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ABSTRACT 

 
AN AUCTION MECHANISM FOR GRID SCHEDULING 

AND RESOURCE ALLOCATION IN 

THE CONTEXT OF 

ATLAS 

 

Tengkok Aaron Thor, PhD 

 

The University of Texas at Arlington, 2009 

 

Supervising Professor:  Gergely Záruba, David Levine 

 The technological advancements in the areas of computing and networking over the 

recent years have led to an emerging infrastructure known as Computational Grids, which 

provides users with the flexibility of pervasive access to enormous computational resources 

hosted at remote locations. Effective resource management and job scheduling poses a 

challenge when constraints such as resource utilization, response time, global and local policies 

need to be taken into account, while dealing with potentially independent sources of jobs, 

computational, and storage resources. It must be ensured that scheduling decisions made are 

still valid by the time a job is to be executed, with all the necessary resources remaining 

available. 

In order to provide a more accurate scheduling and to obtain a better balance between micro 

and macro goals some status information about the resources needs to be obtained. However, 

this brings up another controversial issue which has plagued all dynamic scheduling 

communities: at what resolution monitoring should be performed. Since jobs are constantly 
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submitted throughout the grid and resources are used for processing such jobs, acquired 

monitoring information should be updated frequently. On the other hand, monitoring too 

frequently takes up valuable resources and bandwidth which could otherwise be used for job 

execution. Thus, another objective is to reach a balance between the risk of having outdated 

resource status information (which leads to incorrect scheduling decisions) and performing too 

much monitoring (wasting limited resources). 

In a conventional grid environment, such as the ATLAS project [ 40], system administrators are 

often required to monitor the activities of a selected group of preferred sites and submit jobs to 

those sites if deemed capable of processing such tasks. The sites chosen, however, may not 

necessarily be the best sites for processing the jobs. This results in underutilized resources and 

stagnant efficiency of sites as there is no global incentive for improving efficiency as well as 

remaining competitive. One of the main reasons for sub-optimal resource allocation is that when 

taking factors such as system resource utilization, response time, global and local policies into 

account while dealing with potentially independent sources of jobs, computational and storage 

resources, the job of managing resources and job scheduling becomes too tedious for a 

centralized entity to perform. On top of that, with the implementation of varying local policies, a 

centralized scheduling entity may not have access or control over such policies, hence it could 

only perform scheduling based on a best effort basis. It is often up to the job-receiving host to 

perform the final leg of scheduling, based on its locally defined policies. As such, scheduling 

within a grid is often a multi-tiered process where the job-submitting host performs its job 

scheduling to the best of its knowledge of the current state of the grid environment, while the 

receiving host takes over the final phase of the scheduling process. Dividing the task of 

scheduling amongst several sites would add the advantage of easing the load and complexity of 

performing scheduling at a single location. However, in order to motivate individual local 
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domains in competing to become more efficient, in addition to being more aggressive in 

competing for accepting more jobs, some form of incentive mechanism could be applied.  

In this work, we explore a decentralized combinatorial exchange scheme, as well as pull-based 

grid scheduling methodology which adopts the use of brokers with job advertisement and 

propagation within a grid environment. The main motivation for this scheme is to create an 

automated two tiered scheduling methodology to perform the tedious task of performing service 

discovery, and task scheduling at the global level, while performing resource monitoring, 

utilization and efficiency control at the local level. To achieve the best attainable optimization at 

any point in time, participating sites are to remain motivated to offer their best services based on 

the job submitting host’s preferred optimization settings. Global scheduling of jobs will be done 

at the broker level via a bidding process. The submitting host will have the privilege to choose 

the best available offer to suit its requirements. A pricing scheme is implemented as a trading 

mechanism in exchange for the services provided. This pricing mechanism will hence serve as 

a motivation for participating sites to compete for jobs so as to increase its overall wealth. As 

such, competing sites will be required to constantly monitor and improve their own resources, its 

utilization and efficiency so as to remain competitive.   
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CHAPTER 1 

INTRODUCTION 

 The technological advancements in the areas of computing and networking over the 

recent years have led to an emerging infrastructure known as Computational Grids, which 

provides users with the flexibility of pervasive access to enormous computational resources 

hosted at remote locations. Effective resource management and job scheduling poses a 

challenge when constraints such as resource utilization, response time, global and local policies 

need to be taken into account, while dealing with potentially independent sources of jobs, 

computational, and storage resources. It must be ensured that scheduling decisions made are 

still valid by the time a job is to be executed, with all the necessary resources remaining available. 

However, resources in a grid environment are considered perishable goods, i.e., resources left 

unused cannot be “saved” for later use. Unused resources would not roll-over resulting in having 

an additional resource for use at a later time. In addition, incentives are often needed for 

individual local domains to strive for improved efficiency. This work will demonstrate the use of 

auctioning mechanisms and strategies for achieving the abovementioned objectives, along with 

the appropriate formulation methodologies for this application.   

A computational cluster is a group of networked computers usually created by 

organizations for processing large data or computational intensive jobs. Several such (remote) 

clusters may be integrated together to form a computational grid. Thus, in a computational grid 

environment where data and computational intensive jobs are to be processed, there exists a 

vast collection of resources ready to process jobs of (virtual) organizations. Scheduling and 

resource management in a computational grid environment has been an area of extensive 

research due to its importance and complexity. Resources within a computational grid are likely to 

be heterogeneous, i.e., individual clusters or computers may be of different architectures, may be 

controlled by different operating systems and have diverse libraries. This often requires some 

form of resource matching such as [ 39] to effectively map jobs to resources. However, due to 
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fluctuating demands, resource availability may rapidly change. In addition, scheduling and 

management policies of clusters are unlikely to be uniform over all clusters in the grid. With 

ubiquitous resources distributed throughout clusters, it is important to be able to effectively 

manage these resources as well as assign jobs to take advantage of the available subset of 

resources. Without effective monitoring and management of resources, information on resource 

availability and the condition and duration of such availability is unknown. Furthermore, efficient 

scheduling is necessary in order to keep a particular resource from being overwhelmed when a 

similar resource may be “sitting” at another location idling.  

Scheduling within a computational grid environment is often concerned with the welfare 

of the resources or components as a whole as well as the well being of individuals. By welfare of 

the resources or components as a whole, we often refer to such issues as fairness, e.g., equal 

opportunities to use resources, distribution of wealth throughout the grid and the overall 

performance of all the virtual organizations combined as a whole. Individual well being, on the 

other hand, is often concerned with the maximization of satisfaction derived from participating in 

work related activities. Such derived satisfaction may include minimization of response time and 

computation cost, while maximizing profit, throughput, and yield of earliest results. Thus, it is 

often necessary to be able to strike a balance between two contrasting goals: individual (per 

cluster) goals and system level utilization goals.  

Individual (or local) goals, as the name implies, are more often concerned with 

maximizing the benefits  individual entities can attain, with minimal regards for the welfare of the 

rest of the system. On the other hand, system level goals are usually more concerned with getting 

the most out of the currently available resources globally, even if it is at the cost of sacrificing a 

small population in order to benefit the system utility as a whole. For example, in order to 

maximize system resource utilization, a system level goal could be to keep all resources busy 

with a minimal number of unassigned resources idling. An individual goal, however, may be to 

have some idling resources available so as to have instant access to those resources when need 

arises. Similarly, it is a system level goal to ensure fair distribution of wealth (when completion of 

jobs is rewarded by some means) while an individual is more often interested in maximizing local 
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profits. As a result, it is a challenging task to satisfy individual needs, while still achieving system 

level goals at the same time.  

In order to provide more accurate scheduling and to obtain a better balance between 

micro and macro goals some status information about the resources needs to be obtained. 

However, this brings up another controversial issue which has plagued all dynamic scheduling 

communities: at what resolution monitoring should be performed. Since jobs are constantly 

submitted throughout the grid and resources are used for processing such jobs, acquired 

monitoring information should be updated frequently. On the other hand, monitoring too 

frequently takes up valuable resources and bandwidth which could otherwise be used for job 

execution. Thus, another objective is to reach a balance between the risk of having outdated 

resource status information (which leads to incorrect scheduling decisions) and performing too 

much monitoring (wasting limited resources). 

In a conventional grid environment, such as the ATLAS project [ 40], system 

administrators are often required to monitor the activities of a selected group of preferred sites 

and submit jobs to those sites if deemed capable of processing such tasks. The sites chosen, 

however, may not necessarily be the best sites for processing the jobs. This results in 

underutilized resources and stagnant efficiency of sites as there is no global incentive for 

improving efficiency as well as remaining competitive. One of the main reasons for sub-optimal 

resource allocation is that when taking factors such as system resource utilization, response time, 

and global and local policies into account while dealing with potentially independent sources of 

jobs and computational and storage resources, the job of managing resources and job scheduling 

becomes too tedious for a centralized entity to perform. On top of that, with the implementation of 

varying local policies, a centralized scheduling entity may not have access or control over such 

policies, hence it could only perform scheduling based on a best effort basis. It is often up to the 

job-receiving host to perform the final leg of scheduling, based on its locally defined policies. As 

such, scheduling within a grid is often a multi-tiered process where the job-submitting host 

performs its job scheduling to the best of its knowledge of the current state of the grid 

environment, while the receiving host takes over the final phase of the scheduling process. 
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Dividing the task of scheduling amongst several sites would add the advantage of easing the load 

and complexity of performing scheduling at a single location. However, in order to maintain high  

productive status, individual local domains have to constantly upgrade themselves and stay 

motivated in becoming more efficient, in addition to being more aggressive in competing for 

accepting more jobs, some form of incentive mechanism could be applied.  

To address the problem of resource management and job scheduling in a large, 

geographically distributed network of virtual organizations, while observing the goals of cost 

minimization and improving utilization and efficiency, we propose a pull-based grid scheduling 

methodology which adopts the use of brokers with job advertisement and propagation within a 

grid environment. The main motivation for this scheme is to create an automated two tiered 

scheduling methodology to perform the tedious task of performing service discovery 

functionalities and task scheduling at the global level, while performing resource monitoring, 

utilization and efficiency control at the local level. To achieve the best attainable optimization at 

any point in time, participating sites are to remain motivated to offer their best services based on 

the job submitting host’s preferred optimization settings. Global scheduling of jobs will be done at 

the broker level via a bidding process. The submitting host will have the privilege to choose the 

best available offer to suit its requirements. A pricing scheme is implemented as a trading 

mechanism in exchange for the services provided. This pricing mechanism will hence serve as a 

motivation for participating sites to compete for jobs so as to increase their overall wealth. As 

such, competing sites will be required to constantly monitor and improve their own resources, 

their utilization and efficiency to remain competitive.  

1.1 Motivation 

In a grid environment, resources are considered perishable goods, i.e., resources left 

unused cannot be “saved” for later use. Take for example the hotel industry; any rooms left empty 

for a night would be regarded as a wasted resource, since it would not roll-over, resulting in the 

hotel having an additional room for rent the following day (the total number of rooms is always 

fixed and remains the same each day). From the perspective of a resource provider, profit 

maximization through sales volume is often deemed as important as cost minimization, as any 
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additional units of unsold resources equate to additional incurrence of uncovered maintenance 

cost. This realization has led researchers to more closely investigate the economic behavior of 

grid systems. 

Market based approaches have been gaining popularity in recent years [ 10][ 17], and are 

considered to work well in grid applications. Through these approaches, user preferences as well 

as provider compensations can be expressed efficiently in terms of costs, valuations and utilities. 

To date, many models have been proposed for the economics of grid systems through the 

adoption of fixed (e.g., [ 1][ 2][ 3][ 4][ 5][ 6][ 9][ 10][ 11]) and variable price (e.g., [ 12][ 0][ 14][ 15]) models, 

as well as different auctioning protocols (e.g., discussed in [ 2][ 3][ 4][ 5][ 6][ 7][ 8]). Strong 

assumptions are often required to simplify the price determination process in the abovementioned 

models. However, none of the above work has adequately formalized the price and utility 

determination for a market-based combinatorial exchange economic grid system. 

When resource request matches are found, the matched resources are delegated from the 

resource owner to the resource requester. By delegating resources to jobs instead of the 

traditional migration of jobs to resources, we lower the administrative overhead of managing 

user/group accounts on each site where they can use resources. 

1.2 Objectives And Contributions 

The main objective of this work is the design, implementation, and evaluation of an 

economic grid mechanism that can meet scheduling and resource management requirements of 

a Grid environment. Prior to applying this methodology, we arrive at these specific questions. 

 

What are the technical and economical characteristi cs of a market-oriented Grid 

mechanism? 

In order to answer this question, the characteristics of Grid resources, requirements from 

its potential users, as well as the motivation behind resource providers to offer those resources 

have to be analyzed. The contribution is to find a link between the Grid and an economic 

environment where market-oriented Grid mechanism can be applied. This is performed through a 
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thorough formalization of the Grid environment including requirements, valuations, and 

compensations. 

 

How to design a suitable mechanism for a market-ori ented Grid? 

The problem with most market mechanisms is that requirements are usually overly 

simplistic. Designing a mechanism for a market-oriented Grid would require one which is capable 

of expressing complex combinatorial requirements constraints seen in a Grid system while 

addressing the basic needs of a Grid environment. The contribution is designing and 

implementing one such hybrid mechanism which caters to all the requirements.  

 

How to evaluate a market-oriented grid mechanism? 

In order to evaluate a hybrid mechanism, a simulation model will be developed to provide 

an evaluation platform against working Grid systems. Real world data from the ATLAS 

experiment will be used as a benchmark for comparisons.    

 

1.3 Chapters Outline 

This work will be structured into three major parts, each with a focus on answering the 

three proposed questions. The first part will provide the fundamental understanding of both the 

Grid and Economic mechanism. The second part will discuss the design and implementation of a 

market oriented grid mechanism. Last but not least, the final part will evaluate the performance of 

the proposed mechanism against real world systems. 

 

1.3.1. Part I 

Chapter one will provide the introduction to the work, and chapter two provides the 

fundamentals of the Grid system. Chapter three will focus on the motivation for this work, and 

Chapter four provides background knowledge for the mechanism used to implement the work. 

Chapter five is divided into two sub parts. The first sub-part discusses previous work done in the 
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area of Grid scheduling and resource allocation, and the second sub-part discusses previous 

work on market-oriented Grid mechanisms.  

1.3.2. Part II 

Chapter six discusses the pricing mechanism used in our work, as well as defining the 

participant involvement in our system. Chapter seven discusses work done in the context of the 

ATLAS experiment [ 34], Chapter eight shows the formalization work, and also analyzes the 

applicability of different auction scenarios. Chapter nine focuses on the algorithmic 

implementation of your mechanism.  

1.3.3. Part III 

Chapter ten provides the design of our simulation while Chapter eleven analyzes the findings 

attained from our simulation results. Chapter twelve provides the summary and discusses future 

work for this market oriented Grid mechanism. Last but not least, Chapter thirteen will conclude 

the work. 
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CHAPTER 2 

GRID COMPUTING FUNDAMENTALS 

2.1 The Evolution of Grid 

The early Grids started out as metacomputing, which was essentially an interconnection 

of several supercomputing sites. From the early to mid 1990s, the early metacomputing or grid 

started gaining popularity due to the need to tackle high performance applications such as 

FAFNER and IWAY [ 50]. FAFNER was designed as a parallel application, while IWAY was 

designed to work with high performance applications which required fast interconnect and 

powerful resources. After the success of the two projects further innovation in network 

technologies over the years has further helped in boosting the popularity of Grids. The second 

generation of grid advancement is credited to the vision of Grid in [ 51] which defined ways to 

cope with scale and heterogeneity in a Grid environment and the problems to be resolved in 

dealing with large scale computational power and information. Over the years, Grid is evolving 

towards the direction of a knowledge based economic grid, where resource and service providers 

offer on demand computing as services within the Grid environment.    

2.2 Grid Architecture 

The Grid follows a set of open standard protocols for message communication and 

controlling which was designed to form the basis for further interoperable development. The set of 

open standard protocols is shown in Figure  2.1. The protocols and interfaces are categorized 

depending on their function. The following details have been adopted from [ 20]. 
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Figure  2.1 Layered Grid Architecture (Diagram format adopted from [ 20]). 

Fabric layer: Jobs in this lowest layer are used to provide a common interface to all available 

resources. Access by higher layers is granted via standardized processes. All resources for which 

such a standardized interface is applicable, can be integrated in the grid concept. This contains 

computers, storage systems, networks or sensors.  

 

Resource and connectivity protocols:  The connectivity layer defines the basic communication 

and authentication protocols which are needed by the grid. While the communication protocols 

allow the exchange of files between different resources connected by the first layer, the 

authentication protocols allow to communicate confidentially and to ensure the identity of the two 

partners. To this belongs also the delegation of rights and methods for unique authentication 

(single sign-on). In the resources layer, the common access to individual resources is organized. 

This contains initiation, observation, control, clearance and negotiation of security parameters. 

Also, processor resources get assigned, reserved, observed and controlled. The OGSA is a 

standing architecture still in development that will lead the implementation of this layer in many 

grid projects. The Globus Toolkit 4 (GT4) presents a popular implementation of the OGSA 
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specification and offers software jobs and libraries to realize a grid according to OGSA 

specification.  

 

Collective services:  The purpose of this layer is the coordination of multiple resources. Access 

to these resources doesn’t happen directly but merely via the underlying protocols and interfaces. 

The jobs of this layer contain, among others, the creation of a directory service, and they supply 

monitoring, diagnostic and file replication services. Furthermore grid-capable development 

systems are provided to be able to use popular programming models in a grid environment. 

 

User applications:  To this layer belong all those applications which are operating in the 

environment of a virtual organization. Jobs of the lower layers get called by applications and can 

use resources transparently. 

2.3 Grid Resource Management 

The term “resource management” is used to refer to the operations used to control how 

capabilities provided by grid resources and services are made available to other entities, e.g., 

users, applications, or services.  

The main distinguishing factor between resource management in a grid environment and 

a traditional localized system is that resource management in grids may span across different 

administrative domains, usually operating under differing policies and conflicting objectives. In 

addition, resource management in grid environments often requires concurrent allocation and 

coordination of multiple resources across administrative domains. A key issue of resource 

management is deciding what resources to allocate to whom, and when. This includes the 

capability for resource discovery, resource scheduling and resource allocation.   

2.4 Open Science Grid 

OSG is a consortium of software, service and resource providers and researchers from 

universities, national laboratories and computing centers across the U.S., who together build and 

operate the OSG project. The project is funded by the NSF and DOE, and provides staff for 

managing various aspects of the OSG. 
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The goal at OSG is to bring petascale computing and storage resources into a uniform 

grid computing environment, and to integrate computing and storage resources from all over the 

U.S. and other countries.  

The current bulk of resources consist of more than seventy participating institutions, 

including self-operated research VOs, campus grids, regional grids and OSG-operated VOs, 

capable of supporting about ten thousand CPU-days worth of processing in a  day, with ten 

terabytes of data movement supported in a day.  

 2.5 Grid Applications 

The Grid has a wide range of applications, such as solving challenge problems like 

protein folding, financial modeling, earthquake simulation, and climate/weather modeling. Grid 

also offers a means for providing resources as a utility for commercial and noncommercial users, 

with those users paying only for what they use, much like providing a service to consumers in a 

market. 

Grid computing is also being applied to numerous scientific research projects and 

experiments around the world. One such experiment is the ATLAS experiment conducted at the 

Large Hadron Collider (LHC) at CERN, which is expected to produce over one hundred peta 

bytes of data over the next few years at the rate of around two hundred “events” per second, 

each event requiring approximately ten minutes of processing on a one GHz Intel processor. 

