTER 5

CONCLUSIONS AND DISCUSSION

5.1 Conclusions

Our numerical experiments indicated that this method, globally convergent re-

construction (GCR), is quite stable. Computation results show a good performance

for a realistic range of parameters. This method is particularly useful for recon-

struction of the interesting domain of rectangular shape. It is also a useful tool for

NIR reconstruction of the range of optical parameters typical for biological tissues

[1][11][30]. It is also can be applied to an application include medical optical imaging,

imaging of land mines via electrical impedance tomography and image of military

targets through smogs and flames using lasers.

Our numerical results suggest that at most five measurements of light intensity

at ∂A are sufficient to obtain a good quality reconstructed image. This is another

advantage of this GCR method. We expected that an increase in measurements would

lead to the more stable or regularized reconstructions for these ill-posed problems.

However, our numerical experiments did not confirm that.

The major difficulty in our case is to figure out the tail-function. By using the

transformation in equation (2.14) we obtain an approximation of tail as close as we

want then improve the tail-function by using more light sources located on different

angles and using iterations to improve quality of tail. The numerical results confirmed

that this tail are approximated well and we get a good reconstruction image from this

tail.

80
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Figure 5.1. Sequence of 2D slices of 3D domain.

Our scheme of filtering noisy data by projecting them from ∂A to ∂Ω with

solving exterior forward problem requires the physical setting related to “matching

fluid.” It is also important that to assign mathematically optical properties outside

the domain of interest (in order to get that “matching fluid”), we do not need to

know the optical properties within domain A. Instead, we need to know the optical

properties of the background at its boundary. The latter stresses the fact that we

have a GCR rather than a locally convergent method and that our method needs far

less presumption on the distribution of optical property at the interior of the domain

A.

For the reconstruction of 3D image, we can also use our current reconstruction

version as a sequence of 2D slices of 3D domain, similar to CT scan, CT stands for

“Computational Tomography”, see figure 5.1.
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5.2 Discussions

5.2.1 Computational Time

Computation time is one consideration in designing the reconstruction algo-

rithm. Our algorithm consist of (1) forward problem, (2) forward exterior problem,

and (3) inverse problem. The computation time for forward problem are not consid-

ered in the algorithm since, in the real case, we obtain the boundary data from the

measurement of CCD Camera. The average computation time on Intel(R) Core(TM)2

Quad CPU Q6600 2.4GHz with 3.24GB of RAM (Random Access Memory) for the

result in section 4.2 are shown in table 5.1.

Table 5.1. Computation time for results in section 4.2 in dense grid

Example No. Forward exterior problem Inverse problem Total time
1 1 min. 6 sec. 15 min. 48 sec. 16 min. 54 sec.
2 1 min. 5 sec. 15 min. 54 sec. 16 min. 59 sec.

The computations take a large amount of time because they are computed in

dense-grid. We will show that our algorithm also works well in a coarse-grid. The

domain that are taking into account for the computation are Ω0, A, Ω and (Ω0−A).

Suppose that now we will consider only (1) forward exterior problem and (2) inverse

problem (assuming that the boundary data are obtain from CCD Camera). We have

changed these domains to contain a new grid which are coarse-grid. Domain Ω0 has

total of 75 × 100, x, y direction, rectangular elements. It is used for computing the

equation (3.38) in subsection 3.3.2.3. The total of 15 × 40 rectangular elements is

used for the interested domain A, see figure 5.3, and 25 × 50 rectangular elements

is used for computing domain Ω, see figure 5.4. The number of measurement points

on left, right, top and bottom of rectangular A are 81, 81, 31 and 31 respectively.
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Figure 5.2. Domain mesh of Ω0 (coarse grid).



84

5 6 7 8 9 10
5

6

7

8

9

10

11

12

13

14

15

y

x

Figure 5.3. Domain mesh of A (coarse grid).

5 6 7 8 9 10
5

6

7

8

9

10

11

12

13

14

15

y

x

Figure 5.4. Domain mesh of Ω (coarse grid).
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The measurement points at the corners of rectangular are shared by each sides and

therefore the total number of independent measuring points is 220. Domain (Ω0−A)

consists of two types of elements which are serendipity type of rectangular element and

quadratic triangular element, see figure 4.3. The reason these two types of elements

are combined, is because we need to get a smooth data of light intensity on Ω domain

when we compute the forward exterior problem. Hence the area between ∂A and ∂Ω

must be dense in order to filter the noise. And we use quadratic triangular element,

see figure 4.3(b), to gradually change the dense grid to a coarse-grid. There are totally

13,282 elements in (Ω0 −A), see figure 5.5.

Notice that the interior boundary of Ω0−A is very dense but ∂A is not. When

we assign the boundary of ∂A to ∂(Ω0 − A), we use the linear interpolation on ∂A
to assign the nodes of ∂A to the nodes on ∂(Ω0 −A) that is not correspond to ∂A.

After the exterior forward problem is computed, we assign the solution on Ω0−A to

∂Ω only at the corresponding point between Ω0 −A and ∂Ω.

