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ABSTRACT

ANALYSIS AND SIMULATION IN NEURON AND FIBROSIS MODELS

Humberto D. Perez Gonzalez, Ph.D.

The University of Texas at Arlington, 2009

Supervising Professor: Jianzhong Su

In this work, we use analysis and numerical simulations to study the change

of collective behavior of two synaptically coupled square bursting systems, the effect

of noise in an elliptic bursting system and foreign body reactions. For the square

bursters we study its synchronization process as the strength of coupling increases.

The two cells present chaotic bursting behavior when there is no coupling. As the

strength increases and past a certain value, the behavior of two cells, which are

uncoupled, becomes synchronized regular bursting motions. For the elliptic bursting

phenomenon we study the distribution of the noise and its effects in the dynamics

and the reliability of the firing pattern. Finally, we study foreign body reactions to

implants. A computational model is constructed to investigate the time dynamics of

the reaction kinetics of the major elements involved in the fibrosis formation process.
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CHAPTER 1

INTRODUCTION

In this work we study the change of collective behavior of two synaptically

coupled square bursting systems, the effect of noise in an elliptic bursting system and

modeling and simulation of foreign body reactions due to implants.

First, we study the change of collective behavior of two synaptically coupled

square bursting systems as the strength of coupling increases. The two cells present

chaotic bursting behavior when there is no coupling. We showed analytically that

the quotient of the time difference in the slow manifold after one loop is a contrac-

tion, which implies that the behavior of the two cells becomes synchronized regular

bursting motions. It also shows that regular oscillations can emerge from connecting

intrinsically chaotic oscillators with synapses. The method of analysis is similar to

that of Fast Threshold Modulation theory in [82].

Next, we study the behavior of elliptic burster in the presence of noise. We start

with an introduction to a geometric analysis of elliptic bursting with and without

noise. The basic technique is to establish an invariant region for the return map of

the solutions. For noisy elliptic bursters, the bursting patterns depend on random

variations associated with delayed bifurcations. Details for the most important results

are provided from [92]. In that paper an explicit formulation of the duration of delay

and its distribution is provided. The duration of the delay, and consequently the

durations of active and silent phases, is shown to be closely related to the logarithm

of the amplitude of the noise. As a continuation of this part, we studied the reliability

of the firing pattern.
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Finally, we study the foreign body reactions to implants. Foreign body reac-

tions are commonly referred to the network of immune and inflammatory reactions

of human or animals to foreign objects placed within tissues. They have significant

relevance to bioengineering implant material design and fabrication, as fibrotic cap-

sulations to implants within human or animals are found to substantially reduce the

effectiveness of the devices. This study focuses on a kinetic based predictive tool

in order to analyze the outcome of multiple interactive cell-protein complex kinet-

ics of various factors and processes and to understand its transient behavior during

the entire period (up to several months). A computational model is constructed to

investigate the time dynamics of the reaction kinetics. The simulation results have

been consistent with experimental data and the model can facilitate quantitative

information for study of foreign body reaction process.



CHAPTER 2

REGULAR BURSTING IN COUPLED CHAOTIC NEURONS

2.1 Background

Burst activity is characterize by slowly alternating phases of near steady state

behavior and trains of rapid spike oscillations (See Figure 2.1). These two phases

have been called the silent and active phases respectively. In the case of electrical

activity of biological membrane systems the slow time scale of bursting is in the order

of tens of second while the spikes have milliseconds time scales [68]. Rinzel and Wang

[105] describe qualitatively some mechanisms for burst generation. The basic idea is

that there are slow processes which modulate the faster spike generating dynamics.

To classify burst patterns they consider systems of the form

x′ = F (x,y), x ∈ R
n, (FAST)

y′ = εG(x,y), x ∈ R
m (SLOW)

with 0 < ε << 1.

A global bifurcation analysis of the fast subsystem, taking the slow variables

as parameters, gives the structures that matches the different observed patterns that

arise from biological membrane systems. In this case ε represents the ratio of fast/slow

system time scales. There are some common denominations for these burst patterns.

A more detailed description is given in [105]. Here we only mention the main char-

acteristics of square and elliptic bursting.

3
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• Square bursting: It presents a square-like wave (Figure 2.1B, right). It is

based on a bistability of a steady state and a repetitive firing state in the fast

subsystem and periodic switching between the two (Figure 2.1B, middle).

• Elliptic bursting: It involves a subcritical Hopf bifurcation in the fast subsys-

tem. Bursting involves slow switching between a steady state and a repetitive

firing state that are bistable in the fast subsystem (Figure 2.1D, middle). The

silent phase exhibits damped or growing oscillations (elliptic) as its trajectory

passes through the Hopf bifurcation point (Figure 2.1D, right).

So, neurons are modeled by fast-slow dynamical systems and we simulated its

behavior in a network by a system of coupled differential equations. By analyzing this

system we expect to gain some insight about the dynamics of neurons when they are

interacting in its natural environment. Event thought the analysis of these dynamical

systems can be described in a generic way, we have borrowed some terminology from

neurophysiology to describe it.

Remark 1.

The bifurcation diagrams of the fast subsystem in this chapter and chapter 3

were computed using the program XPPAUT by Ermentrout [21]. It uses AUTO,

written by Doedel, to do continuation of parameters.

We consider a system of two synaptically coupled Hodgkin-Huxley type neurons

and we intend to study its dynamical behavior. The system models the collective

behavior of two neuron cells coupled through synapses whose actions potentials are

due to release of neural transmitters. Quantitatively, the synapse is approximated by

a Heaviside function. An individual cell here presents a chaotic dynamics and has

solutions with distinct patterns that appear in two time scales, called bursting. In

this part, each of the systems is assumed to be identical to other, and individually

it presents the typical square bursting as described by Rinzel [68], Terman [98] and
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Figure 2.1: Left: Bifurcation diagram of periodic and steady state solutions to fast
subsystem (FAST) with slow variables as parameters. Maximum and minimum of
periodic solutions are plotted. Unstable solution indicated by short dashes. Center:
Schematic representation (thick curves) of slow waves, bursts or continuous spiking
trajectory as projected on bifurcation diagram of the corresponding left panel. Right:
Time course of a fast variable for the corresponding center panel. Homoclinic bifur-
cations (HC) and Hopf bifurcations (HB) are also indicated. This figure was adapted
from Fig. 1 and Fig. 2 in [68].
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Sherman and Rinzel [78]. It was known [98] that at certain parameter range, some

chaotic characters of solutions occur. However when two identical chaotic systems

are coupled together, there are many possibilities. They could either synchronize

into an in-phase solution or an out-of phase solution, or neither, depending on the

parameter range and the method of coupling. For example, Sherman and Rinzel [78]

showed two neurons with diffusive coupling (gap junction in neuroscience terms) may

have a much longer active phase of high frequency oscillations than a single neuron

of the same property. There were intensive studies of diffusively coupled regular or

chaotic neurons available in the literature but they are out of the scope of our study.

The mathematical study of synaptically coupled cells started from the Fast Threshold

Modulation Theory, initiated by Somers and Kopell [82]. Rubin and Terman [73] had

also described in detail how to analyze the synchronization of neurons by a geometric

method for differential equation. Some recent studies can be found in [17] and [20].

We study a synaptically coupled system of two identical Hodgkin-Huxley type

neurons . When there is no coupling or weak coupling, the systems appear with a focus

in chaotic behavior and unsynchronized. But when the synaptic coupling strength is

large enough, the systems will be regular and synchronized. The phenomenon was

observed by Abarbanel et al and was confirmed by calculating Lyaponov exponents

in [1]. Through analyzing its fast and slow manifolds, we provide the underlining

mechanism of this phenomenon from a different perspective. Regularizing chaotic

cells can also be possible by an averaged coupling in [74] which is not related to our

study.

We organized this section in the following way: In Section 2.2, we start with

general assumptions and discuss the individual behavior of a single system. In Sec-

tions 2.3 and 2.4, we consider the dynamical behavior of the systems with a coupling

that leads to synchronization and regularization. A brief discussion is in Section 2.5.
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2.2 General Assumptions on Individual Neuron

For simplicity, we assume that individual neurons are identical in our case. In

our model, motivated by Hodgkin-Huxley equation (or its variation such as FitzHugh-

Nagumo model, Hindmarsh-Rose model) [68], the intracellular membrane potential

and currents of neuron satisfy the differential equations:

v′ = f1(v, w, y) (2.1a)

w′ = f2(v, w, y) (2.1b)

y′ = εg(v, w, y). (2.1c)

The sub-system containing the first two equations (2.1a-2.1b) is called the fast sub-

system (FS). The last equation (2.1c) is called the slow equation. We assume

(H1) The set of steady states of (FS) consist of an S-shaped curve of y in (v, y)-

plane denoted by S. There exists yλ and yρ such that the number of steady

states of (FS) equals to 1 as y ∈ (−∞, yλ), equals to 3 as y ∈ (yλ, yρ), equals

to 1 as y ∈ (yρ,∞). Denote the right knee (located on the lower branch) by

Pρ = (vρ, wρ, yρ) and left knee on upper branch Pλ = (vλ, wλ, yλ). We also

denote the upper, middle and lower branch of S by U,M,L.

(H2) We further assume that the lower branch L consist of stable steady states for

(FS) and the middle branch consist of steady states which are saddles for (FS).

The upper branch is more complicated than the cases considered in Terman [98].

For two intervals yb ≤ y < yh and yH < y ≤ yB, there exists one-parameter

families of periodic solutions of FS, denoted by P1 and P2 respectively. Both P1

and P2 have a Hopf bifurcation point at one end, and they both terminate at

a homoclinic orbit from saddle points at the middle branch. These homoclinic
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points are denoted as ph = (vh, wh, yh) and pH = (vH , wH , yH). See Figure 2.2.

Both P1 and P2 are stable for (FS) with y-fixed.

−1 0 

−2

0

2.5

inj

v

P
1

Pρ

yλ y
h

y
b yρ

P
2

U

M

L

Pλ

Figure 2.2: Bifurcation diagram of the Fast Subsystem (FS) for Equation 2.2

(H3) For slow dynamics, the y-dependent nullsurface N ≡ {(v, w, y)|g = 0} intersect

the curve S at a unique point below ph and further down M towards Pρ, and

N is quite close to Pρ in distance. As typical, U ⊂ {g < 0}, P1(t) ⊂ {g <

0} and P2(t) ⊂ {g < 0} while L ⊂ {g > 0}. We assure the point Pρ is

nondegenerate described as follows [49]. Let F = (f1, f2). Then DFx(Pρ)

has one negative eigenvalue and one zero eigenvalue. Further, Let η, χ be the

eigenvectors corresponding to the zero eigenvalue of DxF (Pρ) and (DxF (Pρ))
T ,

we have < χ,DxF (Pρ) > 6= 0 and < χ,DxxF (Pρ)(η, η) > 6= 0. Assumptions on

Pλ are similar. Geometrically, it implies that Pρ and Pλ behave like parabolas.

We also assume that there exists a unique stable trajectory rρ such that rρ(t) →

Pρ as t→ −∞ and rρ(t) → P2(t) as t→ ∞ for (FS). Similar assumption holds

for Pλ.

With the assumptions given above, the behavior of a single cell is well under-

stood by Terman [98] and Lee and Terman [49]. We introduce two basic results.



9

Theorem 1 (Terman [98] and Lee and Terman [49]). Assume H1-H3 hold for Equa-

tion 1. There exists εi → 0+ as n → ∞ and δi ≤ Cie
−k/εi, the periodic bursting

solution that alternates between L and P2, is uniquely determined and asymptotically

stable for all ε > 0 except for ε ∈ ∪i(εi − δi, εi + δi).

The bursting solutions mentioned above are regular solutions without chaotic

motions. In cases of our interest, the solutions behave chaotically. In previous study

of Terman [98], the null function g(v, w, y) is linearly dependent on a parameter k,

that is glucose level in pancreatic model. The parameter k can be adjusted such that

when k is small, Equation 2.1 gives rise to regular bursting solutions and when k is

above a certain value, Equation 2.1 has continuous spikes. In the (ε, k)-plane, there

is a wedge region where the corresponding Poincaré Mapping induced by Equation

2.1 presents a Fibonacci dynamics that characterizes the chaotic dynamics.

Theorem 2 (Terman [98]). Assume H1-H3 hold for Equation 1. The chaotic bursting

solutions exist for all ε > 0 and for k = k(ε). There exists an integer N = N(ε) and

real numbers {kj}, 1 ≤ j ≤ N(ε) with kj ≤ kj+1 such that for k ∈ [k2j, k2j+1] the

return mapping π(k, ε) near the lower branch of the steady state of the fast subsystem

at y = yH gives rise to a j-Fibonacci dynamics.

