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ABSTRACT

MULTIPLE OBJECT TRACKING USING PARTICLE FILTERS

Publication No.

Hwangryol Ryu, MS

The University of Texas at Arlington, 2006

Supervising Professor: Manfred Huber

We describe a novel extension to the Particle Filter algorithm for tracking multiple

objects. The recently proposed algorithms and the variants for multiple object tack-

ing estimate multi-modal posterior distributions that potentially represent the multiple

peaks (i.e., multiple tracked objects). However, the specific state representation does

not demonstrate creation, deletion, and more importantly partial/complete occlusion of

the objects. Furthermore, the weakness of the Particle Filter such that the representa-

tion may increasingly bias the posterior density estimates toward objects with dominant

likelihood makes the multiple object tracking algorithms more difficult. To circumvent

a sample depletion problem and maintain the computational complexity as good as the

mixture Particle filters under certain assumptions - (1) targets move independently, (2)

targets are not transparent, (3) each pixel of the image can only come from one of the

targets - we proposed a new approach dealing with partial and complete occlusions of a

fixed number of objects in an efficient manner that provides a robust means of tracking

each object by projecting particles into the image space and back to a particle space.

The projection procedure between the particle space and the image space represents an

iv



important probability density function not only to give more trust to a target being visi-

ble, but also to explain an occluded target. In addition, while joint Particle filters suffer

from the curse of dimensionality in the number of the targets being tracked, the proposed

algorithm only adds a constant factor to the computational cost of the standard Particle

filters.

To present qualitative results, experiments were performed using color-based track-

ing of multiple rectangular boxes of different colors. The experiments demonstrated that

the Particle filters implemented using the proposed method effectively and precisely track

multiple targets, whereas the standard Particle filters failed to track the multiple targets.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Robotic and embedded systems have become increasingly pervasive, complex, and

demanded in every-day applications, ranging from life support systems to personal com-

puting devices. In particular, developing the technologies for human robot interaction

gives tremendous benefits to our daily life. For example, intelligent robots can perform

potentially dangerous work, delivery services, or trivial work which people do not like

to do. Service robots could do household chores at home such as cleaning or washing

clothes. Since nursing robots were first developed to help the physically handicapped in

1986, many different types of nursing robot platforms have been invented for the elderly

and disabled that are capable of performing various tasks. Such devices and systems will

return a measure of independence to many bedridden persons as well as reducing the

number of those in need of hospitalization and constant attendance. These technologies

can improve the quality of life by increasing the amount of freedom and the range of

possibilities.

How can we make this possible? From the programmers’ perspectives, is it possible

to make robots smart enough to learn every single task that happens in our daily life?

How do we know what tasks are needed or not? Our motivations come from these ques-

tions. We hope that autonomous and automated robots could be a solution performing

these tasks in the near future. In order for autonomous robots to program themselves,

they should utilize a vision system to interpret perceptual information because a camera
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provides tremendous information that would not be available from other sensory devices

such as ultrasonic ranger, light detecting sensor, etc. With the visual information the

robots should identify and track objects that are of interest to its task. For this, robust

real-time multi-target tracking methods have to be developed and the rest of this thesis

will discuss a novel technology for this task in detail.

1.2 Challenges and Contributions

Real-time target tracking is a critical task in many computer vision applications

such as robotic visual servoing tasks, surveillance, gesture recognition for human-machine

interfaces and smart environments, augmented reality and visual effects, motion capture,

medical and meteorological imaging, driver assistance, etc. Even though tasks of each

application may be different in the visual domain, the tracking approaches generally fall

into one of two groups: object recognition and object localization or tracking. Object

recognition has been widely researched and many commercial vision systems have been

successfully developed and deployed. What interests me the most is how to track and

localize a set of targets in a real-time process, while maintaining the correct target recog-

nition.

Michael Isard and Andrew Black [1] first proposed a stochastic framework for track-

ing curves in visual clutter, using a sampling algorithm, called ”CONDENSATION” in

the year 1998. Originally this idea was rooted in statistics, control theory, and computer

vision, but thanks to the rapid increase of computational power and the availability of

cheap memory, it was possible to run this sampling algorithm and an object recognition

algorithm at the same time. This sampling algorithm has many different names such as

Monte Carlo Simulation, Particle filter,Bootstrap filtering, interacting particle approxi-

mation, sequential Monte Carlo methods, SIS, SIR, ASIR, RPF, and so on. Chapter 2
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will explain these algorithms in detail. One of the common properties of these sampling

algorithms is that they are designed to track one target for each filter if they are not a

joint filter. However, our thesis extends this property to multiple targets.

Maintaining multiple targets in a Particle filter, which is originally used to repre-

sent a single target, is a challenging task. In particular, sample depletion, which will

be explained in Chapter 4, happens when one target has a stronger measurement sup-

port than the other target. Also, the multi-modality that may arise in the single state

distribution due to the multiple targets or clutter makes it hard to estimate the state.

The standard filtering distribution contains usually one peak representing the potential

target state. So we investigate a possible solutions to these challenges as follows: (1) an

idea similar to the mixture Particle filter is used to maintain each target distribution,

(2) the standard observation likelihood model is factored into two terms to represent

target occlusion situations. The proposed approach assumes that each target evolves

independently, but in the case that targets occlude each other, it allows each target to

interact with the others while maintaining each target distribution. With a focus on

tracking multiple targets, this approach attempts to approximate a joint Particle filter to

interpret occlusion situations while distributing the target across separate Particle filters.

1.3 Organization

This section describes the organization of this thesis. Chapter 2 introduce filtering

algorithms from Bayesian filters to Particle filters. Chapter 3 briefly reviews related

work using the Particle filters in the context of multi-target tracking. Chapter 4 explains

the main contributions of this thesis. The mathematical formulations are derived to

explain the occlusion situation on the observation model. It also shows an implementation

based on the derived formulations. Chapter 5 provides the results of the experiments
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including the state space, the observation model, and the dynamic model used in the

implementation. The experiments deal with real world problems involving the tracking

of multiple rectangular color boxes in a video sequence. At last, this thesis is concluded

in Chapter 6.



CHAPTER 2

FROM BAYESIAN FILTER TO PARTICLE FILTER

2.1 Introduction

Target tracking techniques are important elements of surveillance, guidance, or ob-

stacle avoidance systems. Such devices are used to determine the number, position and

movement of targets. In particular, to develop adaptive capabilities that interpret the

perceptual information as described in the previous chapter, target tracking plays an

important role in deriving functional representations of an observed task because it may

contain a sequence of related tasks, which may be meaningful. In order to track these se-

quences, recursive target state estimation, filtering, has been used in many applications.

This chapter discusses state estimation techniques in the context of target tracking.

This chapter touches on three major scientific areas: stochastic filtering theory,

Bayesian theory, and Monte Carlo methods. These methods are closely related to the

subject of this thesis - Particle filtering - but explaining the theoretical concept of each

theory is beyond this thesis. Therefore, in the following sections only a brief description

of each theory will be given.

2.1.1 From Filtering Theory To Particle Filter

Stochastic filtering theory was first established in the early 1940s by Norbert Wiener

[2], [3] and Andrey N. Kolmogorov [4] and in 1960 the classical Kalman filer (KF) was

published and has become the most popular filter as an optimal recursive Bayesian esti-

mator to a somewhat restricted class of linear Gaussian problems for more than 40 years.
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Recently there has been a surge of interest in nonlinear and non-Gaussian filtering due

to the fast increase in computing power. Since the Kalman filter is limited by its as-

sumptions, numerous nonlinear filtering methods along this line have been proposed and

developed to overcome its limitation. The British researcher, Thomas Bayes, originally

developed Bayesian theory in a posthumous publication in 1763 [5]. However, Bayes

theory has not gained a lot of attention in the early days until Bayesian inference was

developed by the French mathematician Pierre Simon De Laplace [6]. Bayesian inference,

which applies Bayesian statistics to statistical inference, has become one of the important

branches in statistics and has been successfully applied in statistical decision, detection

and estimation, pattern recognition, and machine learning. In 1998 the first Particle

filter for tracking curves in dense visual clutter was proposed by Michael Isard [1] and

Andrew Blake [7].

