
AUTONOMIC TRUST MANAGEMENT IN DYNAMIC SYSTEMS

by

BRENT JASON LAGESSE

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT ARLINGTON

August 2009

To Ed and Pat Scholling

ACKNOWLEDGEMENTS

I would like to thank my parents for their encouragement in all that I have done.

I would also like to thank all of my friends and family for all their help and especially

the distractions they have provided to keep me sane over the past five years.

I would like to thank Mohan Kumar and Matthew Wright for all of their help

in reviewing and working with me during my graduate studies. I would also like

to thank Manfred Huber, Gergely Zaruba, and Yonghe Liu for serving on my thesis

committee. I would like to thank all the members of PICO who have helped me with

my work by asking me questions and giving me feedback.

Finally, I would like to thank the National Science Foundation (NSF ECCS-

0824120), National Physical Science Consortium, and Lawrence Livermore National

Laboratory for their financial support during my graduate study.

July 20, 2009

iii

ABSTRACT

AUTONOMIC TRUST MANAGEMENT IN DYNAMIC SYSTEMS

BRENT JASON LAGESSE, Ph.D.

The University of Texas at Arlington, 2009

Supervising Professors: Mohan Kumar and Matthew Wright

Research in pervasive computing is aimed at creating environments where users

can seamlessly benefit from ubiquitous computing resources despite the complexity of

the environment. Providing security in such systems is a difficult task since traditional

security mechanisms often require significant user attention and do not scale well to

large, mobile, and open environments. To combat this problem, distributed trust

has been proposed to provide security in pervasive systems. While much research

has been performed in the area, many vulnerabilities and insufficiencies still exist,

especially in mobile ad-hoc systems that cannot support distributed trust mechanisms

requiring pre-existing infrastructure and cooperation. Dynamic pervasive systems

operate in highly dynamic environments that introduce additional challenges such as

intermittent connectivity and lack of infrastructure.

This dissertation addresses several problems pertinent to the design and deploy-

ment of distributed trust mechanisms in dynamic pervasive systems. In particular,

this dissertation presents the design and evaluation of the following framework and

mechanisms to enhance security in dynamic systems. The Distributed Trust Toolkit

(DTT) is a modular framework for the design and deployment of distributed trust

iv

mechanisms over a wide variety of systems, networks, and devices. Adaptive Re-

source Exploration (AREX) and Reliable Service Composition (ReSCo) are built for

two specific classes of applications that occur frequently in dynamic systems. AREX

uses a game theoretic approach to motivate strategic, malicious entities to attack

less often. ReSCo is designed for dynamic service composition systems and works by

adapting to make selections of compositions paths and nodes. Social Trust (SoTru)

is a system for augmenting trust mechanisms such as AREX and ReSCo with in-

formation from users’ social networks to reduce risk and enhance their performance.

A unique feature of the above contributions is that each can be used independently

or in combination to address challenges in secure dynamic systems. DTT facilitates

the integration of AREX, ReSCo and SoTru into existing dynamic systems. AREX

and ReSCo provide scalable, low cost security mechanisms that provide protection

despite hostile, open, and mobile environments. When used together, with the ad-

dition of SoTru, the ideas presented in this dissertation can be used to enhance the

effectiveness and seamlessness of security in dynamic systems.

v

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iii

ABSTRACT . iv

LIST OF FIGURES . xii

LIST OF TABLES . xv

Chapter Page

1. INTRODUCTION . 1

1.1 Motivation . 1

1.2 Distributed Trust . 2

1.3 Major Research Contributions . 3

1.3.1 A Generic Framework for Implementing Trust Mechanisms . . 3

1.3.2 Trust Information Sharing Mechanism 4

1.3.3 Algorithm for selecting entities to trust 5

1.3.4 Game Theoretic Algorithm for Determining Trust 6

1.3.5 Evaluation Framework for Trust Mechanisms 7

1.3.6 Social Augmentation of Trust Mechanisms 8

2. BACKGROUND . 10

2.1 Challenges in Dynamic Systems . 10

2.1.1 Mobility . 10

2.1.2 Device Constraints . 11

2.1.3 Heterogeneity . 12

2.1.4 Openness . 12

2.1.5 Invisibility . 13

vi

2.2 Security and Trust . 13

2.2.1 Types of Trust . 14

2.3 Existing Trust Systems in P2P . 18

2.3.1 EigenTrust . 18

2.3.2 Credence . 19

2.3.3 PeerTrust . 19

2.4 Existing Trust Systems in MANETs 20

2.4.1 CORE . 20

2.4.2 Jiang, et al . 21

2.5 Existing Trust Systems in Pervasive Computing 21

2.5.1 PolicyMaker & Keynote . 21

2.5.2 Gaia . 22

2.5.3 Vigil . 23

2.5.4 SECURE . 25

2.6 Trust in Service Composition . 26

2.7 Observations of Prior Work . 27

3. TRUST FRAMEWORK . 29

3.1 Introduction . 29

3.2 Operating Environment . 32

3.2.1 Example . 33

3.3 Trust Blocks . 35

3.3.1 Presentation . 36

3.3.2 Computation . 36

3.3.3 Communication Protocol . 37

3.4 Trust Information . 38

3.4.1 Trust Database . 38

vii

3.5 Interoperability . 39

3.5.1 Independence . 39

3.5.2 Incremental Deployment . 40

3.6 Trust Groups . 40

3.7 Results . 42

3.7.1 Simulation Setup . 43

3.7.2 Simulation Results . 44

3.8 Summary . 49

4. ADAPTIVE RESOURCE EXPLORATION 50

4.1 Introduction . 50

4.1.1 Motivating Scenario . 50

4.2 Resource Exploration . 51

4.2.1 Nash Equilibrium Overview 51

4.2.2 Attack Minimization . 52

4.2.3 Utility Model . 53

4.2.4 Exploratory Requests . 56

4.2.5 Utility Bounds . 58

4.3 Adaptive Resource Exploration . 59

4.3.1 Faulty Benign Peers . 60

4.3.2 Achieving Nash Equilibrium 61

4.3.3 Alternate Strategies . 62

4.3.4 Strategy Selection . 64

4.3.5 Experience Heuristics . 65

4.3.6 Redundancy . 66

4.3.7 Example . 67

4.4 Simulation Setup . 68

viii

4.4.1 System Model . 70

4.4.2 User Model . 70

4.4.3 Attacker Models . 70

4.5 Results . 71

4.5.1 Time-Based Results . 71

4.5.2 Resiliency Results . 73

4.5.3 Preferential Results . 77

4.5.4 Heuristics . 80

4.5.5 Application Specific Results 82

4.6 Summary . 84

5. RELIABLE SERVICE COMPOSITION 86

5.1 Introduction . 86

5.2 Design . 90

5.2.1 Request Evaluator . 92

5.2.2 Experience Database . 93

5.2.3 Example . 95

5.2.4 Path Selector . 96

5.2.5 Node Selector . 98

5.2.6 Variations on the Selectors . 99

5.3 Evaluation . 99

5.3.1 Analysis . 100

5.3.2 Simulation Setup . 102

5.3.3 Results . 102

5.3.4 Attackers and Unreliable Nodes 103

5.3.5 Adaptation over Time . 106

5.3.6 Path Length . 108

ix

5.3.7 Mobility . 109

5.3.8 Reputation . 111

5.4 Summary . 112

6. ANALYTICAL EVALUATION OF TRUST MECHANISMS 115

6.1 Introduction . 115

6.2 Evaluative Models . 116

6.2.1 Node Model . 116

6.2.2 Trust Data Model . 117

6.3 Metrics . 117

6.3.1 Trust Accuracy . 117

6.3.2 Trust Convergence . 118

6.3.3 Effectiveness . 118

6.3.4 Utility Modeling . 119

6.4 Example . 120

6.4.1 AREX . 121

6.4.2 EigenTrust . 121

6.5 Summary . 127

7. SOCIAL AUGMENTATION OF TRUST 129

7.1 Introduction . 129

7.2 Design . 132

7.2.1 Social Augmentation Framework 132

7.2.2 Social Augmentation of CoVO 133

7.3 Evaluation . 136

7.4 Summary . 139

8. CONCLUSION . 144

8.1 Summary Of Contributions . 144

x

8.1.1 Applications . 146

8.2 Future Direction . 146

REFERENCES . 148

BIOGRAPHICAL STATEMENT . 154

xi

LIST OF FIGURES

Figure Page

1.1 Overview of Dissertation Components 3

3.1 DTT Architecture . 33

3.2 The Components of a Trust Block . 35

3.3 Devices in a Personal Area Network Using a Trust Group 41

3.4 The Effect of the Number of Peers on Trust Messages per Peer 45

3.5 Comparison of Acquisition Components 46

3.6 Energy Consumption per Peer . 47

3.7 Effect of Protocol Components on Confidence Intervals 48

4.1 Payoff Matrix for a Malicious Peer (P1) and a Benign Peer (P2) . . . 52

4.2 AREX Architecture . 59

4.3 AREX Example Behavior . 67

4.4 Effect of AREX Adaptation Against Various Attack Rates 72

4.5 AREX Adapting to a Mostly Benign System 73

4.6 Average Cumulative Cost to Access First Resource 74

4.7 Average Utility Over Time for Mobile Peers 75

4.8 Effect of Arrival and Departure on Average Utility
Over Time for Mobile Peers . 76

4.9 Effect of Number of Peers Being Tracked 77

4.10 Effect of AREX on Opponent Preference to Attack 78

4.11 Effect of α(S):β(S) Ratio on AREX 79

4.12 Use of a Churn Heuristic Function with AREX 80

4.13 Use of a Backoff Heuristic Function with AREX 81

xii

4.14 Average Time Savings in Distributed Computation 83

4.15 File-Sharing with AREX . 84

5.1 An Example of a Service Composition Problem 89

5.2 ReSCo Architecture . 91

5.3 Example Composition Scenario . 95

5.4 Effect of Attackers on Success (Approach:NumPeers:NumIterations
when differing from the default) . 103

5.5 Effect of Unreliable Nodes on Success (with increasing standard
deviations) . 104

5.6 Comparison of Stochastic Selection and Best Node Selection 105

5.7 Average Cumulative Success at Each Timestep 107

5.8 Average Success at Each Time Step 108

5.9 Effect of Path Length on Success . 109

5.10 Effect of Mobility on Success . 110

5.11 Effect of Attackers in a Completely Mobile System 111

5.12 Comparison of Stochastic Selection and Best Node Selection in a
Mobile System . 112

5.13 Effect of Utilizing Reputation on Success 113

5.14 Effect of Reputation on Mobile Nodes 114

6.1 EigenTrust Matrix . 122

6.2 EigenTrust Remaining Residual . 124

6.3 Malicious Spy Attack . 126

6.4 The Effects of Sparse Connectivity on EigenTrust 127

7.1 Social Augmentation Framework . 132

7.2 CoVO Example . 134

7.3 Effect of Social Network Preferences on AREX (Per Time Step) . . . 137

7.4 Effect of Social Network Preferences on AREX (Cumulative) 138

xiii

7.5 20% of the System is Attackers . 139

7.6 50% of the System is Attackers . 140

7.7 80% of the System is Attackers . 141

7.8 Effect of Malcious Nodes in the Social Network 142

7.9 Effect of Backoff Techniques when Attacked 143

xiv

LIST OF TABLES

Table Page

2.1 Comparison of Trust Mechanisms . 17

3.1 Default simulation parameters . 43

4.1 Table of Utility Terms . 54

4.2 Default simulation parameters . 69

5.1 Table of Commonly Used Terms . 94

5.2 Selection Rate for Paths in Example Application (Figure 5.3) 96

5.3 Selection Rate for Nodes in Example Application (Figure 5.3) 96

5.4 Default simulation parameters . 102

6.1 Trust Metrics . 120

7.1 Preference Values . 136

xv

CHAPTER 1

INTRODUCTION

Trust is a term used in many fields, including psychology, sociology, economics,

and computer science, and has a variety of definitions [1, 2, 3, 4]. Trust is used to

create some expectation of success in a cooperation between two separate entities.

This research is about establishing trust effectively and efficiently within dynamic

systems. This chapter introduces motivations, challenges, and current solutions.

1.1 Motivation

Advances in technologies such as mobile phones, PDAs, and sensors along with

wireless communication technologies are increasing system dynamicity. In dynamic

systems, it is critical to be able to quickly and securely access resources and ser-

vices provided by other entities in the system. Providing efficient and secure access

to resources and services increases in difficulty as systems are made more open and

dynamic. The credibility of individual users becomes too complex to monitor and en-

force, so systems must break from traditional security mechanisms and instead rely on

methods for establishing trust. Existing methods for establishing trust rely on third

parties to establish trust; however, relying on a third party introduces vulnerabilities

that can lead to negative results.

In addition to vulnerabilites and complexities of the trust mechanisms them-

selves, the framework on which trust mechanisms are built increases the difficulty of

deployment. Trust mechanisms should be easily portable to a variety of devices, op-

1

2

erating systems, and networks that are represented in the large, diverse set of options

available to users.

1.2 Distributed Trust

While trust is difficult to define, it is used in security to determine which entities

should cooperate. The reason for using trust is that in many distributed systems, es-

pecially those of an open and dynamic nature, it is not feasible to use traditional tech-

niques that involve a central source guaranteeing the reliability of users and resources.

Furthermore, traditional security mechanisms run counter to the pervasive computing

vision – technology that fades into the background, working but unnoticed. A number

of mechanisms exist for establishing trust in dynamic systems [5, 6, 7, 8, 9, 10, 11, 12];

however, each has vulnerabilities and insufficiencies that need to be addressed. The

most challenging of these vulnerabilities to protect against involve the collusion be-

tween malicious nodes to disrupt the accuracy and distribution of trust information

to the nodes that require it.

Most trust mechanisms in distributed systems consist of either using certificates

as a guarantee or reputation derived from the experiences of other entities in the

system. Both of these techniques require the trust of a third party, even if, as in

the case of some reputation systems, the trust may not be complete. The difficulty

with trusting a third party or even multiple third parties is that the trusting entity is

susceptible to attacks by a malicious third party as a result of deception. For example,

a third party could behave completely honestly and then attack or third parties could

collude to lie about each other and make it appear that they are benign nodes.

3

Figure 1.1. Overview of Dissertation Components.

1.3 Major Research Contributions

This dissertation addresses the challenges associated with automated establish-

ment of trust between entities in an invisible and resource-effective manner within

the constraints of a dynamic system. This is accomplished through the establishment

of a trust framework and trust mechanisms designed to operate without the use of a

third party. Furthermore, this dissertation explores the augmentation of the initial

trust mechanisms when the use of third parties is a valid design choice. Figure 1.1

shows how the contributions fit together. The major contributions are as follows.

1.3.1 A Generic Framework for Implementing Trust Mechanisms

Effective security mechanisms are essential to the widespread deployment of dy-

namic pervasive systems. Pervasive environments are expected to have many different

types of hardware and software. Pervasive computing research endeavors to provide

users the flexibility to access a variety of services in a transparent manner, regard-

less of what devices, technologies or interfaces they use [13]. Providing security and

reliability of services is particularly challenging in these environments. Much of the re-

4

search focus on security in pervasive computing has revolved around distributed trust

management. While such mechanisms are effective in specific environments, there

is no generic framework for deploying and extending these mechanisms over a vari-

ety of pervasive systems. This dissertation presents the design and implementation

of a novel framework called the Distributed Trust Toolkit (DTT) for implementing

and evaluating trust mechanisms in pervasive systems. The DTT facilitates the ex-

tension and adaptation of trust mechanisms by abstracting trust mechanisms into

interchangeable components. Furthermore, the DTT provides a set of tools and in-

terfaces to ease implementation of trust mechanisms and facilitate their execution on

a variety of platforms and networks. Specifically, trust mechanisms are abstracted

into trust blocks composed of Presentation, Computation, and Communications Pro-

tocol components. These components can be extended or replaced to adapt trust

mechanisms for specific requirements and environments. The DTT Daemon executes

trust blocks in addition to storing trust information and providing communication

interfaces and an API for the trust blocks.

The DTT is general enough to apply to a variety of types of trust, such as

certificate-based, role-based, and reputation-based, in addition to the mechanisms

introduced in this dissertation. In addition to representing trust mechanisms, the

framework also eases evaluation of the individual components of trust mechanisms

in a variety of environments and against different attacker models. Furthermore,

the modular nature of the framework allows the design and implementation of inter-

changeable components to ease implementation and adaptation of trust mechanisms.

1.3.2 Trust Information Sharing Mechanism

In addition to the adaptability and extensibility provided by this design, exper-

iments have been conducted to demonstrate that use of the DTT improves utilization

5

of resources and enhances performance of existing trust mechanisms in pervasive sys-

tems. The DTT introduces a mechanism to utilize the heterogeneity of pervasive

computing environments to improve the sharing of trust information – specifically

within Personal Area Networks (PANs), where pre-existing trust of applications is

implicit. Information is shared within a trust group to reduce the amount of energy

and time spent acquiring trust information. Trust groups are formed based on a host

node that all member nodes attach to and make requests through. When a member

node needs access to new trust information, it queries the host node that either satis-

fies the request with recently cached information or queries other nodes in the system

to acquire the requested information.

1.3.3 Algorithm for selecting entities to trust

Service composition schemes create high-level application services by combin-

ing several basic services. A challenge in composing services dynamically is selecting

which node to access the service from. Selecting a service hosted by an unreliable

or malicious node could result in degraded quality of service and potentially signif-

icant security breaches. This dissertation presents a stochastic selection mechanism

designed to accomodate context-aware adaptation of trust establishment. The algo-

rithm balances the exploration of unknown entities with the utilization of well-known

and well-trusted entities. In doing so, the selection algorithm mitigates the effects

of mobility, dynamicity, and traitor attacks to which open systems are vulnerable.

Service composition schemes for dynamic, open systems such as mobile peer-to-peer

must be cognizant of the possibility of failures and attacks. In open systems, it is

seldom feasible to guarantee the trustworthiness of each node prior to access; how-

ever, there may be several possible ways to compose the same high-level service, each

having a different (though possibly overlapping) set of nodes that can satisfy the

6

composition. This dissertation addresses the service selection problem with Reliable

Service Composition (ReSCo), a mechanism designed to identify trustworthy nodes

and determine reliable compositions in dynamic, open systems.

ReSCo is a modular, adaptive middleware component that selects from possible

composition paths and nodes to enhance the reliability of service compositions. This

dissertation presents extensive simulation results of ReSCo to illustrate its suitability

as a middleware component for open, dynamic service composition systems. The

effectiveness of ReSCo and selection modules to successfully create service composi-

tions in both static and mobile distributed systems is validated through analytical

and simulation results.

1.3.4 Game Theoretic Algorithm for Determining Trust

In open, dynamic systems, participants may need to access resources from un-

known users. A critical security concern in such systems is the access of faulty re-

sources, thereby wasting the requester’s time and energy and possibly causing system

damage. A common approach to mitigating this problem involves reputation mech-

anisms; however, since reputation relies on cooperation, a reputation mechanism’s

effectiveness can be significantly diminished in hostile environments. Reputation sys-

tems also require substantial communication among peers leading to: i) vulnerability

to errors caused by intermittent connectivity; ii) message delivery disruptions caused

by malicious peers; and iii) energy-sapping message overheads. To overcome this

problem, a low-cost, adaptive mechanism designed to provide security for peers in

hostile and uncertain environments was developed. This mechanism is implemented

in a system for Adaptive Resource Exploration (AREX) that increases the system’s

utility for benign peers and decreases the system’s utility for malicious peers. AREX

reduces energy costs, protects benign peers, and diminishes malicious peers’ motiva-

7

tion to attack in a variety of applications even in hostile environments. Furthermore,

AREX can utilize system context to further enhance its adaptation process and im-

prove performance.

AREX uses a utility model for the interaction of providing and consuming

entities defined in this dissertation. Based on the utility model, the dissertation

defines and discusses a game-theoretic algorithm for determining trustworthy entities.

The algorithm adapts to approximate a Nash equilibrium when the game is played

against entities that also play a Nash equilibrium. When entities play strategies

other than a Nash equilibrium, the algorithm adapts to improve utility based on the

strategy that is currently in play by the opposing entities, or in the case of faulty

entities, to avoid those that prove to be more faulty than others. Like the selection

algorithm, the exploration algorithm is designed to utilize context information about

the state of the system to further improve performance.

1.3.5 Evaluation Framework for Trust Mechanisms

Trust mechanisms accumulate opinions of other peers in order to reduce uncer-

tainty and enhance reliable interaction. While multitudes of trust mechanisms have

been proposed in the literature, there is no published work that deals with a gen-

eral framework for quantitative comparison of trust mechanisms. This dissertation

proposes and investigates a novel framework for the quantitative analysis of trust

mechanisms. The proposed framework enables researchers and developers to easily

determine the suitability of a trust mechanism for a particular application, compare

trust mechanisms, and predict their performance. The proposed framework is vali-

dated through analysis and comparison with simulation results.

It is likely that the overwhelming number of mechanisms have been created due

to the lack of a framework to evaluate existing ones. Given such a framework, appli-

8

cation developers can focus on their development and simply pick a trust mechanism

that is most suitable for their needs.

Many surveys of trust mechanisms [14, 15, 16] exist that compare, analyze, and

classify reputation mechanisms and their characteristics. Unfortunately, these surveys

only include qualitative assessments. Qualitative assessments are good for summa-

rizing how a trust mechanism works or, in some cases, seeing if a trust mechanism

can be implemented in a particular system. These surveys fail to take a quantita-

tive perspective and thus preventing researchers from using them to make statements

about how much better one trust mechanism is over another or make predictions

regarding the effect of changing the system parameters or attacker models. Many

trust mechanisms provide simulation results demonstrating their effectiveness, but

it is difficult to discern how these results will scale to other environments and at-

tacker models, as these simulations are performed with little consistency between

trust mechanisms. This analytical framework eases the compatibility of comparisons

between trust mechanisms.