Several neuron cells have those characters we mentioned above. For exam-

ple, Morris-Lecar model [98] and Hindmarsh-Ross model (HR) [1] all satisfy the

assumptions mentioned earlier. In this study, we will investigate HR (a prototype

for Hodgkin-Huxley theory) numerically using XPPAUT software to motivate our

study of coupled systems. The biological meaning of the assumptions were carefully

explained in [98] and [78]. The variable v represents the intracellular membrane po-
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tential, the variable w is recovery variable and y is inward current. The parameter

Inj is the injected current into the neuron:

v′ = w + φ(v) − y + Inj

w′ = ψ(v) − w,

y′ = −ε(y + S(v − c))

(2.2)

where Inj = 3.281, ε = 0.0021, c = −1.6, S = 4.0, φ(s) = 3s2 − s3, ψ(s) = 1 − 5s2.

The initial values are set at v = 0, w = 0, y = −2. Figure 2.3 shows a chaotic bursting

trajectory of Equation 2.2.

-2

-1

0

1

2

3

v

1000 1200 1400 1600 1800 2000
t

Figure 2.3: A chaotic trajectory of Equation 2.2

2.3 Coupled Oscillators

There are a number of ways by which neurons can communicate to each other.

Two most common mechanism are diffusive coupling (gap junction) or synaptic cou-

pling through neural transmitters. Roughly speaking, a diffusive coupling models a
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direct electric connection through two neurons, and synaptic coupling describes the

connection through release of neural transmitters at synapse terminals when other

neurons activate.

Motivated by the work of Somers and Kopell [82] and Abarbanel et al[1], we

consider the coupled systems:

v′1 = f1(v1, w1, y1) + α(−v1 − Vc)H(Xc + v2)

w′
1 = f2(v1, w1, y1)

y′1 = εg(v1, w1, y1)

v′2 = f1(v2, w2, y2) + α(−v2 − Vc)H(Xc + v1)

w′
2 = f2(v2, w2, y2)

y′2 = εg(v2, w2, y2).

(2.3)

We denote U1 = (v1, w1, y1), and U2 = (v2, w2, y2). The constant parameter α > 0

represents the strength of the coupling. Reminding that L is the lower branch of

the single cell. For U1 ∈ L,U2 ∈ L, we have (−v1 − Vc) > 0, (−v2 − Vc) > 0

and therefore the couplings are excitatory [82]. The function H(·) is the Heaviside

Function and (−Xc) is the threshold. Although the discontinuous Heaviside Function

is used, systems with smoothed version of H yield to similar results.
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We study first the numerical solutions of the coupled HR model

v′ = w + φ(v) − y + Inj − α(v + 1.4)H(V + 0.85)

w′ = ψ(v) − w

y′ = −ε(y + S(v − c))

V ′ = W + φ(V ) − Y + Inj − α(V + 1.4)H(v + 0.85)

W ′ = ψ(V ) −W

Y ′ = −ε(Y + S(V − c))

(2.4)

where all conditions in Equation 2.2 hold and initial conditions V = 0,W = 0.2, Y =

−3.02. The coupling strength α is set at 0.2. We find that the solutions will quickly

synchronize into a bursting solution that is regular and attracting, as shown in Figure

2.4. The simulations for Equation 2.4 suggested that the behavior of solutions, with

a strong coupling α > α0, will result in regular periodical bursting, and solutions of

different initial positions will synchronize as t goes to infinity.

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

V

1000 1200 1400 1600 1800 2000 2200
t 

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

V

1000 1200 1400 1600 1800 2000 2200
t 

Figure 2.4: Convergence to a periodic regular bursting solution
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We denote the family of solutions Sα(y) to be the steady states of (FS) for the

synchronized system Equation 2.5

v′ = f1(v, w, y)− α(v + Vc)

w′ = f2(v, w, y)

y′ = εg(v, w, y).

(2.5)

The numerical calculation of the bifurcation for (FS) of Equation 2.5 indicated

that when α > α−
0 , the family of periodic solutions P1 and P2 will be detached from

the middle branch and will merge into one continuous branch Pα. The periodic family

Pα will start from one Hopf bifurcation and terminate at another Hopf-bifurcation at

its upper branch at y = yb and at y = yB, as shown in Graph 2.5.

−0.8 0

−1.5

0v

Inj

Pλ
α

Pρ
α

yλ yb yρ

Pα

Lα

Mα

Uα

Figure 2.5: The bifurcation diagram of (FS) for Equation 2.5 for the particular ex-
ample of (HR, Equation 2.2, α = 0.2, Vc = 1.4

We denote the upper branch of the new bifurcation diagram Uα and the lower

branch Lα. We now state our final two assumptions.

(H4) Suppose that there exists a unique value α0 such that as α → α−
0 , both yh and

yH collapse to each other. If α > α0, then the family of periodic solution Pα

will be separated from the middle branch.
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(H5) The coupling strength α is chosen so that the left knee P α
λ is between the gap

of P1 and P2 i.e., yh < yα
λ < yH . This restricts the value α of coupling strength.

2.4 Synchronization to Regular Bursting Solutions

We denote F to be the union of all fast manifolds from L to U or P2, and from

U or P2 to L for Equation 2.4. Similarly, let Fα be the union of all fast manifolds

from Lα to Uα or Pα, and from Uα or Pα to Lα for Equation 2.6.

Theorem 3 (Main Result. Su, Perez and He). Suppose H1-H5 hold. There exists a

periodic solution U(t, ε, α) with period T (ε, α) for Equation 2.3 such that

(1) dist(U(t, ε, α), L ∪ F ∪ Pα ∪ Uα ∪ Fα) = O(ε), and limε→0 T (ε, α) = T0(α) > 0.

(2) there exits δ > 0, t0 > 0 such that when any pair of coupled bursting solutions

(vi, wi, yi), i = 1, 2 with initial conditions satisfying

|(v1, w1, y1)(0)− (v2, w2, y2)(0)| ≤ δ, |(vi, wi, yi)(t)−U(t+ t0, ε, α)| ≤M0e
−c0t

for t > t0, i = 1, 2, i.e. both bursting solutions synchronize to the periodic

solution U(t, ε, α) with a time shift t0.

An Outline of Proof for Theorem 3. Analyzing the solutions, we note that the slow

manifold L is stable with respect to (FS). Namely, The linearized operator of (FS)

near L has two negative real eigenvalues except near the right knee for Equation 2.1.

For yα
b ≤ y ≤ yα

B, the branch Uα(y) is circled by Pα(y) from outside. Along both

sections of Uα(y) to the left and to the right of Pα(y), the operator from (FS) of

Equation 2.5 has a pair of complex eigenvalues of negative real parts, except for the

left knee P α
λ . For the periodic branch Pα, the Floquet multiplier are 1 and µ, |µ| < 1.

We use the classical results from Fenichel [27] to assert the existence of invariant

manifolds near the slow manifold and only analyze the flows within the neighborhood
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of the invariant manifolds L,Uα and Pα. Note that the solutions follow L rather than

Lα because H ≡ 0 when both cells are in lower branch.

We start both solutions of Equation 2.3 at different initial points at the lower

branch L. Without loss of generality, let U1(t)|t=0 be at the right knee Pρ and (y1(t)−

y2(t))|t=0 = z > O(
√
ε), z = O(α) is independent of ε. Further y2(t)|t=0 is to the

right of P α
ρ , the right knee of the bifurcation diagram in Equation 2.5 with α > 0.

Because this is a restrictive condition on the initial position difference, our result is

a local synchronization.

Since the nature of the coupling there is excitatory, in the terminology of Somers

et al [82], both trajectories will move up to the periodic family Pα through the fol-

lowing sequence of events.

(a) For 0 ≡ t1 ≤ t ≤ t2(ε) = t1 + O( 1√
ε
), U1(t) ∈ N(F ) i.e., within the ε-

neighborhood of L and v1 ≤ (−Xc) while U2(t) ∈ N(L), i.e. the solution

U1 leaves the right knee and moves up along the fast manifold F (discussed

earlier, and also see [57] ) but it is still below the threshold (−Xc) to influence

the second neuron; the second solution U2 remains the lower branch for the time

being.

(b) For t2 ≤ t ≤ t3(ε) = t2 + O( 1√
ε
), U1(t) ∈ N(F ∪ P2) and v1(t) > −Xc, while

U2(t) ∈ N(F ) but v2(t) < −Xc below the threshold i.e., the solution U1 goes

past the threshold and eventually reaches P2 the family of periodic solutions on

the upper branch of unexcited equation. The second solution U2 leaves from

the lower branch to move up to the fast manifold F , because U2 gets excited

after U1 goes above the threshold.

(c) For t3 ≤ t ≤ t4(ε) ≤ t3+O(1), while U2(t) ∈ N(F ) and v2(t) > −Xc is above the

threshold, U1(t) jumps away from N(P2) and goes to N(Pα), the new periodic

family of the synchronized system.
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(d) For t4 ≤ t ≤ t5(ε) ≤ t4 +O(1), U1(t) stays within N(Pα), while U2(t) ∈ N(Fα)

and U2(t5) ∈ N(Pα) i.e., the solution U2 jumps to the family of periodic solutions

on the upper branch of excited equation.

(e) Finally as t > t5, both U1(t) and U2(t) settle on Pα, then |y1(t5) − y2(t5)| =

z +O(
√
ε). Note U1(t) and U2(t) can switch positions during the jump [82].

We remark that when the solutions move along the slow manifolds L, Pα, Uα, the

time difference between the solutions is invariant, because the systems are decoupled

and the two neurons are identical systems. However the time difference between

U1 and U2 has certainly changed substantially during the jump up and jump down

between slow manifolds via a fast manifold F , even though the phase difference in

y-value remain invariant (up to a precision of O(
√
ε)). We now calculate the time

difference by tracking the dynamics on slow manifolds (the lower branch, the upper

branch as well as the periodic family).

For the lower branch, the slow dynamics satisfies the equation:

(v, w)(y) = L(y),

y′ = εg(L(y), y),

(2.6)

the time difference in the lower branch is ∆T =
∫ yρ

yρ−z
1

εg(L(y),y)
dy where yρ is the

parameter value for the right knee. Then on the slow manifold along the periodic

family Pα, around the upper branch of the excited equations, we use the averaging

method [76] to get the slow dynamics for y:

(v, w)(y) = Pα(t, y)

y′ = εg(P̄α(y), y) +O(ε2),

(2.7)
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where the average motion P̄α(y) = 1
π(y)

∫ π(y)

0
Pα(t, y) dt is the averaged over the period

π(y). Then the time difference on the periodic branch can also be similarly determined

as ∆T ′ =
∫ yρ−z

yρ

1
εg(P̄α(y),y)

dy.

We now consider that both U1 and U2 move along Pα while maintaining time

difference invariant and eventually enter Uα, the upper branch to the left of Hopf

bifurcation point. They will come near the left knee point P α
λ . Either U1 or U2 will

lead the way as they go through the left knee and eventually jump down to the lower

branch L in a similar scenario as in the jumping-ups of U1 and U2. The reason of

jumping downs, however, is different. The couplings there are not excitatory. When

one falls below −Xc, the other one is near the left knee of Uα and now follows Fα and

then F . Because of H3 and H5, both U1 and U2 will move down to the only stable

steady state L.

Similarly, we can calculate from the invariant time difference ∆T ′′ = ∆T ′ when

traveling along the upper branch Uα to obtain a horizontal phase difference z̃ at the

left knee. Also, ∆T ′′′, the time difference traveling along the lower branch L can

be calculated from the horizontal phase difference z̃, because the phase difference is

invariant during jumping down.

Now, we summarize by calculating the change of time difference between two

neurons for one loop. We note that during the jump, the y-difference is invariant

(up to an error of O(
√
ε)), and when traveling in upper or lower branches, the t-

difference is invariant. Let the initial difference z be sufficiently small, we have ∆T =

( 1
εg(L(y),y)

|y=yρ
)z + h.o.t, ∆T ′ = ( −1

εg(P̄α(y),y)
|y=yρ

)z + h.o.t, Then the time difference

of ∆T will translate into the phase difference of z̃ at the left knee ∆T ′ = ∆T ′′ =

( −1
εg(Uα(y),y)

|y=yλ
)z̃ + h.o.t and the final time difference after returning to L is ∆T ′′′ =

( 1
εg(L(y),y)

|y=yλ
)z̃ + h.o.t. We note here that because of the Heaviside function type
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coupling, the systems are decoupled if they are both in L or Uα and Pα, ∆T ′ = ∆T ′′,

this is simpler than the direct or indirect synapse cases studied by Terman et al [101].

