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ABSTRACT

NONRIGID IMAGE REGISTRATION BY THE DEFORMATION BASED GRID

GENERATION

CHIH-YAO HSIEH, Ph.D.

The University of Texas at Arlington, 2008

Supervising Professor: Hua-Mei Chen

A novel nonrigid image registration algorithm is developed using a well-established

mathematic work known as deformation based grid generation.

The deformation based grid generation is capable to generate a grid free of mesh

folding, which is achieved by devising a positive monitor function describing the an-

ticipated grid point density in the computational domain. Based on this method,

a novel nonrigid image registration algorithm is successfully developed with many

interesting features. First of all, the functional to be optimized during the image

registration process consists of only one term — the similarity term. Thus, no regu-

larization functional is required in this method, not to mention the weight to balance

the regularization functional and the similarity functional commonly required in many

nonrigid image registration methods. Nevertheless, the regularity (no mesh folding) of

the resultant deformation vector field is theoretically guaranteed. Secondly, since no

regularization term is introduced in the functional to be optimized, the resultant de-

formation vector field is highly flexible that large deformation frequently experienced

in inter-patient or image-atlas registration tasks can be accurately estimated.
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We present the detailed description of our proposed nonrigid image registration

method with different implementations, alone with several 2D and 3D experimental

results evaluating the registration quality, performance, and noise tolerance capability.
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CHAPTER 1

INTRODUCTION

1.1 Image Registration

Image acquisition technologies for medical imaging have greatly advanced in the

past several decades. Numerous choices of modalities of medical images are available

for clinicians, physicians, and neuroscientists. Some modalities like computed to-

mography (CT), magnetic resonance imaging (MRI), diffusion tensor imaging (DTI),

ultrasound, and X-ray provide anatomical information, while others like positron

emission tomography (PET), single positron emission tomography (SPECT), and

functional MRI (fMRI) provide information on metabolic processes.

Clinically, images taken from the same or different patients are often compared

for various purposes. This kind of task requires alignment between images due to

inherent image distortion, patient movement during the image acquisition process,

and temporal differences of the image acquisition [1]. Therefore, the automatic image

registration is desirable to fulfill the need to align those images and avoid tedious

manual image registration process.

Image registration [2, 3, 4, 5] plays an essential role in various medical imaging

applications, such as fusion of images from different modalities [6, 7], super-resolution

in positron emission tomography (PET) imaging [8], visualizing diffusion tensor MR

images (DTI) [9, 10], atlas based segmentation [11, 12], geometric correction of func-

tional magnetic resonance imaging (fMRI) [13], pattern recognition [14], etc. The

purpose of image registration in these applications is to establish the correspondence

among the pixels/voxels of image pairs.

1
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Many existing nonrigid image registration methods are based on physical mod-

els such as elastic model proposed by Briot [15], diffusion image registration [16],

viscous fluid model proposed by Christensen [17], and curverture based image regis-

tration [18]. These models construct partial differential equations (PDEs) to simulate

the deformation of physical objects (elastic solids, viscous fluid) under external forces.

In nonrigid image registration, these external forces are derived from the similarity

measures, such as sum of squared difference (SSD) or mutual information (MI). By

solving the PDEs, the spatial transformations between an image pair can be obtained.

In this type of work, image registration problem is solved using the variational formu-

lation, i.e., minimization of the cost functional comprising two terms [19]: a similarity

functional and a regularization functional. That is:

cost functional = similarity functional + β × regularization functional. (1.1)

The similarity functional is designed to measure the similarity of two images

subject to a given deformation field and the regularization functional is devised to

manage the quality of the deformation to ensure that the generated deformation

field is physically plausible — no grid folding. For this purpose, the regularization

functional is usually designed to penalize non-smoothing deformation fields.

Obviously, the registration quality is affected by the choices of the regularization

functional and the regularization parameter β. For the physically based models,

the optimal positive regularization parameter β is application specific, and the most

appropriate β can only be determined from experiments, which means that there is no

convenient, universal, and unique optimal β for all types of applications. Moreover,

different tissues represented in an image may have differently preferred β values.

This is due to the varying physical properties of different tissues. If a lower than
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appropriate application specific β value is chosen, the resulting deformation field may

suffer from grid folding. Therefore, it is desirable to develop a more universal nonrigid

image registration scheme suitable for the general registration problems.

1.2 Grid Generation

Grid generation is an essential step to solve differential equations numerically.

There are two types of grids [20] - structured and unstructured. A structured grid is

defined as a grid with regular connectivity, which means that each vertex of the grid,

excluding the boundary, has the same number of vertices in the vicinity. This restric-

tion implies that each element should be quadrilateral for a 2D grid and hexahedra for

a 3D grid. An unstructured grid is specified as a grid with irregular connectivity, that

is, for each vertex of the grid, the number of neighboring vertices may be different.

Among the structured grid generation methods, adaptive grid generation is

popularly used in scientific computing, such as fluid flow field simulation and fluid-

structure interaction, to accommodate a complicate domain [21, 22]. The adaptive

grid generation was introduced as an iterative mesh regeneration approach to accom-

modate complex domain and obtain a more accurate solution. However, the adaptive

grid generation may introduce the “mesh tangling” [23, 24], which is undesirable.

In 1992, Liao and Anderson purposed a deformation based adaptive grid gener-

ation method [25, 26, 27], which can avoid the grid folding problem by enforcing the

Jacobian determinant of the generated grid to be strictly positive through the control

of a monitor function. The details of this method is reviewed in Chap. 2.
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1.3 Motivation

Considering the theoretically guaranteed no grid folding feature of the deforma-

tion based adaptive grid generation methods [25, 26, 27], it is natural to investigate

the possibility of applying them to nonrigid image registration problems, which moti-

vates this work. In this dissertation, we developed a new nonrigid image registration

approach based on the deformation based adaptive grid generation method.

The major difference between this work and the physically based nonrigid image

registration methods is that there is only one term, the similarity functional, involved

in the cost functional to be optimized, while the regularity of the deformation field is

guaranteed.

This work is formulated as a constrained parametric optimization problem

f = arg{optimizef c(u |f) |f is subject to certain constraints}

where c is the cost functional, u represents the deformation field, and f is a set of the

constrained parameters. The parameters are associated with a set of control points

defined as the grid points of a coarse grid. The enforced constraint guarantees no

grid folding will occur in the resulting grid.

This dissertation is organized as follows. Chapter two reviews the deforma-

tion based grid generation method. Chapter three is the proposed nonrigid image

registration work. Chapter four covers the implementation issues. Chapter five are

experiment results and analysis. Chapter six is the conclusion and future works.



CHAPTER 2

DEFORMATION BASED GRID GENERATION

Numerical grid generation is a common tool for numerical methods that employ

finite differences, finite volumes, or finite elements to solve partial differential equa-

tions (PDEs) on arbitrarily shaped domains. It is a process of discretizing the solution

field/physical domain into small elements or cells and acquire the solutions at each

of the grid points. The grids generated for solving PDEs are crucial for the accuracy

of the numerical solution of PDEs. Detailed information about grid generation is

available in [28, 29].

Among those numerous grid generation methods, we are intrigued by a struc-

tured mesh generation method known as the deformation based adaptive grid gen-

eration proposed by Liao and Anderson in 1992 [25, 26, 27], where the structured

mesh is defined as all elements and nodes have the same topology (same number of

neighbors). This approach is able to construct a desired structured grid by generating

an one to one and onto mapping function φ that maps the coordinates of the original

grid points to the new grid points.

Adaptive grid generation was introduced as an iterative mesh regeneration ap-

proach to accommodate complex domain and obtain a more accurate solution. In

general, adaptive grid generation may introduce “mesh tangling” and thus are not

physically plausible [23, 24]. However, the deformation based adaptive grid gener-

ation considered in this work suffers no such concern. In [25], this is achieved by

enforcing the Jacobian determinant of the deformation field to be strictly positive

where the Jacobian determinant is specified on the original grid before adaptation.

5
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In 1994, Liao et al. [30] improved the deformation method so that the Jacobian de-

terminant can be specified on the grid after adaptation. Later, in [31] and [32], they

developed a further improved deformation method with real time adaptation. The

three versions of the deformation based grid generation methods are described in the

following sections.

2.1 Deformation Method: Version 1

This is one of the steady versions of deformation method where the transfor-

mation Jacobian determinant is specified on the old grid ξ before adaptation [25].

Problem: Given a monitor function f(ξ), normalized by

∫

Ω
f = |Ω|, (2.1)

where |Ω| is the volume of the solution domain Ω. Find a mapping function φ1 : Ω→

Ω, ∂Ω→ ∂Ω such that

J(φ1(ξ)) = det∇φ1(ξ) = f(ξ). (2.2)

The following two steps are used to find such a mapping.

Step 1: Find a intermediate vector field η(ξ) that satisfies:





∇ · η(ξ) = f(ξ)− 1

∇× η(ξ) = 0

, ξ ∈ Ω (2.3)

and

η(ξ) · n̂ = 0, ξ ∈ ∂Ω. (2.4)
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Step 2: Form a time dependent velocity vector field from η(ξ),

V (ξ, t) =
η(ξ)

t+ (1− t)f(ξ)
, ξ ∈ Ω, (2.5)

Step 3: Find φt(ξ, t) by solving the following ordinary differential equation (ODE)

dφ(ξ, t)

dt
= Vt(φ(ξ, t)), t ∈ [0, 1], (2.6)

where ξ ∈ Ω. Denote φt(ξ) = φ(ξ, t), then the mapping φ1(ξ) = φ(ξ, t = 1). The

proof of the above approach can be found in [33].

This version provides an effective practice to generate a well regularized defor-

mation field by imposing constraints on the monitor function f .

Notice that the curl of η is restricted to be 0. This restriction was originally im-

posed so that the div-curl system can be transformed into a single Poisson’s equation

that can be solved easily using the finite difference method.

2.2 Deformation Method: Version 2

This is another static version of the deformation method where the transforma-

tion Jacobian determinant is specified on the new grid φ(ξ) after adaptation [26].

Problem: Given a monitor function f normalized by

∫

Ω

1

f
= |Ω|, (2.7)

find a mapping function φ1 : Ω→ Ω, ∂Ω→ ∂Ω such that

J(φ1(ξ)) = f(φ1(ξ)), ξ ∈ Ω. (2.8)
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To find such a transformation, the following steps are proposed in [26].

Step 1: Compute η(ξ) such that





∇ · η(ξ) = 1− 1

f(ξ)

∇× η(ξ) = 0

, ξ ∈ Ω, (2.9)

and

η(ξ) · n̂ = 0, ξ ∈ ∂Ω. (2.10)

Step 2: For each fixed node ξ, ξ ∈ Ω, solve the ODE

∂φ(ξ, t)

∂t
= V (φ(ξ, t), t), t ∈ [0, 1] (2.11)

with φ(ξ, 0) = ξ, where

V (φ(ξ, t), t) =
η(φ(ξ, t))

t
1

f(φ(ξ, t))
+ (1− t)

. (2.12)

Define φt(ξ) = φ(ξ, t), then φ1(ξ) = φ(ξ, 1) is the solution.

The proof of the above approach is very similar to the proof of the first version.

Detailed proof can be found in [33].

2.3 Deformation Method: Version 3

This is the version of deformation method with real time adaptation [27].

Problem: Given a time-varing monitor function f(ξ, t) > 0, normalized with

∫

Ω(t)

1

f(ω, t)
dω = |Ω(t = 0)|, (2.13)
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find a mapping φ(·, t) : Ω(t = 0)→ Ω(t) such that:

J(φ(ξ, t)) = f(φ(ξ, t), t), t > 0 (2.14)

(assuming (2.14) is true at t = 0) where J(φ(ξ, t)) = det∇φ(ξ, t) is the Jacobian

determinant of the transformation, ∀ξ ∈ ∂Ω(t = 0), and φ(ξ, t) ∈ ∂Ω(t). The

transformation φ can be found by the following two steps.