1.3.6 Social Augmentation of Trust Mechanisms

The use of social computing and social networking has recently flourished as

social networking sites have grown in popularity and pervasive computing resources

have allowed for people to stay well-connected with access to social networking re-

sources through mobile phones and other similar devices. This dissertation proposes

to utilize information produced by relationships within social networks to assist in the

establishment of trust for other pervasive computing applications. This dissertation

proposes Social Trust (SoTru), a mechanism for utilizing social network relations to

assist in the establishment of trust. SoTru permits trust mechanisms to utilize both

implicit and explicit social networking information. Furthermore, the trust mecha-

9

nism can determine how much to to trust the social network. In simulation studies

of SoTru have shown significant improvement of AREX in terms of adaptation speed.

SoTru simulations also show that it can tolerate unreliable social networks where

attackers have infiltrated the network.

CHAPTER 2

BACKGROUND

This chapter describes the relationship between trust and security in dynamic

systems. The requirements necessitated by dynamic pervasive systems are discussed

in this chapter. The work in this dissertation is motivated by examining the insuffi-

ciency of prior work for dynamic systems.

2.1 Challenges in Dynamic Systems

Developing and deploying dynamic systems poses challenges that involve mo-

bility, device constraints (battery life, processing power, memory, etc.), heterogeneity,

openness, and a goal of fading into the background of human experience. Dynamic

systems share many properties with other types of systems. Specifically, dynamic

systems include the problems of distributed, mobile, and pervasive systems and adds

challenges in openness and churn (the turnover of nodes entering and exiting the

system). This dissertation now discusses each of these challenges.

2.1.1 Mobility

Mobility in dynamic systems most commonly refers to mobility of the nodes in

the system. While many underlying communication protocols have been designed to

ease the burden of mobility, it can still cause disruptions in service and disruptions

in security mechanisms. As a result, security mechanisms in dynamic systems must

be able to protect the user against mobility-related vulnerabilities. Since mobility

10

11

(amongst other factors) can introduce intermittent connectivity, security mechanisms

cannot require rigid connectivity structures such as a distributed hash table [17].

Mobility does not necessarily have to refer just to mobile devices, but can

include mobile users or agents. Agents may move from device to device, even if the

devices themselves are not moving, and still maintain the same security requirements.

Also, to protect against a malicious mobile agent, other security mechanisms should

not bind their protection only to the device. Likewise, users may use multiple devices

in disparate locations. As users are less able to explicitly carry with them information

to augment the trust process (such as access control lists or reputation information)

as a software agent might be able to when it migrates, the security mechanism should

be able to cope with this possibility.

2.1.2 Device Constraints

Device constraints in dynamic systems include typical sources of constraints

such as energy, processor, memory, and bandwidth. Algorithms for these devices must

be able to operate in a reasonable amount of time and not require so many resources

that it affects other functions of the device. In dynamic systems, small mobile devices

are often running applications. These devices are limited in performance and battery

life. Any of these constraints can limit the performance of a system, so a security

mechanism that requires too much of a particular resource, such as energy, will cause

the application to become unusable.

In addition to typical constraint issues, devices in dynamic systems may suf-

fer from constraints related to heterogeneity and invisibility. In particular, security

mechanisms may use, but not require that devices have specialized hardware such as

cameras, microphones, or even keyboards. While a security mechanism may make

use of these features when available, it should not be required for secure operations.

12

2.1.3 Heterogeneity

Heterogeneity in dynamic systems includes a wide variety of factors such as op-

erating systems, hardware availability, hardware architectures, network connections,

network overlays, attacker strategies, and types of failures. As a result, security mech-

anisms must be able to execute in these operating environments. Security mechanisms

should be easily portable between devices and not rely on specific aspects of the oper-

ating environment. Security mechanisms should also be able to address attacks such

as individual attackers, colluding attackers, and sybil attacks (when a single attacker

spawns many copies of an attacker) – whether the attacker controls a large portion of

the system or a small portion. The mechanisms should also be able to operate when

nodes are not actively attacking but fail occasionally. This means that if all nodes

are potentially unreliable, the security mechanism should still permit the application

to find necessary services.

2.1.4 Openness

Openness is the challenge caused by a low or non-existent admission cost into

the system. In dynamic systems, nodes may freely enter the system without any cost

imposed by a central controlling authority. As a result, approaches such as certificate

authorities become difficult or impossible to use in dynamic systems. Openness also

makes dynamic systems more susceptible to sybil attacks, so techniques such as relying

on a majority vote become difficult or detrimental. Openness also means that security

mechanisms cannot rely on banning entities from the system since no central control

mechanism to do so exists and nodes can exit and reenter the system with different

IDs.

13

2.1.5 Invisibility

Invisibility in dynamic systems is a goal shared with pervasive computing. The

user should be able to take for granted that the security mechanism exists. The secu-

rity mechanism should be autonomic, minimizing the amount of interaction required

by the user, especially since the user may not be directly accessing the device (for

example, a person walking down the street with a cell phone or PDA in his pocket

may be performing actions requiring security, but it should not require the user’s

attention).

2.2 Security and Trust

Security in computing systems has traditionally focused on access control and

authentication. In such systems, a user can only access a resource (for instance,

edit a file) if that user has the appropriate rights to make the access, and has been

authenticated as that user. This approach requires several characteristics of the

system using it. First, the system must have a central authority. This is a simple

requirement in a system such as a server with remote login – the server itself is the

central authority. Second, it must be reasonable to authenticate the users of the

system. This means that there must exist some secure mechanism that prevents

the forgery of user accounts on the system. Additionally, the users must be known

beforehand so that the system can assign them appropriate rights when they join or

return to the system.

While these approaches can provide significant security benefits, they are not

possible, at least not in their original forms, in many pervasive systems. As systems

become more open and dynamic, supporting a rigid security infrastructure becomes

increasingly difficult. Since the goal of pervasive computing is to create systems

14

that work so seamlessly that the user does not have to think about them, security

mechanisms that require the user’s time and effort are undesirable. A system in which

the user must stop to create an account, make a request to an administrator to receive

access rights, log in to the system with a username and password, and then access a

resource does not follow the ideals of pervasive computing.

In addition to dynamic systems where many users may join or leave the sys-

tem frequently, security mechanisms for pervasive systems must be able to handle

characteristics such as mobility, heterogeneity, and interoperability.

To increase the flexibility of security systems, many researchers have now pro-

posed trust-based approaches to security in distributed, and, in particular, pervasive

systems. Trust can be used for security in many different ways and take many differ-

ent forms. Some trust mechanisms more closely resemble traditional systems while

others add a significant amount of flexibility to the system. As with many research

areas in computer science, there are trade-offs associated with the various types of

trust. Trust mechanisms that resemble traditional security mechanisms tend to be

more rigid and require more infrastructure, but they also have the ability to provide

stronger security guarantees. More flexible trust mechanisms often only mitigate some

vulnerabilities in a system, and cannot entirely prevent the success of some classes

of attacks. In general, the purpose of trust is to utilize relationships between enti-

ties to accomplish a task that would otherwise be more costly or impossible. These

relationships may manifest themselves in many different ways.

2.2.1 Types of Trust

Trust can be established in many different ways. Some mechanisms require that

trusted infrastructure be established prior to the assessment of trust, while others can

be assessed in the absence of formal infrastructure. While many types of trust can

15

reduced to versions of each other, there are several well-established types of trust that

are commonly used in the literature and in practice. This section discusses several

well-established types of trust.

2.2.1.1 Authoritative

Trust is established through reliance on some authority to determine that the

entity should be trusted. This is most often accomplished through a digitally signed

certificate, such as a X.509 certificate [18], that is presented as evidence of trust-

worthiness. A defining feature of authoritative trust is that the authority produces

a definitive decision as to whether or not an entity is to be trusted. Authorita-

tive trust more closely resembles traditional security mechanisms than other types

of trust. In such mechanisms, there is a central authority that verifies access rights

and authenticates users [5]. The difference between an authoritative approach and

that of traditional security mechanisms is that there does not need to be a central

or coordinated authority. For example, several authorities may exist, perhaps each

controlling an administrative domain, thus allowing for system extensibility and del-

egation of responsibilities. As a result, the authoritative approach still retains much

of the security benefits of traditional security, but with additional flexibility.

2.2.1.2 Role-Based

In role-based systems, trust is established based on the role that an entity acts

in. The role that an entity acts with can be established through a variety of means,

including digitally signed certificates [7] or context aware mechanisms [19, 20]. The

earliest research in role-based access control (RBAC) was in [21, 22]. It has since then

been adapted to pervasive systems by utilizing trust in the context of active spaces

[7]. Sets of permissions are assigned to each role in the system, and each user has a

16

set of roles. The roles are designed such that the permissions assigned to each role are

only what are necessary to accomplish the tasks associate with that particular role.

The advantage of using RBAC in pervasive systems is that it eliminates the need for

individual user authentication. Each user only has to authenticate that they have a

particular role. This eases the burden of administration after the initial establishment

of roles.

2.2.1.3 Reputation

In reputation-based systems, trust is established based on the opinion of other

entities. In reputation systems, other entities are queried for their opinions about

resources or other entities. The results from these queries are then processed and a

decision is then made based on the reported values. Reputation mechanisms permit

a completely decentralized method of determining whom to trust. Reputation mech-

anisms tend to be used to determine whom to access resources from rather than who

to allow access to. The advantage of this approach is that it makes the entry and

exit of new users very easy as no single entity has to track their entrance and au-

thenticate them. Many reputation mechanisms exist without any central authority or

pre-established infrastructure (although some do exist that take advantage of central-

ization where it makes sense for the system [23]). The downside of reputation is that

it is susceptible to many classes of attacks. As a result of the collaboration required

for reputation-based trust, it is possible for attackers to control a significant portion

of the system. Furthermore, nodes may collaborate to disrupt reputation mechanisms

by having a set of nodes that attain high reputation and then report that other nodes

controlled by the attacker should have high reputations. Reputation mechanisms are

also vulnerable to ”one time” attacks where a node acquires a high reputation then

betrays the trust placed in it, or is compromised by an attacker who then uses the

17

high reputation to perform attacks. Thus, the attacker can attack without incurring

the cost of building a reputation as a benign node.

2.2.1.4 Recommendation

In recommendation systems, trust is established through nodes’ recommenda-

tions of other entities. Recommendation-based trust is similar to reputation-based

trust and as a result share many of the same properties. The significant difference

is that instead of querying entities for information about a particular entity, the

initiating entity inquires about the most highly rated entity (or set of highly rated

entities) to provide the desired service or resource. Rather than definitely relying on

an authority, the entity queries other entities in the system to collect their recom-

mendations, then processes the recommendations and makes a decision based on the

reported values.

Table 2.1. Comparison of Trust Mechanisms

System Mobility & Connectivity Open Type Central
EigenTrust [17] DHT prevents mobility Yes Rep No
Credence [9] Not designed for mobility Yes Rep No
CORE [24] Designed to handle mobility Yes Rep No
PolicyMaker [25] Requires connectivity No Auth Yes
Keynote [26] Requires connectivity No Auth Yes
Vigil [5] Connected to components No Auth Yes
Gaia [7] In service spaces No Auth Yes
SECURE [6] Designed for mobility No Rec No
CTB [27] Not Addressed No Auth Yes
SAHARA [10] Not Addressed No Auth Yes
QUEST [28] Designed to handle connectivity No Auth Yes
JIA [29] Designed to handle mobility Yes Rep No

18

2.3 Existing Trust Systems in P2P

Much research has been done on the topic of trust in P2P systems. P2P commu-

nities often bring together large numbers of peers without requiring significant means

of authentication or standards for entry into the system. Consequently P2P trust

research has largely focused on reputation mechanisms. Existing trust mechanisms

in P2P are of interest to this dissertation for their approaches to satisfy challenges of

openness, heterogeneity, and sometimes mobility. A significant number of reputation

systems have been designed, so only some of the more significant ones are described

in this section.

2.3.1 EigenTrust

EigenTrust [17] establishes a reputation matrix that stores the experiences each

peer has had with the other peers in the system. EigenTrust then uses the dominant

eigenvector of a square reputation matrix to calculate a global trust value for each

peer (where element i,j represents i’s opinion of j). Trust is assumed to be transitive

in order to perform this calculation. The reputation matrix is populated based on

the number of positive transactions minus the number of negative transactions that

peer i has with peer j. The values are then normalized such that each row sums to

1. The dominant eigenvector then gives the global trust value for each peer (and the

probability with which a peer should choose to access resources from that peer). The

authors then present variants of EigenTrust designed to operate in a decentralized

manner (through distributed computation), and more securely (through managing the

global reputation for each peer at several points in a DHT). The structured nature of

the storage makes it difficult for EigenTrust to handle churn and mobility since the

DHT would constantly have to be rebuilt.

19

2.3.2 Credence

Credence [9] is motivated by the observation that often trustworthy peers still

propagate bad objects. Walsh, et al. approach the challenge that a peer sharing an

object does not mean that the peer necessarily endorses that object. As a result, Cre-

dence operates on object reputation rather than peer reputation. Object reputation

rates individual objects in the system rather than the peers that host them. Votes

for or against the object (and in reality, components of the object) are weighted by

the correlation of the voter. For instance, if A strongly disagrees with most of B’s

opinions, then a positive vote from B would be perceived as a negative vote by A.

Credence communicates votes over the gnutella network, so its communications are

handled in a decentralized and unstructured manner. Each vote is digitally signed so

that it is not modified during the forwarding process.

2.3.3 PeerTrust

PeerTrust [2] is a Peer-to-Peer reputation-based trust system that also works

in a client server architecture. While PeerTrust was designed with e-commerce appli-

cation in mind, it will work as an overlay to a P2P network, so the concepts still fit

with access control in smart spaces. The goal of this work is to produce an adaptable,

effective, and generic trust metric that is resistant to corrupt feedback attacks.

The authors argue that problems with most current reputation mechanisms are

that results rely solely on positive or negative feedback, they assume that agents are

honest, there are no mechanisms for context sensitivity filters, there is no account for

temporal adaptivity, and there are no incentives for peers to rate each other.

Furthermore, the authors list five important factors for evaluating trust.

• Feedback based on the amount of satisfaction

• Scope of the feedback

20

• The source’s credibility

• Transaction Context (how important is the transaction)

• Community Context (how the transaction affects the community)

The trust factor is computed by combining these factors together. PeerTrust

takes a weighted value of the sum of the products of the normalized satisfaction the

peer receives from it’s transaction, the credibility of the peer during a time period,

and the transaction context factor, and normalizes that value by the number of trans-

actions in the time period. The value is added to the weighted value of the adaptive

community context factor. While context factors are specific to the application, this

method of computing trust produces an average value of credible satisfaction which

is modified based on the context of the community. By comparing this trust value to

a set threshold, the computed trust value can be used to make confident decisions for

access control.

Context factors allow for customization of the system to fit specific needs. For

instance, cost or value of transaction can be incorporated into the equation by taking

that as a context value of the transaction. Temporal adaptivity can be added by

creating a weighting of past values. Incentives can be added as part of the community

context. Thus, free riders can be punished by making the community context the ratio

of resources provided to resources consumed.

2.4 Existing Trust Systems in MANETs

2.4.1 CORE

CORE [24] is a reputation mechanism designed for mobile ad-hoc networks.

CORE uses three types of reputation and combines them together to produce a final

reputation value. These three types are subjective reputation, indirect reputation,

21

and functional reputation. Subjective reputation is calculated directly from an en-

tity’s observations. Indirect reputation is reputation information reported by other

entities. These values reported as indirect reputation can only take non-negative

values as a defense to prevent nodes from propagating incorrect negative reputation.

Functional reputation is the reputation an entity has for performing a specific function

such as packet forwarding or routing.

2.4.2 Jiang, et al

Jiang, et al. [29] focus on reliable service composition in mobile ad-hoc networks

(MANETs). The work is focused on minimizing MANET disruptions in the service

composition process. The system is viewed in two tiers, a service layer and a network

layer. A dynamic programming solution and a heuristic-based solution (to loosen the

requirements of the dynamic programming solution) are presented to provide both

network-level and service-level recoveries.

2.5 Existing Trust Systems in Pervasive Computing

Trust systems in pervasive computing tend to require more administrative con-

trol than systems in P2P and MANETs. Trust systems in pervasive computing tend

to be less open and require a greater cost of administration. Some systems alleviate

some of the administrative burden by allowing delegation of access rights. Typically

these systems focus more on access control than on reliable and trustworthy access.

2.5.1 PolicyMaker & Keynote

PolicyMaker [25] is a distributed trust-management engine designed to handle

authorization via compliance checking. A compliance checking algorithm in the sys-

tem handles requests, credentials and policies in order to determine if the request is

22

allowed. Keynote [26] is designed with similar goals as PolicyMaker and maintains

many of its features; however, it has two additional goals: standardization and ease

of integration with applications. Keynote achieves this by placing responsibility on

the compliance checker and standardizing the policy assertion language.

2.5.2 Gaia

As part of the Gaia project [7], researchers utilize mandatory and discretionary

access policies, along with role-based access control to ease the process of adminis-

tration and to provide security to their active space system.

The goals of this access control system are:

• Provide security to allow only authorized access to resources in both physical

and virtual worlds

• Allow seamless transition between spaces without sacrificing security

• Ease of configuration, enforcement, and administration

• Support dynamic roles for explicit cooperation

To accomplish this, the authors present an access control model that supports

customizable policies, virtual and physical world considerations in access control, and

based on the user and activity set, dynamic support of different policies for different

spaces.

The authors create a version of role-based access control that recognized three

types of roles: system, space, and application. System roles are created with the user

account and specify generic permissions for resources access. Space roles are depen-

dent on which space they currently exist in and are used to access resources via the

policies of the space administrator. The system automatically maps generic system

roles into space roles. Finally, application roles permit even more customization by

allowing the user to gain access based on the role of the task he is performing. These

23

roles are then mapped into space roles. From this point, the system has access rights

for the user. Using both application and system mapping of roles into space roles

prevents the user from gaining more access than merited by his system role, while

still allowing necessary access to perform tasks.

To satisfy the need to explicitly allow cooperation, they also incorporate four

space modes: individual, shared, supervised-use, and collaborative. Individual mode

occurs when only one entity is in the space. This mode causes the system to act

based completely on the space access control as defined by the space, application

and, system roles. When a second entity enters the space, the system switches to

shared mode. As a default, shared mode only allows actions that all users in the

spaces are allowed (in other words, the intersection of the set of all allowed actions of

the users). In order to reduce restrictions, the supervised-use mode allows a supervisor

to perform actions that would not normally be allowed under shared mode. Finally,

collaborative mode is designed for a trusted group where, if any entity can perform

an action, then all can perform the action (the union of the allowed set of actions of

each user).

The Gaia Access Control System works by the space administrator setting up

the access policies for all of the space services. Users then authenticate themselves

in order to gain entrance to the space and the system adapts it’s mode based on the

current users. Users then begin to interact with the space and each other and the

system utilizes interceptors to check whether or not accesses to services conform to

the access control policy.

2.5.3 Vigil

Vigil [5] is another role-based access control architecture. The architecture is

designed primarily for smart spaces where clients have the potential to be dynamic

24

and mobile. Vigil contains six functional components: Service Manager, Communi-

cations Manager, Certificate Controller, Security Agent, Role Assignment Manager,

and Clients.

The service manager handles service location by brokering between users and

services that register with it. The communications manager is a gateway that trans-

lates between different protocols so the service manager can communicate with the

services and users. The certificate controller handles authentication by generating

and verifying X.509 certificates. The Role Assignment Manager contains a list of

roles and rules for roles for the entities in the system. The Security Agent handles

the access rights of users. The Clients are defined as both the users and services in

the smart space system.

Upon entering the smart space, the client is authenticated and is assigned rights

as based on his role. This role can change during the course of the interactions of

the system. The user can gain more access rights by having those rights delegated to

them by another user with the right to delegate. These delegations may or may not

be constrained, meaning that it is possible to form chains of delegation which must

be traced back through the path the delegation occurred in order for the security

manager to verify the right to access the desired service.

Ontologies are used to provide a system of access based on the properties result-

ing from a user’s role. Not only does the system use role hierarchies, but additional

properties and constraints can be created in order to establish rights dynamically

without having to create a new role.

25

2.5.4 SECURE

In the SECURE [6] project, trust is presented as part of an interaction mech-

anism for a self-organizing system. The authors note that trust satisfies Prigogine’s

[30] four requirements for a self-organizing system as such:

• Mutual Causality – The exchange of recommendations between agents affects

the behavior of each agent

• Auto Catalysis – Positive or Negative recommendations will cause either an

increase or decrease in interactions as a reaction

• Far-From Equilibrium – The system is dynamic and trust values are constantly

changing, so the system will not reach and maintain an equilibrium

• Morphogenetic Changes – The services, users, and environment of the system

are affected by random changes in condition.

The two main considerations of the model which is based on human behavior are

communication through semantic information and decision-making with uncertainty.

Tags are defined as the semantic information regarding a potential transaction be-

tween agents. The information in these tags are characteristics of the resource. For

instance, a printer tag might include information such as pages per minute, color

or black and white, and whether it has a duplexer or not. At the beginning of an

interaction, tags are exchanged in order for both agents to learn about each other’s

capabilities. Then, based on previous experience, recommendations, risk, and the

ability for the other agent to satisfy the user’s needs, a decision to interact is made.

Following an interaction, an evaluation takes place and the agents update their trust

values with regard to each other. Through this process, recommendations propagate

through a system to provide a distributed, trust-based method for access decisions.

26

2.6 Trust in Service Composition

Significant research has recently taken place in service composition. While

much of the work in service composition has been focused on composing web-services,

there has also been some work in the dynamic environments encountered in pervasive

computing.

Composition Trust Bindings [27] verify the integrity of composed services using

the service composition equivalent of digitally-signed software. A CTB policy requires

that all nodes, services, and composition paths be known.

SAHARA [10] is a service composition framework that provides authorization

control based on local rules and credentials from other domains. SAHARA also

relies on a central Authentication, Authorizing, and Accounting (AAA) server and a

requirement for credentials.

Bartoletti et al. [31] model service composition with security constraints using

an extension of λ-calculus. This approach requires a statically-determined abstraction

of service behavior which may not be feasible in dynamic systems. The system must

be aware of what services will be available in an environment, the nodes that will be

providing these services, and the method of composition until run-time.