Therefore we drive the ratio of time difference

∆T ′′′

∆T
=

∆T ′′′

∆T ′′
∆T ′′

∆T ′
∆T ′

∆T
=
g(Uα(y), y)|y=yλ

g(L(y), y)|y=yρ

g(L(y), y)|y=yλ
g(P̄α(y), y)|y=yρ

+ h.o.t. ≡ σ (2.8)

When the null surface of g is close to either the right knee of the lower branch

L or the left knee of upper branch Uα, the numerator g(Uα(y), y)|y=yλ
g(L(y), y)|y=yρ

is small and σ < 1. We derive that given any two solutions of initial difference z ≤ z0,

their time difference will decrease and ∆T (t) = O(σ
t

πα ) where πα = O(1/ε) is the

time duration for traveling on slow manifold L, Pα and Uα once.

Remark: We only discussed simplest scenario in local synchronizations, while

there are other possible cases of synchronizations. However it does not necessarily

hold global synchronization. It is also possible the two cells are synchronized but the

spikes are completely out of phase. On the other hand, the analysis can be carried

to a network of N-neurons, the implication there is that all neurons will form several

clusters if they are not completely synchronized. The number of cluster will depend

on the coupling strength α [102], [73].

2.5 Discussion

We are interested in the dynamic patterns that arise during the transition from

unsynchronized chaotic actions of neurons to ultimately synchronized regular neu-

ronal activities as we increase the strength of the synaptic coupling. Some numerical

experiments suggested the neurons become regular first as we increases the coupling,

and then become synchronized. See Figure 2.6 for unsynchronized bursting solution,

when α = 0.05 in Equation 2.4. It is partially understandable that the parameter
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Figure 2.6: For some medium coupling strength, there are regularized bursting solu-
tions of Equation 2.4. The coupling strength is not strong enough to synchronize the
solutions.

region for chaotic behavior to occur, U1 is regular but U2 is still chaotic, in a single

neuron is relatively narrow. However, this behavior involves some transient dynamics

that cannot be entirely determined by one neuron alone, the chaotic behavior for

coupled systems remains an open question. We plan to further study the transitional

range and the evolution of the dynamical behavior of the system of coupled neurons.

These results were published in [94].



CHAPTER 3

EFFECT OF NOISE ON ELLIPTIC BURSTERS

3.1 Background

The main characteristics of the noisy and deterministic elliptic bursters are well

described in Su et al. [92] and from there we extracted the most relevant facts about

them.

In several brain areas, neurons have been observed experimentally to engage in

a rhythmic pattern of behavior referred to as elliptic bursting. In elliptic bursting,

neuronal activity alternates between active phases, characterized by large amplitude

oscillations, and quiescent phases, associated with oscillations of much smaller am-

plitudes (see Figure 3.2). Neuronal examples are given in the context of thalamic

sleep rhythms and other neuronal systems in [14, 15, 16, 36, 44, 50, 70, 75, 72, 104].

We study a model of elliptic bursting proposed by Rinzel [68] and considered pre-

viously both by numerical simulation and by fast-slow dissection in a singular limit

[68, 70, 105].

The complications involved in such systems are related to a dynamical phe-

nomenon known as delayed bifurcation or delay of stability loss, defined by Arnold [4].

Solutions stay close to a quasi-steady state as the O(ε)-slow variable passes through

a threshold where linear stability is lost. Subsequently, after a substantial O(1) delay,

solutions jump away from quasi-steady state. These issues have been studied by many

authors [2, 4, 5, 9, 10, 18, 19, 23, 24, 25, 28, 34, 36, 37, 38, 39, 46, 47, 48, 53, 29, 57, 59,

60, 61, 62, 63, 64, 77, 80, 83, 86, 87, 88, 89, 90, 91]. When a system can be reduced to a

homogeneous system (i.e., zero is an obvious solution), the delay can be attributed to

20
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a simple contraction of solutions. But in general, more conditions are required for de-

lay. In fact, in the case of slow passage through a simple eigenvalue bifurcation where

contraction is also present, the amount of delay can be rather small and may vanish

as the slowness goes to zero, as shown in examples by Lebovitz [47, 48], Ahlers [2] and

Kapila [39]. The delay in slow passage through a Hopf bifurcation is generically more

significant for systems that are analytic in complex time, as shown by Shishkova [80],

Neishtadt [59, 64] and many others [5, 19, 28, 80, 83, 86, 87, 88, 89, 90, 91]. Even in

this case, however, the amount of delay still relates to many factors, such as nearby

singularities and, if external forcing is present, the difference between intrinsic and

forcing frequencies [5, 64, 89, 90, 91]. When noise is added, numerical computations

[5, 107] and asymptotic methods [43, 44] suggest that the amount of delay is signifi-

cantly reduced. These results may explain why delay has not been observed in certain

noisy environments [38].

When the delayed bifurcation is incorporated into a fast-slow system to model

bursting phenomena, repetitive behavior is expected. In fact, for a similar system

involving delayed bifurcation, Schecter [77] proved that the Poincaré map contains

a fixed point. When noise is introduced, its dynamics changes very drastically, very

different from the noisy relaxation oscillators analyzed in [6] where there is no delay

in the deterministic system. Some canonical models were proposed by Izhikevich

in [37]. A study of Kuske and Baer [44] introduced noise of Brownian motion type

into an elliptic bursting system. Depending on the amplitude of the noise, it was

found that there are regular patterns of alternations between a long active phase

and a long silent phase, regular patterns of alternations between short active and

silent phases, as well as irregular patterns of alternations of phases with various time

durations (see in particularly Figure 3.2 (e-g) of Kuske and Baer [44]). When the

noise amplitude is set to be extremely close to zero, the irregular patterns give way
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to a pattern that strongly resembles deterministic elliptic bursting. But even with a

noise of quite small magnitude, the irregularity is significant. Kuske and Baer [43, 44]

determine that this irregularity follows from random variation in the delay of stability

loss, based on an asymptotic approximation of the probability density function for

the state of the system in the silent phase and an asymptotic analysis of the effect

of noise on transitions out of the active phase. The phenomenon is similar to noisy

dynamic pitchfork bifurcation studied earlier by Stocks, Manella and McClintock [83],

Swift, Hohenberg and Ahlers [95], Berglund and Gentz [7, 8]. In particular, Berglund

and Gentz [7] have given a rigorous analysis for various situations, depending on the

amplitude of noise.

For noisy elliptic bursters, bursting patterns depend on random variations as-

sociated with delayed bifurcation. The duration of the delay, and consequently the

durations of active and silent phases, is shown to be closely related to the logarithm

of a distance function that is nearly Gaussian and proportional to the amplitude of

the noise.

The phenomenon to be discussed here is different from the chaotic behavior

caused by different initial positions of the deterministic dynamics. Rather, the ir-

regular patterns are derived from solutions with the same initial position, as noise

properties are varied. Further, solutions with different initial positions behave in

similar ways.

In Section 3.2, we state general assumptions on an elliptic bursting model with-

out noise and state the existence result for deterministic bursting solutions. In Sec-

tions 3.4 and 3.5, we can find the dynamical behavior of the system with noise and

a relationship between the bursting patterns and the amount of delay due to the

slow passage through a Hopf bifurcation. The amount of delay will be random but is

closely related to a normal distribution.
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3.2 General Assumptions and Results on Elliptic Bursters

Our assumptions on the elliptic bursting model are quite general. Following

Rinzel [68] and Wang and Rinzel [105], assume the variables v (e.g., the voltage across

a membrane), w (e.g., the activation of a fast ionic current through the membrane),

and y (e.g., the activation of a slow ionic current) satisfy the differential equations

v′ = f1(v, w, y), (3.1a)

w′ = f2(v, w, y), (3.1b)

y′ = εg(v, w, y) (3.1c)

where 0 < ε≪ 1 and f1, f2, g are smooth (see (H4) below). The corresponding system

with ε = 0 is called the fast subsystem (FS). Equation 3.1c is called the slow equation

(SE).

Assume for the System 3.1 that

(H1) There exists an interval [yλ, yρ] of y-values on which the set of equilibria

of (FS) is a curve of the form S = {Uy ≡ (v0(y), w0(y), y) | yλ ≤ y ≤ yρ}.

(H2) (FS) features a subcritical Hopf bifurcation along S, at pH = (vH , wH, yH),

yλ < yH < yρ, with a corresponding saddle-node of periodic orbits for y = yr ∈

(yH , yρ). The outer periodic solutions, which we denote as Py(t) for each y, are stable,

while the inner ones are unstable (see Figure 3.1). The family P ≡ {Py(t) | yh ≤

y ≤ yr} terminates at y = yh < yH (possibly in a homoclinic orbit or in another

Hopf bifurcation point). Our analysis will assume that trajectories do not enter the

vicinity of yh. For simplicity, we assume that there are no attractors other than S

and P .

(H3) There exists a yR > yr such that for y ∈ (yλ, yR), the equilibrium curve S

belongs in the region {g < 0}. Along each periodic orbit Py, the motion of y follows
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Figure 3.1: Bifurcation diagram for the fast subsystem (FS) of equation (3.1). This
particular example was generated numerically from the Wu-Baer model for dendritic
spine activity, as discussed in [44] (with parameters given in Figure 3.1 of [44])

an averaged equation derived from (SE). Specifically, we have y(t) = y0(t) + O(ε),

with y0 a solution of the averaged equation y0
′ = εĝ(y0) defined later, and ĝ(y) > 0

for each y ∈ [yh, yr], we further assume ĝ(y) > 0 for the inner periodic branch when

y is near yr, which will prevent canard phenomena.

Remark 2.

Define the y-nullsurface N ≡ {(v, w, y) | g = 0}. This may intersect S at y > yR,

or not at all (as in [44]). In fact, the results below will hold if N intersects S at some

y sufficiently far below yH , as in [70, 72]. We will comment specifically on this case

in Remark 4 below.
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We make some additional assumptions that are necessary for delayed bifurcation

problems. These assumptions are satisfied by the FitzHugh-Nagumo equations and

by other neural models under consideration [5, 15, 16, 43, 44, 69, 70, 86, 87].

(H4) The vector functions f = (f1, f2)(v, w, y) : R3 → R2 and g = g(v, w, y) :

R3 → R have analytic extensions in (v, w, y) ∈ C3 for |(v, w)| < σa, |y| < ra in the

complex norm for some σa, ra > 0.

(H5) For each fixed y ∈ (yλ, yρ), the equilibrium curve (v0(y), w0(y)) is analytic

in y ∈ C for |y| < ra.

Now, consider the variational equations of (FS) about (v0, w0)(y), namely

zt = f(v,w)((v0, w0)(y), y)z (3.2)

a linear system with coefficients depending on the parameter y.

Let A(y) = f(v,w)((v0, w0)(y), y).

(H6) Assume that two eigenvalues of A(y), denoted by ξ1(y) and ξ2(y), are

complex conjugate to each other i.e., ξ2(y) = ξ̄1(y) for each y on the real axis and

|y| < ra. Further, near the Hopf bifurcation point yH , Reξj(y) < 0 when y > yH and

Reξj(y) > 0 when y < yH. To distinguish the two, we assume that Imξ1(yH) < 0.

We further assume a transverse crossing occurs, so that −dReξj (y)

dy
= a2 > 0 at yH .

We define an elliptic bursting solution to be a trajectory that alternates between

active phases spent in a certain neighborhood NP of P , where it undergoes large

amplitude oscillations, and silent phases spent in a certain neighborhood NS of S,

where it undergoes small amplitude oscillations. Examples are shown in Figure 3.2.

Under the assumptions (H1)-(H6), we have the existence of elliptic bursting

solutions to (3.1).
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Figure 3.2: (a) (upper). Deterministic elliptic bursting in the Wu-Baer model with
parameters from [44] but ε = .003. Note that the y-nullsurface does not intersect S
in this model. (b) (bottom). The invariant region SH .
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Theorem 4 (Elliptic bursting). a. There exists ε0 > 0 such that the flow induced

Poincaré map for equation (3.1) possesses an invariant region SH , consisting of el-

liptic bursting solutions, for 0 < ε ≤ ε0. More specifically, SH is a 2-dimensional

ring-shaped invariant region containing PyH
, and further SH is an absorbing set.

b. Each loop time Tε, that is the time for an elliptic bursting solution to undergo

any complete loop from entry into NS, to entry into NP , to re-entry into NS, can

be calculated as Tε = T1 + T2 + η(ε), where T1, T2 are O(1
ε
) times associated with

passage through the silent and active phases, respectively (see equations 3.12) , and

limε→0+ εη(ε) = 0.

c. Fix any elliptic bursting solution (v̂, ŵ, ŷ) and time t1 such that (v̂, ŵ, ŷ)(t1) ∈ SH .

