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ABSTRACT

A STUDY OF EJECTION TIMES OF TERRESTRIAL PLANETS FROM THE

HABITABLE ZONES OF THE SOLAR TWINS HD 20782 AND HD 188015

KATHERINE ELIZABETH YEAGER, M.S.

The University of Texas at Arlington, 2009

Supervising Professor: MANFRED CUNTZ

We provide a detailed statistical study of the ejection of terrestrial planets from

the habitable zones of the solar twins HD 20782 and HD 188015. These systems

possess a giant planet that crosses into the stellar habitable zone, thus effectively

thwarting the possibility of habitable terrestrial planets. In case of HD 188015, the

orbit of the giant planet is essentially circular, whereas in case of HD 20782, it is

extremely elliptical. As starting positions for the giant planets, we consider both the

apogee and perigee position, whereas the starting positions of the terrestrial planets

are widely varied. For the giant planets, we consider models based on their minimum

masses as well as models where the masses are increased by 30%. Our simulations

indicate a large range of statistical properties concerning the ejection of the terrestrial

planets from the stellar habitable zones. For example, it is found that the ejection

times for the terrestrial planets from the habitable zones of HD 20782 and HD 188015,

originally placed at the center of the habitable zones, vary by a factor of ∼200 and

∼1500, respectively, depending on the starting positions of the giant and terrestrial

planets. If the mass of the giant planet is increased by 30%, the variation in ejection

v



time for HD 188015 increases to a factor of ∼6000. As a further application of this

thesis we challenge the customary assumption that the entering of a terrestrial planet

into the Hill radius (or multiples of the Hill radius) of a giant planet is a valid criterion

for its ejection from the star-planet system. This assumption has been widely used

in previous studies, especially those with an astrobiological focus. It has been found

from our study that even though the terrestrial planets are eventually ejected from

the habitable zones of both systems, the “Hill Radius Criterion” is identified as invalid

for the prediction of when the ejection is actually occurring.
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CHAPTER 1

INTRODUCTION

1.1 Background

The search for life in the universe is not a new concept. Over the last one and

a half decades, the observation, study and characterization of extrasolar planets have

become a vibrant field of astrophysical research, resulting in an extraordinary array of

discoveries (e.g., Marcy & Butler 1998; Marcy et al. 2005; Jones 2008). A crucial part

of this type of research is the determination of the orbital properties of extrasolar

planets, which indicates massive planets with many of them located very close to

their host stars or having highly eccentric orbits; see, e.g., catalogue by Butler et al.

(2006) and subsequent papers. Besides the study of physical properties of extrasolar

planets, an important objective of these investigations concern the identification of

terrestrial planets in stellar habitable zones (HZs); see, e.g., Gehman et al. (1996),

Jones et al. (2001), Noble et al. (2002), and Asghari et al. (2004). These studies are

highly relevant in the view of current and future space missions such as COROT,

Kepler, SIM PlanetQuest, Terrestrial Planet Finder [TPF], and Darwin, which were

chiefly designed to detect and explore Earth-type planets around other stars (see

Baglin 2003; Borucki et al. 2003; Catanzarite et al. 2006; Borucki et al. 2007; Cockell

et al. 2009; Unwin et al. 2008, for detailed information).

To gauge the possibility of habitable terrestrial planets in observed extrasolar

planetary systems, as well as theoretical star-planet systems, numerous studies have

been undertaken (e.g., Cuntz et al. 2003; von Bloh et al. 2003; 2007) with focus

both on the requirement of planetary orbital stability and preliminary descriptions

1
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of the planetary climatology. Both efforts are required to obtain insight into the

planetary astrobiological suitability for the existence and evolution of life; see Spiegel

et al. (2008) for recent models on extrasolar habitable climates. A statistical analysis

indicates that in about 15% to 40% of systems with observed giant planets the orbital

stability of hypothetical Earth-mass planets in the stellar HZs would be affected by

the giant planet(s) with the exact number depending on the assumed extents of the

HZs (see Chapter 3). Catalogues of nearby stellar systems that are expected to fulfill

basic preconditions of habitability have been given by, e.g., Turnbull & Tarter (2003)

and Sándor et al. (2007).

1.2 Habitable Zone

Surrounding every star there is a region of space where life, given the right

circumstances, has possibility of forming. This region is called the Habitable Zone

(HZ). The HZ is a region of space where conditions are favorable for life as it may be

found on Earth (von Bloh et al. 2003). The HZ is an imaginary spherical shell of space

surrounding a star in which the surface temperatures of any planet present might be

conducive to the origin and development of life as we know it. For life to exist the

surface temperature of the planet must be in the temperature range for liquid water

to be present. Water will remain liquid under a pressure of 1 bar (terrestrial sea level

pressure) between 0◦C and 100◦C. There are some extreme cases, however, where life

can survive outside these temperature ranges. One such case is on our own planet in

Antarctica where temperatures can reach as low as -70◦C. The HZ for our own Solar

System currently extends from 0.84 AU to an outer limit between 1.37 and 1.67 AU as

determined by Kasting et al. (1993). The distance of 1.37 AU marks the point of first

CO2 condensation while the limit of 1.67 AU defines the maximum greenhouse limit

on the outer edge of the the HZ. The hot inner edge of a HZ is located at the orbital
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distance where a planet’s water is broken up by stellar radiation into oxygen and

hydrogen. The outer edge of the HZ is determined to be where atmospheric carbon

dioxide condenses to eliminate the greenhouse warming effect. For the purposes of

this thesis we use the outer limit of 1.67 AU for our HZ limit. The inner and outer

limits of the HZ are computed as

Rin =

(

L

L⊙ · Sin(Teff)

)
1

2

(1.1)

Rout =

(

L

L⊙ · Sout(Teff)

)
1

2

(1.2)

with L and L⊙ as stellar and solar luminosity, respectively, and Teff as stellar

effective temperature. Moreover, Sin(Teff) and Sout(Teff) are second order polynomials

depicting the stellar flux at the inner and outer boundaries of both the conservative

and general HZ as have been given by Underwood et al. (2003). Since we are using

the same inner and outer limits for the HZ as Kasting et al. (1993) and Underwood et

al. (2003), Teff is taken to be 5778 ± 3 K for the Sun (Stix 2004). The planet existing

within the HZ would have to be rocky, of the same order as the Earth’s mass, and

would had to lie in an orbit within the HZ for at least the order of a billion years for

life to have had a detectable effect on its atmosphere (Underwood et al. 2003).

HZs are not only determined based on temperature of the star, they are also

determined based on the type of star. There are seven different star types on the

main sequence (O B A F G K M) but only five of them are generally used when

determining a HZ. In general, hot, luminous stars all have wide HZs, with inner

margins located relatively far out from the star (Kasting et al. 1993). The two types

of stars that are generally not considered when looking for planets within HZs are

the O and B type stars. These stars have extremely short lifetime compared to the
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Figure 1.1. Habitable Zone Ranges Based on Spectral Type. Credit: Franck et al.
(2002).

smaller and dimmer stars, ranging only a few tens of millions of years which is not

nearly long enough for even primitive life to form. Another concern with O and B

type stars is the amount of UV radiation that is emitted from these stars. These two

star types emit an amount of UV radiation that would surly destroy any life that

could possibly form on these planets. As for the other five star types, the amount

of UV radiation emitted is within the range that could help with the formation of

important atmospheric dynamics such as the formation of ozone. The habitable zone

around these five star types range in size and distance from the star based on the

spectral type of the star (Kasting et al. 1993). Figure 1.1 shows how the width and

distance of the HZ from the star varies with spectral type.

The HZ evolves during a star’s main sequence lifetime - the boundaries generally

migrate outwards. During this time, nuclear burning of hydrogen builds up a helium



5

residue in a stellar core causing an increase in pressure and temperature. This occurs

more rapidly in stars that are more massive and lower in metallicity. These changes

are transmitted to the outer regions of a star, which results in a steady increase

in luminosity and changes in effective temperature. The major effect is that a star

becomes more luminous, causing HZ to move outwards (Underwood et al. 2003).

The HZ around various stars gives us an approximate idea as to where we should

spend our time looking for the possibility of life in the Universe. A planet lying within

the HZ is only the first criterion for life as we know it. The next criterion that we must

consider is the amount of time a planet spends within the HZ of the star, otherwise

known as the orbital stability of the planet. For the purpose of this thesis we will

examine the orbital stability for the terrestrial planet for two extreme cases, one with

a fairly circular orbit and the other for a highly elliptical orbit.

1.3 Orbital Stability

Planetary habitability requires orbital stability of the Earth-type planet over

a biologically significant length of time in the HZ. The analysis of orbital stability

of hypothetical terrestrial planets in extrasolar planetary systems has to take into

account the effects of the giant planet(s) in those systems. In many cases the giant

planet restricts the orbital stability of the terrestrial planet to a small or very small

orbital domain or prevent orbital stability completely (von Bloh et al. 2003).

To date (July 1, 2009), http://exoplanet.eu, lists a total number of 278

exoplanetary systems discovered with a total of 353 extrasolar planets. Out of these

353 planets a vast majority (on the order of 336) have a semimajor axis of less than 10

AU, and in most cases are less than 1 AU (to date 192 planets). Most of these planets

have been discovered by observing cyclic Doppler shifts in the stellar spectral lines.

This gives m · sin(io), where m is the mass of the planet and (io) is the inclination of
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Figure 1.2. Mass distribution of extra solar planets.

the orbital plane of the planet with respect to the plane of the sky (Jones et al. 2001).

Values of m ·sin(io) range from 7 ·10−5MJ (PSR 1257+12b) to 21.66 MJ (CoRoT 3b),

where MJ is the mass of Jupiter. The likelihood of objects that exceed 13 mJ being

brown dwarfs and not actual planets is quite high. The planet PSR 1257+12b orbits

a pulsar and thus does not have the possibility of harboring life. The majority of

planets that have been detected have masses in the range of 2 · 10−2 to 5 mJ . As

our technology improves we are slowly being able to detect planets with masses much

closer to our own planet.

The majority of planets detected have been found using the radial velocity

detection method. This method is used by carrying out a series of observations of

the spectrum of light emitted by a star. Periodic variations in the star’s spectrum

may be detected, with the wavelength of characteristic spectral lines in the spectrum

increasing and decreasing regularly over a period of time. These variations may be

indicative of the radial velocity of the star being altered by the presence of a planet

orbiting the star, causing Doppler shifts in the light emitted by the star. If an

extrasolar planet is detected, its mass can be determined from the changes in the
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Figure 1.3. Orbital eccentricities versus semimajor axis (on a log scale) of the extra-
solar planets detected to date in March of 2008. Credit: Marcy et al. (2008).

star’s radial velocity. A graph of measured radial velocity versus time will give a

characteristic curve (sine curve in the case of a circular orbit), and the amplitude

of the curve will allow the planet’s mass to be calculated. Due to the nature of

this method, it is much easier to detect planets of much higher mass than that of

our own planet (Schneider 2009). Currently to date the lowest mass planet found is

approximately 1.9 Earth masses. This is the first of Earth mass type planets found.

Several suppermassive terrestrial planets, or Super-Earths, have also been discovered,

but these planets are typically on the order of 2 to 10 times the mass of the Earth.

Unfortunately none of these Earth type planets have been found to reside within its

host star’s HZ.

Another limitation of this method is that it is bias to exoplanets with a low

eccentricity and small semimajor axis. This is due to the fact that it takes much less

time to determine the periodic variations in the star’s spectrum if the planet is very

close to the star. A high eccentricity requires a longer sample period of the star to

determine if the variations are indeed a planet. An example of this bias in exoplanet

eccentricity and semimajor axis can be seen in (Figs. 1.3 and 1.4).
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Figure 1.4. Distribution of semimajor axes of exoplanets. Credit: Marcy et al. (2008).

On March 4, 2009 the Kepler mission was launched which should allow us to

discover more Earth-type planets. It has a much higher probability of detecting Earth-

like planets than the Hubble Space Telescope, since it has a much larger field of view

and will be dedicated to detecting planetary transits. The Hubble Space Telescope in

contrast focused on just one starfield, while the Kepler Mission is designed to observe

100,000 stars simultaneously. This means that Kepler is much more likely to discover

an Earth-like planet. The Kepler Mission is specifically designed to survey our region

of the Milky Way galaxy to discover hundreds of Earth-size and smaller planets in or

near the HZ and determine how many of the billions of stars in our galaxy have such

planets (Koch & Gould 2009).

When a planet crosses in front of its star as viewed by an observer, the event

is call a transit. Transits by terrestrial planets produce a small change in a star’s

brightness of about 1/10,000 lasting for 2 to 16 hours. This change must be abso-

lutely periodic if it is caused by a planet. In addition, all transits produced by the

same planet must be of the same change in brightness and last the same amount of

time, thus providing a highly repeatable signal and robust detection method. Once



9

detected, the planet’s orbital size can be calculated from the period and the mass

of the star using Kepler’s Third Law of planetary motion. The size of the planet

is found from the depth of the transit (amount of decrease in luminosity) and the

size of the star. From the orbital size and the temperature of the star, the planet’s

characteristic temperature can be calculated. From this, the question of whether or

not the planet is habitable can be answered. Using the transit technique should yield

us with more precise information about the mass and size of the host stars and the

extrasolar planets.

1.4 Previous Studies Aimed at the Statistics of Planetary Ejections

Previous studies of this type of research have been carried out but not to the

degree that we will look at in further chapters of this thesis. It is worth mentioning

some of the limitations and findings of the previous studies.

Jones et al. (2001) studied the orbital stability of six extrasolar planets, all of

which have an eccentricity of less 0.3 with the exception of one exoplanet with an

eccentricity of 0.41 which resides in a star planet system with two other giant planets.

The authors use a second-order mixed-variable symplectic (MVS) integrator. One

main downside to using this type of integrator, however, is that MVS integrators

cannot handle close encounters between planets accurately, because the part of the

Hamiltonian that describes the planetary interactions is then comparable with the

star-planet Hamiltonian. The smallest distance at which it is safe to use the integrator

is about three times the Hill Radius of the planet in the encounter with the larger

Hill Radius. The Hill Radius refers to the gravitational sphere of influence of one

astronomical body such as Earth in the presence of perturbations from another heavier

body (Sun) around which it orbits. According to Jones et al. (2001), when the

two planets are separated by the Hill Radius, their gravitational interaction is of
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the same order as the gravitational interaction of each planet with the star, and so

considerable orbital modification will occur, particularly for the terrestrial planet in a

giant-terrestrial encounter. The authors then halt the integration at 3 times the Hill

Radius, which not only avoids using the MVS integrator in an inaccurate domain, it

is also a conservative definition of the point at which orbits become unstable (Jones

et al. 2001). We will discuss the significance of this statement in later chapters of this

thesis.

