

AN AUCTION MECHANISM FOR GRID SCHEDULING

AND RESOURCE ALLOCATION IN

THE CONTEXT OF

ATLAS

by

TENGKOK AARON THOR

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT ARLINGTON

August 2009

Copyright © by Tengkok Aaron Thor 2009

All Rights Reserved

iii

ACKNOWLEDGEMENTS

 I would like to express my deepest appreciation to my committee chairs Dr. Gergely

Záruba and Professor David Levine, who have been strong and supportive supervisors

throughout my stay here as a doctoral student at the University of Texas at Arlington. They have

spent countless hours providing me with valuable advices and guidance, both academic and in

life. They have also been a tremendous resource in discussions about my research work, and

have always encouraged my work and kept me focused on the important issues. Without their

guidance and persistent help this dissertation would never have been possible.

I would like to thank my committee member, Dr. Manfred Huber, who has provided me

with tremendous help on the formalization work, guidance, and advice on this dissertation. I

would also like to thank Dr. Gergely Záruba, Professor David Levine, Dr. Kaushik De, Dr. Torre

Wenaus, and Dr. Jae Yu for providing me with the great opportunity to be a part of the ATLAS

experiment at Brookhaven National Lab. I would also like to thank Dr Kaushik De and Dr. Mark

Sosebee for the years of support, advice, and encouragement they have provided for me. In

addition, I would also like to thank my committee member Dr. Jeff Lei for his patience,

encouragement, and understanding throughout the years.

I most want to thank my dad, Thor Kong Beng, my mom, Lee Chye Guek, and my

sister, Shirlean Thor, for the years of faith, trust, encouragement and support. Thank you for

believing in me.

July 10, 2009

iv

ABSTRACT

AN AUCTION MECHANISM FOR GRID SCHEDULING

AND RESOURCE ALLOCATION IN

THE CONTEXT OF

ATLAS

Tengkok Aaron Thor, PhD

The University of Texas at Arlington, 2009

Supervising Professor: Gergely Záruba, David Levine

 The technological advancements in the areas of computing and networking over the

recent years have led to an emerging infrastructure known as Computational Grids, which

provides users with the flexibility of pervasive access to enormous computational resources

hosted at remote locations. Effective resource management and job scheduling poses a

challenge when constraints such as resource utilization, response time, global and local policies

need to be taken into account, while dealing with potentially independent sources of jobs,

computational, and storage resources. It must be ensured that scheduling decisions made are

still valid by the time a job is to be executed, with all the necessary resources remaining

available.

In order to provide a more accurate scheduling and to obtain a better balance between micro

and macro goals some status information about the resources needs to be obtained. However,

this brings up another controversial issue which has plagued all dynamic scheduling

communities: at what resolution monitoring should be performed. Since jobs are constantly

v

submitted throughout the grid and resources are used for processing such jobs, acquired

monitoring information should be updated frequently. On the other hand, monitoring too

frequently takes up valuable resources and bandwidth which could otherwise be used for job

execution. Thus, another objective is to reach a balance between the risk of having outdated

resource status information (which leads to incorrect scheduling decisions) and performing too

much monitoring (wasting limited resources).

In a conventional grid environment, such as the ATLAS project [40], system administrators are

often required to monitor the activities of a selected group of preferred sites and submit jobs to

those sites if deemed capable of processing such tasks. The sites chosen, however, may not

necessarily be the best sites for processing the jobs. This results in underutilized resources and

stagnant efficiency of sites as there is no global incentive for improving efficiency as well as

remaining competitive. One of the main reasons for sub-optimal resource allocation is that when

taking factors such as system resource utilization, response time, global and local policies into

account while dealing with potentially independent sources of jobs, computational and storage

resources, the job of managing resources and job scheduling becomes too tedious for a

centralized entity to perform. On top of that, with the implementation of varying local policies, a

centralized scheduling entity may not have access or control over such policies, hence it could

only perform scheduling based on a best effort basis. It is often up to the job-receiving host to

perform the final leg of scheduling, based on its locally defined policies. As such, scheduling

within a grid is often a multi-tiered process where the job-submitting host performs its job

scheduling to the best of its knowledge of the current state of the grid environment, while the

receiving host takes over the final phase of the scheduling process. Dividing the task of

scheduling amongst several sites would add the advantage of easing the load and complexity of

performing scheduling at a single location. However, in order to motivate individual local

vi

domains in competing to become more efficient, in addition to being more aggressive in

competing for accepting more jobs, some form of incentive mechanism could be applied.

In this work, we explore a decentralized combinatorial exchange scheme, as well as pull-based

grid scheduling methodology which adopts the use of brokers with job advertisement and

propagation within a grid environment. The main motivation for this scheme is to create an

automated two tiered scheduling methodology to perform the tedious task of performing service

discovery, and task scheduling at the global level, while performing resource monitoring,

utilization and efficiency control at the local level. To achieve the best attainable optimization at

any point in time, participating sites are to remain motivated to offer their best services based on

the job submitting host’s preferred optimization settings. Global scheduling of jobs will be done

at the broker level via a bidding process. The submitting host will have the privilege to choose

the best available offer to suit its requirements. A pricing scheme is implemented as a trading

mechanism in exchange for the services provided. This pricing mechanism will hence serve as

a motivation for participating sites to compete for jobs so as to increase its overall wealth. As

such, competing sites will be required to constantly monitor and improve their own resources, its

utilization and efficiency so as to remain competitive.

vii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS.. iii

ABSTRACT.. iv

LIST OF ILLUSTRATIONS...x

LIST OF TABLES ..xi

LIST OF ABBREVIATIONS .. xii

LIST OF SYMBOLS... xiii

Chapter Page

1. INTRODUCTION……………………………………..………..…..1

1.1 Motivation ...4

1.2 Objectives and Contributions..5

1.1 Chapters Outline...6

2. GRID COMPUTING FUNDAMENTALS ...8

2.1 The Evolution of Grid..8

2.2 Grid Architecture...8

2.3 Grid Resource Management ..10

2.4 Open Science Grid ...10

2.5 Grid Applications...11

3. MOTIVATION FOR A MARKET ORIENTED GRID ...12

4. BACKGROUND ..13

4.1 Reasons for Markets ..13

4.2 How Markets Work ...13

4.3 Auctions ..15

viii

4.3.1 Different Flavors of Auctions ..16

4.3.2 Single Auctions...17

4.3.3 Double Auctions ...18

4.3.4 Closed Auctions..18

4.3.5 Open Auctions ..18

4.3.6 Combinatorial Auctions...18

4.3.7 Combinatorial Exchange ..19

5. PREVIOUS WORK...20

5.1 Traditional Grid Scheduling and Resource Management20

5.2 Economic Grid Scheduling and Resource Management23

6. PRICING MECHANISM..29

6.1 Supply and Demand ...30

6.2 Market Pricing...30

6.3 Combining Goods ...31

6.4 Terminology..33

7. GRID MONITORING IN THE CONTEXT OF ATLAS EXPERIMENT41

7.1 Grid Monitoring Overview ...43

8. GRID MARKET MECHANISM DESIGN...50

8.1 Combinatorial Exchange Overview ..51

8.2 One-shot Centralized Combinatorial Exchange ...60

8.3 One-shot Decentralized Combinatorial Exchange ...67

8.4 Repeated Centralized Combinatorial Exchange ..74

8.5 Repeated Decentralized Combinatorial Exchange...76

9. IMPLEMENTATION OF GRID MARKET MECHANISM ..78

9.1 Auction Based Grid Resource Scheduling Using Brokers and Job
Advertisements ...79

ix

9.2 Auction Based Grid Resource Scheduling Using Combinatorial
Exchange Methodology ..85

10. SIMULATION DESIGN...94

10.1 Broker and Job Advertisement Based Grid Scheduling95

11. SIMULATION RESULTS AND SUMMARY..99

11.1 Results from Broker and Job Advertisement Based Grid Scheduling..........99

11.2 Results from Auction Based Grid Resource Scheduling Using
Combinatorial Exchange ..103

12. FUTURE WORK...103

12.1 Broker and Job Advertisement Based Grid Scheduling110

12.2 Auction Based Grid Resource Scheduling Using Combinatorial
Exchange Methodology ..110

13. CONCLUSION..110

REFERENCES ...113

BIOGRAPHICAL INFORMATION ..113

x

LIST OF ILLUSTRATIONS

Figure Page

 2.1 Layered Grid Architecture (Diagram format adopted from [20]). ..9

 4.1 Market Types ..14

 4.2 Single Sided Auctions...17

 4.3 Double Auction. ..18

 5.1 Taxonomy of Grid Scheduling (Adopted from [48]). ...21

 5.2 Condor-G (Adopted from [20]). ...22

 5.3 Operation Cost Breakdown. ...26

 5.4 SCDA Architecture (Adopted from [46]). ..28

 5.5 Fuzzy Logic Inference (Adopted from [46]) ..28

 6.1 Production Cost Breakdown ...31

 6.2 No Bundling vs. Pure Bundling...33

 6.3 Consumer/Seller Relationship. ...41

 7.1 PanDA Production Summary..43

 7.2 Summaries of PanDA Jobs. ...46

 7.3 Summaries of PanDA Finished (light bars) and Failed (dark bars) Jobs.46

 7.4 PanDA Server One-month Plot. ...47

 7.5 ViGs Simulation Results Plot. ...48

 7.6 PanDA vs. ViGs Plot...48

 8.1 Centralized Auctioneer. ..52

 8.2 Decentralized Auctioneer..53

 8.3 Auction Model Overview. ..54

xi

 8.4 Auctioneer Decision Outcome. ...64

 8.5 Decentralized Closed CE With No Overlapping. ..68

 8.6 Decentralized CE With Overlapping. ..69

 8.7 Multiple Decentralized CE With Overlapping..70

 8.8 Decentralized CE With Overlapping. ..78

 9.1 Request Broker...83

 9.2 Tender Broker...83

 9.3 Bidding Process..85

 9.4 Auctioneer Initialization...86

 9.5 Consumer Logic..87

 9.6 Seller Initialization...88

 9.7 Bid Handling by Auctioneer. ...90

 9.8 Seller Auction Participation...90

 9.9 Auctioneer Resource Assignment. ...91

 10.1 Simulator Overview...96

 10.2 Grid Anticipated System Usage Model...98

 11.1 Total Number of Jobs Executed. ..101

 11.2 Total Number of Successful Re-negotiations. ..101

 11.3 Accumulated Monetary Transactions. ..101

 11.4 Total Penalty. ..102

 11.5 Penalty to Earning Ratio. ..103

11.6 Success vs. Failure Comparison ..104

11.7 Overall Resource Utilization. ..104

11.8 Auction Bids Comparison.. ...105

11.9 Winning Price vs Reserve Price Comparison...107

xii

11.10 Auction Success Comparisons...108

11.11 Job Value Comparisons. ..108

xiii

LIST OF TABLES

Table Page

8.1 Multiset Representation for m Resources. ...55

8.2 Multiset Representation of Bundles in Market 1...61

8.3 Market 1 Consumer’s Requests. ..62

8.4 Market 1 Seller’s Offerings. ..62

8.5 Market 1 Resource Types...62

8.6 Seller Bundles and Valuations..63

8.7 Resource Assignment for Example 1. ..63

8.8 Consumer and Seller Valuations for Example 2...64

8.9 Resource Assignment for Example 2. ..64

8.10 Consumer and Seller Valuations for Example 3...65

8.11 Resource Assignment for Example 3. ..65

xiv

LIST OF ABBREVIATIONS

CE Combinatorial Exchange
CCE Centralized Combinatorial Exchange
DCE Decentralized Combinatorial Exchange
OCCE One-shot Centralized Combinatorial Exchange
ODCE One-shot Decentralized Combinatorial Exchange
RCCE Repeated Centralized Combinatorial Exchange
RDCE Repeated Decentralized Combinatorial Exchange
OCCCE One-shot Centralized Closed Combinatorial Exchange
OCOCE One-shot Centralized Open Combinatorial Exchange
ODCCE One-shot Decentralized Closed Combinatorial Exchange
ODOCE One-shot Decentralized Open Combinatorial Exchange
RCCCE Repeated Centralized Closed Combinatorial Exchange
RCOCE Repeated Centralized Open Combinatorial Exchange
RDCCE Repeated Decentralized Closed Combinatorial Exchange
RDOCE Repeated Decentralized Open Combinatorial Exchange

xv

LIST OF SYMBOLS

iAggc Consumer ci’s Aggressiveness Index

iAggs Seller si’s Aggressiveness Index

Ac Consumer’s auction bundle
all

iAc Set of all auction bundles requested by consumer ci

all
allAc Set of all auction bundles requested by all consumers

As Seller’s auction bundle
all

iAs Set of all auction bundles offered by seller si

all
allAs Set of all auction bundles offered by sellers

ib Consumer i’s budget

ibi Base incentive to execute job type i

bv Seller’s bundle valuation
C Set containing all consumers

ic Consumer cost of acquiring resource bundle for job type i

pc Consumer cost of auction participation

cπ Consumer penalty

�
icui Consumer initial utility for job type i

�
icuf Consumer final utility for job type i
()t

ijea Job execution time actual (at time t)
()t

ijee Job execution time estimated (at time t)
()t

ijes Job execution time std dev (at time t)

jt Job type

ijv Consumer job valuation of type i

jw Job weight

maxjw Max job weight

minjw Min job weight

ℓ Lateness = t
c it jee tdl− −

xvi

ρ Resource market price
S Set containing all sellers
sπ Seller penalty

�sui Seller initial utility
�suf Seller final utility

ct Current time

,
A

start endτ Expected time period usage for auction bundle (A)

tdl Deadline time
()
j

tus Seller j’s resource utilization (at time t)

ut Usage time of resource

iVc Consumer ci’s Valuation

iV Consumer valuation of job type i

iVs Seller si’s Valuation

jw
 Seller j’s wealth

1

CHAPTER 1

INTRODUCTION

 The technological advancements in the areas of computing and networking over the

recent years have led to an emerging infrastructure known as Computational Grids, which

provides users with the flexibility of pervasive access to enormous computational resources

hosted at remote locations. Effective resource management and job scheduling poses a

challenge when constraints such as resource utilization, response time, global and local policies

need to be taken into account, while dealing with potentially independent sources of jobs,

computational, and storage resources. It must be ensured that scheduling decisions made are

still valid by the time a job is to be executed, with all the necessary resources remaining available.

However, resources in a grid environment are considered perishable goods, i.e., resources left

unused cannot be “saved” for later use. Unused resources would not roll-over resulting in having

an additional resource for use at a later time. In addition, incentives are often needed for

individual local domains to strive for improved efficiency. This work will demonstrate the use of

auctioning mechanisms and strategies for achieving the abovementioned objectives, along with

the appropriate formulation methodologies for this application.

A computational cluster is a group of networked computers usually created by

organizations for processing large data or computational intensive jobs. Several such (remote)

clusters may be integrated together to form a computational grid. Thus, in a computational grid

environment where data and computational intensive jobs are to be processed, there exists a

vast collection of resources ready to process jobs of (virtual) organizations. Scheduling and

resource management in a computational grid environment has been an area of extensive

research due to its importance and complexity. Resources within a computational grid are likely to

be heterogeneous, i.e., individual clusters or computers may be of different architectures, may be

controlled by different operating systems and have diverse libraries. This often requires some

form of resource matching such as [39] to effectively map jobs to resources. However, due to

2

fluctuating demands, resource availability may rapidly change. In addition, scheduling and

management policies of clusters are unlikely to be uniform over all clusters in the grid. With

ubiquitous resources distributed throughout clusters, it is important to be able to effectively

manage these resources as well as assign jobs to take advantage of the available subset of

resources. Without effective monitoring and management of resources, information on resource

availability and the condition and duration of such availability is unknown. Furthermore, efficient

scheduling is necessary in order to keep a particular resource from being overwhelmed when a

similar resource may be “sitting” at another location idling.

Scheduling within a computational grid environment is often concerned with the welfare

of the resources or components as a whole as well as the well being of individuals. By welfare of

the resources or components as a whole, we often refer to such issues as fairness, e.g., equal

opportunities to use resources, distribution of wealth throughout the grid and the overall

performance of all the virtual organizations combined as a whole. Individual well being, on the

other hand, is often concerned with the maximization of satisfaction derived from participating in

work related activities. Such derived satisfaction may include minimization of response time and

computation cost, while maximizing profit, throughput, and yield of earliest results. Thus, it is

often necessary to be able to strike a balance between two contrasting goals: individual (per

cluster) goals and system level utilization goals.

Individual (or local) goals, as the name implies, are more often concerned with

maximizing the benefits individual entities can attain, with minimal regards for the welfare of the

rest of the system. On the other hand, system level goals are usually more concerned with getting

the most out of the currently available resources globally, even if it is at the cost of sacrificing a

small population in order to benefit the system utility as a whole. For example, in order to

maximize system resource utilization, a system level goal could be to keep all resources busy

with a minimal number of unassigned resources idling. An individual goal, however, may be to

have some idling resources available so as to have instant access to those resources when need

arises. Similarly, it is a system level goal to ensure fair distribution of wealth (when completion of

jobs is rewarded by some means) while an individual is more often interested in maximizing local

3

profits. As a result, it is a challenging task to satisfy individual needs, while still achieving system

level goals at the same time.

In order to provide more accurate scheduling and to obtain a better balance between

micro and macro goals some status information about the resources needs to be obtained.

However, this brings up another controversial issue which has plagued all dynamic scheduling

communities: at what resolution monitoring should be performed. Since jobs are constantly

submitted throughout the grid and resources are used for processing such jobs, acquired

monitoring information should be updated frequently. On the other hand, monitoring too

frequently takes up valuable resources and bandwidth which could otherwise be used for job

execution. Thus, another objective is to reach a balance between the risk of having outdated

resource status information (which leads to incorrect scheduling decisions) and performing too

much monitoring (wasting limited resources).

In a conventional grid environment, such as the ATLAS project [40], system

administrators are often required to monitor the activities of a selected group of preferred sites

and submit jobs to those sites if deemed capable of processing such tasks. The sites chosen,

however, may not necessarily be the best sites for processing the jobs. This results in

underutilized resources and stagnant efficiency of sites as there is no global incentive for

improving efficiency as well as remaining competitive. One of the main reasons for sub-optimal

resource allocation is that when taking factors such as system resource utilization, response time,

and global and local policies into account while dealing with potentially independent sources of

jobs and computational and storage resources, the job of managing resources and job scheduling

becomes too tedious for a centralized entity to perform. On top of that, with the implementation of

varying local policies, a centralized scheduling entity may not have access or control over such

policies, hence it could only perform scheduling based on a best effort basis. It is often up to the

job-receiving host to perform the final leg of scheduling, based on its locally defined policies. As

such, scheduling within a grid is often a multi-tiered process where the job-submitting host

performs its job scheduling to the best of its knowledge of the current state of the grid

environment, while the receiving host takes over the final phase of the scheduling process.

4

Dividing the task of scheduling amongst several sites would add the advantage of easing the load

and complexity of performing scheduling at a single location. However, in order to maintain high

productive status, individual local domains have to constantly upgrade themselves and stay

motivated in becoming more efficient, in addition to being more aggressive in competing for

accepting more jobs, some form of incentive mechanism could be applied.

To address the problem of resource management and job scheduling in a large,

geographically distributed network of virtual organizations, while observing the goals of cost

minimization and improving utilization and efficiency, we propose a pull-based grid scheduling

methodology which adopts the use of brokers with job advertisement and propagation within a

grid environment. The main motivation for this scheme is to create an automated two tiered

scheduling methodology to perform the tedious task of performing service discovery

functionalities and task scheduling at the global level, while performing resource monitoring,

utilization and efficiency control at the local level. To achieve the best attainable optimization at

any point in time, participating sites are to remain motivated to offer their best services based on

the job submitting host’s preferred optimization settings. Global scheduling of jobs will be done at

the broker level via a bidding process. The submitting host will have the privilege to choose the

best available offer to suit its requirements. A pricing scheme is implemented as a trading

mechanism in exchange for the services provided. This pricing mechanism will hence serve as a

motivation for participating sites to compete for jobs so as to increase their overall wealth. As

such, competing sites will be required to constantly monitor and improve their own resources,

their utilization and efficiency to remain competitive.

1.1 Motivation

In a grid environment, resources are considered perishable goods, i.e., resources left

unused cannot be “saved” for later use. Take for example the hotel industry; any rooms left empty

for a night would be regarded as a wasted resource, since it would not roll-over, resulting in the

hotel having an additional room for rent the following day (the total number of rooms is always

fixed and remains the same each day). From the perspective of a resource provider, profit

maximization through sales volume is often deemed as important as cost minimization, as any

5

additional units of unsold resources equate to additional incurrence of uncovered maintenance

cost. This realization has led researchers to more closely investigate the economic behavior of

grid systems.

Market based approaches have been gaining popularity in recent years [10][17], and are

considered to work well in grid applications. Through these approaches, user preferences as well

as provider compensations can be expressed efficiently in terms of costs, valuations and utilities.

To date, many models have been proposed for the economics of grid systems through the

adoption of fixed (e.g., [1][2][3][4][5][6][9][10][11]) and variable price (e.g., [12][0][14][15]) models,

as well as different auctioning protocols (e.g., discussed in [2][3][4][5][6][7][8]). Strong

assumptions are often required to simplify the price determination process in the abovementioned

models. However, none of the above work has adequately formalized the price and utility

determination for a market-based combinatorial exchange economic grid system.

When resource request matches are found, the matched resources are delegated from the

resource owner to the resource requester. By delegating resources to jobs instead of the

traditional migration of jobs to resources, we lower the administrative overhead of managing

user/group accounts on each site where they can use resources.

1.2 Objectives And Contributions

The main objective of this work is the design, implementation, and evaluation of an

economic grid mechanism that can meet scheduling and resource management requirements of

a Grid environment. Prior to applying this methodology, we arrive at these specific questions.

What are the technical and economical characteristi cs of a market-oriented Grid

mechanism?

In order to answer this question, the characteristics of Grid resources, requirements from

its potential users, as well as the motivation behind resource providers to offer those resources

have to be analyzed. The contribution is to find a link between the Grid and an economic

environment where market-oriented Grid mechanism can be applied. This is performed through a

6

thorough formalization of the Grid environment including requirements, valuations, and

compensations.