QUEST [28] is a service composition infrastructure designed to assure QoS

constraints. While it is not focused on security, it shares a common goal with this

dissertation: to improve the reliability and performance of dynamic service compo-

sition. While QUEST does handle multiple nodes providing each lower-level service

through a modified version of the Dijkstra algorithm [32] weighted with values of

availability and response time, it does not address multiple different paths that could

be used to achieve a compositions.

27

2.7 Observations of Prior Work

Most of the trust frameworks for dynamic systems described above require

the distribution and checking of certificates against policies to establish trust. This

approach has several significant drawbacks. First, it limits the use of trust in the

system to that of certificate-based trust. Other types of trust exist in other areas

of distributed computing that are useful in a dynamic systems, such as reputation-

based [8, 17, 33, 34, 9] or recommendation-based [6], would be difficult or impossible

to implement in these trust-management systems. Second, the type of trust is largely

tied to the trust distribution mechanism. As a result, many components of the systems

described have limited reusability, especially if the use of trust is not for authentication

and access control, as is the case with most previous approaches.

Many of these trust mechanisms rely on some pre-existing list of trusted peers;

however, it is not always possible to identify such peers in uncertain and potentially

malicious systems. For example, in a file-sharing application in an urban setting,

users may continuously come and go, making it difficult to identify peers that can be

trusted in advance. In hostile environments, such pre-trusted peers could be captured

and corrupted, so it can be dangerous to assign trust management tasks to only a

few nodes. Without reliable pre-trusted peers, there is no guarantee that reputation

values provided by any peer are legitimate. Consequently, trust mechanisms that

accumulate the preferences of the majority of peers to calculate reputations will fail

to provide protection for benign peers when they are in the minority.

Since reputation mechanisms are cooperative, they require communication among

peers. In systems where consistent connectivity cannot be assumed, such as a mobile

P2P system, a reputation mechanism will degrade in effectiveness when the portion

of the system available to communicate with at any given time decreases [17]. The re-

duced ability to acquire reputation information may result in less reliable reputation

28

results. The unreliability of reputation in these cases is caused because changes in

reputation values that otherwise would have propagated quickly through the system

now take longer, so peers make decisions based on degraded reputation information.

Additionally, attackers may take advantage of wireless, peer-routed communication

to selectively disrupt communications, thereby taking control of the propagation of

reputation information.

Another limitation of existing approaches to reputation-based security in exist-

ing P2P systems is the requirement of prior experience to make decisions [2]. As a

result, peers are vulnerable against attacks when they enter the network. In a foreign

system with no known trusted peers, an entering peer is vulnerable to attack as it has

no means to determine the trustworthiness of any other peers in the system. This fact

can be exploited by an individual malicious peer or by a set of collaborating peers.

Furthermore, a peer can initially behave benignly, be recognized as such, and then

act maliciously (either intentionally or due to being compromised). These attacks are

especially dangerous for a peer that is sensitive to attacks (or to a particular type of

attack) and reputation does little to prevent such attacks.

CHAPTER 3

TRUST FRAMEWORK

3.1 Introduction

Dynamic systems are characterized by dynamicities in terms user/device mobil-

ity, resource constraints, and high rate of churn. On the other hand, establishing trust

among users and creating reliable services are paramount to meeting application re-

quirements. This problem is further exasperated by the lack of flexibility, modularity,

and scalability in existing trust mechanisms. The Distributed Trust Toolkit (DTT)

described in this chapter envisages to address this challenge. Even though pervasive

computing environments are considered in this chapter, the framework described here

is applicable to dynamic systems in general.

Closed pervasive environments such as smart homes, banks, laboratories, clinics,

vehicles, and personal area networks have important differences that prevent mono-

lithic security solutions from being adopted universally. For example, the pervasive

system in a public bus is completely different from that in an assisted-living home

in terms of challenges, services, privacy, number of users, etc. Even within the same

physical environment, applications may have different requirements. For example, a

gaming application service and a video surveillance service within a public bus have

different challenges and issues. Despite these differences, it is desirable to maximize

the amount of work that can be reused when deploying such a diverse set of systems.

A popular approach to addressing security challenges in these environments is

the use of distributed trust mechanisms. Trust allows users to use previously gathered

information, such as certificates or reputation scores, to interact with peers in the

29

30

system with some assurance. However, most trust mechanisms currently available for

pervasive computing lack flexibility, modularity and scalability. There is a need to

develop mechanisms that are adaptable to mobility and disconnection, portable to

different pervasive systems, and scalable with respect to number of devices, users and

applications. The proposed DTT envisages to address these critical issues to make

trust management more usable and easily extensible to a wide variety of pervasive

environments.

The DTT is a set of tools that enables the implementation, deployment, and

sharing of trust-related components for pervasive systems. The primary component

type is called a Trust Block, and it contains everything needed for an application to use

trust-based decision-making. Thus, the DTT has only two programming interfaces:

an Application Programmer Interface (API), which facilitates the development of ap-

plications using Trust Blocks, and a Trust Block Programmer Interface (TPI), which

facilitates the development of the Trust Block modules themselves. Additionally, the

DTT includes a DTT daemon that manages the Trust Blocks. As illustrated in Fig-

ure 3.1, applications may use a variety of remote interfaces, such as our XML-RPC

interface, to connect to the daemon, which maintains local copies of Trust Blocks and

any data the Trust Blocks have stored. Also, a node may have several applications

that access a daemon. Each application may make use of one or more Trust Blocks.

Each Trust block may acquire trust information from one or more network inter-

faces that provide a common interface for portability purposes. A Trust Block may

additionally query the local trust database for previously cached trust information.

While the DTT works for any distributed system, it is particularly designed

for pervasive systems. The DTT uses Trust Groups to improve the performance of

existing algorithms by utilizing a users set of devices such as cell phones and PDAs.

Furthermore, DTT is designed to mask heterogeneity and ease porting to new devices

31

and networks through a set of simple, generic interfaces. Finally, the DTT is designed

to ease the development of trust mechanisms for new environments through a modular

approach to the design of trust mechanisms (refer to Section 3.7.2 for an example of

transition Credence from an internet-based implementation to one more suitable for

a MANET by only changing the Protocol component).

There are three goals of the DTT: enabling trust sharing, encouraging algorithm

reuse, and easing trust system deployment. To meet our first goal of facilitating the

sharing of trust information, we developed Trust Groups. Trust Groups are a natural

consequence of the DTT design, as the nodes in a group will share a single DTT

daemon. This makes it easier to share trust information, by simply storing it in

a single host. The DTT daemon thereby acts similarly to super-nodes in P2P file-

sharing systems like Kazaa [35], except that the DTT daemon serves trust information

instead of directory information. Trust information can also be shared within a single

node, since multiple applications running on a single entity can utilize a single instance

of the DTT. For instance, consider a laptop that is part of both a Smart Home

environment and part of the Adaptive Media System . Since these two applications

may utilize resources from overlapping sets of nodes, trust information can be shared

between applications.

To meet our second goal of encouraging code sharing and reuse, we have two

design features. First, the use of Trust Blocks creates a clearly defined module struc-

ture for which the API can provide a generic interface. This means that applications

need not change much to use different Trust Blocks. Second, the TPI is designed to

facilitate composition of modules within Trust Blocks. Each Trust Block is comprised

of three functional components, each of which may be mixed-and-matched with other

components to encourage sharing of code.

32

Finally, to meet our third goal of facilitating deployment and use of all trust

mechanisms, we have taken measures to ensure platform-independence and interop-

erability. In particular, we chose to make the DTT daemon cross-platform. We also

ensure that the DTT may interoperate with other platforms not using the DTT and

that different Trust Blocks can be used at the same time. Interoperability means that

DTT and various Trust Blocks can be deployed incrementally without disrupting the

ongoing operations of a system.

In the rest of this section we will describe the design of Trust Blocks, the core

component of our system, the design of Trust Groups, and how the DTT ensures

platform-independence and interoperability.

3.2 Operating Environment

Traditional approaches to security management and deployment typically fail

to scale to the varied, mutable environments of typical pervasive computing systems.

Instead, pervasive computing environments must rely on distributed trust [5, 7, 8, 17,

25]. While these distributed trust solutions scale usefully in pervasive environments,

the infrastructure of these systems is tied to the single, specific trust mechanism

explored by the researchers. This makes it difficult to reuse, combine, and extend

trust mechanisms in custom systems or protocols, thereby limiting both research in

trust and the use of trust in real systems. In our examples, we use trust to establish

secure resource access, but the Distributed Trust Toolkit (DTT) is not limited to that

usage.

Pervasive applications using the DTT connect to a DTT daemon that manages

trust for the application. The DTT daemon contains a set of pluggable Trust Blocks,

each of which provides an implementation of some trust mechanism. Trust Blocks

33

Figure 3.1. DTT Architecture.

are modular and may inherit individual modules from other Trust Blocks, leading to

easy customization of trust mechanisms and improved code reuse.

3.2.1 Example

Suppose that Alice, a computer science student at a university, wishes to deploy

an adaptive media system. Her users are other students with laptops and smartphones

that move around the campus, yet expect their media streams to follow them. In

34

testing, Alice finds that students are often unhappy with her application because

many of the data sources that her application chooses are slow, unreliable, or stream

the wrong media. The users’ mobility compounds the problem because the system

must continually choose new sources without full knowledge of how trustworthy or

reliable the sources are. Furthermore, Alice wishes to make use of the heterogeneous

nature of her environment and utilize local networks formed by connections using

local 802.11 and bluetooth in addition to internet and 3G connections to discover

new trust information.

To remedy this problem, Alice uses the DTT to enable her system to choose

better, trusted sources. First, she chooses a Trust Block that defines her trust policies.

Initially, Alice decides to trust only sources that have X.509 certificates signed by

her university’s certificate authority. To implement this decision, she modifies the

initialization code of her application to instantiate a CertificateTrustBlock. Later, in her

discovery code, Alice only includes sources that are trusted by her Trust Block:

if (tb.isTrusted(source)) {

validSources.add(source);

}

At runtime, the Trust Block contacts a discovered DTT daemon and takes care of

the certificate exchange protocol between her application and the source. As network

interfaces for her protocols are well-established, the Trust Blocks do not have to be

modified to access the certificates through any of the networks her users have available

at any time.

When Alice deploys the new DTT-based application, her users are thrilled with

the reliability of the sources, but dissatisfied by the small number of “certified” sources

— mostly official university lectures and seminars. To satisfy her users, Alice decides

to include a new Trust Block based on a distributed reputation system, based on

35

Figure 3.2. The Components of a Trust Block.

Credence [36], rather than certificates. To make the change, Alice simply instanti-

ates a CredenceReputationTrustBlock rather than a CertificateTrustBlock and redistributes her

application. At the application-level, Alice does not need to change her discovery

code because the CredenceReputationTrustBlock defines a new policy for isTrusted() that her

application can just use.

3.3 Trust Blocks

Each Trust Block consists of three layered components: the Protocol, the Com-

putation, and the Presentation. Figure 3.2 illustrates the relationship between the

components. An application accesses the Trust Block through its Presentation compo-

nent. The Presentation component, in turn presents the trust information determined

by the Computation component. Finally, at the lowest layer, the Protocol component

interacts with other entities on the network to acquire the data that the Computation

component needs.

The API provides access to a set of mixins and more complex Trust Blocks.

The API can either be accessed as a local library or through remote invocation. The

DTT mixins provide basic trust functionality that can be used for simple scenarios

36

without having to create more complex mechanisms. The mixin functionality con-

sists of isReputable, isRecommended, isAllowedRole, and isCertified which provide reputation,

recommendation, role-based decisions, and X.509 certification. Furthermore, the API

allows access to specific Trust Blocks that are implemented with a common interface.

This interface uses the eval method to initiate an evaluation of a user or resource

and the getResults method to retrieve the up to date results of the evaluation for a

particular evaluation request. The result of a request is of type TBPresentation which

is discussed in Section 3.3.1.

3.3.1 Presentation

The Presentation component is the “application-facing” component of a Trust

Block. It is responsible for implementing policy decisions — e.g., whether a certificate

is “valid” or an object reputable enough — based on trust data from the Computation

component. For example, in a reputation-based system, one Presentation component

might report only the “most reputable” object, while another might report a list of the

most reputable objects. In a certificate-based system, the Presentation component

may ignore the expiration date of a certificate when looking at old data. In our

scenario of Section 3.2.1, the tb.isTrusted() function is implemented by the Presentation

component. The Presentation layer is connected to the Computation component

through the getResult method and a Presentation object is returned by the API to the

application.

3.3.2 Computation

The Computation component is responsible for implementing the algorithms

involved in computing the trust values that will be interpreted by the Presentation

component. For example, a simple reputation computation might count the votes for

37

the object it is evaluating to determine the object’s reputation score. Likewise, an

X.509 certificate [18] computation mechanism might verify that the certificate was

signed by a trusted Certificate Authority, that it was within the valid time frame of

the certificate, and that the certificate had not been revoked. However, in no case

does the Computation component make a policy decision on the data it evaluates.

This policy decision-making is left to the Presentation component. Computation

components connect to the Presentation layer through the doComputation method and

to the Acquisition component through an acquireData method. The Computation com-

ponent can also acquire cached trust information from the database. The information

is tagged based on type (ie, reputation or a certificate) and subject (ie, a particular

user or type of resource). This is discussed further in Section 3.6.

3.3.3 Communication Protocol

The Trust Block Protocol component is the “network-facing” component of

a Trust Block. The Protocol component is divided into two sub-components: an

Acquisition module that makes outgoing requests to other entities on behalf of the

Computation component through the getData method, and a Request Handler that

handles protocol messages from other entities in the system. This split was created

to allow the developer to customize the way the Trust Block acquires data without

changing the Trust Block’s interaction with other entities in network. For example, a

broadcast Acquisition component may simply use the underlying network broadcast

to make requests whereas a more complex Acquisition module might maintain a list of

preferred peers to query for trust information. In either case, trust protocol messages

received from other hosts are unaffected by the decisions made in the Acquisition

module.

38

The Protocol components are implemented using the TPI. The TPI’s interface

to the network adapter consists of broadcast, multicast, and query along with forwarding

versions each method as additional logic may be required for a forward that is not

required in initiating a request, such as checking the TTL of a message. Every

network interface implements its version of these functionalities for the particular

protocol. The TPI also provides an interface for receiving and responding to messages

from the network. The getMessage and sendMessage methods are implemented to receive

incoming queries and to respond to the appropriate node as a result of the queries. As

an example, a trust block designed for Gnutella over the Internet could be dropped

into a local adhoc network that communicates over TCP/IP and utilize the network-

layer broadcast to acquire trust information and unicast to respond to the query as

implemented in the network interface in the DTT Daemon. As a result, none of the

code for the trust block needs to change despite the fact that the application is no

longer running on an overlay network.

3.4 Trust Information

Trust information is the evidence held by a node that another node should or

should not be trusted. It may exist in many forms such as a digitally signed certificate

or a reputation value. Trust information is acquired through the communication

protocol and personal experience. Then it is stored in the trust database where it

can later be used by trust mechanisms to make decisions.

3.4.1 Trust Database

The trust information stored in the database is tagged with a type (e.g., an

X.509 certificate or a User Recommendation). The tags allow DTT Members to

retrieve any trust information that they can utilize from the existing cache of trust

39

information stored in the database. As some Trust Blocks may use similar, but not

exactly the same trust information, some additional trust information may be used

from the database if the Trust Block has the means to convert it into a usable form.

For example, if a Trust Block collects boolean reputation values (trusted or untrusted),

but there were votes from another Trust Block that were in the continuous range

of [0,1], then the boolean reputation system might translate any vote with a value

under 0.25 to count as untrusted and any vote over 0.75 to count as trusted (ignoring

any votes in between as being too noisy). There is no assumption that this trust

information is transitive, it is only made available to assist the entities in quickly

coming to a decision if the trust mechanism chooses to use the information.

3.5 Interoperability

3.5.1 Independence

The DTT is designed to achieve several types of platform independence. The

DTT’s implementation is largely language independent. Our implementation of the

DTT is written in Java to increase its independence from specific operating systems

and hardware. The DTT Trust Blocks are also independent of the network that they

acquire information from.

The DTT daemon is not tied specifically to Java, and additional implementa-

tions can be written in other languages. Likewise, we have implemented our Trust

Blocks in Java, but the Trust Blocks can be implemented in other languages. It is

also possible to execute Trust Blocks written in one language with a DTT written in

another, given appropriate wrappers or exported methods.

To achieve independence from the network from which trust information is

acquired, the DTT uses two interfaces, a Net Requester and a Net Responder. These

40

two interfaces form the core of the Trust Programmer Interface (TPI), and they are

implemented to hide the details of the underlying network from the creator of a Trust

Block. This means that Trust Blocks are portable to any network for which there

is an implementation of the Net Requester and Net Responder interfaces available

for the Trust Block’s Protocol components to access. For instance, if a reputation

Trust Block originally acquired trust information from a Gnutella P2P network on

the Internet, the same Trust Block could be used to determine reputations on a local

bluetooth network. A Trust Block thus can have a collection of Net Requesters and

Net Responders that it uses to acquire trust information. This allows the Trust Block

to acquire information from multiple networks if available or necessary.

3.5.2 Incremental Deployment

Since the DTT is a client-side library with pluggable Protocol components,

the DTT can be incrementally deployed into a pervasive computing environment

already running existing communication or distributed trust protocols as long as the

appropriate Protocol components are loaded into the DTT daemon. Moreover, if the

DTT is widely deployed, the DTT may aid in protocol upgrades, as a single DTT

can engage in multiple versions of a protocol.

3.6 Trust Groups

The DTT design encourages the formation of Trust Groups. The main pur-

pose of a Trust Group is to enable peers to share trust information and enhance

performance in calculating trust values.

Trust Groups consist of a DTT Host, which runs a DTT daemon, and several

DTT Members. Trust information is stored in a database on the DTT Host and can

be used by any member attached to the Host. Since the Members attached to the

41

Figure 3.3. Devices in a Personal Area Network Using a Trust Group.

Host may be running several different applications that utilize different Trust Blocks.

In Section 5.3, we evaluate the effect of shared trust information in an adaptive media

system using a Trust Block that implements the Credence reputation system.

Trust Groups in our simulations are formed out of pre-trusted entities, such as

the Personal Area Network (PAN) shown in Figure 3.3. However, we also permit the

dynamic formation of Trust Groups. These groups can be formed opportunistically

using individual DTT daemons to bootstrap into a Trust Group based on both mutual

trust and the expectation that they will benefit from joining the group. Furthermore,

since entities in pervasive computing environments may either sleep or move, groups

may morph over time. In such a case, the most stable and powerful entities should

host the DTT daemon for the group. In dynamic Trust Group formation, each entity

is initially a host. However, an entity can discover other hosts in the area, establish a

42

level of trust with one of them, and attach as a member of the host’s Trust Group. If

a host breaks its connection from the Trust Group for any reason, each disconnected

member will respawn a DTT daemon and can either seek to find another host to

attach to or act as its own host. Trust information stored by the original host can be

transfered in a graceful exit or some saved locally by members of the trust group in the

event of a random failure by the host. In this way, Trust Groups are flexible enough to

be deployed in a variety of pervasive computing environments. The optimal methods

for determining which hosts to attach to and what constitutes necessary trust for

doing so are largely application- and system-dependent and, as a result, outside the

scope of this paper; however, many of these issues could be addressed with a scheme

similar to Seamless Service Composition (SeSCo) [37] in dynamic environments or

the Utility Based Clustering Architecture (UBCA) [38] for decentralized clustering.

3.7 Results

To show the value of DTT as a toolkit for research and to demonstrate the value

of Trust Groups, we have simulated a sample pervasive computing environment with

an implementation of the Credence reputation system [36]. Credence is an object-

reputation system designed to operate on the Gnutella network. A peer running

Credence accumulates votes about a particular object (identified by a hash of the file

contents) via a Gnutella broadcast. The peer maintains a database of accumulated

votes and the votes of the peer making the request. It then computes a correlation

coefficient between itself and each peer it has a vote from. The coefficient is used

to weight the the vote the peer has received from that particular peer. The total

weighted result is then used to determine if the object is reputable and should be

downloaded.

43

Table 3.1. Default simulation parameters

Number of Peers 50
Number of Media Objects 4000
Number of Genres 20
Number of Genres of Interest 4
Number of Groups 5
Group Similarity Random
Peer Rating Accuracy 90%
Portion of Bad Media Objects 50%
New Media Objects per Day 16
Simulation Days 100
Average Number of Connections 5
Average Requests per Day 5
Media Object Density 80%

The use of Credence has three important benefits. First, it serves as a proof

of concept to show that prior work in trust mechanisms can be implemented within

DTT. Second, we have selected Credence in particular because it is both deployed as

a real system [9] and as a simulated system [36], which makes it both practical and

easy to compare to. Finally, it enables us to see the benefits of using Trust Groups

to enhance the performance of an established system.

3.7.1 Simulation Setup

The simulation portrays an adaptive media system similar to that described in

Section 3.2.1. In this system, entities make requests for media, which is discovered

and linked together by the planner. To improve the quality of the media that is being

supplied, the system uses Credence to determine the most reputable media sources.

Each day, every entity requests an average of five media objects (uniformly distributed

between 0 and 10 requests). The media requests are broken into separate genres that

each entity prefers. Example genres may include “Action Movies” or “Jazz Music.”

44

As the simulation resulted in similar results in terms of the ability to identify bad

media objects to those shown in the Credence simulations [36], we focus primarily on

the reduced cost to achieve these results that is accomplished by using Trust Groups.

For convenience, Table 3.1 contains the values used for simulations unless otherwise

noted. Messages are tallied as individual votes and requests that are sent. This

means that aggregate messages (such as reporting several votes at once) still count

as the number of votes that are sent. We define a trust message as initial requests,

forwarded requests, and responses, and count the overhead in terms of the number of

trust messages. For the simulations with Trust Groups, the trust message count also

includes all votes cast, since the DTT may not be running locally. Each data point

represents the average over 100 runs of the simulation. The current implementation

of the DTT, on which these simulations were run, is written in Java.