Step 1: Find a vector field η(ξ, t) such that:





∇ · η(ξ, t) = − ∂

∂t

1

f(ξ, t)

∇× η(ξ, t) = 0

, ξ ∈ Ω (2.15)

and

η(ξ, t) · n̂ = 0, ∀ξ ∈ ∂Ω(t). (2.16)

Step 2: Solve the ODE (2.17) for the transformation φ(ξ, t),

∂φ(ξ, t)

∂t
= V (φ(ξ, t), t) = f(φ(ξ, t), t)η(φ(ξ, t), t) (2.17)

We can show that the φ(ξ, t) found by this way satisfies equation (2.14) [33].

2.4 Examples of the Deformation Based Grid Generation

This section demonstrates the example grids generated by the deformation

based grid generation version 1, 2, and 3.

Given a set of monitor function values assigned on a 7 × 7 grid as Fig. 2.1a

shows, by applying the deformation method based grid generation version 1 and 2,

we can get the grids generated in Fig. 2.1b and Fig. 2.1c respectively.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2.1. (a) The monitor function values assigned on the original grid points
to generate the deformed grids shown from (b) to (i). (b) Grid generated by the
deformation based grid generation version one. (c) Grid generated by the deformation
based grid generation version 2. (d) to (i) shows the grid generated by the deformation
based grid generation version 3 at time 0, 0.2, 0.4, 0.6, 0.8, and 1, respectively.

For version 3, given a set of monitor function values f1(ξ) assigned on a 7× 7

grid as Fig. 2.1a shows, where f1(ξ) = f(ξ, t = 1). Let

f(ξ, t) = (1− t) + tf1(ξ), (2.18)
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then

d

dt

1

f(ξ, t)
=

f1(ξ)− 1

((1− t) + tf1(ξ))2
. (2.19)

We can get the series of generated grid as Fig. 2.1d to Fig. 2.1i shows, where J(φ(ξ, t)) =

f(φ(ξ, t), t).



CHAPTER 3

PROPOSED NONRIGID IMAGE REGISTRATION BY THE
DEFORMATION METHOD

Based on the well-established deformation based grid generation described in

Chapter 2, a new formulation for nonrigid image registration is proposed in this disser-

tation. It is formulated as a constrained parametric optimization problem involving

the similarity functional only, thus eliminating the application specific β in Eq. (1.1).

The idea can be expressed mathematically as the following:

f = arg{optimizef cR,T (u |f) |f is subject to certain constraints}

where c is the cost functional to be optimized, the subscripts R and T represent the

two images to be registered, u is the deformation field wholly determined by a set of

parameters f , which is subject to certain constraints. The parameters are associated

with a set of control points defined as the grid points of a coarse grid. The enforced

constraints guarantee that no grid folding will occur in the resulting grid.

These parameters are not explicitly related to the deformation field, but related

to the divergence and curl of an intermediate vector field from which the deformation

field can be obtained. The parameters associated with each control point are the

monitor function values and the curl values of the intermediate vector field, where

the monitor function is defined directly related to the divergence of the intermediate

vector field. The regularization requirement of the deformation field is fulfilled by

restricting the monitor function to be strictly positive since the monitor function is

equivalent to the Jacobian determinant of the deformation field.

12
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3.1 Problem Formulation

Having two d-dimensional discrete images R(ξ) and T (ξ), where d = 2 or 3, R

is referred to as a reference image, T is a test image, and ξ ∈ I ⊂ Zd is the coordinate

of a point in the discrete image domain I. The goal is to register the test image T to

the reference image R.

To properly register T to R, we need to find a permissible deformation field

φ : I → Ic, where Ic is the continuous image domain, such that the deformed test

image Tφ(ξ) ≡ T c(φ(ξ)) is geometrically aligned with the reference image R(ξ),

where T c : Ic ⊂ R is the continuous version of the test image.

Next, we discuss the proposed nonrigid image registration method by the de-

formation method in three versions separately.

3.2 Version 1

3.2.1 Permissible Set

For version 1, we define a permissible set as the collection of deformation fields

generated by the following steps.

1. Generate an arbitrary positive scalar monitor function f and an arbitrary scalar

g (for 2D case) or vector (for 3D case) curl g on a discrete image domain I,

where f is normalized by
∫

Ω
f = |Ω|, (3.1)

and g consists of three components g1, g2, and g3 in 3D case. Theoretically, g

in 3D case must satisfy the solvability constraint [34] to ensure the existence of

the solution of Eq. (3.2), which will be discussed in Sec. 4.9. This constraint is

not considered for the current context.
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2. Solve the following div-curl system for an intermediate vector field η(ξ) using

the Dirichlet boundary condition.





∇ · η(ξ) = f(ξ)− 1

∇× η(ξ) = g(ξ)

(3.2)

3. Generate a time-dependent velocity vector field V from η and f

Vt(ξ) = V (ξ, t) =
η(ξ)

t+ (1− t)f(ξ)
. (3.3)

4. Find the deformation field φ1(ξ) by solving the following ODE

dφt(ξ)

dt
= Vt(φt(ξ)), t ∈ [0, 1], (3.4)

where φ1(ξ) = φ(ξ, 1) and φt(ξ) = φ(ξ, t).

The deformation field φ generated by this procedure is called a permissible

transformation because it possesses the property that the Jacobian determinant of

φ1(ξ) is equal to the specified strictly positive monitor function f(ξ). This can be

justified by the fact that the proof of φ1(ξ) = f(ξ) in the deformation based grid

generation version 1 [25, 33] is independent of the curl of the intermediate field η.

Since the modification of curl g to be nonzero is the only modification we made, as long

as the monitor function f is restricted to be strictly positive, the resulting deformation

field φ suffers no mesh folding and thus is physically plausible (permissible).
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3.2.2 Major Components

3.2.2.1 A Div-Curl Solver by LSFEM

To solve the intermediate vector field η(ξ) in Eq. (3.2), a numerical div-curl

solver is required. In this work, a div-curl solver using the LSFEM [27] is adopted

and described below.

Let

Aη = f (3.5)

denote the div-curl system from Eq. (3.2) with the Dirichilet boundary condition.

For a 2D case,

A =




∂
∂x

∂
∂y

∂
∂y
− ∂
∂x


 , η =



ηx

ηy


 , and f =



f 1

f 2


 (3.6)

, where f 1 = f − 1 (the monitor function − 1) and f 2 = g (the curl value).

As for a 3D case,

A =




∂
∂x

∂
∂y

∂
∂z

0 − ∂
∂z

∂
∂y

∂
∂z

0 − ∂
∂x

− ∂
∂y

∂
∂x

0




, η =




ηx

ηy

ηz



, and f =




f 1

f 2

f 3

f 4




(3.7)

where f 1 = f − 1 (the monitor function − 1) and [f 2, f 3, f 4]T = [g1, g2, g3]T (the

three component curl values).

For an arbitrary test solution v, the residual is defined as Av−f . The LSFEM

method is based on the minimization of the residual in a least-square sense. That is,
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the solution of Eq. (3.2) is the one that minimizes the L2 distance d(v) between Av

and f , where

d(v) = ‖Av − f‖2 = 〈Av − f ,Av − f〉 . (3.8)

To minimize the distance between Av and f at solution η, the following con-

dition must be met:

lim
t→0

d

dt
d(η + tv) =

∫

Ω
lim
t→0

d

dt
〈A(η + tv)− f ,A(η + tv)− f〉 dω

= 2
∫

Ω
〈Av,Aη − f〉 dω

= 0.

(3.9)

Therefore,
∫

Ω
Aη ·Av dω =

∫

Ω
f ·Av dω. (3.10)

After segmenting the domain Ω into a union of finite elements, construct η and f in

each element from their nodal values using an appropriate shape function ψ.

For example in 2D case

ηe(x) =
Ne∑

j=1

ψj(x)



η1(Ij)

η2(Ij)


 x ⊂ Ωe, (3.11)

f e(x) =
Ne∑

j=1

ψj(x)



f 1(Ij)

f 2(Ij)


 x ⊂ Ωe, (3.12)

where Ne is the number of nodes in each element, ψj is the shape function at node Ij,

(η1(Ij), η
2(Ij))

T are the solutions at node Ij, f
1(Ij) is the div value at node Ij, f

2(Ij)
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is the curl value at node Ij, and Ωe is the element domain. By substituting v with a

shape function at each node, we can obtain a linear system of algebraic equations

Kηη(~I) = Kff(~I) (3.13)

where ~I represents the column vector formed from grid I and η(~I) means that the

solutions at all nodes are rearranged into a column vector form. Similarly, f(~I) is

a column vector consisting of the given divergence and curl values at all nodes. Kη

and Kf are assembled from element matrices Kη
e and Kf

e :

Kη
e =

∫

Ωe

(Aψ1,Aψ2, . . . ,AψNe)
T (Aψ1,Aψ2, . . . ,AψNe) dω (3.14)

Kf
e =

∫

Ωe

(Aψ1,Aψ2, . . . ,AψNe)
T (ψ1, ψ2, . . . , ψNe) dω (3.15)

Applying the Dirichlet boundary condition, Eq. (3.13) becomes

K̃ηη̃(~I) = K̃f f̃(~I) (3.16)

where η̃(~I) and f̃(~I) are the values at internal grid points. The LSFEM solution can

be obtained through the inverse of the matrix K̃η:

η̃(~I) = (K̃η)−1K̃f f̃(~I) (3.17)

However, the size of Kη soon becomes unmanageable. For a 2D image of size 64×64,

the size of Kη is as large as 8192 × 8192. Though an iterative element by element

approach is available [34], it is still not efficient. Next, we present an approximate

solution using the inverse filtering which can overcome this unmanageable size prob-

lem.
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3.2.2.2 The Proposed LSFEM Div-curl Solver Using Inverse Filtering

Properly arranging the orders of η̃(~I) and f̃(~I), we can transform the linear

system (3.16) into the following format for 2D case,



K̃η

11 0

0 K̃η
22






η̃x(~I)

η̃y(~I)


 =



K̃f

11 K̃f
12

K̃f
21 K̃f

22






f̃ f1(~I)

f̃ f2(~I)


 (3.18)

(a) (b) (c)

Figure 3.1. Non-zero pattern of the blocks of K̃η and K̃f . (a) K̃η
11 and K̃η

22, (b) K̃f
11

and K̃f
22, and (c) K̃f

12 and K̃f
21.

The non-zero patterns of the blocks of the matrices K̃η and K̃f are band-

diagonal as Figure 3.1 shows. This implies the following approximation using the

convolution like operator ⊗t —

mη
11 ⊗t η̃x(I) = mf

11 ⊗t f̃ f1(I) +mf
12 ⊗t f̃ f2(I) ≡ F̃ 1(I)

mη
22 ⊗t η̃y(I) = mf

21 ⊗t f̃ f1(I) +mf
22 ⊗t f̃ f2(I) ≡ F̃ 2(I),

(3.19)

where the notation η̃x(I) represents the values of η̃x on grid I and ⊗t is introduced

here as a truncated convolution operator. For example, for an M ×N data A and an
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Figure 3.2. This figure shows how trimmed convolution operator works for k ⊗t A.

3 × 3 convolution kernel k, the returned size of k ⊗t A is M × N as Fig. 3.2 shows.

The filters in Eq. (3.19) are given below:

mη
11 = mη

22 =




−1 −1 −1

−1 8 −1

−1 −1 −1




(3.20)

mf
11 = mf

22 = mf
21

T
= −mf

12

T
=




1 4 1

0 0 0

−1 −4 −1




(3.21)

Thus, if ⊗t has the associative property, then the solution can be obtained using the

inverse filtering as

η̃x(I) = (mη
11)−1 ⊗t F̃ 1(I)

η̃y(I) = (mη
22)−1 ⊗t F̃ 2(I).