How to design a suitable mechanism for a market-ori ented Grid?

The problem with most market mechanisms is that requirements are usually overly

simplistic. Designing a mechanism for a market-oriented Grid would require one which is capable

of expressing complex combinatorial requirements constraints seen in a Grid system while

addressing the basic needs of a Grid environment. The contribution is designing and

implementing one such hybrid mechanism which caters to all the requirements.

How to evaluate a market-oriented grid mechanism?

In order to evaluate a hybrid mechanism, a simulation model will be developed to provide

an evaluation platform against working Grid systems. Real world data from the ATLAS

experiment will be used as a benchmark for comparisons.

1.3 Chapters Outline

This work will be structured into three major parts, each with a focus on answering the

three proposed questions. The first part will provide the fundamental understanding of both the

Grid and Economic mechanism. The second part will discuss the design and implementation of a

market oriented grid mechanism. Last but not least, the final part will evaluate the performance of

the proposed mechanism against real world systems.

1.3.1. Part I

Chapter one will provide the introduction to the work, and chapter two provides the

fundamentals of the Grid system. Chapter three will focus on the motivation for this work, and

Chapter four provides background knowledge for the mechanism used to implement the work.

Chapter five is divided into two sub parts. The first sub-part discusses previous work done in the

7

area of Grid scheduling and resource allocation, and the second sub-part discusses previous

work on market-oriented Grid mechanisms.

1.3.2. Part II

Chapter six discusses the pricing mechanism used in our work, as well as defining the

participant involvement in our system. Chapter seven discusses work done in the context of the

ATLAS experiment [34], Chapter eight shows the formalization work, and also analyzes the

applicability of different auction scenarios. Chapter nine focuses on the algorithmic

implementation of your mechanism.

1.3.3. Part III

Chapter ten provides the design of our simulation while Chapter eleven analyzes the findings

attained from our simulation results. Chapter twelve provides the summary and discusses future

work for this market oriented Grid mechanism. Last but not least, Chapter thirteen will conclude

the work.

8

CHAPTER 2

GRID COMPUTING FUNDAMENTALS

2.1 The Evolution of Grid

The early Grids started out as metacomputing, which was essentially an interconnection

of several supercomputing sites. From the early to mid 1990s, the early metacomputing or grid

started gaining popularity due to the need to tackle high performance applications such as

FAFNER and IWAY [50]. FAFNER was designed as a parallel application, while IWAY was

designed to work with high performance applications which required fast interconnect and

powerful resources. After the success of the two projects further innovation in network

technologies over the years has further helped in boosting the popularity of Grids. The second

generation of grid advancement is credited to the vision of Grid in [51] which defined ways to

cope with scale and heterogeneity in a Grid environment and the problems to be resolved in

dealing with large scale computational power and information. Over the years, Grid is evolving

towards the direction of a knowledge based economic grid, where resource and service providers

offer on demand computing as services within the Grid environment.

2.2 Grid Architecture

The Grid follows a set of open standard protocols for message communication and

controlling which was designed to form the basis for further interoperable development. The set of

open standard protocols is shown in Figure 2.1. The protocols and interfaces are categorized

depending on their function. The following details have been adopted from [20].

9

Routers
Switches

Comm. Link

Storage Servers

Supercomputers

Hardware

Diagnostics

Security

1 2 3 4 5

Monitoring
Brokering

Applications Toolkit

Access to resources

and services

Certificates

S/W S/WS/W

Protocols

External Devices

Sensors

Hub

Devices

Modem

User

Applications

Collective

Services

Resource and

Connectivity

Protocols

Fabric

Figure 2.1 Layered Grid Architecture (Diagram format adopted from [20]).

Fabric layer: Jobs in this lowest layer are used to provide a common interface to all available

resources. Access by higher layers is granted via standardized processes. All resources for which

such a standardized interface is applicable, can be integrated in the grid concept. This contains

computers, storage systems, networks or sensors.

Resource and connectivity protocols: The connectivity layer defines the basic communication

and authentication protocols which are needed by the grid. While the communication protocols

allow the exchange of files between different resources connected by the first layer, the

authentication protocols allow to communicate confidentially and to ensure the identity of the two

partners. To this belongs also the delegation of rights and methods for unique authentication

(single sign-on). In the resources layer, the common access to individual resources is organized.

This contains initiation, observation, control, clearance and negotiation of security parameters.

Also, processor resources get assigned, reserved, observed and controlled. The OGSA is a

standing architecture still in development that will lead the implementation of this layer in many

grid projects. The Globus Toolkit 4 (GT4) presents a popular implementation of the OGSA

10

specification and offers software jobs and libraries to realize a grid according to OGSA

specification.

Collective services: The purpose of this layer is the coordination of multiple resources. Access

to these resources doesn’t happen directly but merely via the underlying protocols and interfaces.

The jobs of this layer contain, among others, the creation of a directory service, and they supply

monitoring, diagnostic and file replication services. Furthermore grid-capable development

systems are provided to be able to use popular programming models in a grid environment.

User applications: To this layer belong all those applications which are operating in the

environment of a virtual organization. Jobs of the lower layers get called by applications and can

use resources transparently.

2.3 Grid Resource Management

The term “resource management” is used to refer to the operations used to control how

capabilities provided by grid resources and services are made available to other entities, e.g.,

users, applications, or services.

The main distinguishing factor between resource management in a grid environment and

a traditional localized system is that resource management in grids may span across different

administrative domains, usually operating under differing policies and conflicting objectives. In

addition, resource management in grid environments often requires concurrent allocation and

coordination of multiple resources across administrative domains. A key issue of resource

management is deciding what resources to allocate to whom, and when. This includes the

capability for resource discovery, resource scheduling and resource allocation.

2.4 Open Science Grid

OSG is a consortium of software, service and resource providers and researchers from

universities, national laboratories and computing centers across the U.S., who together build and

operate the OSG project. The project is funded by the NSF and DOE, and provides staff for

managing various aspects of the OSG.

11

The goal at OSG is to bring petascale computing and storage resources into a uniform

grid computing environment, and to integrate computing and storage resources from all over the

U.S. and other countries.

The current bulk of resources consist of more than seventy participating institutions,

including self-operated research VOs, campus grids, regional grids and OSG-operated VOs,

capable of supporting about ten thousand CPU-days worth of processing in a day, with ten

terabytes of data movement supported in a day.

 2.5 Grid Applications

The Grid has a wide range of applications, such as solving challenge problems like

protein folding, financial modeling, earthquake simulation, and climate/weather modeling. Grid

also offers a means for providing resources as a utility for commercial and noncommercial users,

with those users paying only for what they use, much like providing a service to consumers in a

market.

Grid computing is also being applied to numerous scientific research projects and

experiments around the world. One such experiment is the ATLAS experiment conducted at the

Large Hadron Collider (LHC) at CERN, which is expected to produce over one hundred peta

bytes of data over the next few years at the rate of around two hundred “events” per second,

each event requiring approximately ten minutes of processing on a one GHz Intel processor.

Another well known project is Search for Extraterrestrial Intelligence (SETI) which was using

more than three million computers to achieve 23.37 sustained teraflops (979 lifetime teraflops) as

of September 2001[52].

12

CHAPTER 3

MOTIVATION FOR A MARKET ORIENTED GRID

To date, various mechanisms have been proposed to allocate resources in grid

computing environments, but most of them have neglected one very important fundamental

question in Grid computing: incentive. Most resource allocation algorithms have substituted

valuations with job priorities, making the assumption that jobs with high valuation would naturally

be assigned high priorities. This might be true for most cases, but failed to capture user

preferences when using priorities. Job priorities refer to the weight assigned to jobs, which

indirectly translates to the importance of that job perceived by a user. But it does not reflect the

preferences of users for any set of resources. Some might propose the use of policies to

differentiate user preferences, which might also work in this case. But how about incentives for

resource providers to provide their resources for use? Policies may be able to distinguish

between users’ resource preferences, but cannot reflect the willingness of resource providers to

offer their resources. In fact, resource providers might not be willing to provide their resources if

there is no incentive for them to do so. Shifting the focus from placing weights and priorities on a

per job basis to using valuations to represent users’ valuation towards resources and resource

providers’ willingness to offer those resources, helps in achieving a much greater goal with just

one variable instead of using combinations of weights, priorities, and policies for representing

only user preferences and job priorities.

Moreover, incentive can also be translated to pricing models, penalties, discounts, and

more, which provides a powerful and dynamic tool in manipulating the flow of resources within the

Grid environment through the application of economic mechanisms.

13

CHAPTER 4

BACKGROUND

This section offers some background in the basics of the economic mechanism and

various auctioning mechanisms available today.

4.1 Reasons for Markets

A market is a common place where trading transactions are executed. They exist mainly

due to a fundamental rule in economics, the concepts of supply and demand. This could be

described as a desire for something by some group, whereas another group (or groups) is

offering that “exact something” in exchange for something else that the first group is in

possession of or can acquire. Although this definition of a market is overly simplified and many

would disagree with this overly generic explanation, it basically explains what a market is from a

very abstract standpoint.

In order for a market to function, there has to be some kind of agreement for an

exchange to take place. This is often known as market clearing in the classical school of

economics. It is a simplifying assumption that exchanges always tend towards the price where

the quantity supplied equals the quantity demanded, and this price is often called the market

clearing price.

4.2 How Markets Work

There are many types of market clearing mechanisms in use today, many of which are

designed to serve a specific purpose. As such, each has its own strengths and weaknesses for

different applications. Figure 4.2 (partially adopted from [55]) depicts an overview of such market

clearing mechanisms used. First off, trading price has to be determined prior to any trade to take

place. Prices may either be static (fixed price) or dynamic in a market.

14

Figure 4.1 Market Types

Fixed prices, as the name implies, will never/seldom change during the course of a

transaction. As such, this is more of a take-it-or-leave-it type of trade which limits further haggling

on prices. The advantage of fixed pricing is in its simplicity and timely transactions. A trade is

either successful or not, with no further complexities. For example, there are fixed price sales

(such as what happens in a supermarket) where a consumer either purchases the product or

walk away. This, however, may potentially limit the number of trades in a market due to its lack of

flexibility. (This obviously does not mean that prices for this model can be determined in an ad

hoc manner; indeed, the history of supply cost curves and demands for the products are used by

economists to determine the price.)

Dynamic pricing, on the other hand, allows for some extended flexibility when compared

to static pricing mechanisms. The price determination mechanism may be broken into two main

groups: (1) Auctions, and (2) Negotiations / Re-negotiations. Auctions usually exhibit more

flexible market clearing characteristics than fixed pricing, and are less complex and time

consuming when compared to price negotiations. Since this work is focusing on auctioning

mechanisms for grid resource exchanges, we will further discuss such pricing models in the

oncoming subsection (Section 4.3). Price negotiations (one which allows for price haggling

between sellers and consumers), are traditionally difficult to manage (due to the frequently non-

policy driven interactive process between seller and buyer) and time consuming, especially those

which allow re-negotiations. The frequency of negotiations plays an important role in the price

determination process at the cost of further complexity and time delay.

15

4.3 Auctions

Auctions are often used as a mechanism to elicit information, in the form of bids, from

potential buyers regarding their willingness to pay for an object (also known as the valuation of

the object), and determine who-gets-what as an outcome. The objective of an auction is to

achieve Pareto optimal outcomes, to attain allocative fairness and efficiency, or maximization of

the seller’s profit margin. From [53], Pareto efficiency or Pareto Optimality refers to situations

where any change to make any person better off would result in having someone worse off. In

other words, a Pareto efficient allocation refers to the best attainable allocation which cannot be

improved any further. For more details on Pareto Optimality, readers are referred to [54]

Auctions are often used when a seller is unsure about the valuation of the item being sold

from the perspective parties seeking to purchase the item. Should the precise valuation of every

potential bidder be known to the seller, he could have simply sold the item directly to the potential

customer with the highest valuation (or bid). On the other hand, bidders of an item often lack the

knowledge of the valuation attached to the item by other bidders. In a best case scenario one

may have an estimate of an item’s worth based on an expert’s appraisal or information collected

from past experiences. But ultimately, bidders will still have to compete against one another in an

attempt to win the item.

In a traditional auction, an auctioneer is regarded to be on the seller’s side, taking bids

from potential consumers who have valuations for the items they intend to purchase. In some

auctions, however, an auctioneer agent may be on the consumer’s side, taking offers from sellers

who wish to sell their products. In our work, we make the assumption that auctioneers may be on

the consumers’ side (trying to minimize the final price), seller’s side (trying to maximize the selling

price), or neutral. When an auctioneer is on the consumer’s side, its main objective is to maximize

consumer’s utility by maximizing valuations and minimizing purchase cost. If the auctioneer is on

the seller’s side, the objective would be to maximize profits while minimizing cost for the sellers.

However, since both scenarios are considered to be one-sided (favoring either the consumers or

sellers), a third neutral auctioneer scenario is introduced where the objective is to make an

16

attempt to strike a balance between the two prior cases with the main goal of maximizing global

welfare.

4.3.1. Different Flavors of Auctions

There are many flavors of auctioning mechanisms, each with its own unique

characteristics, strengths/weaknesses, and applications. Four primary types of auctions are

widely used and analyzed, namely: ascending bid auction (often called open or English auction),

the descending bid auction (also known as the Dutch auction), first-price sealed-bid auction, and

second-price sealed-bid auction (widely known as the Vickrey auction).

In addition, there are nine secondary types of auctions used today, which are derivations of the

primary auction types [58]:

I. Silent auction: is a closed-bid sealed-price auction where bids are historically placed by

writing on a sheet of paper and putting this sheet in a sealed envelop (thus the name). The

ultimate winner is the bidder who placed the highest price on her paper and the selling

price is exactly this number.

II. Walrasian auction (tâtonnement): is a double auction where multiple sellers and

consumers are matched in an auction based on bids taken from both sides in a market of

multiple goods.

III. Reverse auction: as the name implies, reverses the role of sellers and consumers from a

conventional auction where consumers compete and bid prices up in an attempt to win the

auction. In a reverse auction, sellers compete by offering progressively lower prices until no

supplier is willing to make a lower bid.

IV. Combinatorial auction: is an auction where bidders can place bids on combinations (or

packages) of items, instead of being limited to bidding on single items like most

conventional auctions.

V. All-pay auction: is a form of gambling on the outcome of an auction where participants

must pay for the privilege of placing a bid in an auction-like process. Since the outcome of

the auction-like process is uncertain, the amount spent on participating in the auction is

similar to a wager, which is essentially a deceptive form of gambling.

17

VI. Top up auction: is a variation of an all-pay auction where bidders pay the difference

between their current bid and the next lowest bid, regardless of whether they eventually win

the auction. The winning bidder pays for the final item price while the other participants pay

for the top-up prices.

VII. Reserve auction: is an auction where the seller sets a pre-determined minimum price for

the item for sale. The item may not be sold if the final bid is not high enough to satisfy the

seller’s minimum price.

VIII. No reserve auction: is an auction in which the item for sale will be sold regardless of the

final price. As such, the seller runs a risk of selling an item at a “ridiculously low price”. On

the other hand, psychologically, it has the advantage of attracting more bidders due to the

inherent possibility of purchasing an item at a bargain.

IX. Buy out auction: is an auction with an initially set price (the 'buyout', or ‘buy-it-now’ price)

that any bidder can accept at any time during the course of the auction, thereby

immediately winning and ending the auction. If no bidder chooses to utilize the buyout

option before the end of auction, the highest bidder wins the auction and pays their bid.

4.3.2. Single Auctions

Single-sided auctions can be categorized into:

I. Forward auctions, and

II. Reverse auctions.

Consumer

Seller

Seller

Seller

Seller
(a)

(b)

Figure 4.2 Single Sided Auctions.

 18

Forward-auctions refer to a market where there is a single seller and multiple

consumers competing for the product. Examples of forward-auctions are English and Dutch

auctions. The design of forward-auctions favors the consumer with the purpose of revenue

maximization. Reverse-auction, on the other hand, favors the purchase price minimization of a

consumer.

 4.3.3. Double Auctions

A double auction is an auction where consumers and sellers are treated as equals in an

auction, with potential consumers and sellers submitting their bids concurrently to an auctioneer

who will determine the best clearing price for the auction. Figure 4.3 shows the layout of a

double auction scenario.

Figure 4.3 Double Auction.

4.3.4. Closed Auctions

In a closed auction bidders submit sealed bids. A participating bidder has no knowledge

of the bids placed by other bidders.

4.3.5. Open Auctions

In an open auction, participating bidders have full knowledge of each other's previous

bids and may repeatedly place higher bids using this knowledge.

4.3.6. Combinatorial Auctions

The definition for combinatorial auction has evolved over the years. As stated in [55],

the classical variant of a CA is the multi-item auction where single items of multiple good types

 19

are combined in bundle bids. It has later evolved to include multiple items of a good type in bid

bundles, called multi-unit auction with combinatorial bids [57].

4.3.7. Combinatorial Exchange

Combinatorial exchange brings together both double auctions and combinatorial auctions

into a single auctioning mechanism [56]. Buyers and sellers in a combinatorial exchange are

able to trade single, multiple, homogeneous, or heterogeneous goods concurrently.

 20

CHAPTER 5

PREVIOUS WORK

As the demand for computational power increases with the acceptance of

computational grids, resource handling came under the spotlight as users began experiencing

limitations in resource performance. What good can a tremendous amount of resources be

when users are not utilizing them with caution? Careful scheduling and resource management

eventually became one of the important goals of improving grid usage efficiency and unveiled

important differences in resources between computational grids and in traditional computing

systems. In a grid environment, resources are distributed and span across different

administrative domains. Administrators of such domains are often not keen on letting someone

from another domain take control of their resources. As such, one main obstacle to grid

scheduling is to find ways to be able to achieve its scheduling and management objectives

without taking full control of such distributed resources.

5.1 Traditional Grid Scheduling and Resource Management

In recent years, significant advancements have been witnessed in the area of grid

scheduling. Although varying methodologies have been adopted, most shared a common focus

on enhancing job performance and system utilization. As discussed in [47], grid scheduling can

be classified into meta-scheduling and resource brokering as shown in Figure 5.1.

5.1.1 AppLeS (Application Level Scheduling)

AppLeS [47] is an application centric scheduling system designed with the objective of

improving application performance in grids. In the AppLeS project [24], each grid application is

tied with its AppLeS agent and scheduled according to its own performance model. Each

AppLeS agent is made up of a coordinator and four subsystems: a resource selector, planner,

performance estimator, and an actuator. The role of the central coordinator is to coordinate the

 21

subsystems and perform the task of scheduling. The general strategy of AppLes is to take into

account resource performance estimates to generate a plan for assigning file transfers to

network links, and tasks (sequential jobs) to hosts. In recent years, AppLeS has begun

development of AppLeS templates, where each template caters to a specific class of

application.

Figure 5.1 Taxonomy of Grid Scheduling (Adopted from [47]).

5.1.2 Condor

The Condor project [43] is a distributed computing research project conducted by the

Computer Science department of The University of Wisconsin at Madison. It is an open source

distributed computing software capable of handling large collections of distributed resources

and job requests, providing a distributed high throughput computing (HTC) facility. Condor has

the capability of handling both dedicated computing nodes as well as non-dedicated resources

through cycle stealing. Condor's Globus Universe (i.e. Condor-G) is an extension allowing

Condor tools to submit jobs to the grid. The Condor-G Matchmaking mechanism is used to

schedule jobs to the grid. It allows users to specify requirements such as storage space,

libraries, resource preferences etc. Figure 5.2 shows the architecture of Condor-G

 22

Gate
keeper

Schedd

JobmgrGridmgr

User’s
job

Home disk

2:
 A
ut
he
nt
ic
at
e

(G
SI
)

3: Submit
job

(GRAM)

4: Store job
details

5:
 T
ra
ns
fe
r

Da
ta
 (G
AS
S)

6: Submit
job

End
user

1: Submit job

Temp disk

Remote
batch queue

7: Run
job

Figure 5.2 Condor-G (Adopted from [20]).

However, there have been several noted problems with using Condor-G as a grid

scheduler. Although parallel jobs can be submitted in Condor-G, all jobs are treated as serial

jobs since Condor-G does not support parallel jobs and it does not recognize the parallelism in

jobs. In addition, although resource preferences can be defined in Condor-G, it will always favor

closer datasets to explicitly defined resources because it does not support data aware

scheduling. Scalability is also an issue in addition to the lack of integration with grid information

systems. Another problem is the creation of orphan and wasted jobs in cases of failure at any

key point, where jobs would be left running and consuming resources while never to be

recovered or stopped.

5.1.3 Moab Grid Scheduler

Moab Grid Scheduler, also known as Silver, is a centralized grid scheduler

encompassing features from several local schedulers such as PBSPro, Maui, and Loadleveler.

It uses features such as advanced reservation, advanced co-allocation, and load balancing. It

also provides support for jobs which span across multiple computing resources. The main

 23

objective of Silver is to achieve optimal resource utilization, while providing flexibility in global

and local policies and remaining simple to use and manage.

At a high level, Moab applies site policies and optimization techniques to handle jobs,

services, and other workload across distributed grid resources. Moab Grid Scheduler also

allows schedule reordering and resource allocation in an attempt to improve cluster

performance and responsiveness. It uses advance reservations to reserve resources for use at

guaranteed start times. In addition, Moab jobs can be modified based on different policies to

help improve system utilization and minimize response time. Preemption is also supported for

jobs with high priority.

5.1.4 Nimrod/G

Nimrod/G [49] was introduced by Buyya et. al as a first attempt to bring market

economy based systems to the area of computational grid environments. Nimrod/G’s brokering

system has the capability of integrating various economic models into applicable areas of grid

resource scheduling and management by providing resource users a way to specify resource

requirements for various job types. Nimrod/G also has the flexibility of adopting different trading

mechanisms such as auctions, bargaining mechanisms, and posted price models, based on

information on current price and different policies. Auctioning mechanisms supported by

Nimrod/G include bilateral bargaining and English auctions, albeit with limited support for

advanced reservations and resource bundle trading.