Another well known project is Search for Extraterrestrial Intelligence (SETI) which was using 

more than three million computers to achieve 23.37 sustained teraflops (979 lifetime teraflops) as 

of September 2001[ 52]. 
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CHAPTER 3 

 
MOTIVATION FOR A MARKET ORIENTED GRID 

To date, various mechanisms have been proposed to allocate resources in grid 

computing environments, but most of them have neglected one very important fundamental 

question in Grid computing: incentive. Most resource allocation algorithms have substituted 

valuations with job priorities, making the assumption that jobs with high valuation would naturally 

be assigned high priorities. This might be true for most cases, but failed to capture user 

preferences when using priorities. Job priorities refer to the weight assigned to jobs, which 

indirectly translates to the importance of that job perceived by a user. But it does not reflect the 

preferences of users for any set of resources. Some might propose the use of policies to 

differentiate user preferences, which might also work in this case. But how about incentives for 

resource providers to provide their resources for use? Policies may be able to distinguish 

between users’ resource preferences, but cannot reflect the willingness of resource providers to 

offer their resources. In fact, resource providers might not be willing to provide their resources if 

there is no incentive for them to do so. Shifting the focus from placing weights and priorities on a 

per job basis to using valuations to represent users’ valuation towards resources and resource 

providers’ willingness to offer those resources, helps in achieving a much greater goal with just 

one variable instead of using combinations of weights, priorities, and policies for representing 

only user preferences and job priorities. 

Moreover, incentive can also be translated to pricing models, penalties, discounts, and 

more, which provides a powerful and dynamic tool in manipulating the flow of resources within the 

Grid environment through the application of economic mechanisms.  
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CHAPTER 4 

BACKGROUND 

This section offers some background in the basics of the economic mechanism and 

various auctioning mechanisms available today. 

4.1 Reasons for Markets 

A market is a common place where trading transactions are executed. They exist mainly 

due to a fundamental rule in economics, the concepts of supply and demand. This could be 

described as a desire for something by some group, whereas another group (or groups) is 

offering that “exact something” in exchange for something else that the first group is in 

possession of or can acquire. Although this definition of a market is overly simplified and many 

would disagree with this overly generic explanation, it basically explains what a market is from a 

very abstract standpoint.  

In order for a market to function, there has to be some kind of agreement for an 

exchange to take place. This is often known as market clearing in the classical school of 

economics. It is a simplifying assumption that exchanges always tend towards the price where 

the quantity supplied equals the quantity demanded, and this price is often called the market 

clearing price.    

4.2 How Markets Work 

There are many types of market clearing mechanisms in use today, many of which are 

designed to serve a specific purpose. As such, each has its own strengths and weaknesses for 

different applications. Figure 4.2 (partially adopted from [ 55]) depicts an overview of such market 

clearing mechanisms used. First off, trading price has to be determined prior to any trade to take 

place. Prices may either be static (fixed price) or dynamic in a market.  
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Figure  4.1 Market Types 

Fixed prices, as the name implies, will never/seldom change during the course of a 

transaction. As such, this is more of a take-it-or-leave-it type of trade which limits further haggling 

on prices. The advantage of fixed pricing is in its simplicity and timely transactions. A trade is 

either successful or not, with no further complexities. For example, there are fixed price sales 

(such as what happens in a supermarket) where a consumer either purchases the product or 

walk away. This, however, may potentially limit the number of trades in a market due to its lack of 

flexibility. (This obviously does not mean that prices for this model can be determined in an ad 

hoc manner; indeed, the history of supply cost curves and demands for the products are used by 

economists to determine the price.) 

Dynamic pricing, on the other hand, allows for some extended flexibility when compared 

to static pricing mechanisms. The price determination mechanism may be broken into two main 

groups: (1) Auctions, and (2) Negotiations / Re-negotiations. Auctions usually exhibit more 

flexible market clearing characteristics than fixed pricing, and are less complex and time 

consuming when compared to price negotiations. Since this work is focusing on auctioning 

mechanisms for grid resource exchanges, we will further discuss such pricing models in the 

oncoming subsection (Section 4.3).  Price negotiations (one which allows for price haggling 

between sellers and consumers), are traditionally difficult to manage (due to the frequently non-

policy driven interactive process between seller and buyer) and time consuming, especially those 

which allow re-negotiations. The frequency of negotiations plays an important role in the price 

determination process at the cost of further complexity and time delay. 
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4.3 Auctions 

Auctions are often used as a mechanism to elicit information, in the form of bids, from 

potential buyers regarding their willingness to pay for an object (also known as the valuation of 

the object), and determine who-gets-what as an outcome. The objective of an auction is to 

achieve Pareto optimal outcomes, to attain allocative fairness and efficiency, or maximization of 

the seller’s profit margin. From [ 53], Pareto efficiency or Pareto Optimality refers to situations 

where any change to make any person better off would result in having someone worse off. In 

other words, a Pareto efficient allocation refers to the best attainable allocation which cannot be 

improved any further. For more details on Pareto Optimality, readers are referred to [ 54] 

Auctions are often used when a seller is unsure about the valuation of the item being sold 

from the perspective parties seeking to purchase the item. Should the precise valuation of every 

potential bidder be known to the seller, he could have simply sold the item directly to the potential 

customer with the highest valuation (or bid). On the other hand, bidders of an item often lack the 

knowledge of the valuation attached to the item by other bidders. In a best case scenario one 

may have an estimate of an item’s worth based on an expert’s appraisal or information collected 

from past experiences. But ultimately, bidders will still have to compete against one another in an 

attempt to win the item.  

In a traditional auction, an auctioneer is regarded to be on the seller’s side, taking bids 

from potential consumers who have valuations for the items they intend to purchase. In some 

auctions, however, an auctioneer agent may be on the consumer’s side, taking offers from sellers 

who wish to sell their products. In our work, we make the assumption that auctioneers may be on 

the consumers’ side (trying to minimize the final price), seller’s side (trying to maximize the selling 

price), or neutral. When an auctioneer is on the consumer’s side, its main objective is to maximize 

consumer’s utility by maximizing valuations and minimizing purchase cost. If the auctioneer is on 

the seller’s side, the objective would be to maximize profits while minimizing cost for the sellers. 

However, since both scenarios are considered to be one-sided (favoring either the consumers or 

sellers), a third neutral auctioneer scenario is introduced where the objective is to make an 
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attempt to strike a balance between the two prior cases with the main goal of maximizing global 

welfare. 

4.3.1. Different Flavors of Auctions 

There are many flavors of auctioning mechanisms, each with its own unique 

characteristics, strengths/weaknesses, and applications. Four primary types of auctions are 

widely used and analyzed, namely: ascending bid auction (often called open or English auction), 

the descending bid auction (also known as the Dutch auction), first-price sealed-bid auction, and 

second-price sealed-bid auction (widely known as the Vickrey auction).  

In addition, there are nine secondary types of auctions used today, which are derivations of the 

primary auction types [ 58]: 

I. Silent auction: is a closed-bid sealed-price auction where bids are historically placed by 

writing on a sheet of paper and putting this sheet in a sealed envelop (thus the name). The 

ultimate winner is the bidder who placed the highest price on her paper and the selling 

price is exactly this number.  

II. Walrasian auction (tâtonnement):   is a double auction where multiple sellers and 

consumers are matched in an auction based on bids taken from both sides in a market of 

multiple goods.  

III. Reverse auction:  as the name implies, reverses the role of sellers and consumers from a 

conventional auction where consumers compete and bid prices up in an attempt to win the 

auction. In a reverse auction, sellers compete by offering progressively lower prices until no 

supplier is willing to make a lower bid. 

IV. Combinatorial auction:  is an auction where bidders can place bids on combinations (or 

packages) of items, instead of being limited to bidding on single items like most 

conventional auctions.  

V. All-pay auction:  is a form of gambling on the outcome of an auction where participants 

must pay for the privilege of placing a bid in an auction-like process. Since the outcome of 

the auction-like process is uncertain, the amount spent on participating in the auction is 

similar to a wager, which is essentially a deceptive form of gambling. 
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VI. Top up auction:  is a variation of an all-pay auction where bidders pay the difference 

between their current bid and the next lowest bid, regardless of whether they eventually win 

the auction. The winning bidder pays for the final item price while the other participants pay 

for the top-up prices.  

VII. Reserve auction:  is an auction where the seller sets a pre-determined minimum price for 

the item for sale. The item may not be sold if the final bid is not high enough to satisfy the 

seller’s minimum price. 

VIII. No reserve auction:  is an auction in which the item for sale will be sold regardless of the 

final price. As such, the seller runs a risk of selling an item at a “ridiculously low price”. On 

the other hand, psychologically, it has the advantage of attracting more bidders due to the 

inherent possibility of purchasing an item at a bargain. 

IX. Buy out auction:  is an auction with an initially set price (the 'buyout', or ‘buy-it-now’ price) 

that any bidder can accept at any time during the course of the auction, thereby 

immediately winning and ending the auction. If no bidder chooses to utilize the buyout 

option before the end of auction, the highest bidder wins the auction and pays their bid. 

4.3.2. Single Auctions 

Single-sided auctions can be categorized into:  

I. Forward auctions, and  

II. Reverse auctions.  

 

Consumer

Seller

Seller

Seller

Seller  
(a) 

 
(b)

Figure  4.2 Single Sided Auctions. 
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Forward-auctions refer to a market where there is a single seller and multiple 

consumers competing for the product. Examples of forward-auctions are English and Dutch 

auctions. The design of forward-auctions favors the consumer with the purpose of revenue 

maximization. Reverse-auction, on the other hand, favors the purchase price minimization of a 

consumer.   

 4.3.3. Double Auctions 

A double auction is an auction where consumers and sellers are treated as equals in an 

auction, with potential consumers and sellers submitting their bids concurrently to an auctioneer 

who will determine the best clearing price for the auction. Figure 4.3 shows the layout of a 

double auction scenario. 

 

Figure  4.3 Double Auction. 

4.3.4. Closed Auctions 

In a closed auction bidders submit sealed bids. A participating bidder has no knowledge 

of the bids placed by other bidders. 

4.3.5. Open Auctions 

In an open auction, participating bidders have full knowledge of each other's previous 

bids and may repeatedly place higher bids using this knowledge.  

4.3.6. Combinatorial Auctions 

The definition for combinatorial auction has evolved over the years. As stated in [ 55], 

the classical variant of a CA is the multi-item auction where single items of multiple good types 
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are combined in bundle bids. It has later evolved to include multiple items of a good type in bid 

bundles, called multi-unit auction with combinatorial bids [ 57].  

4.3.7. Combinatorial Exchange 

Combinatorial exchange brings together both double auctions and combinatorial auctions 

into a single auctioning mechanism [ 56]. Buyers and sellers in a combinatorial exchange are 

able to trade single, multiple, homogeneous, or heterogeneous goods concurrently. 
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CHAPTER 5 

PREVIOUS WORK 

As the demand for computational power increases with the acceptance of 

computational grids, resource handling came under the spotlight as users began experiencing 

limitations in resource performance. What good can a tremendous amount of resources be 

when users are not utilizing them with caution? Careful scheduling and resource management 

eventually became one of the important goals of improving grid usage efficiency and unveiled 

important differences in resources between computational grids and in traditional computing 

systems. In a grid environment, resources are distributed and span across different 

administrative domains. Administrators of such domains are often not keen on letting someone 

from another domain take control of their resources. As such, one main obstacle to grid 

scheduling is to find ways to be able to achieve its scheduling and management objectives 

without taking full control of such distributed resources.  

5.1 Traditional Grid Scheduling and Resource Management 

In recent years, significant advancements have been witnessed in the area of grid 

scheduling. Although varying methodologies have been adopted, most shared a common focus 

on enhancing job performance and system utilization. As discussed in [ 47], grid scheduling can 

be classified into meta-scheduling and resource brokering as shown in Figure 5.1.  

5.1.1 AppLeS (Application Level Scheduling) 

AppLeS [ 47] is an application centric scheduling system designed with the objective of 

improving application performance in grids. In the AppLeS project [24], each grid application is 

tied with its AppLeS agent and scheduled according to its own performance model. Each 

AppLeS agent is made up of a coordinator and four subsystems: a resource selector, planner, 

performance estimator, and an actuator. The role of the central coordinator is to coordinate the 
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subsystems and perform the task of scheduling. The general strategy of AppLes is to take into 

account resource performance estimates to generate a plan for assigning file transfers to 

network links, and tasks (sequential jobs) to hosts. In recent years, AppLeS has begun 

development of AppLeS templates, where each template caters to a specific class of 

application.  

 

 

Figure  5.1 Taxonomy of Grid Scheduling (Adopted from [ 47]). 

 
5.1.2 Condor 

The Condor project [ 43] is a distributed computing research project conducted by the 

Computer Science department of The University of Wisconsin at Madison. It is an open source 

distributed computing software capable of handling large collections of distributed resources 

and job requests, providing a distributed high throughput computing (HTC) facility. Condor has 

the capability of handling both dedicated computing nodes as well as non-dedicated resources 

through cycle stealing. Condor's Globus Universe (i.e. Condor-G) is an extension allowing 

Condor tools to submit jobs to the grid. The Condor-G Matchmaking mechanism is used to 

schedule jobs to the grid. It allows users to specify requirements such as storage space, 

libraries, resource preferences etc. Figure 5.2 shows the architecture of Condor-G 
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Figure  5.2 Condor-G (Adopted from [ 20]). 

However, there have been several noted problems with using Condor-G as a grid 

scheduler. Although parallel jobs can be submitted in Condor-G, all jobs are treated as serial 

jobs since Condor-G does not support parallel jobs and it does not recognize the parallelism in 

jobs. In addition, although resource preferences can be defined in Condor-G, it will always favor 

closer datasets to explicitly defined resources because it does not support data aware 

scheduling. Scalability is also an issue in addition to the lack of integration with grid information 

systems. Another problem is the creation of orphan and wasted jobs in cases of failure at any 

key point, where jobs would be left running and consuming resources while never to be 

recovered or stopped.   

5.1.3 Moab Grid Scheduler 

Moab Grid Scheduler, also known as Silver, is a centralized grid scheduler 

encompassing features from several local schedulers such as PBSPro, Maui, and Loadleveler. 

It uses features such as advanced reservation, advanced co-allocation, and load balancing. It 

also provides support for jobs which span across multiple computing resources. The main 
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objective of Silver is to achieve optimal resource utilization, while providing flexibility in global 

and local policies and remaining simple to use and manage.  

At a high level, Moab applies site policies and optimization techniques to handle jobs, 

services, and other workload across distributed grid resources. Moab Grid Scheduler also 

allows schedule reordering and resource allocation in an attempt to improve cluster 

performance and responsiveness. It uses advance reservations to reserve resources for use at 

guaranteed start times. In addition, Moab jobs can be modified based on different policies to 

help improve system utilization and minimize response time. Preemption is also supported for 

jobs with high priority. 

5.1.4 Nimrod/G 

Nimrod/G [ 49] was introduced by Buyya et. al as a first attempt to bring market 

economy based systems to the area of computational grid environments. Nimrod/G’s brokering 

system has the capability of integrating various economic models into applicable areas of grid 

resource scheduling and management by providing resource users a way to specify resource 

requirements for various job types. Nimrod/G also has the flexibility of adopting different trading 

mechanisms such as auctions, bargaining mechanisms, and posted price models, based on 

information on current price and different policies. Auctioning mechanisms supported by 

Nimrod/G include bilateral bargaining and English auctions, albeit with limited support for 

advanced reservations and resource bundle trading.      

5.2 Economic Grid Scheduling and Resource Management 

Economic oriented scheduling and resource management mechanisms have been 

gaining popularity in recent years. A comprehensive study of market oriented grid applications 

can be found in [ 17].  

Buyya et al. [ 44] investigate economy grids and requirements of economy based grid 

systems. The authors discuss ideas and challenges for implementing auction models for grid 

resource allocation, including the English, Dutch, and Double auctioning schemes. In the first 
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two schemes (English and Dutch auction), potential resource buyers bid for the right to use 

resources. In the Double auctioning scheme, sellers set the selling price of their resources and 

the buyers set their respective budget for resource purchase. A “middleman” (GMA) acts as a 

broker and matches the two participants if the prices meet. In the first two schemes, however, 

buyers compete for the right to use resources by placing higher bids, which limits the 

motivational aspects for the sellers to improve themselves in terms of efficiency and resource 

management in order to stay competitive. The double auctioning scheme attempts to split the 

competition between buyers and sellers; it is important to note that although this is a resource 

allocation scheme, the sellers are providing a service to those who have the purchasing power 

within the market. As a result, the pressure of staying competitive should fall on the sellers 

rather than those who are paying for a service. Moreover, creating competition amongst buyers 

would lead to deprivation of service for some potential buyers who cannot afford to pay high 

prices for a service, hence bringing down the number of potential trades between sellers and 

buyers. In addition, by shifting the competition to the sellers, there is an indirect advantage of 

motivating individual sellers to better improve themselves so as to stay competitive within the 

market, aiding in enhancing the quality of resource management throughout the grid 

environment. 

Yeo et al. [ 11] proposed an extension to the system-centric cluster Resource 

Management Systems (RMS) to support utility-driven resource allocation and management by 

introducing four mechanisms: (I) Pricing, (II) Economy-based Admission Control, (III) Economy-

based Resource Allocation, and (IV) Job Control. The Economy-based Admission Control unit 

primarily determines if a job is to be accepted based on the job details and QoS requirements. 

The Economy-based Resource Allocation unit performs the task of resource and job matching, 

along with dispatching jobs to the matched nodes. The Job Control unit assumes the role of 

monitoring for jobs and resources. In this scheme, jobs are submitted to the cluster RMS using 

user-level job submission specification where the admission control mechanism determines the 
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feasibility of accepting a job. If a job is deemed acceptable, the resource allocation mechanism 

would perform the necessary matching of the job to an execution node. However, if the job is 

not deemed acceptable by the admission control unit, the rejection decision would be fed back 

to the user. In other words, the responsibility of job submission lies upon the user to make smart 

decisions on where to submit the jobs to be processed such that the probability of getting an 

acceptance is high (much like what is employed in numerous conventional job assignments in 

the grid today). In a conventional scheme, the user attempts to make a smart decision as to 

where to submit the jobs and performs the job submission process. Although the targeted site 

may not necessarily be the best suited site for the job, the job is usually accepted by the 

receiving host unless its gateway is overwhelmed and starts dropping jobs. In this case the user 

would have to either resubmit the job at a later time or determine another potential execution 

site and attempt to send it there for execution. In this scheme, however, due to the potential 

rejection of jobs by the admission control mechanism, it would be necessary for the user to 

constantly monitor the status of each submitted job for rejection as well as monitoring all 

potential clusters in order to increase his chances of getting his jobs accepted. 