Noble et al. (2002) studied the orbital stability of three star-planet systems,

which overall amount to four extrasolar planets. The authors use a fourth-order

Runge-Kutta integration scheme, which consequently is extremely similar to the in-

tegration scheme used for the simulations carried out in this thesis. The benefit of

using this integration scheme is that it can handle close encounters between plan-

ets, whereas the previous method discussed cannot. We will discuss the fourth-order

Runge-Kutta integration scheme in later chapters of this thesis. It is important, how-

ever, to mention that the results obtained by Noble et al. (2002) for the star-planets

system of HD 210277 are extremely similar to the results obtained in this thesis.

The following figures represent the results obtained from Noble et al. (2002) for the

star-planet system HD 210277. It can be seen from these figures (Figs. 1.5 and 1.6)

that these planets slowly migrate out of the HZ over time, thus rendering the planet

unhabitable.

The final study that we would like to discuss is that of Fatuzzo et al. (2006).

This work is for that of the statistical stability analysis around binary stars. Even

though our work is for that of a single star system, it is worth noting that the results

found from this study carried out by Fatuzzo et al. (2006) very much mirrors our own

results for the single star system. We will discuss this work much more extensively

in chapter 3 of this thesis.
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Figure 1.5. Results for the star-planet system HD 2102277 for θ = 0◦ but δ = 0.1,
δ = 0.5, & δ = 0.9 respectively. Credit: Noble et al. (2002).

1.5 The Star-Planet Systems HD 20782 and HD 188015

For our study we selected the two star-planet systems HD 20782 and HD 188015.

Each system contains a Jupiter-type planet with a minimum mass of 1.78 and 1.50 MJ ,

respectively (Butler et al. 2006); see Table 1.1 for information on the adopted stellar

and planetary parameters with all symbols having their usual meaning. Furthermore,

the central stars of the two systems are very similar to our Sun. The masses of the

two stars are 0.98 ± 0.05 and 1.09 ± 0.05 M⊙ and the stellar effective temperatures

are 5758 ± 44 and 5746 ± 44 K, respectively (Butler et al. 2006). Since the effective

temperatures and luminosities of HD 20782 and HD 188015 agree with the Sun within

the error bars, and both stars are G type stars, we are entitled to assume that the

HZs of the two stars are identical to the HZ of the Sun. Therefore, following Kasting
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Figure 1.6. Results for the star-planet system HD 2102277 for δ = 0.5 but with
θ = 0◦, 120◦, & 180◦ respectively. Credit: Noble et al. (2002).

et al. (1993), the inner and outer edges of the HZs are assumed to be located at 0.84

and 1.67 AU, as previously mentioned, from the star.

Both star systems were discovered using Doppler measurements (the radial ve-

locity method) which was outlined in the previous section. In the case of HD 188015

an iodine technique was used. This technique is outlined in Marcy et al. (2005).

Measurements were taken of both star systems allowing the observers to fit the data

to a best-fit Keplerian model which include internal errors of the detection technique

as well as the jitter of the star (see Marcy et al. 2005; Jones et al. 2006, for detailed

information). From the Keplerian curve the orbital period, as well as velocity ampli-

tude and eccentricity of the planet may be determined. All of the necessary values

obtained from the studies of these two star systems are shown in Table 1.1. The fol-
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Figure 1.7. Measured velocity vs. time for HD 20782 (dots) with the associated
best-fit Keplerian. Credit: Jones et al. (2006).

lowing figures (Figs. 1.7 and 1.8) show the the velocity vs time plots with the doppler

velocities obtained from the measurements as well as the best-fitting Keplerian.

The two star-planet systems HD 20782 and HD 188015 are radically different

compared to the solar case. In these systems the giant planet either remains in or

crosses into the stellar HZs, thus effectively thwarting the possibility of habitable

Earth-type planets; see Noble et al. (2002) for previous simulations of HD 210277

also showing this type of outcome. In case of HD 188015, the orbit of the giant

planet is essentially circular, with a perigee and apogee of 1.04 and 1.37 AU, where

rmax = a(1 + e) and rmin = a(1 − e) respectively, both located in the stellar HZ (see

Fig.1.9). On the other hand, the orbit of the giant planet in the system of HD 20782 is

extremely elliptical, noting that its perigee is at 0.10 AU and its apogee is at 2.63 AU.

The variations in these two orbits can be seen in Fig. 1.9. The interactions between

an terrestrial planet placed at various distances within the HZ and the Extra-Solar

Giant Planet (EGP) corresponding with the designated star system will be looked at

in detail through the remainder of this thesis. We will show how the EGP affects the
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Figure 1.8. Measured velocity vs. time for HD 188015 (dots) with the associated
best-fit Keplerian. Credit: Marcy et al. (2005).

Table 1.1. Stellar and Planetary Parameters

Parameter HD 20782 HD 188015

Teff (K) 5758 ± 44 5746 ± 44
M⋆ (M⊙) 0.98 ± 0.05 1.09 ± 0.05
R⋆ (R⊙) 1.10 ± 0.10 1.04 ± 0.10

Distance (pc) 36.0 ± 1.1 52.6 ± 2.6
[Fe/H] −0.051 ± 0.030 0.289 ± 0.030

ap (AU) 1.364 ± 0.079 1.203 ± 0.070
ep 0.925 ± 0.030 0.137 ± 0.026

P (days) 585.86 ± 0.03 461.2 ± 1.7
mpsini (MJ ) 1.78 ± 0.34 1.50 ± 0.13

Note. — Data given by Butler (2006) and
references therein, notably Valenti and Fischer (2005).
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Figure 1.9. Orbits of the giant planets for the two represented systems, which are
HD 188015 (dashed line) and HD 20782 (narrow dotted line). We also give the HZs
(gray area) for the two systems. The two HZs are assumed to have identical extents.

orbital stability of the terrestrial planet. It should also be noted that at this time

these two systems only consist of a star and a giant planet and that no other planets

have been detected within the system.

Each star system was tested using only slight changes in the starting position

of the terrestrial planet. For this study, the terrestrial planet was placed at three

different initial starting positions within the HZ. These distances are defined as δ =

0.1, δ = 0.5, and δ = 0.9, where δ = 0.1 is located towards the inner edge of the HZ,

δ = 0.5 is in the middle of the HZ, and δ = 0.9 is near the outer edge of the HZ.

Figure 1.10 illustrates the locations of each of these positions.

Each simulation also varied by changing the starting position of the terrestrial

planet between 0◦ and 350◦ in 10◦ increments. Throughout each set of simulations
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Figure 1.10. Locations of δ = 0.1, δ = 0.5, and δ = 0.9 within the HZ. δ = 0.1 is
located near the inner edge of the HZ, δ = 0.5 is located in the middle of the HZ, and
δ = 0.9 is located near the outer edge of the HZ .

the giant planet was designated to start at either apogee or perigee depending on the

case being studied. Each of the giant planets were detected using the radial velocity

method. Therefore as another case of the study we also used an increased mass of

the giant planet of 1.3 ·m · sin(io) for the two cases of δ = 0.5 for apogee and perigee

of both star systems. The factor of 1.3 is motivated by the theoretical result that

in the absence of detailed information on the inclination term sini the appropriate

default term is π/4 (Gray 1992), corresponding to a factor of 1.273 for the planet

mass increase.

In the following chapters we will discuss in detail our theoretical approach. We

will discuss the adopted methods and the system parameters concerning HD 20782

and HD 188015. Thereafter, we will describe our results including our findings about
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the statistical properties of planetary ejections as well as selected examples of simu-

lations for HD 20782 and HD 188015 with different starting conditions for the giant

and Earth-mass planets. Finally, we will present our conclusions.



CHAPTER 2

THEORETICAL APPROACH (METHOD)

2.1 The Three-body Problem

The general setup of our work is for that of the Three-body problem. The

system set-up being a star at the center and two planets orbiting that star. The

program that was developed to test this set up is dependent on the initial conditions

of the star and the two planets. We are assuming that all three bodies lie within

the same orbital plane therefore φ̇ = 0. The position is easy to determine due to

the fact that we choose the starting distance and angle, but the calculation of the

velocities of the giant planet and the terrestrial planet are not nearly as straight

forward. The following derivation for the velocity equation loosely follows derivations

listed in Fowles & Cassiday (2005) and Carroll & Ostlie (2006).

For an elliptic orbit, the square of the speed is given in polar coordinates as

v2 = ṙ2 + r2θ̇2 (2.1)

using

rθ̇ =
l

µr
=

l

µp
(1 + e · cos θ) (2.2)

and

ṙ =
p · e · sin θ

(1 + e · cos θ)2
· θ̇ =

p · e · sin θ

(1 + e · cos θ)2
· l

µr2
(2.3)

or

ṙ =
p · e · sin θ

(1 + e · cos θ)2
· l

p2µ
· (1 + e · cos θ)2 =

le

pµ
sin θ. (2.4)

18
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where r is the distance between the star and the planet, θ is the angle between

the axis and the planet, a is the semimajor axis, e is the eccentricity, p is the latus

rectum, µ is the reduced mass, and l = µr2θ̇ = constant.

We then obtain

v2 =

(

le

pµ

)2

sin2 θ +

(

l

µp

)2

· (1 + e · cos θ)2 (2.5)

After some algebra and noting that (1+e ·cos θ) = p/r, (1−e2) = p/a, and p = l2/µk

we end up with

v2 =
k

µ

(

2

r
− 1

a

)

. (2.6)

We may now simplify this further by noting that r = a(1 − e) when the planet is at

perigee. Substituting this value in for r we obtain

v2 =
k

µ

(

2

a(1 − e)
− 1

a

)

, (2.7)

which further simplifies to

v2 =
k

µa

1 + e

1 − e
. (2.8)

Now it is useful for us to simplify µ/k.

µ =
m · M
m + M

(2.9)

and

k = GmM (2.10)

where M is the larger mass, m is the smaller mass, and G is the gravitational constant.

Since m << M we can simplify

µ

k
=

mM

m + M

1

GmM
=

1

G(m + M)
≈ 1

GM
(2.11)

which results in

v =

√

GM

a

√

1 + e

1 − e
. (2.12)
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Using Kepler’s third law

T 2 =
4(π)2µ

k
a3 (2.13)

which then simplifies to

T = 2πa

√

a

GM
(2.14)

and then rearranged to yield
√

GM

a
=

2πa

T
. (2.15)

we are then able to substitute this information into Eq. (2.12) and finally obtain

v =
2πa

T

√

1 + e

1 − e
. (2.16)

This is the result used to determine the initial conditions for the velocities of both

the giant and terrestrial planets. It should also be noted that the terrestrial planet

starts in a circular orbit and therefore has an eccentricity of zero.

2.2 Description of the Program

For each of our simulations, we consider both the observed giant planet and a

hypothetical terrestrial planet of one Earth-mass, i.e., 3.005 × 10−6 M⊙, to execute

a grid of model computations. The method of integration assumes a fourth-order

Runge-Kutta integration scheme (Press et al. 1989). The code has extensively been

tested against known analytical solutions, including two-body and restricted three-

body problems (see Noble et al. 2002; Cuntz et al. 2007; Eberle et al. 2008, for detailed

results). In the particular framework of our simulations, which are limited to about

103 yrs due to the ejection of the terrestrial (Earth-mass) planet from the system,

we found that a precision of 10−4 for the integration scheme is perfectly sufficient.

We arrived at this value by performing detailed test simulations while comparing the

ejection times for Earth-mass planet.
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For each star system several different cases were studied. The main goal of this

thesis was to determine the orbital stability effects when the Earth-mass planet is

placed at different initial positions. To begin each set of simulation runs the Earth-

mass planet was placed at either δ = 0.1, δ = 0.5 or δ = 0.9 within the HZ for a

given starting position of the giant planet (perigee or apogee). We then preceded

to change the starting position of the Earth-mass planet in 10◦ increments ranging

from 0◦ to 350◦ with 0◦ corresponding to the perigee of the giant planet, resulting in

36 simulations. The same process was carried out for each possible combination of

starting positions, resulting in six data sets for each star. The initial conditions for the

Earth-mass planet were taken to be the initial position in the x and y direction and

then calculating the initial velocity in both of these directions as well. For simplicity

we are taking all of these calculations to be in the same plane as the giant planet and

the host star and therefore allowing the z axis position and velocity to be 0.

The giant planet was taken to always start at either apogee or perigee. This

suggests that there is no y axis coordinate for the giant planet and no x axis velocity

for the initial conditions of the giant planet. The host star, for simplistic reasons,

is considered to be starting at rest, but the program takes this into account and

is adjusted to conserve angular momentum. Once the program is started, all three

bodies begin to interact with each other. As one would expect, the orbit of the Earth-

mass planet is almost immediately heavily disturbed by the gravitational pull of the

giant planet, leading to a more elliptical orbit and ultimately to its ejection from the

HZ within 10−2 to 103 yrs. We also find that small changes in the starting position

of the Earth-mass planet often result in extremely different outcomes and ejections

time. This behavior is well visible in Fig. 2.1 depicting two case studies of orbits

for an Earth-mass planet in the star-planet system of HD 188015. In both models,

the giant planet was initially placed at perigee, whereas the starting positions of the



22

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

θ
0
 = 150

Distance (AU)

D
is

ta
nc

e 
(A

U
)

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

θ
0
 = 160

Distance (AU)

D
is

ta
nc

e 
(A

U
)

Figure 2.1. Case studies of orbits for a terrestrial planet (dotted line) in HZ (gray area)
of HD 188015 based on a simulation time of 1000 years. Note that in both models,
the giant planet (solid line) is initially placed at perigee. The starting positions of the
Earth-mass planets are given as δ = 0.5 at an angle of 150◦ and 160◦, respectively.

Earth-mass planet were at an angle of 150◦ and 160◦, respectively. At this point it is

useful to note that the unit of time will be the AU year (the period of a circular orbit

of radius 1 AU). In these units, the product GM = 4π2a3/T 2 with a in [AU] and T

in [yr].