The early idea of Monte Carlo was designed to estimate the number π, but the

modern formulation of Monte Carlo methods started from physics in the 1940s and came

to statistics later in the 1950s. Roughly speaking, a Monte Carlo technique is a sam-

pling approach concentrating on a solution of complex systems which are analytically

intractable. The Kalman filter was not suited to evaluate complex systems analytically

and from the mid 1960s, the extended Kalman filter and the Gaussian sum filter were

developed to solve the non-linear and non-Gaussian systems. Possibly due to the severe

computational limitations of the time, the Monte Carlo methods have not gained huge

attentions until recently. In the late 1980s, thanks to increasing computational power,

sequential Monte Carlo approaches have proven their capability for approximating opti-

mal solutions of non-linear and Gaussian systems with many successful applications in

statistics [8], signal processing [3], machine learning, econometrics, automatics control,

tracking ([9], [10]), communications, biology, and many others [11]. A number of tech-
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niques for this type of filtering have been proposed and successfully applied, but our main

focus is the sequential Monte Carlo estimation, collectively referred to as particle filters.

The following sections present a general review of stochastic filtering theory from a

Bayesian perspectives: the Bayesian filter and Particle filter. To our interest, we derive

the Bayesian distribution (i.e. a posterior distribution function) to have a mathematically

tractable representation of non-Linear and non-Gaussian systems, often called the state-

space model. After the Bayesian filter, we show the mathematical formulations of a

recursive Bayesian filter using the Monte Carlo method.

2.2 Bayesian Filter

Filtering is an operation extracting quantitative information at time t by using

data measured up to and including time t. The problem is to estimate sequentially the

state of a dynamic system using a sequence of noisy measurements made of the system.

We adopt the sate-space form to modeling dynamic systems. Now, to define the problem

of nonlinear filtering, let us consider the following generic stochastic filtering problem in

a dynamic state-space form:

ẋ = f(t, xt, ut, dt)

zt = g(t, xt, ut, vt)

(2.1)

here ẋ and zt are called the state equation and the measurement equation, respectively.

xt represents the sate vector xt ∈ Rnx , where nx is the dimension of the state vector, R

is a set of real numbers and t ∈ N is the time index. It contains all relevant information

required to describe the system under investigation. zt is the measurement vector that
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is related to the state vector, ut is the system input vector, and dt and vt are the process

(transition) noise and measurement noise respectively. In practice, we focus on the

discrete time formulation with no external system input. In this context, the discrete

filtering problem is defined as follow:

xt+1 = f(xt, dt)

zt = g(xt, vt)

(2.2)

where the first equation characterizes the state transition probability p(xt+1|xt), whereas

the second equation describes the measurement model p(zt|xt). The probabilistic forms of

the transition model and measurement model are ideally suited for the Bayesian approach,

thus resulting in a rigorous general framework for dynamic state estimation problems.

2.2.1 Recursive Bayesian Estimation

We show the detailed derivation of recursive Bayesian estimation. As defined in

the preceding section, we seek the filtered estimate of xk based on the sequence of all

available measurements Zt = z1, ..., zt up to time t. Since the problem is to recursively

estimate the state xt at time t, given the history of the observation data Zt up to time

t, it is required to construct the posterior probability density function (pdf ) p(xt|Zt). In

principle, the pdf p(xt|Zt) is obtained by the following two steps: prediction and update

step. The prediction step is an a priori form of estimation, which is to derive information

about what the quantity of interest will be like in the future and the update step is an

a posteriori form of estimation in that the measurement at the current time t is used

for estimation. We assume that the states follow a first-order Markov process and the
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observations are independent of the given states. Let p(xt|Zt) denote the conditional pdf

of xt. From Bayes law we can derive

p(xt|Zt) =
p(Zt|xt)p(xt)

p(Zt)

=
p(zt, Z

t−1|xt)p(xt)

p(zt, Zt−1)

=
p(zt|Zt−1, xt)p(Zt−1|xt)p(zt)

p(zt|Zt−1)p(Zt−1)

=
p(zt|Zt−1, xt)p(xt|Zt−1)p(Zt−1)p(xt)

p(zt|Zt−1)p(Zt−1)p(xt)

=
p(zt|xt)p(xt|Zt−1)

p(zt|Zt−1)

(2.3)

The posterior density p(xt|Zt) in Equation 2.3 is composed of three terms: prior, likeli-

hood and evidence. The first term, p(xt|Zt−1), involves using the state transition model

defined in Equation 2.2 to obtain the prediction density of the sate at time t via the

Chapman-Kolmogorov equation [12]:

p(xt|Zt−1) =

∫
p(xt|xt−1)p(xt−1|Zt−1)dxt−1 (2.4)

where p(xt|xt−1) is the transition density of the state. The second term, p(zt|xt) returns

the measurement support with the noisy data. The last term, p(zt|Zt−1), involves an

integral

p(zt|Zt−1) =

∫
p(zt|xt)p(xt|Zt−1)dxt (2.5)

Suppose that the required pdf p(xt−1|Zt−1) at time t-1 is available. The prediction

step in Equation 2.4 is carried out using the transition probability. At time step t when

measurement zt is available, the update step is then carried out. It involves the process
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of Equation 2.3.

In general, the mathematical formulation of the recursive Bayesian estimation is

only a conceptual solution in the sense that it cannot be solved analytically. Since it

requires the storage of the entire pdf for implementation of the conceptual solution,

the analytic solution of Equation 2.4 and 2.3 is intractable. Therefore, we should use

an approximate or suboptimal Bayesian method which makes assumptions about the

nature of the pdf (e.g., Kalman Filters) or which approximates a general pdf. The

following section presents an introduction to an approximate solution for the estimation

of recursive Bayesian filters that allows for general probability density functions (pdf ).

2.3 Particle Filter

Particle filters are suboptimal filters. They perform sequential Monte Carlo (SMC)

estimation based on a point mass representation of probability densities [13, 10, 14, 1,

15, 7, 12, 16, 17, 9, 18, 19, 20, 21]. Back in the 1950s the basic SMC framework in

the form of sequential importance sampling had been introduced, but due to the lack of

computational power, this idea had not largely gained attention until the 1970s. With the

increasing computational power, SMC culminated in recursive state estimation methods.

The major contribution to the development of the SMC method was the fast computation

of the resampling step. As we shall describe later, the early implementation of Sequential

Importance Sampling (SIS) suffers from sample depletion, which means that a point mass

(i.e., particle) degenerates over time. The inclusion of the resampling step solved the

degeneracy problem and made particle filters practical. The following subsections give

a brief introduction of the three Monte Carlo sampling methods: importance sampling

(IS), sequential importance sampling (SIS), and sampling importance resampling (SIR).
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2.3.1 Importance Sampling (IS)

Monte Carlo methods use statistical sampling and estimation techniques to evalu-

ate the solutions to mathematical problems. Let Xt = x1, ..., xt be the sequence of states

up to time t. We denote p(X t|Zt) to be the joint pdf, whose marginal is p(xt|Zt). Let

{X i
t , π

i
t}N

i=1, where N is the number of samples denote a random measure that character-

izes the joint posterior p(X i
t |Zt) where {X i

t}N
i=1 is a set of support points (i.e., particles)

with associated weights {πi
t}N

i=1. The weights are normalized such that
∑N

i πi
t = 1. Then

the joint pdf at time step t can be approximated as follows [11]:

p(X t|Zt) ≈
N∑

i=1

πi
tδ(X

t −X i
t) (2.6)

where δ(·) is a Dirac-delta function with δ(X t − X i
t) = 0 for all X t 6= X i

t and 1

otherwise.

The main idea of importance sampling (IS) is to randomly pick a number of in-

dependent samples (Np) from the distribution in the relatively important regions of the

whole region in order to achieve computational efficiency. In a high dimensional space

where the data is usually sparse and the region of interest where the target is located is a

small region, this method is used to retrieve the samples from those regions. However, it

is often impossible to create the true probability distribution p(x) representing the state.

Therefore, a proposal distribution q(x) is used instead. The support of q(x) is assumed

to cover that of p(x). This principle relies on the fact that if q(·) is not close to p(·), it

can be imagined that the weights are very uneven, thus many samples are almost useless

because of their negligible contributions. In a high dimensional space, the importance

sampling estimate is likely dominated by a few samples with large importance weights.

Consequently, a weighted approximation to the density p(x) is given by



12

p(x) ≈
N∑

i=1

πiδ(x− xi) (2.7)

where πi ∝ p(xi)
q(xi)

is the normalized weight of the ith particle [11].

2.3.2 Sequential Importance Sampling (SIS)

The sequential importance sampling algorithm forms the mathematical basis for

most sequential Monte Carlo filters. This sequential Monte Carlo approach is known as

bootstrap filtering [17], condensation algorithm [13], particle filter [11], and survival of

the fittest [11]. The SMC is a technique for implementing a recursive Bayesian filter by

Monte Carlo simulations. The main idea is to represent a posterior density function (pdf )

by a set of random samples with associated weights and to compute estimates based on

these samples and weights. As the number of samples increases, the posterior pdf provides

an increasingly accurate representation of the analytically intractable Bayesian estimator.