Xiao et al. [ 45] present GridIS targeting incentive based grid scheduling focusing mainly 

on the aspects of aggressiveness in resource reservations. According to [ 45], the grid is 

essentially divided into resource consumers and providers, which may not always be the case in 

real systems as the resource consumer may also be a provider of other resources. The authors 

make two assumptions when designing the scheduling mechanism: i) execution time of all jobs 

is sufficiently long to make the overhead of remote job execution relatively negligible; ii) every 

provider is able to receive all job announcements. This works well in an environment with a 

small number of time consuming jobs to be executed in a fully connected network. However, 

depending on numerous factors such as availability of resources, status of a site, network 

topology, and cost of job execution at remote sites. It may sometimes be more efficient and 

economical to execute those jobs locally. In addition, although fairness in job distribution is an 
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attractive goal in grid computing, it often comes with the price of excessive network flooding and 

added delay from propagating job announcements throughout the network. As a result, it may 

be beneficial to have some mechanism for assessing overhead costs and evaluating 

propagation of job announcements to aid in determining the worthiness of sending a job for 

remote execution. In addition Xiao uses the ratio of agent payments versus resource price to 

calculate resource allocation for each agent. In reality, it may be more desirable to have a 

monitoring agent located at each participating site to handle the task of monitoring resource 

usage. 

Opitz et al. [ 16] performed a thorough analysis of the various costs incurred by a 

resource provider in setting up and maintaining a grid resource center. They conducted analysis 

on several case studies and provided good estimates of costs in real grid systems. According to 

Opitz, costs can be classified into several categories (see Figure 5.3) based on what they relate 

to: hardware, premises, software, personnel, and data communication. One of the key 

observations is that certain costs become variable when components switch from idle to busy 

state. For example in today’s technology, an idling system consumes substantially lower power 

when compared to the same system in a busy state.  

 

 
Figure  5.3 Operation Cost Breakdown. 

Broberg et al. [ 17] provide a comprehensive evaluation of the current market-driven 

utility computing platforms. They categorize participants within such environment into three 

main groups: users, brokers, and service providers. One important key issue brought up by 

Broberg is that: “…the behavior exhibited in a shared system where market-driven techniques 
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are used simply to regulate access differs greatly from a profit-driven commercial system.” [ 17]. 

In a profit-driven environment, service providers share a common goal of maximizing 

accumulated profit through the provisioning of their resources (usually with a secondary goal of 

incurring minimal cost). A profit-driven service provider might care less about global fairness 

and efficiency than the profit made from any one transaction. On the other hand, when adopting 

a market-driven mechanism with the objective of ensuring fair and unbiased access to 

resources, profit making might not be ranked as high as in a profit-driven environment. Thus the 

pricing techniques used in these fundamentally different systems might be vastly dissimilar.  

Tan [ 46] proposed a Stable Continuous Double Auction (SCDA) scheme applicable to 

market-based grid resource allocation. The SCDA has the advantage of continuous matching, 

along with low communication and computation cost. It also provides low price volatility with low 

bidding complexity.  

Tan made the assumptions that: 

I. The grid environment is a distributed two-sided market with consumers and providers 

competing concurrently 

II. The grid resource allocation mechanism must have the ability to offer resources and 

resource bundles with minimum delay 

III. Discriminated price mechanism is used as the dynamic pricing mechanism 

IV. Resource allocation and scheduling efficiency evaluation is based on economic efficiency 

(Pareto efficiency) and scheduling efficiency (user-centric performance). 

The proposed SCDA scheme is a modified Continuous Double Auction (CDA) 

mechanism with an added Compulsory Bidding Adjustment (CBAL). The CBAL acts as a filter to 

perform price adjustments to correct unfavorable prices submitted by participants. All orders are 

channeled through the CBAL prior to reaching the standard CDA mechanism. Figure 5.4 shows 

the architecture of SCDA. The CBAL price adjustment mechanism uses a set of IF-THEN rules 

in a Mandani fuzzy controller in an attempt to translate price adjustment intuitions into fuzzy 
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rules which are then used to derive auction prices. Figure 5.5 shows the overview of the fuzzy 

logic used.  

In the experiments conducted, five resource consumers and five providers were created 

for a grid environment, with provider cost prices generated from a uniform distribution of [1.0-

9.0], whereas offer prices were similarly generated from the range [1.5-9.5].  

 

Figure  5.4 SCDA Architecture (Adopted from [ 46]). 

 

 

Figure  5.5 Fuzzy Logic Inference (Adopted from [ 46]) 
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The use of Continuous Double Auction (CDA) has the advantage of being flexible and 

simple to implement, in addition to avoiding the computational complexities in the Winner 

Determination Problem (WDP). However, the author has conveniently disregarded one crucial 

rule in grid computing: resources in a grid environment are almost never used as standalone 

entities. For an auction mechanism to work in a grid environment, heterogeneous resource 

bundling capability has to be the de-facto standard if traded resources are to be of any use. 

Consider auctioning 2GB of memory without any CPU and storage support and the entire 

auctioning mechanism serves no purpose other than a classic buy-and-sell market for individual 

goods. On the other hand, it contributes to a new problem for consumers trading in such an 

auction environment – the exposure problem whereby winners are “exposed” to the risk of 

obtaining only a portion of a whole product, which is insufficient for any productive use due to 

the lacking of other required parts to make it a whole. As a result, the amount spent on 

acquiring the incomplete set of items goes to waste. 
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CHAPTER 6 

PRICING MECHANISM 

6.1 Supply and Demand 

By definition, “…'Utility' is roughly synonymous with 'satisfaction,' 'well-being,' 'welfare', 

'happiness,' 'pleasure,' etc. Generally, one can increase her utility by undertaking enjoyable 

activities or purchasing things we desire...” [ 18]. However, it is almost impossible to compute 

utility in closed form in the real world. Most researchers adopt the simplified route of defining 

utility by semi-arbitrarily assigning numerical values (with the use of ≺  notation [ 19] 

representing a preference function), or defining utility (u) as the difference between perceived 

value ( )v and purchase price ( ) ( ): ,p u v p v p= − . 

Arbitrarily assigning numerical values is mainly used for representing an ideology as the 

resulting computations will not yield good accuracy. On the other hand, the use of differences 

between multiple perceived valuations introduces another term which is difficult to measure. 

The work in [ 21] advocates the use of consumer surplus instead of the traditional utility 

representations. The advantages of using consumer surplus is that  

I. it is measured in terms of actual currency (e.g., dollars),  

II. since cost functions are also represented in terms of monetary values, it becomes much 

simpler to derive costs and to provide measurement of consumer satisfaction,  

III. it enables the quantifiable measurement of aggregate consumer satisfaction in a given 

market 

6.2 Market Pricing 

Even if market demand is determined, no transactions can be realized without first 

setting a market price. In this section we will discuss the price determination process in a 
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market-driven grid environment as well as how a resource provider can determine the best price 

to sell and allocate their resources in a multiple market environment. 

There are essentially three different types of costs [ 21] (see Figure 6.1):  

I. sunk, 

II. fixed, and  

III. marginal cost.  

 

  

 

Figure  6.1 Production Cost Breakdown 

Sunk and fixed costs are represented by Φ , while µ  represents marginal costs. Sunk 

costs are costs which have already been spent. Any unspent costs can be divided into either 

fixed or marginal costs. Fixed costs in the economic grid environment refer to the costs incurred 

by the resource provider with the general operation of the resource center, e.g., acquisition of 

machines, storage disks, and setting up of networking are necessary prior to providing any 

services to any consumers. As a result, these can be classified as fixed costs. Marginal costs 

can be further categorized into marginal operation and capacity costs. Marginal operation is the 

cost incurred by proving service to one additional consumer, whereas marginal capacity cost 

refers to the cost associated with the cost of increasing capacity to attend to an additional 

consumer’s resource requests. 

6.3 Combining Goods 

Combining goods in a sale can sometimes be the preferred method of marketing, due 

to the following reasons:  
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I. sellers may be able to maximize profit by selling goods in bulks,  

II. the sales volume may be enhanced by selling more items in a single transaction.  

Some marketing and economics literatures make a clear differentiation between the 

terms bundling and tying while others simply name them as bundling. For example, [ 21] defines 

bundling as selling of packages containing at least two units of the same product or service 

whereas tying is defined as selling packages containing at least two different products or 

services. In our work we will loosely use the term bundling to refer to bundling, tying, and 

combinations of both. In the following sections, we will explain how a seller decides whether to 

sell products individually or bundle them together as an entity. We also describe the different 

ways of bundling when attempting to maximize profit.   

6.3.1. No Bundling 

As the name implies, no bundling implies that all goods are marketed and sold as 

individual entities. Let 1Cs
AV denote the valuation of good A by a consumer Cs1, and 

2Cs
BV represent the valuation of good B by consumer Cs2. Let AP be the price of good A, BP be 

the price of good B, and ABP  be the price for bundle AB. A potential consumer will only 

purchase an item if her valuation for that item is larger (or equal) than the selling price of that 

very item, i.e., if 1Cs
A AV P≥  then consumer Cs1 will purchase good A; otherwise, Cs1 is not 

buying A. However, if 1Cs
A AV P≥  and 1Cs

B BV P≥ , then Cs1 will purchase both goods A and B.  

6.3.2. Pure Bundling 

In pure bundling, goods are always sold in bundles and never as individual items. For 

example, assume that the price for good A is AP , and the price of good B is BP . In a pure 

bundling market, a consumer will either buy nothing, or both A and B, at the price of ABP .  From 

Figure 6.2, the area under the line ABP  represents consumers with combined valuation 
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AB ABV P< , thus nothing is being purchased. On the other hand, if AB ABV P≥  (area above line 

ABP ), consumers will be willing to purchase A and B. 

6.3.3. Mixed Bundling 

In mixed bundling, goods may either be purchased as a bundle, or individually. 

Therefore consumers can choose among purchasing only good A, only good B, or both items A 

and B. 

 

 

6.3.3. Multi-package Bundling 

Multi-package bundling refers to offering different combinations of goods together as a 

bundle (adopted from [ 21]).  

 
Figure  6.2 No Bundling vs. Pure Bundling. 

6.4 Terminology 

In this section, we explain the terminology used in our grid resource market model. The 

section is separated into two subsections:  

I. Consumers, who are essentially users participating in the auctioning system in an attempt 

to attain computational resources for their job processing; and  

II. Sellers, who are the providers of the grid resources through the auctioning system. 
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6.4.1. Consumers 

Consumers (i.e., users) in a grid system by definition are trying to make the system 

process their computational jobs. Users attempt to harness the computational prowess of a grid 

to expedite their job processing capabilities. We define the set of consumers to be represented 

by C, where │C│=c contains all consumers within the model. 

   6.4.1.1 Consumer Jobs 

Every consumer has jobs which require the use of grid resources for their processing. 

The jobs in a grid environment are generally categorized into various job types. For example, in 

the ATLAS experiment [ 34], jobs are categorized into digitization, event generation, event 

analysis, reconstruction, simulation, etc. We define various types of jobs as 1 2, , , qjt jt jt⋯  

where q is the number of distinct job types in the grid environment.  

   6.4.1.2 Consumer Job Weight/Priority  

Since all jobs may not be created equal, some jobs may carry a higher priority than 

others. As such, every job within the system is assigned a weighting factor, e.g., job 1 is 

assigned weight 1jw , and all job weights are bounded by a lower and upper bound minjw  and 

maxjw , respectively (they are predefined). For simplicity, throughout this work we can assume 

that  min 1jw =  and max 100jw =  (unless defined otherwise). The use of a weighting factor 

helps in identifying priorities assigned to jobs. 

   6.4.1.3 Consumer Job Processing Time  

In an ideal world, users know exactly how long each job will take to complete execution 

and hence could request resources for that exact amount of time. However, in the real world 

things often do not take place as planned and jobs can have stochastic behaviors. As a result, it 

is almost impossible to have a priori knowledge of the exact amount of processing time required 

for each job prior to execution completion. Users may, however, have some knowledge of the 

expected job execution time for each job type through experience. Although not necessarily 
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accurate, such knowledge is often useful when making estimates of when jobs will produce 

useful output. We define ijee to represent the expected execution time of job type i, and ijea  to 

represent the actual execution time of job type i. In addition, the standard deviation (spread) of 

each job type’s actual processing time is represented as ijes . Both ijea and ijes are collected 

as historical information, and used when making estimations for the next expected job execution 

time.  

Like most things in life, job behavior may change over time, due to changes in job 

characteristics, input and output dataset sizes etc. which in turn alters the average job execution 

time and standard deviation for each job type. In order to capture temporal job execution time 

characteristics, while minimizing the effects of any skewed data due to outliers, we will employ a 

temporal filter when determining 1t
jjee +  at execution instance (discrete time) t, i.e., 

1

1

it
jt

j
i

jee
jee

t
+

=

=∑ . This has the effect of evening out fluctuations in the latest job execution 

time, limiting outliers’ skewing effects. 1t
jjes +  is computed as 

2

1

1 1

1 1

1

t t
t i i
j j j

i i

jes jee jee
t t

+

= =

  = −  −   
∑ ∑ .  

 

   6.4.1.4 Consumer Job Deadline  

The job deadline is the latest time by which the job has to be completed without 

incurring additional penalty charges. It is usually estimated as the current time plus the 

expected estimation time plus one standard deviation and can be estimated using the formula: 

( ) ( ), ,t t
i c c ctdl t jee t i jes t i= + +  where itdl  is the deadline for a job of type I and ct is the 

current time. 
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   6.4.1.5 Consumer Budget  

In most grid job submission schemes, grid administrators can limit the number of jobs 

processed by each user on a per day/week/month basis. However, this limitation only serves as 

a cap to the number of jobs processed and offers no incentive for users to avoid wasting of grid 

resources. Budget serves a similar purpose of limiting resource usage, albeit with the additional 

benefit of being used in conjunction with valuation and utility as an incentive for consumers to 

curb excessive wastage of grid resources by always requesting top-of-the-line resources for 

processing non-critical jobs, including resources which could have been used for processing 

more critical jobs. Consumers of grid resources have a budget which they cannot exceed. This 

limits overly aggressive bidding behavior of consumers when participating in an auction for grid 

resources. Budget ib  refers to budget of consumer i. 

   6.4.1.6 Consumer Costs  

When processing jobs, there is an inevitable cost associated with each job. The cost is 

the price paid to acquire the necessary resource bundles for job execution, and is calculated as 

( )*i i ic jee jesρ= + , where ic  is the cost of job type i. For example, the bundle price paid for 

the resources used to process a job. Since resources are acquired for an expected period of 

time in an auction, continued usage of the mentioned resources will incur additional charges, 

which is known as the penalty. 

   6.4.1.7 Consumer Job Valuation  

In order for an auctioning model to work in a grid environment, there is a need for some 

type of incentive to entice consumers to participate in the auctions. Since users have the need 

to have their jobs executed, there is some ‘value’ attached to each job. This value function is 

expressed as the product of a base incentive value and the respective weight assigned to that 

job: *i i ijv jw bi= where ijv is the job valuation of job type i, ibi  is the base incentive to 

execute job type i. Since a higher priority job would naturally be assigned a greater weight, its 

job value would also be higher than a lower weighing job. The consumer requires resource 
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bundles in order to process a job. Resource bundles are won from auctions by bidding on 

auction bundles (see Section 6.4.1.8). The expected value return from processing a job is the 

valuation of that auction bundle used to process the job, which is calculated as: 

( ) ( ) ( )*i i j j jVc Ac jee jes jvρ = + +  , where ( )i iVc Ac is consumer 'ic s  valuation of 

auction bundle iAc . Note that this valuation can also be expressed in terms of cost, where 

( )i i i jVc Ac c jv= +  (discussed in Section 6.4.1.6)  

   6.4.1.8 Consumer Resource Bundle Request  

Consumers require grid resources in order to process a job. Different combinations of 

resources are bundled together and sold as an auction bundle. Consumers have to define the 

combination of resources required, expected time period needed of the resource bundle, and 

how much the consumer is willing to pay for that specified auction bundle. An auction bundle is 

defined as ( )( ), ,, ,t A A
i k n start end i iAc x Vc Acτ= , where t

iAc  is the auction bundle consumer ic  

submitted to an auctioneer at time t, ,
A

k nx is the resource combination specified in the auction 

bundle, ,A A
start endτ τ are the start and end time period required of the auction bundle, and  

( )i iVc Ac is the maximum price consumer ic  is willing to pay for the auction bundle. 

   6.4.1.9 Consumer Auction Participation Fee  

In order to participate in an auction, consumers are required to pay a small participation 

fee pc  for every bid placed. This is used to deter overly aggressive bidding behavior where 

consumers continuously place bids in an attempt to overwhelm the system so as to prevent 

other competitors from placing bids. 

   6.4.1.10 Consumer Penalty  

The penalty is defined as the additional charges imposed when an agreement is 

breached by the consumer. For example, a penalty cπ  is imposed on the consumer if she fails 
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to complete job processing before the deadline, or when the consumer’s job fails to complete 

execution within the agreed upon period ijee . The penalty is computed as follow: 

,
j

c max x
Usπ

ρ ρ
 

=   
 

where jUs is the current resource utilization of seller js  whose 

resources the consumer is using. ρ  is the current market value of the resources used by the 

consumer. x is a scaling factor used to calculate the additional charges for overusing the 

resources. 

   6.4.1.11 Consumer Job Utility  

The initial utility derived from winning a resource bundle for a job may sometimes be 

different from the final utility derived upon completion of a job since the initial utility is computed 

based on expected values whereas the final utility is the actual derived utility after job 

completion. The initial utility is � ( )j i j pcui Vc A c s cπ= − + − , where ( )iVc A is the derived 

valuation from acquiring auction bundle A (discussed in Section 6.4.1.7), jc is the cost of job 

type j  (see Section 6.4.1.6) which is the winning auction price for the resource bundle. sπ  is the 

seller’s penalty (discussed in Section 6.4.2.5) and pc  is the participation cost (discussed in 

Section 6.4.1.9). The final utility is computed as � �
iicuf cui cπ= − . ( cπ is discussed in Section 

6.4.1.10) 

   6.4.1.12 Consumer Aggresiveness  

The aggressiveness index of a consumer determines how aggressively she participates 

in the auction. It is computed as: 
( )

*

min max

1
i

c

Vc A

i

jw
Aggc

jw jw

π

 
= + + 

ℓ

 where t
c i it jee tdl= + −ℓ . 

The higher the aggressiveness index iAggc , the more aggressive the consumer would behave 

in her auction participation. 



 

 39 

6.4.2. Sellers 

Sellers participate in a grid auction to provide resources to consumers who require such 

resources to process their jobs. We define the set of sellers to be represented by S, where 

S s= . 

   6.4.2.1 Seller Wealth  

In contrast to consumers which have a budget, every resource seller within a grid 

environment uses wealth for keeping track of her profits and spending. The ultimate goal of 

every seller is to maximize wealth while keeping spending to a minimum. Wealth jw refers to 

the wealth of seller j.  

6.4.2.2 Seller Valuation 

Bundle valuation bv  is the expected operating cost of the bundle of resources when 

used to process a job. Bundle valuation is calculated as ( )*bv utρ=  where ρ is the market 

value of resource bundle, and ut  is usage time of the resource bundle. Since resource sellers 

have no prior knowledge of how long a consumer will require the resource bundle, their bundle 

valuation is expressed in terms of price-per-unit-time. [ 16] provides a thorough study of the 

operating costs of grid resources.  

6.4.2.3 Seller Utility 

Similar to a consumer’s utility computation, the initial utility derived from winning an 

auction by a resource seller may sometimes be different from the final utility derived upon 

completion of a consumer’s job. The initial utility is � ( ) ( )j psui P A Vs A c cπ= − + − , where 

( )P A  is the winning auction price for resource bundle A, ( )jVs A  is valuation of auction 

bundle A  by seller js . Since we assume here that sellers are willing to sell resource bundles at 

cost price, one can assume that ( )jVs A bv=  (discussed in Section 6.4.2.2) here. cπ  is the 
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penalty charges to a consumer (discussed in Section 6.4.1.10), pc  is discussed in the following 

Section 6.4.2.4. The final utility is: � �suf sui sπ= − , where sπ  is the penalty charges paid by the 

seller (further discussed in Section 6.4.2.5)  

6.4.2.4 Seller Participation Fee 

Similar to consumers, sellers are also required to pay a small participation fee pc  for 

every bid placed, to deter overly aggressive bidding behavior where sellers continuously place 

ask bids in an attempt to overwhelm the system so as to prevent other competitors from 

competing. 