5.2 Economic Grid Scheduling and Resource Management

Economic oriented scheduling and resource management mechanisms have been

gaining popularity in recent years. A comprehensive study of market oriented grid applications

can be found in [17].

Buyya et al. [44] investigate economy grids and requirements of economy based grid

systems. The authors discuss ideas and challenges for implementing auction models for grid

resource allocation, including the English, Dutch, and Double auctioning schemes. In the first

 24

two schemes (English and Dutch auction), potential resource buyers bid for the right to use

resources. In the Double auctioning scheme, sellers set the selling price of their resources and

the buyers set their respective budget for resource purchase. A “middleman” (GMA) acts as a

broker and matches the two participants if the prices meet. In the first two schemes, however,

buyers compete for the right to use resources by placing higher bids, which limits the

motivational aspects for the sellers to improve themselves in terms of efficiency and resource

management in order to stay competitive. The double auctioning scheme attempts to split the

competition between buyers and sellers; it is important to note that although this is a resource

allocation scheme, the sellers are providing a service to those who have the purchasing power

within the market. As a result, the pressure of staying competitive should fall on the sellers

rather than those who are paying for a service. Moreover, creating competition amongst buyers

would lead to deprivation of service for some potential buyers who cannot afford to pay high

prices for a service, hence bringing down the number of potential trades between sellers and

buyers. In addition, by shifting the competition to the sellers, there is an indirect advantage of

motivating individual sellers to better improve themselves so as to stay competitive within the

market, aiding in enhancing the quality of resource management throughout the grid

environment.

Yeo et al. [11] proposed an extension to the system-centric cluster Resource

Management Systems (RMS) to support utility-driven resource allocation and management by

introducing four mechanisms: (I) Pricing, (II) Economy-based Admission Control, (III) Economy-

based Resource Allocation, and (IV) Job Control. The Economy-based Admission Control unit

primarily determines if a job is to be accepted based on the job details and QoS requirements.

The Economy-based Resource Allocation unit performs the task of resource and job matching,

along with dispatching jobs to the matched nodes. The Job Control unit assumes the role of

monitoring for jobs and resources. In this scheme, jobs are submitted to the cluster RMS using

user-level job submission specification where the admission control mechanism determines the

 25

feasibility of accepting a job. If a job is deemed acceptable, the resource allocation mechanism

would perform the necessary matching of the job to an execution node. However, if the job is

not deemed acceptable by the admission control unit, the rejection decision would be fed back

to the user. In other words, the responsibility of job submission lies upon the user to make smart

decisions on where to submit the jobs to be processed such that the probability of getting an

acceptance is high (much like what is employed in numerous conventional job assignments in

the grid today). In a conventional scheme, the user attempts to make a smart decision as to

where to submit the jobs and performs the job submission process. Although the targeted site

may not necessarily be the best suited site for the job, the job is usually accepted by the

receiving host unless its gateway is overwhelmed and starts dropping jobs. In this case the user

would have to either resubmit the job at a later time or determine another potential execution

site and attempt to send it there for execution. In this scheme, however, due to the potential

rejection of jobs by the admission control mechanism, it would be necessary for the user to

constantly monitor the status of each submitted job for rejection as well as monitoring all

potential clusters in order to increase his chances of getting his jobs accepted.

Xiao et al. [45] present GridIS targeting incentive based grid scheduling focusing mainly

on the aspects of aggressiveness in resource reservations. According to [45], the grid is

essentially divided into resource consumers and providers, which may not always be the case in

real systems as the resource consumer may also be a provider of other resources. The authors

make two assumptions when designing the scheduling mechanism: i) execution time of all jobs

is sufficiently long to make the overhead of remote job execution relatively negligible; ii) every

provider is able to receive all job announcements. This works well in an environment with a

small number of time consuming jobs to be executed in a fully connected network. However,

depending on numerous factors such as availability of resources, status of a site, network

topology, and cost of job execution at remote sites. It may sometimes be more efficient and

economical to execute those jobs locally. In addition, although fairness in job distribution is an

 26

attractive goal in grid computing, it often comes with the price of excessive network flooding and

added delay from propagating job announcements throughout the network. As a result, it may

be beneficial to have some mechanism for assessing overhead costs and evaluating

propagation of job announcements to aid in determining the worthiness of sending a job for

remote execution. In addition Xiao uses the ratio of agent payments versus resource price to

calculate resource allocation for each agent. In reality, it may be more desirable to have a

monitoring agent located at each participating site to handle the task of monitoring resource

usage.

Opitz et al. [16] performed a thorough analysis of the various costs incurred by a

resource provider in setting up and maintaining a grid resource center. They conducted analysis

on several case studies and provided good estimates of costs in real grid systems. According to

Opitz, costs can be classified into several categories (see Figure 5.3) based on what they relate

to: hardware, premises, software, personnel, and data communication. One of the key

observations is that certain costs become variable when components switch from idle to busy

state. For example in today’s technology, an idling system consumes substantially lower power

when compared to the same system in a busy state.

Figure 5.3 Operation Cost Breakdown.

Broberg et al. [17] provide a comprehensive evaluation of the current market-driven

utility computing platforms. They categorize participants within such environment into three

main groups: users, brokers, and service providers. One important key issue brought up by

Broberg is that: “…the behavior exhibited in a shared system where market-driven techniques

 27

are used simply to regulate access differs greatly from a profit-driven commercial system.” [17].

In a profit-driven environment, service providers share a common goal of maximizing

accumulated profit through the provisioning of their resources (usually with a secondary goal of

incurring minimal cost). A profit-driven service provider might care less about global fairness

and efficiency than the profit made from any one transaction. On the other hand, when adopting

a market-driven mechanism with the objective of ensuring fair and unbiased access to

resources, profit making might not be ranked as high as in a profit-driven environment. Thus the

pricing techniques used in these fundamentally different systems might be vastly dissimilar.

Tan [46] proposed a Stable Continuous Double Auction (SCDA) scheme applicable to

market-based grid resource allocation. The SCDA has the advantage of continuous matching,

along with low communication and computation cost. It also provides low price volatility with low

bidding complexity.

Tan made the assumptions that:

I. The grid environment is a distributed two-sided market with consumers and providers

competing concurrently

II. The grid resource allocation mechanism must have the ability to offer resources and

resource bundles with minimum delay

III. Discriminated price mechanism is used as the dynamic pricing mechanism

IV. Resource allocation and scheduling efficiency evaluation is based on economic efficiency

(Pareto efficiency) and scheduling efficiency (user-centric performance).

The proposed SCDA scheme is a modified Continuous Double Auction (CDA)

mechanism with an added Compulsory Bidding Adjustment (CBAL). The CBAL acts as a filter to

perform price adjustments to correct unfavorable prices submitted by participants. All orders are

channeled through the CBAL prior to reaching the standard CDA mechanism. Figure 5.4 shows

the architecture of SCDA. The CBAL price adjustment mechanism uses a set of IF-THEN rules

in a Mandani fuzzy controller in an attempt to translate price adjustment intuitions into fuzzy

 28

rules which are then used to derive auction prices. Figure 5.5 shows the overview of the fuzzy

logic used.

In the experiments conducted, five resource consumers and five providers were created

for a grid environment, with provider cost prices generated from a uniform distribution of [1.0-

9.0], whereas offer prices were similarly generated from the range [1.5-9.5].

Figure 5.4 SCDA Architecture (Adopted from [46]).

Figure 5.5 Fuzzy Logic Inference (Adopted from [46])

 29

The use of Continuous Double Auction (CDA) has the advantage of being flexible and

simple to implement, in addition to avoiding the computational complexities in the Winner

Determination Problem (WDP). However, the author has conveniently disregarded one crucial

rule in grid computing: resources in a grid environment are almost never used as standalone

entities. For an auction mechanism to work in a grid environment, heterogeneous resource

bundling capability has to be the de-facto standard if traded resources are to be of any use.

Consider auctioning 2GB of memory without any CPU and storage support and the entire

auctioning mechanism serves no purpose other than a classic buy-and-sell market for individual

goods. On the other hand, it contributes to a new problem for consumers trading in such an

auction environment – the exposure problem whereby winners are “exposed” to the risk of

obtaining only a portion of a whole product, which is insufficient for any productive use due to

the lacking of other required parts to make it a whole. As a result, the amount spent on

acquiring the incomplete set of items goes to waste.

 30

CHAPTER 6

PRICING MECHANISM

6.1 Supply and Demand

By definition, “…'Utility' is roughly synonymous with 'satisfaction,' 'well-being,' 'welfare',

'happiness,' 'pleasure,' etc. Generally, one can increase her utility by undertaking enjoyable

activities or purchasing things we desire...” [18]. However, it is almost impossible to compute

utility in closed form in the real world. Most researchers adopt the simplified route of defining

utility by semi-arbitrarily assigning numerical values (with the use of ≺ notation [19]

representing a preference function), or defining utility (u) as the difference between perceived

value ()v and purchase price () (): ,p u v p v p= − .

Arbitrarily assigning numerical values is mainly used for representing an ideology as the

resulting computations will not yield good accuracy. On the other hand, the use of differences

between multiple perceived valuations introduces another term which is difficult to measure.

The work in [21] advocates the use of consumer surplus instead of the traditional utility

representations. The advantages of using consumer surplus is that

I. it is measured in terms of actual currency (e.g., dollars),

II. since cost functions are also represented in terms of monetary values, it becomes much

simpler to derive costs and to provide measurement of consumer satisfaction,

III. it enables the quantifiable measurement of aggregate consumer satisfaction in a given

market

6.2 Market Pricing

Even if market demand is determined, no transactions can be realized without first

setting a market price. In this section we will discuss the price determination process in a

 31

market-driven grid environment as well as how a resource provider can determine the best price

to sell and allocate their resources in a multiple market environment.

There are essentially three different types of costs [21] (see Figure 6.1):

I. sunk,

II. fixed, and

III. marginal cost.

Figure 6.1 Production Cost Breakdown

Sunk and fixed costs are represented by Φ , while µ represents marginal costs. Sunk

costs are costs which have already been spent. Any unspent costs can be divided into either

fixed or marginal costs. Fixed costs in the economic grid environment refer to the costs incurred

by the resource provider with the general operation of the resource center, e.g., acquisition of

machines, storage disks, and setting up of networking are necessary prior to providing any

services to any consumers. As a result, these can be classified as fixed costs. Marginal costs

can be further categorized into marginal operation and capacity costs. Marginal operation is the

cost incurred by proving service to one additional consumer, whereas marginal capacity cost

refers to the cost associated with the cost of increasing capacity to attend to an additional

consumer’s resource requests.

6.3 Combining Goods

Combining goods in a sale can sometimes be the preferred method of marketing, due

to the following reasons:

 32

I. sellers may be able to maximize profit by selling goods in bulks,

II. the sales volume may be enhanced by selling more items in a single transaction.

Some marketing and economics literatures make a clear differentiation between the

terms bundling and tying while others simply name them as bundling. For example, [21] defines

bundling as selling of packages containing at least two units of the same product or service

whereas tying is defined as selling packages containing at least two different products or

services. In our work we will loosely use the term bundling to refer to bundling, tying, and

combinations of both. In the following sections, we will explain how a seller decides whether to

sell products individually or bundle them together as an entity. We also describe the different

ways of bundling when attempting to maximize profit.

6.3.1. No Bundling

As the name implies, no bundling implies that all goods are marketed and sold as

individual entities. Let 1Cs
AV denote the valuation of good A by a consumer Cs1, and

2Cs
BV represent the valuation of good B by consumer Cs2. Let AP be the price of good A, BP be

the price of good B, and ABP be the price for bundle AB. A potential consumer will only

purchase an item if her valuation for that item is larger (or equal) than the selling price of that

very item, i.e., if 1Cs
A AV P≥ then consumer Cs1 will purchase good A; otherwise, Cs1 is not

buying A. However, if 1Cs
A AV P≥ and 1Cs

B BV P≥ , then Cs1 will purchase both goods A and B.

6.3.2. Pure Bundling

In pure bundling, goods are always sold in bundles and never as individual items. For

example, assume that the price for good A is AP , and the price of good B is BP . In a pure

bundling market, a consumer will either buy nothing, or both A and B, at the price of ABP . From

Figure 6.2, the area under the line ABP represents consumers with combined valuation

 33

AB ABV P< , thus nothing is being purchased. On the other hand, if AB ABV P≥ (area above line

ABP), consumers will be willing to purchase A and B.

6.3.3. Mixed Bundling

In mixed bundling, goods may either be purchased as a bundle, or individually.

Therefore consumers can choose among purchasing only good A, only good B, or both items A

and B.

6.3.3. Multi-package Bundling

Multi-package bundling refers to offering different combinations of goods together as a

bundle (adopted from [21]).

Figure 6.2 No Bundling vs. Pure Bundling.

6.4 Terminology

In this section, we explain the terminology used in our grid resource market model. The

section is separated into two subsections:

I. Consumers, who are essentially users participating in the auctioning system in an attempt

to attain computational resources for their job processing; and

II. Sellers, who are the providers of the grid resources through the auctioning system.

 34

6.4.1. Consumers

Consumers (i.e., users) in a grid system by definition are trying to make the system

process their computational jobs. Users attempt to harness the computational prowess of a grid

to expedite their job processing capabilities. We define the set of consumers to be represented

by C, where │C│=c contains all consumers within the model.

 6.4.1.1 Consumer Jobs

Every consumer has jobs which require the use of grid resources for their processing.

The jobs in a grid environment are generally categorized into various job types. For example, in

the ATLAS experiment [34], jobs are categorized into digitization, event generation, event

analysis, reconstruction, simulation, etc. We define various types of jobs as 1 2, , , qjt jt jt⋯

where q is the number of distinct job types in the grid environment.

 6.4.1.2 Consumer Job Weight/Priority

Since all jobs may not be created equal, some jobs may carry a higher priority than

others. As such, every job within the system is assigned a weighting factor, e.g., job 1 is

assigned weight 1jw , and all job weights are bounded by a lower and upper bound minjw and

maxjw , respectively (they are predefined). For simplicity, throughout this work we can assume

that min 1jw = and max 100jw = (unless defined otherwise). The use of a weighting factor

helps in identifying priorities assigned to jobs.

 6.4.1.3 Consumer Job Processing Time

In an ideal world, users know exactly how long each job will take to complete execution

and hence could request resources for that exact amount of time. However, in the real world

things often do not take place as planned and jobs can have stochastic behaviors. As a result, it

is almost impossible to have a priori knowledge of the exact amount of processing time required

for each job prior to execution completion. Users may, however, have some knowledge of the

expected job execution time for each job type through experience. Although not necessarily

 35

accurate, such knowledge is often useful when making estimates of when jobs will produce

useful output. We define ijee to represent the expected execution time of job type i, and ijea to

represent the actual execution time of job type i. In addition, the standard deviation (spread) of

each job type’s actual processing time is represented as ijes . Both ijea and ijes are collected

as historical information, and used when making estimations for the next expected job execution

time.

Like most things in life, job behavior may change over time, due to changes in job

characteristics, input and output dataset sizes etc. which in turn alters the average job execution

time and standard deviation for each job type. In order to capture temporal job execution time

characteristics, while minimizing the effects of any skewed data due to outliers, we will employ a

temporal filter when determining 1t
jjee + at execution instance (discrete time) t, i.e.,

1

1

it
jt

j
i

jee
jee

t
+

=

=∑ . This has the effect of evening out fluctuations in the latest job execution

time, limiting outliers’ skewing effects. 1t
jjes + is computed as

2

1

1 1

1 1

1

t t
t i i
j j j

i i

jes jee jee
t t

+

= =

  = −  −   
∑ ∑ .

 6.4.1.4 Consumer Job Deadline

The job deadline is the latest time by which the job has to be completed without

incurring additional penalty charges. It is usually estimated as the current time plus the

expected estimation time plus one standard deviation and can be estimated using the formula:

() (), ,t t
i c c ctdl t jee t i jes t i= + + where itdl is the deadline for a job of type I and ct is the

current time.

 36

 6.4.1.5 Consumer Budget

In most grid job submission schemes, grid administrators can limit the number of jobs

processed by each user on a per day/week/month basis. However, this limitation only serves as

a cap to the number of jobs processed and offers no incentive for users to avoid wasting of grid

resources. Budget serves a similar purpose of limiting resource usage, albeit with the additional

benefit of being used in conjunction with valuation and utility as an incentive for consumers to

curb excessive wastage of grid resources by always requesting top-of-the-line resources for

processing non-critical jobs, including resources which could have been used for processing

more critical jobs. Consumers of grid resources have a budget which they cannot exceed. This

limits overly aggressive bidding behavior of consumers when participating in an auction for grid

resources. Budget ib refers to budget of consumer i.

 6.4.1.6 Consumer Costs

When processing jobs, there is an inevitable cost associated with each job. The cost is

the price paid to acquire the necessary resource bundles for job execution, and is calculated as

()*i i ic jee jesρ= + , where ic is the cost of job type i. For example, the bundle price paid for

the resources used to process a job. Since resources are acquired for an expected period of

time in an auction, continued usage of the mentioned resources will incur additional charges,

which is known as the penalty.

 6.4.1.7 Consumer Job Valuation

In order for an auctioning model to work in a grid environment, there is a need for some

type of incentive to entice consumers to participate in the auctions. Since users have the need

to have their jobs executed, there is some ‘value’ attached to each job. This value function is

expressed as the product of a base incentive value and the respective weight assigned to that

job: *i i ijv jw bi= where ijv is the job valuation of job type i, ibi is the base incentive to

execute job type i. Since a higher priority job would naturally be assigned a greater weight, its

job value would also be higher than a lower weighing job. The consumer requires resource

 37

bundles in order to process a job. Resource bundles are won from auctions by bidding on

auction bundles (see Section 6.4.1.8). The expected value return from processing a job is the

valuation of that auction bundle used to process the job, which is calculated as:

() () ()*i i j j jVc Ac jee jes jvρ = + +  , where ()i iVc Ac is consumer 'ic s valuation of

auction bundle iAc . Note that this valuation can also be expressed in terms of cost, where

()i i i jVc Ac c jv= + (discussed in Section 6.4.1.6)

 6.4.1.8 Consumer Resource Bundle Request

Consumers require grid resources in order to process a job. Different combinations of

resources are bundled together and sold as an auction bundle. Consumers have to define the

combination of resources required, expected time period needed of the resource bundle, and

how much the consumer is willing to pay for that specified auction bundle. An auction bundle is

defined as ()(), ,, ,t A A
i k n start end i iAc x Vc Acτ= , where t

iAc is the auction bundle consumer ic

submitted to an auctioneer at time t, ,
A

k nx is the resource combination specified in the auction

bundle, ,A A
start endτ τ are the start and end time period required of the auction bundle, and

()i iVc Ac is the maximum price consumer ic is willing to pay for the auction bundle.

 6.4.1.9 Consumer Auction Participation Fee

In order to participate in an auction, consumers are required to pay a small participation

fee pc for every bid placed. This is used to deter overly aggressive bidding behavior where

consumers continuously place bids in an attempt to overwhelm the system so as to prevent

other competitors from placing bids.

 6.4.1.10 Consumer Penalty

The penalty is defined as the additional charges imposed when an agreement is

breached by the consumer. For example, a penalty cπ is imposed on the consumer if she fails

 38

to complete job processing before the deadline, or when the consumer’s job fails to complete

execution within the agreed upon period ijee . The penalty is computed as follow:

,
j

c max x
Usπ

ρ ρ
 

=   
 

where jUs is the current resource utilization of seller js whose

resources the consumer is using. ρ is the current market value of the resources used by the

consumer. x is a scaling factor used to calculate the additional charges for overusing the

resources.

 6.4.1.11 Consumer Job Utility

The initial utility derived from winning a resource bundle for a job may sometimes be

different from the final utility derived upon completion of a job since the initial utility is computed

based on expected values whereas the final utility is the actual derived utility after job

completion. The initial utility is � ()j i j pcui Vc A c s cπ= − + − , where ()iVc A is the derived

valuation from acquiring auction bundle A (discussed in Section 6.4.1.7), jc is the cost of job

type j (see Section 6.4.1.6) which is the winning auction price for the resource bundle. sπ is the

seller’s penalty (discussed in Section 6.4.2.5) and pc is the participation cost (discussed in

Section 6.4.1.9). The final utility is computed as � �
iicuf cui cπ= − . (cπ is discussed in Section

6.4.1.10)

 6.4.1.12 Consumer Aggresiveness

The aggressiveness index of a consumer determines how aggressively she participates

in the auction. It is computed as:
()

*

min max

1
i

c

Vc A

i

jw
Aggc

jw jw

π

 
= + + 

ℓ

 where t
c i it jee tdl= + −ℓ .

The higher the aggressiveness index iAggc , the more aggressive the consumer would behave

in her auction participation.

 39

6.4.2. Sellers

Sellers participate in a grid auction to provide resources to consumers who require such

resources to process their jobs. We define the set of sellers to be represented by S, where

S s= .

 6.4.2.1 Seller Wealth

In contrast to consumers which have a budget, every resource seller within a grid

environment uses wealth for keeping track of her profits and spending. The ultimate goal of

every seller is to maximize wealth while keeping spending to a minimum. Wealth jw refers to

the wealth of seller j.

6.4.2.2 Seller Valuation

Bundle valuation bv is the expected operating cost of the bundle of resources when

used to process a job. Bundle valuation is calculated as ()*bv utρ= where ρ is the market

value of resource bundle, and ut is usage time of the resource bundle. Since resource sellers

have no prior knowledge of how long a consumer will require the resource bundle, their bundle

valuation is expressed in terms of price-per-unit-time. [16] provides a thorough study of the

operating costs of grid resources.

6.4.2.3 Seller Utility

Similar to a consumer’s utility computation, the initial utility derived from winning an

auction by a resource seller may sometimes be different from the final utility derived upon

completion of a consumer’s job. The initial utility is � () ()j psui P A Vs A c cπ= − + − , where

()P A is the winning auction price for resource bundle A, ()jVs A is valuation of auction

bundle A by seller js . Since we assume here that sellers are willing to sell resource bundles at

cost price, one can assume that ()jVs A bv= (discussed in Section 6.4.2.2) here. cπ is the

 40

penalty charges to a consumer (discussed in Section 6.4.1.10), pc is discussed in the following

Section 6.4.2.4. The final utility is: � �suf sui sπ= − , where sπ is the penalty charges paid by the

seller (further discussed in Section 6.4.2.5)

6.4.2.4 Seller Participation Fee

Similar to consumers, sellers are also required to pay a small participation fee pc for

every bid placed, to deter overly aggressive bidding behavior where sellers continuously place

ask bids in an attempt to overwhelm the system so as to prevent other competitors from

competing.