The sequential importance sampling (SIS) method essentially approximates the

state of the system with randomly generated samples from some distribution. There-

fore, choosing a good proposal distribution (i.e., importance density) is important to

improve the efficiency of this method. How do we choose the good proposal distribution

q(x)? It is usually difficult to find a good proposal distribution especially in a high-

dimensional space. The basic idea of sequential importance sampling (SIS) comes from

the above question and addresses it by deriving the proposal distribution sequentially,

whereas importance sampling (IS) is not using sequential sampling. In the sequential

case, the following equation shows the proposal distribution in a factorized form [11] so

that importance sampling can be performed iteratively.
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q(X t|Zt) = q(x0)
t∏

i=1

q(xi|X t−1, Zt) (2.8)

An interested reader is referred to [22, 8] for derivation detail. The weight update equa-

tion is give by

πi
t ∝ πi

t−1

p(zt|xi
t)p(xi

t|xi
t−1)

q(xi
t|xi

t−1, zt)
(2.9)

and the posterior filtered density p(xt|Zt) can be approximated as

q(xt|Zt) ≈
N∑

i=1

πi
tδ(xt − xi

t) (2.10)

where the weights are defined in Equation 2.9. It can be shown that as N → ∞, then

approximation Equation 2.10 approaches the true posterior density p(xt|Zt).

Recursive estimation filtering using sequential importance sampling thus consists of

recursive propagation of importance weights (i.e., particle weights) πi
t and support points

xi
t as each measurement is received sequentially. A description of SIS is summarized in

Table 2.1 from [11].

2.3.2.1 Degeneracy Problem

The distribution of the important weights corresponding to the support points

(i.e., particles) becomes the importance density function. It is shown in [11] that the

unconditional variance of the importance weights increases over time, which is the so-

called weight degeneracy problem. In practical terms, this problem means that after a

few iterations of the algorithm, all but a few particles will have negligible normalized

weights. This is disadvantageous since a lot of computing effort is wasted to update
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Table 2.1. Filtering via SIS

[xi
t, π

i
t
N
i=1] = SIS [xi

t−1, π
i
t−1

N

i=1
, zt]

• FOR i = 1 : N
- Draw xi

t ∼ q(xt|xi
t−1, zt)

- Assign the particle weight, πi
t, according to Equation 2.9

• END FOR

• Calculate total weight: t = SUM [πi
t
N
i=1]

• FOR i = 1 : N
- Normalize: πi

t = t−1πi
t

• END FOR

those trivial weights. In addition, the degeneracy problem can’t be solved in the SIS

framework. In order to cope with this degeneracy problem, a resampling step is suggested

to be used after weight normalization. The following subsection presents the sampling

importance resampling (SIR) method using resampling.

2.3.3 Sampling Importance Resampling (SIR)

Whenever a significant degeneracy happens, the SIS algorithm must use the resam-

pling step. The idea of the resampling step is to eliminate the particles with insignificant

weights and concentrate on particles with significant weights. It involves a mapping of

the random measure {xi
t, π

i
t} into a random measure {xi∗

t , 1
N
} with uniform weights. The

new set of random samples {xi∗
t }N

i=1, where N is the number of the samples, is resampled

N times. One of the resampling algorithms is summarized in Table 2.2 (see [11] for more

resampling algorithms). The important point to note here is that the resampling step

does not change the distribution. The description of the resampling step is summarized

in Table 2.2.
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Table 2.2. Resampling Algorithm

[xj∗
t , πj

t

N

j=1] = RESAMPLE [xi
t, π

i
t
N
i=1]

• Initialize the CDF: c1 = π1
t

• FOR i = 2 : N
- Construct CDF: ci = ci−1 + πi

t

• END FOR
• Start at the bottom of the CDF: i = 1
• Draw a starting point: µ1 ∼ Uniform[0, N−1]
• FOR j = 1 : N

- Move along the CDF: µj = µ1 + N−1(j − 1)
- WHILE µj > ci

i = i + 1
- END WHILE

- Assign sample: xj∗
t = xi

t

- Assign weight: πj
t = N−1

- Assign parent: ij = i
• END FOR

There are many efficient resampling algorithms such as stratified sampling and

residual sampling [11]. The most intuitive resampling method would be implemented

by generating N i.i.d variables from the uniform distribution, sorting them in ascending

order and comparing them with the cumulative sum of normalized weights. In this case,

the complexity of the resampling algorithm is O(NlogN) when the best sorting algorithm

is used.

The sequential importance sampling algorithm forms the basis for most particle

filters that have been developed so far. The most popular versions of particle filters are

as follows: sampling importance resampling filter, auxiliary sampling importance resam-

pling, particle filters with improved sample diversity, local liberalization particle filters,
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Table 2.3. SIR Particle Filter

[xi
t] = SIR [xi

t−1, zt]
• FOR i = 1 : N

- Draw xi
t ∼ q(xt|xi

t−1)

- Calculate πj
t = p(zt|xi

t)
• END FOR

• Calculate total weight: t = SUM [πi
t
N
i=1]

• FOR i = 1 : N
- Normalize: πi

t = t−1πi
t

• END FOR

• Resampled by the algorithm in Table 2.2 [{xj∗
t , πj

t}N
j=1] = RESAMPLE [{xi

t, π
i
t}N

i=1]

and multiple model particle filter. In our experiments, sampling importance resampling

(SIR) was implemented and the pseudo code is summarized in Table 2.3.



CHAPTER 3

RELATED WORK

Target Tracking is required by many vision applications such as human-computer

interfaces, video communication/compression or surveillance, and so on. Due to the

observation uncertainty from sensors (cameras, laser ranger finders, infrared sensors,

etc), tracking is a challenging task. In this context, particle filters (Bayesian filters)

have proven very successful for non-linear and non-Gaussian estimation problems (i.e.,

they are neither limited to linear systems nor require the noise to be Gaussian). For

such systems tied down with uncertainty and noise, the extensions of the particle filter

to multiple target tracking have increasingly received attention. This thesis proposes

an effective and efficient solution to multi-target tracking. In the contexts of multi-

target tacking, the difficulty lies in the fact that the estimation of the states requires the

assignment of the observations to the multiple targets. A number of research efforts and

solutions to tracking multiple targets are extensions of the particle filters. However, most

algorithms broadly fall into one of two categories. The first category consists of methods

generating multiple instantiations of single object tracking, e.g. [10, 17, 9], whereas the

second category of multi-target trackers explicitly extends the state space of each filter to

include components for all the target distributions, e.g. [20, 18, 17, 16, 1]. This chapter

briefly reviews the two different categories for multi-target particle filters.

3.1 Multiple Instantiations of Single Target Tracker

The approach to instantiating multiple single target trackers generally has been

dedicated to the explicit interpretation of the resulting trackers in the case of occlusions

17
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and overlapping targets. Jaco Vermaak, Arnaud Doucet, and Patrick Pérez [10] present

multiple instantiations of single object tracker, called the mixture Particle filter. Each

Particle filter is considered to track one target under an independent target assumption.

This assumption is also adopted in this thesis. In [10], K-mean clustering is used to gener-

ate the potential hypotheses and each clustered area is assigned an individual filter. The

clustering procedure is expensive in terms of computations. The new filtering distribu-

tion is a mixture of the individual component filtering distributions. Assigning the area

of interest to the Particle filters plays an important role in the sense that the individual

particle filters do not interact with each other. So the authors introduced the mixture

weight which works as a data association scheme. However, this scheme fails when occlu-

sion occurs and in those situations requires re-clustering after the targets are separated.

The approach proposed here avoids the problem by explicitly modeling occlusion and by

providing a mechanism for the creation and deletion of new target trackers.

As a choice of filtering method, [17] uses multiple Kalman Filters for tracking

multiple objects. A number of restrictions on the video sequence that they made are

that the sequence is captured using a stationary camera with a fixed focal length, if the

sequence contains moving people, they are moving in a upright fashion, and the video

camera is positioned such that the 3D point intersection between the optical axis and the

ground plane projects onto the image plane. The final assumption provides a reasonable

foundation for occlusion reasoning while using a stationary camera.

3.1.1 State Space Extension

The two general ways of extending the stat space are that the first dynamically

changes the dimension of the state space and the second adds a set of indicator variables

signifying whether an object is present or not. In [18], multiple target tracking consists of

estimating the state vector created by concatenating the state vectors of all targets under
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the following assumption: each target moves independently under Markovian dynamics.

The key idea of this paper is the extension of the system state in the Particle filter.