3.7.2 Simulation Results

Our first simulations were designed to demonstrate the effect of increasing the

number of peers in the system. Figure 3.4 shows the effect of increasing the number

of peers in the system in terms of trust messages sent per peer on both Credence and

Credence implemented with Trust Groups. Furthermore, the simulation also includes

the effect on peers attached to the groups. As attached entities are often resource-

constrained, such as a PDA being used for mobile viewing of a movie, it is important

that they spend less energy transmitting messages for computing trust. The decrease

in trust messages sent by each peer in Credence occurs because the resources (and

hence votes) become more abundant, so trust queries take less forwards to find new

votes. Likewise, the DTT peers see the same effect, but by utilizing DTT trust groups

the effect is more pronounced since votes are shared at a DTT, thus requiring less

communication between DTT nodes. The average DTT peer and the average attached

45

Figure 3.4. The Effect of the Number of Peers on Trust Messages per Peer.

peer eventually converge because the groups become large enough that most of the

votes that need to be acquired can be found within the DTT group. At that point,

the number of messages sent is approximately the same as the number of requests

made plus the number of votes cast.

Continuing with our examination of modular Trust Blocks, Figure 3.5 shows the

results of changing the acquisition component used in the simulation. The Broadcast

plot is the result of acquiring trust information for Credence via a Broadcast over a

Gnutella network with a TTL of 5 hops. The Random Walker plot is the result of

plugging in a Random Walker Acquisition component on the same Gnutella network.

46

Figure 3.5. Comparison of Acquisition Components.

We examine the energy consumption of resource-constrained members of a Trust

Group when they are able to enter sleep-mode once they have offloaded a trust request

to the DTT Host, rather than waiting for responses as they would need to do if not

in the Trust Group. The energy simulation assumes a cost of 1 energy unit per time

step to stay awake and 0.1 energy units per time unit to sleep. Furthermore, a sent

message costs 1 additional energy unit. Each non-Host entity sleeps for the 5 time

steps after the trust request. Each resource access takes one time step. The result of

this simulation is presented in Figure 3.6. The dominating portion of the energy con-

sumption in this simulation setup comes from the messages sent. In scenarios where

47

Figure 3.6. Energy Consumption per Peer.

less messages are sent relative to time in the system, for example, an opportunistic

networking application, then benefits of the DTT become even more pronounced.

Our last simulation examines the modular Trust Block feature of the DTT. To

do this, we break from our previous simulation scenario. We take a simple average

vote Trust Block (A peer asks for votes on the reliability of a particular object and

if average vote rates the object above 0.50 then it is accessed, otherwise it is not).

Votes are in the continuous range of [0,1]. Additionally, this is performed in a mobile

environment, which decreases the number of available votes.

Since we have fewer votes, we are interested in determining the average range of

the 95% confidence interval over the average of the requests (using the same param-

48

Figure 3.7. Effect of Protocol Components on Confidence Intervals.

eters in Table 3.1). To obtain the confidence results in Figure 3.7, we first examined

the original Request Handler component, then exchanged it with the Random Subset

Request Handler components. In the simplistic Request Handler, requests were only

answered with personal experience; however, in the Random Subset Request Han-

dler, the handler answers requests with a random subset of the votes that the entity

has accumulated regarding the object. The trade-off between the two Request Han-

dler components is that the simplistic one sends less data over the network, and the

Random Subset handler allows votes to persist even after mobile peers have become

unavailable.

49

3.8 Summary

The Distributed Trust Toolkit provides a ready-made framework for imple-

menting and evaluating trust mechanisms in pervasive computing systems. The DTT

introduces two new abstractions: Trust Groups and Trust Blocks. Trust Groups allow

associated applications devices to share recorded trust data and trust computations.

Trust Blocks divide the implementation of trust mechanisms into three modular com-

ponents: the Presentation, Computation, and Protocol. Applications interact with

the Trust Block Presentation, which makes policy decisions based on data gathered

by the Computation component. The Protocol component implements network-based

trust protocols and allows the DTT to interoperate with legacy trust systems.

The pluggable Trust Blocks of the DTT framework enable the use of trust

mechanisms developed for developed for different systems and requirements. The re-

mainder of this dissertation discusses three novel trust mechanisms, AREX, ReSCo,

and SoTru, each designed to meet specific goals and requirements. Any or a com-

bination of these trust mechanisms can plugged into a DTT framework to evaluate

trust.

CHAPTER 4

ADAPTIVE RESOURCE EXPLORATION

4.1 Introduction

In dynamic systems it is often difficult to establish the reliability of a third party

to assist in the establishment of trust between two parties. Because these systems

often lack intrinsically trusted infrastructure and the open nature of the system makes

collaborative techniques for establishing trust difficult, techniques must be established

to establish trust without the requirement of third parties. This chapter introduces

trust mechanisms that do not rely on reliable or honest third parties to establish trust.

These mechanisms can be augmented with collaborative or centralized mechanisms

if it is discovered that such techniques can be securely used, but they do not require

such mechanisms to operate securely.

4.1.1 Motivating Scenario

Consider a user, Bob, who arrives at a new city. Bob does not know his way

around this new city, but is able to retrieve some maps and use a mapping service

that he discovers are hosted by other users on the ad-hoc network. In querying these

resources and services, Bob quickly discovers that the information he has access to is

not consistent. As there are several different sets of information that are offered to

him multiple times, Bob cannot reliably select the most commonly provided informa-

tion since it is obvious that the majority of the system may be providing incorrect

information. He does not have any basis for extracting the truth from these resources

50

51

and services. This chapter introduces mechanisms that Bob could utilize to more

securely and reliably access the resources he needs to navigate through this new city.

4.2 Resource Exploration

This section provides the details of Resources Exploration, a technique that is

used to detect potential attackers or unreliable nodes. Resource Exploration can also,

when used strategically, motivate malicious nodes to provide benign resources at a

higher rate that they otherwise would.

4.2.1 Nash Equilibrium Overview

A Nash equilibrium[39, 40] is a solution to a multiplayer game in terms of a set

of strategies for the players partaking in the game. The Nash equilibrium solution

implies that no player in the game can improve its utility by changing its strategy

whilst the other players continue playing their strategies. A game may have multiple

Nash equilibria.

In order to determine a Nash equilibrium, the parameters of the game must

be set as shown in Figure 4.1. By setting the expected value of each action a peer

could take equal to the alternative action, the mixed-strategy equilibrium can be

determined. As a result, the serving peer should attack with a probability defined

by Equation 4.2 and the requesting peer should use exploratory messages with a

probability defined by Equation 4.1.

Pexp =
Bm

Cdis +Bm
(4.1)

Pattack =
Bb

Cv +Bb
(4.2)

52

Figure 4.1. Payoff Matrix for a Malicious Peer (P1) and a Benign Peer (P2).

An obvious downside to this approach is that it requires a knowledge of the

opponent’s preferences.

4.2.2 Attack Minimization

The utility of a benign peer and that of a malicious peer are modeled by Equa-

tions 4.3 and 4.4 respectively where Pexp is the probability of sending an exploratory

message.

Ubenign = Access− Cb
1− Pexp

− (1− Pexp)× Cv (4.3)

Uattacker = (1− Pexp)×Bm −
Cm

1− Pexp
− Cb (4.4)

53

These equations provide the basis for our next Section. By selecting a Pexp such

that Utilitybenign is non-negative, a peer minimizes the amount of attacks suffered

while still expecting to not lose utility by participating.

4.2.3 Utility Model

To measure the performance of the security mechanism, performance metrics

must be defined. To do this, a utility model for peers is defined. The utility model

allows us to model a variety of peers analytically and in simulation. The model also

provides a means for conveying the effect of our mechanisms on the variety of peers,

so that performance can be validated.

The relationships between benefits and costs defines the behavior of a generic

peer inn the system. Generic peers are not required to be purely malicious or purely

benign. Instead, a peer’s actions will be evaluated based on its utility function. The

following terms are used in the relationships.

The utility function is normalized to unit-less, non-negative values. Since most

of the low-level components that make up the utility relationships are preferences,

such as an aversion to being subjected to a denial of service attack, no formal method

is provided for determining the values of those costs and benefits, though in many

cases these benefits and costs could be described financially or in terms of energy

costs.

The Victim Cost, Cvic, is a relation that captures the negative effect on a peer

when it becomes the victim of an attack. It allows us to describe a peer’s aversion to

being attacked and plays a large role in determining how much effort should go into

avoiding attacks or whether to participate in a system at all.

54

Table 4.1. Table of Utility Terms

Uben Utility Model for a Benign Peer
Umal Utility Model for a Malicious Peer
Uhyb Utility Model for a Hybrid Peer
U Total Utility
B Total Benefit
C Total Cost
Bben Benign Benefit
Bacc Access Benefit
Bmech Mechanism Benefit
Bmal Malicious Benefit
Bs Benefit from Spying
Bd Benefit from Denying Service
Bf Benefit from Serving Faulty Resources
Cben Benign Cost
Cmal Malicious Cost
Cvic Cost from being a Victim
Cs Cost from being Spied On
Cd Cost from being Denied Service
Cf Cost from being Served Faulty Resources
Cconn Cost being Connected to the System
Cres Cost of Providing Resources
Cmech Mechanism Cost
Cms Cost of Spying
Cmd Cost of Denying Service
Cmf Cost of Serving Faulty Resources
Cdisc Cost of being Discovered as Attacker

Cvic = Cs + Cd + Cf (4.5)

Benign benefit, Bben, captures the benefit gained by legitimate participation in

a P2P system. It consists of the benefit a peer perceives from accessing resources and

any benefit that is derived from mechanisms in the system (for example, incentives

for sharing useful resources).

55

Bben = Bacc +Bmech (4.6)

Malicious benefit, Bmal, captures the benefit gained from acting maliciously.

This is described by the actions of spying on a peer, denying access to a peer, and

providing faulty information to a peer.

Bmal = Bs +Bd +Bf (4.7)

Benign cost, Cben, is the cost of participating in the system. This is the over-

head cost of staying in the system (as derived and normalized from energy, memory,

bandwidth, etc.) in addition to the costs incurred from providing resources and any

costs from mechanisms incorporated in the system (such as punishments to prevent

freeloading).

Cben = Cconn + Cres + Cmech (4.8)

Malicious costs, Cmal, are costs associated with malicious actions, and include

bandwidth costs or processing costs. While these are likely to be relatively small for

a malicious peer, they do exist and are incorporated into the relationships.

Cmal = Cms + Cmd + Cmf (4.9)

All of these benefits are tied together and then related to each other to provide

the overall utility as described in Equation 4.12. Also included in the cost is the

Discovery Cost, Cdisc, which is the cost of an attacker being discovered (which may

take the form of having to exit and re-enter the system or even just a decrease in

available peers to attack).

B = Bben +Bmal (4.10)

56

C = Cben + Cmal + Cvic + Cdisc (4.11)

U = B − C (4.12)

For the remainder of this chapter some of the details of specific attacks will be

simplified by using only with Benign Benefit, Malicious Benefit, Benign Cost, Mali-

cious Cost, Discovery Cost and Victim Cost. Mechanism Benefits and Costs have been

omitted since our mechanism does not explicitly involve payments or incentives. Han-

dling the relationships at this level of details provides sufficient information without

sacrificing simplicity and generality. Furthermore, this approach allows us to speak

generally about attacks rather than identifying specific attacks during the analysis.

For simplicity in analysis, only purely benign versus purely malicious peers

are examined, hybrid peers could also be examined, as modeled by Equation 4.13

which represents a peer that uses the system both as it is intended and maliciously.

Purely benign peers, as modeled by Equation 4.14, only gain utility from successful

transactions and can be modeled with the components Benign Benefit, Benign Cost,

and Victim Cost. Malicious peers, as modeled by Equation 4.15 only gain utility

from successfully attacking other peers and can be modeled by using the components

Malicious Benefit, Benign Cost, Discovery Cost and Malicious Cost.

Uhyb = (Bacc +Bmal)− (Cben + Cvic + Cdisc + Cmal) (4.13)

Uben = Bacc − (Cben + Cvic) (4.14)

Umal = Bmal − (Cben + Cdisc + Cmal) (4.15)

4.2.4 Exploratory Requests

The main idea of the resource exploration is to send out exploratory requests in

addition to real requests. This process is detailed in Algorithm 1. These exploratory

57

Input: Peer Preferences

Output: Resource Access Results

while Resource Not Accessed do

Calculate Pexp;

Generate Request (Pexp are exploratory);

Send Request;

if Request Is Exploratory then

if Attacked then

Blacklist Attacker;

end

end

end

Algorithm 1: Exploratory Requests

messages are designed to reveal the nature of the peers resulting in an increase in

utility for the requesting peer and a decrease in utility for attacking peers. The re-

questing peer can either send an exploratory message or a request message. The

serving peer can either respond with an attack or with a legitimate response. Peers

will incur a cost by sending the exploratory messages in terms of a greater amount of

Benign Cost, Cben, but exploratory messages reduce the likelihood of being attacked.

The decreased likelihood of attack is due to the increasing cost incurred by the at-

tacker if discovered as a malicious peer, Cdisc. In all cases, each peer will incur a cost

of Cben.

At this point, some assumptions must be stated about performing resource

exploration. First, it is assumed that the peer responding to the request cannot

differentiate between exploratory and regular requests. This assumption is justified

by noting that a peer can reuse previously obtained results, self-generated results, or

58

pre-programmed results depending on the specific application. Second, it must be

assumed that the peer sending the requests can verify whether or not an attack has

occurred. This assumption is also made in other P2P reputation research [17, 2, 9],

since to provide opinions, peers must know whether they were attacked. In many

cases, this is manually determined by human users, but due to the cost of human

intervention, our work is most useful if the attacks can be automatically determined

(for instance, comparing the known checksum of a file to a generated checksum of the

file sent by another peer).

Before a peer can decide to utilize resource exploration, it needs to determine at

what rate to send out exploratory messages. In our Adaptive Resource Exploration

framework presented in Section 4.3.7 it is shown how a peer can improve its utility

by learning to play a Nash equilibrium strategy.

4.2.5 Utility Bounds

The utility equations provide a means for selecting to select a value for Pexp

involving two equations. Equation 4.16 describes the benign peer’s average utility

per interaction, AvgUben
, and Equation 4.17 describes the attacker’s average utility

per interaction, AvgUmal
.

AvgUben
= Bacc −

Cben
(1− Pexp)× Patt

(1− Pexp)× Patt × Cvic (4.16)

AvgUmal
= (1− Pexp)× Patt ×Bmal −

Cmal
(1− Pexp)× Patt

−Pexp × Patt × Cdisc − Cben

(4.17)

To maximize utility, the peer takes the derivative of Equation 4.16 with respect

to Pexp, sets the equation equal to 0 and uses the Pexp value that produces the maxi-

59

Figure 4.2. AREX Architecture.

mum utility point (since Equation 4.16 is quadratic in terms of Pexp there is only one

maximum).

Equation 4.16 allows the benign peer to calculate bounds for how high of an

exploratory rate it can withstand for the utility it intends to achieve. Furthermore,

Equation 4.17 also allows the peer to predict how much its exploratory rate will

reduce the utility of the attacker for a given set of attacker preferences and attack

rate. However, these equations do not fully incorporate the game that is played

between the attacker and benign peer, thus necessitating AREX.

4.3 Adaptive Resource Exploration

There are three main contribution from AREX presented in this section. By

implementing the proposed resource exploration algorithms, the AREX peer adapts

itself to perform effectively in benign, faulty, and hostile environments. Figure 4.2

shows the architecture of AREX. Based on the available resources and values in the

experience database, AREX decides which peer to access and whether to explore or

to access the resource. After the request is answered, AREX determines whether an

attack occurred. AREX then updates the experience database based on the heuristic

function. AREX is independent of both the discovery and access mechanism. It can

be plugged into a variety of systems and networks.

60

4.3.1 Faulty Benign Peers

Since Algorithm 1 has no tolerance for inadvertent errors by benign peers,

it can reach a deadlock state in which all peers are blacklisted. To overcome this

limitation, an enhanced version of the algorithm is presented in this section. Rather

than blacklisting a peer after any action perceived as an attack, Algorithm 2 is reactive

but forgiving. Instead of strictly requiring that a peer determine if an attack has

occurred in all cases, an indeterminable case is permitted. The indeterminable case

permits the user to exert an alternative preference of using a peer in the future. Since

AREX does not require that each interaction be recorded and maintained, the amount

of memory required for each peer in the system is almost negligible – effectively

enough to store an integer (or real number, depending on the implementation). Since

the trustworthiness of the system as a whole is also maintained, peers that have not

been in range recently can be dropped from the database without a significant effect

on the system performance.

Algorithm 2 allows the peer to define how tolerant it is to attack through the

punishment function, α(S) or the amount of credibility it gives to valid resources

through the reward function, β(S). Both of these values are non-negative. If the

result of an access is indeterminable, then a tolerance function χ(S), which represents

uncertainty, is used to evaluate the experience. This value can be zero, positive

or negative depending on the disposition of the peer. A negative value of χ(S) is

appropriate when a peer can tolerate little risk.

The following terms are used in Algorithm 2:

• K: vector containing experience values for the set of available peers

• ki: experience value for peer i

• α(S): punishment function

• β(S): preference function

61

Input: Peer Preferences, Known Peers Experience Vector

Output: Resource Access Results

while Resource Not Accessed do

Select Peer i from K with probability ki+1∑|K|
j=0 kj

;

Calculate Pexp;

Generate Request (Pexp are exploratory);

Send Request;

if Attacked then

ki− = α(S);

end

if Success then

ki+ = β(S);

end

if Indeterminable then

ki+ = χ(S);

end

end

Algorithm 2: Experience Values

• χ(S): tolerance function

4.3.2 Achieving Nash Equilibrium

The second contribution of AREX is a methodology for playing a Nash equilib-

rium strategy when there is insufficient information available to calculate the mixed-

strategy Nash equilibrium described in Equation 4.1 (Incomplete information game).

As a result this section presents an adaptive method for approximating the Nash

equilibrium when all peers in the system are strategic attackers and then adapts to

62

perform better when there exist non-strategic attackers. Hence, the approximation

for the Nash equilibrium will be the worst-case performance as a result of AREX.

The peer starts by calculating the opponent’s Nash equilibrium point for Patt

by using Equation 4.2. Then the peer uses Equation 4.16 to calculate the Pexp that

will result in the highest initial expected utility; however, a peer cannot maintain this

strategy, because a strategic peer will adapt its strategy to exploit naivety. Addi-

tionally, if the opponent is not playing a Nash equilibrium, and is instead playing a

sub-optimal strategy (or is benign), the peer wants to exploit that information to its

advantage.

To adapt to the environment, the peer continually adjusts P ′att, the estimation

of Patt, by using Equation 4.18 where φ is a discount value (to prevent overreaction)

and γ is the indeterminable discount in the range of 0 ≤ γ ≤ 1 − φ. Based on the

new value of P ′att, the strategy is recalculated.

P ′att =



φ× P ′att + (1− φ) if attacked

φ× P ′att if not attacked

φ× P ′att + γ if indeterminable

(4.18)

4.3.3 Alternate Strategies

It is reasonable to expect strategic attackers may employ different strategies

aside from the basic mixed-strategy discussed up until this point. A strategy deployed

against reputation mechanisms that could be deployed against AREX involves build-

ing a high reputation value in order to later perform attacks later. This is easier to

perform in reputation mechanisms since the use of external reputation information

allows peers to collude and build reputation without the cost of actually performing

those actions. In AREX the actions must be performed for them to have effect on

63

experience values. This section analyzes an analogous attack on the AREX system

by both colluding and individual peers.

In this strategy, the attacker performs benignly to increase the likelihood that

that a request is sent rather than an exploratory request. Additionally, the benign

behavior will increase the likelihood that the attacker will be selected in the future.

After a sufficient period of time, the attacker betrays the trust of the AREX peer

and begins to “cash in” its accumulated experience value by attacking. While AREX

does not completely prevent this type of attack, it does allow the AREX peer to

know under what conditions the attack would benefit the attacker. For the attack

to benefit the attacker, the utility received from the attack must be greater than the

cost of acting as a benign peer for the duration required to successfully perform the

attacks. Equation 4.20 describes the utility derived from this type of attack.

Psel(i) =
ki∑|K|
j=0 kj

× P iatt (4.19)

U = Bmal −
Cben

(1− Pexp)× Psel × Patt
− Cconn

(1− Psel)× Patt × (1− Pexp)
(4.20)

Psel and Pexp are both functions of the behavior of the peers in the system

and the values assigned for α(s), β(s), and χ(s). As a result, manipulating the

values of these variables allows the AREX peer to predict what Bmal has to be for

an attacker to use this strategy. Intuitively, if a peer incurs a cost building up a

high experience value, and if α(s) depletes that experience value significantly quicker

(such as by halving the value each time) per an attack attempt (so that Psel decreases

for the attacker) and Pexp simultaneously rises quickly to decrease the likelihood of a

successful attack. One way to counter this approach is to allow non-attacking peers

to take care of decreasing Pexp by acting benignly at no cost to the attacker. The

64

problem with this approach is that then Psel for the attacker-controlled peers is low,

so the opportunity to attack is minimal.

Section 4.5 discusses the effectiveness of this approach in approximating a Nash

equilibrium and strategies for sub-optimal attackers.

4.3.4 Strategy Selection

This section describes the third contribution of AREX: handling differences

in strategy between individual peers and the system as a whole. In our preliminary

work, each peer could be treated individually or the system could be treated as a whole

when computing Pexp, but there was no methodology for deciding which approach was

appropriate.

AREX may operate in systems of heterogeneous attackers. Some may adapt

to the AREX strategy while others attack at a fixed rate. This situation begs the

question: how can strategic attackers be motivated to attack less while allowing the

AREX peer to simultaneously utilize benign peers and optimize against non-strategic

attackers?

This question is actually addressed by the two previous solutions. If sub-optimal

attackers and benign peers exist in the system, then the two-level approach described

in Section 4.3.1 allows the AREX peer to decrease the probability of being exploited

by strategic attackers and sub-optimal attackers with a propensity for attacking. This

approach results in the system being transformed in such a way that a peer can still

treat the system of other peers as a single attacker whose attack strategy is described

by Equation 4.21 where P i
att is the probability that peer i will attack.