The reconstruction of same examples as in section 4.2 with these coarse-grids in

the same machine are shown in figure 5.6 for example #1 and figure 5.7 for example

#2. The average computation time of using coarse-grid are shown in table 5.2. We

Table 5.2. Computation time for results in section 4.2 in coarse grid

Example No. Forward exterior problem Inverse problem Total time
1 0 min. 33 sec. 1 min. 39 sec. 2 min. 12 sec.
2 0 min. 32 sec. 1 min. 36 sec. 2 min. 8 sec.

can reduce a large amount of computation time by obtaining the similar results of

reconstruction by using coarse-grid. This show that our algorithm are stable.
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Figure 5.6. (a) The reconstruction with 2% noise of example #1 in dense-grid. (b)
The reconstruction with 2% noise of example #1 in coarse-grid.
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Figure 5.7. (a) The reconstruction with 2% noise of example #2 in dense-grid. (b)
The reconstruction with 2% noise of example #2 in coarse-grid.
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5.2.2 Noise Level

We further carried on our numerical experiments with several noise level. As

is known, when matching fluid is used in experiments, the light intensity at the

measurement side should be much lower than without matching fluid. The noise level

4%, 6%, 8% and 10% are perform in our numerical experiments, see figure 5.8, 5.9,

5.10 and 5.11, respectively, for the reconstruction results.

As shown in those figures, we can see that the peak of the inclusion may get

deteriorate, but the locations of the reconstructed inclusions are still correct.

5.2.3 Location of Inclusions

The location of inclusion may vary in different location in domain of interest A.

In this section we has shown the reconstruction of same type of inclusion as example

#1 but different locations.

Figure 5.12(a) shows the original of example #3, we had moved the top inclu-

sion a little further from the top boundary. The reconstruction, see figure 5.12(b),

shows that when the inclusion locates far from the boundary, its peak value is not

reconstructed well but the locations of the reconstructed inclusions are still correct.

Figure 5.13(a) shows the original of example #4, we had moved those two

inclusion close to each other. The reconstruction, see figure 5.13(b), shows that those

two inclusion will merge to each other where the one that is far from the boundary will

merge to the one that close to the boundary and their peak value are not reconstructed

well but the locations of the reconstructed inclusions are still correct.
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Figure 5.8. (a) The reconstruction with 4% noise of example #1 in coarse-grid. (b)
The reconstruction with 4% noise of example #2 in coarse-grid.
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Peak value of left inclusion is 1.735 and right inclusion is 2.373.
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Figure 5.9. (a) The reconstruction with 6% noise of example #1 in coarse-grid. (b)
The reconstruction with 6% noise of example #2 in coarse-grid.
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Peak value of left inclusion is 1.977 and right inclusion is 2.204.
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Figure 5.10. (a) The reconstruction with 8% noise of example #1 in coarse-grid.
(b) The reconstruction with 8% noise of example #2 in coarse-grid.
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Peak value of left inclusion is 1.624 and right inclusion is 2.615.
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Figure 5.11. (a) The reconstruction with 10% noise of example #1 in coarse-grid. (b)
The reconstruction with 10% noise of example #2 in coarse-grid.
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Peak value of left inclusion is 2.582 and right inclusion is 2.307.

(b)

Figure 5.12. (a) Displays the original coefficient a(x) of example #3. (b) Shows its
reconstruction result with 2% noise in coarse-grid.
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Peak value of left inclusion is 2.763 and right inclusion is 1.941.
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Figure 5.13. (a) Displays the original coefficient a(x) of example #4. (b) Shows its
reconstruction result with 2% noise in coarse-grid.
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In this appendix, we present the proof of theorem 2.3.2 again by showing the

derivation of each inequality.

A.1 Theorem 2.3.2

Let Ω ⊂ R2 be a convex bounded domain with the boundary ∂Ω ∈ C2+α.

Suppose that an approximation v∞ for the tail is constructed in such a way that

‖v∞‖C2+α(Ω) ≤ ξ , (A.1)

where ξ ∈ (0, 1) is a sufficient small number and that this function v∞ is used in

(2.33),(2.35) and (2.36). Denote η = max{σ, h, ξ}, σ is noise level of data and h is

step size, and suppose that the number Nh = s− s is such that

Nh <
1

20KM∗ . (A.2)

Then there exists a sufficiently small number η0 = η0(K(M∗, Ω),M∗, c, s, s) ∈ (0, 1)

such that for all η ∈ (0, η0) and for every integer n ∈ [0, N−1] the following estimates

hold

‖qs
n − q∗n‖C2+α(Ω) ≤ KM∗(20η) , (A.3)

‖qs
n‖C2+α(Ω) ≤ 2M . (A.4)

A.2 Proof of Theorem 2.3.2

This proof basically consists in estimating differences between our constructed

functions qs
n,k, and function q∗n. We are doing this using the Schauder theorem. In

this proof we assume that η ∈ (0, η0). Denote

q̃n,k(x) = qs
n,k(x)− q∗n(x) , ṽ∞(x) = v∞(x)− v̄∗(x) ,

ψ̃n(x) = ψs
n (x)− ψ∗n(x) , T̃n(x) = Tn(x)− T ∗

n(x) . (A.5)
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Note that, in this theorem ‖·‖ is equivalent to ‖·‖C2+α(Ω). The proof basically consists

in estimating these differences.

First we show the approximation of Tn, T ∗
n and T̃n. For n = 1 we have

‖T1‖ = ‖v∞‖ ≤ ξ , ‖T ∗
1 ‖ = ‖v̄∗‖ ≤ ξ and

‖T̃1‖ = ‖v∞ − v̄∗‖ ≤ ‖v∞‖+ ‖v̄∗‖ = 2ξ .