6.4.2.5 Seller Penalty

Similar to consumer penalty, sellers pay a penalty when an agreement has been

breached. For example, a penalty is imposed on the seller if she fails to provide the agreed

upon resource bundle due to overselling of resources. The penalty is computed as follow:

()()max * , *s x P A xπ ρ= where initial bundle price ()P A is the agreed upon

auction price for that bundle, and current market price ρ is the current market value of the

resources offered by the seller. x is a scaling factor used to calculate the percentage of

resource price to pay as penalty.

6.4.2.6 Seller Aggressiveness

The aggressiveness index of a seller determines how aggressive she participates in the

auction. It is computed as:

1
0.1

10 0.1

j
jj

j

us
usAggs

us

 ≥= 
 <

The higher the aggressiveness index, the more aggressive the seller behaves in the

auction.

 41

6.4.2.7 Seller Resource Bundle Offer

Sellers offer resource bundles in response to consumers’ requests for resource

bundles. These resource bundles are traded in auctions as auction bundles. A seller auction

bundle is defined as ()(), ,, , ,t t A A
i j k n start end i iAs us x Vs Asτ= , where t

iAs is the auction bundle

seller is submitted to an auctioneer at time t, t
jus is seller j’s resource utilization at time

t, ,
A

k nx is the resource combination specified in the auction bundle, ,A A
start endτ τ is the start and

end time period required of the auction bundle, and ()i iVs As is the minimum price seller is is

willing to accept for the auction bundle. Figure 6.3 shows the relationship between Consumer

and Seller.

Consumer Seller

Governing body

Budget Wealth

Valuation
Valuation

(Bundle Cost)

Bundle

price

Penalty consumer

Penalty consumerPenalty seller

Penalty sellerUtility Utility

Participation

cost-+- Bundle

price - +

--

Participation

cost-

Figure 6.3 Consumer/Seller Relationship.

6.4.3. Historical data

Both consumers and sellers keep historical information on the following information:

• Past 3 resource prices for each job type. This is used to determine the

directional trend of market pricing for each job type

• Number of counter bids placed by competitors, and their respective auction

location, sorted order of decreasing number of counter bids order. This is used

to identify the most aggressive competitors in an attempt to avoid direct

conflicts in the future.

 42

In addiction to that, each consumer keeps track of:

• All final utility returns �icuf from previous auctions, separated by job type.

• Past iAggc values, sorted in ascending order.

• All final utility returns �icuf from transactions with all sellers, along with seller

location, sorted in descending order.

On the other hand, each seller keeps track of:

• All final utility returns �isuf from previous auctions, separated by job type.

• Past jAggs values, sorted in ascending order.

• All final utility returns �isuf from transactions with all consumers, along with

consumer auction location, sorted in descending order.

 43

CHAPTER 7

GRID MONITORING IN THE CONTEXT OF THE ATLAS EXPERIMENT

This section discusses work done on implementing a grid monitoring tool for the ATLAS

experiment.

7.1 Grid Monitoring Overview

In order to support our study, we needed a simulation platform capable of supporting

large scale grid environment while catering to the needs for an underlying networking

infrastructure. As a result of these requirements, we created the ViGs simulator [33]. With ViGs,

it allowed us to study the performance and behavioral aspects of the grid system as well as

identifying any potential weakness within the system. The ViGs simulator possesses the ability

to replace an entire functional grid environment, simulating all the resources and networking

infrastructure which is used in a grid environment of today. To test the correctness of the ViGs

simulator, we tested it against the PanDA (Production and Distributed Analysis System) [34]

that is being developed by the US ATLAS (A Toroidal LHC ApparatuS) project with the goal of

managing and scheduling very large workflow production and analysis of experimental results

distributed across the US.

Figure 7.1 PanDA Production Summary.

 44

7.1.1. PanDA Overview

A quick overview of the PanDA production system is shown in Figure 7.1. The PanDA

production system is essentially a Many-Task Computing (MTC) 35] system consisting of

numerous compute or data intensive tasks scheduled and processed on various computing

resources spanning across multiple administrative boundaries around the world. It consists of

the following components: ATLAS production interface, Regional usage interface, Monitoring

system, Grid scheduler, PanDA server, and Participating sites, which includes research

institutions around the world. Although we tried to capture the best representative 12-hour

snapshot of the PanDA performance in Figure 7.2, the reader is reminded that a 12-hour

representation of system performance is by no means a comprehensive representation of

PanDA production performance. It serves to provide the reader with some basic information on

the PanDA system, such as the total number of participating nodes at any point in time, how

widely distributed the experiments are conducted (e.g. Canada (CA), France (FR), United

Kingdom (UK), and United States (US) etc.), which stresses the importance of proper network

modeling. Due to the various natures of jobs submitted, the typical job processing time ranges

from ½ hour to 48 hours. Moreover, due to the nature of job locality 35], jobs often have the

tendency to arrive in bursts. Hence, a period of 12 hours with more submitted short jobs might

give the impression of superior system performance, whereas other periods where bursts of

long jobs are submitted might give the false impression that the system performance has

deteriorated considerably. In a typical PanDA operation, each node from a participating site

submits what is called a pilot job request directly to the PanDA server. A pilot job can be seen

as one possessing computational and data intensive characteristics of a MTC job which is

scheduled and processed on computing resources crossing administrative boundaries. For the

sake of simplicity, the inner workings of the PanDA server have been omitted. For more details

on how the PanDA system works, readers are referred to 34]. Upon the completion of the input

datasets’ pre-placement process, jobs are delivered to the worker nodes prior to the initiation of

 45

job execution (a typical LHC job takes from ½ hour to 48 hours to complete, depending on the

job type). After jobs complete, the resulting dataset has to be “staged out” successfully to be

tagged as ‘finished’.

Figure 7.2 shows a snapshot of a PanDA production job summary over a 12 hour

period. From the collected data, we can see that there were a total of 7908 active nodes

available to process job, with 14323 running jobs and 16236 finished jobs within the 12 hour

period. The failure rate was 14%, which is a little higher than its typical value of 10% for the

PanDA production jobs. However, readers are reminded that this is only a snapshot of the

PanDA summary over a period of 12 hours and it is by no means a complete representation of

its performance in the long run. PanDA Production job performance may fluctuate due to

unforeseen circumstances at times, as will be discussed in the next section. To get a better

picture of the PanDA system performance, we have included plots of running, finished/failed

jobs over a one-month period.

Figure 7.3 depicts typical running plots while Figure 7.4 shows a plot of finished and

failed jobs over the same period. From the data collected in Figure 7.2, the averaged failure rate

is calculated to be around 30% with a monthly job completion rate of 610,350 (for that particular

month). The total number of jobs received over the period sums up to approximately 872,000

jobs, which averages to around 29,000 jobs per day. One of the main explanations for the

observed differences between Figure 7.2 and Figure 7.3 can be attributed to the fact that since

the PanDA system is still in the development and testing phase, factors such as upgrades (e.g.

software and database upgrades), job outages (e.g. running out of jobs to fulfill pilot job

requests), system instabilities (system, network, and power outages) etc. play an essential role

in affecting the performance of the PanDA system. For instance, several snapshots of Figure

7.2 have been taken during the course of writing this paper, each with different characteristics.

On a good day, the failure representation may go as low as 5~6%. On some rare occasions,

however, the failure rate has gone as high as 47% with around 500 finished jobs.

 46

TIME

JO

B
S

TIME

JO

B
S

Figure 7.2 Summaries of PanDA Jobs.

TIME

JO

B
S

TIME

JO

B
S

Figure 7.3 Summaries of PanDA Finished (light bars) and Failed (dark bars) Jobs.

7.1.2. Simulated Results

Figure 7.4 shows a typical PanDA server performance plot over a period of one month.

From the collected data, we can observe that the PanDA server was able to consume an

averaged total number of 1,134,650 jobs while producing completed jobs of approximately

 47

872,000 within the one month time frame. The error rate for this period was computed to be

23.15%, which is relatively higher to what was observed from Figure 7.2 (at 14%), as well as

our aggregated simulation results at 18.16%. One of the reasons for this slightly higher failure

rate can be attributed to the intermittent networking problems which have been taking place at

Brookhaven National Lab (BNL) where the current PanDA server is located. The slightly higher

failure rates should gradually subside as the networking problems are resolved.

 PanDA performance

0

200000

400000

600000

800000

1000000

1200000

0 5 10 15 20 25 30

Simulation time (days)

N
um

be
r o

f j
ob

s

.

finished

failed

total requests

Figure 7.4 PanDA Server One-month Plot.

During the experimentation process, a total of thirty simulated 1-month experiments

were conducted, each with a different seed feeding the ViGs simulator. Figure 7.5 shows the

aggregated plot of our simulation results. When comparing the experimental findings, we

noticed a consistent correlation between the two results: with the ViGs simulator running on a

machine at full capacity, it was only able to consume about 80% of the pilot jobs when

compared with the PanDA system. This may be attributed to the following reasons: On a typical

day, the PanDA Production system has a number of active participating nodes ranging from six

to eight thousand, many with two, four, or even eight core processors performing the job

execution tasks. On the other hand, our ViGs simulator testing was performed on a single

dedicated dual-core 2.4GHz machine with limited processing capabilities, limiting our

processing threads to a maximum of 600. With the high resource utilization nature of this

simulation, attempts to squeeze out more threads often resulted in instability to the system due

 48

to overloading of the hardware. We believe that this phenomenon can be alleviated if we can

create multiple instances of the ViGs simulator running in distributed mode. Figure 7.6 depicts

the graphical comparisons of PanDA, PanDA at 80%, and ViGs simulator plots.

 Aggregated simulation results

0

200000

400000

600000

800000

1000000

1200000

0 5 10 15 20 25 30

Simulation time (days)

N
um

be
r o

f j
ob

s
.

 .

finished

failed

total requests

Figure 7.5 ViGs Simulation Results Plot.

 Performance plot comparison

0

200000

400000

600000

800000

1000000

1200000

0 5 10 15 20 25 30

Simulation time (days)

N
um

be
r o

f j
ob

s

.

Panda - original

Panda (80%)

ViGs

Figure 7.6 PanDA vs. ViGs Plot.

7.1.3. Observations

In this section, we make an attempt to find out how the results obtained from the ViGs

simulator compare with the real-world production PanDA system. We perform our comparison

by forming a confidence interval for the difference between production PanDA and ViGs

simulation results. The Paired-t Confidence Interval approach [36] is used since it provides a

good measure for comparing differences between the expected results of two systems by

 49

pairing them together: For our case, real world performance results from the PanDA system and

the simulation results obtained from the ViGs simulator.

We let jX be the average of the observations in the thj set of production PanDA data,

and jY be the average of the observations in the thj set of ViGs simulator resulting data, and

()jx E Xµ = and ()jy E Yµ = . Since we obtained a sample size of thirty results from our

study, we let

} () for j 1..30 1j j jZ X Y= − =

and ()
()

 for 1..30 2
()

x j

y j

E X
j

E Y

µ
µ

= 
== 

With j E(Z) ζ= as the value used to construct the confidence interval, we have:

()() 3j x yE Z ζ µ µ= = −

By having () (),l uα α   as the corresponding lower and upper confidence interval

endpoints respectively, and using formula:

()
j

j 1

Z

() for j 1..n, where n 30 4
n

n

Z n =



= = =



∑

and
�

()

n 2

j 1

()

() 5
(1)

jZ Z n

Var Z n
n n

=

 − 
  =  −

∑
 ,

we can form an approximated 100 (1-α) percent confidence interval with:

�
()

n-1, 1- 2
() t () 6Z n Var Z nα  ±  

 50

Here, we attempt to compare the results obtained from the ViGs simulated model with

the PanDA system by constructing a 95 percent confidence interval for ζ using the paired-t

Test approach so as to determine if the model is a good representation of the system:

From ()
j

j 1

Z

4 : ()
n

n

Z n ==
∑

30

j
j 1

Z

30

 9.4615

==

=

∑

From ()
�

n 2

j 1

()

5 : ()
(1)

jZ Z n

Var Z n
n n

=

 − 
  =  −

∑

30 2

j 1

()

30(29)

 52.76675099

jZ Z n
=

 − 
=

=

∑

From ()
�

n-1, 1- 2
6 : () t ()Z n Var Z nα  ±   ,

we get:

�

30-1, 1- 2
(30) t (30)Z Var Zα  ±   ,

resulting in:

 9.4615 2.045 * 52.76675099− ±

where
[] [] (), () -25.8011785 , 13.9088785l uα α =

Since ()Z n falls within interval [] () , () l uα α , with []0 () , () l uα α∈ ,

we conclude that the hypothesis is a good approximation, and the ViGs simulation result falls

within approximately 95 percent confidence [36].

 51

CHAPTER 8

GRID MARKET MECHANISM DESIGN

This section discusses work done on designing of grid market mechanisms.

8.1 Combinatorial Exchange (CE) Overview

Combinatorial Exchange (CE) differ from traditional auction models due to its inherent

property that consumers can place bids on combinations (or bundles) of resources. This is

useful when consumers require a combination of resources instead of only a single resource.

Bundles of resources are essential in a computational grid environment where most jobs require

multiple resources for their successful execution. For example, a typical job needs CPU for

computational work, memory for virtual memory operation, and disk space for storage purposes.

As such, a user wanting to process a job has to first acquire all the necessary resources prior to

processing each job. If each resource is acquired individually, the user runs the risk of the

“exposure problem”, where the user is “exposed” to the risk of obtaining only a part of the

necessary resources, which is insufficient for job processing due to the lacking of other required

resources. As a result, the amount spent on acquiring the incomplete set of resources goes to

waste. A CA asserts the fact that the consumer either successfully acquires all the necessary

resources in a bundle, or gets nothing at all. This effectively avoids the possibility of an

exposure problem. However, in a traditional CA, only one side of the participants (either sellers

or consumers) may place bids in the auction. This renders market control to the participating

bidders, and the non-bidding participants are forced to either accept what is being offered, or

back out from participation.

In a Combinatorial Double Auction (CDA), multiple sellers and buyers are allowed to

trade multiple units of resources in a single-sided auction. However, job processing in a grid

environment often requires multiple users requesting combinations of heterogeneous resources

 52

from multiple resource providers. Thus a CDA model does not meet our requirements for grid

applications. On the other hand, a Combinatorial Exchange (CE) [26] auctioning environment

allows both sellers and consumers to place bids on bundles of heterogeneous resources. In

such an environment, no one party has full control of the market, and all participants are forced

to compete against their respective peers in a truly competitive environment.

In a centralized auctioneer model (Figure 8.1), there is only one central auctioneer

making the concluding resource assignment decisions based on the type of optimization used.

In a decentralized auctioneer model (Figure 8.2), there are multiple auctioneers in the system,

each hosting a separate localized auction.

In a closed bidding model, since consumers and sellers have no knowledge of the

offers made by their respective peers, it would be more sensible to place bids based on their

respective true valuation [27]. In an open bidding model, however, both consumers and sellers

can take advantage of the added information to help in analyzing and determining subsequent

bidding strategies in order to remain competitive in the market.

Figure 8.1 Centralized Auctioneer.

 53

Figure 8.2 Decentralized Auctioneer.

A one-shot [28] auction model has only one trading period. So auctioneers will only

make the consumer-seller matching once at the end of the auction. It is much like a ‘memory-

less’ auctioning model where all auction participants have no historical information of previous

market behavior. On the other hand, a repeated [28] auction model consists of multiple trading

periods, where auctioneers will make the consumer-seller matching once at the end of every

auction. We make the assumption that participating bidders have historical information from

prior auctions, thus allowing them to make better bidding decisions based on perceived market

trends. Figure 8.3 shows the different auctioning models which will be discussed and formalized

in this chapter.

From Section 6.4.1.5, budget b is the set representing each consumer’s budget. For

every purchases made by each consumer, the amount spent has to be within budget for every

consumer. Wealth �w is the set representing each seller’s wealth. Every seller’s objective is to

maximize their collection of wealth.

Let the set of all globally available unique resources be represented by M, where

|M|=m. From the definition of bundle in Section 6.3, a bundle of resources can be represented

by a set containing multisets of resources.

 54

Figure 8.3 Auction Model Overview.

From [22], “The number of multisets of cardinality k, with elements taken from a finite

set of cardinality n, is called the multiset coefficient
n

k

  
  
  

, where

()() () 1 11 2 1

1!

n n k n kn n n n k

k k nk

  + − + −+ + + −     
= = =      −      

…
”.

The term
n

k

  
  
  

 can be represented in the form: 1

1

1

1
1

k

k
i

k
i

i

n i
n i

i
i

=

=

=

+ −
+ −=

∏
∏

∏

From [23], nx y∈ is defined as "x is an element of y with multiplicity n”

For example, if { },m a b= , there are
3

1

2 1
4

i

i

i=

+ − =∏ multisets of cardinality 3,

namely: { } { } { } { }, , , , , , , , , , ,a a a a a b a b b and b b b .

 55

Let X represent a set consisting of all possible multisets of m resources, where

{ }1,1 ,1 1,2 ,2 ,
1

1
 ,.., , ,.., ,..., , , ,

k

k k k n
i

m i
X x x x x x with n and k n

i=

+ −= = ∈∏ ℕ .

k = maximum number of resources in a bundle,

n = total number of possible unique k-element bundles.

The size of bundle X is represented by
1 1

1
| |

kn

k i

m i
X

i= =

 + −=  
 

∑ ∏ . For example, given

{ },m a b= , the set of possible multisets of m resources is shown in Table 8.1,

where { }1,1 1,2 2,1 2,2 2,3 3,1 5,6 ,, , , , , , , , k nX x x x x x x x x= ⋯ ⋯ . From the table, resource bundle

‘aaabb’ may either be represented in terms of ,k nx (as 5,3x) or in terms of , , ,
count count count
k n k n k nx x x⋯

(as 3 2
1,1 1,2x x where 3

1,1x =”aaa” and 2
1,2x = “bb”).

Table 8.1 Multiset Representation for m Resources.

k=1 k=2 k=3 k=4 k=5 …
n=1 a aa aaa aaaa aaaaa
n=2 b ab aab aaab aaaab
n=3 bb abb aabb aaabb
n=4 bbb abbb aabbb
n=5 bbbb abbbb
n=6 bbbbb

A consumer ic can request for any auction bundle in an auction by

specifying { }, , , ,t A A A A
i k n s eAc x Vτ τ= , where t is the auction bundle submission time, ,

A
k nx is

the desired bundle resources for auction bundle A, and ()i iVc Ac defines the valuation

consumer ic placed on auction bundle iAc . Similarly, a seller js may offer any auction bundle

of resources by specifying ,, , , ,t A t A A A A
j j k n s eAs us x Vτ τ= . Where t

jus (discussed in Section

6.4.2.7) is seller j ’s resource utilization at time t , and t is the auction bundle submission

 56

time, A
sτ and A

eτ defines the start and end time specification, respectively, for resource bundle

,k nx in auction bundle A. It may be either the time period requested by a consumer for a

resource bundle, where start is the expected job execution start time and end is the job

deadline; or the time period availability for a resource bundle offered by a seller. By default, start

is always zero (from consumers) for jobs which are to be executed immediately, or when

resource bundles are available immediately (from sellers). A non-zero start parameter is used

only for advance reservation of resource bundles. We define operator functions where:

()
()
()
()

()
()

,

, ,

,

A t A
i k n

A t A
s i s

A t A
e i e

A t A
i

A A
k n i k n

A
k n i

x Ac x resource bundle requested

Ac start time

Ac end time

V Ac V auction bundle valuation

c x c consumer requesting auction bundle containing resource x

s x s seller offering auction bun

τ τ

τ τ

=

=

=

=

=

= ,
A

k ndle containing resource x

Both consumers and sellers may request/offer multiple bundles of auction bundles

during an auction. Let ()i h
Ac denote the thh auction bundle requested by consumer ic . Thus

all of consumer ic ’s auction bundle request may be represented as: ()
1

h

iAc
=
∑ ℓ
ℓ

Let (){ }
1

h
all all

i i iAc where Ac Ac
=

 = 
 

ℓ
ℓ
⊎ represent the set of all auction bundles

requested by consumer ic , and (){ }
1

h
all all

j j jAs where As As
=

 = 
 ℓℓ

⊎ be the set of auction

bundles provided by seller js . Then
1

c
all all

all i
i

Ac Ac
=

=⊎ represents the set of all possible multiset

 57

auction bundles requested by all consumers, and
1

s
all all

all i
i

As As
=

=⊎ represents the set of all

possible multiset auction bundles provided by all sellers.

We assume that all sellers are willing to sell a bundle as long as it covers the cost of

maintaining that bundle. Hence ()j j h
Vs As may also be seen as the maintenance cost for

seller js on the thh auction bundle ()j h
As , over the time period[],s eτ τ . ()

1

h

i iVc Ac
=
∑ ℓ
ℓ

represents the sum of consumer ic ’s valuation of all her auction bundles, and ()
1

h

j jVs As
=
∑

ℓ
ℓ

represents the sum of seller js ’s valuation of all her auction bundles. Therefore,

()
1 1

c h

i i
i

Vc Ac
= =
∑∑ ℓ

ℓ

 represents the sum of all consumers’ valuations of all auction bundles, and

()
1 1

s h

j j
j

Vs As
= =
∑∑

ℓ
ℓ

 represents the sum of all sellers’ valuations of all bundles. We define

()',ccontains Ac Ac as True when:

() () () () () ()' ' '
s s e ex Ac x Ac Ac Ac Ac Acτ τ τ τ     ⊇ ∧ ≤ ∧ ≥     

and ()',scontains As As is True when:

() () () () () ()' ' '
s s e ex As x As As As As Asτ τ τ τ     ⊆ ∧ ≥ ∧ ≤     

Let consumer c ’s original requested auction bundle be denoted as 'Ac . During the

course of an auction, the consumer will only be willing to substitute 'Ac with another auction

bundle Ac if it meets either one of the two criteria:

 58

() () ()

() () () ()
()

' : ',

' '

max ' '
, '

0

all
i

i i

Ac Ac contains Ac Ac
c i

i Ac Ac where Vc Ac Vc Ac

V Ac if Ac exists
ii contains Ac Ac where Vc Ac

otherwise

∈

≡ =

= 


Similarly, seller s will provide a substitute auction bundle if it meets either one of the

two criteria:

() () ()

() () () ()
()

' : , '

' '

min ' '
, ' '

all
i

i i

As As contains As As
c i

i As As whereVs As Vs As

V As if As exists
ii contains As As where Vs As

otherwise

∈

≡ =

= 
∞

Let ()P Z denote trading price of a target auction bundle Z . For a trade to be possible

between a seller and consumer, it is necessary for the trading price P(Z) to be in the

range () () (), :i j j iVs Y P Z Vc X∃ ≤ ≤ , where Y, Z, and X are auction bundles. Note that the

auction resource bundles are required to meet the following requirements:

() (), ,s ccontains Z Y contains Z X∧ .