We also produced another set of simulations where the masses of the giant

planets for HD 20782 and HD 188015, with a minimum mass of 1.78 and 1.50 MJ

(Butler et al. 2006), respectively, were increased by a factor of 1.3. This result was

studied because we do not know the exact value of sin(i). The simulations were run

again for this new mass value for the cases of δ = 0.5 for both the apogee and perigee

positions of the giant planet. We then compared the effects of the new mass on the
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Figure 2.2. Case studies of orbits for a terrestrial planet (dotted line) in HZ (gray
area) of HD 188015 based on a simulation time of 1000 years. Note that in both
models, the giant planet (solid line) is initially placed at perigee. The starting mass
of the terrestrial planets are given as δ = 0.5 at initial mass and increased mass,
respectively.

stability of the system. For the particular case shown in Fig. 2.2 it can be seen that

increasing the mass alters the orbit of the Earth-mass planet greatly.

2.3 Test of Accuracy of the Code

The orbital stability analysis of both star systems were preformed by running

an extensive set of simulations. In each case we allowed the simulation to run for

103 yrs due to the ejection of the Earth-mass planet from the system, where a step

size of 10−4 yr was found to be sufficient for our integration scheme. We arrived at

this value by performing detailed test simulations while comparing the ejection times

for the Earth-mass planet. These test simulations were carried out by keeping the
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Table 2.1. Tests of computer code for HD 20782

Run τ Tsim TEJ

(a) 1 · 10−2 100 remained within
(b) 1 · 10−3 100 85.289
(c) 1 · 10−4 100 80.6690
(d) 1 · 10−5 100 80.66908
(e) 1 · 10−6 100 80.66908

Table 2.2. Tests of computer code of HD 188015

Run τ Tsim TEJ

(a) 1 · 10−2 1000 7.03
(b) 1 · 10−3 1000 7.034
(c) 1 · 10−4 1000 7.0347
(d) 1 · 10−5 1000 7.03472
(e) 1 · 10−6 1000 7.03472

initial conditions the same but varying the step size. It was found that the orbit did

not change between the 10−4 yr and 10−5 yr cases. The following figures and tables

demonstrates this comparison.

As can be seen from these figures the orbits of the planets does not change from

10−4 to 10−5 yr timestep. This means that the 10−4 yr timestep is sufficient for all

data runs. It can also be seen from Tables 2.1 and 2.2 that the change in ejection

time between the 10−4 and 10−5 yr timesteps are so minor that it is sufficient to use

the 10−4 yr timestep. It is also noted that the ejection time results between the 10−5

and 10−6 yr timesteps are almost always identical. The although the 10−4 and 10−5

yr timesteps are not identical they are the same out to 4 decimal points. Due to

the increased amount of time needed between the two sets of timesteps, it was more
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Figure 2.3. Examples of the method used to determine the timestep needed for a
precise result for the system HD 20782. Note that the giant planet was initially
placed at perigee. The starting position of the Earth-mass planet is given as δ = 0.5
at an angle of 180◦.

time effective to use the larger timestep to be able to collect a larger range of data.

Therefore the 10−4 yr timestep was chosen for all data runs.

It should also be noted that due to the large eccentricity of the star-planet

system HD 20782, an adapted timestep should be used for a more precise result. The

reason for this is that if we consider an initial aphelion distance of 1 AU and an initial

aphelion velocity of π/2 AU/yr using a time step as small as τ = 0.0005 yr, the total

energy varies by over 7% per orbit (Garcia 2000). While this does not seem to affect

our results it should be noted that it would increase the efficiency of the program.

Due to the physics involved, one only needs a small timestep when the planet is at its

closest approach. This would suggest that an adaptive Runge-Kutta Function should
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Figure 2.4. Examples of the method used to determine the timestep needed for a
precise result for the system HD 188015. Note that the giant planet was initially
placed at perigee. The starting position of the Earth-mass planet is given as δ = 0.5
at an angle of 180◦.

be used to account for this change. For further applications of this research it would

be necessary to implement this change.



CHAPTER 3

RESULTS AND DISCUSSION

In the following two sections we will look at the results obtained from the

simulations for each of the two star systems. We will compare various outcomes for

the different initial conditions and express our interpretation of the results. In the

third section we will then look at the statistics behind the results and draw necessary

conclusions from the data obtained.

3.1 Case Study of HD 20782

As previously stated, for each value of δ = 0.1, δ = 0.5, and δ = 0.9, mass of the

giant planet, and starting position of the giant planet, 36 simulations were run. In

the following figure (Fig. 3.1) we can compare each of these results simultaneously,

allowing us to see the variation in results in terms of the log of the ejection time

based on the initial conditions. In the first two figures we can see how changing

from the perigee to apogee starting position of the giant planet produces extremely

different results. In the case of the third plot in Fig. 3.1 we are now comparing the

starting positions of the giant planet for the increased mass case. Here the difference in

outcomes between starting at apogee or perigee for the giant planet can be compared,

noting that the outcomes are radically different, i.e. exhibit chaotic behavior. If we

look at this figure in greater detail we can see that in the apogee cases the results

appear to be grouped more closely together than in the other two cases. When

looking at the perigee and increased mass cases, it can been seen that the results are

extremely sporadic. As can be seen from this groupings of plots, it is very difficult to

27
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tell just how the change in starting position of the Earth-mass planet will affect how

quickly it is ejected from the HZ.

Several different sets of numerical computations were preformed to identify

the influence of the starting positions of the giant planet and Earth-mass planet on

the outcome of the simulation. In the following, we will showcase various different

simulation runs to provide comparisons of the behavior of the Earth-mass planet for

various initial conditions. By default, most of these runs are depicted for a simulation

time of 103 yrs. Figures 3.2 through 3.4 are for the star-planet system HD 20782. In

this system, the ginat planet is on an extremely elliptical orbit, which typically results

in large variations of the gravitational attraction toward the Earth-mass planet. First

we will examine two examples for the case δ = 0.1 case and then additional examples

for δ = 0.5 and 0.9. In order to demonstrate how the outcomes vary based on altered

initial conditions, we will only change one initial condition between the comparison

figures.

The first set that we have chosen to compare is for the apogee and perigee

starting positions of the giant planet (Fig. 3.2). As can be seen from the set of plots,

this change in starting position by 180◦ for the giant planet produces a radically

different outcome. All of the initial conditions for the Earth-mass planet placed at

an angle of 20◦ remain the same for both figures. When the giant planet is placed

at perigee the Earth-mass planet is ejected from the habitable zone after only 23.9

years. If we compare this to the case of the giant planet starting at apogee we see

the Earth-mass planet being ejected from the habitable zone in only 7.6 years.

This is interesting due to the fact that in the second case the Earth-mass planet

is starting much further away from the giant planet than in the first case, thus being

exposed to a significantly smaller amount of gravitational attraction, and yet remains

within the habitable zone for a much shorter than when it starts closer to the giant
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Figure 3.1. Display of log TEJ for the Earth-mass planet dependent on its starting
position, angle θ, for HD 20782. The top figure shows the comparison between the
models with starting positions δ = 0.1 (solid line; squares), δ = 0.5 (dashed line;
circles), and δ = 0.9 (dotted lines; triangles) with the giant planet originally placed
at perigee. The middle figure refers to the same setting, except that the giant planet
is now originally placed at apogee. The bottom figure depicts models with the Earth-
mass planet at a starting position of δ = 0.5. The mass of the giant planet has now
been increased by 30% and is originally placed at perigee (solid line; squares) or at
apogee (dashed line; circles).
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planet. On the other hand, if the starting angle of the Earth-mass planet is selected as

30◦, 40◦, and 50◦, the encountered ejection times are 12.1 yrs, 14.2 yrs, and 2.3 yrs,

respectively, for the giant planet placed at perigee position. However, if the giant

planet is originally placed at apogee position, the ejection times of the Earth-mass

planets are 10.9 yrs, 141.1 yrs, and 14.1 yrs, respectively. This is a highly intriguing

example that small changes in the initial conditions of a non-dissipative system can

lead to significantly different outcomes (see also Fig. 3.1).

The next set of comparisons shown deals with the comparison between initial

mass and increased mass as well as variation in starting position of the giant planet,

as depicted in Fig. 3.3. This figure compares the initial mass and the increased mass

for both the perigee and apogee starting positions of the giant planet. In all four

cases, the starting position of the Earth-mass planet has been chosen as 10◦, a choice

which is admittedly highly arbitrary. It can be seen from these plots that changing the

starting position from perigee to apogee increases the amount of time the Earth-mass

planet is within the habitable zone by almost a factor of three.

However, this is not the case for the increased mass. While the increased mass

does increase the amount of time that the Earth-mass planet resides within the hab-

itable zone for the perigee starting position of the giant planet, it reduces the amount

of time spent within the habitable zone when the giant planet starts at apogee. It

can also be seen from the figure that the changes in starting position and mass of

the giant planet produce extremely different outcomes for the orbit of the Earth-mass

planet. In three of the four cases it can be seen that the Earth-mass planet is ejected

from the habitable zone as well as from the system in a very short amount of time.

However, in the case of the giant planet starting at perigee and with an increased

mass, it is seen that the Earth-mass planet is ejected from the habitable zone in 34.9

years but still remains to be part of the system. The orbit of the Earth-mass planet
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appears to take on a more elliptical path with each close encounter with the giant

planet, pushing it farther and farther away from the host star and ultimately the

habitable zone.

Figure 3.4 is relatively similar to Fig. 3.2 in respect to what is being compared

with the exception of the initial placement of the Earth-mass planet within the hab-

itable zone. For this set of simulations we are now looking at a starting placement

of δ = 0.9 and a starting angle of 160◦. It can be seen that by changing the starting

position of the giant planet, the orbit of the Earth-mass planet is again significantly

altered. In the case of apogee the Earth-mass planet is very close to the starting

position of the giant planet as can be seen from the early interaction. Due to this

interaction, the Earth-mass planet is almost immediately ejected from the system,

whereas for the case of perigee it takes a longer period of time before the interaction

between the giant planet and the Earth-mass planet causes the Earth-mass planet to

be ejected from the system. This was not the case for the case studies depicted in

Figs. 3.2 and 3.3. Although the Earth-mass planet started much closer to the perigee

starting position of the giant planet, it was seen that when the giant planet started at

apogee that the Earth-mass planet was ejected from the habitable zone much more

quickly, which is again very surprising. In this case, the difference between the length

of stay within the habitable zone is about a factor of 20.
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Figure 3.2. Case studies of orbits for an Earth-mass planet (dotted line) in the HZ
(gray area) of HD 20782. The starting positions of the Earth-mass planets are given
as δ = 0.1 at an angle of 20◦. The giant planet (solid line) was initially placed at
perigee (top figure) and apogee (bottom figure). The Earth-mass planets were ejected
after 23.9 and 7.6 yrs, respectively .
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Figure 3.3. Case studies of orbits for an Earth-mass planet (dotted line) in the HZ
(gray area) of HD 20782. The starting positions of the Earth-mass planets are given
as δ = 0.5 at an angle of 10◦. The simulations also refer to different cases for the
giant planet (solid line), originally placed at perigee (left column) and apogee (right
column) and with minimum mass (top row) and its mass increased by 30% (bottom
row), respectively. The Earth-mass planets were ejected after 8.0, 20.7, 34.9, and 18.7
yrs, respectively (from left to right and top to bottom) .
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Figure 3.4. Case studies of orbits for an Earth-mass planet (dotted line) in the HZ
(gray area) of HD 20782. The starting positions of the Earth-mass planets are given
as δ = 0.9 at an angle of 160◦. The giant planet (solid line) was initially placed at
perigee (top figure) and apogee (bottom figure). The Earth-mass planets were ejected
after 51.5 and 2.5 yrs, respectively .
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3.2 Case Study of HD 188015

The results obtained from each of the data runs for the star-planet system

HD 188015 can be viewed simultaneously in the following figure (Fig. 3.5). This

grouping of figures also shows the effects of changing the starting distance of the

Earth-mass planet within the habitable zone. It can been seen from this figure that

the change between δ = 0.1, δ = 0.5, and δ = 0.9 produces extremely different

outcomes in terms of the log of the ejection time. This result can been seen for both

the perigee and apogee starting position of the giant planet. In the case of the third

plot in (Fig. 3.5) we are now comparing the starting positions of the giant planet for

the increased mass case. Here the difference in outcomes between starting at apogee

or perigee for the giant planet can be compared, noting that the outcomes are radially

different, again implying that the system is exhibiting chaotic behavior.

The next three figures (Figs. 3.6 through 3.8) are the case studies associated

with the star system HD 188015 and set up in the same manner as the case studies for

HD 20782 in the previous section. In this system, the giant planet has a semimajor

axis of ap = 1.203 and a relatively small eccentricity of ep = 0.137 (see Table 1.1),

and thus spends all of its time in the stellar habitable zone. Thus, there is typically a

stronger gravitational interaction between the giant planet and the Earth-mass planet

compared to the system HD 20782, although strong variations in the gravitational

force exist owing to the changes in orbital positions of the objects.

We again examine the various starting positions of the Earth-mass planet rang-

ing from δ = 0.1, 0.5 and 0.9 to compare the different outcomes of the simulation

runs. The first figure that we examine in greater detail (Fig. 3.6) is somewhat similar

to Fig. 3.2 albeit noticeable differences in the star system and initial starting position

of the Earth-mass planet. Here we see that for the case of perigee the Earth-mass

planet’s starting position is far enough away from the position of the giant planet
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Figure 3.5. Display of log TEJ for the Earth-mass planet dependent on its starting
position, angle θ, for HD 188015. The top figure shows the comparison between the
models with starting positions δ = 0.1 (solid line; squares), δ = 0.5 (dashed line;
circles), and δ = 0.9 (dotted lines; triangles) with the giant planet originally placed
at perigee. The middle figure refers to the same setting, except that the giant planet
is now originally placed at apogee. The bottom figure depicts models with the Earth-
mass planet at a starting position of δ = 0.5. The mass of the giant planet has now
been increased by 30% and is originally placed at perigee (solid line; squares) or at
apogee (dashed line; circles).
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that it is able to remain within the system. The interactions with the giant planet do

however alter the orbit of the Earth-mass planet allowing it to fluctuate between the

central part of the habitable zone and being just on the inner border of the habitable

zone. This event begins to occur after only 13.8 years. For the case of apogee, we

see that the Earth-mass planet and the giant planet start very near to each other

causing an interaction to happen almost immediately and ejecting the Earth-mass

planet from the system, after only 8.3 years.

Figure 3.7 is again a comparison between the initial mass and the increased

mass of the giant planet with the Earth-mass planet originally placed at 160◦, and

the giant planet placed at either the perigee or the apogee position. For this particular

star-planet system we are able to identify a completely different outcome from what

we saw with the previous system. The Earth-mass planet spends most of its time

within the habitable zone for the perigee starting position of the giant planet with

the original mass. However, when the mass is increased, the Earth-mass planet is

ejected only after 5.7 years. This means that it is now ejected about 9 times more

quickly than in the simulation with the original mass. For the case of apogee, we

see that the Earth-mass planet resides within the habitable zone for 11.9 years, but

is then ejected more quickly when the mass of the giant planet has been increased.