(3.22)
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However, there is no associative property for ⊗t, therefore, Eq. (3.22) can only be

considered as an approximated solution.

In 3D case, after properly arranging the orders of η̃(~I) and f̃(~I), we can rewrite

the Eq. (3.16) in the following form:




K̃η
11 0 0

0 K̃η
22 0

0 0 K̃η
33







η̃x(~I)

η̃y(~I)

η̃z(~I)




=




K̃f
11 0 K̃f

13 K̃f
14

K̃f
21 K̃f

22 0 K̃f
24

K̃f
31 K̃f

32 K̃f
33 0







f̃ f1(~I)

f̃ f2(~I)

f̃ f3(~I)

f̃ f4(~I)




(3.23)

This implies the following convolution form of equation (3.23):

mη
11 ⊗t η̃x(I) = mf

11 ⊗t f̃ f
1

(I) +mf
13 ⊗t f̃ f

3

(I) +mf
14 ⊗t f̃ f

4

(I) ≡ F̃ 1(I)

mη
22 ⊗t η̃y(I) = mf

21 ⊗t f̃ f
1

(I) +mf
22 ⊗t f̃ f

2

(I) +mf
24 ⊗t f̃ f

4

(I) ≡ F̃ 2(I)

mη
33 ⊗t η̃z(I) = mf

31 ⊗t f̃ f
1

(I) +mf
32 ⊗t f̃ f

2

(I) +mf
33 ⊗t f̃ f

3

(I) ≡ F̃ 3(I)

(3.24)

where mη
11 = mη

22 = mη
33 =







−1 −2 −1

−2 0 −2

−1 −2 −1




;




−2 0 −2

0 32 0

−2 0 −2




;




−1 −2 −1

−2 0 −2

−1 −2 −1







3×3×3

, (3.25)

mf
11 = mf

14

T
= −mf

21

T
= −mf

32

T
= −mf

33 =







1 4 1

0 0 0

−1 −4 −1




;




4 16 4

0 0 0

−4 −16 −4




;




1 4 1

0 0 0

−1 −4 −1







3×3×3

, (3.26)
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and mf
13 = −mf

22 = mf
31 =







1 4 1

4 16 4

1 4 1




;




0 0 0

0 0 0

0 0 0




;−




1 4 1

4 16 4

1 4 1







3×3×3

. (3.27)

Thus, we can get the solution by using inverse filtering,

η̃x(I) = (mη
11)−1 ⊗t F̃ 1(I)

η̃y(I) = (mη
22)−1 ⊗t F̃ 2(I)

η̃z(I) = (mη
33)−1 ⊗t F̃ 3(I)

(3.28)

3.2.2.3 Solving the Inverse Filters

Rewriting the linear system Eq. (3.17) into a form involving only the convolu-

tions as Eq. (3.22) and Eq. (3.28) poses another question, which is how to find the

inverse filter m−1 for the given m using the truncated convolution operator ⊗t.

A popular method to approximate the inverse of a finite impulse response (FIR)

filter is by minimizing the least mean square (LMS) error between the response of

m̃−1 ⊗t m and an impulse [35]. However, this approach involves representing the

convolution in matrix form and finding the inverse of the resulting matrix, which

goes back to where we started before and thus is not practically useful if the size of

m̃−1 needs to be large, which is the case for our application.

To overcome this problem, we adopted the successive over relaxation (SOR)

method [36] to approximate the inverse of a given FIR filter. To increase the rate

of convergence, a good initial approximation of m−1 is desirable. Since this inverse

filter is independent of the image data, it can be calculated offline. In this work, we
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use the method in [35] to find a small inverse filter and expand it by zero-padding to

become the initial approximate of a larger inverse filter. This procedure is repeated

until a desired size is achieved.

3.2.2.4 Optimization

An efficient optimizer is a key element to the proposed nonrigid image registra-

tion framework. A brute force optimization approach was previously reported in [37]

to test the feasibility of the proposed algorithm. In the following sections, a gradient

based optimization approach is described . This approach employs the “discretize

then optimize” [38] concept.

2D Optimization Assuming SSD is applied as the similarity measure, then the re-

quired gradient of SSD with respect to the parameters f = (f 1, f 2)
T

can be expressed

as

∂ssd

∂fn(Ii)
, (3.29)

where Ii represents the ith grid point on mesh I, i = 1, 2, . . . , Nd , Nd is the total

number of grid points, and n = 1 or 2 representing the component of f . Based on

the inverse filtering formulation of the solution of the div-curl system, by applying

the chain rule repeatedly, we can derive the following expression:

∂ssd

∂fn(Ii)
=

∑

k∈N(j)

∂ssd

∂φx(Ik)

∂φx(Ik)

∂ηx(Ik)

∑

j∈N(i)

∂ηx(Ik)

∂F̃ 1(Ij)

∂F̃ 1(Ij)

∂fn(Ii)

+
∑

k∈N(j)

∂ssd

∂φx(Ik)

∂φx(Ik)

ηx(Ik)

∑

j∈N(i)

∂ηx(Ik)

∂F̃ 2(Ij)

∂F̃ 2(Ij)

∂fn(Ii)

+
∑

k∈N(j)

∂ssd

∂φy(Ik)

∂φy(Ik)

∂ηy(Ik)

∑

j∈N(i)

∂ηy(Ik)

∂F̃ 1(Ij)

∂F̃ 1(Ij)

∂fn(Ii)
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+
∑

k∈N(j)

∂ssd

∂φy(Ik)

∂φy(Ik)

∂ηy(Ik)

∑

j∈N(i)

∂ηy(Ik)

∂F̃ 2(Ij)

∂F̃ 2(Ij)

∂fn(Ii)
(3.30)

where the superscripts x, y indicate the x, y component of the vector fields η and

φ. N(i) represents the set of adjacent pixel indices of the grid point Ii, which can be

determined from Eq. (3.19). N(j) is the neighboring pixel indices set of the grid point

Ij, which can be determined from the inverse filters in Eq. (3.22). From the inverse

filtering solution Eq. (3.22), we know that ηx depends on F̃ 1(I) and ηy depends on

F̃ 2(I) only, therefore, only two terms left in Eq. (3.30). That is,

∂ssd(I)

∂fn(Ii)
=

∑

k∈N(j)

∂ssd(I)

∂φx(Ik)

∂φx(Ik)

∂ηx(Ik)

∑

j∈N(i)

∂ηx(Ik)

∂F̃ 1(Ij)

∂F̃ 1(Ij)

∂fn(Ii)

+
∑

k∈N(j)

∂ssd(I)

∂φy(Ik)

∂φy(Ik)

∂ηy(Ik)

∑

j∈N(i)

∂ηy(Ik)

∂F̃ 2(Ij)

∂F̃ 2(Ij)

∂fn(Ii)
, (3.31)

where
∂ssd

∂φn
, n = x or y, can be derived as

∂ssd

∂φn
=
∂(T −R)2

∂T

∂T

∂φn
= 2(T −R)∇nT. (3.32)

As for
∂φn

∂ηn
, n = x or y, referring to Eq. (3.3) and Eq. (3.4), if φn1 is approximated by

the one step first order Runge-Kutta method, then

V n
0 =

ηn

f
, (3.33)

φn1 = φn0 + V n
0 × (1− 0) = φn0 +

ηn

f
, (3.34)

∂φn

∂ηn
=

∂

(
φn0 +

ηn

f

)

∂ηn
=

1

f
. (3.35)
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If we try to approximate φn1 by a higher order Runge-Kutta method or more

than one time step approach,
∂φn

∂ηn
will be too complex to be obtained.

With Eq. (3.32), Eq. (3.35), Eq. (3.19), and Eq. (3.22), we can revise Eq. (3.31)

into the convolution form

∂ssd(I)

∂fn(I)
=

(
2(T (I)−R(I))(∇xT (I))

1

f(I)

)
⊗t (mη

11)−1 ⊗tmf
1n

+

(
2(T (I)−R(I))(∇yT (I))

1

f(I)

)
⊗t (mη

22)−1 ⊗tmf
2n. (3.36)

If a multi-resolution strategy is applied, Eq. (3.36) needs an additional interpo-

lation kernel H, where H is determined by how we interpolate the monitor functions

and curl values on coarse grid Ih with knot space h into the fine grid I. Therefore,

with multi-resolution, Eq. (3.36) is rewritten as

∂ssd(I)

∂fn(Ih)
=

(
2(T (I)−R(I))(∇xT (I))

1

f(I)

)
⊗t (mη

11)−1 ⊗tmf
1n ⊗t H

+

(
2(T (I)−R(I))(∇yT (I))

1

f(I)

)
⊗t (mη

22)−1 ⊗tmf
2n ⊗t H. (3.37)

3D Optimization Similarly, to derive the gradient of the similarity measure with

respect to the parameters f = (f 1, f 2, f 3, f 4)
T

at each of the grid points in 3D, we

employ SSD to be the similarity measure and express the gradient of SSD as

∂ssd

∂fn(Ii)
, (3.38)
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where Ii represents the ith grid point of mesh I, i = 1, 2, . . . , Nd , Nd is the total

number of grid points, and n = 1 ∼ 4, representing the component of f . By applying

the chain rule, we can derive the following expression:

∂ssd

∂fn(Ii)
=

∑

k∈N(j)

∂ssd

∂φx(Ik)

∂φx(Ik)

∂ηx(Ik)

∑

j∈N(i)

∂ηx(Ik)

∂F̃ 1(Ij)

∂F̃ 1(Ij)

∂fn(Ii)

+
∑

k∈N(j)

∂ssd

∂φx(Ik)

∂φx(Ik)

ηx(Ik)

∑

j∈N(i)

∂ηx(Ik)

∂F̃ 2(Ij)

∂F̃ 2(Ij)

∂fn(Ii)

+
∑

k∈N(j)

∂ssd

∂φx(Ik)

∂φx(Ik)

ηx(Ik)

∑

j∈N(i)

∂ηx(Ik)

∂F̃ 3(Ij)

∂F̃ 3(Ij)

∂fn(Ii)

+
∑

k∈N(j)

∂ssd

∂φy(Ik)

∂φy(Ik)

∂ηy(Ik)

∑

j∈N(i)

∂ηy(Ik)

∂F̃ 1(Ij)

∂F̃ 1(Ij)

∂fn(Ii)

+
∑

k∈N(j)

∂ssd

∂φy(Ik)

∂φy(Ik)

∂ηy(Ik)

∑

j∈N(i)

∂ηy(Ik)

∂F̃ 2(Ij)

∂F̃ 2(Ij)

∂fn(Ii)

+
∑

k∈N(j)

∂ssd

∂φy(Ik)

∂φy(Ik)

∂ηy(Ik)

∑

j∈N(i)

∂ηy(Ik)

∂F̃ 3(Ij)

∂F̃ 3(Ij)

∂fn(Ii)

+
∑

k∈N(j)

∂ssd

∂φz(Ik)

∂φz(Ik)

∂ηz(Ik)

∑

j∈N(i)

∂ηz(Ik)

∂F̃ 1(Ij)

∂F̃ 1(Ij)

∂fn(Ii)

+
∑

k∈N(j)

∂ssd

∂φz(Ik)

∂φz(Ik)

∂ηz(Ik)

∑

j∈N(i)

∂ηz(Ik)

∂F̃ 2(Ij)

∂F̃ 2(Ij)

∂fn(Ii)

+
∑

k∈N(j)

∂ssd

∂φz(Ik)

∂φz(Ik)

∂ηz(Ik)

∑

j∈N(i)

∂ηz(Ik)

∂F̃ 3(Ij)

∂F̃ 3(Ij)

∂fn(Ii)
(3.39)

where the superscripts x, y, and z indicate the three components of the vector fields