6.4.2.5 Seller Penalty 

Similar to consumer penalty, sellers pay a penalty when an agreement has been 

breached. For example, a penalty is imposed on the seller if she fails to provide the agreed 

upon resource bundle due to overselling of resources. The penalty is computed as follow:  

( )( )max * , *s x P A xπ ρ= where initial bundle price ( )P A  is the agreed upon 

auction price for that bundle, and current market price ρ is the current market value of the 

resources offered by the seller. x is a scaling factor used to calculate the percentage of 

resource price to pay as penalty. 

6.4.2.6 Seller Aggressiveness 

The aggressiveness index of a seller determines how aggressive she participates in the 

auction. It is computed as: 

1
0.1

10 0.1

j
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The higher the aggressiveness index, the more aggressive the seller behaves in the 

auction. 
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6.4.2.7 Seller Resource Bundle Offer 

Sellers offer resource bundles in response to consumers’ requests for resource 

bundles. These resource bundles are traded in auctions as auction bundles. A seller auction 

bundle is defined as ( )( ), ,, , ,t t A A
i j k n start end i iAs us x Vs Asτ= , where t

iAs is the auction bundle 

seller is  submitted to an auctioneer at time t, t
jus is seller j’s resource utilization at time 

t, ,
A

k nx is the resource combination specified in the auction bundle, ,A A
start endτ τ is the start and 

end time period required of the auction bundle, and  ( )i iVs As is the minimum price seller is is 

willing to accept for the auction bundle. Figure  6.3 shows the relationship between Consumer 

and Seller. 
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Penalty consumer
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Participation 

cost-

 
Figure  6.3 Consumer/Seller Relationship. 

6.4.3. Historical data  

Both consumers and sellers keep historical information on the following information: 

• Past 3 resource prices for each job type. This is used to determine the 

directional trend of market pricing for each job type 

• Number of counter bids placed by competitors, and their respective auction 

location, sorted order of decreasing number of counter bids order. This is used 

to identify the most aggressive competitors in an attempt to avoid direct 

conflicts in the future. 
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In addiction to that, each consumer keeps track of:  

• All final utility returns �icuf  from previous auctions, separated by job type. 

• Past iAggc  values, sorted in ascending order. 

• All final utility returns �icuf  from transactions with all sellers, along with seller 

location, sorted in descending order. 

On the other hand, each seller keeps track of:  

• All final utility returns �isuf  from previous auctions, separated by job type. 

• Past jAggs  values, sorted in ascending order. 

• All final utility returns �isuf  from transactions with all consumers, along with 

consumer auction location, sorted in descending order. 
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CHAPTER 7 

GRID MONITORING IN THE CONTEXT OF THE ATLAS EXPERIMENT 

This section discusses work done on implementing a grid monitoring tool for the ATLAS 

experiment. 

7.1 Grid Monitoring Overview 

In order to support our study, we needed a simulation platform capable of supporting 

large scale grid environment while catering to the needs for an underlying networking 

infrastructure. As a result of these requirements, we created the ViGs simulator [ 33]. With ViGs, 

it allowed us to study the performance and behavioral aspects of the grid system as well as 

identifying any potential weakness within the system. The ViGs simulator possesses the ability 

to replace an entire functional grid environment, simulating all the resources and networking 

infrastructure which is used in a grid environment of today. To test the correctness of the ViGs 

simulator, we tested it against the PanDA (Production and Distributed Analysis System) [ 34] 

that is being developed by the US ATLAS (A Toroidal LHC ApparatuS) project with the goal of 

managing and scheduling very large workflow production and analysis of experimental results 

distributed across the US. 

 

 

Figure  7.1 PanDA Production Summary. 
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7.1.1. PanDA Overview 

A quick overview of the PanDA production system is shown in Figure 7.1. The PanDA 

production system is essentially a Many-Task Computing (MTC)  35] system consisting of 

numerous compute or data intensive tasks scheduled and processed on various computing 

resources spanning across multiple administrative boundaries around the world. It consists of 

the following components: ATLAS production interface, Regional usage interface, Monitoring 

system, Grid scheduler, PanDA server, and Participating sites, which includes research 

institutions around the world. Although we tried to capture the best representative 12-hour 

snapshot of the PanDA performance in Figure 7.2, the reader is reminded that a 12-hour 

representation of system performance is by no means a comprehensive representation of 

PanDA production performance. It serves to provide the reader with some basic information on 

the PanDA system, such as the total number of participating nodes at any point in time, how 

widely distributed the experiments are conducted (e.g. Canada (CA), France (FR), United 

Kingdom (UK), and United States (US) etc.), which stresses the importance of proper network 

modeling. Due to the various natures of jobs submitted, the typical job processing time ranges 

from ½ hour to 48 hours. Moreover, due to the nature of job locality  35], jobs often have the 

tendency to arrive in bursts. Hence, a period of 12 hours with more submitted short jobs might 

give the impression of superior system performance, whereas other periods where bursts of 

long jobs are submitted might give the false impression that the system performance has 

deteriorated considerably. In a typical PanDA operation, each node from a participating site 

submits what is called a pilot job request directly to the PanDA server. A pilot job can be seen 

as one possessing computational and data intensive characteristics of a MTC job which is 

scheduled and processed on computing resources crossing administrative boundaries. For the 

sake of simplicity, the inner workings of the PanDA server have been omitted. For more details 

on how the PanDA system works, readers are referred to  34]. Upon the completion of the input 

datasets’ pre-placement process, jobs are delivered to the worker nodes prior to the initiation of 
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job execution (a typical LHC job takes from ½ hour to 48 hours to complete, depending on the 

job type). After jobs complete, the resulting dataset has to be “staged out” successfully to be 

tagged as ‘finished’. 

Figure 7.2 shows a snapshot of a PanDA production job summary over a 12 hour 

period. From the collected data, we can see that there were a total of 7908 active nodes 

available to process job, with 14323 running jobs and 16236 finished jobs within the 12 hour 

period. The failure rate was 14%, which is a little higher than its typical value of 10% for the 

PanDA production jobs. However, readers are reminded that this is only a snapshot of the 

PanDA summary over a period of 12 hours and it is by no means a complete representation of 

its performance in the long run. PanDA Production job performance may fluctuate due to 

unforeseen circumstances at times, as will be discussed in the next section. To get a better 

picture of the PanDA system performance, we have included plots of running, finished/failed 

jobs over a one-month period. 

Figure 7.3 depicts typical running plots while Figure 7.4 shows a plot of finished and 

failed jobs over the same period. From the data collected in Figure 7.2, the averaged failure rate 

is calculated to be around 30% with a monthly job completion rate of 610,350 (for that particular 

month). The total number of jobs received over the period sums up to approximately 872,000 

jobs, which averages to around 29,000 jobs per day. One of the main explanations for the 

observed differences between Figure 7.2 and Figure 7.3 can be attributed to the fact that since 

the PanDA system is still in the development and testing phase, factors such as upgrades (e.g. 

software and database upgrades), job outages (e.g. running out of jobs to fulfill pilot job 

requests), system instabilities (system, network, and power outages) etc. play an essential role 

in affecting the performance of the PanDA system. For instance, several snapshots of Figure 

7.2 have been taken during the course of writing this paper, each with different characteristics. 

On a good day, the failure representation may go as low as 5~6%. On some rare occasions, 

however, the failure rate has gone as high as 47% with around 500 finished jobs. 
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Figure  7.2 Summaries of PanDA Jobs. 
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Figure  7.3 Summaries of PanDA Finished (light bars) and Failed (dark bars) Jobs. 

7.1.2. Simulated Results 

Figure  7.4 shows a typical PanDA server performance plot over a period of one month. 

From the collected data, we can observe that the PanDA server was able to consume an 

averaged total number of 1,134,650 jobs while producing completed jobs of approximately 
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872,000 within the one month time frame. The error rate for this period was computed to be 

23.15%, which is relatively higher to what was observed from Figure 7.2 (at 14%), as well as 

our aggregated simulation results at 18.16%. One of the reasons for this slightly higher failure 

rate can be attributed to the intermittent networking problems which have been taking place at 

Brookhaven National Lab (BNL) where the current PanDA server is located. The slightly higher 

failure rates should gradually subside as the networking problems are resolved. 
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Figure  7.4 PanDA Server One-month Plot. 

During the experimentation process, a total of thirty simulated 1-month experiments 

were conducted, each with a different seed feeding the ViGs simulator. Figure  7.5 shows the 

aggregated plot of our simulation results. When comparing the experimental findings, we 

noticed a consistent correlation between the two results: with the ViGs simulator running on a 

machine at full capacity, it was only able to consume about 80% of the pilot jobs when 

compared with the PanDA system. This may be attributed to the following reasons: On a typical 

day, the PanDA Production system has a number of active participating nodes ranging from six 

to eight thousand, many with two, four, or even eight core processors performing the job 

execution tasks. On the other hand, our ViGs simulator testing was performed on a single 

dedicated dual-core 2.4GHz machine with limited processing capabilities, limiting our 

processing threads to a maximum of 600. With the high resource utilization nature of this 

simulation, attempts to squeeze out more threads often resulted in instability to the system due 
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to overloading of the hardware. We believe that this phenomenon can be alleviated if we can 

create multiple instances of the ViGs simulator running in distributed mode. Figure  7.6 depicts 

the graphical comparisons of PanDA, PanDA at 80%, and ViGs simulator plots. 

 Aggregated simulation results

0

200000

400000

600000

800000

1000000

1200000

0 5 10 15 20 25 30

Simulation time (days)

N
um

be
r o

f j
ob

s     
.  

 .

finished

failed

total requests

 
Figure  7.5 ViGs Simulation Results Plot. 
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Figure  7.6 PanDA vs. ViGs Plot. 

7.1.3. Observations 

In this section, we make an attempt to find out how the results obtained from the ViGs 

simulator compare with the real-world production PanDA system. We perform our comparison 

by forming a confidence interval for the difference between production PanDA and ViGs 

simulation results. The Paired-t Confidence Interval approach [ 36] is used since it provides a 

good measure for comparing differences between the expected results of two systems by 
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pairing them together: For our case, real world performance results from the PanDA system and 

the simulation results obtained from the ViGs simulator.  

We let jX  be the average of the observations in the thj  set of production PanDA data, 

and jY be the average of the observations in the thj  set of ViGs simulator resulting data, and 

( )jx E Xµ =  and ( )jy E Yµ = . Since we obtained a sample size of thirty results from our 

study, we let  

} ( )   for j  1..30 1j j jZ X Y= − =   

and ( )
( )

  for 1..30 2
( )

x j

y j

E X
j

E Y

µ
µ

= 
== 

 

With j E(Z )   ζ= as the value used to construct the confidence interval, we have:  

( )( )    3j x yE Z ζ µ µ= = −   

By having ( ) ( ),l uα α    as the corresponding lower and upper confidence interval 

endpoints respectively, and using formula: 

( )
j

j 1

Z

( )      for j  1..n, where n  30 4  
n

n

Z n =



= = =



∑
 

and 
�

( )

n 2

j 1

( )

( )     5  
( 1)

jZ Z n

Var Z n
n n

=

 − 
  =  −

∑
 ,  

we can form an approximated 100 (1-α) percent confidence interval with: 

�
( )

n-1,  1- 2
( )    t   ( ) 6Z n Var Z nα  ±    
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Here, we attempt to compare the results obtained from the ViGs simulated model with 

the PanDA system by constructing a 95 percent confidence interval for ζ using the paired-t 

Test approach so as to determine if the model is a good representation of the system: 

From  ( )
j

j 1

Z

4 :          ( )      
n

n

Z n ==
∑

 

          

30

j
j 1

Z

                            
30

                           9.4615 

==

=

∑
  

From ( )
�

n 2

j 1

( )

5 :     ( )     
( 1)

jZ Z n

Var Z n
n n

=

 − 
  =  −

∑
 

                     

30 2

j 1

( )

                                      
30(29)

                                     52.76675099 

jZ Z n
=

 − 
=

=

∑
  

From ( )
�

n-1,  1- 2
6 :     ( )    t   ( )Z n Var Z nα  ±   ,  

we get: 

       
�

30-1,  1- 2
(30)    t   (30)Z Var Zα  ±   ,  

resulting in:   

          9.4615    2.045 * 52.76675099− ±  

where
[ ] [ ]        ( ), ( )    -25.8011785 ,   13.9088785l uα α =

 

Since ( )Z n  falls within interval [ ]   ( )  ,   ( ) l uα α , with [ ]0       ( ) ,   ( )   l uα α∈ , 

we conclude that the hypothesis is a good approximation, and the ViGs simulation result falls 

within approximately 95 percent confidence [ 36]. 
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CHAPTER 8 

GRID MARKET MECHANISM DESIGN 

This section discusses work done on designing of grid market mechanisms. 

8.1 Combinatorial Exchange (CE) Overview 

Combinatorial Exchange (CE) differ from traditional auction models due to its inherent 

property that consumers can place bids on combinations (or bundles) of resources. This is 

useful when consumers require a combination of resources instead of only a single resource. 

Bundles of resources are essential in a computational grid environment where most jobs require 

multiple resources for their successful execution. For example, a typical job needs CPU for 

computational work, memory for virtual memory operation, and disk space for storage purposes. 

As such, a user wanting to process a job has to first acquire all the necessary resources prior to 

processing each job. If each resource is acquired individually, the user runs the risk of the 

“exposure problem”, where the user is “exposed” to the risk of obtaining only a part of the 

necessary resources, which is insufficient for job processing due to the lacking of other required 

resources. As a result, the amount spent on acquiring the incomplete set of resources goes to 

waste. A CA asserts the fact that the consumer either successfully acquires all the necessary 

resources in a bundle, or gets nothing at all. This effectively avoids the possibility of an 

exposure problem. However, in a traditional CA, only one side of the participants (either sellers 

or consumers) may place bids in the auction. This renders market control to the participating 

bidders, and the non-bidding participants are forced to either accept what is being offered, or 

back out from participation. 

In a Combinatorial Double Auction (CDA), multiple sellers and buyers are allowed to 

trade multiple units of resources in a single-sided auction. However, job processing in a grid 

environment often requires multiple users requesting combinations of heterogeneous resources 
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from multiple resource providers. Thus a CDA model does not meet our requirements for grid 

applications. On the other hand, a Combinatorial Exchange (CE) [ 26] auctioning environment 

allows both sellers and consumers to place bids on bundles of heterogeneous resources. In 

such an environment, no one party has full control of the market, and all participants are forced 

to compete against their respective peers in a truly competitive environment.  

In a centralized auctioneer model (Figure 8.1), there is only one central auctioneer 

making the concluding resource assignment decisions based on the type of optimization used. 

In a decentralized auctioneer model (Figure 8.2), there are multiple auctioneers in the system, 

each hosting a separate localized auction. 

In a closed bidding model, since consumers and sellers have no knowledge of the 

offers made by their respective peers, it would be more sensible to place bids based on their 

respective true valuation [ 27]. In an open bidding model, however, both consumers and sellers 

can take advantage of the added information to help in analyzing and determining subsequent 

bidding strategies in order to remain competitive in the market.  

 

 

Figure  8.1 Centralized Auctioneer. 
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Figure  8.2 Decentralized Auctioneer. 

A one-shot [ 28] auction model has only one trading period. So auctioneers will only 

make the consumer-seller matching once at the end of the auction. It is much like a ‘memory-

less’ auctioning model where all auction participants have no historical information of previous 

market behavior. On the other hand, a repeated [ 28] auction model consists of multiple trading 

periods, where auctioneers will make the consumer-seller matching once at the end of every 

auction. We make the assumption that participating bidders have historical information from 

prior auctions, thus allowing them to make better bidding decisions based on perceived market 

trends. Figure 8.3 shows the different auctioning models which will be discussed and formalized 

in this chapter. 

From Section 6.4.1.5, budget b is the set representing each consumer’s budget. For 

every purchases made by each consumer, the amount spent has to be within budget for every 

consumer. Wealth �w is the set representing each seller’s wealth. Every seller’s objective is to 

maximize their collection of wealth. 

Let the set of all globally available unique resources be represented by M, where 

|M|=m. From the definition of bundle in Section 6.3, a bundle of resources can be represented 

by a set containing multisets of resources.  
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Figure  8.3 Auction Model Overview. 

From [ 22], “The number of multisets of cardinality k, with elements taken from a finite 

set of cardinality n, is called the multiset coefficient
n

k

  
  
  

, where 

( )( ) ( ) 1 11 2 1

1!

n n k n kn n n n k

k k nk

  + − + −+ + + −     
= = =      −      

…
”.  

The term 
n

k

  
  
  

 can be represented in the form: 1

1

1

1
1

k

k
i

k
i

i

n i
n i

i
i

=

=

=

+ −
+ −=

∏
∏

∏
 

From [ 23], nx y∈  is defined as "x is an element of y with multiplicity n” 

For example, if { },m a b= , there are 
3

1

2 1
4

i

i

i=

+ − =∏  multisets of cardinality 3, 

namely: { } { } { } { }, , , , , , , , , , ,a a a a a b a b b and b b b .   
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Let X represent a set consisting of all possible multisets of m resources, where 

{ }1,1 ,1 1,2 ,2 ,
1

1
 ,.., , ,.., ,..., , , ,

k

k k k n
i

m i
X x x x x x with n and k n

i=

+ −= = ∈∏ ℕ .  

k = maximum number of resources in a bundle, 

n = total number of possible unique k-element bundles.  

The size of bundle X is represented by 
1 1

1
| |

kn

k i

m i
X

i= =

 + −=  
 

∑ ∏ . For example, given 

{ },m a b= , the set of possible multisets of m resources is shown in Table 8.1, 

where { }1,1 1,2 2,1 2,2 2,3 3,1 5,6 ,, , , , , , , , k nX x x x x x x x x= ⋯ ⋯ . From the table, resource bundle 

‘aaabb’ may either be represented in terms of ,k nx  (as 5,3x ) or in terms of , , ,
count count count
k n k n k nx x x⋯  

(as 3 2
1,1 1,2x x  where 3

1,1x =”aaa” and 2
1,2x = “bb”). 