For example, if a consumer c requests for bundle X consisting of resources {a,b,c}, she

will not be willing to accept auction bundles consisting of only resource bundle {a,c} since the

required resource b is not in the resource bundle. She may, however, consider purchasing

bundle Z = {a, b, c, d} if the following conditions are met:

()
() ()

,ccontains Z X

P Z Vc X≤

A feasible pair matching of auction bundles between seller s and consumer c is

represented as: () () () (), : , , , ,all all
c s c c s s c s cX Y where X A Y A contains Y X Vs Y Vc X∈ ∈ ≤

Let the transaction T be represented by:

 59

() ()
()

{ } { }
() () ()

1 1, ,

1 1

,

,

, ,
,

i i

i i

w w ji

i j

i i

all all
k all all

c k

c s
k k sc all all

k all all
i j

j i k

X Ac Y As

contains X Y

X Y X Y
X Ac Y As

Vs Y P Z Vc X

= =

 ∈ ∈
 
 
  
 

⊆ ⊆ 
 
 ≤ ≤  

ℓ

ℓ

ℓ ℓ

ℓ

ℓ

⋯

⊎ ⊎

We define () (){ }1
, , , ,

k
NonSell i j i j= ⋯ where each identified consumer and seller

(),i j pairs are not allowed to trade in any auctions. In some auctions, a seller in one ongoing

auction may participate as a consumer in another auction. As such, NonSell is used to prevent

an auctioneer from attempting to match the same seller with herself (as a consumer in another

auction).

Under normal circumstances, a typical consumer’s goal is always to maximize her

individual utility () ()
():

arg max
j j

k k ij j

i k k
T X c X c

Vc X P X
=

−∑ .

The utility maximization for all consumers can be represented as:

() ()
():

max
j j

k k ij j

i k k
T

c X c X c

Vc X P X
=

−∑ ∑

A seller’s goal is always to maximize her individual profit where:

() ()
():

arg max
j j

k k ij j

k i k
T X s X s

P X Vs X
=

−∑ .

The profit maximization for all sellers can be represented as:

() ()
():

max
j j

k k ij j

k i k
T

s X s X s

P X Vs X
=

−∑ ∑

 60

If the goal is to maximize global welfare, it is to achieve:

() ()() () ()()()
() () (), , , : , :

arg max
i i

k k k k j k k ii j j j i i

i k i k
T X X P T X s X s X c X c

Vc X P X P X Vs X
∈ = =

 
 − + −
 
 

∑

Where the purchase price ()()P X is taken to be ()
2

c sP P
P X

+ =  
 

8.2 One-shot Centralized Combinatorial Exchange (OCCE)

In an OCCE there are multiple consumers and multiple sellers participating in an

auction, held by a central auctioneer. In this environment, we make the assumption that:

I. The central auctioneer has full knowledge of all seller’s and consumer’s bundle

valuations through auction bids, and of all available resources in the environment.

II. The single central auctioneer is the sole authorized entity to hold auctions as well

as to determine the outcome of the auction by matching consumers and sellers.

III. In cases where there is a bidding tie, the participant with earlier bid submission

time wins the bid. If the submission is also a tie, the auctioneer randomly selects

a winner with probability randomP from the bidders whose bids are in the tie. E.g.

consumer 1c submitted 1
1
tAc τ= , 2c submitted 2

2
tAc τ= .

1 2 1

1 2 2

,

,

random

if c wins

winner else if c wins

elseuse P

τ τ
τ τ

< 
 = > 
 
 

IV. The central auctioneer concludes an auction, making auctioning decisions based

on one of three goals:

i. Seller’s profit maximization (favors sellers)

 61

ii. Consumer’s purchase cost minimization (favors consumers)

iii. Global utility maximization (favors global welfare)

There are two types of models studied in the OCCE: a closed model (Section 8.2.1),

and an open model (Section 8.2.2).

8.2.1. One-shot Centralized Closed CE (OCCCE)

In a system with a centralized auctioneer, both consumers and sellers have no

knowledge of the ongoing bids since it is a closed auction. As such, each consumer submits

auction bundle requests based on the jobs on hand. Based on the submitted auction bundle

requests, each participating seller will submit auction bundle offers to the central auctioneer. It is

the job of the central auctioneer to match the consumers and sellers together. The formalization

follows that of the general formulations discussed earlier.

Example 1:

Let { }1 2 1 2, , ,X CPU CPU MEM MEM= to represent the different types of unique

resources available in market 1. The multiset representation of possible bundles is shown in

Table 8.2 (where k=number of elements in a particular multiset, and n=number of distinct

elements in the resource set X):

Table 8.2 Multiset Representation of Bundles in Market 1.

Multiset # n=4, k=1 n=4, k=2 n=4, k=3 n=4, k=4
1 CPU1 CPU1CPU1 CPU1CPU1CPU1 CPU1CPU1CPU1CPU1

2 CPU2 CPU1CPU2 CPU1CPU1CPU2 CPU1CPU1CPU1CPU2

3 MEM1 CPU1MEM1 CPU1CPU1MEM1 CPU1CPU1CPU1MEM1

4 MEM2 CPU1MEM2 CPU1CPU1MEM2 CPU1CPU1CPU1MEM2

5 CPU2CPU2 CPU2CPU2CPU1 CPU1CPU1CPU2CPU1

6 CPU2MEM1 CPU2CPU2CPU2 CPU1CPU1CPU2CPU2

7 CPU2MEM2 CPU2CPU2MEM1 CPU1CPU1CPU2MEM1

8 MEM1MEM1 CPU2CPU2MEM2 CPU1CPU1CPU2MEM2

9 MEM1MEM2 MEM1MEM1CPU1 CPU1CPU1MEM1CPU1

10 MEM2MEM2 MEM1MEM1CPU2 CPU1CPU1MEM1CPU2

11 MEM1MEM1MEM1 CPU1CPU1MEM1MEM1

12 MEM1MEM1MEM2 CPU1CPU1MEM1MEM2

13 MEM2MEM2CPU1 CPU1CPU1MEM2CPU1

14 MEM2MEM2CPU2 CPU1CPU1MEM2CPU2

15 MEM2MEM2MEM1 CPU1CPU1MEM2MEM1

16 MEM2MEM2MEM2 CPU1CPU1MEM2MEM2

17 CPU1CPU2MEM1 CPU1CPU2CPU2CPU2

 62

Table 8.2 – Continued
18 CPU1CPU2MEM2 CPU1CPU2CPU2MEM1

19 CPU2MEM1MEM2 CPU1CPU2CPU2MEM2

20 MEM1MEM2CPU1 :
: :

25 CPU2CPU2MEM2MEM2

: :
: :

35 :
4 cases 10 cases 20 cases 35 cases

Table 8.3(a) represents units of different types of resource bundles requested by four

different consumers and Table 8.3(b) represents the available resource bundles offered by

three sellers in market 1. Table 8.3(c) lists the different types of resources available in the

market.

Table 8.3 Market 1 Consumer’s Requests.

Consumer CPU1 CPU2 MEM1 MEM2

1 2 2
2 1 1
3 2 1
4 1 2

Table 8.4 Market 1 Seller’s Offerings.

Seller CPU1 CPU2 MEM1 MEM2

1 2 2
2 4 4
3 2 2

Table 8.5 Market 1 Resource Types.

CPU1 1 GHz, 1Xcore processor
CPU2 2 GHz, 1Xcore processor
MEM1 1 X 512 MB
MEM2 1 X 1024 MB

Resources

Assume the consumers have the following valuation for their requested bundles:

 63

() ()

() ()

1 4,11 3 3,81 2
1 3

1 2, 6 , 7

2 2,7 4 3,132 1
2 4

2 2, 5 , 4

60 402 2
: :

2 1

30 401 1
: :

1 2

now now hrs now now hrs

now now hrs now now h

valuation Vc x valuation Vc xCPU X CPU X
C C

MEM X MEM X

valuation Vc x valuation Vc xCPU X CPU X
C C

MEM X MEM X

τ τ

τ τ

+ +

+ +

= = 
 
 

= = 
 
  rs

Table 8.6 shows the available bundles and their respective valuations for each seller:

Table 8.6 Seller Bundles and Valuations.

Resource bundle Bundle valuation Resource bundle Bundle valuation Resource bundle Bundle valuation Resource bundle Bundle valuation
CPU1 10 CPU1 CPU1 20 CPU1 CPU1 MEM2 30 CPU1 CPU1 MEM2 MEM2 40
MEM2 10 CPU1 MEM2 20 CPU1 MEM2 MEM2 30

MEM2 MEM2 20

Resource bundle Bundle valuation Resource bundle Bundle valuation Resource bundle Bundle valuation Resource bundle Bundle valuation
CPU2 10 CPU2 CPU2 20 CPU2 CPU2 CPU2 30 CPU2 CPU2 CPU2 CPU2 40
MEM2 10 CPU2 MEM2 25 CPU2 CPU2 MEM2 30 CPU2 CPU2 CPU2 MEM2 45

MEM2 MEM2 20 CPU2 MEM2 MEM2 30 CPU2 CPU2 MEM2 MEM2 40
MEM2 MEM2 MEM2 30 CPU2 MEM2 MEM2 MEM2 40

MEM2 MEM2 MEM2 MEM2 40

Resource bundle Bundle valuation Resource bundle Bundle valuation Resource bundle Bundle valuation Resource bundle Bundle valuation
CPU1 10 CPU1 CPU1 20 CPU1 CPU1 MEM1 25 CPU1 CPU1 MEM1 MEM1 30
MEM1 10 CPU1 MEM1 20 CPU1 MEM1 MEM1 30

MEM1 MEM1 20

S1: CPU1 X 2, MEM2 X2

S2: CPU2 X 4, MEM2 X 4

S3: CPU1 X 2, MEM1 X2

After analyzing both consumers’ requests and sellers’ offerings, the auctioneer might

yield an assignment as shown in Table 8.7 (depicted in Figure 8.4).

Table 8.7 Resource Assignment for Example 1.

Resource bundle Bundle valuation Resource bundle Bundle valuation Resource bundle Bundle valuation Resource bundle Bundle valuation
CPU1 10 CPU1 CPU1 20 CPU1 CPU1 MEM2 30 CPU1 CPU1 MEM2 MEM2 40
MEM2 10 CPU1 MEM2 20 CPU1 MEM2 MEM2 30

MEM2 MEM2 20

Resource bundle Bundle valuation Resource bundle Bundle valuation Resource bundle Bundle valuation Resource bundle Bundle valuation
CPU2 10 CPU2 CPU2 20 CPU2 CPU2 CPU2 30 CPU2 CPU2 CPU2 CPU2 40
MEM2 10 CPU2 MEM2 25 CPU2 CPU2 MEM2 30 CPU2 CPU2 CPU2 MEM2 45

MEM2 MEM2 20 CPU2 MEM2 MEM2 30 CPU2 CPU2 MEM2 MEM2 40
MEM2 MEM2 MEM2 30 CPU2 MEM2 MEM2 MEM2 40

MEM2 MEM2 MEM2 MEM2 40

Resource bundle Bundle valuation Resource bundle Bundle valuation Resource bundle Bundle valuation Resource bundle Bundle valuation
CPU1 10 CPU1 CPU1 20 CPU1 CPU1 MEM1 25 CPU1 CPU1 MEM1 MEM1 30
MEM1 10 CPU1 MEM1 20 CPU1 MEM1 MEM1 30

MEM1 MEM1 20

S2: CPU2 X 4, MEM2 X 4

S3: CPU1 X 2, MEM1 X2

S1: CPU1 X 2, MEM2 X2

 64

Consumer1

Consumer2

Consumer3

Consumer4

Seller1

Seller2

Seller3

Figure 8.4 Auctioneer Decision Outcome.

Example 2:

Assuming a similar scenario as in example 1 with the addition of a fifth consumer with

the following resource request:

()5 4,252
5

2 , 5

552
:

2
now now hrs

valuation Vc xCPU X
C

MEM X τ +

=



Table 8.8 Consumer and Seller Valuations for Example 2.

Consumer's valuation Seller's valuation (S2) Profit
C2: 30 25 5
C3: 40 30 10
C5: 55 45 15

Everything would remain the same except for seller ()2S ’s resource sales:

Table 8.9 Resource Assignment for Example 2.

Resource bundle Bundle valuation Resource bundle Bundle valuation Resource bundle Bundle valuation Resource bundle Bundle valuation
CPU2 10 CPU2 CPU2 20 CPU2 CPU2 CPU2 30 CPU2 CPU2 CPU2 CPU2 40
MEM2 10 CPU 2 MEM 2 25 CPU 2 CPU 2 MEM 2 30 CPU2 CPU2 CPU2 MEM2 45

MEM2 MEM2 20 CPU2 MEM2 MEM2 30 CPU 2 CPU 2 MEM 2 MEM 2 40
MEM2 MEM2 MEM2 30 CPU2 MEM2 MEM2 MEM2 40

MEM2 MEM2 MEM2 MEM2 40

S2: CPU2 X 4, MEM2 X 4

Example 3:

Assuming a similar scenario as in example 1, with the addition of a fifth consumer with a

different resource request from that of example 2:

 65

()5 4,302
5

2 , 5

353
:

1
now now hrs

valuation Vc xCPU X
C

MEM X τ +

=



Table 8.10 Consumer and Seller Valuations for Example 3.

Consumer's valuation Seller's valuation (S2) Profit
C2: 30 25 5
C3: 40 30 10
C5: 55 45 10

Although selling ()3,8x to 3C would seem more profitable for Seller ()2S than selling ()2,7x to

2C , seller ()2S would end up selling fewer bundles, since he would not be able to sell ()4,30x

to 5C as a result. Hence a better allocation would result in:

Table 8.11 Resource Assignment for Example 3.

Resource bundle Bundle valuation Resource bundle Bundle valuation Resource bundle Bundle valuation Resource bundle Bundle valuation
CPU2 10 CPU2 CPU2 20 CPU2 CPU2 CPU2 30 CPU2 CPU2 CPU2 CPU2 40
MEM2 10 CPU 2 MEM 2 25 CPU 2 CPU 2 MEM 2 30 CPU 2 CPU 2 CPU 2 MEM 2 45

MEM2 MEM2 20 CPU2 MEM2 MEM2 30 CPU2 CPU2 MEM2 MEM2 40
MEM2 MEM2 MEM2 30 CPU2 MEM2 MEM2 MEM2 40

MEM2 MEM2 MEM2 MEM2 40

S2: CPU2 X 4, MEM2 X 4

8.2.2. One-shot Centralized Open CE (OCOCE)

In an open OCOCE model, the auction essentially becomes a true ascending auction

model for the consumers as competing consumers have full knowledge of what competing

consumers are bidding on and which auction bundles are being offered by all sellers. Therefore,

participating consumers with overlapping resource bundle requirements may end up bidding for

similar auction bundles if the supply of resource auction bundles is limited. Such consumers

may have to continuously increase their bids in an attempt to outbid their competitors to the

point where the bids placed are exactly their valuations for a bundle [32]. Similarly, the same

environment becomes a descending auction model for the sellers who would continuously

decrease their bids so long as it remains more than or equal to their valuation for the bundle.

 66

The formulation is similar to that of a One-shot Centralized Closed Combinatorial

Exchange (OCCCE) until consumers are bidding on the same bundle in the open market where

they have to start competing against their competitors in an attempt to win the auction. The

bidding becomes an ascending auction when the following condition is satisfied:

() () () () () ()
() ()

, ; , ,

, ,

all all all
i j

i j i j i j

X Ac Y Ac Z As

Vc X P Z Vc Y P Z Vs Z P Z

contains z x contains z y

≠

 ∈ ∧ ∈ ∧ ∈
 

∃ ≥ ≥ ≤ 
 ∧ 

 where Z is an auction bundle

offered by seller s, and X and Y are auction bundles requested by both consumers i jc and c

respectively. If Z satisfies both consumer ic ’s request for X and consumer jc ’s request for Y,

and Z is the lowest priced currently available auction bundle offer, where:

()
()

: ,

arg min
all

c

i
U As contains Z X

Z Vc U
∈

= and
()

()
: ,

arg min
all

c

j
U As contains Z Y

Z Vc U
∈

= , both consumers i jc and c will

be engaged in an ascending multi-round bidding for bundle Z. The winning transaction will be

represented as: () () () ()1 , ,
, arg max , , ,

i i i j j j
c i i i jX Y T X Y T

T
T T T Uc T Y Y∈ ∈

∃ = ∀ ∀ ≠⋯ .

Similarly, if sellers offer auction bundles satisfying the same consumer’s auction bundle request

in an open market where the following condition is satisfied:

() () () () () (), ;
, ,

all all all
i j

i j i j

i j

X As Y As Z Ac

Vs X P Z Vs Y P Z Vc Z P Z
≠

 ∈ ∧ ∈ ∧ ∈ ∃  
≤ ≤ ≥  

Where Z is an auction bundle requested by consumer c, and X and Y are auction bundles

offered by both sellers i js and s respectively. If Z satisfies both seller is ’s offer for X and seller

js ’s offer for Y, and Z is the highest priced currently available auction bundle request, where:

()
()

: ,

arg max
all

s

i
U Ac contains Z X

Z Vs U
∈

= and
()

()
: ,

arg max
all

s

j
U Ac contains Z Y

Z Vs U
∈

= , both sellers i js and s would

be competing in a descending auction for bundle Z. The winning transaction will be represented

 67

as: () () () ()1 , ,
, arg min , , ,

i i i j j j
s i i i jX Y T X Y T

T
T T T Us T Y Y∈ ∈

∃ = ∀ ∀ ≠⋯ . After the winners for all the

competing auction bundles (sellers and consumers) have been determined, the remaining

formalization would again be similar to that for a One-shot Centralized Closed Combinatorial

Exchange (OCCCE) model. The central auctioneer will match the remaining non-clashing

auction bundles to the respective consumers and sellers.

8.3 One-shot Decentralized Combinatorial Exchange (ODCE)

A DCE environment contains two or more auction markets within the grid environment.

There are several ways the creation of separate auction markets may be determined, such as

participant locality, similarities in job types, datasets locality, different virtual organizations within

a grid environment etc. If there is no participation overlapping in the DCE environment, each

seller/consumer participate in the auction through one (and only one) of the auctioneers. In

other words, each auctioneer only serves a subset of all bidders. On the other hand, if

participation overlapping is allowed, each seller/consumer may participate in the auction

through one or more auctioneers. Section 8.3.1 discusses cases with no participation

overlapping, and Section 8.3.2 discusses on cases where participation overlapping is allowed.

8.3.1. One-shot Centralized Closed CE (ODCCE) with no overlapping

An ODCCE with no overlapping is very much similar to a One-shot Centralized Closed

Combinatorial Exchange (OCCCE) albeit with multiple micro instances where there are multiple

consumers and multiple sellers participating in each auction instance held by a central

auctioneer instance. In this environment, we make the assumption that:

I. The central auctioneer in each instance has full knowledge of all seller’s and

consumer’s bundle valuations within the same instance without knowledge of all

seller’s and consumer’s bundle valuations in other instances. Similarly for its

knowledge of all available resources in the environment.

II. The central auctioneer instance is the sole authorized auctioneer to hold auctions

for all sellers and consumers in the market within each instance.

 68

III. The central auctioneer instance concludes an auction in a single round, making

auctioning decisions based on three goals:

i. Seller’s profit maximization (favors sellers)

ii. Consumer’s purchase cost minimization (favors consumers)

iii. Global utility maximization (favors global welfare)

Since the formulation for One-shot Decentralized Closed CE (ODCCE) with no

overlapping is similar to that of multiple instances of a One-shot Centralized Closed CE

(OCCCE) model, readers are referred to Section 8.2.1 for formalization representations. Figure

8.5 shows an example of an ODCCE model with no overlapping.

Figure 8.5 Decentralized Closed CE With No Overlapping.

8.3.2. One-shot Centralized Closed CE (ODCCE) with overlapping

In a One-shot Decentralized Closed CE (ODCCE) with overlapping auctioning model,

consumers and sellers have the option of submitting auction bundle requests and offers to

multiple auctioneers. The decision of whether to submit multiple auction bundle requests or

offers is affected by respective aggressiveness indices (discussed in Sections 6.4.1.12 and

6.4.2.6). Figure 8.6 shows an example of a Decentralized Combinatorial Exchange (DCE)

model with overlapping.

 69

Figure 8.6 Decentralized CE With Overlapping.

By submitting bids to multiple auctioneers, the consumer has the opportunity to take

part in multiple auctions, hence increasing her chances of winning in an auction. However, she

also runs the risk of possibly winning more than one similar auction bundle. Overlapping bids

may occur when a consumer has a high priority job on hand or when a job is quickly

approaching its deadline. When this happens, a consumer may attempt to raise her chances of

acquiring that urgently needed resource bundle by placing bids with multiple auctioneers. Note

that this is different from submitting a bid request for multiple auction bundles to a single

auctioneer as that auctioneer may not assign that multiple-unit bundle to that consumer unless

she wins the auction. Similarly, sellers may ‘oversell’ their resources by placing bundle offers to

multiple auctioneers in an attempt to raise the probability of selling their resources. Sellers may

‘oversell’ for the following reasons:

I. Since resources unused would still incur maintenance cost, sellers may try to

promote their resource bundle offerings by sending auction bundle offers to

multiple auctioneers so as to reach a larger consumer market.