The state representation is the joint density: association vector (probability) and target

identifier. Our proposed method does not extend its system state and since the projection

between the particle space and the image space is computed as we evaluate a standard

observation likelihood, the proposed method does not require any special dynamic model.

Blob trackers [1] have proven useful in tracking objects in a scene by modeling it

using an elliptical contour and thereby segmenting it from the background. These algo-

rithms have a severe performance bottleneck because background subtraction is usually

followed by blob detection and tracking. [1] introduces two theoretical advances in en-

hancing the performance of multi-object trackers: one is a Bayesian correlation-based

multi-blob likelihood function, and the other is a Bayesian Particle filter for tracking

multiple objects when the number of objects present in a scene can vary. The authors

use the CONDENSATION algorithm [7] for their purpose to demonstrate the utility of

the Bayesian likelihood function. The CONDENSATION algorithm has been augmented

here to track distinctly identified objects as they change positions over time. We use a

different version of the Bayesian Particle filter, Sampling Importance Resampling (SIR)

Particle filter. In [1], one problem faced by the tracker is when one object being tracked

passes in front of the other; in such cases the labels assigned to the objects are switched.

In such cases, the tracking algorithm fails to distinguish between different foreground

objects. This shortcoming also happens at the proposed method because we only use the

Color-based observation model.

The previous papers concentrate on single camera 2D tracking. [20] proposed

probabilistic tracking in 3D and derived a mathematical observation formulation that is

robust to occlusions. The state space is extended by concatenating its configuration into

a single super state vector. With the 3D information in the state space, observations are
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modeled with a joint observation model. However, since the joint particle filters suffer

from the exponential computational cost in the number of targets to be tracked, the

approach soon becomes impractical as the number of the targets increases. To circumvent

this problem, they defined a probabilistic measure of similarity between the image and a

synthesized view by associating to each image pixel a weight representing its reliability

to belong to the object under analysis. This approach is similar to our proposed method

except that we do not employ the 3D information into the state space and each normalized

pixel value also implies the occlusion situations.

Christopher Rasmussen [23] presents a new joint target tracking algorithm, called

the joint likelihood filter (JLF), which is based on the principles behind the Joint Prob-

ability Data Association Filter (JPDAF) but allows for tracked objects to overlap one

another and deduces their depth ordering from the image whenever possible. The state

space is extended using a framework that explicitly reasons about data association and

the JLF approach allows mixed tracker when tracking several objects and accommodates

overlaps robustly as well. The author also extended the JLF by combining geometric

parts and qualitative modalities (color, shape, texture, etc) of tracked objects. The joint

measurement method tends to lessen the ambiguity of the occlusion reasoning. A shape

observation model has a strong geometric property to identify the occlusion situations.

However, we do not use the shape likelihood filter but color-based observation model

instead.



CHAPTER 4

DISTRIBUTED MULTI-TARGET PARTICLE FILTER

4.1 Introduction

This chapter describes the main contributions of this thesis. We show that the

proposed method is capable of tracking multiple objects of the same and different types.

Each filter works independently when targets do not occlude each other. It only adds

a constant factor compared to a standard Particle filter in terms of computational com-

plexity.

[10] describes the challenges and drawbacks of the standard particle filter such that

the target with the higher likelihood value typically dominates the distributions, as a

result disregarding the other modes that have the lower likelihood values. In the context

of multi-target tracking, we must maintain each individual target effectively enough to

handle the occluding situations in a complicated scene. In Chapter 3, we describe that the

mixture Particle filter instantiates multiple single trackers and approximately estimates

its state in a single flat distribution according to

p(xt|Zt) =
K∑

k=1

ωk,tpk(xt|Zt) (4.1)

where K is the number of targets and the mixture weights satisfy
∑K

k=1 ωk,t = 1 [10].

The mixture Particle filter is modeled as a K-component non-parametric mixture model.

The mixture posterior distribution is equivalent to the summation of individual target

distribution. However, since the summation of each target distribution makes the result-

ing distribution a multi-modal distribution, it is difficult to estimate its state. Under the

21
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assumption that each target moves independently, the idea of a mixture Particle filter

is ideally suited because each component (mode) is modeled with an individual Particle

filter. However, the mixture distribution requires that each filter is modeling a different

target and in the case of occlusion might lose track of one of the targets. To address

this, we consider each independent filter per target to represent separate dimensions in

a joint tracking distribution. The mixture Particle filters avoid the well known problem

of ”sample depletion”, which is largely responsible for loss of track, by distributing the

resampling step to individual filters [9]. We also adopt the multiple resampling step

where each filter is resampled separately.

The computational cost in the joint particle filter increases exponentially in the

tracked number of the targets due to the increase in the number of particles required

to represent a higher dimensional distribution with equal precision. To circumvent this

problem, if we assume that the targets never occlude each other, we could simply run one

individual particle filter for each target, thus leading to no overhead in the computational

cost. However, assumptions that tracked targets always evolve independently and never

occlude each other are not practicable options. The proposed particle filter includes an

observation model that explicitly represents partial and complete occlusion situations by

factorizing p(zt|xt). The factorized observation models efficiently and effectively repre-

sent the probability function for an object being visible at the known location and for an

object not being visible given that the target is hidden. The method will be explained

in detail in Section 4.2.2.

Consequently, the main contributions fall into three parts in this thesis. In the

first contribution of this thesis, in contrast to the Bayesian filtering distribution of the

mixture Particle filer in [10] which is derived by the summation of each filter, the basis of
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our filtering distribution is the joint Bayesian distribution under a limited independent

assumption. Ideas similar to the mixture particle filter are used to overcome the drawback

of Monte Carlo methods that are poor at consistently maintaining the multi-modality

of the target distributions that may arise due to ambiguity or the presence of multiple

targets. However, we extend this method by distributing the filters to estimate the joint

Particle filter with a linear computational cost.

As the second contribution, a new joint observation model is proposed by factor-

ing the standard observation model into two parts: the probability of the target being

visible plus the probability of the target not being visible. To maintain multiple regions

of interest even under occlusion situations, the proposed approach includes occlusion

reasoning. This approach not only explicitly represents an occlusion situation, but also

performs approximately as well as exponentially complex joint filter under the following

assumptions: (1) targets move independently, (2) targets are rigid, and (3) each pixel in

the image comes from only one of the targets.

As the third contribution, target creation is proposed by running an additional

filter, called ”background filter”. The background filter plays a role in surveilling a new

target and in the case that the new target is found, a new filter is created without

increasing complexity and biasing other target distributions. Target deletion is also

proposed to destroy a filter that is tracking a target not being visible in the current

scene. However, when the target is occluded by other targets, then the tracked filter is

not destroyed. The threshold is defined for the termination of a tracking filter.

4.2 Multi-Target Filtering Distributions

This section describes how the filtering distribution is modeled to express multiple

independent filters and how to approximate the joint observation likelihood model, which
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is often intractable in a joint Particle filter, with multiple instantiations of a single target

tracker.

4.2.1 Target Filtering Distribution

The standard particle filter approximates the posterior distribution p(xt|Zt), where

xt is the current target state at time step t, given all observations Zt = (z1, ..., zt) up

to the current time step. How can we model multiple targets? Before we explain the

proposed method, we show the multi-target filtering distribution as a form of Bayesian

filter p(xt|Zt) and some notations.

Due to the sample depletion problem in the standard Particle filter as shown in

Chapter 5, it is impossible to track multiple targets with the same single distribution. In

the context of tracking multiple targets, we can circumvent this problem by extending

the posterior distribution p(xt|Zt) that is recursively updated over the joint state of all

K targets, i.e. xt = (x1,t, ..., xK,t) given all observation Zt = (z1, ..., zt) up to and includ-

ing t under the assumptions that the number of targets to be tracked, K, is fixed and

known, the measurements are independent, and the individual targets evolve indepen-

dently according to the dynamic model of each target pk(xk,t|xk,t−1), k = 1 ... K. Thus,

the Bayesian multi-target distribution is defined as follows:
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p(xt|Zt) =
K∏

k=1

pk(xk,t|Zt)

=

∏K
k=1 pk(zt|xk,t)pk(xk,t|Zt−1)∏K

k=1

∫
pk(zt|xk,t)pk(xk,t|Zt−1)

=

∏K
k=1 pk(zt|xk,t)

∫
xk,t−1

pk(xk,t|xk,t−1)pk(xk,t−1|Zt−1)dxk,t−1

∏K
k=1

∫
pk(zt|xk,t)

∫
xk,t−1

pk(xk,t|xk,t−1)pk(xk,t−1|Zt−1)dxk,t−1

(4.2)

The observation likelihood function, pk(zt|xk,t), evaluates the measurement probability

zt given a particular state of xk,t at time t. The observation models in each target state

are also independent of each other. The dynamic model of each target, pk(xk,t|xk,t−1),

predicts the state xk,t at time t given the previous state xk,t−1. The above filtering dis-

tribution overcomes the curse of dimensionality by recursively updating the marginal

filtering distributions of p(X t|Zt)through the Bayesian sequential estimation recursion

under the independence assumption mentioned above.