And for n ≥ 2 we have

‖Tn‖ =

∥∥∥∥∥
h

2

(
q̃0 + 2

n−2∑
j=1

q̃j + q̃n−1

)
+

h

2

(
q∗0 + 2

n−2∑
j=1

q∗j + q∗n−1

)
− v∞

∥∥∥∥∥

≤ h

n−1∑
j=0

‖q̃j‖+ h

n−1∑
j=0

∥∥q∗j
∥∥ + ‖v∞‖

≤ h

n−1∑
j=0

‖q̃j‖+ hn max
0≤j≤n−1

‖q∗j‖+ ξ

≤ h

n−1∑
j=0

‖q̃j‖+ S∗ max
0≤j≤n−1

‖q∗j‖+ ξ ,

‖T ∗
n‖ =

∥∥∥∥∥
h

2

(
q∗0 + 2

n−2∑
j=1

q∗j + q∗n−1

)
− v̄∗

∥∥∥∥∥

≤ h

n−1∑
j=0

∥∥q∗j
∥∥ + ‖v̄∗‖

≤ hn max
0≤j≤n−1

‖q∗j‖+ ξ

≤ S∗ max
0≤j≤n−1

‖q∗j‖+ ξ and

‖T̃n‖ = ‖Tn − T ∗
n‖

=

∥∥∥∥∥
h

2

(
q̃0 + 2

n−2∑
j=1

q̃j + q̃n−1

)
− ṽ∞

∥∥∥∥∥

≤ h

n−1∑
j=0

‖q̃j‖+ ‖v∞ − v̄∗‖

≤ h

n−1∑
j=0

‖q̃j‖+ 2ξ .
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First, we estimate q̃0. Subtract equation (2.45) from (2.33). We obtain

∆(qs
0 − q∗0) + 2s2

0[∇qs
0 · ∇v∞ −∇q∗0 · ∇v̄∗] + 4s0[(∇v∞)2 − (∇v̄∗)2]

= − 2

s0

∆(v∞ − v̄∗)

↓
∆q̃0 + 2s2

0[∇qs
0 · ∇v∞−∇q∗0∇v∞ +∇q∗0∇v∞−∇q∗0 · ∇v̄∗] + 4s0∇(v∞− v̄∗)∇(v∞ + v̄∗)

= − 2

s0

∆(v∞ − v̄∗)

↓
∆q̃0 + 2s2

0[∇q̃0∇v∞ +∇q∗0∇(v∞ − v̄∗)] + 4s0∇(v∞ − v̄∗)∇(v∞ + v̄∗)

= − 2

s0

∆(v∞ − v̄∗)

↓
∆q̃0 + 2s2

0∇q̃0∇v∞ = −2s2
0∇q∗0∇(v∞ − v̄∗)

−4s0∇(v∞ − v̄∗)∇(v∞ + v̄∗)− 2

s0

∆(v∞ − v̄∗) . (A.6)

Since ‖2s2
0v∞‖ ≤ 4s2‖v̄∗‖ ≤ M∗, by Schauder theorem, we have

‖q̃0‖ ≤ K

[
‖ψ̃0‖+ 2s2

0‖q∗0‖‖v∞ − v̄∗‖+ 4s0‖v∞ − v̄∗‖‖v∞ + v̄∗‖+
2
s0
‖v∞ − v̄∗‖

]

≤ K

[
C1(σ + h) + M∗ · ξ + 4s0 · 2ξ · 2ξ +

2
s0
· 2ξ

]

≤ K [M∗(σ + h) + M∗ξ + M∗ξ + M∗ξ]

≤ KM∗ [σ + h + ξ + ξ + ξ]

≤ KM∗(5η)

And hence

‖qs
0 ‖ = ‖q̃0 + q∗0‖ ≤ ‖q̃0‖+ ‖q∗0‖ ≤ KM∗(5η) + M∗ ≤ 2M∗ . (A.7)
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Second, we estimate q̃1,1. Set in equation (2.46) n = 1 and subtract it from

(2.35) at k = 1, recalling that qs
1,0 = qs

0 . We obtain

∆[qs
1,1 − q∗1]− A1[∇qs

1,1∇qs
0 − (∇q∗1)

2]

−B1[∇qs
1,1∇qs

0 −∇q∗1∇q∗0]− C1[∇qs
1,1∇T1 −∇q∗1∇T ∗

1 ]

= D1∆[qs
0 − q∗0] + E1∆[T1 − T ∗

1 ]− F1[(∇qs
0 )2 − (∇q∗0)

2]

−G1[∇qs
0∇T1 −∇q∗0∇T ∗

1 ]−H1[(∇T1)
2 − (∇T ∗

1 )2]−R1

↓
∆q̃1,1 − A1[∇(q̃1,1 + q∗1)∇(q̃0 + q∗0)− (∇q∗1)

2]

−B1[∇(q̃1,1 +q∗1)∇(q̃0 +q∗0)−∇q∗1∇q∗0]−C1[∇qs
1,1∇T1−∇q∗1∇T1 +∇q∗1∇T1−∇q∗1∇T ∗

1 ]

= D1∆q̃0 + E1∆T̃1 − F1[(∇qs
0 −∇q∗0)(∇qs

0 +∇q∗0)]