η and φ. N(i) represents the set of adjacent pixel indices of the grid point Ii, which

can be determined from Eq. (3.19). N(j) is the neighboring pixel indices set of the

grid point I(j), which can be determined from the inverse filters in Eq. (3.28). From

the inverse filtering solution Eq. (3.28), ηx(I) depends on F̃ 1(I), ηy(I) depends on
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F̃ 2(I), and ηz(I) depends on F̃ 3(I) only. Therefore, Eq. (3.39) can be simplified into

three terms:

∂ssd(I)

∂fn(Ii)
=

∑

k∈N(j)

∂ssd(I)

∂φx(Ik)

∂φx(Ik)

∂ηx(Ik)

∑

j∈N(i)

∂ηx(Ik)

∂F̃ 1(Ij)

∂F̃ 1(Ij)

∂fn(Ii)

+
∑

k∈N(j)

∂ssd(I)

∂φy(Ik)

∂φy(Ik)

∂ηy(Ik)

∑

j∈N(i)

∂ηy(Ik)

∂F̃ 2(Ij)

∂F̃ 2(Ij)

∂fn(Ii)

+
∑

k∈N(j)

∂ssd(I)

∂φz(Ik)

∂φz(Ik)

∂ηz(Ik)

∑

j∈N(i)

∂ηz(Ik)

∂F̃ 3(Ij)

∂F̃ 3(Ij)

∂fn(Ii)
. (3.40)

Similar to the 2D case, from Eq. (3.32), Eq. (3.35), Eq. (3.19) and Eq. (3.28),

we can rewrite Eq. (3.40) into the convolution form

∂ssd(I)

∂fn(I)
=

(
2(T (I)−R(I))(∇xT (I))

1

f(I)

)
⊗t (mη

11)−1 ⊗tmf
1n

+

(
2(T (I)−R(I))(∇yT (I))

1

f(I)

)
⊗t (mη

22)−1 ⊗tmf
2n

+

(
2(T (I)−R(I))(∇zT (I))

1

f(I)

)
⊗t (mη

33)−1 ⊗tmf
3n. (3.41)

If multi-resolution is applied, Eq. (3.41) needs an additional interpolation kernel

H, where H is determined by how we interpolate the monitor functions and curl

values on coarse grid Ih with knot space h into the fine grid I. Therefore, with

multi-resolution, Eq. (3.41) is rewritten as

∂ssd(I)

∂fn(Ih)
=

(
2(T (I)−R(I))(∇xT (I))

1

f(I)

)
⊗t (mη

11)−1 ⊗tmf
1n ⊗t H

+

(
2(T (I)−R(I))(∇yT (I))

1

f(I)

)
⊗t (mη

22)−1 ⊗tmf
2n ⊗t H

+

(
2(T (I)−R(I))(∇zT (I))

1

f(I)

)
⊗t (mη

33)−1 ⊗tmf
3n ⊗t H. (3.42)
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3.2.3 Gradient Descent Optimization Strategy

Once the
∂ssd

∂fn
is available, a 2D gradient descent optimization strategy to

minimize the SSD with respect to f can be devised as Fig. 3.3 shows. The gradient

descent optimization strategy for the 3D case is analogous to the 2D case.

Notice that for the optimization strategy in the 3D case, according to Eq. 3.24,

the intermediate vector field η can be optimized by f 1 and any two of the three curl

components f 2, f 3, and f 4. Which means in 3D case, we should be able to optimize

three variables instead of four. An experiment in Sec. 4.8 will evaluate this assertion.
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Input reference image R
and test image (0)T

i = 1, h = 32, (0)f1(Ih) = 1, (0)f2(Ih) = 0, (0)φ = Id

µ < threshold

Compute d (i)f1(Ih) =
∂ (i−1)SSD
∂f1(Ih)

and d (i)f2(Ih) =
∂ (i−1)SSD
∂f2(Ih)

Solve ∇ · η = (i)f1(I)− 1 and ∇× η = (i)f2(I)

(i)T (ξ) = ((0)T ◦ (i)φ)(ξ)

(i)SSD < (i−1)SSD ?

Stop

No

Yes

No

Yes

(i)f1(I) = max(Normalize((i−1)f1(I) + µ · d (i)f1(I)), f1
lb)

(i)f2(I) = (i−1)f2(I) + µ · d (i)f2(I)

i = i + 1,

µ = µ× 1.05.

Solve (i)φ by using the first order ten time steps Runge-Kutta method

d (i)φ(ξ, t)
dt

=
(i)η((i)φ(ξ, t))

t + (1− t) · (i)f1((i)φ(ξ, t))

(i)SSD =
1
‖I‖

∑

i∈I

((i)T (i)−R(i))2

µ = µ/1.1

d(i)f1(I) = interpolate(d(i)f1(Ih))

d(i)f2(I) = interpolate(d(i)f2(Ih))

h = h/2

Yes

No
h = 4?

Figure 3.3. The gradient descent optimization strategy of the nonrigid image regis-
tration by the deformation method version one where f 1

lb represents the lower bound
of monitor function f 1.
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3.3 Version 2

3.3.1 Permissible Set

For version 2, we define a permissible set as the collection of deformation fields

generated by the following steps.

1. Generate an arbitrary positive scalar monitor function f and an arbitrary scalar

(for 2D case) or vector (for 3D case) curl g on a discrete image domain I, where

f is normalized by
∫

Ω

1

f
= |Ω|. (3.43)

In 3D case, g consists of three components g1, g2, and g3.

2. Solve the following div-curl system for an intermediate vector field η(ξ) using

the Dirichlet boundary condition.





∇ · η(ξ) = 1− 1

f(ξ)

∇× η(ξ) = g(ξ)

(3.44)

3. Generate a time-dependent velocity vector field V from η and f

Vt(φt(ξ)) = V (φ(ξ, t), t) =
η(φt(ξ))

t
1

f(φt(ξ))
+ (1− t)

. (3.45)

4. Solve φ1(ξ) by solving the following ODE

dφt(ξ)

dt
= Vt(φt(ξ)), t ∈ [0, 1]. (3.46)

The deformation field φ generated by this procedure is called a permissible

deformation because it possesses the property that the Jacobian determinant of φ1(ξ)

is equal to the specified strictly positive monitor function f(φ1(ξ)). This can be
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justified by the fact that the proof of φ1(ξ) = f(φ1(ξ)) in the deformation based

grid generation version 2 [26, 33] is independent of the curl g of the intermediate

field η. Since the modification of curl g to be nonzero is the only modification we

made, as long as the monitor function f is restricted to be strictly positive, the

resulting deformation field φ suffers no mesh folding and thus is physically plausible

(permissible).

3.3.2 A Div-Curl Solver for Version 2

To solve Eq. (3.44), a div-curl solver is essential. The derivation of a div-curl

solver for the nonrigid image registration based on the deformation method version

2 is similar to the derivation of the div-curl solver described in Sec. 3.2.2.1 and

Sec. 3.2.2.2. We just need to substitute f 1 = f − 1 with f 1 = 1 − 1/f , where the

monitor function f satisfies
∫

Ω
1− 1

f
= |Ω|. (3.47)

Then, for the 2D case, we can obtain η by

η̃x(I) = (mη
11)−1 ⊗t F̃ 1(I)

η̃y(I) = (mη
22)−1 ⊗t F̃ 2(I).

(3.48)

For the 3D case, we can obtain

η̃x(I) = (mη
11)−1 ⊗t F̃ 1(I)

η̃y(I) = (mη
22)−1 ⊗t F̃ 2(I)

η̃z(I) = (mη
33)−1 ⊗t F̃ 3(I).

(3.49)
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3.3.3 Optimization

Similar to the Sec. 3.2.2.4, we can obtain

∂ssd(I)

∂fn(Ii)
=

∑

k∈N(j)

∂ssd(I)

∂φx(Ik)

∂φx(Ik)

∂ηx(Ik)

∑

j∈N(i)

∂ηx(Ik)

∂F̃ 1(Ij)

∂F̃ 1(Ij)

∂fn(Ii)

+
∑

k∈N(j)

∂ssd(I)

∂φy(Ik)

∂φy(Ik)

∂ηy(Ik)

∑

j∈N(i)

∂ηy(Ik)

∂F̃ 2(Ij)

∂F̃ 2(Ij)

∂fn(Ii)
. (3.50)

For
∂φn

∂ηn
, n = x or y, referring to Eq. (3.45) and Eq. (3.46), if φn1 is approximated

by the one step first order Runge-Kutta method, where φn1 = φn(t = 1), then

V n
0 = ηn, (3.51)

φn1 = φn0 + V n
0 × (1− 0) = φn0 + ηn, (3.52)

∂φn

∂ηn
=
∂ (φn0 + ηn)

∂ηn
= 1. (3.53)

From Eq. (3.32), Eq. (3.53), Eq. (3.19), and Eq. (3.48), we can revise Eq. (3.50)

into the convolution form

∂ssd(I)

∂fn(I)
= (2(T (I)−R(I))(∇xT (I)))⊗t (mη

11)−1 ⊗tmf
1n

+ (2(T (I)−R(I))(∇yT (I)))⊗t (mη
22)−1 ⊗tmf

2n. (3.54)

If a multi-resolution strategy is applied, Eq. (3.36) needs an additional interpo-

lation kernel H, where H is determined by how we interpolate the monitor functions

and curl values on coarse grid Ih with knot space h into the fine grid I. Therefore,

with multi-resolution, Eq. (3.36) is rewritten as

∂ssd(I)

∂fn(Ih)
= (2(T (I)−R(I))∇xT (I))⊗t (mη

11)−1 ⊗tmf
1n ⊗t H
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+ (2(T (I)−R(I))∇yT (I))⊗t (mη
22)−1 ⊗tmf

2n ⊗t H. (3.55)

3.3.4 Gradient Descent Optimization Strategy

Once the
∂ssd

∂fn
is available, a 2D gradient descent optimization strategy to

minimize the SSD with respect to f can be devised as Fig. 3.4 shows. The gradient

descent optimization strategy for the 3D case is analogous to the 2D case.

Notice that for the optimization strategy in the 3D case, according to Eq. 3.24,

the intermediate vector field η can be optimized by any three of the f1, f2, f3, and

f4. Which means in 3D case, we just need to optimize three kinds of variables instead

of four. An experiment in Sec. 4.8 is conducted to evaluate this assertion.
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and test image (0)T
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Compute d (i)f1 =
∂ (i−1)SSD

∂f1
and d (i)f2 =

∂ (i−1)SSD
∂f2

Solve ∇ · η = 1− 1
(i)f1(I)

and ∇× η = (i)f2(I)

(i)T (ξ) = ((0)T ◦ (i)φ)(ξ)

(i)SSD < (i−1)SSD ?

Stop

No

Yes

No

Yesi = i + 1,

µ = µ× 1.05.

Solve (i)φ by using the first order ten time steps Runge-Kutta method

d (i)φ(ξ, t)
dt

=
(i)η((i)φ(ξ, t))

t
1

(i)f((i)φ(ξ, t))
+ (1− t)

(i)SSD =
1
‖I‖

∑

i∈I

((i)T (i)−R(i))2

µ = µ/1.1

(i)f1(I) = max(Normalize((i−1)f1(I) + µ · d (i)f1(I)), f1
lb)

(i)f2(I) = (i−1)f2(I) + µ · d (i)f2(I)

i = 1, h = 32, (0)f1(Ih) = 1, (0)f2(Ih) = 0, (0)φ = Id

d(i)f1(I) = interpolate(d(i)f1(Ih))

d(i)f2(I) = interpolate(d(i)f2(Ih))

h = 4?h = h/2
No

Yes

Figure 3.4. The gradient descent optimization strategy of the nonrigid image regis-
tration by the deformation method version two where f 1

lb represents the lower bound
of monitor function f 1.
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3.4 Version 3

3.4.1 Permissible Set

For version 3, a permissible set is defined as a collection of deformation fields

generated by the following steps.