When ε ≤ ε0, for any δ > 0 sufficiently small and any solution (v, w, y) of equation

(3.1) such that (v, w, y)(0) ∈ SH and therefore y(0) = ŷ(t1) = yH, there exists an

M = M(ε0) > 0 such that

|y(t) − ŷ(t+ t1)| ≤ δ (3.3)

for the time duration 0 ≤ t ≤ ( δ
Mε| ln ε|)(T1 + T2 + o(1

ε
)), corresponding to an ( δ

Mε| ln ε|)

number of elliptic bursting cycles. Therefore, elliptic bursting solutions are at least

metastable.

3.3 Analysis of Deterministic Elliptic Bursters

To understand the dynamics of equation (3.1), we construct neighborhoods NS

for the equilibrium curve S and NP for the periodic family P . We use (x, y, z) as the
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set of new variables in a cylindrical domain diffeomorphic to that of equation (3.1)

within NS. Let M > 0 be a constant, and let

D = {(x, u, y) | x2 + u2 ≤ (Mε)2, |y| ≤ 1},

DL = D ∩ {y = −1},

DS = D ∩ {x2 + u2 = (Mε)2},

DR = D ∩ {y = 1}.

Let E3 denote (v, w, y)−phase space. The projection πy : E3 → E1 is given

by πy(v, w, y) = y. We define that φ : R3 → E3 is a y-homeomorphism if φ is a

homeomorphism and πyφ(x1, u1, y1) ≤ πyφ(x2, u2, y2) when y1 ≤ y2.

3.3.1 The Steady Branch and its Dynamics.

The trajectories of the solutions near the steady branch S can be described as

follows.

Proposition 1. There exists εS > 0 and M(εS) > 0 such that for 0 < ε ≤ εS, there

exists a y-homeomorphism φS : D → E3 for which NS ≡ φS(D) forms a neighborhood

of the steady branch S with the following properties:

a) S ⊂ NS, and the Hopf bifurcation point yH corresponds to z = 0 at the center

of the tube D,

b) NS ⊂M− ≡ {g < 0},

c) πy(φS(DR)) = yρ,

d) if γ(t0) ∈ φS((∂D \DR)∩{z > 0}) is on the boundary of NS at y = y0 > yH ,

then γ(t) enters and remains within NS in forward time until it exits NS with y =

y0 < yH at a time T1 +O(ε), where both y0 and the time duration T1 are functions of

y0.
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To make the system 3.1 more manageable we introduce some change of variables.

We make the change of variables x̂ = v−v0(y), û = w−w0(y), which translates

the steady branch S to the origin of (FS) for each y, and then diagonalize the system,

using (x̂, û) = B(y, ε)(x, u). Near the steady branch, equation (2.1) thus becomes

x′ = ξ1(y)x+ g1(x, u, y) + εh1(y, ε), (3.4a)

u′ = ξ̄1(y)u+ g2(x, u, y) + εh2(y, ε), (3.4b)

y′ = εg[(v0(y), w0(y)) + B(y, ε)(x, u), y] = −εg3(x, u, y, ε) (3.4c)

where B(y, ε) is a diagonalizing matrix , u = x̄, g2 = ḡ1, and h2 = h̄1, with

g1 = O(ε)x+O(ε2)u+O(|x|2, |u|2), (3.5)

g2 = O(ε)u+O(ε2)x+O(|x|2, |u|2), (3.6)

and hi = O(1). The different orders in equation (3.2) occur because when we di-

agonalize the right hand side of (3.1), a higher order off-diagonal term arises from

differentiation of B(y, ε)(x, u) with respect to y. For slow equation (3.1c), we have

0 < g3 = g4(y, ε) + o(|x| + |u|), which is positive when (x, u) is small by (H3). We

introduce y as the new independent variable and change equation (3.1) into

εxy = −λ1(y)x+ Ĝ1(x, u, y) + εH1(y, ε), (3.7a)

εuy = −λ̄1(y)u+ Ĝ2(x, u, y) + εH2(y, ε). (3.7b)
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The higher order terms satisfy

Ĝ1 = O(ε)x+O(ε2)u+O(|x|2, |u|2), (3.8a)

Ĝ2 = O(ε)u+O(ε2)x+O(|x|2, |u|2) (3.8b)

and Hi = O(1). By (H6), the eigenvalues satisfy Reλj(y) < 0 when y > yH ;

Reλj(y) > 0 when y < yH ; and Imλ1(yH) < 0. Further, a transverse crossing occurs

so that −dReλj (y)

dy
= a3 > 0 at the Hopf bifurcation point y = yH .

There are numerous discussions [2, 4, 5, 7, 6, 8, 9, 10, 18, 19, 23, 24, 25, 28, 34,

36, 37, 38, 39, 39] and [46, 47, 48, 50, 53, 29, 57, 59, 60, 61, 62, 63, 64, 64, 77, 80,

83, 86, 87, 88, 89, 90, 91] on the behavior of solutions to equation (3.7). Most of the

previous work considers how y increase past yH , while in our case, y decreases past yH .

We keep the minus sign in front of λ1 in equation (3.7) to preserve the consistency

of notation with other related works. We summarize some relevant results in the

following theorem.

Theorem 5 ( [60, 61, 86, 87]). Let (x, u)(y, ε) be any family of solutions of equations

(3.7-3.8) with initial conditions that satisfy |(x, u)(yi, ε)| ≤M1ε for yi > yH and some

M1 > 0. Then there exist M = M(M1) > 0, yq = yq(M1,M) < yH, εS = εS(M1,M)

such that

|(x, u)(y, ε)| ≤Mε

whenever yi ≥ y ≥ yq, 0 ≤ ε ≤ εS. Further, if yi is close enough to yH , then yq and

yi satisfy the relationship
∫ yq

yi

Reλ1(τ)dτ = 0. (3.9)
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Remark 3.

The relation (3.9) holds for yi close enough to yH. When yi is away from yH ,

maximal delay phenomena [19] may occur in which yq will no longer decrease as yi

increases. However, such complications do not occur in our situation.

Thus, we can simply choose M1 > 0, find M(M1) and εS(M,M1) from Theorem

3.2, and for any 0 < ε ≤ εS set D = {x2 + u2 ≤ (Mε)2, yl ≤ y ≤ yρ} where yl < yH

is the point satisfying
∫ yρ

yl

Reλ1(τ)dτ = 0. (3.10)

If (x, u, y) enters D at y = y0, then it must exit D at y = y0, where y0 < yH is the

point such that
∫ y0

y0

Reλ1(τ)dτ = 0. (3.11)

The time duration can be calculated from the slow equation (3.4c),

∫ y0

y0

1

g(Uy, ε)
dy = εT1 +O(ε2). (3.12)

With these results in hand, the rest of the argument in Proposition 3.1 follows

easily. In fact, there exists a y-diffeomorphism ψ : D → E3 such that under ψ, the

slow equation has the canonical form

y′ = −ε. (3.13)

Remark 4.

Using Proposition 1, Equation (3.1) can be transformed into a homogeneous

system for (X,U) (see [92]), namely
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εXy = −λ1(y)X +G1(X,U, y, ε), (3.14a)

εUy = −λ̄1(y)U +G2(X,U, y, ε) (3.14b)

where

G1 = O(ε)X +O(ε2)U +O(|X|2, |U |2), (3.15a)

G2 = O(ε)U +O(ε2)X +O(|X|2, |U |2). (3.15b)

Since U = X̄, we write equation (3.10) in the complex form

εXy = −λ1(y)X +G1(X, X̄, y, ε), (3.16)

where G1 has the form G1 = εa(y, ε)X + O(ε2)X̄ + O(X2, X · X̄, X̄2) and equation

(3.16) has an analytic extension into the complex plane z,

εXz = −λ1(z)X(z) +G1(X(z), X̄(z̄), z, ε), (3.17)

where X̄(z̄) is the analytic extension for X̄(ȳ). This will be important in Section 3.5.

3.3.2 The Periodic Branch and its Dynamics.

The behavior of solutions near a family of periodic orbits, terminating at one end

in a Hopf bifurcation and at the other end in a homoclinic bifurcation, was discussed

in detail by Terman [99, 100] (see also Rubin and Terman [72], and note that earlier

results were obtained by Pontryagin and Rodygin ([67]), and we use similar ideas

here.
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Recall that each Py(t) is an asymptotically stable periodic solution. For each

y ∈ (yh, yr), we seek a compact neighborhood of Py(t) in E3 = (v, w, y) phase space.

In particular, let

A = {(x, u, y) : 1 − 2Mε ≤ x2 + u2 ≤ 1 + 2Mε,−1 ≤ y ≤ 1},

AR = {(x, u, y) : 1 − 2Mε ≤ x2 + u2 ≤ 1 + 2Mε, y = 1},

AL = {(x, u, y) : 1 − 2Mε ≤ x2 + u2 ≤ 1 + 2Mε, y = −1},

AS = {(x, u, y) : x2 + u2 = 1 − 2Mε, orx2 + u2 = 1 + 2Mε, −1 ≤ y ≤ 1}.

Proposition 2. There exists εP > 0 and M(εP ) > 0 such that for 0 < ε ≤ εP , there

exists a y-homeomorphism φP : A→ E3 for which NP ≡ φp(A) forms a neighborhood

of the periodic branch P with the following properties:

a) P ⊂ NP and the right knee of P at y = yr is at the right end of NP

corresponding to z = 1; that is, π(φP (AR)) = yr,

b) NP ⊂M+ ≡ {ĝ > 0},

c) πy(φP (AL)) = yλ,

d) if γ(t0) ∈ φP (∂A\AR) is on the boundary of NP at y = y(t0), then γ(t) enters

NP in forward time and remains there until it exits at the right end NP ∩ {z = 1}

at time T2 + t0 + O(ε), where the duration time T2 is determined by the initial value

y(t0).
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The proposition follows from the stability properties of the periodic solutions

of (FS). To apply the averaging method [75], we solve

V ′ = f1(V,W, Y (t)), (3.18a)

W ′ = f2(V,W, Y (t)), (3.18b)

Y ′ = ε
1

τ(Y )

∫ τ(Y )

0

g(Py(s), Y ) ds ≡ εĝ(V,W, Y, ε), (3.18c)

(V,W, Y )(t0) = (v(t0), w(t0), y(t0)) (3.18d)

where τ(Y ) is the period of the periodic solution Py(t) of (FS) with y = Y and

(v, w, y) denotes a solution to equation (3.1).

Remark 5.

Using Fenichel coordinates [27] with NP , we find that the averaged equation

(3.18) can be reduced to the canonical form

r′ = −(r − 1), (3.19a)

θ′ = c(y) > 0, (3.19b)

y′ = εg0(y) > 0. (3.19c)

We shall use this form for the proofs below and for the study of the noisy case.

Remark 6.

The contraction behavior of solutions of equation (3.7) can be characterized by

the following proposition; we will use a stochastic version of this in Section 3.5
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Proposition 3. Assume that (x, u)A and (x, u)B are two solutions of equation (3.7)

on y1 < y < y2, and |(x, u)A(y)| ≤ M2ε, |(x, u)B(y)| ≤ M2ε whenever y1 ≤ y ≤ y2.

Then there exist M3 = M3(M2) > 0, ε0 = ε0(M2) > 0 so that for 0 < ε ≤ ε0,

1

M3
e

−1

ε

R y2
y1

Reλ1(τ)dτ ≤ |(x, u)A(y2) − (x, u)B(y2)|
|(x, u)A(y1) − (x, u)B(y1)|

≤M3e
−1

ε

R y2
y1

Reλ1(τ)dτ
. (3.20)

3.4 General Assumptions and Results on Noisy Elliptic Bursters.

We now turn to the effect of a random force to the elliptic bursters. We consider

the system

dv = f1(v, w, y)dt+ ε2σĥ1(y)dW (y), (3.21a)

dw = f2(v, w, y)dt+ ε2σĥ2(y)dW (y), (3.21b)

dy = εg(Et(v), Et(w), y)dt (3.21c)

where Et(·) is the expected value. The noisy term is modeled in similar terms by

Baer et al. [5], Kuske [43] and Kuske and Baer [44]. The magnitudes ĥi are assumed

to be positive. The Brownian motions W (y) are based on the usual hypotheses:

(1) W (y1) −W (y2) is Gaussian N(0,
√

|y1 − y2|),

(2) W (y1)−W (y2) and W (y3)−W (y4) are independent if intervals which ended

at y1,y2 and y3, y4 are disjoint.

In our problem, the variable y is deterministic. In a recent paper of Berglund

and Gentz [8], a more general problem of noisy dynamic bifurcation with random

slow passage was investigated. When the noise on y-equation is sufficiently small, the

results are proven to be similar to those of deterministic slow passage.