−G1[∇qs
0∇T1−∇q∗0∇T1 +∇q∗0∇T1−∇q∗0∇T ∗

1 ]−H1[(∇T1−∇T ∗
1 )(∇T1 +∇T ∗

1 )]−R1

↓
∆q̃1,1 − A1[∇q̃1,1∇q̃0 +∇q̃1,1∇q∗0 +∇q∗1∇q̃0 +∇q∗1∇q∗0 −∇q∗1∇q∗1]

−B1[∇q̃1,1∇q̃0 +∇q̃1,1∇q∗0 +∇q∗1∇q̃0 +∇q∗1∇q∗0 −∇q∗1∇q∗0]−C1[∇q̃1,1∇T1 +∇q∗1∇T̃1]

= D1∆q̃0 + E1∆T̃1 − F1∇q̃0(∇q̃0 +∇q∗0 +∇q∗0)

−G1[∇q̃0∇T1 +∇q∗0∇T̃1]−H1∇T̃1(∇T1 +∇T ∗
1 )−R1

↓
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∆q̃1,1 − A1[∇q̃1,1∇q̃0 +∇q̃1,1∇q∗0 +∇q∗1∇q̃0 +∇q∗1∇q∗0 −∇q∗1∇q∗1]

−B1[∇q̃1,1∇q̃0 +∇q̃1,1∇q∗0 +∇q∗1∇q̃0]− C1[∇q̃1,1∇T1 +∇q∗1∇T̃1]

= D1∆q̃0 + E1∆T̃1 − F1∇q̃0(∇q̃0 + 2∇q∗0)

−G1[∇q̃0∇T1 +∇q∗0∇T̃1]−H1∇T̃1(∇T1 +∇T ∗
1 )−R1

↓
∆q̃1,1 − A1∇q̃1,1∇q̃0 − A1∇q̃1,1∇q∗0 −B1∇q̃1,1∇q̃0 −B1∇q̃1,1∇q∗0 − C1∇q̃1,1∇T1

= A1∇q∗1∇q̃0 + A1∇q∗1∇q∗0 − A1∇q∗1∇q∗1 + B1∇q∗1∇q̃0 + C1∇q∗1∇T̃1

+D1∆q̃0 + E1∆T̃1 − F1∇q̃0∇q̃0 − 2F1∇q̃0∇q∗0

−G1∇q̃0∇T1 −G1∇q∗0∇T̃1 −H1∇T̃1∇T1 −H1∇T̃1∇T ∗
1 −R1 . (A.8)

Since

‖A1∇q̃0‖ ≤ hs2‖q̃0‖ ≤ M∗

‖A1∇q∗0‖ ≤ hs2‖q∗0‖ ≤ M∗

‖B1∇q̃0‖ ≤ 2hs2‖q̃0‖ ≤ M∗

‖B1∇q∗0‖ ≤ 2hs2‖q∗0‖ ≤ M∗

‖C1∇T1‖ ≤ 8s2‖T1‖ ≤ M∗ ,

by Schauder theorem, we have

‖q̃1,1‖ ≤ K
[
‖ψ̃1‖+ ‖A1∇q∗1∇q̃0‖+ ‖A1∇q∗1∇q∗0‖+ ‖A1∇q∗1∇q∗1‖+ ‖B1∇q∗1∇q̃0‖

+‖C1∇q∗1∇T̃1‖+ ‖D1∆q̃0‖+ ‖E1∆T̃1‖+ ‖F1∇q̃0∇q̃0‖+ ‖2F1∇q̃0∇q∗0‖

+‖G1∇q̃0∇T1‖+ ‖G1∇q∗0∇T̃1‖+ ‖H1∇T̃1∇T1‖+ ‖H1∇T̃1∇T ∗
1 ‖+ ‖R1‖

]
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‖q̃1,1‖ ≤ K
[
C1(σ + h) + hs2‖q∗1‖‖q̃0‖+ hs2‖q∗1‖‖q∗0‖+ hs2‖q∗1‖‖q∗1‖+ 2hs2‖q∗1‖‖q̃0‖

+4s2‖q∗1‖‖T̃1‖+ h‖q̃0‖+ ‖T̃1‖+ hs2‖q̃0‖‖q̃0‖+ 2hs2‖q̃0‖‖q∗0‖+ hs2‖q̃0‖‖T1‖

+hs2‖q∗0‖‖T̃1‖+ s2‖T̃1‖‖T1‖+ s2‖T̃1‖‖T ∗
1 ‖+ C∗h

]

≤ K
[
M∗(σ + h) + M∗h + M∗h + M∗h + M∗h + M∗ξ + M∗h + M∗ξ + M∗h

+M∗h + M∗h + M∗h + M∗ξ + M∗ξ + M∗h
]

≤ KM∗
[
σ + h + h + h + h + h + ξ + h + ξ + h + h + h + h + ξ + ξ + h

]

≤ KM∗(16η) .