The last point to note here is how to deal with the resampling procedure in the

above context. The standard Particle filter resamples the particles to avoid the degener-

acy problem as mentioned in Chapter 2. Since each Particle filter can linearly compute

the resampling step, we treat each target distribution independently such that it allows

independent resampling of each of the Particle filters.

4.2.2 Joint Observation Likelihood Model

In general, to deal with multiple targets in the joint pdf p(xk,t|Zt), where k = {1 ...

K}, is a correct but intractable option. In Section 4.2.1, we developed the joint filtering

distribution, which forms the filtering basis of this thesis under an assumption that each

filter works independently. In this section, we show the factorization of the standard
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observation model and the explicit interpretation of each factorized term to relax the

independence assumption to allow for target occlusion.

As shown in the Bayesian sequential estimation framework in Chapter 2, the fil-

tering distribution can be computed according to the two step recursion: prediction and

update step. If we, in addition to assuming that each target moves independently, also

assume that targets never occlude each other, then the proposed filter will fail when the

targets pass over each other or are occluded for a while. Under the independent filter

assumption, each particle filter samples in its own target distribution and the complexity

will be linear in the number of targets. However, it would be a bad assumption that

targets never occlude each other. What follows is a derivation of the prediction and

update step used in the proposed approach.

The prediction step can proceed independently for each target as long as no collision

situations occur as follow:

pk(xk,t|Zt−1) =

∫

xk,t−1

pk(xk,t|xk,t−1)pk(xk,t−1|Zt−1)dxk,t−1 (4.3)

However, the update step is not suited to represent occlusion situations. Due to the filter

association to measurement (since we assume that each filter represents one target),

the update step can not be performed independently for each target. To overcome this

challenge, we factor the observation likelihood model of each target pk(zt|xk,t) according

to

pk(zt|xk,t, F1...K) = pk(zt|xk,t, Vk)pk(Vk|xk,t, F1...K)+ pk(zt|xk,t, Vk)pk(Vk|xk,t, F1...K) (4.4)
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where F1...K denotes the K target filters and Vk indicates target k being visible and Vk

indicates target k not being visible in location xk,t. Equation 4.5 consists of four different

terms where each term functions differently: (1) the observation likelihood pk(zt|xk,t, Vk),

(2) likelihood of target k being visible, pk(Vk|xk,t, F1...K), (3) the expected value of the ob-

servation model pk(zt|xk,t, Vk), and (4) the last term is equivalent to 1 - pk(Vk|xk,t, F1...K).

In other words, the observation model is defined in terms of a probabilistic measure of

the particle weights and normalized particle weights originating from all the pixels be-

longing to the samples of the filter. In [20], Oswald Lanz used a visibility method to

define p(z|x) as a probabilistic measure of similarity between the noisy image and the

synthesized view. Similar to our observation model, the author derived this observation

model based on image pixels with a target state encoding 3D information. If a filtering

distribution represents a state of a target correctly, the state of each target can indicate

the possible occlusion because of the 3D information and the likelihood of all other tar-

gets that are hidden does not need to be computed. Since we use a similar approach

using 2D information and the ordering of the particles cannot be computed, we include

the occlusion likelihood in the second term by normalizing the pixel likelihood on each

pixel location with a summation of all the contributions of all the particles.

What follows is a detailed interpretation of the second and the third term. Before

we explain these terms, the followings are the interpretation of the first and the fourth

term. The first term pk(zt|xk,t, Vk) computes the measurement likelihood of each particle

given that target k is visible at the given location, which is similar to the standard

observation likelihood model. The fourth term is easily obtained from the second term

as follows:

pk(Vk|xk,t, F1...K) = 1− pk(Vk|xk,t, F1...K) (4.5)
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4.2.2.1 Visibility Likelihood: pk(Vk|xk,t, F1...K)

In the probabilistic exclusion principle [18], a state was extended to contain two

objects: a foreground object and a background object. In a boosted particle filter [17],

the cascaded Adaboost algorithm was used to provide a mechanism for allowing ob-

jects leaving and entering the scene effectively. Similarly, [10] used the K-means spatial

reclustering algorithm for maintaining the targets by merging and splitting the clusters.

Since we do not use any clustering methods or do not extend the target states, which

may cause the complexity cost to grow exponentially, we need to provide an efficient

and effective method to obtain and maintain the target representation. To do this, we

propose a new method to evaluate the visibility likelihood in Equation 4.6. This method

consists of three steps: (1) project particles into the image space by accumulating each

particle weight over the corresponding pixels, (2) normalize each pixel with the summa-

tion of the accumulated weights from each target filter, (3) project back from the image

space to the particle space by re-normalizing the pixel weights over the target area of

the corresponding particles. What follows is a mathematical derivation of the three steps.

The visibility likelihood term is derived by using Bayes’ law as follows:

pk(Vk|xk,t, zt) =
pk(zt|xk,t, Vk)pk(Vk|xk,t)

pk(zk|xk,t)
(4.6)

The main idea of the first step in Equation 4.6 is to project the particle weights into the

image space. In other words, we translate this term to the following equation:

αpk(V
k
P ixWeight|Xk

P ixLoc, zt) =
∑

xk,t|XPixLoc∈Pixel(xk,t)

pk(zt|xk,t, Vk) (4.7)
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where Pixel(xk,t) = {XK
PixLoc}, which is an area of interest originated from each particle

in image space. Equation 4.7 is nothing but the pixel weight on all pixel locations

belonging to target k. We assume that each pixel can only be from one target and each

target equally likely appears in the foreground. In practice, if the size of the filter is m

by n, then we project each particle weight to the m by n area of pixels as illustrated

in Figure 4.1. In other words, the particle weights are accumulated on each pixel and

eventually if the particles are close to each other, the region will have the highest particle

weight.

Figure 4.1. Given the particle weight, each particle weight is projected into the image
space evenly according to the size of the filter.

After projecting each particle weight to the corresponding pixels, since we deal with

multiple targets, the image plane for each target filter, which contains of the accumulated

particle weights, is separately generated for normalization purposes. With the multiple

image planes, we take care of the interpretation of the occlusion situations by normalizing

each pixel with the summation of all the pixel weights from all the filters. The normalizing

factor α can be determined by deserving that the following condition has to hold as

follows:
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K∑

k=1

pk(V
k
P ixWeight|Xk

P ixLoc, zt) = 1 (4.8)

Each pixel weight after normalization is indicating how likely the pixels under

analysis can come from any of the K targets. In this context, the scalability assumption

should hold because if the number of particles for the first target is 50 and for the second

target is 100, then the importance of the region for the second target is twice as strong

as that of the first target. Consequently, the normalization factor (Equation 4.8) gives

the proportional importance weight to each pixel across each target according to the

following equation:

pk(V
k
P ixWeight|Xk

P ixLoc, zt) =
1

α

∑

xk,t|XPixLoc∈Pixel(xk,t)

pk(zt|xk,t, Vk) (4.9)

where 1
α

is a normalization factor. All the pixels should get normalized with the summa-

tion of each pixel corresponding to each image plane,

α =
K∑

k=1


 ∑

xk,t|XPixLoc∈Pixel(xk,t)

pk(zt|xk,t, Vk


 (4.10)

After each pixel gets normalized to satisfy Equation 4.8, we need to project the

image space back to the particle space. Therefore, we need another normalization factor,

corresponding to the image area associated with the particles. The following equation

shows how the normalized pixel values over all the image planes get assigned into the

second term.

pk(Vk|xk,t, zt) = EXPixLoc∈Pixel(xk,t)

[
pk(V

k
P ixWeight|Xk

P ixLoc, zt)
]

(4.11)

In particular, in the experiments performed here the pixel area of a particle in represented

by the 11 by 11 pixel area of the color template.
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4.2.2.2 Observation Model For Hidden Targets: pk(zt|xk,t, Vk)

The third term of Equation 4.4 requires a method for evaluating the measurement

support (likelihood) of occluded targets, whereas the first term is relatively easy to eval-

uate the measurement support of each target being visible. The important point of this

term is how to maintain the filtering distribution of each target without biasing the re-

sulting distribution and how to exploit the observation information even if the targets

are occluded by other targets or clutter. For this, we compute the third term not only

not to assign too much weight to occluded target,but also not to move too much weight

to the foreground target from the targets behind, by utilizing the expectation of the

measurement model pk(zk|xk,t, Vk) = Ezt [pk(zt|xk,t, Vk)].