Patt =
|K|∑
i=0

ki∑|K|
j=0 kj

× P iatt (4.21)

Consider the following three cases:

65

• The system is mostly benign

• The system consists of sub-optimal attackers

• The system consists of optimal attackers

In the first case, the probability of requesting from any sub-optimal attackers

would approach 0, as would the probability of requesting from optimal attackers.

Then the system would be modeled by an attacker similar to that of the benign

peer. In the second case, the exploratory messages would identify the sub-optimal

attackers with the least propensity for attacking. Then the attack strategy of the

perceived system would tend toward the the malicious peers with the lowest attack

rates when benign peers were not available. In the third case, the system would

model the optimal attackers as a single attacker. If heterogeneity was introduced in

terms of types of peers in the last two cases, Algorithm 2 would tend toward accessing

resources from peers with the lowest attacking rates. Finally, in the case that no peer

was distinguishable from another (or no peer was ever accessed multiple times), our

approach will treat the entire system as the average of its members.

4.3.5 Experience Heuristics

The original AREX approach to evaluating other peers in a system was to mod-

ify the current existing experience value with a constant value. Rather than limiting

AREX to linear modifications, α(S), β(S), and χ(S) are defined to be heuristic func-

tions of the current state as perceived by the AREX peer. The heuristic functions

provide better control of AREX’s behavior such as allowing AREX to take a context-

driven approach to resource access. For example, if node churn is high, the reward

function can be defined as β(S) = 1
1−S[ChurnRate]

where S is the current state (in this

case only node churn rate is included as the state). The contextual reward function

causes AREX to provide high rewards to good peers when the churn rate is high.

66

This causes the peer to utilize resources from good nodes more rapidly since they are

unlikely to be available for long and high levels of exploration would deplete energy

quickly. Simulations results displaying the effect of this approach can be found in

Section 4.5.4. By using general heuristic functions, AREX can additionally take ad-

vantage of non-linear functions and piece-wise functions to gain customized control

of its behavior.

4.3.6 Redundancy

Another issue that is present in some applications that may use AREX is an

inability to populate the AREX peer with sufficient ground truth that can be used

to carry out the resource exploration strategy. If the AREX peer cannot generate

its own results or cannot do so quick enough, reusing exploratory requests can leak

information to colluding attackers resulting in degraded performance. The simplest

way to approach this problem is to make multiple requests and to take the most

common result as the actual result. This approach can be enhanced by only accepting

the result if the number of responses of the most common result is above a threshold

value, τ .

The question of how to select an appropriate τ and appropriate redundancy

level must also be considered. If either value is too high then resources will be

wasted trying to achieve the requirements. If either value is too low, then the risk of

failure is increased which will also result in a loss of utility. τ is selected using the

estimated value of the attack rate of the system, P ′att, defined previously in Equation

4.18. The estimate of the attack rate provides an efficient basis for decided τ since

the value is already being calculated, so it does not cause the system any additional

computational or memory load. It provides protection from benign failures and it

forces a collusive attacker to increase its attack rate to break the security which will

67

Figure 4.3. AREX Example Behavior.

then lower their expected utility. To determine the level of redundancy, the peer

compares the expected cost of an attack to the cost of issuing a request as shown in

Equation 4.22.

Redundancy = bP
′
att × Cvic
Creq

c (4.22)

While a collusive set of attackers cannot be entirely defended against, the at-

tacking the threshold strategy would be costly to the collusive attacker. To subvert

the threshold strategy, the collusive attacker must control a portion of the set that

is being queried greater than or equal to τ . This is different from requiring that the

attacker possesses τ portion of the system since the probability of selection is defined

as
∑|K|

i=0
ki∑|K|

j=0 kj

. This means that to gain a high likelihood of being able to success-

fully complete the attack, the peers would have to behave in a predictable manner

that is beneficial to the AREX peer similarly to the process required by the origi-

nal formulation of AREX that has access to ground truth for generating exploratory

messages.

4.3.7 Example

Figure 4.3 shows AREX in operation. In this example we view the effects of

Peer1’s actions of attacking, serving, and an indeterminable response. These actions

68

occur in a system where the AREX peer is connected to three other peers. At the

beginning of this scenario, all three peers have Ki = 5 (5 valid responses) and P i
att

= 0 (no attacks). When Peer1 attacks the AREX peer, Peer1’s Ki value decreases

by α(S), decreasing its probability of being used for the next access from 1
3

to 1
11

.

Upon successful service of the next request, Peer1’s Ki value increases and its P i
att

value decreases; however, the overall Patt estimate for the system increases because

of the increased chance of selecting Peer1. Finally, after the indeterminable result,

the probability of selecting Peer1 decreases, and its P i
att value remains the same, thus

reducing the system’s estimated Patt.

To explain this further, consider a more concrete example. Alice has an appli-

cation on her PDA that allows her to query nearby peers for directions to buildings

on a university campus. Since Alice is new to the university, she does not know who

she can trust to give her correct directions to certain events on campus. Her PDA

has been able to acquire some official information from the university website, but

she must request some details from other peers in the system. Alice’s application

will then use the knowledge that she has to intermix exploratory messages in with

her normal requests. The results of these exploratory requests can be verified against

the knowledge her application already possesses. From these results, she is able to

determine the peers she is more likely to be able to trust future results from.

4.4 Simulation Setup

A discrete, time-stepped, simulator at the level of resource accesses is used to

test AREX. At each step, the AREX peer executes Algorithm 2 and sends a request.

After receiving the result, the peer recalculates the values ki and P
′
att. If mobility is

enabled, then mobile peers are modeled as moving randomly.

69

Table 4.2. Default simulation parameters

Number of Peers 1000
Mobility 0%
Connectivity 100%
Avg Benign Reliability 95%
Execution Time (seconds) 1000
Attack Rate of Malicious Peers 100%
Cben 1
Cvic 100
Cmal 0
Cdisc 1
Bacc (static peers) 120
Bacc (mobile peers) 150
Bmal 100
α(S) 1
β(S) 1
χ(S) 1
φ .95
γ 0

All attackers have the same preferences, as listed in the chart above. Benign

peers always try to return the proper response, but may fail or lose connectivity during

service. Note that peers who are unwilling to provide service, i.e. freeriders, are a

different problem and beyond the scope of this work. Thus the simulation models the

reliability of benign peers as normally distributed with a mean of 95% and a standard

deviation of 1%.

In some simulations, an alternate version of AREX labeled AREX-BL is used

that is the version of AREX which blacklists any faulty or malicious peers rather than

using the tolerance built into AREX in order to demonstrate the need for tolerance.

70

4.4.1 System Model

The simulation first executes as a decentralized and unstructured Peer-to-Peer

(P2P) system. This system is static, meaning that the peers are completely immobile,

and stable, meaning there is no node churn.

The simulations also include a mobility model, presented in Section 4.5.2. This

simulation varies the peer mobility of both moving in and out of range at rates varying

between 1% to 100%. The peers operate within a frame of reference relative to the

AREX peer. A rate of 1% represents a peer that is unlikely to change its current

position relative to the AREX peer and a rate of 100% represents a peer that will

always change its current position relative to the AREX peer at each time step. The

peer direction traveled is randomly selected from a uniform distribution, and the

distance traveled is always a distance great enough to cause disconnectivity from the

AREX peer if the moving peer was currently connected to the AREX peer. The

choice to model the mobility of other peers randomly instead of with a travel pattern

was made in order to simulate a situation in which it would be more challenging for

the AREX peer to adapt.

4.4.2 User Model

Two user models are used for comparison. Our first model depicts a naive

user who always attempts to access resources. The second model applies the AREX

mechanism to access resources.

4.4.3 Attacker Models

The attacker model defines the benefits and costs to the attacker. In our at-

tacker model, the system attacks some percentage of the time (f%). In addition to

71

assigning an arbitrary percentage for f , in our experiments f can have a special value

representing the following cases:

• Always attack

• Attack with a Nash equilibrium

• Attack at variable rates

• Never attack

Attackers are assumed to be consistent in terms of preferences. For example,

if an attacker has a Bmal of 50, then its Bmal will be 50 throughout the entire time

of the simulation. The attackers used, as noted by the table above, are based on a

powerful and motivated attacker in order to show that our mechanism works against

a strong opponent. If an attacker was modeled with less reward for being malicious

and more cost for being malicious, then the performance of the mechanism would

further improve.

4.5 Results

In the remainder of this section presents and discusses the simulation results

of AREX-based resource access. This section presents results over the simulation

time that demonstrate AREX’s ability to perform with increasing effectiveness as i)

parameters vary and ii) user preferences vary. Unless otherwise noted, the simulation

parameters are as shown in Section 4.4. In all cases, each simulation was run 1000

times and the average of those runs is presented.

4.5.1 Time-Based Results

First AREX is examined for the average energy cost at a given time during the

execution of our system. In Figure 4.4, each point on the plot represents the average

cost at the respective timestep. For reference, the average cost of a naive approach

72

Figure 4.4. Effect of AREX Adaptation Against Various Attack Rates.

when 50% of the system is attacking is also given. As time increases, the average

cost approaches the benign cost of participating in the system, even when 99% of

the system is attacking. This means that AREX adapts to attackers and learns to

decrease the expected cost as the system persists. The reason for this is that as

AREX determines who the attackers are, they receive less opportunity to attack. In

the 99% case, these attackers are quickly identified and receive only a minimal number

of requests, leaving the bulk of the requests to be directed toward reliable, benign

peers. Hence, AREX results in a low cost steady-state system.

73

Figure 4.5. AREX Adapting to a Mostly Benign System.

4.5.2 Resiliency Results

As the percentage of attackers (hostility) varies, the number and set of peers

known at any given time (mobility), and the number of peers in the system. Mobility

was simulated by varying the rate of mobility per time step. At each time step, each

peer randomly moves relative to the AREX peer at the rates shown in Figure 4.7.

Figure 4.6 shows the average cumulative energy consumed to access a first

resource. The x-axis shows the ratio of malicious peers to benign peers in the system.

If a peer is not malicious then it is unreliable on average, 5% of the time. The plot

of AREX-BL stops before the other two plots because in some simulations the peer

fails to access a resource in the unplotted situations, thus demonstrating the need

74

Figure 4.6. Average Cumulative Cost to Access First Resource.

for the tolerant version of AREX. The overhead associated with resource exploration

only increases the energy costs a small amount over a naive access strategy when the

system is mostly benign, and when the system becomes overwhelmingly malicious,

the energy savings of AREX become immense.

In the simulations used to obtain the data in Figure 4.7 and Figure 4.8, the

location of each mobile peer was updated at each time step. The results of the mo-

bility simulations reveal that AREX is not negatively affected by mobility, as shown

in Figure 4.7. This simulation was carried out with half of the peers as attackers.

More interesting results were obtained when the ratio of peers leaving to those enter-

ing the range of the AREX peer as shown in Figure 4.8. This figure shows AREX’s

75

Figure 4.7. Average Utility Over Time for Mobile Peers.

performance is not diminished for similar arrival and departure rates; however, when

the number of peers returning to the range of the AREX peer is insignificant com-

pared to the number leaving, utility is diminished, but it must be an extreme case

as demonstrated by the 100 : 1 ratio. The reason for the diminished utility is that

AREX has fewer benign peers to access at any given time.

AREX’s resilience to attack as the number of peers in the system increases is

shown next. Intuitively, as the number of peers increases, the longer it takes AREX to

adapt. This intuition is shown to be true in Figure 4.9 which shows the steady state

utility per request of systems with varying number of peers. The AREX peer reaches

a steady state after it adapts to utilizing a small group of reliable peers. Because

76

Figure 4.8. Effect of Arrival and Departure on Average Utility Over Time for Mobile
Peers.

AREX does not rely solely on that group, but instead randomly selects peers outside

of the group (though less often than in the group), steady state utility takes longer

to converge when there are more peers outside the group to explore. By varying

the β(S) parameter, the AREX peer could use a stronger preference for the early

members of the group and cause a quicker convergence to steady state utility. It is

also feasible to limit the number of peers that AREX is tracking to reduce the time

to convergence. In this case, rather than maintaining a database of 10000 peers,

AREX would maintain a database of a random subset of those 10000 and only add

new peers when the original subset fell below a particular threshold as a result of

77

Figure 4.9. Effect of Number of Peers Being Tracked.

mobility, disconnectivity, or a large proportion of malicious peers within that subset.

Assuming that the subset was a representative selection of the entire system, it would

converge similarly to a system of the subset’s size.

4.5.3 Preferential Results

The results discussed here assist us in determining what situations it is appro-

priate to use AREX and to what extent it will be effective. The ratio of Bacc to Cvic

(AV ratio) and the ratio of Bben to Cvic (BV ratio) are the two important preference

factors for AREX. the use of AREX decreases a strategic attacker’s preference for

attacking.

78

Figure 4.10. Effect of AREX on Opponent Preference to Attack.

Figure 4.10 shows the effect of AREX on an attacker’s utility. The graph shows

that while AREX has an insignificant effect on the attacker when the attacker attacks

less than the Nash equilibrium strategy. When the attacker attacks more often than

Nash equilibrium, its utility is greatly diminished. Hence the attacker is motivated

to attack significantly less as a result of AREX. The analytically computed Nash

equilibrium point for the attacker is approximately 0.643 and the simulation results

show the optimal utility to be within a few percentage points of this value. The values

differ as a result of the benign peer adjusting to learn its optimal strategy since it

does not know the attacker’s strategy a priori. This allows the attacker to achieve a

maximum utility with a rate that is slightly higher than the Nash equilibrium.

79

Figure 4.11. Effect of α(S):β(S) Ratio on AREX.

The results shown in Figure 4.6 vary as the simulator changes preferences as

noted in Section 4.5.2. The change in results occurs based on the ratio of Cben to Cvic

(RV ratio). As the RV ratio increases, the intersection point (the point that defines

when it is in the peer’s best interest to change the rate of exploratory messages) also

increases with respect to the percentage of the system that is malicious. The RV

ratio also affects the difference in costs between any two exploration rates. As the RV

ratio approaches 1, the difference in cost between any two strategies as the percent

of the system is attacking changes approaches 0. As the RV ratio approaches either

zero or infinity the cost difference between any two exploration strategies approaches

infinity.

80

Figure 4.12. Use of a Churn Heuristic Function with AREX.

Figure 4.11 shows that the ratio of α(S) to β(S) has little effect on the per-

formance of AREX pending that the ratio is greater than 1. When the α(S):β(S)

ratio was greater than one, the simulations converged to the same average utility;

however, when the ratio was 1 (meaning punishment and reward are the same) or

0 (meaning there is no punishment, only reward), the utility derived by the AREX

peer was greatly diminished.

4.5.4 Heuristics

In this section, simulations demonstrate the effectiveness of using heuristic func-

tions as opposed to simple constant values to customize AREX to take advantage of

81

Figure 4.13. Use of a Backoff Heuristic Function with AREX.

contextual awareness. Figure 4.12 shows the use of a heuristic function in comparison

to a constant increments. By utilizing the heuristic function, AREX is able to incor-

porate context into the decision-making process. In this particular example, AREX

calculates the churn rate of the peers it knows about and adjusts the β(S) value as a

function of churn. As churn increases, the peer predicts that it will have less oppor-

tunity to utilize a resource, so it places more value on a good interaction and will be

more likely to access that resource again. As the speed of movement increases, the

amount of time that peers stay in range of the AREX peer decreases. Since AREX

requires interactions to adapt, this decreases the effect of AREX; however, that de-

82

crease can be mitigated by utilizing churn as context and placing more emphasis on

interactions that occur when churn is high.

Simulations also demonstrate a heuristic function that uses a backoff function

similar to how TCP Tahoe adjusts the congestion window after a packet loss. In this

case, any detected attack results in a peer’s experience value dropping to a preset (non-

zero) minimum level. The result of this approach (shown in Figure 4.13) resulted in

more successful results than the constant increment and decrement approach when

the percent of the system that is attacking is not too high (under 90%), but when

most of the system is attacking, inadvertent errors by benign peers causes the AREX

peer to not favor the benign peers as strongly.

4.5.5 Application Specific Results

In this section, simulations demonstrate the effectiveness of AREX for specific

applications. In particular, two applications: distributed computation and filesharing.

In the distributed computation application, the AREX peer made requests for

a computation process to be run on different peers. Included in the request was a

payload of data to be operated upon. The data and operations to be performed were

selected such that they would take approximately 1 second to transmit the request,

11 seconds to perform each computation on the AREX peer (an emulated cell phone),

and 1 second to perform the computation on the peer receiving the request (a high-

end desktop). Similar to the simulations shown earlier in this section, 1000 tasks

were performed, there were 100 peers available in the system, and benign peers made

mistakes on average 5% of the time. Figure 4.14 shows the average amount of time

saved per a task by performing distributed computation using AREX. Even when

most of the system is attacking, AREX is able to quickly identify the good peers in

83

Figure 4.14. Average Time Savings in Distributed Computation.

the system and utilize them to bring the average time savings back into the positive

range over the course of 1000 tasks.

In the file-sharing application, the AREX peer made requests for files available

from up to 100 different peers. In this experiment, success is defined by the number

of correct files that the AREX peer was able to acquire in 1000 requests. Similar

to previous experiments, benign peers were unreliable an average of 5% of the time.

Figure 4.15 shows AREX’s success at acquiring correct files as the number of attackers

increases. Even when 95% the system is attacking, the AREX peer was able to acquire

approximately more than half of the files it requested.

84

Figure 4.15. File-Sharing with AREX.

4.6 Summary

This chapter presents a novel adaptive mechanism called AREX for secure re-

source access in uncertain or hostile P2P environments. In AREX, benign peers send

exploratory messages to assess the actions of untrusted peers and quickly adapt based

on their actions. AREX adaptively balances the trade-off between exploration and

utilization of resources to protect the peer running it with minimal energy costs.

AREX performs well in dynamic environments where previous work was found to

be inadequate. Furthermore, AREX not only benefits the peer running it, but it

also reduces rational attacker’s motivation to attack by playing an approximate Nash

equilibrium strategy against the attacker.

85

Simulation studies validate our findings and demonstrate the superior perfor-

mance of AREX in terms of protecting benign peers, rendering malicious peers in-

effective, and energy costs. In experiments of specific applications, AREX provided

significant improvement, even when the number of attackers constituted 95% of the

system. Peers using AREX are able to accomplish such results through identifying

the benign peers during the initial adaptation phase and then utilizing the resources

of those benign peers to accomplish desired tasks and reduce the amount of resources

spent sending exploratory messages. AREX has been applied to two specific tasks that

have commonly used a P2P architecture to implement, File Sharing and Distributed

Computation. In these applications AREX has shown significant improvement over

naive approaches.

CHAPTER 5

RELIABLE SERVICE COMPOSITION

5.1 Introduction

Service composition is the process of combining available low-level services in

a system to create an application(or high)-level service. In dynamic systems, such as

in mobile or P2P settings, the low-level services that make up an application-level

service may be available on nodes with variable connectivity or availability. While

nodes that become unavailable can make it harder to compose a service, new nodes

may become available that increase the possible composition possibilities. Adding

further to the complexity, multiple compositions for a single high-level service may

exist. For example, some services may accept or produce a wide variety of data

formats, leading to a range of paths that might be possible, even when only a few

data transformations are performed.

Ideally, service composition in mobile and uncertain environments should be:

i) adaptive to the dynamic nature of connections between mobile nodes, so that it

can overcome loss of services due to disconnecting nodes and exploit newly available

services due to incoming nodes; and ii) cognizant of the trustworthiness and reliability

of nodes. These requirements are salient even in somewhat static and well-connected

systems, as unreliable and attacking nodes can pose a threat to the success of accessing

composed services.

As a motivating example, let us consider a mobile ad-hoc system in a town

where a large number of entities provide services. A police force wants to utilize

these services to monitor a large gathering that is taking place and has the potential

86

87

to turn into a riot. While there is not any single service that will allow the police

to accomplish this, embedded in the environment are traffic cameras, video cameras,

microphones, and other such devices. Furthermore, the police have access to a variety

of software services available to them to perform tasks such as fusing information,

converting information formats, and encryption. In this situation, the police can

compose a high-level service by gathering information from camera and microphone

services and fusing them together. The audio service can be connected with an audio-

to-text converter and the resulting text file can be cross-linked with other information

or even translated if the voices are in different languages. Finally, the resulting

information can then be encrypted prior to transmission to enhance privacy and

security. As one can see from the example, the composed high-level service has many

points where it could break if attacked or if a node fails. There are also many possible

ways to compose a satisfactory high-level service. The goal of ReSCo is to provide

a mechanism for utilizing possible nodes and paths to compose reliable high-level

services in the presence of unreliable and possibly malicious nodes.

Service composition frameworks employ a variety of practices to build high-

level services from the basic services available in the environment. Some of these

techniques require exact matching of services [11], [41], [12], and others perform dy-

namic matching [37]. All of the existing service composition frameworks evaluate

composition choices without considering the trustworthiness of nodes providing the

available low-level services.

This chapter proposes ReSCo, a middleware component designed to augment

these existing systems with trust information. ReSCo does not attempt to compose

services, but rather it takes a list of viable compositions available in the environment

as an input and selects which composition to use and which nodes to request the low-

level services from to accomplish the composition with a high level of trust. To the

88

best of our knowledge, no other system currently exists that improves reliability of on-

the-fly service composition in open, dynamic systems without relying on pre-existing

infrastructure to establish authentication and access control.

There is a substantial body of related works, but nothing that accomplishes the

goals of ReSCo. Trust and reputation research in peer-to-peer (P2P) systems focuses

heavily on the selection of individual nodes for getting reliable service [8], [17], [9], [42].

As evidenced by the results of research in these systems, the selection of individual

nodes makes a significant difference to the reliability and performance of a system,

especially when a system contains malicious nodes. Research in service composition

systems often focuses on discovering services and determining which services can be

combined, rather than on which nodes should be combined to increase reliability. In

service composition systems, the presence of unreliable or malicious nodes is magnified

by the fact that a composed service requires that all services function correctly at

the same time. The research that does focus on providing secure or reliable service

composition typically focuses on systems that can utilize a centralized infrastructure

to ensure that services can provide valid authentication information. Research in

service composition is similar to that in MANET QoS routing, but it differs in that

service composition is a two-tiered selection whereas QoS routing is only a one-tier

process. The service composition problem determines which possible service path to

use to compose a high level service and the underlying nodes that should be used to

complete the composition.