Hence

‖qs
1,1‖ = ‖q̃1,1 + q∗1‖ ≤ ‖q̃1,1‖+ ‖q∗1‖ ≤ KM∗(16η) + M∗ ≤ 2M∗ . (A.9)

Now we estimate q̃1,k. Assume that

‖q̃1,k−1‖ ≤ KM∗(16η) and ‖qs
1,k−1‖ ≤ 2M∗ . (A.10)

Set in equation (2.46) n = 1 and subtract it from (2.35). We obtain

∆[qs
1,k − q∗1]− A1[∇qs

1,k∇qs
1,k−1 − (∇q∗1)

2]

−B1[∇qs
1,k∇qs

0 −∇q∗1∇q∗0]− C1[∇qs
1,k∇T1 −∇q∗1∇T ∗

1 ]

= D1∆[qs
0 − q∗0] + E1∆[T1 − T ∗

1 ]− F1[(∇qs
0 )2 − (∇q∗0)

2]

−G1[∇qs
0∇T1 −∇q∗0∇T ∗

1 ]−H1[(∇T1)
2 − (∇T ∗

1 )2]−R1

↓
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∆q̃1,k − A1∇q̃1,k∇q̃1,k−1 − A1∇q̃1,k∇q∗0 −B1∇q̃1,k∇q̃0 −B1∇q̃1,k∇q∗0 − C1∇q̃1,k∇T1

= A1∇q∗1∇q̃1,k−1 + A1∇q∗1∇q∗0 − A1∇q∗1∇q∗1 + B1∇q∗1∇q̃0 + C1∇q∗1∇T̃1

+D1∆q̃0 + E1∆T̃1 − F1∇q̃0∇q̃0 − 2F1∇q̃0∇q∗0

−G1∇q̃0∇T1 −G1∇q∗0∇T̃1 −H1∇T̃1∇T1 −H1∇T̃1∇T ∗
1 −R1 . (A.11)

Since

‖A1∇q̃1,k−1‖ ≤ hs2‖q̃1,k−1‖ ≤ M∗

‖A1∇q∗0‖ ≤ hs2‖q∗0‖ ≤ M∗

‖B1∇q̃0‖ ≤ 2hs2‖q̃0‖ ≤ M∗

‖B1∇q∗0‖ ≤ 2hs2‖q∗0‖ ≤ M∗

‖C1∇T1‖ ≤ 8s2‖T1‖ ≤ M∗ ,

by Schauder theorem, we have

‖q̃1,k‖ ≤ K
[
‖ψ̃1‖+ ‖A1∇q∗1∇q̃1,k−1‖+ ‖A1∇q∗1∇q∗0‖+ ‖A1∇q∗1∇q∗1‖+ ‖B1∇q∗1∇q̃0‖

+‖C1∇q∗1∇T̃1‖+ ‖D1∆q̃0‖+ ‖E1∆T̃1‖+ ‖F1∇q̃0∇q̃0‖+ ‖2F1∇q̃0∇q∗0‖

+‖G1∇q̃0∇T1‖+ ‖G1∇q∗0∇T̃1‖+ ‖H1∇T̃1∇T1‖+ ‖H1∇T̃1∇T ∗
1 ‖+ ‖R1‖

]

≤ K
[
C1(σ + h) + hs2‖q∗1‖‖q̃1,k−1‖+ hs2‖q∗1‖‖q∗0‖+ hs2‖q∗1‖‖q∗1‖+ 2hs2‖q∗1‖‖q̃0‖

+4s2‖q∗1‖‖T̃1‖+ h‖q̃0‖+ ‖T̃1‖+ hs2‖q̃0‖‖q̃0‖+ 2hs2‖q̃0‖‖q∗0‖+ hs2‖q̃0‖‖T1‖

+hs2‖q∗0‖‖T̃1‖+ s2‖T̃1‖‖T1‖+ s2‖T̃1‖‖T ∗
1 ‖+ C∗h

]

≤ K
[
M∗(σ + h) + M∗h + M∗h + M∗h + M∗h + M∗ξ + M∗h + M∗ξ + M∗h

+M∗h + M∗h + M∗h + M∗ξ + M∗ξ + M∗h
]

≤ KM∗
[
σ + h + h + h + h + h + ξ + h + ξ + h + h + h + h + ξ + ξ + h

]

≤ KM∗(16η) .
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Hence

|qs
1,k‖ = ‖q̃1,k + q∗1‖ ≤ ‖q̃1,k‖+ ‖q∗1‖ ≤ KM∗(16η) + M∗ ≤ 2M∗ . (A.12)

And therefore we finally have

‖q̃1‖ ≤ KM∗(16η) and ‖qs
1 ‖ ≤ 2M∗ . (A.13)

Now we estimate q̃2,1. Set in equation (2.46) n = 2 and subtract it from (2.36)

at n = 2, k = 1, recalling that qs
2,0 = qs

1 . We obtain

∆q̃2,1 − A2∇q̃2,1∇q̃1 − A2∇q̃2,1∇q∗1 −B2∇q̃2,1∇q̃1 −B2∇q̃2,1∇q∗1 − C2∇q̃2,1∇T2

= A2∇q∗2∇q̃1 + A2∇q∗2∇q∗1 − A2∇q∗2∇q∗2 + B2∇q∗2∇q̃1 + C2∇q∗2∇T̃2

+D2∆q̃1 + E2∆T̃2 − F2∇q̃1∇q̃1 − 2F2∇q̃1∇q∗1

−G2∇q̃1∇T2 −G2∇q∗1∇T̃2 −H2∇T̃2∇T2 −H2∇T̃2∇T ∗
2 −R2 . (A.14)

Since

‖A2∇q̃1‖ ≤ hs2‖q̃1,k−1‖ ≤ M∗

‖A2∇q∗1‖ ≤ hs2‖q∗1‖ ≤ M∗

‖B2∇q̃1‖ ≤ 2hs2‖q̃1‖ ≤ M∗

‖B2∇q∗1‖ ≤ 2hs2‖q∗1‖ ≤ M∗

‖C2∇T2‖ ≤ 4s2‖T2‖ ≤ 4s2
[
Nh ·KM∗(16η) + max

0≤j≤1
‖q∗j‖+ ξ

]