4.2.3 Filter Deletion

This section presents the fundamental framework of filter deletion, which happens

when a target disappears out of the scene. Filter deletion does not automatically happen

in the cases where one target is located behind another target for a long time because

the invisibility likelihood explains an occlusion situation. But if the target being tracked

suddenly disappears out of the scene, then we initiate the filter deletion. As a result,

the filter used to track the targets should be destroyed for the sake of process efficiency.

Since the filters are not smart enough to know when to terminate themselves, we utilize

information to compute the proposed observation likelihood. In other words, we deter-

mine the likelihood , pk(F
t
k|Zt), that the target associated with filter k exists and define

a threshold to decide when to destroy the target distribution upon the disappearance out

of the scene. The following equation is the concept of the likelihood that a target exists.
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p(F t
k|Zt) =

p(zt|F t
k, Z

t−1)p(Fk|Zt−1)

p(zt|Zt−1)
(4.12)

where the numerator indicates particle weights
∑i

k πi and the denominator is the expected

value of observation model in the current filter E[p(zt|Ft)]. This value obtained from

Equation 4.12 together with a threshold is used to determine whether the tracked target

filter is destroyed or not.

4.2.4 Filter Creation

Creation of another target filter is achieved through the addition of an additional

filter, called background filter. The background filer has to track what other filters do not

track. In order for this background filter not to represent the target of the other filters,

we use the visibility likelihood model described in section 4.2.2.1, but do not apply the

normalization procedures so that the background filter never bias on visibility likelihood

of other targets.

Each particle in the background filer randomly gets assigned one of the measure-

ment models being tracked. In order to prevent the background filter from tracking

targets already traced by other filters have to be considered, operation happens in the

image plane by removing all the pixels in the image plane of the background filter which

cover regions that are already being tracked by other filters. This means that we never

find objects that are partially overlapped by others. Then, how do we find a cluster that

might be a potential target that other filters are not tracking? The simplest solution

for detecting the cluster that other filters are not tracking is to use a density estimate

by computing the highest pixel weight of the background filter in the image space and
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compare it to a stationary threshold. If the weight of the cluster in the image plane of the

background filter does exceed the significance threshold, we create a filter for that target.

The important element to note here after finding new target is that we have to transform

the current state of the background filter to the new filter including the observation model.

To make target finding more efficient and to avoid the depletion problem, once the

background filter falls into one of the targets that has already been tracked by other filters,

we bias the distribution of the background filter by resampling a half or 60 percentage

of the particles in the resampling step and replacing the rest with random new particles

so that it easily starts to search a new target.

4.3 Computational Complexity

With the assumption that a target is a rigid object and not transparent, the key to

a robust multi-target occlusion observation model in the proposed method is to project

the particle weight to each corresponding pixel and introduce a normalization factor to

include occlusion situations. As particles in the joint particle filter contain the joint

position of all targets and the filter thus suffers from exponential complexity with the

increasing number of targets, we proposed a pixel-based computation technique not only

to help the proposed observation likelihood model (Equation 4.2) to explain the possible

occlusions, but also to reduce the complexity of the filter to linear in the number of

targets.

The important point to note in the proposed method is that the computational com-

plexity does not increase exponentially even though the number of targets is increased.

In this thesis, the only element that is required to be computed is the interaction of

the importance weights. This means that we only need to worry about the observation
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model, which is the first and second term in Equation 4.5. How do we compute these

terms without increasing the computational complexity? In what follows, we first discuss

why the joint particle filter is intractable and inefficient when it handles the occlusion

situations and discuss how the proposed method with its observation model provides a

computation cost that grows linearly while approximating a joint distribution. by utiliz-

ing the pixel-based computation.

The typical joint particle filter suffers from the curse of dimensionality because

each particle is Kd dimensional, where d is the dimensionality of an individual filter and

estimates the components of all the targets’ state being tracked. Consequently, if the

particle filter needs N particles, then NK are typically required for tracking K targets

with the same precision. In addition, if we define M as the size of the the template/object

area, then the resulted complexity of the joint particle filter becomes O(MNK) under

the assumption that resampling step is O(N), where N is the number of particles. Thus,

tracking multiple targets increases the computational cost and space exponentially. To

get around this difficulty, Section 4.2.1 hypothesizes that under the stated assumption

the proposed multi-target filter is suited to represent the target distribution. If the

resampling step is again assume that we linear compexity, then the total complexity

becomes O(4MNK) because the standard particle filters takes O(MN) and the proposed

observation model takes O(3MNK): O(MNK) for projecting the particle space into

the image space, O(MNK) for normalization and O(MNK) for projecting back to the

particle space. Figure 4.2 illustrates the projection between the particle space and the

image space.
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Figure 4.2. Projection step between the particle space and the image space. (1) Projec-
tion into image plane. (2) Normalization of each pixel. (3) Re-normalization of all the
normalized pixels..

4.4 SIR Multi-Target Particle Filter

This section describes the detailed steps of the distributed multi-target Particle

filter algorithm.

• INITIALIZATION

At time t-1, the state of the targets is represented by a set of unweighted samples

{xi
k,t−1}N

i=1, where N is the number of the samples. Each target has a set of these

samples.

• FOR EACH TARGET k : K

1. Evaluate the observation likelihood {xi
k,t}N

i=1.
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2. Construct the Image Plane for each target k by normalizing each pixel in each

image plane according to Equation 4.9 and Equation 4.11.

3. Calculate the expected value of the measurement model.

4. Calculate the fourth term in Equation 4.5 : 1 - pk(Vk|xk,t, F∀K
).

5. Compute the importance weight distribution {πi
k}N

i=1 by assigning the values

from the above four steps into Equation 4.5.

• END

• RESAMPLING STEP

– FOR EACH TARGET k : K

∗ Resample each target state {xi
k,t}N

i=1 according to Table (2.2).

– END

• END

• The resulting sample sets {xi
k,t, π

i
k,t} for each target at time t represents an esti-

mated state of the targets.



CHAPTER 5

EXPERIMENTAL RESULTS

This chapter describes the state-space models, the observation models, and expec-

tation of the observation model. For experiments, we compare the performance of the

proposed multi-target particle filter with that of the standard particle filter on three dif-

ferent tracking problems. The first experiment demonstrates the standard Particle filter

over multiple targets. The second are three tracking examples with different numbers of

targets using the proposed multi-target Particle filter. The last shows examples of filter

deletion and creation. All the experiments are performed on a video sequence.

5.1 State Space Model

There is significant literature related to multi-target tracking. Even though all the

literature has different ways to address the tracking problem, the way of approximat-

ing the state space generally falls into one of two categories. The first uses the general

way such that the states consist of the image coordinates (i.e. xy plane), velocity, or

acceleration of targets, e.g. [2,3]. In the context of multi-target tracking we assume

that the number of targets to be tracked, K, varies and is known a priori. Each target

is parameterized by the state xk,t, {k = 1...K}, which has different configurations (i.e.

different image coordinates) for the individual targets. The representation of multiple

targets Xk is given by the individual target states, i.e. Xk = (x1,t, . . . , xK,t). In the

experiment, the targets are rectangular boxes. We therefore define the particle represen-

tation of each state as xk,t = {xt, yt} where x, y specify the location of the samples. The

37
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particle representation has two degrees of freedom, one in each direction of the image

coordinates.

5.2 Observation Likelihood Model

This section describes the likelihood model pk(zt|Xk,t) where zt is a likelihood eval-

uated by the observation model (color-based observation model in the experiment) and

Xk,t is the position of objects. In short, the observation likelihood model pk(zt|Xk,t)

expresses the likelihood of target k given that the objects would be located at Xk,t. The

observation likelihood values (i.e. probabilistic measurement of similarity between zk,t

and reference features) do not only arise from the targets to be tracked, but also addi-

tional clutter likelihood may result due to spurious objects, background changes, etc. We

will assume that each of the targets can generate at most one likelihood at a particular

time step. The likelihood model we will use for our experiments is a color likelihood

model that was proposed in [15, 24] and the following section explains it in detail.

5.2.1 Color Likelihood Model

The color likelihood model [15] generates a measurement of similarity by compar-

ing the color histogram of candidate regions in the current scene to a reference color

histogram. We build color models by utilizing the color histogram method in the Hue-

Saturation-Value (HSV) color space in order to decouple chromatic information from

shading effects. We measure the likelihood through the Bhattacharyya distance between

the two HSV color histograms of the reference and the candidate models.