The parameter σ is ranged from exponentially small at O(e−
C
ε ) to O(1) in this

work.
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We consider the dynamic behavior of the elliptic burster under such a noise.

Particularly we are interested in the time durations T1 on the steady branch and T2 on

the periodic branch. As typical for stochastic problems, we discuss problems in terms

of large probability events below. We see that motions near the periodic branch are

not affected much by the noise because the periodic orbits are attracting, although

the time duration T2 does depend on the y value where the trajectory enters NP . A

short T1 will be followed a short T2 and a longer T1 will be followed by a longer T2. In

brief, T1 largely determines T2, as we will show below. The duration T1 spent inside

NS (i.e., the effect of noise on delayed bifurcation) is therefore a key to understanding

the patterns of the elliptic burster.

We note here that the ratio of noise amplitude versus passage speed is quite

crucial to our problem. As indicated by Weinberger and Rosenblat [106], if the

ratio is large, then the dynamics is overwhelmed by noise, there could be advance

in bifurcation rather than delay. For smaller ratio, situations are still very delicate,

as observed in noisy dynamic pitchfork bifurcation [7, 83, 95]. Dynamics is different

when the ratio changes from exponentially small to polynomially small.

We study the time duration T1 through a geometric analysis for the distribution

of the jumping point Yj where the solution exits NS and heads for NP . For technical

reason, we redefine NS to be ε1+γ , 0 < γ < 1/4 neighborhood of S.

We define the jump point Yj to be the first exit point from NS:

Yj(ω) = sup
y≤yr

{y|X(y, ω) ∈ ∂NS}

i.e., X(Yj, ω) ∈ ∂NS and X(y, ω) ∈ NS for Yj < y ≤ yr. We drop ω in the text below

for simplicity.
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Theorem 6 (Main Theorem. Su, Rubin Terman). There exists ε0 such that for

0 < ε ≤ ε0, equation (3.21) possesses bursting solutions for which the loop time

Tε(t) satisfies the relation Tε(t) = T1 + T2 + o(1/ε), where T1, T2 are the times spent

inside NS near the steady state curve S and inside NP near the periodic orbit family

P , respectively. With the exception of some small probability events noted below in

Remark 4.2, the random variables Ti, i = 1, 2 are determined by the jump point Yj

(first exit time from NS) through the relations:

∫ Yj

yr

1

g(U(y), ε)
dy = εT1 +O(ε2) (3.22)

and
∫ yr

Yj

τ(y)
∫ τ(y)

0
g(Py(s), y) ds

dy = εT2 +O(ε2). (3.23)

The jumping point Yj is a random variable, related to a complex distance function

∆ defined as: ∆(y) = εσ
∫ y

yr
Ĥ(s)e

−1

ε

R y
s

λ1(τ)−εa(τ,ε)+O(ε1+γ )dτdW (s) where Ĥ(s) is the

noise variation to be defined in Equation (3.24) below. The “average” jumping point

Ȳj < yH satisfies the formula

∫ Ȳj

yH

Reλ1(y) +O(ε) dy = −ε(lnMεγ− 1

4/σ) = ε lnσ +O(ε| ln ε|).

Further there exist K0 = K0(ε0) > 0, C0 = C0(ε0) > 0 such that for K ≥ K0, ε ≤ ε0,

for cases where Ȳj = yH − O(1),

Prob(|Yj − Ȳj| ≥ Kε) ≤ e−C0K .
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But for cases where Ȳj is very near yH , say Yj = yH −O(
√
ε ln ε), the deviation is of

order
√
Kε and the estimate is revised as

Prob(|Yj − Ȳj| ≥
√
Kε) ≤ e−C0K .

The jumping points are clustered together near Ȳj. Therefore, only when σ ≤ O(e−C/ε)

for large enough C there is a regular pattern of long bursts. When O(1) ≥ σ ≥

O(εn), n ∈ N, there is a pattern of short bursts with a very small probability of long

bursts. When σ falls in range between O(e−C/ε) and O(εn), there is a distribution of

bursts of different lengths.

Remark 7.

To be more specific, when σ ≥ O(εn), n ∈ N, the exit points from NS are

Yj ∼ Ȳj = yH − O(
√

ε| ln(ε)|), located very near the bifurcation point yH , and we

see a short period of large spikes in active phase as well as a short period of small

oscillations in silent phase. When σ ≤ O(e−C/ε), Yj ∼ Ȳj = yH − O(1), and longer

periods in each phase are exhibited. See Figures 3.3a and 3.3b.
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Figure 3.3: (a). Short duration noisy delay when σ = O(εn). The solid curve shows
a trajectory that jumps up extremely close to yH with noise δ = ε = .0005 in the
Wu-Baer model, while the dotted curve shows a deterministic trajectory for the same
parameter values. The dashed curves are the bifurcation curves for (FS); note that
this figure is zoomed in, in the neighborhood of yH , relative to Figures 1 and 2 (b)
Long duration noisy delay when σ = O(ε−

c
ε ). The solid curve shows a trajectory that

has a long duration noisy delay beyond yH with noise δ = 5 × 10−5 and ε = .0005 in
the Wu-Baer model, while the dotted curve shows a deterministic trajectory for the
same parameter values for comparison. The dashed curves are the bifurcation curves
for (FS); The equations were solved with Euler’s method with a time step of dt = .02;
the values of (v, y) were plotted once every 3000 time steps for this figure and (c) A
mixture of long and short delays and burstings. The curve, a trajectory in v versus t,
has a mixture of long and short times in NS for the Wu-Baer model with ε = .0005,
noise δ = .00075. The equations were solved with Euler’s method with a time step of
dt = .05; the values of (v, y) were plotted once every 5 time steps for this figure
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For the values of σ in between O(e−C/ε) and O(εn), the mixed patterns of

different phase lengths are related to a random complex distance whose distribution

is nearly Gaussian, as illustrated in Figure 4c. Note that we write −O(. . .) here

to emphasize the fact that the jump out of NS occurs after y drops below yH , in

all cases. In the statement of the Theorem and in the proof below, we use the

conventional notation and write +O(. . .), even when we know that the higher order

terms are negative.

Remark 8.

The event that equations (3.22) and (3.23) hold is of large probability. There are

small probability events, namely that the trajectories could exit the neighborhood NS

and then come back, that are not considered in equation (3.22); similarly, trajectories

could with small probability exit earlier out of NP than indicated by equation (3.23).

In a similar analysis of Burgland and Gentz [7] for a one dimensional real system,

it was shown that such occurrence is of exponentially small probability when the

amplitude of noise is small.

Remark 9.

Our estimate of Ȳj is consistent with earlier results in [4,52,59] after rescaling,

since our method is applicable to pitchfork bifurcation as well. Detail will be provided

in Section 3.5.

3.5 Analysis of Noisy Delayed Bifurcations and Elliptic Bursters

We use the same linear transformations used to derive equation (3.16) from

equation (3.1) to transform the equation (3.21) into a system

εdX = [−λ1(y)X +G1(X, X̄, y)]dy + ε2σĤ(y)dW, (3.24)
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where G1 has the expression G1 = εa(y, ε)X +O(ε2)X̄ +O(X2, X · X̄, X̄2).

We note here Equation (3.24) is derived through a linear transformation. When

nonlinear transformation is used to derive these canonical form such as equation

(3.19), there will be an additional term of order ε4σ2 due to Ito’s Lemma. However,

these terms are too small to cause any harm.

We need some technical lemmas to start, proceeding initially in analogy to the

treatment of the deterministic case in [86, 87]. We see that the exponential growth

property, specified in Proposition 3.4, remains valid in this stochastic case.

Proposition 4. Assume that XA and XB are two solutions of (3.24) on y1 < y < y2.

Given the event Ω1 = {ω||XA(y)(ω)| ≤ M2ε, |XB(y)(ω)| ≤ M2ε} for some M2, ε > 0

whenever y1 ≤ y ≤ y2. Then there exist M3 = M3(M2), ε0 = ε0(M2) so that for

ε ≤ ε0,

1

M3
e

−1

ε

R y2
y1

Reλ1(τ)dτ ≤ |XA(y2)(ω) −XB(y2)(ω)|
|XA(y1)(ω) −XB(y1)(ω)| ≤M3e

−1

ε

R y2
y1

Reλ1(τ)dτ
, ω ∈ Ω1. (3.25)

Proof We consider that X = XA(y)(ω) − XB(y)(ω) satisfies a deterministic

equation similar to equation 3.12, since the noise is additive. This result follows

similarly to the deterministic case because |XA(y)(ω)| ≤M2ε, |XB(y)(ω)| ≤M2ε.

Lemma 1. Assume transversal eigenvalue crossing at the Hopf bifurcation, stated by

(H6) in Section 2. Let

ξ(y) ≡
∫ yr

y

|Ĥ(s)|2e−2

ε

R y
s

Re(λ1(τ)−εa(τ,ε))dτds. (3.26)

Assume |Ĥ(y)| 6= 0. There exist C1, C2 and ε0 such that when ε ≤ ε0,

C1

√
ε ≤ ξ(y) ≤ C2

√
ε, yH −

√
ε ≤ y ≤ yr (3.27)
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and

C1

√
εe

−2

ε

R y
yH

Re(λ1(τ)−εa(τ,ε))dτ ≤ ξ(y) ≤ C2

√
εe

−2

ε

R y
yH

Re(λ1(τ)−εa(τ,ε))dτ
, yl ≤ y ≤ yH−

√
ε.

(3.28)

The condition |Ĥ(y)| 6= 0 can be relaxed to that
∂j(|Ĥ(y)|2)

∂yj
= 0, j = 0, 1, · · · , n− 1

but
∂n(|Ĥ(y)|2)

∂yn
6= 0. Then the left hand sides of the inequalities (3.27- -3.28) should

be revised to

C1

√
εεn ≤ ξ(y) ≤ C2

√
ε, yH −

√
ε ≤ y ≤ yr (3.29)

and

C1

√
εεne

−2

ε

R y

yH
Re(λ1(τ)−εa(τ,ε))dτ ≤ ξ(y) ≤ C2

√
εe

−2

ε

R y

yH
Re(λ1(τ)−εa(τ,ε))dτ

, yl ≤ y ≤ yH−
√
ε.

(3.30)

Proof If c1 ≤ |Ĥ(y)| ≤ c2, then

∫ yr

y

c21e
−2

ε

R y

s
Re(λ1(τ)−εa(τ,ε))dτds ≤ ξ(y) ≤

∫ yr

y

c22e
−2

ε

R y

s
Re(λ1(τ)−εa(τ,ε))dτds.

Lemma 1 follows directly from Lemma 4.2 of [7] with exception of the special case.

When it happens, we notice |Ĥ(y + ε)| ≥M4ε
n and the integrand is positive. Then

ξ(y) ≥
∫ yr

y+ε

|Ĥ(s)|2e−2

ε

R y

s
Re(λ1(τ)−εa(τ,ε))dτds (3.31)

implies Equation 3.29-3.30 by the same analysis above.

Proof of Theorem 6 The existence of solution for was considered in [40, 42, 45].

Here we concentrate on the behavior of X(y) within NS.

From Lemma 1, the contraction property of the solutions, it is only necessary to

consider X0(y), the solution of equation (3.24) with the initial condition X0(yr) = 0.
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Further, since we are only interested the first exit time Yj, we modify the

nonlinearity in equation (3.24) as follows:

εdX = [−(λ1(y) − εa(y, ε))X +G2(X, X̄, y)X]dy + ε2σĤ(y)dW

where G2 has the expression G2 = O(ε2)(X̄)/X + O(X2, X · X̄, X̄2)/X. We define

a smooth function G(X) such that G = G2 when |X| ≤ Mε1+γ and G = 0 when

|X| ≥ 2Mε1+γ . Then supX∈C |G(X)| ≤ O(ε1+γ). The new equation

εdX = [−(λ1(y) − εa(y, ε))X +G(X)X]dy + ε2σĤ(y)dW, (3.32)

is equivalent to Equation (3.24) for any trajectory X(y) ∈ NS, therefore it determines

the same distribution for Yj. We analyze equation (3.32) instead.