≤ 4s2
[
η + max

0≤j≤1
‖q∗j‖+ ξ

] ≤ M∗ ,
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by Schauder theorem, we have

‖q̃2,1‖ ≤ K
[
‖ψ̃2‖+ ‖A2∇q∗2∇q̃1‖+ ‖A2∇q∗2∇q∗1‖+ ‖A2∇q∗2∇q∗2‖+ ‖B2∇q∗2∇q̃1‖

+‖C2∇q∗2∇T̃2‖+ ‖D2∆q̃1‖+ ‖E2∆T̃2‖+ ‖F2∇q̃1∇q̃1‖+ ‖2F2∇q̃1∇q∗1‖

+‖G2∇q̃1∇T2‖+ ‖G2∇q∗1∇T̃2‖+ ‖H2∇T̃2∇T2‖+ ‖H2∇T̃2∇T ∗
2 ‖+ ‖R2‖

]

≤ K
[
C2(σ + h) + hs2‖q∗2‖‖q̃1‖+ hs2‖q∗2‖‖q∗1‖+ hs2‖q∗2‖‖q∗2‖+ 2hs2‖q∗2‖‖q̃1‖

+4s2‖q∗2‖‖T̃2‖+ h‖q̃1‖+ ‖T̃2‖+ hs2‖q̃1‖‖q̃1‖+ 2hs2‖q̃1‖‖q∗1‖+ hs2‖q̃1‖‖T2‖

+hs2‖q∗1‖‖T̃2‖+ s2‖T̃2‖‖T2‖+ s2‖T̃2‖‖T ∗
2 ‖+ C∗h

]

≤ K
[
M∗(σ + h) + M∗h + M∗h + M∗h + M∗h + 4s2‖q∗2‖

[
Nh ·KM∗(16η) + 2ξ

]

+M∗h +
[
Nh ·KM∗(16η) + 2ξ

]
+ M∗h + M∗h

+hs2‖q̃1‖
[
Nh ·KM∗(16η) + max

0≤j≤1
‖q∗j‖+ ξ

]
+ hs2‖q∗1‖

[
Nh ·KM∗(16η) + 2ξ

]

+s2
[
Nh ·KM∗(16η) + 2ξ

][
Nh ·KM∗(16η) + max

0≤j≤1
‖q∗j‖+ ξ

]

+s2
[
Nh ·KM∗(16η) + 2ξ

][
max
0≤j≤1

‖q∗j‖+ ξ
]
+ M∗h

]

≤ K
[
M∗(σ + h) + M∗h + M∗h + M∗h + M∗h + (M∗η + M∗ξ) + M∗h

+(M∗η + M∗ξ) + M∗h + M∗h + M∗h + M∗h + (M∗η + M∗ξ)

+(M∗η + M∗ξ) + M∗h
]

≤ KM∗(σ + h + h + h + h + h + η + ξ + h + η + ξ + h + h + h + h + η + ξ

+η + ξ + h)

≤ KM∗(20η) .

Hence

‖qs
2,1‖ = ‖q̃2,1 + q∗2‖ ≤ ‖q̃2,1‖+ ‖q∗2‖ ≤ KM∗(20η) + M∗ ≤ 2M∗ . (A.15)

Now we estimate q̃2,k. Assume that

‖q̃2,k−1‖ ≤ KM∗(16η) and ‖qs
2,k−1‖ ≤ 2M∗ . (A.16)



106

Set in equation (2.46) n = 2 and subtract it from (2.36) at n = 2. We obtain

∆q̃2,k − A2∇q̃2,k∇q̃2,k−1 − A2∇q̃2,k∇q∗1 −B2∇q̃2,k∇q̃1 −B2∇q̃2,k∇q∗1 − C2∇q̃2,k∇T2

= A2∇q∗2∇q̃2,k−1 + A2∇q∗2∇q∗1 − A2∇q∗2∇q∗2 + B2∇q∗2∇q̃1 + C2∇q∗2∇T̃2

+D2∆q̃1 + E2∆T̃2 − F2∇q̃1∇q̃1 − 2F2∇q̃1∇q∗1

−G2∇q̃1∇T2 −G2∇q∗1∇T̃2 −H2∇T̃2∇T2 −H2∇T̃2∇T ∗
2 −R2 . (A.17)

Since

‖A2∇q̃2,k−1‖ ≤ hs2‖q̃1,k−1‖ ≤ M∗

‖A2∇q∗1‖ ≤ hs2‖q∗1‖ ≤ M∗

‖B2∇q̃1‖ ≤ 2hs2‖q̃1‖ ≤ M∗

‖B2∇q∗1‖ ≤ 2hs2‖q∗1‖ ≤ M∗

‖C2∇T2‖ ≤ 4s2‖T2‖ ≤ 4s2
[
Nh ·KM∗(16η) + max

0≤j≤1
‖q∗j‖+ ξ

]