II. This may be used as a profit maximizing strategy by sellers, which is what many

of the airline companies practice.

 70

Auctioneer

Seller

Seller

Seller

Auctioneer

Consumer

Consumer

Consumer

Consumer

Seller
Consumer

Consumer
SellerAuctioneer

Seller
Consumer

Consumer
Seller

Auctioneer

Auctioneer

Auctioneer

Figure 8.7 Multiple Decentralized CE With Overlapping.

However, in addition to the extra auction participation cost incurred, auction participants

who engage in either ‘overbuying’ or ‘overselling’ also run a possible cancellation penalty fee if

they win the auction from multiple auctioneers and had to cancel the extra winning bid because

they cannot purchase/provide all bundles as a result.

For example, if consumer ic submitted { }, , , ,A A A A
i k n s eAc X Vτ τ τ= as auction bid with

two different auctioneers and resulted in winning both auctions: consumer ic
is matched

with (),i jAc Ys and (),i kAc Ys , where () (), ,c j i c k icontains Ys Ac and contains Ys Ac ,

{ },, , , ,t Y Y Y Y
j j k n s eYs us X Vτ τ= and { },, , , ,t Y Y Y Y

k k k n s eYs us X Vτ τ= . Consumer ic has to

determine which winning auction bundle to drop by calculating the one bundle yielding the

lowest utility:

() ()() () ()()()min ,j k

i i

s s
i i j c i i k cVc Ac P Ys Vc Ac P Ysπ π   − + − +

  
where j

i

s
cπ denotes

the penalty fee consumer i pays to seller j. After the minimum utility yielding auction has been

determined, consumer ic pays the canceling penalty to the seller whose lowest utility yielding

 71

auction bundle has been returned. Assuming seller j ’s auction bundle has been canceled. The

penalty payment to jseller is calculated as:

() ()1
* , *j j

j

c max P Ys x P Ys
usπ

  
=     

  

For details on cancellation fee for both consumers and sellers, readers are referred to Sections

6.4.1.10 and 6.4.2.5, respectively.

8.3.3. One-shot Decentralized Open CE (ODOCE) with no overlapping

A ODOCE model without overlapping has characteristics much like that of multiple

smaller One-shot Centralized Open CE models where the open auctioning system transforms

the auctioning market into an ascending open bidding system for the consumers while sellers

would be engaged in a descending open bidding auction.

For each market instance, consumer bidding becomes an ascending auction when the

following condition is satisfied:

() () () () () (), ;
, ,

all all all
i j

i j i j

i j

X Ac Y Ac Z As

Vc X P Z Vc Y P Z Vs Z P Z
≠

 ∈ ∧ ∈ ∧ ∈ ∃  
≥ ≥ ≤  

 where Z is an auction

bundle offered by seller s, and X and Y are auction bundles requested by both consumers

i jc and c respectively. If Z satisfies both consumer ic ’s request for X and consumer jc ’s

request for Y, and Z is the lowest priced currently available auction bundle offer, where:

()
()

: ,

arg min
all

c

i
U As contains Z X

Z Vc U
∈

= and
()

()
: ,

arg min
all

c

j
U As contains Z Y

Z Vc U
∈

= , both consumers i jc and c will

be engaged in an ascending multi-round bidding for bundle Z. The winning transaction will be

represented as: () () () ()1 , ,
, arg max , , ,

i i i j j j
c i i i jX Y T X Y T

T
T T T Uc T Y Y∈ ∈

∃ = ∀ ∀ ≠⋯ .

Similarly, if sellers become engaged in a descending auction if they offer auction

bundles satisfying the same consumer’s auction bundle request in an open market where the

following condition is satisfied:

 72

() () () () () (), ;
, ,

all all all
i j

i j i j

i j

X As Y As Z Ac

Vs X P Z Vs Y P Z Vc Z P Z
≠

 ∈ ∧ ∈ ∧ ∈ ∃  
≤ ≤ ≥  

where Z is an auction bundle requested by consumer c, and X and Y are auction bundles

offered by both sellers i js and s respectively. If Z satisfies both seller is ’s offer for X and seller

js ’s offer for Y, and Z is the highest priced currently available auction bundle request, where:

()
()

: ,

arg max
all

s

i
U Ac contains Z X

Z Vs U
∈

= and
()

()
: ,

arg max
all

s

j
U Ac contains Z Y

Z Vs U
∈

= , both sellers i js and s would

be competing in a descending auction for bundle Z. The winning transaction will be represented

as: () () () ()1 , ,
, arg min , , ,

i i i j j j
s i i i jX Y T X Y T

T
T T T Us T Y Y∈ ∈

∃ = ∀ ∀ ≠⋯ . Similar to the One-shot

Centralized Open CE model, the auctioneer within each market instance will determine the

matching of the remaining non-clashing auction bundles to the respective consumers and

sellers.

8.3.3. One-shot Decentralized Open CE (ODOCE) with overlapping

Like ODCCE with overlapping, consumers and sellers in a ODOCE with overlapping

model may participate with multiple auctioneers in hope of attaining higher chances of securing

auction bundles at the extra cost of possible penalty fees on top of the added auction

participation charges. However, with the added benefit of having full knowledge of all ongoing

bids placed by all participants in an open market, a participant could avoid possibly paying any

penalty fees by intentionally bidding on auction bundles which already have a bidder, and

backing out of all ascending auctions (by stopping bidding and letting the competitor win) when

the desired auction bundle has been won in one of the other ongoing ascending bid CE

auctions. However, since the consumer participating with multiple auctioneers incurs a higher

cost when compared to consumers who only place bids with a single auctioneer, her only

chance of winning in any one of the auctions is when her competing bidders have a much lower

valuation for the same auction bundle.

 73

For example, consumer ic submitted { }, , , ,A A A A
i k n s eAc X Vτ τ τ= as auction bid with

three different auctioneers from three different auction markets {1, 2, 3}. Consumer ic competes

with one other local consumer { }
1 2 31 1 1, ,

market market market
c c c in all of the three different markets. In

market1, market2, and market3:

() () () () () ()
_

_ _

_

, ;
, ,

market x

market x market x

market x

all all all
i j

i j i j

i j

X Ac Y Ac Z As

Vc X P Z Vc Y P Z Vs Z P Z
≠

 ∈ ∧ ∈ ∧ ∈ ∃  
≥ ≥ ≤  

 where Z is an

auction bundle offered by seller s, and X and Y are auction bundles requested by both

consumers
_market xi jc and c respectively. If Z satisfies both consumer ic ’s request for X and

consumer
_market xjc ’s request for Y, and Z is the lowest priced currently available auction bundle

offer in market x, where:

()
()

: ,

arg min
all

c

i
U As contains Z X

Z Vc U
∈

= and
()

()
_

: ,

arg min
market xall

c

j
U As contains Z Y

Z Vc U
∈

= , then both

consumers _i market xc and c will be engaged in ascending multi-round bidding for bundle Z. The

winning transaction will be the consumer with the highest bidding price (valuation) for the

auction bundle:

() () () () _
_ _ _

1 , ,
, arg max , , ,

market xi i i j j jmarket x market x market x
c i i i jX Y T X Y TT

T T T Uc T Y Y∈ ∈
∃ = ∀ ∀ ≠⋯ .

Similarly, sellers could also intentionally participate in auctions from multiple market

instances where there exist other sellers bidding on the same auction bundle. When the seller

has won in any of the descending bid auction, she will back out of the other auctions to avoid

paying any penalty fees.

() () () () () ()

_

_ _

_

, ;
, ,

market x

market x market x

market x

all all all
i j

i j i j

i j

X As Y As Z Ac

Vs X P Z Vs Y P Z Vc Z P Z
≠

 ∈ ∧ ∈ ∧ ∈ ∃  
≤ ≤ ≥  

 74

where Z is an auction bundle requested by consumer c, and X and Y are auction bundles

offered by both sellers
_market xi js and s respectively. If Z satisfies both seller is ’s offer for X and

seller
_market xjs ’s offer for Y, and Z is the highest priced currently available auction bundle

request, where:
()

()
: ,

arg max
all

s

i
U Ac contains Z X

Z Vs U
∈

= and
()

()
_

: ,

arg max
market xall

s

j
U Ac contains Z Y

Z Vs U
∈

= , then If

both sellers
_market xi js and s decided to choose to sell their respective auction bundles using this

method, the model would turn into a conventional open descending first price CE auction for

auction bundle Z. The winning transaction will be represented as:

() () () () _
_ _ _

1 , ,
, arg min , , ,

market xi i i j j jmarket x market x market x
s i i i jX Y T X Y TT

T T T Us T Y Y∈ ∈
∃ = ∀ ∀ ≠⋯ .

8.4 Repeated Centralized Combinatorial Exchange (RCCE)

In a repeated auction model, participants may choose their bidding strategies

(discussed in detail in Chapter 9) based on prior historical information. Thus more auction

participation experience may aid in better chances of winning in future auctions. However, since

every participating bidder’s experience depends on the type of previous jobs they had (since the

type of job determines the type of auction bundles they will bid for), they tend to accumulate

unique historical data over time. The usefulness of each participant’s historical data depends on

several factors such as bidding strategy adopted, consistency of bidder and that of other

competitors, outcome from previous bidding strategies, bidding aggressiveness, etc. For

example, a participant who has been losing all previous auctions probably has a very good idea

of which bidding strategies do not work. But this information may not necessarily prove to be

useful information for making future bids.

Consumers may collect historical information on:

I. Job type information (most recent m prices, averaged market prices)

II. Resource bundles (tracking demand for specific resource bundles)

III. Sellers’ bundle valuations (based on when sellers accept or drop out of auctions)

 75

IV. Competing consumers’ bundle valuations (based on when consumers accept or

drop out of auctions)

V. Best bidding strategies

i. Max utility (maximize returns from each transaction)

ii. Min cost (minimizing cost of purchasing auction bundles)

VI. Productivity (information on own performance)

VII. Cost (information on past costs incurred)

VIII. Overbuying experiences

Similarly, sellers may collect historical information:

I. Competing sellers’ bundle valuations (based on when sellers accept or drop out

of auctions)

II. Consumers’ bundle valuations (based on when consumers accept or drop out of

auctions)

III. Information on profits versus aggressiveness relationship

IV. Best bidding strategies

i. Max profit/wealth

ii. Min maintenance cost

iii. Min resource bundle waste due to time slot fragmentation

iv. Overselling experiences

8.4.1. Repeated Centralized Closed CE (RCCCE) with overlapping

When compared to their One-shot auction counterparts, the Repeated Centralized

Closed CE model is quite similar to them except for the additional historical information from

past participation. The added historical information arms the auction participants with better

knowledge and understanding of the auctioning market. However, since this is a closed market

model, useful historical information is limited to private information such as which bidding

 76

strategy performed the best among all past adopted strategies, auction bundle estimates on

sellers with whom the consumer has dealt with in the past and vice versa.

8.4.2. Repeated Centralized Open CE (RCOCE)

In a RCOCE model, each participant is well informed of all historical information of all

other participants. Valuations of competing participants can easily be estimated by observing

their trading behavior, as well as strategies adopted by each. As such, every participant is

provided with a vast amount of information within the entire system where each participant can

constantly improve themselves by learning from one another. However, this is at the very high

cost of communications due to the movement of all trading information in a system with an open

market.

8.5 Repeated Decentralized Combinatorial Exchange (RDCE)

Like Repeated Centralized CE (RCCE), the RDCE is also similar to their One-shot

auction counterparts, but with the added historical information from past participation.

8.5.1. Repeated Decentralized Closed CE (RDCCE) with no overlapping

A RDCCE with no overlapping has similar characteristics as a One-shot Decentralized

Closed CE (ODCCE) with no overlapping: each decentralized market instance acts as a

standalone micro market but with the additional private historical information as well as with

information on other participants with whom a participant has dealt with in the past.

8.5.2. Repeated Decentralized Closed CE (RDCCE) with overlapping

A RDCCE with overlapping provides more historical information than that of one without

overlapping support, especially for participants who had attempted overlapping bids in the past.

It provides useful private information which allows for fine tuning of respective over-buying/over-

selling strategies adopted in the past. For instance, a seller who has not been able to sell her

resources in the currently participating decentralized system may choose to withdraw from a

worse performing market and participate in other decentralized markets by taking advantage of

the overlapping markets.

 77

8.5.3. Repeated Decentralized Open CE (RDOCE) with no overlapping

A RDOCE with no overlapping provides each participant with historical information on

all participants within the same market instance. As such, each participating consumer (or

seller) can better gauge other competitors’ valuation as well as their bidding habits based on

past historical information. This has the advantage of offering participants a tool to fine tune

their respective bidding strategies over time. But since overlapping is not supported in this

model, no participant has any knowledge of anything outside of their micro market instance.

8.5.4. Repeated Decentralized Open CE (RDOCE) with overlapping

In a RDOCE model with overlapping, consumers behave rather similar to that of a One-

shot Decentralized Open CE with the added benefit of historical information - sellers will be able

to take advantage of the overlapping to extend their reach to other decentralized communities.

For example, if there is a strong demand from consumers for a particular auction bundle which

cannot be met within the localized circle, one of the seller’s strategies may be to cross

boundaries and purchase the expected high-demand auction bundle (as a consumer) from

sellers in another community and turn around to sell it to consumers in the originating auction

boundary. This helps promoting sellers’ bundle resources across different boundaries, and

hence improving the overall resource allocation efficiency. Figure 8.8 shows a possible

configuration of a complex DCE with overlapping. This provides a tradeoff between Repeated

Centralized Open CE (RCOCE) and an isolated instance that the Repeated Decentralized Open

CE (RDOCE) with no overlapping supports.

 78

Figure 8.8 Decentralized CE With Overlapping.

 79

CHAPTER 9

IMPLEMENTATION OF GRID MARKET MECHANISM

The implementation of auction based Grid market mechanisms will be discussed in this

chapter. Section 9.1 describes the studies performed using brokers with job advertisements.

Section 9.2 discusses the implementation of Grid market mechanisms using the combinatorial

exchange methodology.

9.1 Auction Based Grid Resource Scheduling Using Brokers and Job Advertisements

In this work, performance and behavioral aspects of applying auctioning mechanisms

using brokers with job advertisements is studied and analyzed.

9.1.1. Introduction

A computational cluster is a group of networked computers usually created by

organizations for processing large data or computation intensive jobs. Several such (remote)

clusters may be integrated together to form a computational grid. Thus, in a computational grid

environment where data and computation intensive jobs are to be processed, there exists a vast

collection of resources ready to process jobs of (virtual) organizations. Scheduling and resource

management in a computational grid environment has been an area of extensive research due

to its importance and complexity. Resources within a computational grid are likely to be

heterogeneous, i.e., individual clusters or computers may be of different architectures, may be

controlled by different operating systems and have diverse libraries. This often requires some

form of resource matching such as [39] to effectively map jobs to resources. However, due to

fluctuating demands, resource availability may rapidly change. In addition, scheduling and

management policies of clusters are unlikely to be uniform over all clusters in the grid. With

ubiquitous resources distributed throughout clusters, it is important to be able to effectively

manage these resources as well as the assign jobs to take advantage of the available subset of

 80

resources. Without effective monitoring and management of resources, information on resource

availability and the condition and duration of such availability is unknown. Furthermore, efficient

scheduling is necessary in order to keep a particular resource from being overwhelmed when a

similar resource may be “sitting” at another location idling.

Scheduling within a computational grid environment is often concerned with the welfare

of the resources or components as a whole as well as the well being of individuals. By welfare

of the resources or components, we often refer to such issues as fairness, e.g., equal

opportunities to use resources, distribution of wealth throughout the grid and the overall

performance of all the virtual organizations combined as a whole. Individual well being, on the

other hand, is often concerned with the maximization of satisfaction derived from participating in

work related activities. Such derived satisfaction may include minimization of response time and

cost while maximizing profit, throughput, and yield of earliest results. Thus, it is often necessary

to be able to strike a balance between two contrasting goals: individual (per cluster) goals and

system level utilization goals.

Individual (or local) goals, as the name implies, are more often concerned with

maximizing the benefits individual entities can attain with minimal regards for the welfare of the

rest of the system. On the other hand, system level goals are usually more concerned with

getting the most out of the currently available resources globally, even if it is at the cost of

sacrificing a small population in order to benefit the system utility as a whole. For example, in

order to maximize system resource utilization, a system level goal could be to keep all

resources busy with a minimal number of unassigned resources idling. An individual goal,

however, may be to have some idling resources available so as to have instant access to those

resources when need arises. Similarly, it is a system level goal to ensure fair distribution of

wealth (when completion of jobs are rewarded by some means) while an individual is more

often interested in maximizing local profits. As a result, it is a challenging task to satisfy

individuals while still achieving system level goals at the same time.

 81

To address the problem of resource management and job scheduling in a large,

geographically distributed network of virtual organizations while observing the goals of cost

minimization, improving utilization and efficiency, we propose a pull-based grid scheduling

methodology which adopts the use of brokers with job advertisement and propagation within a

grid environment. The main motivation for this scheme is to create an automated two tiered

scheduling methodology to perform the tedious task of performing service discovery and task

scheduling at the global level, while performing resource monitoring, utilization and efficiency

control at the local level. To achieve the best attainable optimization at any point in time,

participating sites are to remain motivated to offer their best services based on the job

submitting host’s preferred optimization settings. Global scheduling of jobs will be done at the

broker level via a bidding process. The submitting host will have the privilege to choose the best

available offer to suit its requirements. A pricing scheme is implemented as a trading

mechanism in exchange for the services provided. This pricing mechanism will hence serve as

a motivation for participating sites to compete for jobs so as to increase its overall wealth. As

such, competing sites will be required to constantly monitor and improve their own resources,

their utilization, and their efficiency to remain competitive.

 The main goal of this work [41] is to perform analysis of the behavioral and

performance aspects of two conventional schemes and the proposed bidding scheme while

enforcing self motivated resource management technique with a combination of job optimization

schemes (time and cost), along with support for re-negotiations in cases where matching fails.

We will also look into the factors enticing both the participating entities to continue trading within

a grid environment and the effects of implementing a penalty scheme.

9.1.2. Broker and Bid Based Scheduling

In our grid model, each cluster is associated with a head-node (gateway) running a

software broker and other management software. An organization may have several head-

nodes arranged into a meta-cluster, where the broker from one of the head-nodes is the broker

 82

of the meta-cluster (the set of all meta-clusters forms a grid). In this grid environment there are

resource consumers (entities that submit jobs) and resource providers (entities that service job

requests). Brokers of resource consumers post jobs; brokers of resource providers bid on these

jobs by posting their fees and estimated job completion time. The posting broker evaluates bids

and selects among them.

The use of brokers alleviates the mundane and tedious tasks of resource monitoring

and decision making from any single centralized entity within the grid environment. The

automated brokers are responsible for submitting job advertisements, initiating and maintaining

the job bidding process, participating in job bids, and performing re-negotiations should the

need arise. A broker may play the role of a consumer (request broker), a provider (tender

broker), or both at any point in time.

If a site has jobs to be executed, a job advertisement object consisting of job

descriptions, job type definitions and constraints, is created and passed to its gateway broker. A

job placement may require one of two types of optimization, namely time or cost optimization. A

time optimized job places more emphasis on completing the job at the earliest possible time,

while not exceeding its available budget set aside for the job (best effort time but limited cost). A

cost optimized job, on the other hand, emphasizes finding a cheapest tender for processing the

job while still completing the job by its specified deadline (limited turnaround time but best effort

cost).

After receiving the job advertisement, the gateway requesting broker places the job

advertisement which propagates to all of its immediate one-hop neighbors as well as to the

cluster brokers within the same local site. (Figure 9.1 shows the inner workings of a requesting

broker, while Figure 9.2 depicts that of a tender broker). At the same time, a bid expiration

timeout event is placed (Figure 9.1, step 3) to signify the auction closing time for that job ID.

 83

Figure 9.1 Request Broker.

Figure 9.2 Tender Broker.

A tender broker receiving advertisements will perform a query of its local cluster

monitors to search for nodes meeting the job requirements and constraints (Figure 9.2, step 2).

The tender broker will then perform an analysis step to determine which node to engage in the

bid submission (attempting to maximize profits while keeping resource usage minimal). The

price determination process (Figure 9.2, step 4) is dependent on the length of the estimated job

 84

execution time, amount and type of resources available during that interval, time of day, and the

resource pricing profile. Upon completion of bid creation the tender broker will place the bid with

the requesting broker (Figure 9.2, step 6). Note that this round of the bidding process is a

closed bid whereby all tender brokers have no prior knowledge of the budget allocated for this

job.

At the requesting broker only bids received prior to the bid closing time will be

considered during the bid evaluation phase (Figure 9.1, step 5). Once the bid closes, all

submitted bids will be analyzed based on the optimization settings of that particular job (Figure

9.1, step 8). In cases where there are submitted bids meeting all the job requirement

constraints, a winning bidder may be determined based on how closely it matches the job

optimization constraints. However, in cases where none of the bids matches the constraints, a

re-negotiation phase may be initiated (Figure 9.1, step 9). During the renegotiation phase, only

those tender brokers who have submitted bids previously (signifying that they have the available

resources for the particular job) can participate. This second round of bidding is of an open bid

nature where the budget allocated for that particular job will be announced. In addition, the

requesting broker will be willing to negotiate as long as the new price charged by the tender

broker falls within 110% (or other user specified range) of the budget originally set aside for that

particular job, while the promised job completion time falls within the sum of the original

deadline and a predetermined-time grace period. The requesting broker re-evaluates the new

bids and selects the best match among those that meet the constraints. If no such bid is found

then the job fails.

Figure 9.3 shows the proposed bidding process (the re-negotiation process is not

shown as it is similar to the bidding process). The tender brokers will always attempt to match

the constraints set forth by the job in an open bid, while still being able to profit from this

transaction. However, if the open bid process fails then we know that no tender brokers will be

 85

able to meet the job constraints (while still profiting from it), hence the bidding transaction fails,

leading to the failure of the job.