Since X0(yr) = 0, we compute directly the distance from X0(y) to the origin of

the complex plane for yl ≤ y ≤ yr by solving equation (3.32) directly:

∆(y) = X0(y) = εσ

∫ y

yr

Ĥ(s)e
−1

ε

R y

s
(λ1(τ)−εa(τ,ε)−G(X))dτdW (s)

= εσ

∫ y

yr

Ĥ(s)e
−1

ε

R y
s

(λ1(τ)−εa(τ,ε))dτ (1 +O(εγ))dW (s) = ∆1 + ∆2 (3.33)

where

∆1 = εσ

∫ y

yr

Ĥ(s)e
−1

ε

R y

s
(λ1(τ)−εa(y,ε))dτdW (s) (3.34)

is Gaussian. We calculate the mean and variance of ∆1 and ∆2:

E(∆1) = εσ

∫ y

yr

Ĥ(s)e
−1

ε

R y
s

(λ1(τ)−εa(τ,ε))dτE(dW (s)) = 0. (3.35)
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Then for yH −√
ε ≤ y ≤ yr,

E(∆2) = σ|
∫ y

yr

Ĥ(s)e
−1

ε

R y

s
(λ1(τ)−εa(τ,ε))dτE(O(ε1+γ)dW (s))|

≤ O(ε1+γ)σ
√

ξ(y) = O(εγ+5/4)σ, (3.36)

while for yl ≤ y ≤ yH −√
ε,

E(∆2) = σ|
∫ y

yr

Ĥ(s)e
−1

ε

R y

s
(λ1(τ)−εa(τ,ε))dτE(O(ε1+γ)dW (s))|

≤ O(ε1+γ)σ
√

ξ(y) = O(εγ+5/4)σe
−1

ε

R y
yH

Re(λ1(τ)−εa(τ,ε)))dτ
. (3.37)

The inequalities (3.36-3.37) use the Ito’s lemma [40] and Lemma 1 and are actually

consequences of Equations (3.38-3.39) below.

In fact it is more significant to calculate the variable |∆|2 since Yj is deter-

mined by |∆|2(ω) = M2ε2+2γ. From Ito’s lemma [40], derived from the properties of

Brownian motion as stated in hypotheses (1), (2) in Section 3.4, we get

E(∆1∆̄1) =

ε2σ2E

(

∫ y

yr

Ĥ(s)e
−1

ε

R y
s

(λ1(τ)−εa(τ,ε))dτdW (s)

∫ y

yr

Ĥ(s)e
−1

ε

R y

s
(λ1(τ)−εa(τ,ε))dτdW (s)

)

= ε2σ2

∫ yr

y

|Ĥ(s)e
−1

ε

R y

s
(λ1(τ)−εa(τ,ε))dτ |2ds

= ε2σ2

∫ yr

y

|Ĥ(s)|2e−1

ε

R y

s
(2Reλ1(τ)−2εa(τ,ε))dτds = ε2σ2ξ(y).

(3.38)
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Similarly, we derive

E(∆2∆̄2) =

σ2E

(
∫ y

yr

Ĥ(s)e
−1

ε

R y
s

(λ1(τ)−εa(τ,ε))dτO(ε1+γ)dW (s)

·
∫ y

yr

Ĥ(s)e
−1

ε

R y
s

(λ1(τ)−εa(τ,ε))dτO(ε1+γ)dW (s)

)

= O(ε2+2γ)σ2

∫ yr

y

|Ĥ(s)|2e−1

ε

R y
s

(2Reλ1(τ)−2εa(τ,ε))dτds = O(ε2+2γ)σ2ξ(y).

(3.39)

Therefore, when ε ≤ ε0,

C3ε
2σ2ξ(y) < E(∆(y)∆̄(y)) < C4ε

2σ2ξ(y).

Following from Lemma 1, we have

C1

√
εC3ε

2σ2 ≤ E(∆(y)∆̄(y)) ≤ C2

√
εC3ε

2σ2, yH −
√
ε ≤ y ≤ yr (3.40)

and

C1C3ε
5/2σ2e

−2

ε

R y

yH
Re(λ1(τ)−εa(τ,ε))dτ ≤ E(∆(y)∆̄(y))

≤ C2C3ε
5/2σ2e

−2

ε

R y
yH

Re(λ1(τ)−εa(τ,ε))dτ
, yl ≤ y ≤ yH −

√
ε. (3.41)

We define an “average” jumping point Ȳj to be

E(|∆|2(Ȳj)) = M2ε2+2γ. (3.42)

From Equation. (3.40), we derive Ȳj ≤ yH − √
ε since γ < 1/4. Now we solve the

equation

ε
5

2σ2e
−2

ε

R y

yH
Re(λ1(τ)−εa(τ,ε))dτ

= M2ε2+2γ
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to derive

−
∫ y

yH

Re(λ1(τ) − εa(τ, ε))dτ = ε ln(M4ε
γ− 1

4/σ), (3.43)

then we have the expression of Ȳj.

The rest of Theorem 6 follows easily. Beyond the exceptional cases, the time

duration T1 is obtained as the time of passage inside NS from y = yr down to y = Yj,

under the flow of the slow equation (3.21c).

|Et(v, w) − (V0(s),W0(s))| ≤
√

Et|(v, w)− (V0(s),W0(s))|2 ≤ CE|X|2 ≤M2ε2+2γ.

This yields equation (3.22).

When σ = O(εn), the amount of delay will be O(
√

ε| ln ε|), with a very small

probability to have a significant O(1) size delay. When σ = O(e−
C
ε ), the delay will

be significant almost surely.

For the values in between, there will be nontrivial distributions of different

amount of delays which are responsible for different patterns. Let us assume σ is in

that range, and ε lnσ is sufficient small. Then Equation 3.43 is approximated by

1

2
Reλ′1(yH)(y − yH)2 +O((y − yH)3) = ε ln(M4ε

γ− 1

4/σ).

This implies

Ȳi = yH −O(

√

ε| ln(εγ− 1

4 )/σ|). (3.44)

Equation (3.44) is consistent with well known results from [7, 83, 95] after rescaling.

Their amplitude of noise is equal to σε3/2 in our notation, and NS is also slightly

different.
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Remark 10.

The treatment here is quite general and the analysis and result are valid both

for delayed simple eigenvalue bifurcations as well as for delayed Hopf bifurcations,

since the imaginary part of the eigenvalue λ1(y) is not contributing here. For the

noisy dynamic pitchfork bifurcation, a more precise description of Yj in terms of its

probability distribution was already given in [7].

The situation with the periodic branch is simpler due to the fact the periodic

solutions of FS are orbitally stable. By using the Fenichel coordinates [27] and the

invariant manifold argument in [6], equation (3.21) inside NP can be reduced to a

perturbation to equation (3.19),

dr = −(r − 1)dt+ ε2ĥ3(y, ε)dW (y) +O(ε4σ2)dt, (3.45a)

dθ = c(y)dt+ ε2ĥ4(y, ε)dW (y) +O(ε4σ2)dt, (3.45b)

y′ = εg0(y) > 0. (3.45c)

The additional terms at the end of Equation 3.45 are due to Ito’s lemma applying to

the nonlinear transformation here.

We can show easily that the solution (R,Θ, Y )(t) of the stochastic equation

(3.45) and the solution (r, θ, y)(t) of equation (3.19), with the same initial condition

at t = t0, satisfy the relations

E(R,Θ, Y ) = (r, θ, y), (3.46)

and

E|(R,Θ, Y ) − (r, θ, y)|2 = O(ε2). (3.47)
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Thus the solutions (R,Θ, Y ) will remain within NP and only exit when y =

yr + O(ε| ln ε|), the same as for (r, θ, y) with a certain exceptions noted in Remark

??. Therefore the time duration T2 is obtained as the passage time from y = Yj to

y = yr inside NP , using the slow motion for the averaged form of system (3.45). But

by construction, this is equivalent to the passage time computed from the averaged

form of system (3.21), which yields (3.23). Finally, the passages from NS to NP and

from NP to NS are to leading order identical to the deterministic case.

Corollary 1. Any solution (v, w, y) of equation (3.21) with its initial position in NP

or NS is an elliptic bursting solution as described in Theorem 6.

Proof If (v(0), w(0), y(0)) ∈ NP , then the corresponding solution (v(t), w(t), y(t))

of (3.21) enters NS. Thus, without loss of generality, let the complex solution X(y)

correspond to (v, w, y), a solution of (3.21) with (v(0), w(0), y(0)) ∈ NS. The point

where the solution X(y) will exit NS is determined by the distance function

∆3 = X(y) = X(y) −X0(y) +X0(y) = X(y) −X0(y) + ∆. (3.48)

Now, by Proposition 4 and in particular equation (3.25), there exists a constant

M > 0 such that

|X(y) −X0(y)| ≤M |X(yr) −X0(yr)|e
−1

ε

R y
yr

Reλ1(τ)dτ ≤Mε(e−
C
ε )

if yl < y.

we derive

∆2 = ∆ +O(εe−
C
ε ). (3.49)

The jumping point Yj for any solution will the same one as in Theorem 6, up to a

O(ε| ln ε|) error.



49

3.6 Reliability of Spike Timing

When considering the similarity in the firing pattern of two elliptic bursters

we need to take into account two phenomena. One is the similarity in the bursting

pattern (see Figure 3.5) and the other is the similarity in the spiking pattern which

is the object of this part.

3.6.1 Basic Tools

The present section shows some simulations of an elliptic burster. We want to

determine directly the temporal precision with which it is capable to reproduce its

bursting pattern in presence of noise. In order to do this we use Insterspike Interval

Histograms (ISI) and Post-stimulus Time Histograms (PSTH). They were introduced

by Gerstein and Kiang [30] to analyze quantitatively electrophysiological data from

single neurons.

If the spikes in a train occur at times ti, (0 ≤ i ≤ N), then ISIs will be ∆ti =

ti − ti−1 for 1 ≤ i ≤ N. A standard method of measuring variability of a spike train is

by the coefficient of variation of the interspike interval (ISIs), Cv. The irregularity of

the spike train can be measured by the relative width Cv of the ISI distribution Cv

∆t
,

where ∆t is the mean of the ISI (see [35]). Random spikes yield values of Cv near 1

and regular spikes yield values near zero.

To measure how the firing pattern changes when it is perturbed by noise, the

PSTH is used. We can visualize the rate and timing of neuronal spike discharges in

relation to the instant of the most previous presentation of the stimulus, summed over

many repeated stimulus presentations [30]. It is a standard tool in neurophysiology.

An algorithm to choose the width of the intervals to group the data ( bin) and build

a PSHT is described in [79] (see Appendix B). Following [52] and [65] we define the

reliability of the spiking in the following way:



50

Event. Given a threshold α > 0, an event corresponds to bin(s) in the PSTH larger

than α. This might be widened to include the bins immediately adjacent to

these [65].

Reliability. The reliability is the cumulative sum of the bins in the PSTH that are

larger than the threshold, divided by the the cumulative sum of all the bins.

The reliability is a measure of the probability of observing an action potential within

the bins over the threshold.

3.6.2 Reliability

We solved the system of ODE’s (3.50) which satisfies the hypothesis for elliptic

bursters stated at beginning of this chapter. The quantity ε2 ∗ sig ∗ xi is the noise

term, here xi is a variable that represents a Wiener process and sig controls the

amplitude of the noise. To generate the spike trains we considered only the peaks

above the threshold of -10mV, basically those peaks in the active phase. We can see

the solution to the noiseless case sig = 0 in Figure 3.4.

v′ = −(gca ∗m∞(v) ∗ (v − vca) + gk ∗ w ∗ (v − vk) + ...

... + gl ∗ (v − vl) + gkca ∗ z(y) ∗ (v − vk)) + I + ε2 ∗ sig ∗ xi

w′ = phi ∗ (w∞(v) − w)/tau(v) + ε2 ∗ sig ∗ xi

y′ = ε(−mu ∗ gca ∗m∞(v) ∗ (v − vca) − y)

m∞(v) = 0.5 ∗ (1 + tanh((v + 1.2)/18))

w∞(v) = 0.5 ∗ (1 + tanh((v − 2)/30))

z(y) = y/(1 + y)

τ(v) = cosh((v − 2)/60)

(3.50)
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Figure 3.4: Solution of (3.50) with parameters gca = 4.4, gk = 8, gl = 2vk =
−84, vl = −60, vca = 120, I = 120, gkca = .75, phi = 1.2, ε =
.04, mu = .016667 sig = 0

We solved the system using XPPAUT (Euler method) with 100 seeds for the

random number generator for each system with identical initial conditions and differ-

ent levels of noise. Then we build the Post Stimulus Histograms (some of then can be

seen in Figure 3.7). We use them to compute the reliability for different noise levels.

The graph of Reliability versus Noise Level (Figure 3.8) shows that when we increase

the noise level the reliability decrease in average but it does not do it monotonically.

We also computed the Cv’s yielding high values. It shows irregularity of the firing
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Figure 3.6: Cv for single elliptic bursters. (a) Noise level 0.1. (b) Noise level 0.9

pattern in single neurons. As expected, the irregularity increases as noise increases.