ReSCo abstracts the service composition problem into two sub-problems: com-

position path selection and node selection along a chosen path. ReSCo utilizes local

experience information and reputation information to identify unreliable nodes and

adapts to select reliable nodes more often. Figure 5.1 shows an example of composing

a path and selecting the underlying nodes that provide the service. ReSCo is not

89

Figure 5.1. An Example of a Service Composition Problem.

limited to this approach, however. ReSCo is designed to be modular and capable of

running a variety of strategies to select paths and nodes. Section 5.3 examines several

such strategies.

Because of its modular design, ReSCo is independent of the service composition

framework that decides which high-level services are composable. This means that

ReSCo can provide greater reliability for both existing and future service composi-

tion system. In technology-rich environments, such as pervasive and P2P systems,

ReSCo can take advantage of redundant services and adapt to select the most reliable

nodes. Even in more sparsely-populated systems, though, ReSCo benefits the user. In

simulation studies, ReSCo show significant improvement against attackers and faulty

nodes in static and mobile environments compared to previousnaive solutions. For

example, results show that ReSCo adapts to provide a nearly 90% success rate after

1000 time steps, where a naive approach could only achieve an approximately 50%

success rate.

90

5.2 Design

The objective of ReSCo is to minimize the effect of unreliable and malicious

nodes in a service composition system. To accomplish this, a ReSCo instance running

on node u keeps track of u’s experiences with other nodes in the system in an experi-

ences database. In this way, ReSCo can serve node u without relying on collaboration

with any other nodes to achieve its goals. At the same time, the experiences database

can be extended to use reputation information in addition to u’s direct experiences.

This allows ReSCo to adapt more quickly in scenarios where most nodes are honest

but potentially unreliable.
Input: N, π, Nodes

Output: Ordered List of Nodes to Access

Compute path probabilities (Equation 5.5);

Select path;

foreach ServiceInPath s do

Compute node probabilities for s (Equation 5.2);

Select node and add to access set;

end

Algorithm 3: Selecting the Node Set to Access

Input: π, Set of Requests

foreach request r do

Create Access Set from π (Algorithm 3);

Use the service composed by Access Set;

Evaluate Result;

Update evaluation information to database;

end

Algorithm 4: Composing a Service

91

Figure 5.2. ReSCo Architecture.

Algorithm 4 describes the entire process of selecting the set of nodes to be used

for the construction of a high-level service. More precisely, Algorithm 4 shows the

default implementation of ReSCo, in which ReSCo adapts to the reliability of nearby

nodes to select trustworthy nodes more often. For simplicity, discussions of ReSCo’s

path selection and node selection algorithms in the remainder of this paper will be

referring to the default implementation unless otherwise noted.

ReSCo provides reliable path and node selection as part of a complete service

composition system (as shown in Figure 5.2). ReSCo is designed so that it acts as

a layer between the service composition framework and the network. We designed

ReSCo to be modular, so that it is independent of the mechanism that determines

valid compositions. This allows ReSCo to remain useful as new techniques for creating

92

high-level services continue to improve. This evaluation of ReSCo utilizes SeSCo [37]

for determining which high level service compositions are available because its graph-

based composition provides a higher number of successful compositions than discover

and match techniques. In particular, SeSCo provides a benefit in mobile environments

by managing the available services may not be obvious from only examining the nodes

that are within range. This gives ReSCo an opportunity to find more reliable paths

than would otherwise be available.

The ReSCo middleware component consists of four primary parts: a Path Selec-

tor, a Node Selector, a Request Evaluator, and an Experience Database. The Request

Evaluator determines if a service composition was successful. Ideally this should be

an automated process, e.g. based on verifying a public key signature or checking

a file format. In some applications, however, the Request Evaluator may rely on a

user determining whether or not the result is satisfactory and providing feedback,

such as viewing a video and clicking on a “thumbs-up” or “thumbs-down” icon. The

Experience Database is a storage location for the results of local experience and the

experiences reported from other users (via reputation). The database contains cu-

mulative values based on an application-defined weighting for positive and negative

experiences, both local and from reputation values. ReSCo can leverage techniques

from other systems, such as AREX [42] to populate the experience database through

exploration while increasing protection for the node utilizing it. Section 5.2.4 and

Section 5.2.5 discuss the Path Selector and Node Selector components in more detail

and explain the algorithms that underly their operations.

5.2.1 Request Evaluator

The ReSCo request evaluator defines two heuristic functions, α(S) and β(S),

of the current state as perceived by the ReSCo peer. The heuristic functions provide

93

better control of ReSCo’s behavior, allowing ReSCo to take a context-driven approach

to service composition. ReSCo can track aspects of the computing environment that

are defined as the state, S. Examples of which might be the speed of the current user,

the node churn in the system, etc. For example, if node churn is high, the reward

function can be defined as β(S) = 1
1−S[ChurnRate]

where S is the current state (this

case considers only node churn rate as the state). The contextual reward function

causes ReSCo to provide high rewards to good peers when the churn rate is high.

This causes the peer to utilize resources from good nodes more rapidly since they are

unlikely to be available for a substantial amount of time. By using general heuristic

functions, ReSCo can additionally take advantage of custom functions to adapt to

different contexts instead of simply using constant values.

5.2.2 Experience Database

The ReSCo database keeps track of the current experience values for the known

services. Each database entry contains an identifier for the service and an experience

value. Because the experiences are compressed into an integer value, the individual

entries for each node do not consume a significant amount of memory and the database

scales linearly with the number of nodes in the system. Even though the database

does not use a large amount of memory, it is beneficial to manage the size of the

database. As the number of known nodes grows, good nodes gain trust more slowly

because their probability of selection grows more slowly. The database is reduced to

the maximum cache size by removing the entries that are closest to the initial value

of the database once the database reaches a threshold size and continues until the

database is below the threshold size.

This approach has two important implications. First, it means that upon re-

entrance, the value in the database for a node that was previously purged will be

94

close to what it was when the node was in the database, thus mitigating the “white-

washing” effect that might occur by removing peers (in other words, the approach

seeks to minimize the information that is lost by purging database entries). Second,

an important effect in mobile or other dynamic systems is that nodes that have not

been seen recently will be purged, since their experience values will not change as

quickly as the rest of the system’s experience values grow.

Table 5.1. Table of Commonly Used Terms

π Set of possible paths
Pprune(x, node) Probability of pruning a service from the database
Services Set of services used to compose paths
Nodes Set of nodes that provide a service
TE(x) Total Experience value for a service x
N(x) Set of values of nodes with service x
S(x) Set of services composing path x
Eσ(x) Expected success for a service x
Eρ(x) Expected success of a path x
Px Probability of success for service x
Pσ Probability of selecting a service
Pν Probability of selecting a node
Pρ Probability of selecting a path
Pα Probability that a node attacks
Ps Probability that a request was successful
tconn Amount of time a node is connectible
Pavail Probability that a node is available
Pawake Probability that a node is awake
PinRange Probability that a node is in range
α(S) Punishment heuristic function for unreliable service
β(S) Reward heuristic function for reliable service

95

Figure 5.3. Example Composition Scenario.

5.2.3 Example

An example scenario of how ReSCo is used to compose an application-level

service is now presented. For the details on the methodology of the calculations, see

Sections 5.2.4 and 5.2.5. In this example, the user is trying to compose a service to get

a video observation of a remote event (possible compositions, the experience database,

and available services are depicted in Figure 5.3). SeSCo is able to determine three

ways to accomplish this task: i) Using a traffic video camera and displaying it on the

laptop ii) Using a predefined set of cell phone video cameras in the area of the event

and fusing the information to create a comprehensive picture then displaying it on

the laptop and iii) Using a predefined set of still photo cell phone cameras in the area

of the event and using an animator service to turn the sequential images into a video,

then showing the animation on the PDA screen.

96

Table 5.2. Selection Rate for Paths in Example Application (Figure 5.3)

S(x) TE(x) Eσ(x) Eρ(x) Pρ(x)
TC – L 50 – 35 0.185 – 0.130 0.02405 88.8%
CV – VF – L 25 – 45 – 35 0.093 – 0.167 – 0.130 0.00201903 7.5%
CC – IA – PDA 25 – 10 – 80 0.093 – 0.037 – 0.296 0.001018536 3.8%

Table 5.3. Selection Rate for Nodes in Example Application (Figure 5.3)

N(x) Pν(x)
TC1 40.0%
TC2 60.0%
L1 57.1%
L2 42.9%

These possible compositions are passed from SeSCo to ReSCo. ReSCo then

looks up services in the experience database and uses the information to perform

the composition path calculations (shown in Table 5.2). After the calculations are

performed, ReSCo selects a path and then performs the calculations (shown in Table

5.3) to select the nodes to request for the low-level services. Note that this is the

default implementation. Alternate selection algorithms (discussed in Section 5.2.6)

would be utilized the same way by ReSCo, except the calculations would differ.

5.2.4 Path Selector

The first task of ReSCo is to decide which composition path to use. A compo-

sition path refers only to the types of services that will be used, not the individual

nodes that provide those services. To do this, ReSCo randomly selects a path with

a probability computed by the portion of the expected reliability of the services that

compose each path. The expected reliability is determined by the product of the ex-

pected reliability of a service. The reason ReSCo takes the product of the reliability

97

percentage is twofold. Because the values are between 0 and 1, it means that longer

compositions will be chosen less often than shorter compositions, unless they are sig-

nificantly more reliable. Second, it means that if there is a choke point (a service

that is significantly less reliable than other services), then that path will be chosen

less often. The expected reliability of a service can be described by the expected

reliability of the nodes that compose the service (which is discussed in Section 5.2.5).

The service experience is calculated with Equation 5.1 and is the total sum of

the experiences that the node running ReSCo has had with other nodes that provide

that particular service. Table 5.2.2 provides a list of commonly used terms.

TE(x) =

|N(x)|∑
i=0

N(x)i (5.1)

The probability of selecting a node for a service is given by Equation 5.2. It is

equivalent to taking the ratio of the experience values of a node to that of the total

experience value of that particular service.

Pν(x, node) =
N(x)node
TE(x)

(5.2)

The expected experience value of a service (Equation 5.3) describes the weighted

average of all the nodes that provide a particular service. In particular it is calculated

by summing the probability that a node will be selected by the current experience

value of that node over all the known nodes that provide the particular service.

Eσ(x) =

|N(x)|∑
i=0

Pν(x,N(x)i)×N(x)i (5.3)

A path is composed of one or more services. To determine an expected ex-

perience value for the entire path (Equation 5.4), ReSCo takes the product of the

expected values of each individual service. While this value has little meaning in

98

isolation, it is used in Equation 5.5 to calculate the probability of selecting a path.

Similar to the computation for selecting a node, a path is selected with a probability

equivalent to the ratio of its expected experience value to the sum of the expected

values of all possible paths.

Eρ(x) =

|S(x)|∏
i=0

Eσ(i) (5.4)

Pρ(x) =
Eρ(x)∑|π|
i=0Eρ(i)

(5.5)

ReSCo makes the selection randomly instead of only choosing the best path for

several reasons. First, it results in a natural load balancing. The most trustworthy

paths will obviously receive more of the traffic, but among reasonably trusted paths,

the traffic will be balanced relative to their trustworthiness. Next, randomly selecting

paths allows us to explore the service-space. This point is particularly important as

ReSCo is designed for dynamic environments. Since nodes may be mobile (both the

node accessing services and the service nodes themselves), the best service selected

by a composition scheme may not be on a static node and may vary significantly

throughout the time in the system and random selection allows us to transition as

the available system changes.

5.2.5 Node Selector

Once a path has been chosen to construct, ReSCo must then choose the individ-

ual nodes that will provide the services that are required to construct the high-level

service. The selection process is similar to that of Path Selection. The node that will

be accessed for each service is selected randomly with the probability equal to the

99

proportion of its contribution to the total experience value (Equation 5.1) for that

service as described in Equation 5.2.

Algorithm 4 is the operating procedure for the architecture shown in Figure 5.2.

The composition layer presents the ReSCo layer possible compositions for a request,

then ReSCo computes which composition to use and which nodes to access for each

service. After the services have been accessed, ReSCo adds any available evaluation

information from the result to the experience database.

5.2.6 Variations on the Selectors

In addition to the default composition path and node selectors, ReSCo has sev-

eral additional selectors that can be accessed by applications through the middleware

component. These selectors can be called specifically by the application or set as the

default selector.

The primary alternative selector is the best node selector. It is similar to the

deterministic selector except it differs in how the path is chosen. The deterministic

selector chooses the path that has the best average reliability. The best node selector

performs the best, but completely eliminates any exploration. It is also completely

vulnerable to attacks where the attackers build up a high reliability score and then

use it to perform a large number of attacks. In a static and consistent system, the best

node selector is the optimal choice once the experience database has been populated

with a sufficient amount of information. The best node selector is best used for critical

compositions.

5.3 Evaluation

This section presents a mathematical reliability analysis to evaluate the effect

of ReSCo on service composition systems. Furthermore, this section includes de-

100

tailed simulation results of ReSCo for such varying factors as attackers, mobility, and

composition requirements.

5.3.1 Analysis

This section details an analysis of the success rate of a service composition

system and the effect of ReSCo on the success rate. In general, the success rate of a

composition system is the probability that each peer in the path correctly provides

the requested service. This is shown in Equation 5.6

Success =

|Path|∏
i=0

Ps(i) (5.6)

If it can be assumed that all services are provided with the same average relia-

bility, the resulting success rate when randomly selected will be the average reliability

of the peers in the system to the power of the path length as given by Equation 5.7.

SuccessRnd = (Ps)
|Path| (5.7)

SuccessReSCo =

|Path|∏
i=0

|Nodesi|∑
j=0

Pσ(j)× Pα(j) (5.8)

The probability of selecting a node (Equation 5.2) does not give any means for

determining the expected experience value for a node. The experience value for node i

that provides service s, N(s)i, is a function of the attacker model. Thus, by modeling

attackers mathematically, node behavior is defined through an equation that can be

used to predict impact on the system. For example, this analysis models an attacker

who attacks at a consistent rate over time with Equation 5.9 where t is the amount

of time that node i has been available. This equation accounts for the likelihood of

101

the node i) being part of the selected path, ii) being selected to provide a service, and

iii) attacking or failing.

N(x)i = Pσ(x, i)× t× Pα(i)×
|π|∑
k=0

Pρ(k)× α(S)

+Pσ(x, i)× t× (1− Pα(i))×
|π|∑
k=0

Pρ(k)× β(S)

(5.9)

In the case of the attacker modeled in Equation 5.9, as time goes to infinity

the set of peers with the best performance will be the ones selected. This value will

then become the expected performance of the system. Assuming that there exists

some node in the system with a reliability above β(S)
α(S)+β(S)

, the expected value of any

node that fails less often than β(S)
α(S)+β(S)

will diminish to 0. A node with a reliability

between β(S)
α(S)+β(S)

and the maximum reliability that can provide that service will grow

in experience value toward infinity, but at a rate much slower than that of the most

reliable set of nodes.

The success of ReSCo predicted against the attacker modeled in Equation 5.9

can also be affected by factors such as mobility and connectivity of the attacker.

Therefore, tconn is presented as an alternate definition for time that accounts for

intermittent connectivity in the system. tconn, Equation 5.10, consists of the amount

of time that the attacker is connected to the ReSCo peer.

tconn = t× Pavail (5.10)

This work does not explicitly define Pavail since many unknown factors could

affect it, but for these purposes it is modeled as the probability that a node is awake

(as opposed to in sleep mode to conserve energy) and within range as shown in

102

Table 5.4. Default simulation parameters

Number of Simulation Executions 200
Number of Peers 100
Number of Peers in Mobile Simulations 300
Mobility 0%
Connectivity 100%
Average Benign Reliability 95%
Execution Time (seconds) 1000
Attack Rate of Malicious Peers 100%

Equation 5.11 (this equation makes the assumption that a node being awake and

being in range are independent).

Pavail = Pawake + PinRange − Pawake × PinRange (5.11)

5.3.2 Simulation Setup

The simulator is designed to take an input consisting of the possible paths that

can be used to create a service, and then create that service from the underlying nodes

available in the network. For most simulation experiments, ReSCo is simulated and

compared with a system in which all parameters are the same except that the service

path and the nodes that compose it are chosen randomly from the set of available

paths and available nodes that can successfully fulfill the composition request. Where

relevant, ReSCo is compared to the default behavior of the service composition system

that does not use ReSCo.

5.3.3 Results

The simulation results are grouped into several sections. This section examines

ReSCo’s response to varying numbers of attackers and unreliable nodes, how ReSCo

103

Figure 5.4. Effect of Attackers on Success (Approach:NumPeers:NumIterations when
differing from the default).

adapts over time, the effect of differing composition requirements on ReSCo, the effect

of mobility on ReSCo, and the effect of augmenting ReSCo with reputation.

5.3.4 Attackers and Unreliable Nodes

The first experiment is designed to show the resiliency of ReSCo against an

increasing number of attackers in a system. Figure 5.4 shows that as the number of

attackers increases, random selection shows an exponential decrease in the percent-

age of successful high level services it can access. ReSCo naturally decreases in the

percentage of successful constructions accessed, but is successful over half the time as

long as less than 85% of the system is attacking. The reason for the sharp decrease

104

Figure 5.5. Effect of Unreliable Nodes on Success (with increasing standard devia-
tions).

after this point in success is not a failure of ReSCo, but rather is a result of the fact

that when simulating 100 peers in a system, there exist some cases in which there

is no possible way to construct a path out of trustworthy nodes. To illustrate this,

consider a system in which is trying to compose a high level service from two possible

paths consisting of three services, {A,B,C} and {D,E, F}. If 95% of the system is

attacking and there are 100 nodes in the system, then there will be 5 nodes that are

benign. This means there there may be no benign paths possible. To demonstrate

that the effect is not present in larger systems, Figure 5.4 also shows ReSCo in a sys-

tem with 300 nodes. Since more nodes are included, it takes more time to adapt, so

a 300 node simulation plot is shown after 3000 time-steps (Labeled ReSCo-300:3000)

105

Figure 5.6. Comparison of Stochastic Selection and Best Node Selection.

in addition to the default of 1000. After this additional time is used, the adaptation

produces favorable results that do not include a sharp decrease in performance with

high levels of attackers.

In addition to attackers, some nodes may become increasingly unreliable (or be

malicious and attack at a rate of less than 100%). Figure 5.5 shows ReSCo’s resilience

to unreliable nodes and its ability to determine which nodes are more reliable. For

each data point, the simulation generated every node in the system based on a normal

distribution with an average error rate as given by the x-axis and a standard deviation

of half the error rate (and a minimum and maximum of 0% and 100%, respectively). If

the error rate was not selected from a distribution, but instead was constant, then the

ReSCO results would only contain statistically insignificant differences from random

106

selection. The reason for this is that ReSCo must adapt by finding more reliable

nodes, and if all nodes are equally unreliable, then it cannot perform any better than

random selection.

This section also examines the effect of the best node selection algorithm for

service composition. Figure 5.6 shows the improvement provided by Best Node selec-

tion. In this simulation, the first 500 seconds are spent using the normal stochastic

version of ReSCo’s selection algorithms in order to populate the experience database

(with 300 nodes in the system). The next 500 seconds produce the data shown in Fig-

ure 5.6. This result demonstrates that utilizing the Best Node selection can be highly

effective, even with significant numbers of attackers. The approach still requires that

the database be populated prior to use of the selection algorithm, but it is beneficial

for critical compositions that need additional protection from failure. The Best Node

selection can have unreliable results (as evidenced by the erratic plot in Figure 5.6)

because it stops the adaptation process, so as changes occur in the system or if the

time spent training does not result in a sufficient approximation of the state of the

system, the use of the Best Node selection can produce poor results.

5.3.5 Adaptation over Time

This section shows the adaptation of ReSCo as time progresses. Figure 5.7

shows the cumulative success rate up to each given time step in a system with 20%

attackers. The result shows how a standard setup of the system progressively adapts

to its environment in order to provide better service over time. Also the results show

user expected success rate over a given time. The third plot in Figure 5.7 shows

ReSCo’s cumulative success in a system that has 80% attackers and that after 100

time steps, ReSCo has had the same success as the naive approach in a system with

20% attackers.

107

Figure 5.7. Average Cumulative Success at Each Timestep.

Similarly Figure 5.8 shows the average success rate at each time step in the

same system setup. The difference between Figure 5.8 and Figure 5.7 is that the

Figure 5.7 shows the total success rate to a give time step and Figure 5.8 shows only

the success rate for a specific time step. This result provides a view of what a user

can expect the success rate to be at any given time. In both cases, the randomly

selected paths show no improvement over time. ReSCo shows a 60% improvement in

the cumulative success rate over the course of 1000 time steps, and an average of a

74% improvement on the 1000th time step. Figure 5.8 also shows ReSCo’s adaptive

properties with a system that is 80% attackers (the same one as shown Figure 5.7).

This figure shows that a node using ReSCo sees improvement over naive approaches

within 300 time-steps despite being in a system with 300% more attackers.

108

Figure 5.8. Average Success at Each Time Step.

5.3.6 Path Length

The length of a path can have significant effect on the ability to successfully

create and access a high-level service. As the number of services needed to create a

composed service increases, the opportunity for a single node in the service to fail

increases. The effect is clearly shown by the exponential decrease of the Random

Selection curve in Figure 5.9 with 20% of the system as attackers. Through its adap-

tive selection algorithm, ReSCo is able to mitigate this problem and still successfully

complete requests 55% of the time, even when the requests are 10 services long.

109

Figure 5.9. Effect of Path Length on Success.

5.3.7 Mobility

Since are being composed in dynamic environments, ReSCo is expected to per-

form successfully in mobile systems. The simulation uses a random movement model.

Each peer has a circular wireless range of 10 meters and moves an average of 1 meter

per time step (selected from a Gaussian distribution with a mean of 1 meter and

standard deviation of 0.5 meters). The plots found in Figure 5.11 show that ReSCo

still performs well in mobile environments, though not quite as well as in static en-

vironments. We also show the effect of increasing the percentage of nodes that are

mobile (with 50% being attackers) in Figure 5.10. Within a level of tolerance, the

success rate in mobile systems stays constant until approximately 90% of the nodes

in the system are mobile, but even then the performance does not drop significantly.