Figure 9.3 Bidding Process.

After determining the winning bidder, a contract will be sent to the winning bidder as an

agreement between the brokers. Only upon signing the contract can the tender broker accept

the job and begin processing the job. If for any reason the tender broker rejects the contract, the

bid will be voided. A penalty price will also be included in the contract should the winning broker

fail to complete the job execution by the agreed upon deadline.

9.2 Auction Based Grid Resource Scheduling Using Combinatorial Exchange Methodology

This section discusses the implementation of a combinatorial exchange for Grid

resource allocation and scheduling.

9.2.1. Logical Flow of Auction Participants

At the beginning of each auction, the auctioneer first determines the type of auction to

use and prepares the necessary environment prior to sending notifications to all participants of

market opening. Figure 9.4 shows the initialization flow of an auctioneer.

 86

Notify

participants

Seller

Seller

…
.

Consumer

Consumer

…
.

Auctioneer

start

Repeat?

Get auction

type

Overlap?

History?

Y

N

Y

Repeat

Auction type

N

One-shot

Auction type

N

Overlap?

Overlap?

Y

Y

Y

N

N

Repeat

History

Overlap

Auction type

Repeat

History

Auction type

Repeat

History

No overlap

Auction type

Repeat

No history

Auction type

Repeat

No history

Overlap

Auction type

One-shot

No overlap

Auction type

Generate

auction

market

Repeat

History

No overlap

Centralized

Auction type

Repeat

History

No overlap

Decentralized

Auction type

Repeat

History

Overlap

Decentralized

Auction type

Repeat

History

Overlap

Centralized

Auction type

Repeat

No history

Overlap

Centralized

Auction type

Repeat

No history

Overlap

Decentralized

Auction type

Repeat

No history

No overlap

Centralized

Auction type

Repeat

No history

No overlap

Decentralized

Auction type

One-shot

Overlap

Decentralized

Auction type

One-shot

Overlap

Centralized

Auction type

Centralized?

N
Y

Centralized?

N

Y

One-shot

Overlap

Auction type

Repeat

No history

No overlap

Auction type

Centralized?

Centralized?

Centralized?

Centralized?

N
Y

N

Y

N
Y

N

Y

One-shot

No overlap

Decentralized

Auction type

One-shot

No overlap

Centralized

Auction type

Figure 9.4 Auctioneer Initialization.

Prior to registering for auction participation with the auctioneer, each consumer

performs auction market environment checking to determine the type of auction to be deployed

in the market. After the necessary initialization has completed, the consumer fetches each job

from storage and determines the expected execution required per job as well as the

corresponding bidding strategy to adopt for that job. Once the strategy has been determined, an

auction request bundle is created for each job and sent to the auctioneer. Figure 9.5 shows the

logical flow of a consumer.

 87

,
A

start endτ

Figure 9.5 Consumer Logic.

Similar to the consumers, participating sellers first determine the type of auction to be

deployed in the market, followed by collecting current information of all her resource information

and status before registering with the auctioneer for auction participation. Figure 9.6 shows the

initialization flow of a seller. In this phase, sellers do not make any attempts to determine

bidding strategies as no information on auction bundle requests is available yet.

Upon receiving registration information from both consumers and sellers, the auctioneer

determines the market price (ρ) for each resource based on all resource demands from the

consumers and the overall availability of resources offered by all sellers. Once the market price

for resources has been determined, corresponding consumers’ initial auction bundle requests

will be adjusted using the current market value. All auction participants are informed of the

 88

current market value for all resources. The market price determination process is only initiated

once for the very first auction. Subsequent market prices will be adjusted from this initial market

price based on overall demand and availability of resources at any point in time. This allows

fluctuations in the market due to changes in demand and supply of resources.

Figure 9.6 Seller Initialization.

 89

After determining the market prices for all resources, the auctioneer propagates each

consumer’s auction request bundle (minus consumer’s valuation for that bundle which is kept

private) only to sellers who possess the required resources (based on information sent to the

auctioneer when each seller first registered with the auctioneer). For the simulation, we make

the assumption that sellers do not purchase new resources during the course of the simulation.

But in the event that a seller adds new resources in her inventory, all she has to do is to

resubmit the updated resource information to the auctioneer. At this point it is important to note

that although we make the assumption that sellers do not purchase new resources, current

resources may fail from time to time during the course of the simulation. This is implemented so

as to simulate machines failures in real life. Figure 9.7 shows the bid handling flow of an

auctioneer.

Upon receiving auction bundle requests from the auctioneer, each seller checks her

current resource status to determine if she can meet the specifications described in each

request. If so, the seller will determine the aggressiveness index as well as any corresponding

strategies to adopt before submitting counter bids to the auctioneer. However, if the seller does

not have any available resources to satisfy the auction bundle request, she will respond to the

auctioneer that she will not participate in the bidding for this auction bundle. Figure 9.8 shows

the auction participation flow of a seller. Sellers may resubmit bids at any point in time so long

as the auction remains active. However, every bid placed incurs a participation fee pc to deter

abusing of this privilege by any auction participant.

 90

A
Xk,n

Auction

bundle

request

,
A

start endτ

Resource info

Registration

A
Xk,n

Vci(Aci)

Auction

bundle

request

,
A

start endτ

Collect

consumer

auction

bundles

Collect seller

resource

operation cost

Determine

market price

(ρ) for each

resource

storage

For ea. Consumer

bundle request,

determine sellers

meeting requirements

Notify seller of

requests

Notify seller of

resource ρ

Notify

consumer of

resource ρ

Auctioneer

Find min,max

operation cost

for each

resource

Find min,max

individual

resource

valuation

Seller

Seller

Consumer

Consumer

Figure 9.7 Bid Handling by Auctioneer.

,
A

start endτ

,

,

()

t
j

A
k n

A
start end

i i

us

x

Vs As

τ

Figure 9.8 Seller Auction Participation.

 91

At the end of every auction, the auctioneer matches consumers’ auction bundle

requests to sellers’ offers based on the matching strategy used. There are three available

strategies to the auctioneer:

I. Sellers’ profit maximization,

II. Consumers’ cost minimization,

III. Matching maximization – where the auctioneer attempts to satisfy a maximum

number of possible matches.

Figure 9.9 shows the resource assignment flow of an auctioneer.

…
.

,

,

()

t
j

A
k n

A
start end

i i

us

x

Vs As

τ
,

,

()

t
j

A
k n

A
start end

i i

us

x

Vs As

τ

,

,

()

t
j

A
k n

A
start end

i i

us

x

Vs As

τ
,

,

()

t
j

A
k n

A
start end

i i

us

x

Vs As

τ

,
A

start endτ,
A

start endτ

Figure 9.9 Auctioneer Resource Assignment.

9.2.2. Bidding Strategies

The bidding strategies adopted in the Repeated Auctions depend highly on past

experiences. Factors such as price determination, bidding behavior, bidding aggressiveness,

and which auctions to participate in (for decentralized auctions) are decided based on this

information.

 92

Prior to the start of the first round of auction, each participant (in a Repeated

Decentralized scenario) is pre-assigned to a specified set of decentralized auction locations. For

each subsequent round, auction participants decide where to bid and how to overlap bids in

overlapping scenarios based on the collected information about each auction play. She makes

the decision of which auction to participate in (for decentralized cases) by identifying where the

highest utility returning auctions are. For example, since a consumer’s ultimate goal is to have

her jobs processed, she would prefer to participate in auctions where sellers offering the

required resources reside. On top of that, sellers from past auctions who yielded the highest job

utility returns (based on seller’s resource offering prices) are often preferred as this usually

signifies that those sellers have the cheapest available resources. Additionally, the consumers

would choose to avoid auctions where the strongest competitors (for open bidding cases)

reside. This is an attempt to avoid direct conflict with strong competitors, unnecessarily pushing

up resource prices. However, if both best seller and worst competitor reside in the same

auction, the preferred seller takes precedence as the consumer’s ultimate objective is to have

her jobs executed. The same applies to seller behavior. In the approach taken here, the

decision for an auction location is made based on two ranked lists, arranged in decreasing

order, the competitiveness and value of the auction locations with respect to the job or resource

type, respectively. For example, consider a participating consumer who has the following

ranked competitor and seller list of potential auction places as seen in Figure 9.10 (both lists

sorted in descending order). If this consumer is currently assigned to participate in at most 3

overlapping auctions, she will choose to participate in the auctions at location ‘1’, ‘5’ (since the

seller ranking at ‘5’ is higher than that the competitor ranking of location ‘5’) and ‘7’ (location ‘2’

is skipped since competitor at ranking location ‘2’ ranking is higher than the seller ranking.

 93

Figure 9.10 Consumer’s Decentralized Overlapping Example 1.

Figure 9.11 shows another list for a different consumer. Notice that location ‘1’ has the highest

ranking in both lists. But since the seller takes precedence, this consumer will choose to

participate in auctions at location ‘1’ and ‘5’. Location ‘2’ and ‘7’ are skipped for the same reason

described above. Sellers make decisions analogously.

Figure 9.11 Consumer’s Decentralized Overlapping Example 2.

In a non-overlapping auction, the consumers and sellers participate only in one auction

place and thus simply select the location at the top of the seller list. The bidding strategies are

executed by adjusting the bidding intervals and bid price increment (for open bidding). The

bidding (iAggc for consumers, jAggs for sellers) aggressiveness is calculated based on job

weight and closeness to execution deadline. The calculated value is then compared against

historical bidding aggressiveness values to determine the next strategy to adopt. For example, a

consumer with historical iAggc values of 0.8, 0.92, 0.99, 1.0, 1.05, and a current iAggc value

of 1.01 would insert the new data in the 5th position in the iAggc historical list. Since its

 94

placement is now 2 positions from the middle value (0.99) and in the 2nd position out of the

remaining 3 higher values, the bidding interval will be incremented by 2 units of the bidding step

size. So if the initial counterbidding strategy is to place a bid for every 3 counterbids, it will now

place a bid for every 5 counterbids as long as there is enough time before the auction ends.

However, if there are no bids submitted and the auction is ending soon, the consumer will not

hesitate to place a bid as long as she is not the last bidder and the bid increment is still within

her reserve valuation.

The bidding price determination is based on past market value trends. For example, if a

consumer witnessed that the price of resources for job type i in the past 3 auctions has been

increasing twice and the decreased in the most recent auction, expressed as (), ,↑ ↑ ↓ , she

would expect the next market value to be somewhat close to the closing price of the last market

price since the most recent price trend ()↓ carries more weight (a weight of 2) than the older

information (),↑ ↑ , each carrying a weight of 1, which eventually smoothes out the fluctuations.

On the other hand, if the previous information is (), ,↓ ↑ ↓ , resulting in a weighted trend of -1+1-

2 = -2 out of 4, she would expect the market price to drop and would start the auction by bidding

50% of the originally anticipated value (i.e. the resource closing price from the previous

auction). The minimum and maximum price variation is limited to 50% for downward trend, and

150% for upward trend.

 95

CHAPTER 10

SIMULATION DESIGN

This section discusses the simulation approach for the auction mechanism in our

system.

10.1 Broker and Job Advertisement Based Grid Scheduling

To evaluate our bidding based grid job scheduling we have designed and implemented

a discrete event grid simulation tool in C++ (Figure 10.1 shows the architectural layout). The

simulator is designed to follow a hierarchical approach where a network of routers is created

followed by subsequent gateways, clusters, and nodes. Each gateway consists of a gateway

broker (serving as a representative broker for the entire gateway), a monitor (for monitoring all

resources within the gateway), and users (generating job requests). At the clusters, brokers are

used to perform inter-cluster brokering; monitors are used to monitor resources within the

cluster (and reporting to the gateway); and nodes represent individual computers (with the

available resources to the cluster). In order to simulate a more realistic grid environment,

various random types of cluster and node instantiation schemes have been adopted to generate

sites. Within each site, overall resource status is monitored by the gateway monitor while the

cluster monitor keeps track of all local nodes’ types and schedules and currently used resources

within the cluster. To be able to create a scenario and study the behavior of the simulation

under full load, the user object is configured to constantly provide a steady stream of new jobs

which keeps the broker busy. Jobs are generated using a uniform random generator with an

execution time ranging from 1 hour to 5 days (based on a 2.4GHz processor). The arrival rate of

jobs follows that of a Poisson arrival process.

During the bidding process, job advertisements will be submitted to all neighbors

residing one hop away from the requesting host. Note, that the number of job advertisements

 96

propagated is directly related to the number of neighbors. This is done deliberately to limit the

flooding of the network by performing unnecessary broadcasting of job advertisements. To

better simulate the effects of network delays in our simulation, we have included the effects of

processing (assumed constant), queuing, transmission, and propagation delays. As a result, the

time taken and cost of data propagation depends on the queue length, data size and distance

propagated.

Figure 10.1 Simulator Overview.

10.1.1. Resource Management

In our computational grid model there are two main entities: requesting brokers and

tender brokers. The requesting broker collects jobs to be processed from users and is willing to

reward a cluster that is able to successfully complete the job within its timeframe and/or budget.

The tender broker offers its service and resources to anyone who has jobs to be executed if the

price is right. These two entities control the supply and demand of the grid resource market. The

requesting broker is always in search for the least expense way to process its jobs while getting

results at the earliest-time. The tender broker is always trying to maximize its earnings while

minimizing usage of its own resources so as to have more available resources to process other

jobs. As a result, efficient resource management becomes self motivational as each participant

 97

is always trying to get the best “bang for the buck” while being thrifty in its own resource usage.

It is important to note that in a typical trading environment there is always a maximum price a

requesting host is willing to pay for a particular service. And similarly, there is always a

minimum price which the service provider is willing to accept for offering its services. Although

renegotiations may be performed in an attempt to arrive at an acceptable price between the

requesting and tender brokers, it is possible that sometimes such renegotiations may fail as

such an acceptable price may not be attainable. In such cases, the trading process fails.

10.1.2. Price Formulation

In order to mimic the variations in the computational grid system load throughout the

day, a simplified model has been adopted to be used as a reference to predict the usage of

resources at different times of the day. Figure 10.2 depicts the simplified model used to predict

system load throughout the day over a 2 day period. This model represents an estimated

system load throughout a day; thus we will be able to estimate the total load between two given

times of the day by performing an integration function from the start time to the end time. This

integration result is then multiplied with the respective costs of all the resources required by that

particular job over the period of estimated execution time. After obtaining the initial estimated

cost, this information is used in conjunction with the reserved resources (within that cluster) for

all jobs scheduled to be executed during the same period to estimate the load on that particular

cluster. The estimate of the overall resources used at that cluster during the execution period is

then divided by the total resources available at the cluster, which is compared to the same

fraction when the cluster is 50% utilized. The resulting difference is used to scale the initial

estimated cost of processing that job. For example, if the initial estimated price is 2000 units,

and the estimated overall system utilization during the job execution period is calculated to be

70%, then the price would be scaled up by 20% to 2400 price units.

 98

Figure 10.2 Grid Anticipated System Usage Model.

In order to evaluate the effectiveness of this scheme, two other schemes have also

been implemented as bases for comparison:

The first is a conventional grid scheduling scheme (denoted as conventional from here

on) similar to that of the ATLAS project. Instead of manual site selection by the administrators,

this scheme performs random site selection for job execution. This helps in distributing the load

of job executions across the system. Note, that clusters and nodes within each site in the

conventional scheme are heterogeneous. By simulating clusters with varying resources, we can

improve on the number of successful resource matches and hence serve as a more competitive

comparison with our proposed bidding scheme.

The second scheme (denoted as random from here on), is similar to the conventional

scheme. However, this scheme has the ability to perform renegotiations to find a better

resource match within a particular site.

 99

CHAPTER 11

SIMULATION RESULTS AND SUMMARY

This section discusses the simulation results from the auction mechanism in our

system, and summarizes the findings based on those results.

11.1 Results From Broker And Job Advertisement Based Grid Scheduling

Simulated data from the three previously described schemes were collected and

compared. Data collected from the conventional and the random schemes are used for

comparison to our proposed bidding scheme. Throughout its lifetime, a job may be in one of

several stages in its execution phase: queued, staging-in (transferring the required input data

sets to the executing host), executing, staging-out (transferring the resulting data sets to the

designated receiving host), and successfully executed. A job is considered to have successfully

executed only upon completion of the actual job execution process, with the staging-out of

resulting data files delivered. In order to simplify the job stage categorizing process, we have

separated them into 2 categories: successfully executed and successfully matched.

Successfully matched implies that the necessary matching and bidding processes have been

completed and the job may be in any one of the previously mentioned stages other than

successfully executed. However, a job match may fail and be marked as a match-failed. Match-

failed reasons include: i) failure to match the job resource requirements to an available host; ii)

failure to meet the budget requirements set forth by the requesting broker; iii) failure to meet the

execution deadline requirements; iv) failure to place bids prior to auction closing; or v) failure to

sign and return the contract issued by the requesting broker.

Figure 11.1 presents the total number of jobs executed over a period of 30 days. As

more resources get tied up with job execution during the course of the simulation, a decreasing

number of resources remain available. As a result, it becomes increasingly difficult to find the

 100

required resources at the same low price as before. As observed from Figure 11.1, the bidding

scheme outperformed the other two schemes by delivering the highest number of successfully

executed jobs over the simulated period. The main reason for this phenomenon can be

attributed to the fact that bidding possesses the advantage of being able to obtain bids from all

one-hop neighbors, hence increasing the chances of a job match. The conventional scheme

performs worse than the random scheme due to lack of renegotiation ability. For a better

insight, we refer to Figure 11.2 which shows the total number of successful renegotiations

achieved for the random and the bidding schemes. When a job match fails, renegotiation is

performed between the requesting broker and tender broker. Default settings for the

renegotiation process in our simulation limits the variation from the original time and budget to

10%. As observed, the random scheme fails to take full advantage of the renegotiation tools

due to the limited availability of resources within the single randomly selected site. If the chosen

site is already overwhelmed with jobs, further renegotiations may not necessarily improve the

matching of jobs to resources. At this point, it is important to note that although the bidding

scheme achieved approximately twice as many successful renegotiations as that of the random

scheme, the number of jobs attaining the successfully executed state (see Figure 11.1) by the

bidding scheme did not perform twice as well when compared to the random scheme. This is

because although more jobs are matched with renegotiated resources, eventual successful

execution of jobs still depends on additional factors such as network traffic, data and output file

staging processes, and resource availability at the moment in time when jobs are to be

executed.

Figure 11.3 shows the accumulated monetary transactions collected throughout the

simulation. The bidding scheme performs dramatically better than both the random and the

conventional schemes. This can be attributed to the profit maximizing characteristics of the

bidding scheme, along with substantial improvement in the number of successful job matches

due to re-negotiations (see Figure 11.2). Although the random scheme also supported

 101

renegotiation, it is limited by the number of available resources from its single renegotiating

location.

0

20

40

60

80

100

120

140

160

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Simulation time [days]

N
um

be
r o

f J
ob

s
E

xe
cu

te
d

Bidding

Random

Conventional

Figure 11.1 Total Number of Jobs Executed.

0
20
40

60

80

100
120
140

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Simulation Time [days]

N
um

be
r o

f S
uc

ce
ss

fu
l R

e-
N

eg
ot

ia
tio

ns

Bidding

Random

Conventional

Figure 11.2 Total Number of Successful Re-negotiations.

0

5000000

10000000

15000000

20000000

25000000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Simulation Time [days]

A
cc

um
ul

at
ed

 M
on

et
ar

y
T

rn
as

ac
tio

ns

Bidding

Random

Conventional

Figure 11.3 Accumulated Monetary Transactions.

 102

Figure 11.4 shows the total penalty resulting from exceeding the promised estimated

job completion time, as stated in the binding contract. The current penalty implementation in our

simulations is simple: if a site fails to abide by the contract, 30% of the initial contract price is

returned to the requesting broker. Although the bidding scheme resulted in the highest

accumulated penalty, if we look at the penalty to earning ratio graph of Figure 11.5, we can see

that it remained within 14% of the overall earnings throughout the simulation process. The

conventional scheme, due to its limited number of successfully matched jobs (and hence limited

penalties), performed better in terms of paying for penalty charges, when compared to the

random scheme; it managed to limit the penalties paid to within 18% of its accumulated

earnings. Although the random scheme paid fewer penalties as compared to the bidding

scheme, it was the worst performer of the group by paying up to 26% of its total earnings to

penalty charges.

0.00E+00

5.00E+05

1.00E+06

1.50E+06

2.00E+06

2.50E+06

3.00E+06

3.50E+06

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Simulation Time [days]

T
ot

al
 P

en
al

ty

Bidding

Random

Conventional

Figure 11.4 Total Penalty.

 103

0

0.05

0.1

0.15

0.2

0.25

0.3

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Simulation Time [days]

P
en

al
ty

 to
 E

ar
ni

ng
 R

at
io

Bidding

Random

Conventional

Figure 11.5 Penalty to Earning Ratio.

11.2 Results from Auction Based Grid Resource Scheduling Using Combinatorial Exchange

In this subsection we will discuss the simulation findings of the different types of

auctioning schemes. As the One-shot auctioning scheme is simply the first case of a repeated

auctioning mechanism, we will focus on analyzing the Repeated auctioning schemes here.

Figure 11.6 shows the comparison between successful and failed attempts at assigning

consumer jobs to seller resources for different auctioning mechanisms. The simulation was

performed with each consumer generating a job request approximately every 0.2 units of time to

ensure that the system is overwhelmed with job requests throughout the simulation process.

From Figure 11.6, we can see that every auctioning scheme has been heavily overloaded with

job requests. Figure 11.7 shows the overall resource utilization of all sellers’ resources.

Participants in a Centralized auctioning scheme have the advantage of achieving higher

resource utilization simply because they have access to all jobs and resources within the

auction. In a decentralized scheme, there is always a possibility that a generated job requires a

specific combination of resources not available within that particular decentralized auctioning

group. If there are too many failed auctions in an overlapping auction group, participants in such

a group may opt to join other overlapping auctions in subsequent auctioning rounds in an

 104

attempt to avoid further occurrences of non-matching job requests. Similarly, participants who

continuously lose out in an auction may also choose to join another overlapping auctioning

group. For example, if a seller is constantly being outbid by another seller offering lower prices

for her resources, the losing seller may intentionally leave this auctioning group in order to avoid

future competition with this competing seller. This is reflected in the utilization data in Figure

11.7 by the fact that overlapping distributed auctions achieve higher resource utilization

compared to no overlap distributed auctions.