A scatter plot of Cv vs the mean of ISI’s for two noise levels is shown in Figure 3.6

A similar procedure was done with the coupled elliptic bursters. Same initial

conditions, same level of noise but different noise. In this chase we coupled mutually

(all-to-all) 10 bursters. A typical PSTH is in Figure 3.9. Figure 3.10 shows that the

firing pattern is reliable.
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Figure 3.7: Raster plot and PSTH for 100 simulated noisy non coupled elliptic
bursters. The upper part is the raster plot of the spike timing and the lower part is
PSTH collected over 100 simulated trials. The bin width is 0.64. As a base for the
threshold we use the mean
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Figure 3.8: Reliability versus noise level for single elliptic bursters
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CHAPTER 4

A MATHEMATICAL MODEL FOR FOREIGN BODY REACTIONS

4.1 Background

The process of foreign body inflammatory reactions to implants involves com-

plex interactions of many types of cells and proteins and occurs as a sequential cascade

of parallel and overlapping chemical processes [13]. During a short but complex initia-

tion period of surface mediated reactions, various tissue growth factors are released. In

response to the gradient field of tissue growth factors released in the implant domain,

fibroblasts migrate towards the implant from the surrounding tissues and/or prolifer-

ate within the fibrinogen absorbed on implant surface. The fibroblasts consequently

synthesize chains of amino acids called procollagens, a process that is activated by

growth factors, including in particular type- β transforming growth factor (TGFβ)

(McDonald 1988 [55], Appling et al. 1989 [3]). The procollagens then get converted

into their respective collagens by enzymes (Goldberg [31]). Inactive (latent forms of)

TGFβ isoforms are also secreted by many cells (Martin et al. 1992 [54]; Streuli et

al. 1993 [84]) and they have a considerably longer half-life than their active forms

(Roberts and Sporn 1990 [71]). The implant site contains enzymes which activate

latent growth factors and also initiate the stabilization of collagen precursors (Miller

and Gay 1992 [56]). Similar to other collagen formation such as dermal wound heal-

ing, collagenase is synthesized and secreted by fibroblasts as a zymogen (Stricklin et

al. 1978 [85]), but collagen degradation cannot occur until the zymogen is activated.

These basic reactions were considered in previous modeling study (Dale et al. 1996

[11]) and their corresponding key features of kinetics were incorporated in our mod-

56
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eling. We refer the interested readers to Dallon et al. (2001) [12] for a survey of the

field as well as more bibliographical references.

To further investigate the proliferation and inflammation, we study the rela-

tionship of inflammatory reactions with aggregation and active participation of blood

cells, which release cell-derived growth factor in the fibrin clot. Of particular in-

terest is the role of macrophage. During phagocytosis, neutrophils arrive first but

then quickly subside, they make way for macrophages adhesion. Macrophages tend

to remain at a wound or an implant site for a few days to weeks and play multiple

roles in inflammation and wound healing [33]. Macrophages clean foreign and de-

bris material; they send chemotactic signals to other cell types that will participate

in wound healing and finally they play roles in remodeling of Extracellular matrix

(EMC) [58]. They are classified into 3 phenotypes according to their roles in the pro-

cess. Classically activated macrophages designate the effector macrophages that are

produced during cell-mediated immune responses. Two signals, interferon-γ (IFNγ)

and tumour-necrosis factor (TNF), resulted in a macrophage population that have en-

hanced microbicidal or tumoricidal capacity and secret high levels of pro-inflammatory

cytokines and mediators. On the other hand, the clearance of apoptotic PMNs by

macrophages during inflammation can lead to an inhibition of inflammation, owed

in part to the production of transforming growth factor-β (TGFβ) [26]. Wound-

healing macrophages can develop in response to innate or adaptive signals through

interleukin-4 (IL-4). IL-4 stimulates arginase activity in macrophages, allowing them

to convert arginine to ornithine, a precursor of polyamines and collagen, thereby con-

tributing to the production of the extracellular matrix [51]. Regulatory macrophages

can also arise during the later stages of adaptive immune responses, the primary role

of which dampen the immune response and limit inflammation through production of

interleukin-10( IL-10) [32]. Although all three types are observed experimentally in
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general wound healing processes, the phagocytes biomaterial interactions are known

to be similar (Tang 1997 [96]). These basically relations are also incorporated in our

modeling consideration.

Using the quantitative predictive tool, we are able to investigate the all possible

pathways of foreign body reaction networks and consider impacts of various tissue

growth factors and enzymes. Further, because of a significant precursor of collagens is

the formation of fibrin layers that provides the domain for growth factors activations in

implant process, an important component of our modeling paper is to test numerically

various hypotheses on reactions on plasma or chemically coated bio-materials surface

(Tang et al 1998 [97]). Our numerical result indicated trends for these variations,

serving as a plausible clue for developing new experiment hypotheses.

We describe our mathematical model that matches with experimental data in

Section 4.2, and numerical methods in Section 4.3. In Section 4.4, we illustrate the

transient dynamics of foreign body reaction dynamics in pure temporal behavior. The

summations and conclusions are in Section 4.5

4.2 Mathematical Modeling

Our model is based on collagen kinetics framework developed by Dale et al

1996 [11] for temporal dynamics that were proposed as models for normal adult

and fetal wound healing although here we only consider the pure temporal model.

Then we include the new kinetics of foreign body reaction of macrophages. The new

dynamics is in a different parametric range and they present different characters. The

difference are primarily due to the fact the foreign body reaction due to implantation

are deep sub-dermal phenomena, but the wound healing processes are primarily based

on dermal wound experimental data. The macrophage further introduced new kinetics

to the system.
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Table 4.1: Variables in the foreign body reactions (after scaling so they are dimen-
sionless).

f(x, y, t) Fibroblast density
β1(x, y, t) Total TGFβ isoform 1, isoform 2 den-

sity
β3(x, y, t) TGFβ isoform 3 density
l1(x, y, t) Total Latent TGFβ isoform 1, isoform

2 density
l3(x, y, t) Latent TGFβ isoform 3 density

e1(x, y, t),e2(x, y, t),e3(x, y, t) Generic enzymes type 1, 2, 3 densities
p1(x, y, t), p3(x, y, t) Procollagens (latent form of collagens)

I and III densities
c1(x, y, t), c3(x, y, t) Collagens I and III densities
z1(x, y, t), z3(x, y, t) Zymogens (latent forms of collage-

nases) I and III densities
s1(x, y, t), s3(x, y, t) Collagenases I and III densities

l(x, y, t) Macrophage cell density

4.2.1 Chemical Kinetics Equations

We briefly state the modeling consideration for the variable involved, listed in

Table 4.1.

Fibroblast density f(x, y, t), represent the main cell type in the implant do-

main. We ignore the directional effects of the cell and assume the migration are

mainly through diffusion. Under tissue growth factor TGFβ ( total isoform 1 and

isoform 2 density β1(x, y, t), isoform 3 density β3(x, y, t)) , the cell population can be

approximated by a chemically enhanced logistic growth term, along with a natural

decay.

∂f

∂t
= D1∇2f + (A1 + A2β1 + A3β3)f

(

1 − f

k

)

− A4f (4.1)

The fibroblasts are stimulated via autocrine regulation (Roberts & Sporn 1990[71])

to secrete the corresponding latent TGFβ l1(x, y, t)and l3(x, y, t) with a limiting pro-
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duction rate when l1(x, y, t)and l3(x, y, t) saturates (Wakefield [103]). Latent TGFβ

also undergoes an autocrine mechanism, whereby TGFβ induces self-secretion. The

concentration of latent growth factor is also decreased because of activation into re-

spective active forms of TGFβ by specific enzymes [7]. Fibroblast proliferation and

collagen synthesis are up-regulated by TGFβ s, but by active rather than latent forms

(Krummel et al. 1988 [41]). All forms of TGFβ s have constant diffusion coefficients.

They are modeled by equations:

∂l1
∂t

= D2∇2l1 +
A5fl1

1 + A6l3 + A7l1
− A8l1 −A16e1l1 (4.2)

∂l3
∂t

= D3∇2l3 +
A9fl3

1 + A10l3
− A11l3 − A17e1l3 (4.3)

∂β1

∂t
= D4∇2β1 + A12e1l1 −A13β1 (4.4)

∂β3

∂t
= D5∇2β3 + A14e1l3 −A15β3 (4.5)

During the early stage of foreign body implantation, monocytes and macrophages

release a range of enzymes which activate growth factors, procollagens and zymogens

(Sinclair & Ryan 1994[81]). We use the law of mass action to model the activation of

latent TGFβ 1 and 3, and type I and type III collagen and collagenases by e1,e2,e3

respectively :

de1
dt

= −e1(A16l1 + A17l3) (4.6)
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de2
dt

= −e2(A18p1 + A19p3) +B36l (4.7)

de3
dt

= −e3(A40z1 + A41z3) (4.8)

Procollagen is synthesized by fibroblasts, in response to injury (McDonald 1988 [55]).

Further experiments showed up-regulation of procollagen synthesis by active TGFβ

(Appling et al. 1989 [3]) hence the inclusion of a linear function of the active TGFβ

1 and 3. We use the law of mass action to model the activation of latent collagens 1

and 3 as well as degradation because of collagenases. The activations of collagenases

follow similar mass-action laws under specific enzyme e3.

dp1

dt
= (A20 + A21β1 + A22β3)f −A23p1 −A18e2p1 (4.9)

dp3

dt
= (A24 + A25β1 + A26β3)f −A27p3 −A19e2p3 (4.10)

dc1
dt

= A28p1e2 − A29s1c1 (4.11)

dc3
dt

= A30p3e2 − A31s3c3 (4.12)

dz1
dt

=
A32

1 + A33β1 + A34β3
fc1 −A35z1 − A40e3z1 (4.13)

dz3
dt

=
A36

1 + A37β1 + A38β3
fc3 −A39z3 − A41e3z3 (4.14)
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ds1

dt
= A42z1e3 −A43s1 +B37l (4.15)

ds3

dt
= A44z3e3 −A45s3 +B38l (4.16)

Macrophage has been playing multiple roles in foreign body reactions. Our

model differs from early collagen model, primarily because we incorporated features

(a) macrophages produce procollagens specific enzymes at a near saturated level and

(b) macrophage regulate collagen growth through production of zymogens. These

changes made substantial new quantitative behavior changes with the model.

The activation and proliferation of macrophage are through upregulation of

growth factors TGFβ s [66], but the production does reach a limiting value once

TGFβ s reach near saturation. The macrophage cell programmed death normally

occurs after several weeks to a month. Here we assume 30 day for convenience.

∂l

∂t
= D6∇2l +B39 (e1l1 + e1l3) l

(N +Ne)

N + l
− B40l − B41σ0 (t− 30) l (4.17)

4.2.2 Model Reduction and Modification

We first consider to reduce the system with the following conditions:

1. The system has no spatial inhomogeneity and therefore no diffusion. So, it

becomes a pure temporal model with D1 = D2 = D3 = D4 = D5 = D6 = 0.

2. The activation of latent TGFβ 1 and 3, and type I and type III collagen and

collagenases reaches equilibrium within a relatively short period of time. We assume

that the equations (4.4), (4.5), (4.9), (4.10), (4.13) and (4.14) are in equilibrium.
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The system is reduced to 11 equations of Ordinary Differential Equations (ODEs),

see Appendix A for details of derivations.

df

dt
= (A1 +B2e1l1 +B3e1l3) f

(

1 − f

k1

)

− A4f (4.18)

dl1
dt

=
A5fl1

1 + A6l3 + A7l1
− A8l1 − A16e1l1 (4.19)

dl3
dt

=
A9fl3

1 + A10l3
− A11l3 −A17e1l3 (4.20)

de1
dt

= −e1 (A16l1 + A17l3) (4.21)

de2
dt

= −e2f
(

B14 +B16e1l1 +B17e1l3
A23 + A18e2

+
B15 +B19e1l1 +B20e1l3

A27 + A19e2

)

+B36l (4.22)

de3
dt

= −e3
λ

(

B34fc1
(1 +B27e1l1 +B28e1l3) (A35 + A40e3)

+
B35fc3

(1 +B31e1l1 +B32e1l3) (A39 + A41e3)

) (4.23)

dc1
dt

= λ

(

(B22 + A28C3e1l1 + A28C2e1l3) f

(

1000e2
A27 + 1000e2

)

−A29s1c1

)

(4.24)

dc3
dt

= λ

(

(B24 + A30C3e1l1 + A30C4e1l3) f

(

1000e2
A27 + 1000e2

)

−A31s3c3

)

(4.25)
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ds1

dt
=

B26fc1e3
λ (1 +B27e1l1 +B28e1l3) (A35 + A40e3)

−A43s1 +B37l (4.26)

ds3

dt
=

B30fc3e3
λ (1 +B31e1l1 +B32e1l3) (A39 + A41e3)

−A45s3 +B38l (4.27)

dl

dt
= B39 (e1l1 + e1l3) l

(N +Ne)

N + l
− B40l − B41σ0 (t− 30) l (4.28)

We then proceed to find out parameters in the equations. There are 3 groups

of parameters.