1. Generate an arbitrary time-varing positive scalar monitor function ft and an

arbitrary scalar (for 2D case) or vector (for 3D case) curl g on a discrete image

domain I, where ft is normalized by

∫

Ω(t)

1

ft
= |Ω(t = 0)|. (3.56)

In 3D case, g consists of three components g1, g2, and g3.

2. Solve the following div-curl system for an intermediate vector field η(ξ) using

the Dirichlet boundary condition.





∇ · η(ξ, t) = − ∂

∂t

1

f(ξ, t)

∇× η(ξ, t) = g(ξ, t)

(3.57)

3. Generate a time-dependent velocity vector field Vt from ηt and ft

Vt(φt(ξ)) = V (φ(ξ, t), t) = ηt(φt(ξ))ft(φt(ξ)). (3.58)

4. Solve the deformation φt(ξ) by solving the ODE

dφt(ξ)

dt
= Vt(φt(ξ)). (3.59)

The deformation field φt generated by this procedure is called a permissible

deformation because it possesses the property that the Jacobian determinant of φt(ξ)
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is equal to the specified strictly positive monitor function ft(φt(ξ)). This can be

justified by the fact that the proof of φt(ξ) = ft(φt(ξ)) in the deformation based

grid generation version 3 [27, 33] is independent of the curl g of the intermediate

field η. Since the modification of curl g to be nonzero is the only modification we

made, as long as the monitor function f is restricted to be strictly positive, the

resulting deformation field φt suffers no mesh folding and thus is physically plausible

(permissible).

3.4.2 A Div-Curl Solver for Version 3

To solve Eq. (3.57), a div-curl solver is essential. The derivation of a div-curl

solver for the nonrigid image registration based on the deformation method version

3 is similar to the derivation of the div-curl solver described in Sec. 3.2.2.1 and

Sec. 3.2.2.2. We just need to substitute f 1 = f − 1 with

f 1 = − ∂

∂t

1

ft
, (3.60)

where the monitor function at time t satisfies

∫

Ω

1

ft
= |Ω(t = 0)|. (3.61)

Then, for the 2D case, we can obtain η by

η̃x(I) = (mη
11)−1 ⊗t F̃ 1(I)

η̃y(I) = (mη
22)−1 ⊗t F̃ 2(I).

(3.62)
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For the 3D case, we can obtain

η̃x(I) = (mη
11)−1 ⊗t F̃ 1(I)

η̃y(I) = (mη
22)−1 ⊗t F̃ 2(I)

η̃z(I) = (mη
33)−1 ⊗t F̃ 3(I).

(3.63)

3.4.3 Optimization

Similar to the Sec. 3.2.2.4, we can obtain

∂ssd(I)

∂fn(Ii)
=

∑

k∈N(j)

∂ssd(I)

∂φx(Ik)

∂φx(Ik)

∂ηx(Ik)

∑

j∈N(i)

∂ηx(Ik)

∂F̃ 1(Ij)

∂F̃ 1(Ij)

∂fn(Ii)

+
∑

k∈N(j)

∂ssd(I)

∂φy(Ik)

∂φy(Ik)

∂ηy(Ik)

∑

j∈N(i)

∂ηy(Ik)

∂F̃ 2(Ij)

∂F̃ 2(Ij)

∂fn(Ii)
. (3.64)

From the optimization strategy illustrated in Fig. 3.5, the connection between

φ and η is through

d (i)φt(Ik)

dt
= (i)η((i)φt(Ik)) · (i)f 1

ti
((i)φt(Ik)), t ∈ [ti−1, ti]. (3.65)

If we attempt the simplest approximation of φti by using the single step first order

Runge-Kutta method at time ti, we can obtain Eq. (3.66).

φti(Ik) = φti−1
(Ik) + η(φti−1

(Ik))f(φti−1
(Ik)) (3.66)

For version 3, it is difficult to obtain
∂φn(Ik)

∂ηn(Ik)
where n = x or y, since what we can

obtain from Eq. (3.66) is
∂φti(Ik)

∂η(φti−1
(Ik))

. Therefore, we can not obtain
∂ssd(I)

∂fn(I)
as we

did for the registration algorithm version 1 and version 2.
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)y + ((i)f2(I))x

(i)T (ξ) = ((0)T ◦ (i)φti)(ξ)

(i)SSD < (i−1)SSD ?

Stop

No

Yes

No

Yesi = i + 1,

dt = dt× 1.05.

Solve (i)φti by using the first order single step Runge-Kutta method

d (i)φ(ξ, t)
dt

= (i)η((i)φ(ξ, t)) · (i)f1((i)φ(ξ, t)), t ∈ [ti−1, ti]

(i)SSD =
1
‖I‖

∑

i∈I

((i)T (i)−R(i))

dt = dt/1.1

d(i)f1(I) = interpolate(d(i)f1(Ih))

d(i)f2(I) = interpolate(d(i)f2(Ih))

(i)f1(I) = max(Normalize((i−1)f1(I) + dt · d (i)f1(I)), f1
lb)

(i)f2(I) = (i−1)f2(I) + dt · d (i)f2(I)

h = 4?h = h/2

Yes

No

Figure 3.5. The gradient descent optimization strategy of the nonrigid image regis-
tration by the deformation method version three where f 1

lb represents the lower bound
of monitor function f 1.
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(a) (b)

Figure 3.6. (a) Ideal mη
11⊗ (mη

11)−1
ideal result. (b) Actual mη

11⊗ (mη
11)−1 result where

the 0s represent the negligible numbers which are < 10−8.

3.5 Precision and Performance Issue of Solving Div-Curl System by In-
verse Filtering

Considering approximately solving an M by N matrix η̃x(I) in Eq. (3.19) by

inverse filtering, we can obtain

(mη
11)−1 ⊗t (mη

11 ⊗t η̃x(I)) = (mη
11)−1 ⊗t F̃ 1(I). (3.67)

Theoretically, if we can find an ideal inverse filter (mη
11)−1

ideal of mη
11, then

(mη
11)−1

ideal ⊗ mη
11 should generate an impulse matrix as Fig. 3.6a shows, where the

size of (mη
11)−1

ideal is M ×N .

In section 3.2.2.3, we adopt the SOR to solve the inverse filter (mη
11)−1, which

is possible only if we apply the truncated convolution operator ⊗t. Which means that

the result of (mη
11)−1 ⊗tmη

11 is an M × N impulse rather than (M + 2) × (N + 2).

With an M × N inverse filter (mη
11)−1 obtained by using the SOR, (mη

11)−1 ⊗mη
11

will generate a matrix enclosed by erroneous values as Fig. 3.6b shows. Therefore, to
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obtain a decent η̃x(I) in Eq. (3.67), (mη
11)−1 has to be larger than (2M+1)×(2N+1)

so that the erroneous area will not contaminate the solution η̃x(I).

To implement (mη
11)−1 ⊗ F̃ 1(I) using FFT (fast fourier transform), only the

central M×N sub-matrix is taken as our result to replace the convolution to improve

the performance [39]. The computational complexity of (mη
11)−1 ⊗mη

11 by FFT is

(2M + 1)(2N + 1) log((2M + 1)(2N + 1)).

3.5.1 Further Performance Enhancement

From Sec. 3.5, the complexity of solving the div-curl system through Eq. (3.22)

and Eq. (3.28) using inverse filtering is high. Fortunately, it is possible to rewrite a

div-curl system (2D or 3D) as a set of Poisson’s equations and then be able to utilize

the existing efficient Poisson solvers to find the solution and obtain the gradient

information. To further improve the performance of the div-curl solver, we adopt the

FFT Poisson solver [40] to solve the div-curl system since the complexity of the FFT

Poisson solver for a M ×N system is MN log(MN). The details of this approach is

provided below.

3.5.1.1 Consider a Div-Curl System as a Set of Poisson’s Equations

In 2D case, to transform the div-curl system into the Poisson’s equations, we can

apply the gradient operator on the div-curl system Eq. (3.68) and obtain Eq. (3.69).

∂ηx

∂x
+
∂ηy

∂y
= f 1

∂ηy

∂x
− ∂ηx

∂y
= f 2

(3.68)
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∇
(
∂ηx

∂x
+
∂ηy

∂y

)
= ∇f 1

∇
(
∂ηy

∂x
− ∂ηx

∂y

)
= ∇f 2

(3.69)

Expanding the Eq. (3.69), we can get

∂2ηx

∂x2
+
∂2ηy

∂x∂y
=
∂f 1

∂x
(3.70a)

∂2ηx

∂x∂y
+
∂2ηy

∂y2
=
∂f 1

∂y
(3.70b)

∂2ηy

∂x2
− ∂2ηx

∂x∂y
=
∂f 2

∂x
(3.70c)

∂2ηy

∂x∂y
− ∂2ηx

∂y2
=
∂f 2

∂y
. (3.70d)

Combining (3.70a) with (3.70d) and (3.70b) with (3.70c), the div-curl system now

becomes the following Poisson’s equations.

∆ηx =
∂2ηx

∂x2
+
∂2ηx

∂y2
=
∂f 1

∂x
− ∂f 2

∂y
= F 1

∆ηy =
∂2ηy

∂x2
+
∂2ηy

∂y2
=
∂f 1

∂y
+
∂f 2

∂x
= F 2

(3.71)

Therefore, we can adopt any standard Poisson solver to solve the Eq. (3.68). In

particular, We adopt the FFT based Poisson solver [41] in this work.

In 3D case, similar to the 2D case, after properly simplifying and reorganizing

the Eq. (3.72) to Eq. (3.75), we can get a set of Poisson’s equations as Eq. (3.76) to

Eq. (3.78) shows.

∇
(
∂ηx

∂x
+
∂ηy

∂y
+
∂ηz

∂z

)
= ∇f 1 (3.72)

∇
(
∂ηz

∂y
− ∂ηy

∂z

)
= ∇f 2 (3.73)
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∇
(
∂ηx

∂z
− ∂ηz

∂x

)
= ∇f 3 (3.74)

∇
(
∂ηy

∂x
− ∂ηx

∂y

)
= ∇f 4 (3.75)

∆ηx =
∂2ηx

∂x2
+
∂2ηx

∂y2
+
∂2ηx

∂z2
=
∂f 1

∂x
− ∂f 4

∂y
+
∂f 3

∂z
= F 1 (3.76)

∆ηy =
∂2ηy

∂x2
+
∂2ηy

∂y2
+
∂2ηy

∂z2
=
∂f 1

∂y
+
∂f 4

∂x
− ∂f 2

∂z
= F 2 (3.77)

∆ηz =
∂2ηz

∂x2
+
∂2ηz

∂y2
+
∂2ηz

∂z2
=
∂f 1

∂z
− ∂f 3

∂x
+
∂f 2

∂y
= F 3 (3.78)

3.5.1.2 Revised Optimizer

Registration Algorithm Version One From Eq. (3.71), Eq. (3.22) can be revised

as

η̃x(I) = ∆−1(F̃ 1(I))

η̃y(I) = ∆−1(F̃ 2(I)).

(3.79)

where ∆−1 is a Poisson’s solver.

From Eq. (3.32), Eq. (3.35), Eq. (3.19), and Eq. (3.79), we can obtain a revised

ssd

fn
as Eq. (3.80) shows, where n is 1 or 2.

∂ssd(I)

∂fn(I)
= ∆−1

(
2(T (I)−R(I))(∇xT (I))

1

f(I)

)
⊗mf

1n

+ ∆−1

(
2(T (I)−R(I))(∇yT (I))

1

f(I)

)
⊗mf

2n. (3.80)
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Similarly, the revised 3D version of
ssd

fn
can be written as

∂ssd(I)

∂fn(I)
= ∆−1

(
2(T (I)−R(I))(∇xT (I))

1

f(I)

)
⊗mf

1n

+ ∆−1

(
2(T (I)−R(I))(∇yT (I))

1

f(I)

)
⊗mf

2n

+ ∆−1

(
2(T (I)−R(I))(∇zT (I))

1

f(I)

)
⊗mf

3n. (3.81)

By using this approach, the accuracy of the gradient information is limited by the

numerical precision only.