≤ 4s2
[
η + max

0≤j≤1
‖q∗j‖+ ξ

] ≤ M∗ ,

by Schauder theorem, we have

‖q̃2,k‖ ≤ K
[
‖ψ̃2‖+ ‖A2∇q∗2∇q̃2,k−1‖+ ‖A2∇q∗2∇q∗1‖+ ‖A2∇q∗2∇q∗2‖+ ‖B2∇q∗2∇q̃1‖

+‖C2∇q∗2∇T̃2‖+ ‖D2∆q̃1‖+ ‖E2∆T̃2‖+ ‖F2∇q̃1∇q̃1‖+ ‖2F2∇q̃1∇q∗1‖

+‖G2∇q̃1∇T2‖+ ‖G2∇q∗1∇T̃2‖+ ‖H2∇T̃2∇T2‖+ ‖H2∇T̃2∇T ∗
2 ‖+ ‖R2‖

]

≤ K
[
C2(σ + h) + hs2‖q∗2‖‖q̃2,k−1‖+ hs2‖q∗2‖‖q∗1‖+ hs2‖q∗2‖‖q∗2‖+ 2hs2‖q∗2‖‖q̃1‖

+4s2‖q∗2‖‖T̃2‖+ h‖q̃1‖+ ‖T̃2‖+ hs2‖q̃1‖‖q̃1‖+ 2hs2‖q̃1‖‖q∗1‖+ hs2‖q̃1‖‖T2‖

+hs2‖q∗1‖‖T̃2‖+ s2‖T̃2‖‖T2‖+ s2‖T̃2‖‖T ∗
2 ‖+ C∗h

]
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‖q̃2,k‖ ≤ K
[
M∗(σ + h) + M∗h + M∗h + M∗h + M∗h + (M∗η + M∗ξ) + M∗h

+(M∗η + M∗ξ) + M∗h + M∗h + M∗h + M∗h + (M∗η + M∗ξ)

+(M∗η + M∗ξ) + M∗h
]

≤ KM∗(σ + h + h + h + h + h + η + ξ + h + η + ξ + h + h + h + h + η + ξ

+η + ξ + h)

≤ KM∗(20η) .

Hence

‖qs
2,k‖ = ‖q̃2,k + q∗2‖ ≤ ‖q̃2,k‖+ ‖q∗2‖ ≤ KM∗(20η) + M∗ ≤ 2M∗ . (A.18)

And therefore we finally have

‖q̃2‖ ≤ KM∗(20η) and ‖qs
2 ‖ ≤ 2M∗ . (A.19)

We now estimate the function q̃n,k. Assume that

‖q̃n−1‖ ≤ KM∗(20η) , ‖qs
n−1‖ ≤ 2M∗ (A.20)

and

‖q̃n,k−1‖ ≤ KM∗(20η) , ‖qs
n,k−1‖ ≤ 2M∗ . (A.21)

Subtract equation (2.46) from (2.36), we obtain

∆q̃n,k − An∇q̃n,k∇q̃n,k−1 − An∇q̃n,k∇q∗n−1

−Bn∇q̃n,k∇q̃n−1 −Bn∇q̃n,k∇q∗n−1 − Cn∇q̃n,k∇Tn

= An∇q∗n∇q̃n,k−1 + An∇q∗n∇q∗n−1 − An∇q∗n∇q∗n + Bn∇q∗n∇q̃n−1 + Cn∇q∗n∇T̃n

+Dn∆q̃n−1 + En∆T̃n − Fn∇q̃n−1∇q̃n−1 − 2Fn∇q̃n−1∇q∗n−1

−Gn∇q̃n−1∇Tn −Gn∇q∗n−1∇T̃n −Hn∇T̃n∇Tn −Hn∇T̃n∇T ∗
n −Rn . (A.22)
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Since

‖An∇q̃n,k−1‖ ≤ hs2‖q̃n,k−1‖ ≤ M∗

‖An∇q∗n−1‖ ≤ hs2‖q∗n−1‖ ≤ M∗

‖Bn∇q̃n−1‖ ≤ 2hs2‖q̃n−1‖ ≤ M∗

‖Bn∇q∗n−1‖ ≤ 2hs2‖q∗n−1‖ ≤ M∗

‖Cn∇Tn‖ ≤ 4s2‖Tn‖ ≤ 4s2
[
Nh ·KM∗(16η) + max

0≤j≤n−1
‖q∗j‖+ ξ

]

≤ 4s2
[
η + max

0≤j≤n−1
‖q∗j‖+ ξ

] ≤ M∗ ,

by Schauder theorem, we have

‖q̃n,k‖ ≤ K
[
‖ψ̃n‖+ ‖An∇q∗n∇q̃n,k−1‖+ ‖An∇q∗n∇q∗n−1‖+ ‖An∇q∗n∇q∗n‖

+‖Bn∇q∗n∇q̃n−1‖+ ‖Cn∇q∗n∇T̃n‖+ ‖Dn∆q̃n−1‖+ ‖En∆T̃n‖

+‖Fn∇q̃n−1∇q̃n−1‖+ ‖2Fn∇q̃n−1∇q∗n−1‖+ ‖Gn∇q̃n−1∇Tn‖

+‖Gn∇q∗n−1∇T̃n‖+ ‖Hn∇T̃n∇Tn‖+ ‖Hn∇T̃n∇T ∗
n‖+ ‖Rn‖

]

≤ K
[
Cn(σ + h) + hs2‖q∗n‖‖q̃n,k−1‖+ hs2‖q∗n‖‖q∗n−1‖+ hs2‖q∗n‖‖q∗n‖

+2hs2‖q∗n‖‖q̃n−1‖+ 4s2‖q∗n‖‖T̃n‖+ h‖q̃n−1‖+ ‖T̃n‖+ hs2‖q̃n−1‖‖q̃n−1‖

+2hs2‖q̃n−1‖‖q∗n−1‖+ hs2‖q̃n−1‖‖Tn‖+ hs2‖q∗n−1‖‖T̃n‖

+s2‖T̃n‖‖Tn‖+ s2‖T̃n‖‖T ∗
n‖+ C∗h

]