The parameter group number 1 consists of well established parameters from

measurements: all of them are taken from existing literature. We refer to [10, 23] for

details and their related original references. These parameters are not expected to

change substantially during different settings of experiments. They are

A1 = 0.72222 B2 = A2A12

A13
= 0.5 B3 = A3A14

A15
= 0.5 A5 = 100

A9 = 100 A16 = 0.1 A17 = 0.1 A18 = 10

A19 = 10 B14 = A18A20 = 3

B15 = A19A24 = 3 B16 = A18A21A12

A13
= 1.5 B17 = A18A22A14

A15
= 3.5 A23 = 1

B19 = A25A19A12

A13
= 1.5 B20 = A26A19A14

A15
= 2 B22 = A28A20 = 5.4 A29 = 1

A31 = 1 B26 = A32A42 = 1.5 B27 = A33A12

A13
= 1 A35 = 10

B30 = A36A44 = 4.5 B31 = A37A12

A13
= 3 B32 = A38A14

A15
= 1 A39 = 10

A40 = 10 A41 = 10 B34 = A40A32 = 50

B35 = A41A36 = 50
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A43 = 1 A45 = 1 k1 = 3.5 C1 = A21A12

A13
= 1.5

A18

C2 = A22A14

A28
= 3.5

A18
C3 = A30A25A12

A13
= 1.5

A19
C4 = A26A14

A15
= 2

A19
B36 = 0.005

B39 = 0.5 N = 0 Ne = 20 B40 = 0.001,

B41 = 8 B37 = 0 B38 = 0

The group number 2 of parameters contains implantation experimental specific

constants.

For implantation process, one unique character is that the activation rate from

latent collagens to collagens can easily saturate, while there is an abundant amount

of e2. In equations (2.24-2.25) for collagens, we use two steps:

(1) Approximate 1000e2

A27+1000e2
by 1

1+10e2
so e2 does not reach collagen reaction satura-

tion level too quickly. We run the replace system to find out the most fitting

curves among the group of parameters in group number 3 below to establish

our base parameters for the model.

(2) In final simulation, we resume 1000e2

A27+1000e2
with A27 = 1 for our purpose. The level

1000 is arbitrarily imposed to ensure the factor being 1 as soon as e2 > 0.01.

The purpose of these extra steps is to achieve a better approximation for initial

4 or 5 days of approximation.

The other scaling parameter λ = 0.07 is the scale factor that make the numerical

computed values of collagens 1 and 3 to be at same order of magnitude as experimental

data. While our computational result reflects the trend and quantitative features

very well in a relative scale level. We have not seen a direct transformation between

experimental data and our calculated values. There are a number of factors involved.

Typically collagens are measured by count in a specific surface area under microscope

(surface density), and out model are more or less in volume density, the distribution

in horizontal level is not quite uniform. More accurate collagen measures derive from
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measures of hydroxyproline (a constituent of collagen type I), but the scaling factors

are not explicitly given also.

The group number 3 of parameters or “selected group” is achieved by numerical

simulation to match the experimental data. We pick this group of parameters to fit

experiments, because they are subject to change during human development. For

example, Dale et al [11] has shown the difference of two groups of values for adult

and fetal dermal healing processes.

Based on an experimental data set from Liping Tang’s lab (details of experi-

mental setup will be given in upcoming work),

Table 4.2: Experimental data of collagen deposit in a PET membrane.

Collagen deposition on PET 20 um membrane (unit, ug/cm2)
#1 #2 #3 #4 #5

4 days 1.5 1.12 0.847 0.957 0.957
7 days 19.63 19.12 20.29 25.8 27.43
14 days 149.96 74.73 89.54 128.82 110.76
21 days 106.32 115.52 140.52 132.94 115.89
28 days 148.32 134.92 179.93 111.8 148.34

we found that the parameter values: A6 = 7.5, A7 = 0.1, A8 = 15, A10 =

0.45, A11 = 15, B24 = A30A24 = 67.5, B28 = A34A14 = 202.5, gave the smallest

residual error over all sets of parameters tested. We computed the residual error

using the euclidean norm over those time stamps given in the experimental data, 4,

7, 21 and 28 days. We note that, for comparison purpose, the effect of macrophage

was not included. This set of parameters is not unique in the sense that different

set of parameters yields similar estimations for the total collagen level. For example,

changes of A28 ±10% does not affect the total collagen level but changes of A1 ±10%
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has a significant effect on it. A further analysis is necessary to understand the effect

of those changes in the dynamic of the model.

We demonstrate in Figure 4.1 below the comparison of the two data sets and

a typical behavior of kinetics for that particular set of parameters, these preliminary

results were obtained by the authors in [93], the experimental data and the simu-

lated data from new model with the macrophage density incorporated. The effect of

macrophage is to increase the collagen production during the first six days but after

that the collagen levels are similar to the Dale’s model using our set of parameters

up to the 30th day. After 30 days the behavior changes, we have an stabilization in

the collagen level for the model we present now which differs with the results in [93]

as can be seen in Figure 4.1. Both models agree with the experimental data during

the 28-days period.
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Figure 4.1: The comparison of Collagen of experimental data (the average value of
two samples during a 28-day period, unit: up/cm2) with a simulated data from the
mathematical model.
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4.3 Numerical Methods

We now discuss the numerical solutions for the model we proposed. For the

purpose of this research, we did not give rigorous proof for existence or uniqueness

of the solution, but simply assume its existence. We also assume that the numerical

procedure is stable and numerical solutions converge to exact solution. We did take

extra precaution to ensure numerical stability. We, on the other hand, conducted

an exhaustive set of standard tests aiming the thorough validation of the numerical

scheme and the estimate the truncation error. At last we repeated 4th order Runge-

Kutta method using XPPAUT [22] and compared them with our calculation using

the full model. The results with the same parameters and the same initial conditions

turned out indistinguishable within the order of round-off error.

4.4 Numerical Examples of Collagen Growth

We now show a few numerical experiments of the foreign body reactions that

illustrate the general temporal kinetics.

We can see the dynamics of all participating elements in Figure 4.2. We have

used the set of parameters estimated above.

1. The effect of initial collagenases changes. The general idea of the experiment is

to see if an initial variation of collageneses ( by coating implant with collageneses

) will alter the collagen deposit level at the end. The numerical simulation gave

a negative answer to such a variation (see Figures 4.3 and 4.4).

2. The effect of initial collagen changes. We also found that initial deposit of

collagen changes have few impact on the kinetics as well as final collagen layers

deposits(see Figure 4.5).
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3. The effect of initial enzyme 1 changes. As we continue our numerical experi-

ments to how what are significant factors in the foreign body reaction process,

we observed that specific enzyme 1 (which convert latent TGFβ to active TGFβ)

plays an important roles. It promotes both TGFβ and fibroblast activations

and as well as enzyme 2. In combination of the facts below, that latent TGFβ

amounts are not significant factors, we believe there is always abundance of

latent TGFβ available but the availability of active TGFβ is a key in a reaction

pathway. (see Figure 4.7).

4. Other enzymes are not as significant. We proceed to test the initial level changes

at specific enzyme type 2 and specific enzyme type 3 and found the level changes

would not cause significant changes in collagen growth(see Figure 4.6).

5. The effect of initial fibroblast changes. As expected, fibroblast is a controlling

factor in the foreign body reactions process. Not only the initial fibroblast

changes significantly alter levels of collagen deposits, they also change the timing

of activations of various elements. Therefore suppression of fibroblast might be

crucial in deduction of collagen encapsulations (see Figures 4.8 and 4.4).

6. The effect of latent growth factor TGFβ changes. As discussed earlier, the

latent level did not change the kinetics as much, but the conversion to active

TGFβs are significant to over all kinetics(see Figure 4.10).
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Figure 4.2: The simulated kinetics dynamics of various variables in collagens, procol-
lagens, collageneses, active and latent isoforms of TGFβ etc during first 40 days.
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Figure 4.3: (a) The transient behavior of Collagenese I up to 40 days at different initial
levels of Collagenese I, (b) The total collagen level for up to 40 days at different initial
levels of Collagenese I
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Figure 4.4: (a) The transient behavior of Collagenese III up to 40 days at different
initial levels of Collagenese III, (b) The total collagen level for up to 40 days at
different initial levels of Collagenese III.
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Figure 4.5: (a) The total collagen level for up to 40 days at different initial levels of
Collagen I, (b) The total collagen level for up to 40 days at different initial levels of
Collagen III.
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Figure 4.6: (a) The total collagen level for up to 40 days at different initial levels of
enzyme type II, (b) The total collagen level for up to 40 days at different initial levels
of enzyme type III.
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Figure 4.7: (a) The total collagen level for up to 40 days at different initial levels
of enzyme type I, (b) The transient behavior of fibroblast up to 40 days at different
initial levels of enzyme type I, (c) The macrophage concentration for up to 40 days
at different initial levels of enzyme type I, (d) The TGFβ concentration for up to 40
days at different initial levels of enzyme type I, (e) The enzyme type 2 concentration
for up to 40 days at different initial levels of enzyme type I.
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Figure 4.8: (a) The total collagen level for up to 40 days at different initial levels
of fibroblast, (b) The transient behavior of TGFβ I concentration up to 40 days at
different initial levels of fibroblast, (c) The transient behavior of TGFβ III concentra-
tion up to 40 days at different initial levels of fibroblast, (d) The transient behavior
of enzyme type I concentration up to 40 days at different initial levels of fibroblast.
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Figure 4.9: (a) The transient behavior of enzyme type III concentration up to 40
days at different initial levels of fibroblast, (b) The transient behavior of macrophage
concentration up to 40 days at different initial levels of fibroblast.
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Figure 4.10: (a) The total collagen level for up to 40 days at different initial levels
of latent growth factor TGFβ I, (b) The total collagen level for up to 40 days at
different initial levels of latent growth factor TGFβ III.



76

4.5 Summary and Discussion

The mathematical model has shown its capability to predict some fine features

of foreign body reaction process. It has been calibrated to describe temporal and

dynamics in the correct order of magnitude. It also confirms that character of collagen

growth observed in laboratory experiments.

In a technical level, we found that values of enzyme e1 and Fibroblast f are

very significant to foreign body reactions kinetics, but other variables do not change

the kinetics as much. We plan to continue to explore different variation of parameters

to observe the full spectrum of changes in kinetics.
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We assume that (4.4), (4.5), (4.9), (4.10), (4.13) and (4.14) are in equilibrium.

This implies

- A12e1l1 − A13β1 = 0 or

A12e1l1
A13

= β1

- A14e1l3 − A15β3 = 0 or

A14e1l3
A15

= β3

- (A20 + A21β1 + A22β3)f −A23p1 −A18e2p1 = 0 or

(A20 + A21β1 + A22β3)f

A23 + A18e2
= p1

- (A24 + A25β1 + A26β3)f −A27p3 −A19e2p3 = 0 or

(A24 + A25β1 + A26β3)f

A27 + A19e2
= p3

- A32

1+A33β1+A34β3
fc1 −A35z1 − A40e3z1 = 0 or

A32

1+A33β1+A34β3
fc1

A35 + A40e3
= z1

- A36

1+A37β1+A38β3
fc3 −A39z3 − A41e3z3 = 0 or

A36

1+A37β1+A38β3
fc3

A39 + A41e3
= z3

After replacing the previos values of β1, β3, p1, p3, z1, and z3 we obtain the re-

duced system (4.18)–(4.28). Here we used lower case for the coefficients to indicate

that do not correpond exactly to those in the system (4.1)–(4.16), rather they repre-
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sent dimensionless parameters, normalized by the unwounded levels or aggreations of

parameters in the case of Bi or Ci coefficients.
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The size of the bin

1. Divide the observation period T into N bins of width ∆, and count the number

of spikes ki from all n sequences that enter the ith bin.

2. Construct the mean and variance of the number of spikes {ki}.

3. Compute the cost function:

Cn(∆) =
2kv

(n∆)2
.

4. Repeat 1 through 3 while changing the bin size ∆ to search for ∆∗ that minimizes

Cn(∆).

How to build the PSTH

1. Divide the stimulus period or observation period T into N bins of size .

2. Count the number of spikes ki from all n sequences that fall in the bin i.

3. Draw a bar-graph histogram with the bar-height of bin i given by ki

n∆
in units

of estimated spikes per second at time i ∆.
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