Registration Algorithm Version Two Similar to registration algorithm version

one, the revised 2D optimizer for registration algorithm version two can be obtained

as

∂ssd(I)

∂fn(I)
= ∆−1 (2(T (I)−R(I))(∇xT (I)))⊗mf

1n

+ ∆−1 (2(T (I)−R(I))(∇yT (I)))⊗mf
2n. (3.82)

Similarly, the revised 3D version of
ssd

fn
can be written as

∂ssd(I)

∂fn(I)
= ∆−1 (2(T (I)−R(I))(∇xT (I)))⊗mf

1n

+ ∆−1 (2(T (I)−R(I))(∇yT (I)))⊗mf
2n

+ ∆−1 (2(T (I)−R(I))(∇zT (I)))⊗mf
3n. (3.83)



CHAPTER 4

EXPERIMENTAL RESULTS

This chapter presents several experiments using several auxiliary metrics to

assess the quality, robustness, and noise tolerance of our proposed nonrigid image

registration algorithms.

The 2D experiments are organized as follows. Sec. 4.2 evaluates the proposed

nonrigid image registration version one with two different implementations — by us-

ing LSFEM inverse filtering and by using Poisson solver. Sec. 4.3 demonstrate the

capability of the image registration version one to control the lower bound of the Jaco-

bian determinant det(J) of the deformation vector field. Sec. 4.4 compares the image

registration version one and version two in terms of registration accuracy, robustness,

and efficiency. Sec. 4.5 compares the registration quality of proposed nonrigid image

registration version one using two different optimization strategies. Sec. 4.6 compares

the viscous fluid image registration method [17] with the image registration version

one. Sec. 4.7 evaluates the noise tolerance capability of the proposed registration

version one and the viscous fluid image registration method. 3D experimental results

are conducted in Sec. 4.8 and Sec. 4.9.

All the experiments are conducted on the Ubuntu 8.04 Linux Platform with

Pentium 4 2.60 GHz and 2 GB ram. The source code is implemented in MATLAB,

some critical computational parts are implemented using the mex in C or C++.

43
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4.1 Auxiliary Metrics

4.1.1 Image Registration Quality Assessment Metrics

Sum of Squared Difference (SSD) SSD is defined as

SSD =
1

‖T‖
∑

ξ∈Ω

(R(ξ)− T (φ(ξ)))2, (4.1)

which quantifies the difference between the test image T and registered reference

image R, where ‖T‖ is the total number of pixels in T and φ is a transformation

function.

Warping Index Mean warping index [42],

ω̄ =
1

‖T‖
∑

ξ∈Ω

‖φ(ξ)− φ∗(ξ)‖, (4.2)

and maximum warping index,

ωmax = max
ξ∈Ω

(‖φ(ξ)− φ∗(ξ)‖) , (4.3)

are used as the registration quality metrics, where φ is the deformation field obtained

after the image registration, φ∗ is the ground truth of the deformation field, ξ is the

coordinate of a grid point, T is the test image, and ‖φ(ξ)− φ∗(ξ)‖ is the Euclidean’s

distance between φ(ξ) and φ∗(ξ).

Mean warping index is an appropriate metric to assess the overall quality of

the registration result if the ground truth deformation field is available while the

maximum warping index can indicate the largest difference between φ∗ and φ and

detect the convergence to a local minima.
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Masked Warping Index To properly reflect the quality of the image registration

results, we need to exclude the homogeneous background area in the reference image

R by imposing a binary mask in the process of computing the warping index.

Therefore, the masked mean warping index ω̄∗ is introduced here as

ω̄∗ =
1

‖Ω∗‖
∑

ξ∈Ω∗
‖φ(ξ)− φ∗(ξ)‖, (4.4)

and the masked maximum warping index ω∗max is defined as

ω∗max = max
ξ∈Ω∗

(‖φ(ξ)− φ∗(ξ)‖) . (4.5)

where Ω∗ is the domain excluding the homogeneous background.

4.2 Experiment One

4.2.1 Purpose

The purpose of this experiment is to evaluate two different implementations of

the proposed registration algorithm version one. First one uses the LSFEM inverse

filtering and the second one uses the Poisson solver to obtain the dSSD/dfm, m = 1, 2,

and solve for the intermediate vector field η mentioned in Sec. 3.2. We compared the

two implementations in terms of registration accuracy, robustness, and efficiency.

4.2.2 Experimental Design

We chose the red band of a slice of the anatomical images taken from the

Visible Human Project [43] (male, 70 mm data, slice 1561), then it was cropped and

down-sampled bilinearly to an 129×129 test image T as Fig. 4.1a displayed. We

applied the thin-plate splines principal warps method [44] with evenly distributed 17
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(a) (b) (c)

(d) (e) (f)

Figure 4.1. (a) A slice of Visible Human male data used as a test image T . (b) A
reference image R generated synthetically with the deformation parameter a = 50.
(c) Synthetically generated R with a = 100. (d) Initial grid. (e) Deformed grid
generated with a = 50. (f) Deformed grid generated with a = 100.

by 17 control points to generate a set of deformed grids as Fig. 4.1e and Fig. 4.1f

show. Eq. (4.6) was applied on x to alter the position of the control points where

x = {x1, x2}, xm = {1, 2, . . . , 129}, m = 1 or 2, represents the original control point

position and a is referred to as the deformation parameter hereafter.

f(xm, a) = xm −
129 sin(

4π(xm − 1)

128
)g(xm∗)

0.3

a
, (4.6)
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g(xm∗) =





8(xm∗ − 1)

64
, xm∗ ≤ 65

8− xm∗ − 65

64
, xm∗ ≥ 65

, (4.7)

where m = 1 or 2, and m ·m∗ = 2.

With the generated set of deformed grids, we can deform the test image and

generate a series of reference images Rs. When a = 0, R and T are identical; when

a > 100, R deforms too much and is tangled. Therefore, the valid value of a ranges

from 0 to 100. We chose to register T to Rs with the deformation parameter a ranging

from 50 to 100, which corresponds to the maximum deformation distance between R

and T from 6.6391 to 13.2762 pixels and the root mean square deformation distance

between R and T from 4.1949 to 8.3907 pixels.

After obtaining the Rs from T , we registered T to Rs by two different imple-

mentations of the proposed nonrigid image registration version one, one by using the

LSFEM inverse filtering and the other one by the Poisson solver. To evaluate the

image registration accuracy, we observed the SSD, masked mean warping index ω̄∗,

masked maximum warping index ω∗max. The selected masks used in the process of

computation of ω̄∗ and ω∗max are displayed in Fig. 4.2.

Multi-resolution Performing image registration on the coarse grid can signifi-

cantly reduce the computational time, but by controlling the monitor functions and

curl values on the coarse grid, the deformation method cannot express the detailed

deformation field. On the contrary, using a very fine grid can register images in more

detail, but it may cause the image registration procedure prone to noise interference.

Therefore, in the experiments, the finest knot spacing is set up as h = 4. Based on

our experience, we can obtain the best result if the finest knot spacing h = 4.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.2. (a) to (c) are the reference images Rs synthetically generated with the
deformation parameter a = 50, 75, and 100 respectively. (d) to (f) are masks used
for masked mean warping index ω̄∗ and maximum masked mean warping index ω∗max.
(g) to (i) shows the overlapping images of (a) to (c) and (d) to (f).
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There are many ways to implement the multi-resolution scheme. For the pur-

posed algorithm, we optimize the monitor function fh and curl gh of the intermediate

vector field η on the coarse grid with knot spacing h, then we interpolate fh and gh

linearly to obtain the f1 and g1 on the finest grid. By doing this, when h changes,

there will be no abrupt fluctuation in SSD, ω̄∗, and ω∗max.

Termination Criterion The initial step size µ used in Fig. 3.3 to adjust f 1 and

f 2 is 10−5. If the step size is less than 10−7, we terminate the registration process.

4.2.3 Experimental Results

Some selected registered images and residue images (the absolute difference

between R and registered T ) generated by the two implementations of the nonrigid

image registration version one are displayed in Fig. 4.3 and Fig. 4.4.

Robustness and Accuracy Assessment Fig. 4.5 and Fig. 4.6 illustrate the SSD

versus deformation factor a, ω̄∗ versus a, and ω∗max versus a.

From Fig. 4.5, Fig. 4.6a, and Fig. 4.6b, we can clearly see that the registration

version one with the Poisson solver outperforms the one using LSFEM inverse filtering

with the 257× 257 inverse filter in terms of SSD, ω̄∗, and ω∗max.

In Fig. 4.6, the warping index values of the registration version one using Pois-

son solver are more stable. With Poisson solver, version one keeps the masked mean

warping index ω̄∗ in the sub-pixel range, even when the initial transformation dif-

ference between R and T is as large as 12.6125 pixels. From Fig. 4.6b, the masked

maximum warping index ω∗max is under or around one pixel till a = 87.

Computational Performance Assessment For the computational performance

comparison, from Fig. 4.7, we can observe that the total registration time of the
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.3. (a) to (c) are the reference images Rs synthetically generated with the
deformation parameter a = 50, 75, and 90 respectively. (d) to (f) are the test images
T s registered to Rs of a = 50, 75, and 90 using nonrigid image registration algorithm
version one with the Poisson solver. (g) to (i) shows the residual difference between
(a) to (c) and (d) to (f).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.4. (a) to (c) are the reference images Rs synthetically generated with the
deformation parameter a = 50, 75, and 90 respectively. (d) to (f) are the test images
T s registered to Rs of a = 50, 75, and 90 using nonrigid image registration method
version one with the LSFEM inverse filtering. (g) to (i) shows the residual difference
between (a) to (c) and (d) to (f).



52

50 60 70 80 90 100
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Deformation parameter a

S
S

D

SSD versus Deformation parameter a

 

 

version 1 by LSFEM inverse filtering

version 1 by Poisson solver

initial SSD

Figure 4.5. Nonrigid image registration version one SSD versus deformation parame-
ter a experiment result. The deformation parameter a ranges from 50 to 100, which
corresponds to the maximum deformation distance between R and T from 6.6391 to
13.2762 pixels.

registration version one using the Poisson solver is generally shorter than the one

using the LSFEM inverse filtering method. Fig. 4.7a indicates that the registration

version one with LSFEM inverse filtering is slower than the one with Poisson solver

in terms of the convergence rate. The average computation time per iteration of the

registration version one with Poisson solver and LSFEM inverse filtering are 0.1341

and 0.2188 second respectively.

4.2.4 Conclusion

The proposed nonrigid image registration performs better by using the Poisson

solver in every aspect (accuracy, robustness, and performance), which is because of the

reason mentioned in Sec. 3.5 that the inverse filtering is an approximation approach

and its complexity is higher.
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Figure 4.6. Nonrigid image registration version one experiment results. The deforma-
tion parameter a ranges from 50 to 100. (a) Masked mean warping index ω̄∗ versus
a. (b) Masked maximum warping index ω∗max versus a.
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Figure 4.7. Nonrigid image registration version one computational performance ex-
periment results. (a) Total iteration used to register R and T versus the deformation
factor a. (b) Total time of registration versus a.
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4.3 Experiment Two

4.3.1 Purpose

The purpose of this experiment is to demonstrate the registration version one’s

ability to control the lower bound of the Jacobian determinant det(J) of the defor-

mation vector field through setting the lower bound on the monitor function. This

is the major feature of the proposed method, which guarantees no tissue folding will

occur by setting a positive lower bound on the monitor function.

4.3.2 Experimental Design

We chose the reference image R (a = 70) and test image T generated in

Sec. 4.2.2 and registered T to R by the proposed nonrigid image registration ver-

sion one multiple times with different lower bound constraints enforced on f(I) (0.1,

0.2, . . . , 1) to observe if we can control the minimum det(J) through imposing the

lower bound on the monitor function f(I).