Suppose that the distributions of the color histogram are transformed into m bins.

The function h(xi) produces the histograms that associate the color at location xi to the

corresponding bin. In our experiments, we transform the histogram in RGB color space
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to a HSV color histogram using 8 × 8 × 4 bins to make the histogram less sensitive to

lighting conditions.

The HSV color distribution of a reference model α = (α1, ..., αB) where B is the

number of bins. It is defined as follows:

αb =
1

N

N∑
i=1

δ[hxi
− b] (5.1)

where N is the number of pixels of the reference region, δ is the Kronecker delta function,

and 1
N

is a normalizing factor so that
∑B

b=1 αb = 1.

Similarly, to construct the target model βb, the RGB pixel values are retrieved from a

region of interest using the state vector {xk,t} and transferred into HSV pixel values.

Then the color distribution βb of the candidate color model at time t is constructed

similar to Equation 5.1 as follows:

βb =
1

N

N∑
i=1

δ[hxi
− b] (5.2)

Given the distributions of two color models, the color model βb associated with a

hypothesized state {xk,t} will be compared to the reference model αb. In our experiments,

to measure how similar the candidate model is to the reference model, a similarity measure

D is derived based on the Bhattacharyya similarity coefficient [15] and defined as

D[α, βt] =

√√√√1−
B∑

i=1

√
αiβt,i (5.3)

where B is the number of bins. As a result, the smaller D is, the more similar the distri-

butions are. The similarity measure D is called the Bhattacharyya distance.



40

Since the smaller distance corresponds to the larger weight, we use the normal

distribution to evaluate the likelihood between the two distributions. In the context of

the particle filter, the weight πi
k in the samples (xi

k, π
i
k) is evaluated using the following

normal distribution:

πi
k(D) =

1√
2πσ

e−
D2

2σ2 (5.4)

where the width of the likelihood is controlled by the variance parameter σ2 in the

function of D. In our experiments, this standard deviation is assigned 1
7
. A similar model

was already implemented in the context of the object tracking in [15, 21, 25]. Note that

as the Bhattacharyya distance D can only take values between 0 and 1, πi
k(D) does not

strictly represent a probability density, but would have to be scaled using 1R 1
0 πi

k(D)
. Due

to the normalization in the filter, however, constant is not required during calculation.

5.2.2 Compute Expected Observation Model

Chapter 4 explains the filtering distribution in a form of a probability density

function (pdf) p(xk,t|Zt) where k = {1 ... K} is the number of the targets. In partic-

ular, Equation 4.5 requires computation of the four related terms. This section shows

a mathematical solution of the third term (pk(zt|xk,t, Vk)), which is an expectation of

the observation model Ezt [pk(zt|xk,t, Vk)] described in Chapter 4. We mathematically

evaluate the expected value of the observation model as follow:
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pk(zt|xk,t, Vk) = ED

[
πi

k(D)
]

=

∫ 1

0

πi
k(D)p(D)dD

=

∫ 1

0

[
1√
2πσ

e−
D2

2σ2

]2

dD

=
1

2πσ2
− σ2

[
e−

(D2)

σ2

]1

0

=
−1

2π

(
e
−1
σ2 − 1

)

(5.5)

where σ is given 1
7
, the range of a function of D is [0,1], and p(x) is considered as the

same distribution of πi
k(D) in this case. However, the expected value obtained from

Equation 5.5 might not be a right value because our assumption is that Equation 5.4 is

the distribution in a real image and therefore integrates to one because it is a probability

function. This, however, is not the case here because we are using only a part of the

Gaussian distribution. Eventually, we scale p(D), the second term of the second line

in Equation 5.5, to be a density function. However, since p(D) does not measure the

exact distribution in a real image, we alternatively determined this value by experiments.

Eventually, this value is defined as 0.0000036 in the standard Particle filter and used for

the expected value of the observation model. For the practical experiments, we use

slightly lower value than 0.0000036 to bias the filter toward targets and then to reduce

the time required for the particles to collapse into each target.

5.3 Experimental Results

As a benchmark, we compare the proposed multi-target Particle filters against

standard Particle filters using the same objects. In the standard Particle filters, the

experiments are performed by tracking multiple targets and the results are the precision in
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terms of tracking accuracy. To compute the precision of tracking the targets, we manually

track the center positions of each target and compare them against the expected value

of the locations of the samples. The density estimate is used to calculate the position of

the targets. Since it is well known that the precision of tracking gets much better with

the increase in the number of the particles [22, 8], we do not include experimental results

with different number of the particles. Instead, we focus on the precision and capability

to track multiple targets as the number of targets increases. Targets are rectangular

boxes in different colors (i.e., red, green, and blue) on image sequences recorded at a

constant frame rate of 15 frames per second and with images of size 320 by 240 in RGB

color space. The template used for the observation model consists of 11 by 11 pixels. The

experiments for the proposed algorithm are performed with different numbers of targets.

We mainly evaluate the precision in terms of the number of targets and the tractability

of the occlusion situations. Finally, we show experimental results for a filter deletion and

creation. Note that some experiments with high particle numbers did not run in real

time.

5.3.1 Standard Particle Filters

In this experiment, the standard Particle filter runs to track the rectangular boxes

of the same color. The targets move around in the cluttered background and sometimes

disappear and appear again as shown in Figure 5.1. Below is the specific implementation

information.

• The state xk,t of the kth target consists of its position (xk,t, yk,t) in the image.

• For the observation likelihood model, we used an appearance template approach.

In particular, we used a 11 by 11 square template containing the reference image

transformed into HSV color space.
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• For the dynamic model, we used a Brownian motion model, with mean 0.5 and

standard deviation 0.2 for the proposal distribution in Equation 4.3.

• All filter used 300 particles.

Figure 5.1 shows the average errors in Cartesian distance between the estimated

state and the true state and their standard deviations as error bars for tracking two

targets after multiple runs using the standard Particle filter. The standard Particle filter

does not maintain its estimated state consistently and has a high standard deviation at

the beginning on both figures because the standard Particle filter sticks to one target at

first and jumps back to the other target.

Figure 5.2 shows the sample depletion problem as described in Chapter 4. In the

first frame, the particles spread out almost evenly to the two targets and the correspond-

ing histogram of the X coordinate shows the two peaks indicating the particles stay at

the two targets. However, as the filter runs, the number of particle on the left target

keeps decreasing and at frame 30 and thereafter all particles migrate to the left target.

This phenomenon demonstrates that the standard Particle filters are not suited to multi-

target tracking.

Figure 5.4 and Figure 5.5 are the sequences of images showing the target disappear-

ance using the standard Particle filter. Due to the sample depletion problem, we can’t

demonstrate the target occlusion situation. Therefore, this experiment only shows that

the particles are severely diffused when the filter does not get any measurement support.

Similar to the target disappearance phenomenon, when the target is occluded, the filter

does not get enough measurement support to hold the importance weight distribution,

thus resulting in spreading out of the particles. These experiments are also demonstrated
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in the next subsection over distributed multi-target Particle filters. At frame 37 of Figure

5.2, when the target is about to disappear, the particles start to spread. At frame 51 of

Figure 5.3, the diffusion of the particles is very severe and finally they are back on the

target when the target appears again at frame 65.
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(a) Target 1

(b) Target 2

Figure 5.1. Mean of errors in Cartesian distance and error bars using standard Particle
filter on target 1 (a) and target 2 (b).
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Figure 5.2. Sequence of images, demonstrating the sample depletion problem using stan-
dard Particle filter with 1000 particles.
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Frame #: 25
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Figure 5.3. Sequence of images, demonstrating the sample depletion problem using stan-
dard Particle filter with 1000 particles.
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Figure 5.4. Target disappearance experiment using standard Particle filter with 1000
particles.
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Frame #: 37
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Figure 5.5. Target disappearance experiment using standard Particle filter with 1000
particles.
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Frame #: 63
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Frame #: 65
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Figure 5.6. Target disappearance experiment using standard Particle filter with 1000
particles.
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5.3.2 Distributed Multi-Target Particle Filter

The proposed algorithm is implemented according to the pseudo code algorithm in

Section 4.4. The experimental setup is the same as that the standard Particle filter. This

subsection consists of three different experiments: tracking two targets, tracking three

targets, and target deletion and creation. Figures mainly illustrate the precision of the

target trajectories against the true target trajectories and occlusion situations. The true

state is manually estimated.