In this case the Earth-mass planet is ejected twice as fast once the mass of the giant

planet is increased. It can also be identified from this set of plots that the Earth-mass

planet is spending the most time within the habitable zone when it is starting near

the perigee starting position, which is also what we found for the first two case studies

of the previous star-planet system.

The final set of orbits that we show are for that of a starting case of 40◦ with an

initial starting position of δ = 0.9 within the habitable zone. It can be seen in Fig. 3.8

that the Earth-mass planet is ejected from the system when the initial position of the
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giant planet is at perigee, whereas the planet is not necessarily ejected from the system

when the giant planet’s initial position is at apogee. Nevertheless, in both cases the

Earth-mass planets are still almost immediately ejected from the habitable zone. For

the starting position of the giant planet at perigee the Earth-mass planet remains

within the habitable zone for a length of 1.3 years, while for the case of the giant

planet starting at apogee the Earth-mass planet only remains within the habitable

zone for 3.3 years. Both of these stays within the habitable zone are extremely short

but nonetheless correspond to radically different orbits for the Earth-mass planet.
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Figure 3.6. Case studies of orbits for an Earth-mass planet (dotted line) in the HZ
(gray area) of HD 188015. The starting positions of the Earth-mass planets are given
as δ = 0.1 at an angle of 250◦. The giant planet (solid line) was initially placed at
perigee (top figure) and apogee (bottom figure). The Earth-mass planets were ejected
after 13.8 and 8.3 yrs, respectively .
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Figure 3.7. Case studies of orbits for an Earth-mass planet (dotted line) in the HZ
(gray area) of HD 188015. The starting positions of the Earth-mass planets are given
as δ = 0.5 at an angle of 160◦. The simulations also refer to different cases for the
giant planet (solid line), originally placed at perigee (left column) and apogee (right
column) and with minimum mass (top row) and its mass increased by 30% (bottom
row), respectively. The Earth-mass planets were ejected after 53.8, 11.9, 5.7, and 5.9
yrs, respectively (from left to right and top to bottom) .
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Figure 3.8. Case studies of orbits for an Earth-mass planet (dotted line) in the HZ
(gray area) of HD 188015. The starting positions of the Earth-mass planets are given
as δ = 0.9 at an angle of 40◦. The giant planet (solid line) was initially placed at
perigee (top figure) and apogee (bottom figure). The Earth-mass planets were ejected
after 1.3 and 3.3 yrs, respectively .
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3.3 Statistics of Terrestrial Planet Ejections

In this section we will discuss the statistical significance of the results obtained.

The main statistical quantities that we are concerned with are the standard deviation,

variance, median, skewness, and kurtosis. We will now discuss the basic meaning of

each of these terms, as given from (Freund 1999) chapters 4 and 8, so that we can

discuss the results in further detail.

3.3.1 Analysis of Standard Deviation, Median and Variance

The standard deviation of a discrete random variable is the root-mean-square

(RMS) deviation of its values from the mean.

If the random variable X takes on N values x1, ..., xN (which are real numbers)

with equal probability, then its standard deviation σ can be calculated as follows:

1. Find the mean, x, of the values.

2. For each value xi calculate its deviation (xi − x).

3. Calculate the squares of these deviations.

4. Find the mean of the squared deviations. This quantity is the variance σ2.

σ2 =
1

N∗

N
∑

i=1

(xi − x)2 (3.1)

with N∗ = N or N∗ = N − 1 depending on the adopted statistical model.

5. Take the square root of the variance.

This calculation is described by the following formula:

σ =

√

√

√

√

1

N∗

N
∑

i=1

(xi − x)2, (3.2)

where x is the arithmetic mean of the values xi, defined as:

x =
x1 + x2 + ... + xN

N
=

1

N

N
∑

i=1

xi. (3.3)
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The median is described as the number separating the higher half of the sample,

or a probability distribution from the lower half. The median of a finite list of numbers

can be found by arranging all the observations from lowest value to highest value and

picking the middle one. If there is an even number of observations, the median is

not unique, so one often takes the mean of the two middle values. At most half the

population have values less than the median and at most half have values greater

than the median. If both groups contain less than half the population, then some of

the population is exactly equal to the median.

3.3.2 Analysis of Skewness and Excess Kurtosis

Skewness is a measure of symmetry, or more precisely, the lack of symmetry. A

distribution, or data set, is symmetric if it looks the same to the left and right of the

center point.

Kurtosis is a measure of whether the data are peaked or flat relative to a normal

distribution. That is, data sets with high kurtosis tend to have a distinct peak near

the mean, decline rather rapidly, and have heavy tails. Data sets with low kurtosis

tend to have a flat top near the mean rather than a sharp peak. A uniform distribution

would be the extreme case.

The skewness is defined as

Skew =

1
N

N
∑

i=1

(xi − x)3

(

1
N

N
∑

i=1

(xi − x)2

)

3

2

(3.4)

The skewness for a normal distribution is zero, and any symmetric data should

have a skewness near zero. Negative values for the skewness indicate data that are

skewed left and positive values for the skewness indicate data that are skewed right.
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By skewed left, we mean that the left tail is long relative to the right tail. Similarly,

skewed right means that the right tail is long relative to the left tail.

The excess kurtosis is defined as

XKur =

1
N

N
∑

i=1

(xi − x)4

(

1
N

N
∑

i=1

(xi − x)2

)2
− 3 (3.5)

The kurtosis for a standard normal distribution is three. For this reason, we are

using the excess kurtosis definition listed above. This definition is used so that the

standard normal distribution has a kurtosis of zero. In addition, with this definition

a positive kurtosis indicates a “peaked” distribution and a negative kurtosis indicates

a “flat” distribution.

The following tables represent the statistical analysis of the data collected for

each of the two star systems. The first two tables that follow show how the standard

deviation changes as we increase the increments between data collection. The first

column dictates the δ position of the Earth-mass planet, then we have the starting

position of the giant planet and the sin(i) value of the giant planet respectively. From

there we then state the mean value for the ejection time of the Earth-mass planet

along with its standard deviation. For the case of 90◦ this implies that there are four

values used to create this mean value and standard deviation value. In the case of

45◦ there are eight values and for the cases of 30◦, 20◦, and 10◦ there are 12, 18, and

36 data points respectively. It should be noted that as the increments get smaller,

the standard deviation values also get smaller. This is due to the larger sample size.

Tables 3.1 and 3.2 both demonstrate this result.

If we take a closer look at Table 3.1 it is worth mentioning that for all but one

of the cases, when comparing the 90◦ increment case and the 10◦ increment case the
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Table 3.1. Ejection Times Tmean
Ej for HD 20782. P represents the perigee case and A

represents the apogee case. P* and A* represent the increased mass case of f(m) =
1.3.

Positions Increments

... ... 90◦ 45◦ 30◦ 20◦ 10◦

... ... Value SD Value SD Value SD Value SD Value SD

0.1 P 17.4 3.4 13.4 2.6 17.0 2.3 18.6 5.8 15.7 2.9
0.1 A 16.5 7.8 14.4 3.9 12.6 2.6 16.0 2.7 17.5 4.0
0.5 P 59.6 13.6 39.3 10.6 41.5 8.4 44.3 6.6 48.3 4.6
0.5 A 21.4 12.0 31.8 10.6 19.7 4.2 22.4 4.5 21.6 2.8
0.9 P 17.5 8.8 19.9 4.4 18.5 3.8 20.1 3.4 19.6 2.1
0.9 A 13.3 4.8 9.5 2.7 12.4 2.2 14.5 2.4 12.7 1.4
0.5 P* 59.3 1.9 52.6 6.7 47.8 7.1 47.4 5.6 49.0 3.3
0.5 A* 12.7 5.4 14.4 3.7 13.8 4.2 13.8 2.2 13.9 1.8

values are within one standard deviation of each other. While this result is intriguing,

it is more appropriate to use the case of 10◦ increments so that we do not lose the

majority of the data. If we then move on to the 45◦ increment case we see that each

of the values lie within one standard deviation of the final case. Again, this in an

intriguing result, but it is important to realize that we would lose a lot of data by

using the 45◦ increment case for our entire study.

If we now look at Table 3.2 in the same way as Table 3.1 we find the same

intriguing result. In both tables we find that the only case where the 90◦ increment

case is not within one standard deviation of the 10◦ case is for that of δ = 0.5, perigee

with an increased mass. If we then move onto the 45◦ increment case we again see

that all values are within one standard deviation of the 10◦ increment case.

The next two tables that follow show the mean, median, standard deviation,

skew, and excess kurtosis of the data obtained for the 10◦ increments cases for the
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Table 3.2. Ejection Times Tmean
Ej for HD 188015. P represents the perigee case and A

represents the apogee case. P* and A* represent the increased mass case of f(m) =
1.3.

Positions Increments

... ... 90◦ 45◦ 30◦ 20◦ 10◦

... ... Value SD Value SD Value SD Value SD Value SD

0.1 P 6.6 3.6 10.6 2.7 10.5 1.9 11.3 1.5 10.9 1.0
0.1 A 7.1 3.6 10.8 2.5 9.2 1.8 8.7 1.4 9.5 1.0
0.5 P 69.1 51.4 74.9 26.4 73.4 21.6 84.6 23.4 94.2 20.2
0.5 A 89.3 77.7 86.3 38.0 84.8 29.2 71.9 16.3 73.7 13.0
0.9 P 7.3 2.2 8.3 1.7 7.5 1.3 7.9 1.0 7.7 0.7
0.9 A 7.3 3.3 6.9 1.7 7.6 1.2 7.6 1.0 7.6 0.6
0.5 P* 46.0 32.7 111.9 39.7 189.8 139.6 204.4 101.7 147.5 52.3
0.5 A* 62.1 33.1 60.3 22.0 49.8 14.9 43.5 10.5 70.2 22.3

star-planet systems HD 20782 and HD 188015 respectively. It should be noted here

that the standard deviation listed in Tables 3.3 and 3.4 are different from that of the

standard deviations listed in Tables 3.1 and 3.2. The standard deviations listed in

Tables 3.3 and 3.4 are for that of an individual ejection time, meaning we are now

using N∗ = N − 1, whereas the standard deviations listed in Tables 3.1 and 3.2 are

for the change in the mean value with increased data set size, using N∗ = N .

When looking at the skewness of the data it is worthwhile to group the skewness

into three different groupings. The first grouping being a strong negative skewness,

the second group being a mid-skewness, and the final group being a strong positive

skewness. For the case of mid-skewness we will define this range as −0.5 to 0.5. The

strong negative skewness will be anything more negative than −0.5 and the strong

positive skewness will be anything greater than 0.5. When looking at the skewness

of the data for the star-planet system of HD 20782 it can be seen that the majority
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of the data is skewed to the right with the exception of the δ = 0.5 perigee cases

for both the original mass and the increased mass. Both of these cases are skewed

to the left, although the δ = 0.5 perigee case with the original mass is extremely

close to being a normal distribution. Both cases for the δ = 0.1 are highly skewed to

the right and represent the most skewed result of the two star systems. Overall for

the star-planet system HD 20782 we find that only one case has a value that has a

strong negative skewness. We also find that only two cases have values within our

mid-skewness range and five cases where there is a strong positive skewness.

The skewness data for HD 188015 shows a similar result as that of HD 20782.

In the case of HD 188015 half of the data is skewed to the left and half of the data

is skewed to the right. The data that is skewed to the left is very close to a normal

distribution with the most negatively skewed set being −0.3. This means that all

of the negatively skewed data for this star-planet system fits into our mid-skewness

category. The positively skewed data is much more skewed than the negatively skewed

data, with the increased mass cases being the most positively skewed data for this

star system, meaning that all of the positively skewed data has a strong positive

skewness. This results in four values residing in the mid-skewness range and four

values residing in the strong positive skewness right. This implies that between both

star-planet systems there is a tendency to be positively skewed resulting in a right

tail that is long relative to the left tail. This strong positive skewness suggests that

there are a few extreme cases where the Earth-mass planet remains in the habitable

zone for a longer time period than would be expected. This would imply that given

the right initial conditions, there is a possibility of an Earth-mass planet residing in

an unstable system for enough time for the possibility of life to form given the right

system set up.
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At this point it is also worthwhile to discuss the excess kurtosis. As previously

stated before a positive kurtosis indicates a “peaked” distribution and a negative

kurtosis indicates a “flat” distribution. If we take another look at tables 3.3 and 3.4

we see that overall the excess kurtosis is very near zero, with the exception of two

extreme cases for both star-planet systems. In both of these cases the excess kurtosis

is extremely positive, meaning greater than 10. The two extremely positive excess

kurtosis cases for HD 20782 are for the δ = 0.1 cases, while for HD 188015 the two

extremely positive excess kurtosis cases are the increased mass cases. This means

that these data sets are extremely peaked, otherwise the rest data is fairly uniform

and behaves well.

If we now compare this work with that of Fatuzzo et al. (2006) and the

statistical stability analysis in the binary system we see a very similar result (see Fig.

3.9). It should be noted here, however, that Fatuzzo et al. (2006) uses log TEj instead

of the non log case that we are using. This would imply that any skewness that is

reported by Fatuzzo et al. (2006) will be even more greatly positively skewed. Based

on the results given by Fatuzzo et al. (2006) we see long tail to the right of the

data, i.e. a positive skewness. This skewness implies that there are a few cases in the

systems studied where the terrestrial planet remains within the otherwise unstable

system for a longer period of time than what would be expected. This is the same

result that we have obtained for the single star system. The fact that Fatuzzo et al.

(2006) reports a very similar result for the binary star case as we have for the single

star case is very remarkable. This would imply that given the right initial conditions,

i.e. formation conditions, there is a possibility of a stable system occurring in what

otherwise appears to be an unstable system.

The final table shown here (Table 3.5) shows the amount of increase between

the minimum and maximum ejection times. The factor represents the amount of
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Figure 3.9. Skew and Kurtosis results from Fatuzzo et al.(2006). The solid curve
shows a normal distribution with the same mean and width as the computed distri-
butions, normalized to the sample size of N = 103.

Table 3.3. Statistical Properties of Ejection Times for HD 20782. P represents the
perigee case and A represents the apogee case. P* and A* represent the increased
mass case of f(m) = 1.3.