4.3.3 Experimental Results

We imposed the lower bound constraints on the monitor function f(I) (0.1, 0.2,

. . . , 1) before f(I) normalization. We monitored the final (when the image registra-

tion process is done) minimum monitor function f before normalization, minimum f

after normalization, and the minimum det(J) when the registration process is com-

pleted.

In Fig. 4.8, minimum f after normalization is closely related to the minimum

det(J) while the minimum f before normalization deviates from the minimum det(J)

after the 0.5 f lower bound constraint. This is caused by the reason that f(I) will

change after the normalization, therefore, if we impose the lower bound constraint on

f(I) before normalization, the imposed value will deviate from the minimum det(J).



56

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f lower bound

 

 

min. det(J)

min. f before normalization

min. f after normalization

ground truth min. det(J)

Figure 4.8. This figure displays the relationship between the minimum det(J), the
minimum f before normalization (

∫
Ω f = ‖Ω‖), and the minimum f after normaliza-

tion.

The reason of why minimum det(J) slightly deviates from the minimum f after

normalization is because of the numerical error.
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4.4 Experiment Three

4.4.1 Purpose

To evaluate the proposed nonrigid image registration version one and version

two using the Poisson solver in terms of registration accuracy, robustness, and com-

putational performance.

4.4.2 Experimental Design

The experiment conducted in this section adopts the same data set and exper-

iment settings described in Sec. 4.2.2.

We chose the Rs and T generated in Sec. 4.2.2 and registered T to Rs by

the proposed nonrigid image registration version one and version two. To assess

the quality of registration, we observed SSD, masked mean warping index ω̄∗, masked

maximum warping index ω∗max, and the selected residue images (the difference between

R and registered T ) after registration, where the selected mask used in ω̄∗ and ω∗max

is displayed in Fig. 4.2.

4.4.3 Experimental Results

Robustness and Accuracy Assessment From Fig. 4.9, Fig. 4.10a, and Fig. 4.10b,

we can observe that the registration version one outperforms the version two in terms

of SSD, ω̄∗, and ω∗max. Version one keeps the masked mean warping index ω̄∗ in the

sub-pixel range, even when the initial transformation difference between R and T is

as large as 12.6125 pixels. From Fig. 4.10b, the masked maximum warping index

ω∗max is under or around one pixel till a = 87.

Computational Performance Assessment For the computational performance

comparison, from Fig. 4.11, nonrigid image registration version two seems to be able
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Figure 4.9. Nonrigid image registration version one versus version two experimental
SSD result. The deformation parameter a ranges from 50 to 100, which means that the
maximum deformation distance between R and T is ranging from 6.6391 to 13.2762
pixels.

to converge faster than version one, but after cross-referring to Fig. 4.9 and Fig. 4.10,

version two converges faster is due to its limited registration accuracy. The aver-

age computation time per iteration of the registration version one and version two

are 0.1341 and 0.1363 second respectively, which means that there is no significant

computational complexity difference between version one and version two.

4.4.4 Conclusion

The proposed nonrigid image registration version one generally can register

more accurately and is more robust than version two. It is certainly an interesting

question that why the registration version two does not work as well version one,

which will be one of our future objects.
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Figure 4.10. Nonrigid image registration version one versus version two experimental
warping index result. The deformation parameter a ranges from 50 to 100. (a)
Masked mean warping index ω̄∗ versus a. (b) Masked maximum warping index ω∗max

versus a.
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Figure 4.11. Nonrigid image registration version one versus version two computational
performance experiment result. (a) Total iteration used to register R and T versus
the deformation factor a. (b) Total time of registration versus a.
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4.5 Experiment Four

4.5.1 Purpose

This experiment evaluates the nonrigid image registration version one adopting

two optimization strategies, one updates the parameters f 1 and f 2 simultaneously

(previous experiments were conducted with this strategy), the other one updates the

f 1 and f 2 alternatively.

Since f 1 and f 2 are independent of each other, we assume that by adjusting f 1

and f 2 alternatively, we may obtain better registration results. Therefore, to evaluate

the registration accuracy and robustness of the proposed nonrigid image registration

version one using different strategies, we conducted this experiment.

4.5.2 Experimental Design

The reference images Rs and test image T used in this experiment are the

same as the ones used in Sec. 4.2.2. We register T to Rs by optimizing monitor

function f 1 and curl value f 2 alternatively and observe if the registration quality and

robustness obtained this way is better than the ones obtained by optimizing f 1 and

f 2 simultaneously.

4.5.3 Experimental Results

Robustness and Accuracy Assessment From Fig. 4.12 and Fig. 4.13, we ob-

served that the nonrigid image registration version one optimizing f 1 and f 2 alter-

natively generally has the same SSD, masked mean warping index ω̄∗, and masked

maximum warping index ω∗max when a < 87. When a ≥ 87, optimizing f 1 and f 2 alter-

natively outperforms optimizing the two parameters simultaneously in every aspects.

Notice the four abrupt spikes in Fig. 4.13, registration version one by optimizing f 1
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Figure 4.12. SSD versus deformation parameter a experiment result by nonrigid
image registration version one with two different optimization approaches, one using
the same step size to adjust f 1 and f 2, the other one using different independent
step sizes to adjust f 1 and f 2. The deformation parameter a ranges from 50 to 100,
which means that the maximum deformation distance between R and T is ranging
from 6.6391 to 13.2762 pixels.

and f 2 alternatively seems to be prone to some local minima in the optimization

process.
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Figure 4.13. Nonrigid image registration version one with two different optimization
approaches. The deformation parameter a ranges from 50 to 100. (a) Masked mean
warping index ω̄∗ versus a. (b) Masked maximum warping index ω∗max versus a.
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4.6 Experiment Five

4.6.1 Purpose

This experiment compares the viscous fluid image registration method [17] with

the proposed nonrigid image registration version one in terms of registration accuracy,

robustness, and efficiency.

4.6.2 Viscous Fluid Registration

Elastic model based transformation develops restoring forces proportional to

the deformed distance. Such elastic model prevents large deformation. Christensen

[17] proposed the fluid model to overcome this limitation by allowing the restoring

forces to relax overtime.

To deform and register the test image to the study image, Christensen uses the

Navier-Stokes equation

µ∇2~v + (λ+ µ)~∇(~∇ · ~v) +~b(~u) = 0 (4.8)

, a partial derivative equation (PDE), to express the velocity vector field ~v of the

test image. ~u represents the displacement of a test image The first term µ∇2~v is

associated with constant volume viscous flow of the template, which means, it repre-

sents the viscous term of the PDE. This term constrains neighboring particles of the

displacement field to deform with roughly the same velocity by spatially smoothing

the velocity field. The second term (λ + µ)~∇(~∇ · ~v) is not zero when the regions

of template grow or dissolve (mass source term). Coefficients µ and λ are viscosity

coefficients. The body force ~b(~u) can be written as

~b[~x, ~u(~x, t)] = −α(T [~x− ~u(~x, t)]− S(~x))~∇T |~x−~u(~x,t) (4.9)
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which is ∇SSD (SSD (Sum of Squared Difference) is considered as the potential

energy).

For each iteration, solve the ~v from (4.8) directly or by successive over relaxation

(SOR), then do the explicit Euler integration to get ~u. Iteration stops when ~b(~u) is

below a threshold or the maximum number of iteration is reached.

4.6.3 Experimental Design

The experiment conducted in this section adopts the same data set and exper-

iment settings described in Sec. 4.2.2.

We took the Rs and T generated in Sec. 4.2.2 and registered T to Rs by the

proposed nonrigid image registration version one and viscous fluid registration method

(λ = 0, µ = 500). To assess the quality of registration, we observed SSD, masked

mean warping index ω̄∗, masked maximum warping index ω∗max, and the selected

residue images (the difference between R and registered T ) after registration, where

the selected mask used in ω̄∗ and ω∗max is displayed in Fig. 4.2.

4.6.4 Experimental Results

Robustness and Accuracy Assessment From Fig. 4.14, Fig. 4.15a, and Fig. 4.15b,

we can observe that the registration version one outperforms the viscous fluid image

registration method in terms of SSD, ω̄∗, and ω∗max. Version one keeps the masked

mean warping index ω̄∗ in the sub-pixel range, even when the initial transformation

difference between R and T is as large as 12.6125 pixels. From Fig. 4.15b, the masked

maximum warping index ω∗max is under or around one pixel till a = 87.

Performance Assessment The average computation time per iteration of the reg-

istration version one and viscous fluid image registration method are 0.1341 and
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Figure 4.14. Nonrigid image registration version one versus viscous fluid registration
method SSD experiment result. The deformation parameter a ranges from 50 to 100,
which corresponds to the maximum deformation distance between R and T from
6.6391 to 13.2762 pixels.

0.2580 second respectively. This is due to viscous fluid method uses SOR as its modi-

fied Navier-Stokes equation solver and the complexity is N1.5 [45] (N : total number of

image pixels) while the proposed nonrigid image registration version one using FFT

based Poisson solver has the N logN [45] computation complexity.

4.6.5 Conclusion

The proposed nonrigid image registration method is more robust and more

accurate than the viscous fluid method.
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Figure 4.15. Nonrigid image registration version one versus viscous fluid registration
method warping index experiment result. The deformation parameter a ranges from
50 to 100. (a) Masked mean warping index ω̄∗ versus a. (b) Masked maximum
warping index ω∗max versus a.
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(a) (b) (c)

Figure 4.16. (a) The reference images R synthetically generated with the deformation
parameter a = 50. (b) The test image T without imposed noise. (c) The mask applied
on masked mean warping index ω̄∗ and maximum masked mean warping index ω∗max.

4.7 Experiment Six

4.7.1 Purpose

This experiment compares the noise tolerance capability of the proposed non-

rigid image registration version one with the viscous fluid registration method.

4.7.2 Experimental Design

To evaluate the influence of different levels of signal to noise ratio (SNR) on the

registration quality, we chose the test image T (Fig. 4.16b) and one of the reference

image R (Fig. 4.16a, a = 50) generated in Sec. 4.2.2 and imposed different level of

Gaussian noises (SNR = 30, 20, 10, and 0 dB) to the test image T . The mask used

in ω̄∗ and ω∗max is displayed in Fig. 4.16c. The SNR of an image [46, 47] is defined as

SNR = 20 log10

(
Imax − Imin

sn

)
dB, (4.10)

where Imax and Imin are the maximum and minimum intensity of the image, sn is the

standard deviation of the noise.
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4.7.3 Experimental Results

Fig. 4.17 and Fig. 4.18 display the test images T s imposed with SNR = 30, 20,

10, and 0 dB Gaussian noise, the register test images, and the residue images obtained

by applying the proposed registration algorithm version one. We can clearly observe

from the residue images that under SNR 30 to 10 Gaussian noise, there are only noise

residues in the residual images, which indicates that the image registration procedure

is successful. The registered images are registered properly.

Fig. 4.19 and Fig. 4.20 display the T s imposed with SNR = 30, 20, 10, and 0 dB

Gaussian noise, the register test images, and the residue images obtained by applying

the viscous fluid nonrigid image registration method. From the residual images, the

noise reduced significantly, which indicates that the image registration is not properly

done.

Fig. 4.21 and Fig. 4.22 illustrate the SSD, ω̄∗, and ω∗max of the registration results

versus different SNR levels. From the SSD point of view, the viscous fluid method

seems to outperform the proposed registration algorithm version one, but this result

is misleading. If we further observe the warping index experimental results listed

in Fig. 4.22, we will find out that actually it is the proposed registration algorithm

version one that can register with better accuracy under SNR = 30, 20, and 10 dB

noise (the ω̄∗ before registration is 4.1949 pixels, the ω∗max before registration is 6.6393

pixels).