110

Figure 5.10. Effect of Mobility on Success.

We have also examined the effect of using the best node selection module in

mobile systems. The best node module cannot be used exclusively since no exploration

would take place in the mobile system, but when used occasionally it can enhance

the performance over the default selection modules. In Figure 5.12 the best node

module is used when node churn in the system is detected to be under 20% after 200

time steps (done to allow the database to populate first). On average, this approach

yielded 6.9% better results throughout the tests. Exactly how to choose when to

use the best node approach as opposed to the default approach is being examined as

future work.

111

Figure 5.11. Effect of Attackers in a Completely Mobile System.

5.3.8 Reputation

We also examine the effect of exchanging reputation data between nodes. The

advantage of including reputation in the system is that nodes can more quickly adapt

to the system. Figure 5.13 shows the effect of reputation on ReSCo. When ReSCo is

augmented with reputation, it still follows the same general trend as the original sys-

tem, but is able to maintain a higher level of performance as the number of attackers

in the system is increased up until the breaking point (which with the parameters

of the system simulated is at 85%) as described above in regards to Figure 5.4. Fi-

nally, we added external reputation information to the mobile system. The addition

of reputation information provided an average of 19.4% improvement in success as

illustrated in Figure 5.14.

112

Figure 5.12. Comparison of Stochastic Selection and Best Node Selection in a Mobile
System.

5.4 Summary

ReSCo is a modular middleware component for increasing the reliability of ser-

vice composition in such dynamic systems as P2P, and mobile and pervasive systems.

Through stochastic selection that adapts based on personal and reported experi-

ences, ReSCo provides reliability to service composition systems despite the presence

of unreliable nodes and attackers. ReSCo can handle selection of compositions paths

despite differences in path length. Furthermore, ReSCo is resistant to choke points.

This chapter presented both an analytical model for the performance of ReSCo

and simulation results that illustrate the effectiveness of ReSCo. In particular, ReSCo

shows significant improvement in reliability over the naive approach against attackers

113

Figure 5.13. Effect of Utilizing Reputation on Success.

(about 700% improvement when half the system attacks), erroneous entities (about

500% improvement when nodes make errors 50% of the time), and in mobile environ-

ments (nearly 28% improvement when all nodes are mobile).

114

Figure 5.14. Effect of Reputation on Mobile Nodes.

CHAPTER 6

ANALYTICAL EVALUATION OF TRUST MECHANISMS

6.1 Introduction

Trust mechanisms are traditionally tested through simulation or experimenta-

tion. This section introduces an extensible framework for mathematical analysis of

trust mechanisms. The goal of this section is to introduce metrics for trust mecha-

nisms (not to be confused with metrics for trust). Metrics for trust mechanisms do

not focus on how trust is described in the mechanism, but rather they focus on the

effectiveness of the trust mechanism in selecting trustworthy resources. This chapter

describes two metrics, accuracy and convergence, and demonstrates their analytical

effectiveness by an example analysis of the EigenTrust reputation mechanism [17] in

Section 6.4.2.

These trust metrics do not encompass the whole of a trust mechanism. There are

many qualitative properties of trust mechanisms such as those discussed for reputation

mechanisms in [15]. The purpose of this section is not to reduce the decision of which

trust mechanism to use to a mathematical equation, but rather to provide metrics to

quantify aspects of trust mechanisms and assist in the selection and development of

trust mechanisms for use in different types of systems and against different types of

attackers.

The method of evaluation described in this section is designed to analytically

describe similar information currently obtained by simulations and experimentation.

It is not a complete mathematical analysis of any possible attack or network config-

uration.

115

116

6.2 Evaluative Models

Evaluative models are used to produce a specific metric. This dissertation

proposes two evaluative models. One model describes the nodes in the system and

another describes the trust data in the system. The system is sufficiently generic

so that it can be extended to evaluate complex behaviors and additional aspects of

security.

6.2.1 Node Model

The node model consists of several sub-models. These models define the indi-

vidual node behaviors and the population distributions of these models. There may

be many different sub-models since a system may have many classes of attackers or

benign nodes.

6.2.1.1 Benign Model

The benign model describes the behavior of benign nodes in the system. Gener-

ally these nodes will correctly describe their interactions and correctly answer queries

about other nodes; however, this is not always the case and some benign nodes may

be faulty in that they sometimes fail with no malicious intent.

6.2.1.2 Attacker Model

Attacker model nodes describe the behavior of malicious nodes in the system.

These attackers may be colluding or acting individually. Attackers are described by

their behavior in terms of their attack probability and (when relevant) how they

report trust information about other nodes at a given system state.

117

6.2.1.3 Population Model

The population model describes how different classes of nodes compose the sys-

tem. The population model may be dynamic and change over time. Mathematically,

it is described by a distribution function over the size of the system.

6.2.2 Trust Data Model

The trust data model only describes whether or not the data is accessible within

the necessary time frame. This means the model can be extended to include many

factors of importance such as delay tolerance, mobility, and intermittent connectivity.

6.3 Metrics

Components of trust mechanisms are designed to either increase the accuracy

of the mechanism or increase the speed at which the values converge. As a result, the

two main metrics introduced are trust accuracy and trust convergence. A secondary

metric, effectiveness, is also introduced in this section.

6.3.1 Trust Accuracy

Trust accuracy describes how accurately the trust mechanism labels and pre-

dicts the actions of other nodes (or resources). A trust mechanism should perform

better than random selection for a given attack or it is worthless against that particu-

lar attack. Accuracy is a value within the range of [0..1]. A high accuracy value does

not necessarily imply secure selection of nodes since all nodes in the system may be

faulty or malicious. Rather a high accuracy value implies that the trust mechanism

is able to accurately label the level of trustworthiness of nodes.

118

6.3.2 Trust Convergence

Trust convergence describes how close to the actual convergent trust value a

trust value will be within a given time frame. Convergence is a value within the range

of [0..1]. For example, in a centralized system such as EBay [23], the convergence value

will typically be 1 since the values required for the trust computation are all available

in the central node; however, in a system such as Credence [9], the trust information

is distributed throughout the system on individual peers. The information must be

retrieved and cross-correlated in Credence which means that connectivity disruptions

can cause values to be unreliable at a given time. As the convergence of a distributed

mechanism may never reach a final value, we will define convergence to describe the

point when the residual change drops below a threshold τ . That is to say that a

mechanism is τ -convergent when the the change consistently drops below τ% of the

previous value.

6.3.3 Effectiveness

Based on the two previous metrics, this dissertation proposes a metric of the

the effectiveness of a trust mechanism as follows:

E =
A× C

Arnd × Crnd
(6.1)

Where E is the effect a trust mechanism has, A is how accurately a trust

mechanism labels peers, and C is how quickly the trust value converges (necessary

for distributed computation).

The trust effect gives a quantitative means to analytically compare the effec-

tiveness of trust mechanisms where no such metric previously existed. Section 6.4.2

provides example of how trust effect can be derived forEigenTrust.

119

6.3.4 Utility Modeling

Trust effect is useful for comparisons, but it does not provide a complete picture

of a trust mechanism. In order to provide a comprehensive view of the trust mecha-

nism, we use utility modeling. Through utility modeling, we can not only incorporate

the effect of a trust mechanism into quantitative comparisons, but also model and

compare the trust mechanism in different systems with different peer preferences. As

a result, rather than saying that a particular trust mechanism fits a scenario better

than another trust mechanism because of some qualitative properties, we can show

that it fits that situation better quantitatively.

Our utility model of P2P systems comes from the general model described in

Section 4.2.3. Since in a comparison between trust mechanisms the expected value of

the utility from the system itself (such as cost of entering the system, cost of staying

in the system, etc.) will be equal for all mechanisms, this section will only focus only

on the utility contribution of the trust mechanism itself. The trust mechanism has

four main effects:

1. decreased expected cost of being a victim

2. decreased expected benefit of a successful attack

3. reduction of available resources

4. increased overhead cost

The first two are similar in that they are the values from the general utility

equation multiplied by the trust effect. The third factor is the result of error in the

trust mechanism that causes a peer to incorrectly refuse resources from a benign

peer. The fourth factor is the overhead cost for using the mechanism, expressed as a

normalized form of the service, processing, memory, and communications costs added

by the trust mechanism, weighted based on the preferences of the peer.

120

The utility equations for a benign peer and a malicious peer from Section 4.2.3

with the addition of a trust mechanism in the system can be seen in Equation 6.2

and 6.3 respectively, where TrustAvail is the amount of a desired resources available

after the trust mechanism is applied and TotalAvail is the amount that would have

been available without the trust mechanism.

Utility = BenignBenefit× TrustAvail

TotalAvail

−BenignCost− V ictimCost× TrustEffect

−TrustOverhead

(6.2)

Utility = MalBenefit× TrustEffect−MalCost

−BenCost− TrustOverhead
(6.3)

6.4 Example

In this section we present two examples of the use of these trust metrics. First

is a mechanism presented in this dissertation, AREX, and second is EigenTrust.

EigenTrust is examined in more detail than AREX to show how these metrics and

utility equations can be used to evaluate and predict performance.

Table 6.1. Trust Metrics

TrustAcc Accuracy of the trust mechanism
TrustConv Convergence of the trust mechanism
TrustEff Effectiveness of the trust mechanism

121

6.4.1 AREX

This example provides an examination of the metrics as they pertain to AREX.

AREX can be examined more simply than typical trust mechanisms because it lacks

the complexity involved with handling corrupted collaborative information. The ac-

curacy of AREX is based on the estimate of the attack rate and the attack rate of

the system at the time of the next request as shown in Equation 6.4. Since AREX

does not rely on the communications of other nodes, it converges to its evaluative

value instantly. As a result, AREX’s estimation of the system’s reliability is the only

contributing factor to error, thus eliminating vulnerability to attacks that are based

on disrupting information flow.

TrustAcc =
∣∣∣∣Patt − P ′attPatt

∣∣∣∣ (6.4)

TrustConv = 1 (6.5)

6.4.2 EigenTrust

In this example, we will analyze the EigenTrust[17] trust mechanism. We begin

by modeling the TrustAcc and TrustConv components of the equation. Since trust

is considered transitive in EigenTrust, the effect of any given peer’s opinion on the

calculation of the global trust value is equal to the difference from the real value times

the trust that the peer has obtained, as shown in Equation 6.6. The rate of conver-

gence of the trust value in EigenTrust can be described by the rate of convergence of

the distributed eigenvector calculation. This is shown in Equation 6.7.

TrustAcc =
∑

Eigv(R)i × |TrustRi,j −ActRi,j | (6.6)

122

Figure 6.1. EigenTrust Matrix.

TrustConv =
E

NN−1
× λ2

λ1
(6.7)

Where the trust accuracy, TrustAcc, is computed with Eigv(R)i as the global

reputation value for peer i which is the ith element of the principal eigenvector of

matrix R. TrustRi,j is the reported reputation of j by i and ActRi,j is the actual

reputation that should have been reported for j by i.

The trust convergence, TrustConv, is computed with E being the number of

unique peers previously interacted with (included pre-trusted peers) and N peers in

the system to compute the average local network size per peer and λ2 and λ1 are the

second and first eigenvalues of the normalized reputation matrix (since the matrix is

a transition matrix, λ1 will always be 1).

123

In the discussion that follows, all parameters used follow the simulation setup

described in [17] unless otherwise noted. In the case that we were uncertain about a

parameter needed for our calculations, we have noted our estimate of that value.

In order to compute a residual graph as shown in the EigenTrust paper, we

take the matrix convergence and raise it to increasingly larger powers to calculate

how much of the residual remains after each exchange of reputation information as

shown in Figure 6.2. In comparing our analytical results to the simulation results

of EigenTrust[17], we note that we have estimated an average coverage of 20% of

the system and a second eigenvalue of 0.465. Our results are similar to those from

simulation data, though the simulation shows a minutely quicker convergence than

our analytical results.

The accuracy of EigenTrust is dependent on the the amount of reputation a peer

can obtain times the amount it can deviate its opinion from the truth. Hence, the goal

of an attack (particularly a collusive attack with k − n attackers as based on Figure

6.1) against an EigenTrust system is to maximize the average value of Region II from

Figure 6.1 (which describes an EigenTrust matrix with n peers and k benign peers) in

order to maximize the effect of Regions III and IV (which are easily controllable by an

attacker). Likewise, the reputation value will converge largely based on the amount

of interaction in the system along with the convergence rate of the eigenvector, as

noted in [43]. If each peer in the system has interacted with every other peer in the

system, then the system is fully connected and E = N ×N − 1, resulting in the only

factor of convergence being the second eigenvalue of the reputation matrix. As a

result, we see that the trust effect from EigenTrust would degrade when applied to

sparsely interacting systems.

We can analytically produce results that approximately match the simulations

done by [17]. Since the attack of a naive individual is not an interesting case in trust

124

Figure 6.2. EigenTrust Remaining Residual.

mechanisms, we will focus our discussion on collusive attack strategies. In all cases,

Region I will always be populated (before normalization) with the average value of

Participation(t) × (2 × Quality − 1) where Participation is the average number of

requests by benign peers to benign peers in the system up through time t and Quality

is the average quality of benign peer uploads (Kamvar, et al.[17] set this value to 0.95

to account for the fact that benign peers sometimes make mistakes). The reason for

the term 2×(Quality−1) is that for every negative transaction, the peer will have its

score reduced, rather than just not increased. This function produces the expected

rating of a benign peer by another benign peer at a given time. In the collusive

125

attacker models, attackers set benign peer ratings to 0, so Region III will be all be 0,

and attackers set each others’ reputation to 1.

The most interesting region for studying collusive attacks is Region II. This is

the region that defines to what extent benign peers trust malicious peers. The first

collusive attack simulated in EigenTrust involves all malicious peers always attacking.

As a result Region II will become 0 and effectively render the attackers useless when

the eigenvector is calculated and as a result we can analytically produce approximately

the same results as the EigenTrust simulations. The second attack involves attacking

at a rate of f%. Analytical evaluation of this attack becomes slightly more difficult

because of the probabilistic component; however, we can sum the expected reputation

of the average peer in Region II over the course of the system run where the expected

reputation at time t is defined by Equation 6.8 where i is the current reputation of

a peer, f is the rate at which the malcious peer attacks, and r is the rate at which

malicious peers interact.

ExpectedTrust(t) =
∑

i× Pr(i, t) (6.8)

Pr(i, t) = Pr(i− 1, t− 1)× (1− f)× r

+Pr(i, t− 1)× (1− r)

+Pr(i+ 1, t− 1)× f × r

(6.9)

In Figure 6.3 we model the most effective attack against EigenTrust, in which

peers divide the labor of obtaining good reputations and attack. To do this we

identify two sets of peers, D and B. Peers of type D obtain high reputations and

report that the attackers, type B, are highly reputable. In order to validate the model,

we recreated similar results by solving for the eigenvector of the reputation matrix in

order to provide a steady state analysis (which is what EigenTrust simulations appear

to try to do by dropping the results from the first 15 query cycles of each simulation).

126

Figure 6.3. Malicious Spy Attack.

In Figure 6.4 we show the effect of increasing the number of peers in an

EigenTrust system while holding constant the average rate of connectivity between

peers. For this figure we start with a λ2 value of 0.65, a fully connected system

(E = N×(N−1) = 9900), and a perfectly accurate reputation report (TrustAcc = 1).

As a result, it is obvious that EigenTrust is effective in reasonably well-connected en-

vironments; however, it quickly degrades in quality with an increase in the number

of information exchanges needed for the global reputation values to converge.

It is noted that the point of this exercise is to show that a reputation mechanism

can be broken down analytically. As the entire details of every simulation result in

127

Figure 6.4. The Effects of Sparse Connectivity on EigenTrust.

[17] were not available, we made some assumptions to compute results. In general the

pattern of the plots in Figures 6.2, 6.3, and 6.4 are similar to those in [17]. Through

the proposed model, developers and researchers can compare and evaluate their rep-

utation mechanisms, provided the appropriate analytical equations and algorithmic

descriptions are available.

6.5 Summary

This chapter presented metrics for quantitative analysis of trust mechanisms

which allows researchers to compare trust mechanisms and predict performance and

128

vulnerabilities. These metrics are created to better understand the implications design

choices and enable developers to determine best trust mechanism for their applica-

tions.

CHAPTER 7

SOCIAL AUGMENTATION OF TRUST

7.1 Introduction

Pervasive computing systems are invisible systems, oriented around the user.

As a result, many future pervasive systems are likely to include a social aspect to the

system. The social communtities that are developed in these systems can augment

existing trust mechanisms with information about pre-trusted entities or entities to

initially consider when beginning to establish trust. Social network information can

provide a starting point for AREX to produce improved results.

For example, the Collaborative Virtual Observation (CoVO) system must ac-

complish virtual observation efficiently whilst protecting the data from corruption

from unknown remote nodes. When an event of interest occurs, the given infrastruc-

ture (bus cameras, etc.) may not sufficiently cover the necessary information (be it

in space, time, or sensor type). To enhance observation of the event, infrastructure is

augmented with information from sensors in the environment that the infrastructure

does not control. These sensors may be unreliable, uncooperative, or even malicious.

Additionally, to execute queries in soft real-time, processing must be distributed to

available systems in the environment. Social Trust (SoTru) can be used to satisfy

these requirements.

This chapter focuses on utilizing social network information to augment trust-

establishment techniques. The system uses social behavior of nodes to predict a subset

that it wants to query for information. In this context, social behavior may include

behavior such as transit patterns and schedules (which can be used to determine if

129

130

a queried node is likely to be reliable – that they actually know the area well that

they are in) or known relationships, such as a social network, that can be used to

determine networks of nodes that may also be able to assist in retrieving information.

Neither implicit nor explicit relationships necessarily imply that the user trusts an

entity, but rather will provide a starting place for establishing trust. This chapter

proposes a general framework for utilizing social network information to assist in trust

establishment and apply that framework to the problem of utilizing sensors controlled

by third parties to assist in sensing events.

Increases in network connectivity and the increasing pervasiveness of comput-

ing resources have led to more social applications of computing. Many applications

focused on explicitly enhancing this social aspect in the form of social network web-

sites [44, 45, 46, 47] have become popular in recent years. Much research has been

conducted on analyzing and establishing trust in social networking sites [48, 49, 50],

but little has been done on utilizing information in social networks to establish trust

in other domains. Some trust models [2] include a social context in the model for

establishing trust, but no system has focused on using social information to assist in

the trust-establishment problem.

In this context, a social network is defined as the set of relations connecting

multiple entities in a system. These relations may be either explicit or implicit.

Explicit relations are stated as in a social networking websites such as Facebook [44]

where people explicitly and mutually agree that they are friends. Implicit relations

are implied, often by context information or recurring mutual patterns, such as people

that spend overlapping time in the same coffee shop on a regular basis. Relations in

a social network do not imply that trust exists. For example, in social network sites,

people often become friends with people that they do not know or with whom they

are only acquaintances. Likewise, regular patterns that are discovered as implicit

131

social relations in systems do not imply trust. SoTru provides this information as a

starting point to bootstrap the trust establishment process.

The purpose of establishing trust using social information is to enhance the

reliability and coverage of a collaborative virtual observation system. The goal of col-

laborative virtual observation is to provide anywhere, anytime access to events occur-

ring in a dynamic environment. Collaborative virtual observation combines dynamic

service composition [37] with virtual observation [51] to utilize existing infrastructure

with third party services available in the environment. Since these services are not

under the control of the system, they may be unreliable or malicious.

There are many ways that trust is established. Some approaches use digitally-

signed certificates to guarantee that the owner of the certificate can be trusted for

some task or that the owner fills some role in the system. This approach requires an

authority that can issue and guarantee the validity of these certificates. Furthermore,

it requires users to obtain the certificates. Obtaining a certificate for each service

that is necessary in a highly dynamic system would consume the user’s attention and

be counter to invisible operation. Another common way of establishing trust is to use

reputation. Reputation is more flexible and scales better in dynamic environments.

AREX, described in Chapter 4 scales well to highly dynamic systems. AREX uses

a game theoretic approach to motivate attackers to attack less often. It also does

not suffer the same vulnerabilities as reputation mechanisms, such as vulnerability

to intermittent connectivity, startup/traitor attacks, and being highly connected to

malicious entities. The downside is that in large systems, such as performing collabo-

rative virtual observation in a major urban area, AREX adapts to the system slowly.

SoTru incorporates social network information into AREX and thereby overcome

performance issues caused by large systems.

132

Figure 7.1. Social Augmentation Framework.

7.2 Design

This section introduces the Social Augmentation Framework for utilizing rela-

tions in social networks to bootstrap trust algorithms. It also describes the application

of this framework to collaborative virtual observation.

7.2.1 Social Augmentation Framework

This section describes the Social Augmentation Framework as shown in Figure

7.1 and the interactions of each component. The Social Augmentation Framework

consists of three components: Social Networks, Translations, and Trust Mechanisms.

133

7.2.1.1 Social Networks

Social Networks are a set of data sets of social connectivity information that

are available to the system. These may take the form of web-based social networking

sites, contact lists in a cell phone, or databases of traffic information that can be

mined for links.

7.2.1.2 Translation

The Translation component is responsible for translating information from the

Social Network into a usable form for the Trust Mechanism. This may be as simple

as identifying connected nodes or as complicated as analyzing connections to provide

initial values for nodes to the trust mechanism. The Translation component also is

responsible for resolving nodes in the social network into addressable nodes in the

system. Section 7.3 describes a translation component that assigns an initial starting

experience value for AREX based on membership in the social network.

7.2.1.3 Trust Mechanism

The Trust Mechanism requests initial information to assist in bootstrapping the

request for trust computations. Additionally the Trust Mechanism can make requests

to the Translation component to augment current calculations.

7.2.2 Social Augmentation of CoVO

Collaborative Virtual Observation (see Figure 7.2) involves utilizing resources

from pre-existing infrastructure in addition to opportunistic access from services and

resources available in the environment such as cell phone cameras and processors.