Positions Statistical Properties
... ... Tmean

Ej Tmedian
Ej SD(TEj) Skew(TEj) XKur(TEj)

0.1 P 15.7 12.2 17.2 4.3 20.2
0.1 A 17.5 12.4 23.2 4.2 19.5
0.5 P 48.3 46.3 26.9 −0.03 −1.2
0.5 A 21.6 19.6 16.5 1.5 3.1
0.9 P 19.6 18.5 12.5 0.4 −0.4
0.9 A 12.7 12.6 8.4 0.8 1.4
0.5 P* 49.0 57.9 19.0 −1.4 0.6
0.5 A* 13.9 10.7 10.3 1.8 3.8
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Table 3.4. Statistical Properties of Ejection Times for HD 188015. P represents the
perigee case and A represents the apogee case. P* and A* represent the increased
mass case of f(m) = 1.3.

Positions Statistical Properties
... ... Tmean

Ej Tmedian
Ej SD(TEj) Skew(TEj) XKur(TEj)

0.1 P 10.9 10.9 6.0 −0.05 −0.9
0.1 A 9.5 10.8 5.8 −0.07 −1.1
0.5 P 94.2 54.4 118.0 1.9 3.5
0.5 A 73.7 41.2 75.8 1.0 0.03
0.9 P 7.7 9.5 4.2 −0.2 −1.6
0.9 A 7.6 8.9 3.7 −0.3 −1.4
0.5 P* 147.5 41.5 305.4 3.6 13.8
0.5 A* 70.2 34.7 129.9 4.0 17.6

change between the actual value of the minimum ejection time and the maximum

ejection time. The most extreme case is for that of δ = 0.5 perigee with an increased

mass for HD 188015. The factor change is on the order of 6000. Less extreme cases

are also noted from this table, where the factor is only on the order of 11. Oddly,

we see that the least extreme and most extreme factors are both yielded from the

HD 188015 case, which implies chaotic behavior for the entire system. In the case

of HD 20782 the factor values range from 20 to 483 while in the case of HD 188015

the factor values range from 11 to 5906 respectively. From this table, no pattern

can be seen as to how the starting position affects the amount of change between

the minimum and maximum ejection times, so we must therefore conclude that the

planet ejection from the system represents chaotic behavior.
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Table 3.5. Minimum and Maximum Ejection Times TEj for HD 20782 and HD 188015.
P represents the perigee case and A represents the apogee case. P* and A* represent
the increased mass case of f(m) = 1.3.

Positions HD 20782 HD 188015
... ... Tmin

Ej Tmax
Ej Factor Tmin

Ej Tmax
Ej Factor

0.1 P 0.22 107.89 483 0.45 20.20 45
0.1 A 0.96 141.07 146 0.14 19.48 135
0.5 P 0.48 96.19 200 0.36 525.35 1446
0.5 A 2.65 83.29 31 0.77 288.65 373
0.9 P 0.41 51.49 125 1.22 13.30 11
0.9 A 1.04 41.28 40 1.03 12.77 12
0.5 P* 0.42 67.22 160 0.28 1635.96 5906
0.5 A* 2.59 52.91 20 5.88 744.47 1532



CHAPTER 4

FURTHER APPLICATION

4.1 The Hill Radius criterion and its validity

As previously mentioned in earlier chapters, the Hill sphere (Hill Radius) refers

to the gravitational sphere of influence of one astronomical body such as Earth in the

presence of perturbations from another heavier body (Sun) around which it orbits. In

the restricted three body problem containing a heavier mass and a lighter mass, the

Hill Radius refers to the region around the lighter mass located at x2 within which

the total gravitational influence on an infinitesimal mass will be directed towards the

lighter mass (Pillai et al. 2007). The Hill Radius can be derived by making various

assumptions and transferring the origin of the coordinate system to the second mass.

The following is a derivation for the simplified Hill Radius equation as given by chapter

three of Murray & Dermott (2008).

It is first necessary to start with the equations of motion for the three body

problem in the synodic system. These equations are given as follows:

ẍ − 2nẏ − n2x = −
(

µ1

x + µ2

r3
1

+ µ2

x − µ1

r3
2

)

(4.1)

ÿ − 2nẋ − n2y = −
(

µ1

r3
1

+
µ2

r3
2

)

y (4.2)

where

µ1 = 1 − m2

m1 + m2

(4.3)

and

µ2 =
m2

m1 + m2

. (4.4)
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with m1 > m2 For small mass ratios µ1 ≈ 1 and the planar equations of motion

become

ẍ − 2nẏ − n2x = − x

r3
1

− µ2

x − 1

r3
2

(4.5)

ÿ − 2nẋ − n2y = − y

r3
1

− µ2

y

r3
2

(4.6)

Here we define r1 as the distance from µ1 to a particle at point P , and r2 as

the distance from µ2 to the same point P .

We now transform the x axis such that x → 1+x leaving the y axis unchanged,

and let ∆ = r2. Since we are now considering motion close to the planet we can

assume that x, y, and ∆ are small quantities of O(µ
1

3

2 ) and n = 1. Neglecting higher

powers of µ2 we have r1 ≈ (1 + 2x)
1

2 . This allows the planar equations of motion to

be written as

ẍ − 2ẏ =
(

3 − µ2

∆3

)

x (4.7)

ÿ + 2ẋ = − µ2

∆3
y (4.8)

Equations 4.7 and 4.8 are called Hill’s equations and were first derived in connection

with Hill’s work on lunar theory.

Inspection of Eq. (4.7) reveals that the radial force vanishes when 3∆3 = µ2,

expressing the equilibrium between the tidal force and the mutual attraction. This

leads to the definition of the Hill’s sphere as the sphere of radius

∆H =
(µ2

3

)
1

3

(4.9)

surrounding the secondary mass.

With this derivation several approximations were taken into account. The form

of the Hill Radius used for this thesis is defined as RH = ap(1− ep)
3

√

mp/3M⋆, where
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mp and M⋆ are the masses of the giant planet and the central star, respectively, ap

is the semi-major axis of the giant planet and ep denotes its orbital eccentricity. In

this study we are considering the effects of the Hill Radius on the orbital stability of

the Earth-mass planet. This study has been consider by Jones et al. (2005) among

others but not in the detail that our study is considering.

Please note that other studies of the Hill Radius criterion such as Menou &

Tabachnik (2003) and Jones & Sleep (2002) have defined RH without the 1−ep term,

whereas, von Bloh et al. (2007) consider a more intricate expression in terms of ep

to identify the stability domain in the HZ in the presence of a giant planet on a

non-circular orbit. This expression being

Rint = a(1 − e) − nint(e)RH (4.10)

Rext = a(1 + e) + nint(e)RH (4.11)

where e is the eccentricity of the giant planet, RH is defined without the 1− ep

term, and the values of the functions nint(e) and next(e) are taken from Table 4 in

Jones et al. (2005). In this thesis we will not use these alternative expression but

we will still investigate the usefulness of the Hill Radius Criterion by checking the

behavior of the Earth-mass planet both regarding RH and 3RH.

For our two star-planet systems, HD 20782 and HD 188015, the Hill Radii

are calculated to be 8.52 × 10−3 and 7.88 × 10−2 AU, respectively. As part of our

study we perform several sets of simulations both for HD 20782 and HD 188015, aimed

particularly at exploring the onset of orbital instability for the Earth-mass planet and

its ejection from the stellar HZ. As discussed previously, we place the giant planet

either at apogee or perigee relative to the host star at the start of each simulation.

We then pursue a set of simulations for each system with different initial positions for
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the Earth-mass planet insides the stellar HZ also noting that its velocity components

are set up to orbit the star on a circular orbit. The distances for the Earth-mass

planet from the host star are chosen according to rj = rHZ,i + δj · (rHZ,o − rHZ,i) with

rHZ,i as inner radius of the HZ, rHZ,o as outer radius of the HZ and δj = 0.1, 0.5, and

0.9 (j = 1, 2, 3) as distance parameter. The inner and outer regions of HZ being used

are the same as those defined for our own solar system. The reasons for this practice

have been discussed in chapter 1. We also produced another set of simulations where

the masses of the giant planets for HD 20782 and HD 188015, with a minimum mass

of 1.78 and 1.50 MJ (Butler et al. 2006), respectively, were increased by a factor of

1.3. This also leads to an increase of the two Hill Radii by a factor of
√

1.3, i.e., by

14%.

Figures 4.1 and 4.2 display a set of histograms about the ejection of the Earth-

mass planet from the HZs of HD 20782 and HD 188015. The models assume starting

positions for the giant planet either at its perigee or apogee. Moreover, we check both

the RH and the 3RH criterion concerning the ejection. The starting positions of the

Earth-mass planet were always in the middle of the HZ (δ = 0.5), and were forwarded

in 10◦ increments, resulting in 36 models per histogram display. The histograms show

different distributions concerning the number of models (out of a total of 36 models)

for a given number of in-and-out events for both the RH and 3RH ejection criterion.

As an intriguing result, there is no exclusive spike at event number 1, which would be

the correct outcome if the Hill Radius Criterion was applicable. Oddly, as a strange

exception, this type of outcome is found for the 3RH case of HD 188015; however,

this finding does not affect the main conclusion of this thesis due to the fact that

the Earth-mass planet appears to continuously enter and exit the RH during the time

that it is inside the 3RH and is not immediately ejected from the HZ. The histograms

show no clear patterns, except that for HD 20782 the majority of models is consistent
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with 0 to 3 in-and-out events in regard to the RH criterion. On the other hand, there

is a large number of model simulations, especially for HD 20782, where the Earth-

mass planet never enters the one Hill radius domain, but is still ejected from the HZ

(Cuntz & Yeager 2009).

Table 4.1 offers another look at our results. Here we calculated the mean and

median of the number of in-and-out events concerning RH prior to the ejection of the

Earth-mass planet from the HZ. The findings in this table are consistent with those

shown in (figs. 4.1 and 4.2), and show that the Hill Radius Criterion is invalid. This

result is obtained regardless if the Earth-mass planet is started in the middle (δ = 0.5)

or near the inner (δ = 0.1) or outer (δ = 0.9) edge of the HZ, or if for the mass of

the giant planet the minimum mass (f(mp) = 1) or increased mass (f(mp) = 1.3) is

used for our models.

Nevertheless, Table 4.1 reveals some surprising behavior. For instance, it is

found that for case studies of HD 188015 with δ = 0.5, Nmedian exhibits extraordinary

high values, i.e., between about 12 and 35, whereas the values of Nmean are quite

decent, i.e., between 4.5 and 7.5. This result is due to a few extreme outliers, which

strongly affect Nmean, but barely Nmedian. For instance, for a case study with δ = 0.5,

the giant planet originally at perigee, and f(mp) = 1, it is found that the Earth-mass

planet enters and leaves the one Hill Radius domain a total of 111 times prior to its

final ejection from the HZ. However, it is also found that it stays within the 3RH

domain most of the time. Even more extreme behaviors are found for case studies of

f(mp) = 1.3.

It is also worth mentioning that for HD 188015, at first sight, the Hill Radius

Criterion seems to work, because for several sets of simulations, we find Nmedian = 1,

as predicted (see Table 4.1). However, this interpretation is misleading because the

median value has been calculated for the full set of 36 models, obtained by forwarding
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Figure 4.1. Histograms for the ejection of the terrestrial planet from the HZ of
HD 20782. The models are based on starting positions for the giant planet given
by δ = 0.5 were forwarded in 10◦ increments, resulting in 36 models per histogram
display. The white bars correspond to models of minimum mass for the giant planet,
whereas the black bars represent models with an increase mass by a factor of 1.3.
Also not that for some histograms there is a small number of outliers beyond event
number 10.

the planet in 10◦ increments, with the other specifications kept constant. Though, if

individual models are inspected, there is usually a relative large number of models

where the Earth-mass planet never enters the Hill Radius, but is still ejected from the

stellar HZ. This type of behavior is offset by various other models where the Earth-

mass planet enters and leaves the Hill Radius several times prior to its ejection. Thus,

again, we find that the Hill Radius Criterion is an insufficient method for predicting

the instability of an Earth-mass planet near a giant planet.
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Figure 4.2. Histograms for the ejection of the terrestrial planet from the HZ of
HD 188015. The models are based on starting positions for the giant planet given
by δ = 0.5 were forwarded in 10◦ increments, resulting in 36 models per histogram
display. The white bars correspond to models of minimum mass for the giant planet,
whereas the black bars represent models with an increase mass by a factor of 1.3.
Also not that for some histograms there is a small number of outliers beyond event
number 10.

Table 4.1. Statistics of RH Ejections

Positions HD 20782 HD 188015
δ EGP f(mp) Nmean Nmedian Nmean Nmedian

0.1 Perigee 1.0 1.11 1.0 4.72 4.5
0.1 Apogee 1.0 0.94 1.0 4.11 4.0
0.5 Perigee 1.0 0.94 1.0 18.33 7.5
0.5 Apogee 1.0 1.61 1.0 11.58 6.0
0.9 Perigee 1.0 0.36 0.0 2.19 2.0
0.9 Apogee 1.0 0.44 0.0 2.28 3.0
0.5 Perigee 1.3 0.47 0.0 34.89 5.5
0.5 Apogee 1.3 0.83 1.0 14.56 4.5



CHAPTER 5

CONCLUSIONS

The chief goal of our study was to provide a detailed statistical analysis of the

ejection of Earth-mass planets from the habitable zones of the solar twins HD 20782

and HD 188015, and to point out various underlying properties. The systems of

HD 20782 and HD 188015 possess a giant planet each that crosses into the stellar

habitable zone, thus disallowing the existence of habitable terrestrial planets due to

the initiation of orbital instabilities; see Noble et al. (2002) for previous results for

the system HD 210277, indicating a similar type of behavior. Note that in case of

HD 188015, the orbit of the giant planet is essentially circular, whereas in case of

HD 20782, it is extremely elliptical. As starting positions for the giant planets, we

considered both the apogee and perigee position, whereas the starting positions of

the Earth-mass planets were widely varied.

We identified the following statistical properties pertinent to the ejection of the

Earth-mass planets from the stellar habitable zones:

1. As a general result it was found that the ejection times are largest if the starting

position for the terrestrial planet is placed at δ = 0.5, instead of δ = 0.1 or

δ = 0.9, as expected. After comparing the various models, it was found that

there were typically no significant differences between the perigee and apogee

starting positions for the EGP when the terrestrial planet started at δ = 0.1 or

δ = 0.9, but noticeable differences were found for the initial starting positions

of δ = 0.5.
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2. Concerning the δ = 0.5 case, which is the most interesting case, the ejection

times (as gauged by Tmean
Ej ) are generally longer for HD 188015, which is the

quasi-circular case, than for HD 20782, which is the highly elliptical case. The

most likely reason is that in this star-planet system, the elliptical orbit of the

EGP leads to a larger number of relative close approaches with the terrestrial

planet, resulting in its ejection from the HZ.