≤ K
[
M∗(σ + h) + M∗h + M∗h + M∗h + M∗h + (M∗η + M∗ξ) + M∗h

+(M∗η + M∗ξ) + M∗h + M∗h + M∗h + M∗h + (M∗η + M∗ξ)

+(M∗η + M∗ξ) + M∗h
]

≤ KM∗(σ + h + h + h + h + h + η + ξ + h + η + ξ + h + h + h + h + η + ξ

+η + ξ + h)

≤ KM∗(20η) .
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Hence

‖qs
n,k‖ = ‖q̃n,k + q∗n‖ ≤ ‖q̃n,k‖+ ‖q∗n‖ ≤ KM∗(20η) + M∗ ≤ 2M∗ . (A.23)

And therefore we finally have

‖q̃n‖ ≤ KM∗(20η) and ‖qs
n‖ ≤ 2M∗ . (A.24)

Estimates (A.24) completes the proof of this theorem. ¤
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In this appendix, we present some additional figure that we mention in section

4.2 and the last section show figure of ai(x) in each iterations for improving quality

of tail.

B.1 Example #1

Reconstruction of example #1 using actual tail is shown in figure B.1, 2% noise

is added to the boundary data. For the no noise case, we had show the reconstruction

using approximated tail, section 3.3.2, in figure B.2. We show the comparison between

actual tail and approximated tail in figure B.3. And lastly, graph of difference between

two consecutive of ai(x) and comparing ai(x) with a∗(x) are showed in figure B.4.
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Peak value of left inclusion is 3.264 and right inclusion is 3.265.

Figure B.1. Shows reconstruction result with 2% noise using actual tail-function of
example #1.
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Peak value of left inclusion is 3.59 and right inclusion is 3.643.

Figure B.2. Shows reconstruction result without noise using approximated tail of
example #1.
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Figure B.3. Comparison between actual tail, u(x, s0) (a) and approximated tail,
u∞(x)(b) of example#1.
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Figure B.4. Example #1 results, (a) Different between two consecutive of ai(x) in
equation (3.39) of light s0. (b) Different between two consecutive of ai(x) in equation
(3.39) of light s6. (c) Relative of ai(x) in equation (3.39) comparing with a∗(x) of
light s0. (d) Relative of ai(x) in equation (3.39) comparing with a∗(x) of light s6.
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B.2 Example #2

Reconstruction of example #2 using actual tail is shown in figure B.5, 2% noise

is added to the boundary data. For the no noise case, we had show the reconstruction

using approximated tail, section 3.3.2, in figure B.6. We show the comparison between

actual tail and approximated tail in figure B.7. And lastly, graph of difference between

two consecutive of ai(x) and comparing ai(x) with a∗(x) are showed in figure B.8.
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Average of left inclusion is 3.595 and right inclusion is 3.643.

Figure B.5. Shows reconstruction result with 2% noise using actual tail-function of
example #2.
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Peak value of left inclusion is 2.082 and right inclusion is 3.343.

Figure B.6. Shows reconstruction result without noise using approximated tail of
example #2.
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Figure B.7. Comparison between actual tail, u(x, s0) (a) and approximated tail,
u∞(x)(b) of example#2.
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Figure B.8. Example #2 results, (a) Different between two consecutive of ai(x) in
equation (3.39) of light s0. (b) Different between two consecutive of ai(x) in equation
(3.39) of light s6. (c) Relative of ai(x) in equation (3.39) comparing with a∗(x) of
light s0. (d) Relative of ai(x) in equation (3.39) comparing with a∗(x) of light s6.
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B.3 Figure of the Iterations for Improving Quality of Tail

In this section we show figures of ai(x)’s in each iterations for improving quality

of tail. The ai(x)’s we show here are the results from reconstruction process of

example #1 with respect to s0, see figure B.9, B.10, B.11 and B.12. There are totally

13 iterations, see table 4.3. We also show ai(x) of the last iteration with respect to

s6 which is the iteration #13 in figure B.13. Figure B.14, is the average of iteration

#13 of s0 and iteration #13 of s6.

The result of example #2 are shown only the average of iteration #11 of s0 and

iteration #11 of s6, see table 4.5. This average is shown in figure B.15.
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Figure B.9. Show a1(x) and a2(x) in iterations for improving quality of tail with
respect to s0 of example #1.
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Figure B.10. Show a3(x), a4(x), a5(x) and a6(x) in iterations for improving quality
of tail with respect to s0 of example #1.
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Figure B.11. Show a7(x), a8(x), a9(x) and a10(x) in iterations for improving quality
of tail with respect to s0 of example #1.
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Figure B.12. Show a11(x), a12(x) and a13(x) in iterations for improving quality of tail
with respect to s0 of example #1.
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Figure B.13. Show a13(x) in iterations for improving quality of tail with respect to
s6 of example #1.
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Figure B.14. Show the average of ai(x)’s in iteration #13 of s0 and iteration #13 of
s6 of example #1.
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Figure B.15. Show the average of ai(x)’s in iteration #11 of s0 and iteration #11 of
s6 of example #2.
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