5.3.2.1 Tracking Two Targets of Different Color

Figure 5.7 shows the same information as Figure 5.1 but using the proposed multi-

target Particle filter. The proposed distributed multi-target Particle filter is capable of

tracking all the targets by maintaining low standard deviation between a true state and

an estimated state. Therefore, it is well suited to tracking multiple targets.

Figure 5.8 and Figure 5.9 describe trajectories of a red and green target in the X

and Y axis. Figure 5.10 to Figure 5.13 show a sequence of tracking images and their

corresponding visibility and invisibility density for each target. While the green target

passes behind the red target, the invisibility probability density explains the occlusion

situation by increasing the density when the occlusion happens, and otherwise decreasing

the density in case of no occlusion. Figure 5.10 (b) indicates that Invisibility density starts

to increase and after the green target is not occluded its density dramatically drops to

almost zero.
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(a) Target 1

(b) Target 2

Figure 5.7. Mean errors in Cartesian distance and error bars using multi-target Particle
filter on target 1 (a) and target 2 (b).
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Figure 5.8. Tracking two targets int the X axis.
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Figure 5.9. Tracking two targets in the Y axis.
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Figure 5.10. (a) and (b) are the image before occlusion happens at frame 84 (c) Visibility
and Invisibility density for red target at frame 84 (d) Visibility and Invisibility density
for green target at frame 84.
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Frame #: 91
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Figure 5.11. (a) and (b) are the image while occlusion happens at frame 91 (c) Visibility
and Invisibility density for red target at frame 91 (d) Visibility and Invisibility density
for green target at frame 91.
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Frame #: 189
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Figure 5.12. (a) and (b) are the image while occlusion happens at frame 189 (c) Visibility
and Invisibility density for red target at frame 189 (d) Visibility and Invisibility density
for green target at frame 189.
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Frame #: 201
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Figure 5.13. (a) and (b) are the image after occlusion happens at frame 201 (c) Visibility
and Invisibility density for red target at frame 201 (d) Visibility and Invisibility density
for green target at frame 201.
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5.3.2.2 Tracking Three Targets Of The Different Colors

Figure 5.14 describes mean errors of tracking three targets using the proposed multi-

target Particle filter. One thing to note here is that peaks represent occlusion situations

or target disappearance such that target 1 and target 2 in Figure 5.14 has peaks around

frame 80 and 100 and the mean error of target 3 increases at the end because this target

starts to disappear. In short, this figure shows that the proposed method is capable of

tracking three targets under occlusion situations. The higher error during occlusion can

be attributed to the particles explaining out behind the occluding object due to the lack

of target-specific observation.

Figure 5.15 and Figure 5.16 show behaviors of three targets in the X and the Y

direction. We can look at an occlusion of the three targets from frame 133 to frame 177

in Figure 5.15. In Figure 5.17, the two targets start occluding each other and invisibility

probability density increase. Figure 5.19 and Figure 5.20 show two consecutive sequence

of images with the three targets occluding each other and its corresponding density

figures show the interpretation of the occlusion by increasing its invisibility probability

or visibility probability. The particles of occluded targets stay at the occluding target.

The important thing to note is that the number of the targets does not influence the

behavior of occluded particles.
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(a) Target 1

(b) Target 2

(c) Target 3

Figure 5.14. Mean of error in Cartesian distance between estimated state and true state
and error bars using distributed multi-target Particle filter.
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Figure 5.15. Tracking two targets in the X axis.
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Figure 5.16. Tracking two targets in the Y axis.
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Figure 5.17. (a) and (b) Images at frame 83. (c) Visibility and Invisibility density of green
target. (d) Visibility and Invisibility density of red target. (e) Visibility and Invisibility
density of blue target.
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Figure 5.18. (a) and (b) Images at frame 117. (c) Visibility and Invisibility density
of green target. (d) Visibility and Invisibility density of red target. (e) Visibility and
Invisibility density of blue target.
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Figure 5.19. (a) and (b) Image at frame 130. (c) Visibility and Invisibility density
of green target. (d) Visibility and Invisibility density of red target. (e) Visibility and
Invisibility density of blue target.
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Figure 5.20. (a) and (b) Image at frame 143. (c) Visibility and Invisibility density
of green target. (d) Visibility and Invisibility density of red target. (e) Visibility and
Invisibility density of blue target.
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Figure 5.21. (a) and (b) Image at frame 184. (c) Visibility and Invisibility density
of green target. (d) Visibility and Invisibility density of red target. (e) Visibility and
Invisibility density of blue target.
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5.3.2.3 Filter Deletion and Creation

The previous subsections demonstrate tractability even in the increasing number

of targets and occlusion situations. This subsection demonstrates appearance and dis-

appearance of targets by constructing and destroying a filter. In Figure 5.22, particle

weights of Target 1 decreased as the target starts to disappear below the desk at frame

32 and a new target appears from the target 2 (plain line). The particle weights for the

new target increase as the filter is getting strong measurement supports. The important

element to note here is that dots located throughout the image represent additional filter

(background filter) and play a role in surveilling a new target that might enter the scene.

Figure 5.23 and Figure 5.24 show sequences of images where one target appears from the

foreground target. We used the same color targets because it is generally easier for a

hidden target to be detected if it has a the different color. As shown in the image figures,

the background filter detects the hidden target 3 frames after the hidden target appears

from behind the foreground target. In addition, Figure 5.22 also shows that the particle

weight distribution (target 1) is destroyed around frame 38 and new a particle weight

distribution is created around frame 59.
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Figure 5.22. Importance Weight Distribution for three targets.
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Figure 5.23. Visual tracking results on target deletion.
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Figure 5.24. Visual tracking results on target creation.
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5.3.2.4 Experiment Summaries

Figure 5.25 shows the precision of tracking one target using the standard Particle

filter and the proposed Particle filter under no collision and target disappearance. The

mean errors in both figures are similar to each other and their standard deviations are

similar as well. Figure 5.1 shows average of estimated states and their standard devia-

tions as error bars for tracking two targets and three targets after multiple runs using

standard Particle filter. Figure 5.7 shows the same information as Figure 5.1 but using

the proposed multi-target Particle filter. The results of both figures indicate that the

proposed multi-target Particle filter is capable of tracking all the targets by maintaining

low standard deviation between a true state and an estimated state, whereas the standard

Particle filter does not maintain its estimated state consistently and has a high standard

deviation at the beginning on both figures because the standard Particle filter jumps into

one target and later into the other target. Therefore, it is not suited for tracking multiple

targets.

Figure 5.26 and Figure 5.14 describe evaluation of tracking three targets using the

standard Particle filter and the proposed multi-target Particle filter. Similar to the results

for tracking two targets, the proposed method is capable of tracking three targets under

occlusion situations, whereas the standard Particle filter changes a tracking target when

the targets are occluded as shown in Figure 5.26 (b) and (c) during frames 176 and 210.
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(a)

(b)

Figure 5.25. Mean of errors in Cartesian distance and error bars using the standard
Particle filter (a) and multi-target Particle filter (b).
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(a)

(b)

(c)

Figure 5.26. Mean of errors in Cartesian distance and error bars using standard Particle
filter. (a), (b), and (c) are targets of the different colors and measurement supports are
multiplication of each observation model.



CHAPTER 6

CONCLUSIONS

A primary contribution of this thesis is its demonstration of tracking multiple tar-

gets while maintaining a computational complexity that only adds a constant factor to

a standard Particle filter. As the standard Particle filter as well as the mixture Particle

filter have problems in multi-target tracking, we proposed an extended version of the

Particle filter to remedy the problems while avoiding the complexity of a filter using a

joint distribution model. The proposed Particle filter is well suited to explain a joint

Particle distribution for visual tracking but it decreases the exponential complexity by

maintaining a distributed filter representation to a complexity that adds only a constant

factor to the standard Particle filters.

Versions of the multi-target particle filters described in Chapter 2 proposed dif-

ferent ways to make inferences about occlusions, but the proposed approach achieves

approximation to the joint observation model by projecting from particle space to image

space, while maintaining the complexity of the mixture model. The method effectively

helps tracking multiple targets robustly even under occlusion situations. The proposed

approach is evaluated through a number of experiments and demonstrated its precision

in terms of tracking targets of different colors or the same colors. In addition, we devel-

oped a filter deletion and creation approach using the joint observation model so that

the proposed approach is capable of tracking targets entering or disappearing the scene

without influencing the complexity or biasing each target distribution.
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Consequently, the proposed approach strengthens the joint Particle filter by approx-

imating a new joint observation model to track multiple targets under the assumption

that the target region corresponding to each particle is monolithic, each pixel only comes

from one target, and all particles contribute equally to the particle observation without

increasing its complexity by projecting between the particle space and the image space.
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