3. For the star system HD 20782 the mean ejection times seem to be typically

between 10 and 20 years with two exceptions both close to 50 years, but the

star system HD 188015 has a much wider spread of the mean ejection times

ranging from 7.6 years to 147.5 years.

4. We also found that the ejection times for the Earth-mass planets from the

habitable zones of HD 20782 and HD 188015, originally placed at the center of

the habitable zones, vary by a factor of ∼200 and ∼1500, respectively, depending

on the starting positions of the giant and terrestrial planets. If the mass of the

giant planet is increased by 30%, the variation in ejection time for HD 188015

increases to a factor of ∼6000.

5. Based on the amount of variation in the factor of the ejection times from the

habitable zones we have determined that the nature of the behavior is chaotic.

Both systems are very sensitive to the initial conditions, in which the planet

ejection from the system represents its chaotic behavior.

6. The range of the median ejection time values seem to agree fairly well between

the two star systems. The star system HD 20782 has a median range value of

12.2 years to 57.9 years while the star system HD 188015 has a median range

value of 8.9 year to 54.4 years.

7. Analysis of skewness of TEj for the eight models of both stars resulted in showing

a significant positive skewness in a large majority of the models. This means
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that concerning both stars there are a considerable number of models with rel-

atively long ejection times for the terrestrial planet. This result is of significant

astrobiological interest, especially if it can be scaled to other systems. According

to this result, there is a possibility of a relatively stable orbit in the parameter

of space if the initial conditions allow it. This result is also found in the work

of Fatuzzo et al. (2006), although they discuss the skewness of log TEj instead.

8. It was found from the two star systems that there is an overall flat distribution

due to the majority of the values having a negative kurtosis. It is worth men-

tioning, however, the for each star system there are two extreme cases of very

positive or “peaked” distributions. In the case of HD 188015 these two cases

are for the increased mass cases, while for HD 20782 this result is found for the

δ = 0.1 cases.

From our further application investigation of the Hill Radius we were able to

determine that the Hill Radius is not a valid criterion in the prediction of orbital

stability. Our investigation shows that an Earth-mass planet placed in the HZ of

any of the two star-planet systems is eventually ejected; however, the Hill Radius

Criterion is of no help for predicting when the ejection takes place. If we take a closer

look at studies where the Earth-mass planet was initially placed in the middle of the

HZ, i.e., δ = 0.5, we see that in the case of HD 20782 with f(mp) = 1, the Earth-mass

planet was ejected from the system in 21% of the cases studied without ever having

entered the Hill Radius and in 44% of the cases having entered the Hill Radius once.

For f(mp) = 1.3, these numbers amount to 46% and 44%, respectively. In case of

HD 188015, the Earth-mass planet entered the Hill radius at least once prior to its

ejection from the star-planet system, regardless if the mass of the giant planet was

chosen as minimum mass or it was increased by 30%. However, in 79% of the cases
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the Earth-mass planet entered the Hill Radius at least twice, again regardless of the

mass of the giant planet. In fact, in some of our models for HD 188015, the Earth-

mass planet entered the Hill radius of the giant planet more than one hundred times

prior to its ejection from the stellar HZ.

A complete analysis comprised of simulations with starting distances of δ = 0.1,

0.5, and 0.9 for the Earth-mass planet and the giant planet either originally at perigee

or apogee and assumed to have minimum mass, amounting to a total of 216 models

per star, shows the following picture: In case of HD 20782, the Earth-mass planet

was ejected from the system in 40% of the cases studied without ever having entered

the Hill Radius and in 40% and 20% of the cases when it entered the Hill Radius once

or more than once, respectively. In case of HD 188015, these numbers read 0%, 26%,

and 74%, respectively. If the mass of the giant planet is raised by 30%, a smaller

number of Hill Radius entries is typically required for the Earth-mass planet to be

ejected, especially for the system HD 20782.

Thus, the ultimate conclusion of our study entails the highly inconvenient result

that future models targeting astrobiological, climatological or geological properties

of Earth-mass planets in extra-solar planetary systems need to be based on a self-

consistent treatment of planetary orbital stability, rather than a simplistic analytical

approximation, to render reliable results.

Overall, we have determined through statistical analysis and analysis of the Hill

Radius Criterion that even though a star-planet system appears to be unstable, given

the right initial (formation) conditions, it may still be possible for a planet to reside

within a HZ for long enough for primitive life to form. Even though the planets were

always ejected from the HZ for the two star-planet systems that we studied in great

detail, it is encouraging to see a distinct tail in the data, allowing for a few cases

to remain within the HZ for a longer period of time. Extrapolating these results to
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other star-planet systems may give us a better idea were to look for the most likely

candidates of habitable planets.



APPENDIX A

THE CODE
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The following is verbatim the code used to calculate the results. It was written

by William Jason Eberle and then edited to include information regarding the Hill

Radius criterion as was discussed in detail in this thesis. The code follows closely

with the program outlined in chapter 3 of Garcia (2000).

A.1 Main Body of Code

#include <cstdlib>

#include <math.h>

#include <dirent.h>

//functions for opening, reading, rewinding and closing a directory

#include <dir.h> //creating, deleting, and changing a directory

#include <sstream> //for conversion to string #include <string>

#include "CBody.h"

#include "energy.cpp"

#include "gravrk.cpp"

#include "rk4.cpp"

using namespace std;

double lbound = 0.0;

double ubound = 0.0;

int t_p = 1, lflag = 0, uflag = 0, h1count = 0, h3count = 0, h1flag = 0, h3flag = 0 ;

double lcrosstime = 0.0, ucrosstime = 0.0;

const int LINESIZE = 80; const int debug = 1;

string dtos(double num); //double to string converter int

mkdirtree(double type, double dsp, double Period, double timestep,

double massratio, double TotalMass, double rhonot, double dist); int

RunStuff(CBody *plan, const int nBodies,double param[6], double

tau,double nStep, double dsp); void initial_con (double &t_stop,

int&b_num, double &delta_t, CBody* planet); void

ShiftToCM(CBody*plan);

int main(int argc, char *argv[]) { const int nBodies = 3;

//number of bodies const double pi = acos(-1); const double G =
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4*pi*pi; const double adaptErr = 1e-3; //for rka CBody

plan[nBodies+1]; // the +1 is so I can count more

intuitivly double param [5+1]; double nStep; double d; double

TimePeriod; double DSP; //Data Sample period

double tau = 0;

//Dimensions in AU (center of mass coordinates)

double mu; double omega;

int body_num = 0;

//get the initial conditions from "data.in"

initial_con (TimePeriod, body_num, tau, plan);

cout << "--------------------------------EXOPLANET-------------------------------" << endl;

cout << "\nEnter lower (HZ) boundary [AU]: " ;

cin >> lbound ;

cout << "Enter upper (HZ) boundary [AU]: " ;

cin >> ubound ;

cout << endl;

cout << "Enter the order number of the terrestrial planet as defined in [data.in]." << endl;

cout << "The star is [0], first planet [1], ...etc. ";

cin >> t_p ;

cout<<"\n\n";

DSP = 0.0;

cout<<"The DSP (data sample period) sets how often data is

taken.\n"; cout<<"The DSP must be >= the time step which is:

"<<tau<<endl; while(DSP < tau) { cout<<"\nEnter the DSP: ";

cin>>DSP; if(DSP < tau) cout<<"The DSP (data sample period) must be

>= "<<tau<<endl; }

param[1]=plan[1].GetMass(); //Star

param[2]=plan[3-t_p+1].GetMass(); //Giant Planet

param[3]=plan[t_p+1].GetMass(); //Terrestrial Planet

double Massimo = param[1] + param[2];
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mu = param[2]/Massimo;

param[4] = sqrt(pow(plan[t_p+1].GetPos(X),2) + pow(plan[t_p+1].GetPos(X),2));

d = plan[1].GetPos(X) + plan[3-t_p+1].GetPos(X);

param[5] = d;

nStep = TimePeriod/tau;

mkdirtree(param[0], DSP, TimePeriod, tau, mu, Massimo,param[4], d);

cout<<"Time Period: "<<TimePeriod<<endl;

cout<<"Press any key to continue: \n\n";

cin.ignore(1);

cout << "COMPUTING......" << endl;

RunStuff(plan, nBodies, param, tau, nStep, DSP);

//Print to screen.

cout << "\n\nElapsed time: " << TimePeriod << "yrs" << endl; /* return elapsed orbital time to screen */

cout << "The output data file is [results.txt]" << endl;

cout << "------COMPLETE------.\n";

}//Type 4

cout<<"The Program Completed Succesfully without incident.\n";

cout<<"Press any key to quit.";

cin.ignore(1);

return EXIT_SUCCESS;

}

/////////////////////////////////////End of Main////////////////////////////////

string dtos(double num) {

stringstream converter;

converter << num;

return converter.str();

}

int mkdirtree(double type, double dsp, double Period, double

timestep, double massratio, double totalmass,double rhonot, double
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dist) {

string dirname;

dirname = "Type " + dtos(type); dirname += " [" + dtos(Period) +

"@"; dirname += dtos(timestep) + "] "; dirname += "DSP{" + dtos(dsp)

+ "}"; mkdir(dirname.c_str()); chdir(dirname.c_str()); //going in

one dir

dirname = "[mu, M] = [" + dtos(massratio); dirname += ", " +

dtos(totalmass) + "]"; mkdir(dirname.c_str());

chdir(dirname.c_str()); //going in one more dir

dirname = "[rhonot, D] = [" + dtos(rhonot/dist); dirname += ", " +

dtos(dist) + "]"; mkdir(dirname.c_str()); chdir(dirname.c_str());

//going in one more dir

mkdir("Data");

return 1; }

int RunStuff(CBody* plan, const int nBodies,double param[6], double

tau,double nStep, double dsp) { double r1plot, th1plot,

r2plot, th2plot,

r3plot, th3plot,

r3xplot, r3yplot,

tplot, tauplot,

p3plot, p3xplot, p3yplot;

//Set up the plotting variable files:

//thiplot, riplot, potential, kinetic

ofstream th1plotOut("Data/th1plot.txt"),

r1plotOut("Data/r1plot.txt"),

th2plotOut("Data/th2plot.txt"), r2plotOut("Data/r2plot.txt"),

th3plotOut("Data/th3plot.txt"), r3plotOut("Data/r3plot.txt"),

r3xplotOut("Data/r3xplot.txt"), r3yplotOut("Data/r3yplot.txt"),

tplotOut("Data/tplot.txt"),

tauplotOut("Data/tauplot.txt"),
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potentialOut("Data/potential.txt"),

kineticOut("Data/kinetic.txt"),

totalOut("Data/total.txt"),

p3plotOut("Data/p3plot.txt"),

p3xplotOut("Data/p3xplot.txt"), p3yplotOut("Data/p3yplot.txt"),

ParameterOut("Data/Parameter.txt");

if(!th1plotOut || !th2plotOut || !th3plotOut || !r1plotOut || !r2plotOut ||

!r3plotOut || !r3xplotOut || !r3yplotOut || !tplotOut || !tauplotOut ||

!potentialOut || !kineticOut || !p3plotOut || !p3xplotOut || !p3yplotOut

|| !ParameterOut)

{

cerr<<"One or more files could not be opened for writing!\n"

<<"Press any key to quit.";

cin.ignore(2);

exit(1);

}

ofstream fpOut("results.txt");

//open files or gracefully exit

if (!fpOut)

{

cout << "!!Output file could not be opened!!" << endl;

cout<<"Press any key to quit.";

cin.ignore(3);

exit(1);

}

// Output to the screen

double t_run = nStep*tau;

fpOut<<"\n--------------INITIAL CONDITIONS-----------------\n";

fpOut<<"Simulation time duration --> "<<t_run<<"\n\n";

for (int i=1; i <= 3; i++)

{

fpOut<<"Body "<<i<<":\n";

fpOut<<"\tMass[Solar units] --> "<<plan[i].GetMass()<<"\n";

fpOut<<"\tX-axis Position[AU] --> "<<plan[i].GetPos(X)<<"\n";

fpOut<<"\tY-axis Position[AU] --> "<<plan[i].GetPos(Y)<<"\n";

fpOut<<"\tZ-axis Position[AU] --> "<<plan[i].GetPos(Z)<<"\n";

fpOut<<"\tVX [AU/Yr] --> "<<plan[i].GetVel(X)<<"\n";
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fpOut<<"\tVY [AU/Yr] --> "<<plan[i].GetVel(Y)<<"\n";

fpOut<<"\tVZ [AU/Yr] --> "<<plan[i].GetVel(Z)<<"\n";

fpOut<<"-------------------------------------------------\n\n";

}

fpOut.close(); //close the file for now since we are not writing to it

/////////////////////////////////////////////////////////////////////////////////////////////

ParameterOut<<param[1]<<endl; //First Mass

ParameterOut<<param[2]<<endl; //Second Mass

ParameterOut<<param[4]<<endl; //R0

ParameterOut<<param[5]<<endl; //D

ParameterOut<<param[0]<<endl; //Type of initial conditions

ParameterOut<<param[3]<<endl; //small mass

ParameterOut.close();

//shift coordinates to Center of Mass coordinates for simulation

ShiftToCM(plan);

//starting simulation

cout<<"Ready to start simulation. Press any key to

continue."<<endl; cin.ignore(2); cout<<"Starting

simulation,...."<<endl<<endl; double time = 0; double tdLast = 0;

//time to take data double tpsLast = 0; //time to print data to

screen

//***************************************************************************

for(double iStep=1; iStep<=nStep; iStep++) { double kinetic = 0;

double potential = 0; double total = 0;