Table  8.1 Multiset Representation for m Resources. 

k=1 k=2 k=3 k=4 k=5 …
n=1 a aa aaa aaaa aaaaa
n=2 b ab aab aaab aaaab
n=3 bb abb aabb aaabb
n=4 bbb abbb aabbb
n=5 bbbb abbbb
n=6 bbbbb  

A consumer ic can request for any auction bundle in an auction by 

specifying { }, , , ,t A A A A
i k n s eAc x Vτ τ= , where t is the auction bundle submission time, ,

A
k nx  is 

the desired bundle resources for auction bundle A, and ( )i iVc Ac  defines the valuation 

consumer ic  placed on auction bundle iAc . Similarly, a seller js  may offer any auction bundle 

of resources by specifying ,, , , ,t A t A A A A
j j k n s eAs us x Vτ τ= . Where t

jus  (discussed in Section 

6.4.2.7) is seller j ’s resource utilization at time t , and t is the auction bundle submission 
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time, A
sτ  and A

eτ defines the start and end time specification, respectively, for resource bundle 

,k nx  in auction bundle A. It may be either the time period requested by a consumer for a 

resource bundle, where start is the expected job execution start time and end is the job 

deadline; or the time period availability for a resource bundle offered by a seller. By default, start 

is always zero (from consumers) for jobs which are to be executed immediately, or when 

resource bundles are available immediately (from sellers). A non-zero start parameter is used 

only for advance reservation of resource bundles. We define operator functions where:  

 

( )
( )
( )
( )

( )
( )

,

, ,

,

A t A
i k n

A t A
s i s

A t A
e i e

A t A
i

A A
k n i k n

A
k n i

x Ac x resource bundle requested

Ac start time

Ac end time

V Ac V auction bundle valuation

c x c consumer requesting auction bundle containing resource x

s x s seller offering auction bun

τ τ

τ τ

=

=

=

=

=

= ,
A

k ndle containing resource x
 

Both consumers and sellers may request/offer multiple bundles of auction bundles 

during an auction. Let ( )i h
Ac  denote the thh auction bundle requested by consumer ic . Thus 

all of consumer ic ’s auction bundle request may be represented as: ( )
1

h

iAc
=
∑ ℓ
ℓ

 

Let ( ){ }
1

h
all all

i i iAc where Ac Ac
=

 = 
 

ℓ
ℓ
⊎ represent the set of all auction bundles 

requested by consumer ic , and ( ){ }
1

h
all all

j j jAs where As As
=

 = 
 ℓℓ

⊎ be the set of auction 

bundles provided by seller js . Then 
1

c
all all

all i
i

Ac Ac
=

=⊎ represents the set of all possible multiset 
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auction bundles requested by all consumers, and 
1

s
all all

all i
i

As As
=

=⊎  represents the set of all 

possible multiset auction bundles provided by all sellers.  

We assume that all sellers are willing to sell a bundle as long as it covers the cost of 

maintaining that bundle. Hence  ( )j j h
Vs As  may also be seen as the maintenance cost for 

seller js  on the thh auction bundle ( )j h
As , over the time period[ ],s eτ τ  . ( )

1

h

i iVc Ac
=
∑ ℓ
ℓ

 

represents the sum of consumer ic ’s valuation of all her auction bundles, and ( )
1

h

j jVs As
=
∑

ℓ
ℓ

 

represents the sum of seller js ’s valuation of all her auction bundles. Therefore, 

( )
1 1

c h

i i
i

Vc Ac
= =
∑∑ ℓ

ℓ

 represents the sum of all consumers’ valuations of all auction bundles, and 

( )
1 1

s h

j j
j

Vs As
= =
∑∑

ℓ
ℓ

 represents the sum of all sellers’ valuations of all bundles. We define 

( )',ccontains Ac Ac  as True when:  

( ) ( ) ( ) ( ) ( ) ( )' ' '
s s e ex Ac x Ac Ac Ac Ac Acτ τ τ τ     ⊇ ∧ ≤ ∧ ≥       

and ( )',scontains As As  is True when: 

( ) ( ) ( ) ( ) ( ) ( )' ' '
s s e ex As x As As As As Asτ τ τ τ     ⊆ ∧ ≥ ∧ ≤       

Let consumer c ’s original requested auction bundle be denoted as 'Ac . During the 

course of an auction, the consumer will only be willing to substitute 'Ac with another auction 

bundle Ac  if it meets either one of the two criteria: 
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( ) ( ) ( )

( ) ( ) ( ) ( )
( )

' : ',

' '

max ' '
, '

0

all
i

i i

Ac Ac contains Ac Ac
c i

i Ac Ac where Vc Ac Vc Ac

V Ac if Ac exists
ii contains Ac Ac where Vc Ac

otherwise

∈

≡ =

= 


 

Similarly, seller s  will provide a substitute auction bundle if it meets either one of the 

two criteria: 

( ) ( ) ( )

( ) ( ) ( ) ( )
( )

' : , '

' '

min ' '
, ' '

all
i

i i

As As contains As As
c i

i As As whereVs As Vs As

V As if As exists
ii contains As As where Vs As

otherwise

∈

≡ =

= 
∞

 

Let ( )P Z  denote trading price of a target auction bundle Z . For a trade to be possible 

between a seller and consumer, it is necessary for the trading price P(Z) to be in the 

range ( ) ( ) ( ), :i j j iVs Y P Z Vc X∃ ≤ ≤ , where Y, Z, and X are auction bundles. Note that the 

auction resource bundles are required to meet the following requirements: 

( ) ( ), ,s ccontains Z Y contains Z X∧ . 

For example, if a consumer c  requests for bundle X consisting of resources {a,b,c}, she 

will not be willing to accept auction bundles consisting of only resource bundle {a,c} since the 

required resource b is not in the resource bundle. She may, however, consider purchasing 

bundle Z = {a, b, c, d} if the following conditions are met:  

( )
( ) ( )

,ccontains Z X

P Z Vc X≤
 

A feasible pair matching of auction bundles between seller s and consumer c is 

represented as: ( ) ( ) ( ) ( ), : , , , ,all all
c s c c s s c s cX Y where X A Y A contains Y X Vs Y Vc X∈ ∈ ≤   

  

Let the transaction T be represented by: 
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( ) ( )
( )

{ } { }
( ) ( ) ( )

1 1, ,

1 1

,

,

, ,
,

i i

i i

w w ji

i j

i i

all all
k all all

c k

c s
k k sc all all

k all all
i j

j i k

X Ac Y As

contains X Y

X Y X Y
X Ac Y As

Vs Y P Z Vc X

= =

 ∈ ∈
 
 
  
 

⊆ ⊆ 
 
 ≤ ≤  

ℓ

ℓ

ℓ ℓ

ℓ

ℓ

⋯

⊎ ⊎

 

 

We define ( ) ( ){ }1
, , , ,

k
NonSell i j i j= ⋯  where each identified consumer and seller 

( ),i j  pairs are not allowed to trade in any auctions. In some auctions, a seller in one ongoing 

auction may participate as a consumer in another auction. As such, NonSell is used to prevent 

an auctioneer from attempting to match the same seller with herself (as a consumer in another 

auction).  

 

Under normal circumstances, a typical consumer’s goal is always to maximize her 

individual utility ( ) ( )
( ):

arg max
j j

k k ij j

i k k
T X c X c

Vc X P X
=

−∑  .  

The utility maximization for all consumers can be represented as:  

( ) ( )
( ):

max
j j

k k ij j

i k k
T

c X c X c

Vc X P X
=

−∑ ∑  

A seller’s goal is always to maximize her individual profit where: 

( ) ( )
( ):

arg max
j j

k k ij j

k i k
T X s X s

P X Vs X
=

−∑  .  

The profit maximization for all sellers can be represented as:  

( ) ( )
( ):

max
j j

k k ij j

k i k
T

s X s X s

P X Vs X
=

−∑ ∑  
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If the goal is to maximize global welfare, it is to achieve: 

( ) ( )( ) ( ) ( )( )( )
( ) ( ) ( ), , , : , :

arg max
i i

k k k k j k k ii j j j i i

i k i k
T X X P T X s X s X c X c

Vc X P X P X Vs X
∈ = =

 
 − + −
 
 

∑

 

Where the purchase price ( )( )P X  is taken to be ( )
2

c sP P
P X

+ =  
 

 

8.2 One-shot Centralized Combinatorial Exchange (OCCE) 

In an OCCE there are multiple consumers and multiple sellers participating in an 

auction, held by a central auctioneer. In this environment, we make the assumption that: 

I. The central auctioneer has full knowledge of all seller’s and consumer’s bundle 

valuations through auction bids, and of all available resources in the environment. 

II. The single central auctioneer is the sole authorized entity to hold auctions as well 

as to determine the outcome of the auction by matching consumers and sellers. 

III. In cases where there is a bidding tie, the participant with earlier bid submission 

time wins the bid. If the submission is also a tie, the auctioneer randomly selects 

a winner with probability randomP  from the bidders whose bids are in the tie. E.g. 

consumer 1c  submitted 1
1
tAc τ= , 2c  submitted 2

2
tAc τ= .  

 

1 2 1

1 2 2

,

,

random

if c wins

winner else if c wins

elseuse P

τ τ
τ τ

< 
 = > 
 
 

 

IV. The central auctioneer concludes an auction, making auctioning decisions based 

on one of three goals: 

i. Seller’s profit maximization (favors sellers) 
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ii. Consumer’s purchase cost minimization (favors consumers) 

iii. Global utility maximization (favors global welfare) 

There are two types of models studied in the OCCE: a closed model (Section 8.2.1), 

and an open model (Section 8.2.2). 

8.2.1. One-shot Centralized Closed CE (OCCCE) 

In a system with a centralized auctioneer, both consumers and sellers have no 

knowledge of the ongoing bids since it is a closed auction. As such, each consumer submits 

auction bundle requests based on the jobs on hand. Based on the submitted auction bundle 

requests, each participating seller will submit auction bundle offers to the central auctioneer. It is 

the job of the central auctioneer to match the consumers and sellers together. The formalization 

follows that of the general formulations discussed earlier. 

Example 1: 

Let { }1 2 1 2, , ,X CPU CPU MEM MEM=  to represent the different types of unique 

resources available in market 1. The multiset representation of possible bundles is shown in 

Table 8.2 (where k=number of elements in a particular multiset, and n=number of distinct 

elements in the resource set X): 

Table  8.2 Multiset Representation of Bundles in Market 1. 

Multiset # n=4, k=1 n=4, k=2 n=4, k=3 n=4, k=4
1 CPU1 CPU1CPU1 CPU1CPU1CPU1 CPU1CPU1CPU1CPU1

2 CPU2 CPU1CPU2 CPU1CPU1CPU2 CPU1CPU1CPU1CPU2

3 MEM1 CPU1MEM1 CPU1CPU1MEM1 CPU1CPU1CPU1MEM1

4 MEM2 CPU1MEM2 CPU1CPU1MEM2 CPU1CPU1CPU1MEM2

5 CPU2CPU2 CPU2CPU2CPU1 CPU1CPU1CPU2CPU1

6 CPU2MEM1 CPU2CPU2CPU2 CPU1CPU1CPU2CPU2

7 CPU2MEM2 CPU2CPU2MEM1 CPU1CPU1CPU2MEM1

8 MEM1MEM1 CPU2CPU2MEM2 CPU1CPU1CPU2MEM2

9 MEM1MEM2 MEM1MEM1CPU1 CPU1CPU1MEM1CPU1

10 MEM2MEM2 MEM1MEM1CPU2 CPU1CPU1MEM1CPU2

11 MEM1MEM1MEM1 CPU1CPU1MEM1MEM1

12 MEM1MEM1MEM2 CPU1CPU1MEM1MEM2

13 MEM2MEM2CPU1 CPU1CPU1MEM2CPU1

14 MEM2MEM2CPU2 CPU1CPU1MEM2CPU2

15 MEM2MEM2MEM1 CPU1CPU1MEM2MEM1

16 MEM2MEM2MEM2 CPU1CPU1MEM2MEM2

17 CPU1CPU2MEM1 CPU1CPU2CPU2CPU2  
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Table 8.2 – Continued 
18 CPU1CPU2MEM2 CPU1CPU2CPU2MEM1

19 CPU2MEM1MEM2 CPU1CPU2CPU2MEM2

20 MEM1MEM2CPU1 :
: :

25 CPU2CPU2MEM2MEM2

: :
: :

35 :
4 cases 10 cases 20 cases 35 cases  

 

Table 8.3(a) represents units of different types of resource bundles requested by four 

different consumers and Table 8.3(b) represents the available resource bundles offered by 

three sellers in market 1. Table 8.3(c) lists the different types of resources available in the 

market.  

Table  8.3 Market 1 Consumer’s Requests. 

Consumer CPU1 CPU2 MEM1 MEM2

1 2 2
2 1 1
3 2 1
4 1 2  

Table  8.4 Market 1 Seller’s Offerings. 

Seller CPU1 CPU2 MEM1 MEM2

1 2 2
2 4 4
3 2 2  

Table  8.5 Market 1 Resource Types. 

CPU1 1 GHz, 1Xcore processor
CPU2 2 GHz, 1Xcore processor
MEM1 1 X 512 MB
MEM2 1 X 1024 MB

Resources

 

 

Assume the consumers have the following valuation for their requested bundles: 
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( ) ( )

( ) ( )

1 4,11 3 3,81 2
1 3

1 2, 6 , 7

2 2,7 4 3,132 1
2 4

2 2, 5 , 4

60 402 2
: :

2 1

30 401 1
: :

1 2

now now hrs now now hrs

now now hrs now now h

valuation Vc x valuation Vc xCPU X CPU X
C C

MEM X MEM X

valuation Vc x valuation Vc xCPU X CPU X
C C

MEM X MEM X

τ τ

τ τ

+ +

+ +

= = 
 
 

= = 
 
  rs

 

Table  8.6 shows the available bundles and their respective valuations for each seller: 

Table  8.6 Seller Bundles and Valuations. 

Resource bundle Bundle valuation Resource bundle Bundle valuation Resource bundle Bundle valuation Resource bundle Bundle valuation
CPU1 10 CPU1 CPU1 20 CPU1 CPU1 MEM2 30 CPU1 CPU1 MEM2 MEM2 40
MEM2 10 CPU1 MEM2 20 CPU1 MEM2 MEM2 30

MEM2 MEM2 20

Resource bundle Bundle valuation Resource bundle Bundle valuation Resource bundle Bundle valuation Resource bundle Bundle valuation
CPU2 10 CPU2 CPU2 20 CPU2 CPU2 CPU2 30 CPU2 CPU2 CPU2 CPU2 40
MEM2 10 CPU2 MEM2 25 CPU2 CPU2 MEM2 30 CPU2 CPU2 CPU2 MEM2 45

MEM2 MEM2 20 CPU2 MEM2 MEM2 30 CPU2 CPU2 MEM2 MEM2 40
MEM2 MEM2 MEM2 30 CPU2 MEM2 MEM2 MEM2 40

MEM2 MEM2 MEM2 MEM2 40

Resource bundle Bundle valuation Resource bundle Bundle valuation Resource bundle Bundle valuation Resource bundle Bundle valuation
CPU1 10 CPU1 CPU1 20 CPU1 CPU1 MEM1 25 CPU1 CPU1 MEM1 MEM1 30
MEM1 10 CPU1 MEM1 20 CPU1 MEM1 MEM1 30

MEM1 MEM1 20

S1: CPU1 X 2, MEM2 X2

S2: CPU2 X 4, MEM2 X 4

S3: CPU1 X 2, MEM1 X2

 

 

After analyzing both consumers’ requests and sellers’ offerings, the auctioneer might 

yield an assignment as shown in Table  8.7 (depicted in Figure 8.4). 

Table  8.7 Resource Assignment for Example 1. 

Resource bundle Bundle valuation Resource bundle Bundle valuation Resource bundle Bundle valuation Resource bundle Bundle valuation
CPU1 10 CPU1 CPU1 20 CPU1 CPU1 MEM2 30 CPU1 CPU1 MEM2 MEM2 40
MEM2 10 CPU1 MEM2 20 CPU1 MEM2 MEM2 30

MEM2 MEM2 20

Resource bundle Bundle valuation Resource bundle Bundle valuation Resource bundle Bundle valuation Resource bundle Bundle valuation
CPU2 10 CPU2 CPU2 20 CPU2 CPU2 CPU2 30 CPU2 CPU2 CPU2 CPU2 40
MEM2 10 CPU2 MEM2 25 CPU2 CPU2 MEM2 30 CPU2 CPU2 CPU2 MEM2 45

MEM2 MEM2 20 CPU2 MEM2 MEM2 30 CPU2 CPU2 MEM2 MEM2 40
MEM2 MEM2 MEM2 30 CPU2 MEM2 MEM2 MEM2 40

MEM2 MEM2 MEM2 MEM2 40

Resource bundle Bundle valuation Resource bundle Bundle valuation Resource bundle Bundle valuation Resource bundle Bundle valuation
CPU1 10 CPU1 CPU1 20 CPU1 CPU1 MEM1 25 CPU1 CPU1 MEM1 MEM1 30
MEM1 10 CPU1 MEM1 20 CPU1 MEM1 MEM1 30

MEM1 MEM1 20

S2: CPU2 X 4, MEM2 X 4

S3: CPU1 X 2, MEM1 X2

S1: CPU1 X 2, MEM2 X2
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Figure  8.4 Auctioneer Decision Outcome. 

Example 2: 

Assuming a similar scenario as in example 1 with the addition of a fifth consumer with 

the following resource request: 

( )5 4,252
5

2 , 5

552
:

2
now now hrs

valuation Vc xCPU X
C

MEM X τ +

=

  

Table  8.8 Consumer and Seller Valuations for Example 2. 

Consumer's valuation Seller's valuation (S2) Profit
C2:  30 25 5
C3:  40 30 10
C5:  55 45 15  

Everything would remain the same except for seller ( )2S ’s resource sales: 

Table  8.9 Resource Assignment for Example 2. 

Resource bundle Bundle valuation Resource bundle Bundle valuation Resource bundle Bundle valuation Resource bundle Bundle valuation
CPU2 10 CPU2 CPU2 20 CPU2 CPU2 CPU2 30 CPU2 CPU2 CPU2 CPU2 40
MEM2 10 CPU 2 MEM 2 25 CPU 2 CPU 2  MEM 2 30 CPU2 CPU2 CPU2 MEM2 45

MEM2 MEM2 20 CPU2 MEM2 MEM2 30 CPU 2 CPU 2  MEM 2  MEM 2 40
MEM2 MEM2 MEM2 30 CPU2 MEM2 MEM2 MEM2 40

MEM2 MEM2 MEM2 MEM2 40

S2: CPU2 X 4, MEM2 X 4

 

Example 3: 

Assuming a similar scenario as in example 1, with the addition of a fifth consumer with a 

different resource request from that of example 2: 



 

 65 

( )5 4,302
5

2 , 5

353
:

1
now now hrs

valuation Vc xCPU X
C

MEM X τ +

=

  

Table  8.10 Consumer and Seller Valuations for Example 3. 

Consumer's valuation Seller's valuation (S2) Profit
C2:  30 25 5
C3:  40 30 10
C5:  55 45 10  

Although selling ( )3,8x  to 3C would seem more profitable for Seller ( )2S  than selling ( )2,7x  to 

2C , seller ( )2S  would end up selling fewer bundles, since he would not be able to sell ( )4,30x  

to 5C as a result. Hence a better allocation would result in: 

Table  8.11 Resource Assignment for Example 3. 