Success vs Fail Auctions

0

10000

20000

30000

40000

50000

60000

Auction Type

C
ou

nt

RCNC success

RCNC fail

RCNO success

RCNO fail

RDNC success

RDNC fail

RDNO success

RDNO fail

RDYC success

RDYC fail

RDYO success

RDYO fail

Figure 11.6 Success vs. Failure Comparison

Resource Utilization Comparison

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Auction Type

U
til

iz
at

io
n

RCNC

RCNO

RDNC

RDNO

RDYC

RDYO

Figure 11.7 Overall Resource Utilization.

 105

From this data, it can also be observed that open auctions tend to lead to better resource

utilization than the corresponding closed bid auction scheme.

Figure 11.8 compares the total number of bids submitted for different auctioning

mechanisms. Since there is a participating cost associated with every bid submitted, it would

always be good to win an auction with the minimum number of bids submitted. Furthermore, the

number of bids submitted not only adds to the participation cost, it also leaves a smaller profit in

return. Figure 11.8 shows that the centralized auctioning scheme places the highest number of

bids when compared to decentralized auctioning schemes. This is mainly because a centralized

auctioning environment faces more job requests (and resource offers) as compared to that of a

decentralized environment. In addition to that, they will face greater competitions in such an

environment as well.

Number of Bid Comparison

0

100000

200000

300000

400000

500000

600000

700000

Auction Type

B
id

 C
ou

nt

RCNC

RCNO

RDNC

RDNO

RDYC

RDYO

Figure 11.8 Auction Bids Comparison.

Besides influencing costs, the number of bids also represents a measure of the

communication overhead imposed by the different auction-based scheduling schemes. As the

number of bids at a given auctioneer increases, so does its computational load and bandwidth

requirement, eventually slowing down the scheduling and introducing a bottleneck. The results

presented in Figure 11.8 show that the distributed auction mechanism results in a significantly

 106

lower number of total bids, thus reducing the amount of communication required for scheduling.

Moreover, since these bids are distributed across 10 auctions, the bandwidth and computation

overheads at the scheduler are actually reduced to less than
1

10
 of the ones for the centralized

auction-based schedulers, demonstrating the scalability of the distributed auction approach.

Figure 11.9 depicts the winning to reserve price comparison. This is useful when comparing the

value returns from winning jobs under different auctioning mechanisms. In this diagram, we can

see that the Repeated Centralized Open CE (RCOCE) mechanism yields the lowest returns.

This is mainly due to the fact that it faces the most competition from all participants within the

auctioning environment. Among all decentralized auctioning mechanisms, the Repeated

Decentralized Open CE (RDOCE) without overlap scheme performs the worst. This may be

attributed to the reason that it faces the most competition with other participants without the

ability of switching to other auctioning groups. Although the Repeated Decentralized Closed CE

(RDCCE) without overlapping scheme retains a better ratio in this figure, we can see from

Figure 11.10 that it also has the lowest success ratio in an auction. In other words, it has the

lowest average number of jobs being scheduled throughout the auction.

Winning Price vs Reserve Price Ratio

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

Auction Type

R
at

io

RCNC

RCNO

RDNC

RDNO

RDYC

RDYO

Figure 11.9 Winning Price vs Reserve Price Comparison.

 107

From Figure 11.10 which illustrates the auction success rates, it can be seen that the

RCCE without overlapping enjoys the highest auction success ratio. But Figure 11.11 shows

that it has one of the lowest value returns per job. This is mainly because of the centralized

bidding nature when jobs are available to all potential competitors within the auctioning

environment. Figure 11.10 also shows that, as would be expected, centralized auctions

generally have a higher auction success rate as compared to decentralized schemes since they

have access to all available resource bundles for all incoming bids, thus having the opportunity

to make the most optimal job to resource matches. In contrast, jobs in a distributed auction can

be matched only to resources available at the specific auction site, increasing the risk that the

needed resources are not available. The data in the figure, however, also shows that the

distributed open auction with overlap can partially overcome this limitation, leading here to a job

completion rate that is comparable to the centralized auction schemes. This is due to the fact

that consumers and sellers can successfully change auction location based on the past

performance data, allowing them to form auctions with higher success ratios. Figure 11.11

shows a comparison of the valuation of the jobs scheduled in each auctioning scheme.

Surprisingly, the Repeated Centralized Closed CE (RCCCE) without overlapping has the lowest

value-per-job returns. This may be due to its relatively high winning price vs reserve price ratio

(Figure 11.9), as well as to the high number of bid counts (Figure 11.9) which results in a

significant value reduction. As such, it may be derived that the RCCCE without overlapping

auctioning mechanism is paying a high price for bid participation while not winning enough

auctions to cover the participation costs.

 108

Auction Success Ratio

0
0.02

0.04
0.06
0.08
0.1

0.12
0.14
0.16

0.18
0.2

Auction Type

P
ro

ba
bi

lit
y

RCNC

RCNO

RDNC

RDNO

RDYC

RDYO

Figure 11.10 Auction Success Comparisons.

Value Per Job Comparisons

360

370

380

390

400

410

420

430

440

450

460

Auction Type

V
al

ua
tio

n

RCNC

RCNO

RDNC

RDNO

RDYC

RDYO

Figure 11.11 Job Value Comparisons.

It is observed that the Repeated Decentralized overlapping schemes yields the highest

value per job returns. This may be due to the strategy of focusing on participating only in

auctioning groups where one has a clear advantage over the other competitors. As such, each

decentralized auctioning group slowly becomes a specialized auctioning group where different

groups specialize in different types of auctions, yielding an increase in success rates as well as

in scheduled job value. Overall, these results show that the auction-based scheduling

 109

mechanisms are successful at scheduling jobs for grid applications. Moreover, they

demonstrate that the distributed auction schemes can effectively reduce communication and

scheduling overheads by reducing the number of bids needed to obtain job to resource

matches. While this initially leads to decrease in success rates, the data also shows that the

distributed open bid auction scheme with overlap can address this by allowing consumers and

sellers to establish custom auction places, leading eventually to success rate comparable to the

centralized auction schemes. In addition, the results show that the decentralized schemes, due

in part to the reduced need for bids and more focused auctions outperform the centralized

approaches in terms of job value scheduled and winning to reserve price ratio. Together this

demonstrates the potential of the decentralized combinatorial exchange model to address the

issues in grid job scheduling without creating a scheduling “bottleneck”.

 110

CHAPTER 12

FUTURE WORK

This section discusses findings from simulation studies, as well as additional work that

may be done in the future.

12.1 Broker and Job Advertisement Based Grid Scheduling

In the study of broker and job advertisement based Grid scheduling, we have used a

simple, flat 30% penalty scheme. Our intentions are to implement a flexible penalty scheme with

demerit scheme where winning brokers who break the contract for any reasons will have a

demerit point added to the rejecting broker for either backing out of a winning bid or failing to

abide by the contract. This would in turn affect their ability to participate in subsequent future

biddings. We are also looking into improving the current scheme to incorporate multiple-hop job

advertisement propagation ability, support for multiple auctioning and better decision-making

tools, along with the ability to subcontract jobs as well as better job QoS and prioritization

support.

12.2 Auction Based Grid Resource Scheduling Using Combinatorial Exchange Methodology

In the study of the different CE auctioning mechanisms, the decentralized auctioning

scheme has a clear advantage of minimizing the auctioning overhead while yielding higher job

value returns when compared with their centralized counter parts. The ability to overlap with

other auctioning environments allows participants to move from one less desired auction to

another preferred auctioning environment, hence helping in gaining bidding efficiency.

For future work, we would like to further improve upon the bidding strategies by

adopting better reasoning and prediction tools, as well as by studying the effects of fluctuating

load on the auctioning mechanisms.

 111

CHAPTER 13

CONCLUSION

In this work we seek to improve resource utilization and address the common problem

of scheduling and resource allocation in a computational grid system by applying Combinatorial

Exchange with various auctioning mechanisms in an economic Grid environment.

Our objective was to define the technical and economical characteristics of a market-

oriented Grid mechanism, to design a market-oriented Grid mechanism and to evaluate the

proposed decentralized market-oriented Grid auctioning mechanism. Our contribution includes

identifying and formalizing the technical characteristics of an economic grid system, proposing

and designing an auctioning mechanism suitable for the grid system, and evaluating of how

such an auctioning mechanism would perform in a grid environment. We evaluated and

analyzed the behavioral and performance aspects of various Combinatorial Exchange (CE)

auction mechanisms, including: Centralized open and closed auctions, Decentralized open and

closed auctions. We also looked at the effects of an overlapping vs non overlapping auction

scenario for the case of distributed auctions in a grid environment. In a set of simulation

experiments we have shown the potential of a decentralized combinatorial exchange in

efficiently addressing performance and resource allocation issues in Grid scheduling while

avoiding the creation of a “bottleneck” as in most centralized scheduling mechanisms. These

results clearly demonstrate that auction theory is a viable alternative to the traditional grid

scheduling and resource allocation methodologies.

As the application of auction theory in the area of grid studies is still fairly new, much

work still has to be done to further improve upon what we have done so far. In particular, further

studies should be done to evaluate the specific behavior characteristics and scaling properties

of the Combinatorial Exchange mechanism in the context of different loads, job and resource

 112

types, and grid applications. Also, different bidding strategies and proxy bidding schemes could

be tested in order to optimize the overall system performance.

We have demonstrated that auction mechanism, when applied to grid scheduling and

resource allocation is viable, effective, and provides good performance compared to other

schemes. Auction theory is relatively new in economics and as auction theory develops, new

methods may provide even more benefits when applied to grid scheduling. We show that the

formal model described accurately predicts actual results from scheduling very large PanDA

work flows. We hope that future grid scheduling in large workflows, such as PanDA, will benefit

from application of auction mechanisms.

113

REFERENCES

1. D. Abramson, R. Buyya, J. Giddy, “A computational economy for Grid computing and its
implementation in the Nimrod-G resource broker”, Future Gener. Comput. Syst. 18(8),
1061-1074 (2002)

2. A. AuYoung, B. Chun, A. Snoeren, A. Vahdat, “Resource Allocation in Federated
Distributed Computing Infrastructures”, Proceedings of the 1st Workshop on Operating
System and Architectural Support for the Ondemand IT InfraStructure, Oct 2004

3. B. Chun, P. Buonadonna, A. AuYoung, C. Ng, D. Parkes, J. Shneidman, A. C. Snoeren,
A. Vahdat, “Mirage, A Microeconomic Resource Allocation System for Sensornet
Testbeds”, Proceedings of the 2nd IEEE Workshop on Embedded Networked Sensors,
May 2005

4. B. A. Huberman, K. Lai, L. Fine, ”Tycoon: A Distributed Market-based Resource
Allocation System”, Technical Report arXiv:cs.DC/0404013, HP Labs, Palo Alto, CA,
USA, April 2004

5. K. Lai, L. Rasmusson, E. Adar, L. Zhang, B. A. Huberman, “Tycoon: An Implementation
of a Distributed, Market-based Resource Allocation System”, Multiagent Grid Systems,
1(3):169–182, 2005

6. C. Li, L. Li, Z. Lu, “Utility Driven Dynamic Resource Allocation Using Competitive
Markets in Computational Grid”, Advances in Engineering Software, 36(6):425–434,
2005

7. M. Wieczorek, S. Podlipnig, R. Prodan, T. Fahringer, “Applying double auctions for
scheduling of workflows on the Grid”, Conference on High Performance Networking and
Computing, Proceedings of the 2008 ACM/IEEE conference on Supercomputing,

8. W. H. Bell, D. G. Cameron, R. Carvajal-Schiaffino, “Evaluation of an Economy-Based
File Replication Strategy for a Data Grid”, Proceedings of the 3rd International
Symposium on Cluster Computing and the Grid

9. J. Sherwani, N. Ali, N. Lotia, Z. Hayat, R. Buyya, “Libra: a Computational Economy-
based Job Scheduling System for Clusters”, Software Practice and Experience,
34(6):573–590, 2004

10. R. Wolski, J. S. Plank, J. Brevik, T.Bryan, ”G-commerce: Market Formulations
Controlling Resource Allocation on the Computational Grid”, IPDPS ’01: Proceedings of
the 15th International Parallel and Distributed Processing Symposium. IEEE, San
Francisco (2001) April

11. C. S. Yeo, R.Buyya, “Pricing for Utility-driven Resource Management and Allocation in
Clusters”, ADCOM ’04: Proceedings of the 12th International Conference on Advanced
Computing and Communications, pp. 32–41. Allied Publishers: New Delhi, India (2004)
December

12. A. AuYoung, L. Grit, J. Wiener, J. Wilkes, “Service Contracts and Aggregate Utility
Functions”, HPDC ’06, Proceedings of the 15th IEEE International Symposium on High
Performance Distributed Computing, pp. 119-131 June 2006

114

13. B. N. Chun, D. E. Culler, ”User-centric performance Analysis of Market-based Cluster
Batch Schedulers”, CCGRID ’02: Proceedings of the 2nd IEEE/ACM International
Symposium on Cluster Computing and the Grid, p. 30. IEEE Computer
Society,Washington, DC, USA (2002)

14. D. E. Irwin, L. E. Grit, J. S. Chase, “Balancing Risk and Reward in a Market-based Task
Service”, HPDC ’04: Proceedings of the 13th IEEE International Symposium on High
Performance Distributed Computing, pp. 160–169. IEEE Computer Society,
Washington, DC, USA (2004)

15. F. I. Popovici, J. Wilkes, “Profitable Services in an Uncertain World”, SC ’05:
Proceedings of the 2005 ACM/IEEE conference on Supercomputing, pp. 36. IEEE
Computer Society, Washington, DC, USA (2005)

16. A. Opitz, H. König, S.Szamlewska, “What Does Grid Computing Cost?”, Journal of Grid
Computing, Volume 6, Number 4, Pages: 385-397, ISSN: 1570-7873, Springer Verlag,
Germany, Sept. 2008

17. J. Broberg, S. Venugopal, R. Buyya, “Market-oriented Grids and Utility Computing: The
State-of-the-art and Future Directions”, Journal of Grid Computing, Volume 6, Number
3, Pages: 255-276, ISSN: 1570-7873, Springer Verlag, Germany, Sept. 2008

18. A. Kapteyn, “Utility and economics”, De Economist, Springer Netherlands 0013-063X
(Print) 1572-9982, pp 1-20

19. J. A. Rodrigues-Neto, “Representing roommates’ preferences with symmetric utilities”,
Journal of Economic Theory, Volume 135, Issue 1, July 2007, Pages 545-550

20. I. Foster, C. Kesselman, “The Grid 2 – Blueprint for a New Computing Infrastructure”,
The Elsevier Series in Grid Computing, 2004

21. O. Shy, “How to Price: A Guide to Pricing Techniques and Yield Management”,
Cambridge University Press; illustrated edition edition (January 14, 2008)

22. R. P. Stanley, “Enumerative Combinatorics, Vols. 1 ”, Cambridge University Press.
(1997) ISBN 0-521-55309-1

23. W. D. Blizard, "Multiset theory," Notre Dame Journal of Formal Logic, Volume 30,
Number 1, 1989 Winter: pp. 36-66

24. D. K. Gode, S. Sunder, “Allocative Efficiency of Markets with Zero-Intellience Traders:
Market as a Partial Substitute for Individual Rationality”, Journal of Political Economy,
1993, vol. 101, no. 1

25. M. Xia, J. Stallaert, A. B. Whinston, “Solving the Combinatorial Double Auction
Problem”, European Journal of Operational Research 164 (2005) 239-251

26. D. C. Parkes, “Iterative Combinatorial Auctions: Achieving Economic and
Computational Efficiency” Ph.D thesis, University of Pennsylvania, Department of
Computer and Information Science

27. P. Cramton, Y. Shoham, R. Steinberg, “Combinatorial Auctions”, 2006 Massachusetts
Institute of Technology

28. S. Parsons, M. Marcinkiewicz, and J. Niu. Everything you wanted to know about double
auctions but were afraid to (bid or) ask. Technical report, Department of Computer &
Information Science, Brooklyn College, City University of New York, 2005.

29. J. H. Choi, H. Ahn, I. Han, “Utility-based Double Auction Mechanism Using Genetic
Algorithms”, Expert Systems with Applications, vol. 34, Issue 1, January 2008, Pages
150-158

30. M. Xia, G. J. Koehler, A. B. Whinston, “Pricing Combinatorial Auctions”, European
Journal of Operational Research, Volume 154, Issue 1, 1 April 2004, Pages 251-270

31. D. Levine, “Distributed Computational Biology: Clusters and Grids”, “Computational
Genomics: Current Methods”, Pages 191-210

32. Klemperer, Paul, 1999. " Auction Theory: A Guide to the Literature," Journal of
Economic Surveys, Blackwell Publishing, vol. 13(3), pages 227-86, July

115

33. A.T. Thor, G.V. Záruba, D. Levine, K. De, T.J. Wenaus, "VIGs: A Grid Simulation and
Monitoring Tool for ATLAS Workflows," Proceedings of Many-Task Computing on Grids
and SuperComputers (MTAGS), ACM/IEEE SuperComputing'08, November, 2008.

34. https://twiki.cern.ch/twiki/bin/view/Atlas/Panda
35. I. Raicu, Z. Zhang, M. Wilde, I. Foster, P. Beckman, K. Iskra, B. Clifford. "Toward

Loosely Coupled Programming on Petascale Systems", ACM/IEEE International
Conference for High Performance, Networking, Storage and Analysis (SC08), 2008

36. R. Jain, "The Art of Computer Systems Performance Analysis: Techniques for
Experimental Design, Measurement, Simulation, and Modeling," Wiley-Interscience,
New York, NY, April 1991.

37. Averill M. Law, W. David Kelton, David W. Kelton, “Simulation Modeling and Analysis”,
McGraw-Hill Science Engineering

38. E. Medernach,” Job arrival analysis for a cluster in a Grid environment”, 1st Open
International conference on Modeling & Simulation June 12th – 15th 2005 – ISIMA /
Blaise Pascal University – France

39. C. Liu, I. Foster, “A Constraint Language Approach to Matchmaking”, presented at the
14th Int. Ws. Research

40. ATLAS project, http://www.usatlas.bnl.gov/
41. A.T. Thor, G.V. Záruba, D. Levine, "A Broker and Job Advertisement Based Grid

Scheduling Framework," Proceedings of the Parallel and Distributed Computing
Systems Conference (PDCS 2006), Dallas, Texas, November 13-15, 2006.

42. N. Nisan, T. Roughgarden, E. Tardos and V. Vazirani, editors, “Algorithmic Game
Theory”, Cambridge University Press.

43. Condor High Throughput Computing, The Condor Project Homepage.
http://www.condorproject.org/

44. R. Buyya, D. Abramson, S. Venugopal, “The Grid Economy”, Proceedings of the IEEE,
vol. 93, no. 3, pp. , March 2005.

45. L. Xiao, Y. Zhu, L. M. Ni, Z. Xu, “GridIS: an Incentive-based Grid Scheduling”, 19th
IEEE International Parallel and Distributed Processing Symposium (IPDPS'05)

46. Z. Tan, “Market-based Grid Resource Allocation Using a Stable Continuous Double
Auction”, Ph.D thesis, University of Manchester, School of Computer Science, 2007

47. F. Berman, H. Cassanova, M. Faerman, J. Schopf, A. Su, D. Zagorodnov, “Application
Level Scheduling”, IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED
SYSTEMS, VOL. 14, NO. 4, APRIL 2003

48. Y. C. Lee, A. Y. Zomaya, “Scheduling in Grid Environments”, Handbook of Parallel
Computing: Models, Algorithms, and Applications. Chapman and Halls/CRC 2008

49. Nimrod/G http://www.csse.monash.edu.au/~davida/nimrod/nimrodg.htm
50. D. Roure , M. Baker , N. Jennings , N. Shadbolt, “The Evolution of Grid”, Grid

Computing: Making the Global Infrastructure a Reality
51. I. Foster, C. Kesselman, “The Grid: Blueprint for a New Computing Infrastructure”,

Morgan Kaufmann, July 1998
52. Search for Extraterrestrial Intelligence (SETI@home)

http://setiathome.berkeley.edu/index.php
53. Pareto efficiency http://en.wikipedia.org/wiki/Pareto_efficiency
54. C. Petrie, T. Webster, M. Cutkosky, “Using Pareto Optimality to

Coordinate Distributed Agents”, AIEDAM special issue on conflict management Vol. 9,
pp. 269-281, 1995

55. M. Beckmann, H. Kunzi, “Dynamic Pricing and Automated Resource Allocation for
Complex Information Services”, Reinforcement Learning and Combinatorial Auctions
Series: Lecture Notes in Economics and Mathematical Systems , Vol. 589, 2007, XII,
291 p., ISBN: 978-3-540-68002-4

116

56. S. Parsons, J. Rodríguez-Aguilar, M. Klein “Auctions and bidding: A guide for computer
scientists”, ACM Computing Surveys, 2009.

57. J. Kalagnanam and D. Parkes, "Auctions, bidding, and exchange design," in Supply
Chain Analysis in the eBusiness Area, Simchi-Levi, D. Wu, and Shen, Eds. Kluwer
Academic Publishers, 2003.

58. http://en.wikipedia.org/wiki/Auction

117

BIOGRAPHICAL INFORMATION

Tengkok Aaron Thor received his Bachelor’s degree in Computer Engineering from

Texas A&M University in 2000, Master’s and Doctoral degree in Computer Science and

Engineering from University of Texas at Arlington in 2003 and 2009 respectively. Prior to his

graduation, he was actively involved in the ATLAS experiment at Brookhaven National Lab

(BNL) in Long Island, NY. His primary tasks at BNL include Production and Distributed Analysis

(PanDA) monitoring and logging development, and PanDA server stress testing. His research

interests include scheduling and resource allocation in Grid/Cloud computing, combinatorial

optimization, and auction/game theory.