Observations made by these resources are then stitched together using available ser-

134

Figure 7.2. CoVO Example.

vices based on variables such as time and space. The result is a virtual observation

of events that can be accessed in soft real-time. To accomplish this though, the

resources and services from the environment must provide valid services; otherwise,

the resulting virtual observation may be worse than would be the case with just the

available infrastructure. Existing trust mechanisms do not achieve the soft real-time

requirements in the dynamic environments in which collaborative virtual observation

is performed; however, by augmenting trust mechanisms with social information, the

performance of the trust mechanism can be enhanced to meet the requirements in

many cases.

SoTru uses social augmentation to assist with the trust computations to achieve

soft real-time performance for CoVO. SoTru utilizes primarily implicitly formed social

135

networks based on patterns derived from the observation of bluetooth signals by

mobile nodes. The physical presence of an entity provides an implied social network

since the entity is connected in terms of physical presence in a place in the society.

An assumption contributing to this decision is that if a node consistently appears

in a particular area for a long period of time that it is more likely to stay in the

area while it is needed. For example, if a node is consistently in the Computer

Science Department building for about 6 hours a day from Monday through Friday,

there is a strong chance that it will remain in the area to provide its service during

that regular pattern. An argument can be made that forming a consistent physical

pattern is of high cost to an attacker and may be less likely, but just because a

social network is used, it does not imply that there is trust between the nodes, just

that the trust mechanism will augment its approach with information from the social

network. Therefore, an actively malicious node would still have to undergo the same

calculations from the trust mechanism as it would without the social network, just

at a higher cost to itself.

SoTru uses the available nodes that are expected to remain in the area based on

previous traffic patterns mined from the traffic databases to seed the trust calculation

process. The seeding is made possible by the translation component which selects a

predetermined number of social nodes to use in the initial trust computation of the

trust mechanism. SoTru uses adaptive trust mechanisms for resources access and ser-

vice composition based on AREX [42]. These trust mechanisms work best in smaller

systems, so operating on a city-wide basis can slow the adaptation of the mechanism.

The initial seeding from the social network provides the trust mechanism with the

ability to reliably operate on a much smaller scale and provide similar reliability in

less time.

136

7.3 Evaluation

The system was evaluated via simulation. The purpose of this simulation was

to show how social network information can be utilized to assist in the establishment

of trust between entities, even when the social network includes entities that are not

trustworthy. The simulations were primarily used to test the question of how reliable

the social network must be to be beneficial to the system. The simulation was run

with the same simulator and setup as AREX in Chapter 4. Preference ratings are

accomplished by converting social network membership into initial experience values

for nodes in the system. Unless otherwise noted, the size of the social network used

was 20 nodes.

Table 7.1. Preference Values

Preference Initial Experience Value
No Preference 1
Slight Preference 10
Strong Preference 100
Very Strong Preference 1000

The first experiments were run to show that social network information can be

used to improve the response time of adaptive trust mechanisms. Figure 7.3 shows

the average utility produced at a given time step averaged over 100 simulations. In

this simulation, the social network was 95% trustworthy. The figure shows that the

more preferred the social network is, the quicker the utility converges to its final value.

Figure 7.4 shows the average utility produced per step by a given time step averaged

over 100 simulations. The figure shows similar results to Figure 7.3, but provides the

cumulative viewpoint rather than the per-step results.

137

Figure 7.3. Effect of Social Network Preferences on AREX (Per Time Step).

Since it is possible that a social network could be compromised, the next exper-

iments measure the effectiveness of using social networks to augment adaptive trust

mechanisms when the social network itself consists of untrustworthy nodes. Figures

7.5, 7.6, and 7.7 show how AREX responds to trust augmentation of a faulty social

network. The values were taken after 1000 time steps. Two conclusions can be drawn

from this experiment. First, social networks should be strongly preferred when there

are large numbers of attackers in the system. When the system has a large portion of

attackers, giving strong preference to the social network will prevent exploration of

nodes that are likely to attack. Second, social networks should be strongly preferred

when the social network is reliable. In general, the assumption can be made that

138

Figure 7.4. Effect of Social Network Preferences on AREX (Cumulative).

social networks should be preferred when the social network is more reliable than the

overall system.

Figure 7.8 shows the effect on utility for a variety of system sizes with half of

the system as malicious. Once the system size grew above that of the social network,

the performance grew along with the reliability of the social network. While the

smaller systems had higher utilities after 1000 time steps, the larger system had

closer performance than when the social network was not used.

The next experiment tested the hypothesis that the cost of malicious nodes

in the social network could be greatly diminished by using exponential backoff of

experience values rather than incremental backoff (as used in the AREX and previous

SoTru simulations). In this case, for each attack that was detected, the node lost half

139

Figure 7.5. 20% of the System is Attackers.

of its experience value. The simulation provided evidence that this approach is an

effective method for dealing with untrustworthy social networks. Figure 7.9 shows

that positive utility was achieved with exponential backoff regardless of how reliable

the social network was (as opposed to the incremental backoff, which only achieved

positive utility when nearly half or more of the social network was reliable).

7.4 Summary

Social networks are becoming increasingly available alongside computing re-

sources. SoTru is a mechanism that allows trust mechanisms to enhance their perfor-

mance through utilization of social information. This chapter has shown how SoTru

can be used to increase the adaptation rate of of AREX and improve its performance.

140

Figure 7.6. 50% of the System is Attackers.

This chapter introduced SoTru, a framework for augmenting security mech-

anisms with social network information. SoTru enhances security mechanisms by

providing a starting point for them to use to begin establishing trust. The chapter

also applies social network information to collaborative virtual observation and per-

forms an evaluation of the SoTru by examining its ability to handle the challenges

of applying social network information to trust. In the simulation study, SoTru pro-

vided significant performance increases when the reliability of the social network was

greater than that of the system as a whole.

141

Figure 7.7. 80% of the System is Attackers.

142

Figure 7.8. Effect of Malcious Nodes in the Social Network.

143

Figure 7.9. Effect of Backoff Techniques when Attacked.

CHAPTER 8

CONCLUSION

Advances in technology are increasing the widespread use of mobile comput-

ing devices and the distributed systems that are being developed on them. These

systems must be able to operate seamlessly despite factors such as mobility, hetero-

geneity, openness, and device constraints. In addition to these challenges, dynamic

systems must operate despite malicious users and unreliable service that could ruin

the user’s experience and be very costly to the user. To address these challenges, trust

mechanisms must be developed that can operate in dynamic systems. Despite many

different definitions of trust, trust mechanisms generally work by identifying nodes,

services, and resources that operate as the user expects. There are many different

mechanisms for establishing trust, but current work is either inflexible or focuses on

collaborative efforts that involve the use of a third party to determine trust.

8.1 Summary Of Contributions

This dissertation developed and evaluated mechanisms for enhancing the us-

ability and security provided by trust mechanisms. The technical contributions of

the dissertation are encapsulated in four systems: the DTT, AREX, ReSCo, and

SoTru. These systems focus on easing the development, deployment, and use of trust

mechanisms while improving security and reducing costs in dynamic systems.

The DTT is a framework and system for the development and deployment of

trust mechanisms. The DTT enhances the modularity and extensibility of trust mech-

anisms by abstracting them into three components: Presentation, Computation, and

144

145

Communication Protocol. Known as trust blocks, these mechanisms run on a DTT

daemon which is designed to provide platform independence of trust mechanisms.

The daemon handles the interface between the application and trust block, storage of

data, and protocols of the network interfaces. DTT allows for incremental deployment

since trust blocks are interoperable with pre-existing trust mechanisms.

AREX is a system for adaptive resource exploration. AREX uses a game the-

oretic strategy to test peers in the system using exploratory requests. By testing

with exploratory requests, AREX incurs no additional cost when under attack and

is able to determine which peers are acting maliciously. AREX approximates a Nash

equilibrium strategy (in terms of the probability of sending an exploratory request

instead of a real request) against strategic attackers. If non-strategic malicious peers

or benign peers exist in the system, then AREX will adapt to utilize the most reliable

of those peers. Thus, AREX approximately achieves a worst-case performance as the

result of the Nash Equilibrium and can adapt to perform better whenever possible.

AREX accomplishes this without relying on collaborative information such as repu-

tation; it avoids the vulnerabilities associated with relying on third parties in trust

establishment.

ReSCo is a system for reliable service composition. Like AREX, it is designed

to operate without requiring third party information to provide security; however,

it can incorporate external information to accelerate the adaptation process. ReSCo

utilizes a stochastic algorithm for selecting a path of composition (when there are

multiple methods for composing the same service) and the individual nodes on the

path (when there are multiple nodes providing the same services). The selection is

based on previous experience with the nodes in the system. ReSCo uses a stochastic

selection mechanism because, in dynamic systems, it is likely that the available paths

and nodes are frequently changing. Furthermore, it lowers the likelihood of a single

146

point of failure in the system (compared to only deterministically selecting the path

and nodes that are perceived as best).

SoTru is a framework for utilizing information from social networks to help es-

tablish trust in other systems. Adaptive systems such as AREX or ReSCo require

time to adapt to achieve peak performance in a system and other systems such as

reputation mechanisms often rely on pre-trusted peers to assist in the trust estab-

lishment process. SoTru converts relationships in both implicit and explicit social

networks to be used by trust mechanisms.

8.1.1 Applications

The application domain for the research discussed in this dissertation continues

to grow as the technology used is shown to be more reliable. While AREX, the DTT,

and ReSCo were developed as underlying mechanisms and are currently application-

dependent, they can be extended for use in a variety of applications. AREX has been

shown to be effective in both distributed computation and file sharing applications.

The DTT was originally developed to assist in establishing trust for an Adaptive

Media System [52]. Both ReSCo and AREX have applications in Collaborative Vir-

tual Observation, which extends to broad applications in emergency, military, and

physical security domains.

8.2 Future Direction

Many areas of future research can stem from this dissertation. This work raises

many questions about the limits of security that can be provided in dynamic systems

without utilizing a third party. While AREX is able to motivate attackers to attack

less often through a game theoretic approach, there may be other individualistic

mechanisms to protect users from malicious nodes. AREX and ReSCo both have the

147

ability to incorporate third party data into their calculations, but this dissertation

does not explore the question of when it is better to act as an individual and when it

is better to collaborate with other nodes in the system to determine whom to trust.

The DTT opens many potential research directions in trust information sharing

and trust group formation. This dissertation suggests that trust information can be

reused, even if it was not generated by the same trust mechanism, but no formal

mechanism exists for doing so. Trust groups are assumed to be a pre-existing trusted

relationship, such as devices forming a PAN, but risks and rewards of forming and

maintaining trust groups from nodes that are not trusted a priori have not been

explored.

AREX, ReSCo, DTT, and SoTru are designed for dynamic systems, but they

have applicability in other types of systems. Because of their modularity and low

overhead costs, these systems are useful to a wide variety of systems such as sen-

sor systems and cyber-physical systems. Further research will explore appropriate

applications and adaptations of these systems in additional system classes.

Successful research in this area will enhance the security and usability of dy-

namic systems, allowing them to fade into the background of the user’s life. Users

will experience the benefits of applications built on dynamic systems without having

to deal with the hassles and vulnerabilities that are seemingly inherent in dynamic

systems.

REFERENCES

[1] S. P. Marsh, “Formalising trust as a computational concept,” Ph.D. dissertation,

University of Stirling, Apr. 1994.

[2] L. Xiong and L. Liu, “Peertrust: Supporting reputation-based trust for peer-

to-peer electronic communities,” IEEE Transactions on Knowledge and Data

Engineering, vol. 16, no. 7, pp. 843–857, 2004.

[3] D. H. McKnight, L. L. Cummings, and N. L. Chervany, “Trust formation in

new organizational relationships,” University of Minnesota, MIS Research Center

Working Paper WP 96-01, 1996.

[4] B. Barber, The Logic and Limits of Trust. Rutgers University Press, NJ, USA,

1983.

[5] L. Kagal, J. Undercoffer, F. Perich, A. Joshi, and T. Finin, “A security archi-

tecture based on trust management for pervasive computing systems,” in Grace

Hopper Celebration of Women in Computing, Oct. 2002.

[6] G. D. M. Serugendo, “Trust as an interaction mechanism for self-organising sys-

tems,” in ICCS, 2004.

[7] G. Sampemane, P. Naldurg, and R. H. Campbell, “Access control for active

spaces,” in ACSAC. IEEE Computer Society, 2002, pp. 343–352.

[8] L. Xiong and L. Liu, “Building trust in decentralized peer-to-peer electronic

communitties,” in International Conference on Electronic Commerce Research,

2002.

[9] K. Walsh and E. G. Sirer, “Experience with an object reputation system for

peer-to-peer filesharing,” in NSDI. USENIX, 2006.

148

149

[10] B. Raman, S. Agarwal, Y. Chen, M. Caesar, W. Cui, P. Johansson, K. Lai,

T. Lavian, S. Machiraju, Z. M. Mao, G. Porter, T. Roscoe, M. Seshadri, J. S.

Shih, K. Sklower, L. Subramanian, T. Suzuki, S. Zhuang, A. D. Joseph, R. H.

Katz, and I. Stoica, “The SAHARA model for service composition across multiple

providers,” in Pervasive ’02: Proceedings of the First International Conference

on Pervasive Computing. London, UK: Springer-Verlag, 2002, pp. 1–14.

[11] D. Chakraborty, F. Perich, A. Joshi, T. W. Finin, and Y. Yesha, “A reac-

tive service composition architecture for pervasive computing environments,”

in PWC ’02: Proceedings of the IFIP TC6/WG6.8 Working Conference on Per-

sonal Wireless Communications. Deventer, The Netherlands, The Netherlands:

Kluwer, B.V., 2002, pp. 53–62.

[12] J. Robinson, I. Wakeman, and T. Owen, “Scooby: Middleware for service com-

position in pervasive computing,” in MPAC ’04: Proceedings of the 2nd workshop

on Middleware for pervasive and ad-hoc computing. New York, NY, USA: ACM,

2004, pp. 161–166.

[13] M. Weiser, “The computer for the 21st century,” SIGMOBILE Mob. Comput.

Commun. Rev., vol. 3, no. 3, pp. 3–11, 1999.

[14] S. Marti and H. Garcia-Molina, “Taxonomy of trust: Categorizing p2p

reputation systems,” Computer Networks, vol. 50, no. 4, pp. 472–484, March

2006. [Online]. Available: http://dx.doi.org/10.1016/j.comnet.2005.07.011

[15] D. Z. Kevin Hoffman and C. Nita-Rotaru, “A survey of attack and defense tech-

niques for reputation systems,” Purdue University, Tech. Rep. CSD TR 07-013,

2007.

[16] A. Josang, R. Ismail, and C. Boyd, “A survey of trust and reputation systems

for online service provision,” Decis. Support Syst., vol. 43, no. 2, pp. 618–644,

March 2007. [Online]. Available: http://dx.doi.org/10.1016/j.dss.2005.05.019

150

[17] S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina, “The eigentrust algorithm

for reputation management in P2P networks,” in WWW, 2003, pp. 640–651.

[18] R. Housley, W. Ford, T. Polk, and D. Solo, “Internet x.509 public key infras-

tructure, certificate and CRL profile,” IETF, RFC 2459, Jan. 1999.

[19] A. Samuel, A. Ghafoor, and E. Bertino, “Context-aware adaptation of access-

control policies,” IEEE Internet Computing, vol. 12, no. 1, pp. 51–54, 2008.

[20] D. Kulkarni and A. Tripathi, “Context-aware role-based access control in perva-

sive computing systems,” in SACMAT ’08: Proceedings of the 13th ACM sym-

posium on Access control models and technologies. New York, NY, USA: ACM,

2008, pp. 113–122.

[21] D. Ferraiolo and R. Kuhn, “Role-based access control,” in In 15th NIST-NCSC

National Computer Security Conference, 1992, pp. 554–563.

[22] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman, “Role-based

access control models,” IEEE Computer, vol. 29, no. 2, pp. 38–47, 1996.

[23] Ebay, “Ebay,” July 2009, http://www.ebay.com.

[24] P. Michiardi and R. Molva, “Core: A collaborative reputation mechanism to

enforce node cooperation in mobile ad hoc networks,” 2001, pp. 107–121.

[25] M. Blaze, J. Feigenbaum, and J. Lacy, “Decentralized trust management,” in

IEEE Symposium on Security and Privacy, May 1996, pp. 164–173.

[26] M. Blaze, J. Feigenbaum, J. Ioannidis, and A. D. Keromytis, “The KeyNote

trust-management system version 2,” IETF, RFC 2704, Sept. 1999.

[27] J. Buford, R. Kumar, and G. Perkins, “Composition trust bindings in perva-

sive computing service composition,” in Proceedings of the Fourth Annual IEEE

International Conference on Pervasive Computing and Communications Work-

shops. IEEE Computer Society, 2006.

151

[28] X. Gu, K. Nahrstedt, R. N. Chang, and C. Ward, “QoS-assured service compo-

sition in managed service overlay networks,” in ICDCS ’03: Proceedings of the

23rd International Conference on Distributed Computing Systems. Washington,

DC, USA: IEEE Computer Society, 2003, p. 194.

[29] S. Jiang, Y. Xue, and D. Schmidt, “Minimum disruption service composition

and recovery in mobile ad hoc networks,” in Computer Network Journal, Special

Issue on Autonomic and Self-Organizing Systems, 2008. [Online]. Available:

http://www.truststc.org/pubs/442.html

[30] Glansdorff and Prigogine, Thermodynamic Study of Structure Stability and Fluc-

tuations. Wiley, 1971.

[31] M. Bartoletti, P. Degano, and G. L. Ferrari, “Enforcing secure service compo-

sition,” in CSFW ’05: Proceedings of the 18th IEEE workshop on Computer

Security Foundations. Washington, DC, USA: IEEE Computer Society, 2005,

pp. 211–223.

[32] E. W. Dijkstra, “A note on two problems in connexion with graphs,” Numerische

Mathematik, vol. 1, no. 1, pp. 269–271, December 1959.

[33] G. Theodorakopoulos and J. S. Baras, “Trust evaluation in ad-hoc networks,” in

Third ACM workshop on Wireless Security, 2004.

[34] K. Krukow, M. Nielsen, and V. Sassone, “A framework for concrete reputation-

systems with applications to history-based access control,” in ACM Confer-

ence on Computer and Communications Security, V. Atluri, C. Meadows, and

A. Juels, Eds. ACM, 2005, pp. 260–269.

[35] Kazaa, “Kazaa,” July 2009, http://www.kazaa.com.

[36] K. Walsh and E. G. Sirer, “Fighting peer-to-peer spam and decoys with object

reputation,” in SIGCOMM Workshop on Economics of Peer-to-Peer Systems,

2005.

152

[37] S. Kalasapur, M. Kumar, and B. Shirazi, “Dynamic service composition in perva-

sive computing,” IEEE Transactions on Parallel and Distributed Systems, vol. 18,

no. 7, pp. 907–917, 2007.

[38] B. Lagesse and M. Kumar, “Ubca: Utility-based clustering architecture for

peer-to-peer systems.” in ICDCS Workshops, Mobile and Distributed Computing.

IEEE Computer Society, 2007.

[39] J. Nash, “Equilibrium points in n-person games,” in Proceedings of the National

Academy of Sciences of the United States of America, 1950.

[40] ——, “Non-cooperative games,” The Annals of Mathematics, vol. 54, no. 2,

pp. 286–295, September 1951. [Online]. Available: http://dx.doi.org/10.2307/

1969529

[41] X. Gu, K. Nahrstedt, and B. Yu, “Spidernet: An integrated peer-to-peer service

composition framework,” in HPDC ’04: Proceedings of the 13th IEEE Interna-

tional Symposium on High Performance Distributed Computing. Washington,

DC, USA: IEEE Computer Society, 2004, pp. 110–119.

[42] B. Lagesse, M. Kumar, and M. Wright, “AREX: An adaptive system for secure

resource access in mobile P2P systems,” in Eighth International Conference on

Peer-to-Peer Computing. IEEE Computer Society, 2008, pp. 43–52.

[43] T. Haveliwala and S. Kamvar, “The second eigenvalue of the google

matrix,” Stanford University, Tech. Rep. 20, 2003. [Online]. Available:

http://www.stanford.edu/∼taherh/papers/secondeigenvalue.pdf

[44] Facebook, “Facebook,” July 2009, http://www.facebook.com.

[45] Twitter, “Twitter,” July 2009, http://www.twitter.com.

[46] Linkedin, “Linkedin,” July 2009, http://www.linkedin.com.

[47] Blogger, “Blogger,” July 2009, http://www.blogger.com.

153

[48] C. Dwyer, S. R. Hiltz, and K. Passerini, “Trust and privacy concern within social

networking sites: A comparison of Facebook and MySpace,” in Proceedings of

the Thirteenth Americas Conference on Information Systems, August 2007.

[49] J. Caverlee, L. Liu, and S. Webb, “Socialtrust: tamper-resilient trust establish-

ment in online communities.” in ACM IEEE Joint Conference on Digital Li-

braries, R. L. Larsen, A. Paepcke, J. L. Borbinha, and M. Naaman, Eds. ACM,

2008, pp. 104–114.

[50] J. Fogel and E. Nehmad, “Internet social network communities: Risk taking,

trust, and privacy concerns,” Computers in Human Behavior, vol. 25, no. 1, pp.

153–160, January 2009.

[51] S. Greenhill and S. Venkatesh, “Virtual observers in a mobile surveillance sys-

tem,” in ACM Multimedia 2006, 23-27 October, Santa Barbara, USA, 2006.

[52] J. M. Paluska, H. Pham, U. Saif, G. Chau, C. Terman, and S. Ward, “Struc-

tured decomposition of adaptive applications,” Pervasive and Mobile Computing,

vol. 4, no. 6, pp. 791–806, 2008.

BIOGRAPHICAL STATEMENT

Brent graduated from Illinois Institute of Technology with a BS in Computer

Engineering in 2004 and from University of Texas at Arlington with an MS and PhD

in Computer Science in 2006 and 2009, respectively. During his graduate study, he

worked with Lockheed Martin Missiles & Fire Control and Lawrence Livermore Na-

tional Laboratory. He was the recipient of the National Physical Science Consortium

fellowship for graduate study. Following graduation, he will begin as a Research Sci-

entist at Oak Ridge National Laboratory in the Cyberspace Sciences and Information

Intelligence Research group.

154