//Defined in energy.cpp

kinetic = Kinetic(plan,3); //kinetic of body 3

potential = Potential(nBodies,plan,3); //potential of body 3

total = Total(nBodies,plan); //total energy of system

//Print to screen only once a year

if(((time - tpsLast) > (1.0 - 0.5*tau)) && ((time - tpsLast) < (1.0

+ 0.5*tau))) {

double p1k = plan[1].GetMass()*Kinetic(plan,1);

double p2k = plan[2].GetMass()*Kinetic(plan,1);
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double p3k = plan[3].GetMass()*kinetic;

double p1p = plan[1].GetMass()*Potential(nBodies,plan,1);

double p2p = plan[2].GetMass()*Potential(nBodies,plan,2);

double p3p = plan[3].GetMass()*potential;

cout<<setprecision(5)<<endl;

cout<<time<<" years: \n";

cout<<" KIN: "<<p1k<<" "<<p2k<<" ";

cout<<setprecision(3)<<p3k<<setprecision(5)<<endl;

cout<<" POT: "<<p1p<<" "<<p2p<<" ";

cout<<setprecision(3)<<p3p<<setprecision(5)<<endl;

cout<<" TOT: "<<p1k+p2k+p3k+p1p+p2p+p3p<<endl;

cout<<"\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n";

tpsLast = time;

}

//Record position, velocity and energy every 0.01 years for plotting.

if(((time - tdLast) > (dsp - 0.5*tau)) && ((time - tdLast) < (dsp +

0.5*tau))) {

tdLast = time;

if(kinetic>2*fabs(potential)) { cout<<"\nKinetic Energy is greater

then Potential energy by a factor of 2,"

<<"\n...no longer bound.\n";

cout<<"Possible run-time error or collision....halting

simulation.\n"; cout<<"Press any key to quit."; cin.ignore(2);

break; }

///////////////Gets the current state variables///////////////

//////////////////////////////////////////////////////////////

r1plot = plan[1].GetR(); //

th1plot = atan2(plan[1].GetPos(Y),plan[1].GetPos(X)); //

//

r2plot = plan[2].GetR(); //

th2plot = atan2(plan[2].GetPos(Y),plan[2].GetPos(X)); //

//

r3plot = plan[3].GetR(); //

th3plot = atan2(plan[3].GetPos(Y),plan[3].GetPos(X)); //

r3xplot = plan[3].GetPos(X); //
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r3yplot = plan[3].GetPos(Y); //

//

p3plot = plan[3].GetV(); //

p3xplot = plan[3].GetVel(X); //

p3yplot = plan[3].GetVel(Y); //

//

tplot = time; //

tauplot = tau; //

//

//////////////////////////////////////////////////////////////

////////////////Then stores them in data files////////////////

//////////////////////////////////////////////////////////////

th1plotOut<<th1plot<<endl; //

r1plotOut<<r1plot<<endl; //

//

th2plotOut<<th2plot<<endl; //

r2plotOut<<r2plot<<endl; //

//

th3plotOut<<th3plot<<endl; //

r3plotOut<<r3plot<<endl; //

r3xplotOut<<r3xplot<<endl; //

r3yplotOut<<r3yplot<<endl; //

//

tplotOut<<tplot<<endl; //

tauplotOut<<tauplot<<endl; //

potentialOut<<potential<<endl; //

kineticOut<<kinetic<<endl; //

totalOut<<total<<endl; //

//

p3plotOut<<p3plot<<endl; //

p3xplotOut<<p3xplot<<endl; //

p3yplotOut<<p3yplot<<endl; //

//

//////////////////////////////////////////////////////////////

}



73

//When newstate is passed it is the same as state

rk4(time, tau, plan, gravrk); //integrate using same timestep

double semi = plan[3].GetSemimajor();

double ec = plan[3].GetEcc();

double rhill = semi*(1-ec)*pow(param[2]/(3*param[1]),1/3);

double Trhill = 3*rhill;

double Sep2 = 0.0;

double L2 = pow(lbound,2);

double U2 = pow(ubound,2);

for(int i = 0; i < 3; i++)

Sep2 += pow(plan[t_p+1].GetPos(i)-plan[1].GetPos(i),2);

if (Sep2 < L2)

{

if ( lflag == 0)

{

lflag = 1;

lcrosstime = time;

}

}

if (Sep2 > U2)

{

if ( uflag == 0)

{

uflag = 1;

ucrosstime = time;

}

}

double Hsep2 = 0.0;

for(int i = 0; i < 3; i++)

Hsep2 += pow(plan[t_p+1].GetPos(i)-plan[3].GetPos(i),2);
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if ( Hsep2 < pow(Trhill,2))

{

if ( h3flag == 0 && lflag ==0 && uflag == 0 )

{

h3flag = 1;

h3count += 1;

}

}

if( Hsep2 > pow(Trhill,2))

{

if(h3flag == 1)

{

h3flag =0;

}

}

if ( Hsep2 < pow(rhill,2))

{

if ( h1flag == 0 && lflag ==0 && uflag == 0 )

{

h1flag = 1;

h1count += 1;

}

}

if( Hsep2 > pow(rhill,2))

{

if(h1flag == 1)

{

h1flag =0;

}

}

time+=tau;

}// for (iStep=1; iStep<=nStep; iStep++)

fpOut.open("results.txt",ios::app); //open in append mode
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fpOut<<fixed<<setprecision(5);

if(lflag)

fpOut<<"Terrestrial planet crossed lower bound at t = "<< lcrosstime << " years." << endl;

if(uflag)

fpOut<<"Terrestrial planet crossed upper bound at t = "<< ucrosstime << " years." << endl;

if(!lflag && !uflag)

fpOut<< "Planet " << t_p << " stayed within (HZ)." << endl;

fpOut<<"\n\nLower Bound: "<<lbound<<" AU.\n";

fpOut<<"Upper Bound: "<<ubound<<" AU.\n\n";

fpOut<<"Number of times crossed into 3 Hill Radius: "<<h3count<<"\n";

fpOut<<"Number of times crossed into 1 Hill Radius: "<<h1count<<"\n";

fpOut<<"Elapsed time: "<<time<<" years.\n";

fpOut<<"----------COMPLETE-----------\n";

fpOut.close();

th1plotOut.close(); r1plotOut.close(); th2plotOut.close();

r2plotOut.close(); th3plotOut.close(); r3plotOut.close();

r3xplotOut.close(); r3yplotOut.close(); tplotOut.close();

tauplotOut.close(); potentialOut.close(); kineticOut.close();

totalOut.close(); p3plotOut.close(); p3xplotOut.close();

p3yplotOut.close();

//Kass’s stuff

//".." refers to parent dir

chdir(".."); //go back to mu dir chdir(".."); //go

back to Type dir chdir(".."); //go back to main program dir

}//RunStuff

// Get initial conditions

// - reads initial conditions from "data.in"

void initial_con (double &t_stop, int &b_num, double &delta_t,

CBody* planet) {

ifstream fpIn("data.in");

char buff[LINESIZE]; // setup file reading buffers

if (!fpIn) // open "data.in" file or exit gracefully
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{

cout << "Data.in could not be opened!!" << endl;

cout<<"Press any key to quit.";

cin.ignore(2);

exit(1);

}

//This section reads the time duration, step and number

//of bodies from the dat file.

fpIn.getline( buff, LINESIZE, ’:’); // read line from the file

fpIn.getline( buff, LINESIZE);

t_stop = atof (buff); // convert to numeric

if ( debug == 1) // debug output

cout << "Time stop: "<<t_stop << endl; // etc...............

fpIn.getline( buff, LINESIZE, ’:’); // read line from the file

fpIn.getline( buff, LINESIZE);

delta_t = atof (buff);

if ( debug == 1)

cout << "Time step: "<<delta_t << endl;

fpIn.getline( buff, LINESIZE, ’:’); // read line from the file

fpIn.getline( buff, LINESIZE);

b_num = atoi (buff);

if ( debug == 1)

cout << "Number of bodies: "<<b_num << endl<<endl;

/*

* This section reads the planet initial conditions

* from the data file.

*/

for (int counter = 1; counter <= b_num; counter++)

{

fpIn.getline( buff, LINESIZE);
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fpIn.getline( buff, LINESIZE, ’:’); // read line from the file

fpIn.getline( buff, LINESIZE);

planet[counter].SetMass(atof(buff));

if ( debug == 1)

cout << "Planet "<<counter<<" Mass: "<<planet[counter].GetMass() << endl;

cout<<"Planet "<<counter<<"Position vector: <";

for(int s = 0; s < 3; s++)

{

fpIn.getline( buff, LINESIZE, ’:’); // read line from the file

fpIn.getline( buff, LINESIZE);

planet[counter].SetPos(s,atof(buff));

if ( debug == 1)

cout << planet[counter].GetPos(s)<<" ";

}

cout<<">"<<endl;

cout<<"Planet "<<counter<<"Velocity vector: <";

for(int s = 0; s < 3; s++)

{

fpIn.getline( buff, LINESIZE, ’:’); // read line from the file

fpIn.getline( buff, LINESIZE);

planet[counter].SetVel(s,atof(buff));

if ( debug == 1)

cout << planet[counter].GetVel(s)<<" ";

}

cout<<">"<<endl;

if ( debug == 1)

cout<<"End planet # "<<counter<<":\n\n";

}

fpIn.getline( buff, LINESIZE, ’:’); // read line from the file

fpIn.getline( buff, LINESIZE);

planet[3].SetSemimajor(atof(buff));

if ( debug == 1)

{
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cout<<"Semimajor Axis: ";

cout << planet[3].GetSemimajor()<<" \n";

}

fpIn.getline( buff, LINESIZE, ’:’); // read line from the file

fpIn.getline( buff, LINESIZE);

planet[3].SetEcc(atof(buff));

if ( debug == 1)

{

cout<<"Eccentricity: ";

cout << planet[3].GetEcc()<<" \n";

}

fpIn.close();

if ( debug == 1)

{

cout<<"Take a moment to confirm this is correct.\n"

<<"Press any key to continue: \n";

cin.ignore(2);

}

}

// Initial_out

// - Outputs the initial conditions to the screen

void ShiftToCM(CBody* plan) {

double TotalMass = 0;

double CM[3] = {0.0, 0.0, 0.0};

double VCM[3] = {0.0, 0.0, 0.0};

for(int i = 1; i <=3; i++)

TotalMass += plan[i].GetMass();

for(int p = 0; p <3; p++)

{

for(int i = 1; i <=3; i++)

{
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CM[p] += plan[i].GetMass()*plan[i].GetPos(p);

VCM[p] += plan[i].GetMass()*plan[i].GetVel(p);

}

CM[p] /= TotalMass;

VCM[p] /= TotalMass;

}

for(int p = 0; p <3; p++)

{

for(int i = 1; i <=3; i++)

{

plan[i].SetPos(p,plan[i].GetPos(p) - CM[p]);

plan[i].SetVel(p,plan[i].GetVel(p) - VCM[p]);

}

}

}

A.2 Celestial Body Class [Cbody.h]

This file defines the class CBody which packages all the information about a

celestial body such as a star or planet into one data type.

//Class for celestial bodys

#ifndef CBODY_H #define CBODY_H

enum State{X, Y, Z};

//X = 0, Y = 1, Z = 2

class CBody {

private:

double mass;

double pos[3];

double Tpos[3];

double vel[3];

double Tvel[3];

double acc[3];

double magR;

double magV;

double magA;
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double Radius;

double semimajor;

double ecc;

public:

CBody(void);

void SetMass(double);

double GetMass(void);

int SetPos(double, double, double);

int SetPos(int, double);

double GetPos(int);

void SetTPos(double, double, double);

int SetTPos(int, double);

double GetTPos(int);

double GetR(void);

void SetVel(double, double, double);

int SetVel(int, double);

double GetVel(int);

void SetTVel(double, double, double);

int SetTVel(int, double);

double GetTVel(int);

double GetV(void);

void SetAcc(double, double, double);

int SetAcc(int, double);

double GetAcc(int);

double GetA(void);

void SetSemimajor(double);

double GetSemimajor(void);

void SetEcc(double);

double GetEcc(void);

void Prepare(void);

void Update(void);

};

CBody::CBody(void) {

mass = 0;

magR = 0;

magV = 0;

magA = 0;
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Radius = 0;

for(int i = 0; i < 3; i++)

{

pos[i] = 0;

Tpos[i] = 0;

vel[i] = 0;

Tvel[i] = 0;

acc[i] = 0;

}

}

void CBody::SetMass(double M) {

mass = M;

}

double CBody::GetMass(void) {

return mass;

}

int CBody::SetPos(double x, double y, double z) {

pos[0] = x;

pos[1] = y;

pos[2] = z;

return 1;

}

int CBody::SetPos(int s, double val) {

if(s >= 0 && s < 3)

{

pos[s] = val;

return 1;

}

return 0;

}

double CBody::GetPos(int s) {
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if(s >= 0 && s < 3)

return pos[s];

else

{

exit(1);

}

}

void CBody::SetTPos(double tx, double ty, double tz) {

Tpos[0] = tx;

Tpos[1] = ty;

Tpos[2] = tz;

}

int CBody::SetTPos(int s, double val) {

if(s >= 0 && s < 3)

{

Tpos[s] = val;

return 1;

}

return 0;

}

double CBody::GetTPos(int s) {

if(s >= 0 && s < 3)

return Tpos[s];

else

{

exit(1);

}

}

double CBody::GetR(void) {

magR = sqrt(pos[0]*pos[0] + pos[1]*pos[1] + pos[2]*pos[2]);

return magR;

}

void CBody::SetVel(double vx, double vy, double vz) {

vel[0] = vx;
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vel[1] = vy;

vel[2] = vz;

}

int CBody::SetVel(int s, double val) {

if(s >= 0 && s < 3)

{

vel[s] = val;

return 1;

}

return 0;

}

double CBody::GetVel(int s) {

if(s >= 0 && s < 3)

return vel[s];

else

{

exit(1);

}

}

void CBody::SetTVel(double tvx, double tvy, double tvz) {

Tvel[0] = tvx;

Tvel[1] = tvy;

Tvel[2] = tvz;

}

int CBody::SetTVel(int s, double val) {

if(s >= 0 && s < 3)

{

Tvel[s] = val;

return 1;

}

return 0;

}

double CBody::GetTVel(int s) {

if(s >= 0 && s < 3)
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return Tvel[s];

else

{

exit(1);

}

}

double CBody::GetV(void) {

magV = sqrt(vel[0]*vel[0] + vel[1]*vel[1] + vel[2]*vel[2]);

return magV;

}

void CBody::SetAcc(double ax, double ay, double az) {

acc[0] = ax;

acc[1] = ay;

acc[2] = az;

}

int CBody::SetAcc(int s, double val) {

if(s >= 0 && s < 3)

{

acc[s] = val;

return 1;

}

return 0;

}

double CBody::GetAcc(int s) {

if(s >= 0 && s < 3)

return acc[s];

else

{

exit(1);

}

}

double CBody::GetA(void) {

magA = sqrt(acc[0]*acc[0] + acc[1]*acc[1] + acc[2]*acc[2]);

return magA;
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}

void CBody::SetSemimajor(double sm) {

semimajor = sm;