Resource bundle Bundle valuation Resource bundle Bundle valuation Resource bundle Bundle valuation Resource bundle Bundle valuation
CPU2 10 CPU2 CPU2 20 CPU2 CPU2 CPU2 30 CPU2 CPU2 CPU2 CPU2 40
MEM2 10 CPU 2 MEM 2 25 CPU 2 CPU 2  MEM 2 30 CPU 2 CPU 2  CPU 2  MEM 2 45

MEM2 MEM2 20 CPU2 MEM2 MEM2 30 CPU2 CPU2 MEM2 MEM2 40
MEM2 MEM2 MEM2 30 CPU2 MEM2 MEM2 MEM2 40

MEM2 MEM2 MEM2 MEM2 40

S2: CPU2 X 4, MEM2 X 4

 

8.2.2. One-shot Centralized Open CE (OCOCE) 

In an open OCOCE model, the auction essentially becomes a true ascending auction 

model for the consumers as competing consumers have full knowledge of what competing 

consumers are bidding on and which auction bundles are being offered by all sellers. Therefore, 

participating consumers with overlapping resource bundle requirements may end up bidding for 

similar auction bundles if the supply of resource auction bundles is limited. Such consumers 

may have to continuously increase their bids in an attempt to outbid their competitors to the 

point where the bids placed are exactly their valuations for a bundle [ 32]. Similarly, the same 

environment becomes a descending auction model for the sellers who would continuously 

decrease their bids so long as it remains more than or equal to their valuation for the bundle.  
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The formulation is similar to that of a One-shot Centralized Closed Combinatorial 

Exchange (OCCCE) until consumers are bidding on the same bundle in the open market where 

they have to start competing against their competitors in an attempt to win the auction. The 

bidding becomes an ascending auction when the following condition is satisfied: 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

, ; , ,

, ,

all all all
i j

i j i j i j

X Ac Y Ac Z As

Vc X P Z Vc Y P Z Vs Z P Z

contains z x contains z y

≠

 ∈ ∧ ∈ ∧ ∈
 

∃ ≥ ≥ ≤ 
 ∧ 

 where Z is an auction bundle 

offered by seller s, and X and Y are auction bundles requested by both consumers i jc and c  

respectively. If Z satisfies both consumer ic ’s request for X and consumer jc ’s request for Y, 

and Z is the lowest priced currently available auction bundle offer, where: 

( )
( )

: ,

arg min
all

c

i
U As contains Z X

Z Vc U
∈

= and 
( )

( )
: ,

arg min
all

c

j
U As contains Z Y

Z Vc U
∈

= , both consumers i jc and c will 

be engaged in an ascending multi-round bidding for bundle Z. The winning transaction will be 

represented as: ( ) ( ) ( ) ( )1 , ,
, arg max , , ,

i i i j j j
c i i i jX Y T X Y T

T
T T T Uc T Y Y∈ ∈

∃ = ∀ ∀ ≠⋯ .  

Similarly, if sellers offer auction bundles satisfying the same consumer’s auction bundle request 

in an open market where the following condition is satisfied:  

( ) ( ) ( ) ( ) ( ) ( ), ;
, ,

all all all
i j

i j i j

i j

X As Y As Z Ac

Vs X P Z Vs Y P Z Vc Z P Z
≠

 ∈ ∧ ∈ ∧ ∈ ∃  
≤ ≤ ≥  

 

Where Z is an auction bundle requested by consumer c, and X and Y are auction bundles 

offered by both sellers i js and s  respectively. If Z satisfies both seller is ’s offer for X and seller 

js ’s offer for Y, and Z is the highest priced currently available auction bundle request, where: 

( )
( )

: ,

arg max
all

s

i
U Ac contains Z X

Z Vs U
∈

= and 
( )

( )
: ,

arg max
all

s

j
U Ac contains Z Y

Z Vs U
∈

= ,  both sellers i js and s  would 

be competing in a descending auction for bundle Z. The winning transaction will be represented 
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as: ( ) ( ) ( ) ( )1 , ,
, arg min , , ,

i i i j j j
s i i i jX Y T X Y T

T
T T T Us T Y Y∈ ∈

∃ = ∀ ∀ ≠⋯ . After the winners for all the 

competing auction bundles (sellers and consumers) have been determined, the remaining 

formalization would again be similar to that for a One-shot Centralized Closed Combinatorial 

Exchange (OCCCE) model. The central auctioneer will match the remaining non-clashing 

auction bundles to the respective consumers and sellers. 

8.3 One-shot Decentralized Combinatorial Exchange (ODCE) 

A DCE environment contains two or more auction markets within the grid environment. 

There are several ways the creation of separate auction markets may be determined, such as 

participant locality, similarities in job types, datasets locality, different virtual organizations within 

a grid environment etc. If there is no participation overlapping in the DCE environment, each 

seller/consumer participate in the auction through one (and only one) of the auctioneers. In 

other words, each auctioneer only serves a subset of all bidders. On the other hand, if 

participation overlapping is allowed, each seller/consumer may participate in the auction 

through one or more auctioneers. Section 8.3.1 discusses cases with no participation 

overlapping, and Section 8.3.2 discusses on cases where participation overlapping is allowed.  

8.3.1. One-shot Centralized Closed CE (ODCCE) with no overlapping 

An ODCCE with no overlapping is very much similar to a One-shot Centralized Closed 

Combinatorial Exchange (OCCCE) albeit with multiple micro instances where there are multiple 

consumers and multiple sellers participating in each auction instance held by a central 

auctioneer instance. In this environment, we make the assumption that: 

I. The central auctioneer in each instance has full knowledge of all seller’s and 

consumer’s bundle valuations within the same instance without knowledge of all 

seller’s and consumer’s bundle valuations in other instances. Similarly for its 

knowledge of all available resources in the environment.   

II. The central auctioneer instance is the sole authorized auctioneer to hold auctions 

for all sellers and consumers in the market within each instance. 
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III. The central auctioneer instance concludes an auction in a single round, making 

auctioning decisions based on three goals: 

i. Seller’s profit maximization (favors sellers) 

ii. Consumer’s purchase cost minimization (favors consumers) 

iii. Global utility maximization (favors global welfare) 

Since the formulation for One-shot Decentralized Closed CE (ODCCE) with no 

overlapping is similar to that of multiple instances of a One-shot Centralized Closed CE 

(OCCCE) model, readers are referred to Section 8.2.1 for formalization representations. Figure 

8.5 shows an example of an ODCCE model with no overlapping. 

 
Figure  8.5 Decentralized Closed CE With No Overlapping. 

8.3.2. One-shot Centralized Closed CE (ODCCE) with overlapping 

In a One-shot Decentralized Closed CE (ODCCE) with overlapping auctioning model, 

consumers and sellers have the option of submitting auction bundle requests and offers to 

multiple auctioneers. The decision of whether to submit multiple auction bundle requests or 

offers is affected by respective aggressiveness indices (discussed in Sections 6.4.1.12 and 

6.4.2.6). Figure 8.6 shows an example of a Decentralized Combinatorial Exchange (DCE) 

model with overlapping.  
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Figure  8.6 Decentralized CE With Overlapping. 

By submitting bids to multiple auctioneers, the consumer has the opportunity to take 

part in multiple auctions, hence increasing her chances of winning in an auction. However, she 

also runs the risk of possibly winning more than one similar auction bundle. Overlapping bids 

may occur when a consumer has a high priority job on hand or when a job is quickly 

approaching its deadline. When this happens, a consumer may attempt to raise her chances of 

acquiring that urgently needed resource bundle by placing bids with multiple auctioneers. Note 

that this is different from submitting a bid request for multiple auction bundles to a single 

auctioneer as that auctioneer may not assign that multiple-unit bundle to that consumer unless 

she wins the auction. Similarly, sellers may ‘oversell’ their resources by placing bundle offers to 

multiple auctioneers in an attempt to raise the probability of selling their resources. Sellers may 

‘oversell’ for the following reasons: 

I. Since resources unused would still incur maintenance cost, sellers may try to 

promote their resource bundle offerings by sending auction bundle offers to 

multiple auctioneers so as to reach a larger consumer market. 

II. This may be used as a profit maximizing strategy by sellers, which is what many 

of the airline companies practice.   
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Figure  8.7 Multiple Decentralized CE With Overlapping. 

However, in addition to the extra auction participation cost incurred, auction participants 

who engage in either ‘overbuying’ or ‘overselling’ also run a possible cancellation penalty fee if 

they win the auction from multiple auctioneers and had to cancel the extra winning bid because 

they cannot purchase/provide all bundles as a result.  

For example, if consumer ic submitted { }, , , ,A A A A
i k n s eAc X Vτ τ τ=  as auction bid with 

two different auctioneers and resulted in winning both auctions: consumer ic
is matched 

with ( ),i jAc Ys and ( ),i kAc Ys , where ( ) ( ), ,c j i c k icontains Ys Ac and contains Ys Ac , 

{ },, , , ,t Y Y Y Y
j j k n s eYs us X Vτ τ=  and { },, , , ,t Y Y Y Y

k k k n s eYs us X Vτ τ= . Consumer ic has to 

determine which winning auction bundle to drop by calculating the one bundle yielding the 

lowest utility: 

( ) ( )( ) ( ) ( )( )( )min ,j k

i i

s s
i i j c i i k cVc Ac P Ys Vc Ac P Ysπ π   − + − +

  
where j

i

s
cπ denotes 

the penalty fee consumer i pays to seller j. After the minimum utility yielding auction has been 

determined, consumer ic  pays the canceling penalty to the seller whose lowest utility yielding 
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auction bundle has been returned. Assuming seller j ’s auction bundle has been canceled. The 

penalty payment to jseller  is calculated as: 

( ) ( )1
* , *j j

j

c max P Ys x P Ys
usπ

  
=     

    

For details on cancellation fee for both consumers and sellers, readers are referred to Sections 

6.4.1.10 and 6.4.2.5, respectively. 

8.3.3. One-shot Decentralized Open CE (ODOCE) with no overlapping 

A ODOCE model without overlapping has characteristics much like that of multiple 

smaller One-shot Centralized Open CE models where the open auctioning system transforms 

the auctioning market into an ascending open bidding system for the consumers while sellers 

would be engaged in a descending open bidding auction.   

For each market instance, consumer bidding becomes an ascending auction when the 

following condition is satisfied:  

( ) ( ) ( ) ( ) ( ) ( ), ;
, ,

all all all
i j

i j i j

i j

X Ac Y Ac Z As

Vc X P Z Vc Y P Z Vs Z P Z
≠

 ∈ ∧ ∈ ∧ ∈ ∃  
≥ ≥ ≤  

 where Z is an auction 

bundle offered by seller s, and X and Y are auction bundles requested by both consumers 

i jc and c  respectively. If Z satisfies both consumer ic ’s request for X and consumer jc ’s 

request for Y, and Z is the lowest priced currently available auction bundle offer, where: 

( )
( )

: ,

arg min
all

c

i
U As contains Z X

Z Vc U
∈

= and 
( )

( )
: ,

arg min
all

c

j
U As contains Z Y

Z Vc U
∈

= , both consumers i jc and c will 

be engaged in an ascending multi-round bidding for bundle Z. The winning transaction will be 

represented as: ( ) ( ) ( ) ( )1 , ,
, arg max , , ,

i i i j j j
c i i i jX Y T X Y T

T
T T T Uc T Y Y∈ ∈

∃ = ∀ ∀ ≠⋯ .  

Similarly, if sellers become engaged in a descending auction if they offer auction 

bundles satisfying the same consumer’s auction bundle request in an open market where the 

following condition is satisfied:  
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( ) ( ) ( ) ( ) ( ) ( ), ;
, ,

all all all
i j

i j i j

i j

X As Y As Z Ac

Vs X P Z Vs Y P Z Vc Z P Z
≠

 ∈ ∧ ∈ ∧ ∈ ∃  
≤ ≤ ≥  

 

where Z is an auction bundle requested by consumer c, and X and Y are auction bundles 

offered by both sellers i js and s  respectively. If Z satisfies both seller is ’s offer for X and seller 

js ’s offer for Y, and Z is the highest priced currently available auction bundle request, where: 

( )
( )

: ,

arg max
all

s

i
U Ac contains Z X

Z Vs U
∈

= and 
( )

( )
: ,

arg max
all

s

j
U Ac contains Z Y

Z Vs U
∈

= ,  both sellers i js and s  would 

be competing in a descending auction for bundle Z. The winning transaction will be represented 

as: ( ) ( ) ( ) ( )1 , ,
, arg min , , ,

i i i j j j
s i i i jX Y T X Y T

T
T T T Us T Y Y∈ ∈

∃ = ∀ ∀ ≠⋯ . Similar to the One-shot 

Centralized Open CE model, the auctioneer within each market instance will determine the 

matching of the remaining non-clashing auction bundles to the respective consumers and 

sellers. 

8.3.3. One-shot Decentralized Open CE (ODOCE) with overlapping 

Like ODCCE with overlapping, consumers and sellers in a ODOCE with overlapping 

model may participate with multiple auctioneers in hope of attaining higher chances of securing 

auction bundles at the extra cost of possible penalty fees on top of the added auction 

participation charges. However, with the added benefit of having full knowledge of all ongoing 

bids placed by all participants in an open market, a participant could avoid possibly paying any 

penalty fees by intentionally bidding on auction bundles which already have a bidder, and 

backing out of all ascending auctions (by stopping bidding and letting the competitor win) when 

the desired auction bundle has been won in one of the other ongoing ascending bid CE 

auctions. However, since the consumer participating with multiple auctioneers incurs a higher 

cost when compared to consumers who only place bids with a single auctioneer, her only 

chance of winning in any one of the auctions is when her competing bidders have a much lower 

valuation for the same auction bundle.  
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For example, consumer ic submitted { }, , , ,A A A A
i k n s eAc X Vτ τ τ=  as auction bid with 

three different auctioneers from three different auction markets {1, 2, 3}. Consumer ic competes 

with one other local consumer { }
1 2 31 1 1, ,

market market market
c c c  in all of the three different markets. In 

market1, market2, and market3:  

( ) ( ) ( ) ( ) ( ) ( )
_

_ _

_

, ;
, ,

market x

market x market x

market x

all all all
i j

i j i j

i j

X Ac Y Ac Z As

Vc X P Z Vc Y P Z Vs Z P Z
≠

 ∈ ∧ ∈ ∧ ∈ ∃  
≥ ≥ ≤  

 where Z is an 

auction bundle offered by seller s, and X and Y are auction bundles requested by both 

consumers 
_market xi jc and c  respectively. If Z satisfies both consumer ic ’s request for X and 

consumer 
_market xjc ’s request for Y, and Z is the lowest priced currently available auction bundle 

offer in market x, where:  

( )
( )

: ,

arg min
all

c

i
U As contains Z X

Z Vc U
∈

= and 
( )

( )
_

: ,

arg min
market xall

c

j
U As contains Z Y

Z Vc U
∈

= , then both 

consumers _i market xc and c will be engaged in ascending multi-round bidding for bundle Z. The 

winning transaction will be the consumer with the highest bidding price (valuation) for the 

auction bundle: 

( ) ( ) ( ) ( ) _
_ _ _

1 , ,
, arg max , , ,

market xi i i j j jmarket x market x market x
c i i i jX Y T X Y TT

T T T Uc T Y Y∈ ∈
∃ = ∀ ∀ ≠⋯ .  

Similarly, sellers could also intentionally participate in auctions from multiple market 

instances where there exist other sellers bidding on the same auction bundle. When the seller 

has won in any of the descending bid auction, she will back out of the other auctions to avoid 

paying any penalty fees. 

 
( ) ( ) ( ) ( ) ( ) ( )

_

_ _

_

, ;
, ,

market x

market x market x

market x

all all all
i j

i j i j

i j

X As Y As Z Ac

Vs X P Z Vs Y P Z Vc Z P Z
≠

 ∈ ∧ ∈ ∧ ∈ ∃  
≤ ≤ ≥    
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where Z is an auction bundle requested by consumer c, and X and Y are auction bundles 

offered by both sellers 
_market xi js and s  respectively. If Z satisfies both seller is ’s offer for X and 

seller 
_market xjs ’s offer for Y, and Z is the highest priced currently available auction bundle 

request, where: 
( )

( )
: ,

arg max
all

s

i
U Ac contains Z X

Z Vs U
∈

= and 
( )

( )
_

: ,

arg max
market xall

s

j
U Ac contains Z Y

Z Vs U
∈

= , then If 

both sellers 
_market xi js and s  decided to choose to sell their respective auction bundles using this 

method, the model would turn into a conventional open descending first price CE auction for 

auction bundle Z. The winning transaction will be represented as: 

( ) ( ) ( ) ( ) _
_ _ _

1 , ,
, arg min , , ,

market xi i i j j jmarket x market x market x
s i i i jX Y T X Y TT

T T T Us T Y Y∈ ∈
∃ = ∀ ∀ ≠⋯ .  

8.4 Repeated Centralized Combinatorial Exchange (RCCE) 

In a repeated auction model, participants may choose their bidding strategies 

(discussed in detail in Chapter 9) based on prior historical information. Thus more auction 

participation experience may aid in better chances of winning in future auctions. However, since 

every participating bidder’s experience depends on the type of previous jobs they had (since the 

type of job determines the type of auction bundles they will bid for), they tend to accumulate 

unique historical data over time. The usefulness of each participant’s historical data depends on 

several factors such as bidding strategy adopted, consistency of bidder and that of other 

competitors, outcome from previous bidding strategies, bidding aggressiveness, etc. For 

example, a participant who has been losing all previous auctions probably has a very good idea 

of which bidding strategies do not work. But this information may not necessarily prove to be 

useful information for making future bids. 

Consumers may collect historical information on: 

I. Job type information (most recent m prices, averaged market prices) 

II. Resource bundles (tracking demand for specific resource bundles) 

III. Sellers’ bundle valuations (based on when sellers accept or drop out of auctions) 
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IV. Competing consumers’ bundle valuations (based on when consumers accept or 

drop out of auctions) 

V. Best bidding strategies 

i. Max utility (maximize returns from each transaction) 

ii. Min cost (minimizing cost of purchasing auction bundles) 

VI. Productivity (information on own performance) 

VII. Cost (information on past costs incurred) 

VIII. Overbuying experiences 

 

Similarly, sellers may collect historical information: 

I. Competing sellers’ bundle valuations (based on when sellers accept or drop out 

of auctions) 

II. Consumers’ bundle valuations (based on when consumers accept or drop out of 

auctions) 

III. Information on profits versus aggressiveness relationship 

IV. Best bidding strategies 

i. Max profit/wealth 

ii. Min maintenance cost 

iii. Min resource bundle waste due to time slot fragmentation 

iv. Overselling experiences 

8.4.1. Repeated Centralized Closed CE (RCCCE) with overlapping 

When compared to their One-shot auction counterparts, the Repeated Centralized 

Closed CE model is quite similar to them except for the additional historical information from 

past participation. The added historical information arms the auction participants with better 

knowledge and understanding of the auctioning market. However, since this is a closed market 

model, useful historical information is limited to private information such as which bidding 
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strategy performed the best among all past adopted strategies, auction bundle estimates on 

sellers with whom the consumer has dealt with in the past and vice versa.  

8.4.2. Repeated Centralized Open CE (RCOCE) 

In a RCOCE model, each participant is well informed of all historical information of all 

other participants. Valuations of competing participants can easily be estimated by observing 

their trading behavior, as well as strategies adopted by each. As such, every participant is 

provided with a vast amount of information within the entire system where each participant can 

constantly improve themselves by learning from one another. However, this is at the very high 

cost of communications due to the movement of all trading information in a system with an open 

market. 

8.5 Repeated Decentralized Combinatorial Exchange (RDCE) 

Like Repeated Centralized CE (RCCE), the RDCE is also similar to their One-shot 

auction counterparts, but with the added historical information from past participation.  

8.5.1. Repeated Decentralized Closed CE (RDCCE) with no overlapping 

A RDCCE with no overlapping has similar characteristics as a One-shot Decentralized 

Closed CE (ODCCE) with no overlapping: each decentralized market instance acts as a 

standalone micro market but with the additional private historical information as well as with 

information on other participants with whom a participant has dealt with in the past. 

8.5.2. Repeated Decentralized Closed CE (RDCCE) with overlapping 

A RDCCE with overlapping provides more historical information than that of one without 

overlapping support, especially for participants who had attempted overlapping bids in the past. 