}

double CBody::GetSemimajor(void) {

return semimajor;

}

void CBody::SetEcc(double e) {

ecc = e;

}

double CBody::GetEcc(void) {

return ecc;

}

void CBody::Prepare(void) {

for(int i=0; i < 3; i++)

{

Tpos[i] = pos[i];

Tvel[i] = vel[i];

}

}

void CBody::Update(void) {

for(int i=0; i < 3; i++)

{

pos[i] = Tpos[i];

vel[i] = Tvel[i];

}

}

#endif

A.3 Derivative Function [gravrk.cpp]

#include "CBody.h"
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void gravrk(double t, CBody* planet, double deriv[][6]) {

// Returns right-hand side of Kepler ODE; used by Runge-Kutta routines

// Inputs

// t Time (not used)

// planet State array of CBody objects

// Output

// deriv Derivatives [dr(1)/dt dr(2)/dt dv(1)/dt dv(2)/dt]

const double pi = acos(-1); double sepex[3];//seperation vectors #:

n(n-1)/2 where n = 3 bodies in this case double sepey[3];//seperated

into x, y and z components double sepez[3]; double SEP[3];

//magnitude of seperation vector enum State{ X, Y, Z};

for(int p = 1; p <= 3; p++) { double accelx = 0; double accely = 0;

double accelz = 0;

//$$$$$$$$$$$$$$$$$$$$$$$$ Calculate the Force due to others $$$$$$$$$$$$$$$$$$$

for(int j=1; j<= 3; j++)

{

if(j!=p)

{

//X, Y, and Z components of seperation vector for force on p due to j

//at temporary position state

sepex[j] = planet[j].GetTPos(X)-planet[p].GetTPos(X); //X

sepey[j] = planet[j].GetTPos(Y)-planet[p].GetTPos(Y); //Y

sepez[j] = planet[j].GetTPos(Z)-planet[p].GetTPos(Z); //Z

SEP[j]=sqrt(sepex[j]*sepex[j]+sepey[j]*sepey[j]+sepez[j]*sepez[j]);//magnitude of seperation vector

//* Compute acceleration

double GM_R3 = 4*pi*pi*planet[j].GetMass()/(SEP[j]*SEP[j]*SEP[j]);

accelx += GM_R3*sepex[j];

accely += GM_R3*sepey[j];

accelz += GM_R3*sepez[j];

}//if j not equal to p

}//for over j

//* Return derivatives [dx/dt dy/dt dz/dt dvx/dt dvy/dt dvz/dt]

deriv[p][0] = planet[p].GetTVel(X);

deriv[p][1] = planet[p].GetTVel(Y);

deriv[p][2] = planet[p].GetTVel(Z);
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deriv[p][3] = accelx;

deriv[p][4] = accely;

deriv[p][5] = accelz;

}//for over p }//gravrk

A.4 Runge-Kutta Integrator (4th order) [rk4.cpp]

void rk4(double t, double tau, CBody* planet,

void (*derivsRK)(double t, CBody* planet, double deriv[][6]))

{

// Runge-Kutta integrator (4th order)

// Inputs

// t Independent variable (usually time)

// tau Step size (usually time step)

// planet State array of CBody objects

// derivsRK Right hand side of the ODE; derivsRK is the

// name of the function which returns dx/dt

// Calling format derivsRK(t,planet,dxdt).

// Output

// planet New state of planet array after a step of size tau

int i;

double F1[3+1][6], F2[3+1][6], F3[3+1][6], F4[3][6];

for(int p = 1; p<=3; p++)

planet[p].Prepare(); //sets tempstate equal to state

//* Evaluate F1 = f(x,t).

(*derivsRK)(t, planet, F1 ); //integrates tempstate

//* Evaluate F2 = f( x+tau*F1/2, t+tau/2 ).

double half_tau = 0.5*tau;

double t_half = t + half_tau;

for(int p = 1; p<=3; p++) {

//increment up tempstate

planet[p].SetTPos(X, planet[p].GetPos(X) + half_tau*F1[p][0]);

planet[p].SetTPos(Y, planet[p].GetPos(Y) + half_tau*F1[p][1]);
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planet[p].SetTPos(Z, planet[p].GetPos(Z) + half_tau*F1[p][2]);

planet[p].SetTVel(X, planet[p].GetVel(X) + half_tau*F1[p][3]);

planet[p].SetTVel(Y, planet[p].GetVel(Y) + half_tau*F1[p][4]);

planet[p].SetTVel(Z, planet[p].GetVel(Z) + half_tau*F1[p][5]);

}

(*derivsRK)(t_half, planet, F2 ); //integrates tempstate

//* Evaluate F3 = f( x+tau*F2/2, t+tau/2 ).

for(int p = 1; p<=3; p++) {

planet[p].Prepare(); //sets tempstate equal to state

//increment up tempstate

planet[p].SetTPos(X, planet[p].GetPos(X) + half_tau*F2[p][0]);

planet[p].SetTPos(Y, planet[p].GetPos(Y) + half_tau*F2[p][1]);

planet[p].SetTPos(Z, planet[p].GetPos(Z) + half_tau*F2[p][2]);

planet[p].SetTVel(X, planet[p].GetVel(X) + half_tau*F2[p][3]);

planet[p].SetTVel(Y, planet[p].GetVel(Y) + half_tau*F2[p][4]);

planet[p].SetTVel(Z, planet[p].GetVel(Z) + half_tau*F2[p][5]);

}

(*derivsRK)(t_half, planet, F3 ); //integrates tempstate

//* Evaluate F4 = f( x+tau*F3, t+tau ).

double t_full = t + tau;

for(int p = 1; p<=3; p++) {

planet[p].Prepare(); //sets tempstate equal to state

//increment up tempstate

planet[p].SetTPos(X, planet[p].GetPos(X) + tau*F3[p][0]);

planet[p].SetTPos(Y, planet[p].GetPos(Y) + tau*F3[p][1]);

planet[p].SetTPos(Z, planet[p].GetPos(Z) + tau*F3[p][2]);

planet[p].SetTVel(X, planet[p].GetVel(X) + tau*F3[p][3]);

planet[p].SetTVel(Y, planet[p].GetVel(Y) + tau*F3[p][4]);

planet[p].SetTVel(Z, planet[p].GetVel(Z) + tau*F3[p][5]);

}

(*derivsRK)(t_full, planet, F4 );

for(int p = 1; p<=3; p++) {

planet[p].Prepare(); //RE-sets tempstate equal to state

//* Return x(t+tau) computed from fourth-order R-K.
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//increment up tempstate

planet[p].SetTPos(X, planet[p].GetTPos(X) + tau/6.*(F1[p][0] +

F4[p][0] + 2.*(F2[p][0]+F3[p][0]))); planet[p].SetTPos(Y,

planet[p].GetTPos(Y) + tau/6.*(F1[p][1] + F4[p][1] +

2.*(F2[p][1]+F3[p][1]))); planet[p].SetTPos(Z, planet[p].GetTPos(Z)

+ tau/6.*(F1[p][2] + F4[p][2] + 2.*(F2[p][2]+F3[p][2])));

planet[p].SetTVel(X, planet[p].GetTVel(X) + tau/6.*(F1[p][3] +

F4[p][3] + 2.*(F2[p][3]+F3[p][3]))); planet[p].SetTVel(Y,

planet[p].GetTVel(Y) + tau/6.*(F1[p][4] + F4[p][4] +

2.*(F2[p][4]+F3[p][4]))); planet[p].SetTVel(Z, planet[p].GetTVel(Z)

+ tau/6.*(F1[p][5] + F4[p][5] + 2.*(F2[p][5]+F3[p][5])));

}

for(int p=1; p<=3; p++)

{

planet[p].Update(); //the idea here is change after all steps are made instead

} //of changing while steps are being made,

//which hopefully reduces error propagation

}

A.5 Energy Calculator [energy.cpp]

double Kinetic(CBody* param, int i); double Potential(int n, CBody*

param, int i); double Total(int n, CBody* param);

// n the total number of Celestial Bodies

// param array of CBody data structures

// i index number of a specific body

// 5/12/2008 I took out the mass parameter so

// these functions acctually return the energy/unit mass

double Kinetic(CBody* param, int i) { double kinetic=0;

kinetic += 0.5*param[i].GetV()*param[i].GetV();

return kinetic;

}//Kinetic

double Potential(int n, CBody* param, int i) { const double pi =

acos(-1); double G = 4*pi*pi; double potential=0; double sepex[6];
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//seperation vectors #: n(n-1) where n = 3 bodies in this case

//(different directions counted)

double sepey[6]; //seperated into x, y and z components double

sepez[6]; double SEP[6]; //magnitude of seperation vector

for(int j = 1; j <= n; j++) { if(i!=j)

{

//X, Y and Z components of seperation vector for force on i due to j

sepex[j] = param[j].GetPos(X)-param[i].GetPos(X); //X

sepey[j] = param[j].GetPos(Y)-param[i].GetPos(Y); //Y

sepez[j] = param[j].GetPos(Z)-param[i].GetPos(Z); //Z

SEP[j]=sqrt(sepex[j]*sepex[j]+sepey[j]*sepey[j] + sepez[j]*sepez[j]);//magnitude of seperation vector

potential+=-G*param[j].GetMass()/SEP[j];//adds up total potential of all bodies

}//if

}//for

return potential;

}//Potential

double Total(int n, CBody* param) {

double total=0;

for(int i=1; i<=n; i++)

total += Kinetic(param,i) + Potential(n,param,i)/2; //n(n-1)/2 interactions for potential

return total;

}//Total



REFERENCES

Asghari, N., et al. 2004, A&A, 426, 353

Baglin, A. 2003, Adv. Space Res., 31, 345

Borucki, W. J., et al. 2003, in Towards Other Earths: DARWIN/TPF and the Search

for Extrasolar Terrestrial Planets, ed. M. Fridlund, T. Henning, & H. Lacoste

(ESA SP-539; Noordwijk: ESA), 69

Borucki, W. J., et al. 2007, in ASP Conf. Ser. 366, Transiting Extra-Solar Planets

Workshop, ed. C. Afonso, D. Weldrake, & T. Henning (San Francisco: ASP), 309

Butler, R. P., et al. 2006, ApJ, 646, 505

Carroll, B. W., & Ostlie, D. A., An Introduction To Modern Astrophysics 2nd ed., San

Francisco, California, Pearson/Addison Wesley, Inc 2006

Catanzarite, J., Shao, M., Tanner, A., Unwin, S., & Yu, J. 2006, PASP, 118, 1319

Cockell, C.S., et al. 2009, Astrobiology, 9, 1

Cuntz, M., von Bloh, W., Bounama, C., & Franck, S. 2003, Icarus, 162, 214

Cuntz, M., Eberle, J., & Musielak, Z. E. 2007, ApJ, 669, L105

Cuntz, M. & Yeager, K.E. 2009, ApJ, 697, L86

Eberle, J., Cuntz, M., & Musielak, Z. E. 2008, A&A, 489, 1329

Fatuzzo, M., Adams, F.C., Gauvin, R., & Proszkow, E.M. 2006, PASP, 118, 1510

Forget, F., & Pierrehumbert, R. T. 1997, Science, 278, 1273

Fowles, Grant R., & Cassiday, George L., Analytical Mechanics 7th ed., Belmont,

California, Thomson Brooks/Cole, Inc 2005

Franck, S., von Bloh, W., Bounama, C., Steffen, M., Schönberner, D., & Schellnhuber,

H. J., 2002, Astrobiology The Quest for the conditions of life., Berlin, Springer

Freund, John E., 1999, Mathematical Statistics 6th ed., Upper Saddle River, New

Jersey, Prentice-Hall, Inc.

91



92

Garcia, Alejandro L., 2000, Numerical Methods for Physics 2nd ed., Upper Saddle

River, New Jersey, Prentice-Hall, Inc.

Gehman, C. S., Adams, F. C., & Laughlin, G. 1996, PASP, 108, 1018

Gray, D. F. 1992, The Observation and Analysis of Stellar Photospheres, Cambridge

University Press, Cambridge

Hamilton, D. P., & Burns, J. A. 1992, Icarus, 96, 43

Jones, B. W. 2008, Int. J. Astrobiology, 7, 279

Jones, B. W., Sleep, P. N., & Chambers, J. E. 2001, A&A, 366, 254

Jones, B. W., & Sleep, P. N., 2002 A&A, 393, 1015

Jones, B. W., Underwood, D. R., & Sleep, P. N. 2005, ApJ, 622, 1091

Jones, H. R. A., Butler, R. P., Tinney, C. G., Marcy, G. W., Carter, B. D., Penny, A.

J., McCarthy, C., & Bailey, J. 2006, Mon. Not. R. Astron. Soc. 369, 249

Kasting, J. F., Whitmire, D. P., & Reynolds, R. T. 1993, Icarus, 101, 108

Koch, David, & Gould, Alan. Kepler Mission: A search for habitable planets, 2009.

http://kepler.nasa.gov

Marcy, G. W., & Butler, R. P. 1998, ARA&A, 36, 57

Marcy, G., Butler, R. P., Fischer, D., Vogt, S., Wright, J. T., Tinney, C. G., & Jones,

H. R. A. 2005, Prog. Theor. Phys. Suppl., 158, 24

Marcy, G., Butler, R. P., Vogt, S,. Fischer, D. A., Henry, G. W., Laughlin, G., Wright,

J. T., & Johnson, J. A. 2005, ApJ, 619, 570

Marcy, G., Butler, R. P., Vogt, S. S., Fischer, D. A., Wright, J. T., Johnson, J.

A., Tinney, C. G., Jones, H. R. A., Carter, B. D., Bailey, J., O’Toole, S. J., &

Upadhyay, S. 2008, Physica Scripta, T130, 014001

Menou, K., & Tabachnik, S. 2003, ApJ, 583, 473

Mischna, M. A., Kasting, J. F., Pavlov, A., & Freedman, R. 2000, Icarus, 145, 546

Murray, C. D., & Dermott, S. F., 2008, Solar System Dynamics, New York, New York,

Cambridge University Press



93

Noble, M., Musielak, Z. E., & Cuntz, M. 2002, ApJ, 572, 1024

Pillai, S. U., Li, K. Y., & Himed, B., 2007, Space Based Radar: Theory and App.,

New York City, New York, McGraw-Hill Professional

Press, W. H., Flannery, B. P., Teukolsky, S. A., & Vetterling, W. T. 1989, Numerical

Recipes, The Art of Scientific Computing, Cambridge Univ. Press, New York
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