It provides useful private information which allows for fine tuning of respective over-buying/over-

selling strategies adopted in the past. For instance, a seller who has not been able to sell her 

resources in the currently participating decentralized system may choose to withdraw from a 

worse performing market and participate in other decentralized markets by taking advantage of 

the overlapping markets. 
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8.5.3. Repeated Decentralized Open CE (RDOCE) with no overlapping 

A RDOCE with no overlapping provides each participant with historical information on 

all participants within the same market instance. As such, each participating consumer (or 

seller) can better gauge other competitors’ valuation as well as their bidding habits based on 

past historical information. This has the advantage of offering participants a tool to fine tune 

their respective bidding strategies over time. But since overlapping is not supported in this 

model, no participant has any knowledge of anything outside of their micro market instance. 

8.5.4. Repeated Decentralized Open CE (RDOCE) with overlapping 

In a RDOCE model with overlapping, consumers behave rather similar to that of a One-

shot Decentralized Open CE with the added benefit of historical information - sellers will be able 

to take advantage of the overlapping to extend their reach to other decentralized communities. 

For example, if there is a strong demand from consumers for a particular auction bundle which 

cannot be met within the localized circle, one of the seller’s strategies may be to cross 

boundaries and purchase the expected high-demand auction bundle (as a consumer) from 

sellers in another community and turn around to sell it to consumers in the originating auction 

boundary. This helps promoting sellers’ bundle resources across different boundaries, and 

hence improving the overall resource allocation efficiency. Figure 8.8 shows a possible 

configuration of a complex DCE with overlapping. This provides a tradeoff between Repeated 

Centralized Open CE (RCOCE) and an isolated instance that the Repeated Decentralized Open 

CE (RDOCE) with no overlapping supports.  
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Figure  8.8 Decentralized CE With Overlapping. 
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CHAPTER 9 

IMPLEMENTATION OF GRID MARKET MECHANISM 

The implementation of auction based Grid market mechanisms will be discussed in this 

chapter. Section 9.1 describes the studies performed using brokers with job advertisements. 

Section 9.2 discusses the implementation of Grid market mechanisms using the combinatorial 

exchange methodology. 

 
9.1 Auction Based Grid Resource Scheduling Using Brokers and Job Advertisements 

In this work, performance and behavioral aspects of applying auctioning mechanisms 

using brokers with job advertisements is studied and analyzed.  

9.1.1. Introduction 

A computational cluster is a group of networked computers usually created by 

organizations for processing large data or computation intensive jobs. Several such (remote) 

clusters may be integrated together to form a computational grid. Thus, in a computational grid 

environment where data and computation intensive jobs are to be processed, there exists a vast 

collection of resources ready to process jobs of (virtual) organizations. Scheduling and resource 

management in a computational grid environment has been an area of extensive research due 

to its importance and complexity. Resources within a computational grid are likely to be 

heterogeneous, i.e., individual clusters or computers may be of different architectures, may be 

controlled by different operating systems and have diverse libraries. This often requires some 

form of resource matching such as [ 39] to effectively map jobs to resources. However, due to 

fluctuating demands, resource availability may rapidly change. In addition, scheduling and 

management policies of clusters are unlikely to be uniform over all clusters in the grid. With 

ubiquitous resources distributed throughout clusters, it is important to be able to effectively 

manage these resources as well as the assign jobs to take advantage of the available subset of 
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resources. Without effective monitoring and management of resources, information on resource 

availability and the condition and duration of such availability is unknown. Furthermore, efficient 

scheduling is necessary in order to keep a particular resource from being overwhelmed when a 

similar resource may be “sitting” at another location idling.  

Scheduling within a computational grid environment is often concerned with the welfare 

of the resources or components as a whole as well as the well being of individuals. By welfare 

of the resources or components, we often refer to such issues as fairness, e.g., equal 

opportunities to use resources, distribution of wealth throughout the grid and the overall 

performance of all the virtual organizations combined as a whole. Individual well being, on the 

other hand, is often concerned with the maximization of satisfaction derived from participating in 

work related activities. Such derived satisfaction may include minimization of response time and 

cost while maximizing profit, throughput, and yield of earliest results. Thus, it is often necessary 

to be able to strike a balance between two contrasting goals: individual (per cluster) goals and 

system level utilization goals.  

Individual (or local) goals, as the name implies, are more often concerned with 

maximizing the benefits  individual entities can attain with minimal regards for the welfare of the 

rest of the system. On the other hand, system level goals are usually more concerned with 

getting the most out of the currently available resources globally, even if it is at the cost of 

sacrificing a small population in order to benefit the system utility as a whole. For example, in 

order to maximize system resource utilization, a system level goal could be to keep all 

resources busy with a minimal number of unassigned resources idling. An individual goal, 

however, may be to have some idling resources available so as to have instant access to those 

resources when need arises. Similarly, it is a system level goal to ensure fair distribution of 

wealth (when completion of jobs are rewarded by some means) while an individual is more 

often interested in maximizing local profits. As a result, it is a challenging task to satisfy 

individuals while still achieving system level goals at the same time.  
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To address the problem of resource management and job scheduling in a large, 

geographically distributed network of virtual organizations while observing the goals of cost 

minimization, improving utilization and efficiency, we propose a pull-based grid scheduling 

methodology which adopts the use of brokers with job advertisement and propagation within a 

grid environment. The main motivation for this scheme is to create an automated two tiered 

scheduling methodology to perform the tedious task of performing service discovery and task 

scheduling at the global level, while performing resource monitoring, utilization and efficiency 

control at the local level. To achieve the best attainable optimization at any point in time, 

participating sites are to remain motivated to offer their best services based on the job 

submitting host’s preferred optimization settings. Global scheduling of jobs will be done at the 

broker level via a bidding process. The submitting host will have the privilege to choose the best 

available offer to suit its requirements. A pricing scheme is implemented as a trading 

mechanism in exchange for the services provided. This pricing mechanism will hence serve as 

a motivation for participating sites to compete for jobs so as to increase its overall wealth. As 

such, competing sites will be required to constantly monitor and improve their own resources, 

their utilization, and their efficiency to remain competitive.  

 The main goal of this work [ 41] is to perform analysis of the behavioral and 

performance aspects of two conventional schemes and the proposed bidding scheme while 

enforcing self motivated resource management technique with a combination of job optimization 

schemes (time and cost), along with support for re-negotiations in cases where matching fails. 

We will also look into the factors enticing both the participating entities to continue trading within 

a grid environment and the effects of implementing a penalty scheme.  

9.1.2. Broker and Bid Based Scheduling 

In our grid model, each cluster is associated with a head-node (gateway) running a 

software broker and other management software. An organization may have several head-

nodes arranged into a meta-cluster, where the broker from one of the head-nodes is the broker 



 

 82 

of the meta-cluster (the set of all meta-clusters forms a grid). In this grid environment there are 

resource consumers (entities that submit jobs) and resource providers (entities that service job 

requests). Brokers of resource consumers post jobs; brokers of resource providers bid on these 

jobs by posting their fees and estimated job completion time. The posting broker evaluates bids 

and selects among them. 

The use of brokers alleviates the mundane and tedious tasks of resource monitoring 

and decision making from any single centralized entity within the grid environment. The 

automated brokers are responsible for submitting job advertisements, initiating and maintaining 

the job bidding process, participating in job bids, and performing re-negotiations should the 

need arise. A broker may play the role of a consumer (request broker), a provider (tender 

broker), or both at any point in time.  

If a site has jobs to be executed, a job advertisement object consisting of job 

descriptions, job type definitions and constraints, is created and passed to its gateway broker. A 

job placement may require one of two types of optimization, namely time or cost optimization. A 

time optimized job places more emphasis on completing the job at the earliest possible time, 

while not exceeding its available budget set aside for the job (best effort time but limited cost). A 

cost optimized job, on the other hand, emphasizes finding a cheapest tender for processing the 

job while still completing the job by its specified deadline (limited turnaround time but best effort 

cost). 

After receiving the job advertisement, the gateway requesting broker places the job 

advertisement which propagates to all of its immediate one-hop neighbors as well as to the 

cluster brokers within the same local site. (Figure 9.1 shows the inner workings of a requesting 

broker, while Figure 9.2 depicts that of a tender broker). At the same time, a bid expiration 

timeout event is placed (Figure 9.1, step 3) to signify the auction closing time for that job ID. 
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Figure  9.1 Request Broker. 

 

 

 
Figure  9.2 Tender Broker. 

A tender broker receiving advertisements will perform a query of its local cluster 

monitors to search for nodes meeting the job requirements and constraints (Figure 9.2, step 2). 

The tender broker will then perform an analysis step to determine which node to engage in the 

bid submission (attempting to maximize profits while keeping resource usage minimal). The 

price determination process (Figure 9.2, step 4) is dependent on the length of the estimated job 
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execution time, amount and type of resources available during that interval, time of day, and the 

resource pricing profile. Upon completion of bid creation the tender broker will place the bid with 

the requesting broker (Figure 9.2, step 6). Note that this round of the bidding process is a 

closed bid whereby all tender brokers have no prior knowledge of the budget allocated for this 

job.  

At the requesting broker only bids received prior to the bid closing time will be 

considered during the bid evaluation phase (Figure 9.1, step 5). Once the bid closes, all 

submitted bids will be analyzed based on the optimization settings of that particular job (Figure 

9.1, step 8). In cases where there are submitted bids meeting all the job requirement 

constraints, a winning bidder may be determined based on how closely it matches the job 

optimization constraints. However, in cases where none of the bids matches the constraints, a 

re-negotiation phase may be initiated (Figure 9.1, step 9). During the renegotiation phase, only 

those tender brokers who have submitted bids previously (signifying that they have the available 

resources for the particular job) can participate. This second round of bidding is of an open bid 

nature where the budget allocated for that particular job will be announced. In addition, the 

requesting broker will be willing to negotiate as long as the new price charged by the tender 

broker falls within 110% (or other user specified range) of the budget originally set aside for that 

particular job, while the promised job completion time falls within the sum of the original 

deadline and a predetermined-time grace period. The requesting broker re-evaluates the new 

bids and selects the best match among those that meet the constraints. If no such bid is found 

then the job fails. 

Figure 9.3 shows the proposed bidding process (the re-negotiation process is not 

shown as it is similar to the bidding process). The tender brokers will always attempt to match 

the constraints set forth by the job in an open bid, while still being able to profit from this 

transaction. However, if the open bid process fails then we know that no tender brokers will be 
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able to meet the job constraints (while still profiting from it), hence the bidding transaction fails, 

leading to the failure of the job. 

 

 
Figure  9.3 Bidding Process. 

After determining the winning bidder, a contract will be sent to the winning bidder as an 

agreement between the brokers. Only upon signing the contract can the tender broker accept 

the job and begin processing the job. If for any reason the tender broker rejects the contract, the 

bid will be voided. A penalty price will also be included in the contract should the winning broker 

fail to complete the job execution by the agreed upon deadline. 

9.2 Auction Based Grid Resource Scheduling Using Combinatorial Exchange Methodology 

This section discusses the implementation of a combinatorial exchange for Grid 

resource allocation and scheduling. 

9.2.1. Logical Flow of Auction Participants 

At the beginning of each auction, the auctioneer first determines the type of auction to 

use and prepares the necessary environment prior to sending notifications to all participants of 

market opening. Figure 9.4 shows the initialization flow of an auctioneer. 
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Figure  9.4 Auctioneer Initialization. 

Prior to registering for auction participation with the auctioneer, each consumer 

performs auction market environment checking to determine the type of auction to be deployed 

in the market. After the necessary initialization has completed, the consumer fetches each job 

from storage and determines the expected execution required per job as well as the 

corresponding bidding strategy to adopt for that job. Once the strategy has been determined, an 

auction request bundle is created for each job and sent to the auctioneer. Figure 9.5 shows the 

logical flow of a consumer. 
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Figure  9.5 Consumer Logic. 

Similar to the consumers, participating sellers first determine the type of auction to be 

deployed in the market, followed by collecting current information of all her resource information 

and status before registering with the auctioneer for auction participation. Figure 9.6 shows the 

initialization flow of a seller. In this phase, sellers do not make any attempts to determine 

bidding strategies as no information on auction bundle requests is available yet. 

Upon receiving registration information from both consumers and sellers, the auctioneer 

determines the market price (ρ) for each resource based on all resource demands from the 

consumers and the overall availability of resources offered by all sellers. Once the market price 

for resources has been determined, corresponding consumers’ initial auction bundle requests 

will be adjusted using the current market value. All auction participants are informed of the 



 

 88 

current market value for all resources. The market price determination process is only initiated 

once for the very first auction. Subsequent market prices will be adjusted from this initial market 

price based on overall demand and availability of resources at any point in time. This allows 

fluctuations in the market due to changes in demand and supply of resources.  

 

 
Figure  9.6 Seller Initialization. 
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After determining the market prices for all resources, the auctioneer propagates each 

consumer’s auction request bundle (minus consumer’s valuation for that bundle which is kept 

private) only to sellers who possess the required resources (based on information sent to the 

auctioneer when each seller first registered with the auctioneer). For the simulation, we make 

the assumption that sellers do not purchase new resources during the course of the simulation. 

But in the event that a seller adds new resources in her inventory, all she has to do is to 

resubmit the updated resource information to the auctioneer. At this point it is important to note 

that although we make the assumption that sellers do not purchase new resources, current 

resources may fail from time to time during the course of the simulation. This is implemented so 

as to simulate machines failures in real life. Figure 9.7 shows the bid handling flow of an 

auctioneer.  

Upon receiving auction bundle requests from the auctioneer, each seller checks her 

current resource status to determine if she can meet the specifications described in each 

request. If so, the seller will determine the aggressiveness index as well as any corresponding 

strategies to adopt before submitting counter bids to the auctioneer. However, if the seller does 

not have any available resources to satisfy the auction bundle request, she will respond to the 

auctioneer that she will not participate in the bidding for this auction bundle. Figure 9.8 shows 

the auction participation flow of a seller. Sellers may resubmit bids at any point in time so long 

as the auction remains active. However, every bid placed incurs a participation fee pc  to deter 

abusing of this privilege by any auction participant.  
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Figure  9.7 Bid Handling by Auctioneer. 
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Figure  9.8 Seller Auction Participation. 
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At the end of every auction, the auctioneer matches consumers’ auction bundle 

requests to sellers’ offers based on the matching strategy used. There are three available 

strategies to the auctioneer:  

I. Sellers’ profit maximization,  

II. Consumers’ cost minimization,  

III. Matching maximization – where the auctioneer attempts to satisfy a maximum 

number of possible matches.  

Figure 9.9 shows the resource assignment flow of an auctioneer.  
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Figure  9.9 Auctioneer Resource Assignment. 

9.2.2. Bidding Strategies 

The bidding strategies adopted in the Repeated Auctions depend highly on past 

experiences. Factors such as price determination, bidding behavior, bidding aggressiveness, 

and which auctions to participate in (for decentralized auctions) are decided based on this 

information. 
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Prior to the start of the first round of auction, each participant (in a Repeated 

Decentralized scenario) is pre-assigned to a specified set of decentralized auction locations. For 

each subsequent round, auction participants decide where to bid and how to overlap bids in 

overlapping scenarios based on the collected information about each auction play. She makes 

the decision of which auction to participate in (for decentralized cases) by identifying where the 

highest utility returning auctions are. For example, since a consumer’s ultimate goal is to have 

her jobs processed, she would prefer to participate in auctions where sellers offering the 

required resources reside. On top of that, sellers from past auctions who yielded the highest job 

utility returns (based on seller’s resource offering prices) are often preferred as this usually 

signifies that those sellers have the cheapest available resources. Additionally, the consumers 

would choose to avoid auctions where the strongest competitors (for open bidding cases) 

reside. This is an attempt to avoid direct conflict with strong competitors, unnecessarily pushing 

up resource prices. However, if both best seller and worst competitor reside in the same 

auction, the preferred seller takes precedence as the consumer’s ultimate objective is to have 

her jobs executed. The same applies to seller behavior. In the approach taken here, the 

decision for an auction location is made based on two ranked lists, arranged in decreasing 

order, the competitiveness and value of the auction locations with respect to the job or resource 

type, respectively. For example, consider a participating consumer who has the following 

ranked competitor and seller list of potential auction places as seen in Figure 9.10 (both lists 

sorted in descending order). If this consumer is currently assigned to participate in at most 3 

overlapping auctions, she will choose to participate in the auctions at location ‘1’, ‘5’ (since the 

seller ranking at ‘5’ is higher than that the competitor ranking of location ‘5’) and ‘7’ (location ‘2’ 

is skipped since competitor at ranking location ‘2’ ranking is higher than the seller ranking. 
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Figure  9.10 Consumer’s Decentralized Overlapping Example 1. 

Figure 9.11 shows another list for a different consumer. Notice that location ‘1’ has the highest 

ranking in both lists. But since the seller takes precedence, this consumer will choose to 

participate in auctions at location ‘1’ and ‘5’. Location ‘2’ and ‘7’ are skipped for the same reason 

described above. Sellers make decisions analogously. 

 

 

 

Figure  9.11 Consumer’s Decentralized Overlapping Example 2. 

 

In a non-overlapping auction, the consumers and sellers participate only in one auction 

place and thus simply select the location at the top of the seller list. The bidding strategies are 

executed by adjusting the bidding intervals and bid price increment (for open bidding). The 

bidding ( iAggc  for consumers, jAggs  for sellers) aggressiveness is calculated based on job 

weight and closeness to execution deadline. The calculated value is then compared against 

historical bidding aggressiveness values to determine the next strategy to adopt. For example, a 

consumer with historical iAggc  values of 0.8, 0.92, 0.99, 1.0, 1.05, and a current iAggc  value 

of 1.01 would insert the new data in the 5th position in the iAggc  historical list. Since its 
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placement is now 2 positions from the middle value (0.99) and in the 2nd position out of the 

remaining 3 higher values, the bidding interval will be incremented by 2 units of the bidding step 

size. So if the initial counterbidding strategy is to place a bid for every 3 counterbids, it will now 

place a bid for every 5 counterbids as long as there is enough time before the auction ends. 

However, if there are no bids submitted and the auction is ending soon, the consumer will not 

hesitate to place a bid as long as she is not the last bidder and the bid increment is still within 

her reserve valuation.  

The bidding price determination is based on past market value trends. For example, if a 

consumer witnessed that the price of resources for job type i in the past 3 auctions has been 

increasing twice and the decreased in the most recent auction, expressed as ( ), ,↑ ↑ ↓ , she 

would expect the next market value to be somewhat close to the closing price of the last market 

price since the most recent price trend ( )↓ carries more weight (a weight of 2) than the older 

information ( ),↑ ↑ , each carrying a weight of 1, which eventually smoothes out the fluctuations. 

On the other hand, if the previous information is ( ), ,↓ ↑ ↓ , resulting in a weighted trend of -1+1-

2 = -2 out of 4, she would expect the market price to drop and would start the auction by bidding 

50% of the originally anticipated value (i.e. the resource closing price from the previous 

auction). The minimum and maximum price variation is limited to 50% for downward trend, and 

150% for upward trend.  
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CHAPTER 10 

SIMULATION DESIGN 

This section discusses the simulation approach for the auction mechanism in our 

system. 

10.1 Broker and Job Advertisement Based Grid Scheduling 

To evaluate our bidding based grid job scheduling we have designed and implemented 

a discrete event grid simulation tool in C++ (Figure 10.1 shows the architectural layout). The 

simulator is designed to follow a hierarchical approach where a network of routers is created 

followed by subsequent gateways, clusters, and nodes. Each gateway consists of a gateway 

broker (serving as a representative broker for the entire gateway), a monitor (for monitoring all 

resources within the gateway), and users (generating job requests). At the clusters, brokers are 

used to perform inter-cluster brokering; monitors are used to monitor resources within the 

cluster (and reporting to the gateway); and nodes represent individual computers (with the 

available resources to the cluster). In order to simulate a more realistic grid environment, 

various random types of cluster and node instantiation schemes have been adopted to generate 

sites. Within each site, overall resource status is monitored by the gateway monitor while the 

cluster monitor keeps track of all local nodes’ types and schedules and currently used resources 

within the cluster. To be able to create a scenario and study the behavior of the simulation 

under full load, the user object is configured to constantly provide a steady stream of new jobs 

which keeps the broker busy. Jobs are generated using a uniform random generator with an 

execution time ranging from 1 hour to 5 days (based on a 2.4GHz processor). The arrival rate of 

jobs follows that of a Poisson arrival process. 

During the bidding process, job advertisements will be submitted to all neighbors 

residing one hop away from the requesting host. Note, that the number of job advertisements 
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propagated is directly related to the number of neighbors. This is done deliberately to limit the 

flooding of the network by performing unnecessary broadcasting of job advertisements. To 

better simulate the effects of network delays in our simulation, we have included the effects of 

processing (assumed constant), queuing, transmission, and propagation delays. As a result, the 

time taken and cost of data propagation depends on the queue length, data size and distance 

propagated. 

 

Figure  10.1 Simulator Overview. 

10.1.1. Resource Management 

In our computational grid model there are two main entities: requesting brokers and 

tender brokers. The requesting broker collects jobs to be processed from users and is willing to 

reward a cluster that is able to successfully complete the job within its timeframe and/or budget. 

The tender broker offers its service and resources to anyone who has jobs to be executed if the 

price is right. These two entities control the supply and demand of the grid resource market. The 

requesting broker is always in search for the least expense way to process its jobs while getting 

results at the earliest-time. The tender broker is always trying to maximize its earnings while 

minimizing usage of its own resources so as to have more available resources to process other 

jobs. As a result, efficient resource management becomes self motivational as each participant 
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is always trying to get the best “bang for the buck” while being thrifty in its own resource usage. 

It is important to note that in a typical trading environment there is always a maximum price a 

requesting host is willing to pay for a particular service. And similarly, there is always a 

minimum price which the service provider is willing to accept for offering its services. Although 

renegotiations may be performed in an attempt to arrive at an acceptable price between the 

requesting and tender brokers, it is possible that sometimes such renegotiations may fail as 

such an acceptable price may not be attainable. In such cases, the trading process fails. 

10.1.2. Price Formulation 

In order to mimic the variations in the computational grid system load throughout the 

day, a simplified model has been adopted to be used as a reference to predict the usage of 

resources at different times of the day. Figure 10.2 depicts the simplified model used to predict 

system load throughout the day over a 2 day period. This model represents an estimated 

system load throughout a day; thus we will be able to estimate the total load between two given 

times of the day by performing an integration function from the start time to the end time. This 

integration result is then multiplied with the respective costs of all the resources required by that 

particular job over the period of estimated execution time. After obtaining the initial estimated 

cost, this information is used in conjunction with the reserved resources (within that cluster) for 

all jobs scheduled to be executed during the same period to estimate the load on that particular 

cluster. The estimate of the overall resources used at that cluster during the execution period is 

then divided by the total resources available at the cluster, which is compared to the same 

fraction when the cluster is 50% utilized. The resulting difference is used to scale the initial 

estimated cost of processing that job. For example, if the initial estimated price is 2000 units, 

and the estimated overall system utilization during the job execution period is calculated to be 

70%, then the price would be scaled up by 20% to 2400 price units. 
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Figure  10.2 Grid Anticipated System Usage Model. 

In order to evaluate the effectiveness of this scheme, two other schemes have also 

been implemented as bases for comparison: 

The first is a conventional grid scheduling scheme (denoted as conventional from here 

on) similar to that of the ATLAS project. Instead of manual site selection by the administrators, 

this scheme performs random site selection for job execution. This helps in distributing the load 

of job executions across the system. Note, that clusters and nodes within each site in the 

conventional scheme are heterogeneous. By simulating clusters with varying resources, we can 

improve on the number of successful resource matches and hence serve as a more competitive 

comparison with our proposed bidding scheme. 

The second scheme (denoted as random from here on), is similar to the conventional 

scheme. However, this scheme has the ability to perform renegotiations to find a better 

resource match within a particular site.  
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CHAPTER 11 

SIMULATION RESULTS AND SUMMARY 

This section discusses the simulation results from the auction mechanism in our 

system, and summarizes the findings based on those results. 

11.1 Results From Broker And Job Advertisement Based Grid Scheduling 

Simulated data from the three previously described schemes were collected and 

compared. Data collected from the conventional and the random schemes are used for 

comparison to our proposed bidding scheme. Throughout its lifetime, a job may be in one of 

several stages in its execution phase: queued, staging-in (transferring the required input data 

sets to the executing host), executing, staging-out (transferring the resulting data sets to the 

designated receiving host), and successfully executed. A job is considered to have successfully 

executed only upon completion of the actual job execution process, with the staging-out of 

resulting data files delivered. In order to simplify the job stage categorizing process, we have 

separated them into 2 categories: successfully executed and successfully matched. 

Successfully matched implies that the necessary matching and bidding processes have been 

completed and the job may be in any one of the previously mentioned stages other than 

successfully executed. However, a job match may fail and be marked as a match-failed. Match-

failed reasons include: i) failure to match the job resource requirements to an available host; ii) 

failure to meet the budget requirements set forth by the requesting broker; iii) failure to meet the 

execution deadline requirements; iv) failure to place bids prior to auction closing; or v) failure to 

sign and return the contract issued by the requesting broker.  

Figure 11.1 presents the total number of jobs executed over a period of 30 days. As 

more resources get tied up with job execution during the course of the simulation, a decreasing 

number of resources remain available. As a result, it becomes increasingly difficult to find the 
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required resources at the same low price as before. As observed from Figure 11.1, the bidding 

scheme outperformed the other two schemes by delivering the highest number of successfully 

executed jobs over the simulated period. The main reason for this phenomenon can be 

attributed to the fact that bidding possesses the advantage of being able to obtain bids from all 

one-hop neighbors, hence increasing the chances of a job match. The conventional scheme 

performs worse than the random scheme due to lack of renegotiation ability. For a better 

insight, we refer to Figure 11.2 which shows the total number of successful renegotiations 

achieved for the random and the bidding schemes. When a job match fails, renegotiation is 

performed between the requesting broker and tender broker. Default settings for the 

renegotiation process in our simulation limits the variation from the original time and budget to 

10%. As observed, the random scheme fails to take full advantage of the renegotiation tools 

due to the limited availability of resources within the single randomly selected site. If the chosen 

site is already overwhelmed with jobs, further renegotiations may not necessarily improve the 

matching of jobs to resources. At this point, it is important to note that although the bidding 

scheme achieved approximately twice as many successful renegotiations as that of the random 

scheme, the number of jobs attaining the successfully executed state (see Figure 11.1) by the 

bidding scheme did not perform twice as well when compared to the random scheme. This is 

because although more jobs are matched with renegotiated resources, eventual successful 

execution of jobs still depends on additional factors such as network traffic, data and output file 

staging processes, and resource availability at the moment in time when jobs are to be 

executed.  

Figure 11.3 shows the accumulated monetary transactions collected throughout the 

simulation. The bidding scheme performs dramatically better than both the random and the 

conventional schemes. This can be attributed to the profit maximizing characteristics of the 

bidding scheme, along with substantial improvement in the number of successful job matches 

due to re-negotiations (see Figure 11.2). Although the random scheme also supported 
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renegotiation, it is limited by the number of available resources from its single renegotiating 

location. 
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Figure  11.1 Total Number of Jobs Executed. 
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Figure  11.2 Total Number of Successful Re-negotiations. 
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Figure  11.3 Accumulated Monetary Transactions. 
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Figure 11.4 shows the total penalty resulting from exceeding the promised estimated 

job completion time, as stated in the binding contract. The current penalty implementation in our 

simulations is simple: if a site fails to abide by the contract, 30% of the initial contract price is 

returned to the requesting broker. Although the bidding scheme resulted in the highest 

accumulated penalty, if we look at the penalty to earning ratio graph of Figure 11.5, we can see 

that it remained within 14% of the overall earnings throughout the simulation process. The 

conventional scheme, due to its limited number of successfully matched jobs (and hence limited 

penalties), performed better in terms of paying for penalty charges, when compared to the 

random scheme; it managed to limit the penalties paid to within 18% of its accumulated 

earnings. Although the random scheme paid fewer penalties as compared to the bidding 

scheme, it was the worst performer of the group by paying up to 26% of its total earnings to 

penalty charges.  
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Figure  11.4 Total Penalty. 
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Figure  11.5 Penalty to Earning Ratio. 

11.2 Results from Auction Based Grid Resource Scheduling Using Combinatorial Exchange  

In this subsection we will discuss the simulation findings of the different types of 

auctioning schemes. As the One-shot auctioning scheme is simply the first case of a repeated 

auctioning mechanism, we will focus on analyzing the Repeated auctioning schemes here. 

Figure 11.6 shows the comparison between successful and failed attempts at assigning 

consumer jobs to seller resources for different auctioning mechanisms. The simulation was 

performed with each consumer generating a job request approximately every 0.2 units of time to 

ensure that the system is overwhelmed with job requests throughout the simulation process. 

From Figure 11.6, we can see that every auctioning scheme has been heavily overloaded with 

job requests. Figure 11.7 shows the overall resource utilization of all sellers’ resources. 

Participants in a Centralized auctioning scheme have the advantage of achieving higher 

resource utilization simply because they have access to all jobs and resources within the 

auction. In a decentralized scheme, there is always a possibility that a generated job requires a 

specific combination of resources not available within that particular decentralized auctioning 

group. If there are too many failed auctions in an overlapping auction group, participants in such 

a group may opt to join other overlapping auctions in subsequent auctioning rounds in an 
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attempt to avoid further occurrences of  non-matching job requests. Similarly, participants who 

continuously lose out in an auction may also choose to join another overlapping auctioning 

group. For example, if a seller is constantly being outbid by another seller offering lower prices 

for her resources, the losing seller may intentionally leave this auctioning group in order to avoid 

future competition with this competing seller. This is reflected in the utilization data in Figure 

11.7 by the fact that overlapping distributed auctions achieve higher resource utilization 

compared to no overlap distributed auctions. 
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Figure  11.6 Success vs. Failure Comparison 
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Figure  11.7 Overall Resource Utilization. 
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From this data, it can also be observed that open auctions tend to lead to better resource 

utilization than the corresponding closed bid auction scheme. 

Figure 11.8 compares the total number of bids submitted for different auctioning 

mechanisms. Since there is a participating cost associated with every bid submitted, it would 

always be good to win an auction with the minimum number of bids submitted. Furthermore, the 

number of bids submitted not only adds to the participation cost, it also leaves a smaller profit in 

return. Figure 11.8 shows that the centralized auctioning scheme places the highest number of 

bids when compared to decentralized auctioning schemes. This is mainly because a centralized 

auctioning environment faces more job requests (and resource offers) as compared to that of a 

decentralized environment. In addition to that, they will face greater competitions in such an 

environment as well. 
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Figure  11.8 Auction Bids Comparison. 

Besides influencing costs, the number of bids also represents a measure of the 

communication overhead imposed by the different auction-based scheduling schemes. As the 

number of bids at a given auctioneer increases, so does its computational load and bandwidth 

requirement, eventually slowing down the scheduling and introducing a bottleneck. The results 

presented in Figure 11.8 show that the distributed auction mechanism results in a significantly 
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lower number of total bids, thus reducing the amount of communication required for scheduling. 

Moreover, since these bids are distributed across 10 auctions, the bandwidth and computation 

overheads at the scheduler are actually reduced to less than 
1

10
 of the ones for the centralized 

auction-based schedulers, demonstrating the scalability of the distributed auction approach. 

Figure 11.9 depicts the winning to reserve price comparison. This is useful when comparing the 

value returns from winning jobs under different auctioning mechanisms. In this diagram, we can 

see that the Repeated Centralized Open CE (RCOCE) mechanism yields the lowest returns. 

This is mainly due to the fact that it faces the most competition from all participants within the 

auctioning environment. Among all decentralized auctioning mechanisms, the Repeated 

Decentralized Open CE (RDOCE) without overlap scheme performs the worst. This may be 

attributed to the reason that it faces the most competition with other participants without the 

ability of switching to other auctioning groups. Although the Repeated Decentralized Closed CE 

(RDCCE) without overlapping scheme retains a better ratio in this figure, we can see from 

Figure 11.10 that it also has the lowest success ratio in an auction. In other words, it has the 

lowest average number of jobs being scheduled throughout the auction. 
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Figure  11.9 Winning Price vs Reserve Price Comparison. 
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From Figure 11.10 which illustrates the auction success rates, it can be seen that the 

RCCE without overlapping enjoys the highest auction success ratio. But Figure 11.11 shows 

that it has one of the lowest value returns per job. This is mainly because of the centralized 

bidding nature when jobs are available to all potential competitors within the auctioning 

environment. Figure 11.10 also shows that, as would be expected, centralized auctions 

generally have a higher auction success rate as compared to decentralized schemes since they 

have access to all available resource bundles for all incoming bids, thus having the opportunity 

to make the most optimal job to resource matches. In contrast, jobs in a distributed auction can 

be matched only to resources available at the specific auction site, increasing the risk that the 

needed resources are not available. The data in the figure, however, also shows that the 

distributed open auction with overlap can partially overcome this limitation, leading here to a job 

completion rate that is comparable to the centralized auction schemes. This is due to the fact 

that consumers and sellers can successfully change auction location based on the past 

performance data, allowing them to form auctions with higher success ratios. Figure 11.11 

shows a comparison of the valuation of the jobs scheduled in each auctioning scheme.  

Surprisingly, the Repeated Centralized Closed CE (RCCCE) without overlapping has the lowest 

value-per-job returns. This may be due to its relatively high winning price vs reserve price ratio 

(Figure 11.9), as well as to the high number of bid counts (Figure 11.9) which results in a 

significant value reduction. As such, it may be derived that the RCCCE without overlapping 

auctioning mechanism is paying a high price for bid participation while not winning enough 

auctions to cover the participation costs. 



 

 108 

Auction Success Ratio

0
0.02

0.04
0.06
0.08
0.1

0.12
0.14
0.16

0.18
0.2

Auction Type

P
ro

ba
bi

lit
y

RCNC

RCNO

RDNC

RDNO

RDYC

RDYO

 

Figure  11.10 Auction Success Comparisons. 
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Figure  11.11 Job Value Comparisons. 

It is observed that the Repeated Decentralized overlapping schemes yields the highest 

value per job returns. This may be due to the strategy of focusing on participating only in 

auctioning groups where one has a clear advantage over the other competitors. As such, each 

decentralized auctioning group slowly becomes a specialized auctioning group where different 

groups specialize in different types of auctions, yielding an increase in success rates as well as 

in scheduled job value. Overall, these results show that the auction-based scheduling 
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mechanisms are successful at scheduling jobs for grid applications. Moreover, they 

demonstrate that the distributed auction schemes can effectively reduce communication and 

scheduling overheads by reducing the number of bids needed to obtain job to resource 

matches. While this initially leads to decrease in success rates, the data also shows that the 

distributed open bid auction scheme with overlap can address this by allowing consumers and 

sellers to establish custom auction places, leading eventually to success rate comparable to the 

centralized auction schemes. In addition, the results show that the decentralized schemes, due 

in part to the reduced need for bids and more focused auctions outperform the centralized 

approaches in terms of job value scheduled and winning to reserve price ratio. Together this 

demonstrates the potential of the decentralized combinatorial exchange model to address the 

issues in grid job scheduling without creating a scheduling “bottleneck”. 
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CHAPTER 12 

FUTURE WORK 

This section discusses findings from simulation studies, as well as additional work that 

may be done in the future. 

12.1 Broker and Job Advertisement Based Grid Scheduling 

In the study of broker and job advertisement based Grid scheduling, we have used a 

simple, flat 30% penalty scheme. Our intentions are to implement a flexible penalty scheme with 

demerit scheme where winning brokers who break the contract for any reasons will have a 

demerit point added to the rejecting broker for either backing out of a winning bid or failing to 

abide by the contract. This would in turn affect their ability to participate in subsequent future 

biddings. We are also looking into improving the current scheme to incorporate multiple-hop job 

advertisement propagation ability, support for multiple auctioning and better decision-making 

tools, along with the ability to subcontract jobs as well as better job QoS and prioritization 

support.  

12.2 Auction Based Grid Resource Scheduling Using Combinatorial Exchange Methodology  

In the study of the different CE auctioning mechanisms, the decentralized auctioning 

scheme has a clear advantage of minimizing the auctioning overhead while yielding higher job 

value returns when compared with their centralized counter parts. The ability to overlap with 

other auctioning environments allows participants to move from one less desired auction to 

another preferred auctioning environment, hence helping in gaining bidding efficiency. 

For future work, we would like to further improve upon the bidding strategies by 

adopting better reasoning and prediction tools, as well as by studying the effects of fluctuating 

load on the auctioning mechanisms.  
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CHAPTER 13 

CONCLUSION 

In this work we seek to improve resource utilization and address the common problem 

of scheduling and resource allocation in a computational grid system by applying Combinatorial 

Exchange with various auctioning mechanisms in an economic Grid environment.  

Our objective was to define the technical and economical characteristics of a market-

oriented Grid mechanism, to design a market-oriented Grid mechanism and to evaluate the 

proposed decentralized market-oriented Grid auctioning mechanism. Our contribution includes 

identifying and formalizing the technical characteristics of an economic grid system, proposing 

and designing an auctioning mechanism suitable for the grid system, and evaluating of how 

such an auctioning mechanism would perform in a grid environment. We evaluated and 

analyzed the behavioral and performance aspects of various Combinatorial Exchange (CE) 

auction mechanisms, including: Centralized open and closed auctions, Decentralized open and 

closed auctions. We also looked at the effects of an overlapping vs non overlapping auction 

scenario for the case of distributed auctions in a grid environment. In a set of simulation 

experiments we have shown the potential of a decentralized combinatorial exchange in 

efficiently addressing performance and resource allocation issues in Grid scheduling while 

avoiding the creation of a “bottleneck” as in most centralized scheduling mechanisms. These 

results clearly demonstrate that auction theory is a viable alternative to the traditional grid 

scheduling and resource allocation methodologies. 

As the application of auction theory in the area of grid studies is still fairly new, much 

work still has to be done to further improve upon what we have done so far. In particular, further 

studies should be done to evaluate the specific behavior characteristics and scaling properties 

of the Combinatorial Exchange mechanism in the context of different loads, job and resource 
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types, and grid applications. Also, different bidding strategies and proxy bidding schemes could 

be tested in order to optimize the overall system performance. 

We have demonstrated that auction mechanism, when applied to grid scheduling and 

resource allocation is viable, effective, and provides good performance compared to other 

schemes. Auction theory is relatively new in economics and as auction theory develops, new 

methods may provide even more benefits when applied to grid scheduling. We show that the 

formal model described accurately predicts actual results from scheduling very large PanDA 

work flows. We hope that future grid scheduling in large workflows, such as PanDA, will benefit 

from application of auction mechanisms.  
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