With the help of the warping index metric, we can conclude that the proposed

nonrigid image registration method can register images fairly accurately under SNR

= 30, 20, and 10 dB noise.
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(a) (b) (c)

(d) (e) (f)

Figure 4.17. Registered test image and residue images obtained by the registration
version one under SNR = 30, 20 dB noises. (a) Test image T applied with 30 dB SNR
Gaussian noise. (b) Registered 30 dB SNR test image T ∗30dB. (c) Residue image of R
and T ∗30dB. (d) Test image T applied with 20 dB SNR Gaussian noise. (e) Registered
20 dB SNR test image T ∗20dB. (f) Residue image of R and T ∗20dB.
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(a) (b) (c)

(d) (e) (f)

Figure 4.18. Registered test images and residue images obtained by the registration
version one under SNR = 10, 0 dB noises. (a) Template image T applied with 10 dB
SNR Gaussian noise. (b) Registered 10 dB SNR test image T ∗10dB. (c) Residue image
of R and T ∗10dB. (d) Template image T applied with 0 dB SNR Gaussian noise. (e)
Registered 0 dB SNR test image T ∗0dB. (f) Residue image of R and T ∗0dB.
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(a) (b) (c)

(d) (e) (f)

Figure 4.19. Registered test images and residue images obtained by the viscous
registration method under SNR = 30, 20 dB noises. (a) Template image T applied
with 30 dB SNR Gaussian noise. (b) Registered 30 dB SNR test image T ∗30dB. (c)
Residue image of R and T ∗30dB. (d) Template image T applied with 20 dB SNR
Gaussian noise. (e) Registered 20 dB SNR test image T ∗20dB. (f) Residue image of R
and T ∗20dB.
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(a) (b) (c)

(d) (e) (f)

Figure 4.20. Registered test images and residue images obtained by the viscous fluid
registration method under SNR = 10, 0 dB noises. (a) Template image T applied with
10 dB SNR Gaussian noise. (b) Registered 10 dB SNR test image T ∗10dB. (c) Residue
image of R and T ∗10dB. (d) Template image T applied with 0 dB SNR Gaussian noise.
(e) Registered 0 dB SNR test image T ∗0dB. (f) Residue image of R and T ∗0dB.
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Figure 4.21. Nonrigid image registration version one versus viscous fluid noise toler-
ance SSD experiment result.
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Figure 4.22. Nonrigid image registration version one versus viscous fluid method
noise tolerance warping index experiment results. (a) Masked mean warping index
ω̄∗ versus SNR. (b) Masked maximum warping index ω∗max versus SNR.
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(a) (b)

Figure 4.23. (a) Original brain MRI image. (b) The cropped brain MRI image used
as the test image.

4.8 Experiment Seven

4.8.1 Purpose

The purpose of this experiment is to compare the registration quality and

efficiency of two proposed implementations of the 3D nonrigid image registration

version one — one optimizes f 1 to f 4, the other one optimizes f 1 to f 3 where

f 1 = monitor function− 1 and f 2 to f 4 are three curl components.

4.8.2 Experimental Design

3D Data Preparation We adopted a simulated T1 3D 181 × 217 × 181 brain

MRI image with 0% noise from the BrainWeb[48, 49, 50, 51, 52], the simulated brain

database, of the McConnell Brain Imaging Centre as our experiment material dis-

played in Fig. 4.23a. We segmented the 3D image and took the 55 to 105 slices as

Fig. 4.23b shows, then each of the retrieved slices was resized into a 65 × 65 image.
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We then padded this image with five layers zeros above and eight layers zeros below

in the z direction so that it can be a 65× 65× 65 image.

This processed image served as our test image T . Similar to the procedure

described in Sec. 4.2.2, we warped the test image T by applying the thin-plate splines

principal warps method with 7 × 7 × 7 control points to generate a reference image

R. The positions x = {x1, x2, x3}, xm = {1, 2, . . . , 65}, m = 1, 2, or 3, of the control

points are determined by the transformation function f(xm, a) defined in Eq. 4.11,

where a is referred to as the deformation factor.

f(xm, a) = xm −
65 sin(

4π(x1 − 1)

64
)g(x2)0.3

a
·

65 sin(
4π(x1 − 1)

64
)g(x3)0.3

a
, m = 1, 2, 3

g(xm′) =





xm′ − 1

10
, xm′ ≤ 33

3− xm′ − 33

32
, xm′ ≥ 33

, m′ = 2, 3

(4.11)

4.8.3 Experiment Results

Figure 4.24 displays the selective slices of the reference image R, registered test

image using nonrigid image registration version one that optimizes four parameters

f 1 to f 4, and the residual difference between the them. The result is quite accurate,

there is almost no difference between the registered T and R images.

Figure 4.25 displays the selective slices of the reference image R, registered test

image using nonrigid image registration version one that optimizes three parameters

f 1 to f 3, and the residual difference between the them. It does not register correctly,

the residue is very obvious.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.24. (a) to (c) are the slice 17, 33, and 49 of the synthetically generated
reference image R respectively. (d) to (f) are the slice 17, 33, and 49 of the test
image T registered to the R using nonrigid image registration method version one
that optimizes f 1 to f 4. (g) to (i) shows the residual difference between (a) to (c)
and (d) to (f).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.25. (a) to (c) are the slice 17, 33, and 49 of the synthetically generated
reference images R respectively. (d) to (f) are the slice 17, 33, and 49 of the test
images T registered to the R using nonrigid image registration method version one
that optimizes f 1 to f 3. (g) to (i) shows the residual difference between (a) to (c)
and (d) to (f).
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Table 4.1. 3D nonrigid image registration without controlling the solvability con-
straint experiment results.

Optimize f 1 to f 4 Optimize f 1 to f 3

SSD before registration 313.2860 313.2860
ω̄∗ before registration 1.0200 1.0200
ω̄∗max before registration 4.1165 4.1165

SSD after registration 1.8277 13.8077
ω̄∗ after registration 0.1360 0.7180
ω̄∗max after registration 1.5910 7.8739

Total iteration 8148 5126
Computation time per iteration 9.8372 8.2559

Minimum determinant of Jacobian det(J) 0.1841 −0.2135
Minimum monitor function 0.1617 0.1000
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Figure 4.26.3D registration without solvability SSD experiment result.

The quantitative experiment results of the 3D nonrigid image registration of

the 3D data pairs prepared in the previous section are presented in Table 4.1 and

figures from Fig. 4.26 to Fig. 4.27.
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Figure 4.27. 3D registration experiment result. (a) Masked mean warping index ω̄∗

versus iteration. (b) Masked maximum warping index ω∗max versus iteration.
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In Fig. 4.26 and Fig. 4.27, the abrupt changes of SSD, ω̄∗, and ω∗max values are

due to the knot space changing of the multiresolution strategy. From these figures,

the version one algorithm optimizing four parameters f 1 to f 4 outperforms the one

optimizing three parameters f 1 to f 3.

Table 4.1 presents the initial values of the registration quality assessment met-

rics (SSD, masked mean warping index ω̄∗, and masked maximum warping index

ω∗max), the quality assessment metrics after registration, total registration iteration,

and mean computation time per iteration. From Table 4.1, the registration by opti-

mizing f 1 to f 4 outperforms the registration by optimizing f 1 to f 3 from the regis-

tration quality point of view, since registration by optimizing four components can

achieve lower SSD, ω̄∗, and ω∗max.

We also observed the determinant of Jacobian of the registered deformation

field in Table 4.1. The registration optimizing with three parameters f 1 to f 3 has

the det(J) deviated from the monitor function and the negative −0.2135 indicates

the generated mesh is folding. On the other hand, the det(J) of the registration

optimizing with four parameters is closely related to the monitor function.

Registration algorithm version one implemented by optimizing four components

outperforms the one by optimizing three components, because by increasing one di-

mension of the searching space, it is easier to overcome the local minima.
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4.9 Experiment Eight

4.9.1 Purpose

Sec. 4.8 conducted a 3D image registration experiment by proposed algorithm

version one that optimizes f 1 to f 4 without enforcing the solvability constraint [34]

— ∇ · (∇× η) = 0, where f 1 is the monitor function and f 2 to f 4 are the three curl

components of the intermediate vector field η used in the proposed nonrigid image

registration algorithm version one.

The purpose of this experiment is to observe if the solvability constraint is nec-

essary for the nonrigid image registration algorithm version one. We have evaluated

the registration quality and efficiency of two different implementations to enforce the

solvability constraint.

First Approach After completing gradient descent optimization steps — fm′ =

µ · dfm, m = 2, 3, 4, we can normalize these three components by fm′ = fm′ − (∇ ·

〈f 2, f 3, f 4〉)xm−1/3, where m = 2, 3, 4 and x = {x1, x2, x3} is the position coordinate

of the monitor function and curl value.

Proof of the First Approach. If we normalize f 2 to f 4 in the following way

f 2′ = f 2 − x1(∇ · 〈f 2, f 3, f 4〉)
3

(4.12)

f 3′ = f 3 − x2(∇ · 〈f 2, f 3, f 4〉)
3

(4.13)

f 4′ = f 4 − x3(∇ · 〈f 2, f 3, f 4〉)
3

, (4.14)

then

∇ ·
〈
f 2′, f 3′, f 4′

〉
=

∂

∂x1

(
f 2 − x1(∇ · 〈f 2, f 3, f 4〉)

3

)
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+
∂

∂x2

(
f 3 − x2(∇ · 〈f 2, f 3, f 4〉)

3

)

+
∂

∂x3

(
f 4 − x3(∇ · 〈f 2, f 3, f 4〉)

3

)
= 0.

Second Approach In this approach, after completing gradient descent optimiza-

tion steps — fm′ = µ · dfm, m = 2, 3, we can normalize these three components by

f 4′ = −x3 (∇·〈f 2, f 3, 0〉), where x3 is the third component of the position coordinate

of the monitor function and curl value.

Proof of the Second Approach. If we normalize f 2 to f 4 in the following way

f 2′ = f 2 (4.15)

f 3′ = f 3 (4.16)

f 4′ = −x3(∇ ·
〈
f 2, f 3, 0

〉
), (4.17)

then

∇ ·
〈
f 2′, f 3′, f 4′

〉
=
∂f 2

∂x1

+
∂f 3

∂x2

− ∂x3(∇ · 〈f 2, f 3, 0〉)
∂x3

= 0.

4.9.2 Experimental Design

We use the same reference image R and test image T generated in Sec. 4.8.2.

We compared the two implementations of the registration algorithm version one that

enforce the solvability constraint with the one without any solvability constraint in

terms of SSD, ω̄∗, and ω∗max.
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Table 4.2. 3D nonrigid image registration optimizing f 1 to f 4 by two different ap-
proaches to enforce the ∇ · 〈f 2, f 3, f 4〉 = 0 constraint.

First Approach Second Approach

SSD before registration 313.2860 313.2860
ω̄∗ before registration 1.0200 1.0200
ω̄∗max before registration 4.1165 4.1165

SSD after registration 27.4268 97.6646
ω̄∗ after registration 0.5219 1.5392
ω̄∗max after registration 4.1822 10.3124

Total iteration 961 1385
Computation time per iteration 8.4372 8.4291

Minimum determinant of Jacobian det(J) 0.1273 −0.2178
Minimum monitor function 0.1061 0.1000

4.9.3 Experiment Results and Analysis

Figure 4.28 and Figure 4.29 display the selective slices of the reference image R,

registered test image using nonrigid image registration version one that optimizes four

parameters f 1 to f 4 using the two approaches to enforce the solvability constraint,

and the residual difference between the them. Both results are not satisfying, but the

first approach to enforce the solvability constraint is better than the second approach.

From Table 4.1 and Table 4.2, enforcing the solvability constraint does not

result in better registration quality (SSD, ω̄∗, and ω∗max). This is because we did not

consider the solvability constraint during the computation of dssd/dfm, m = 1 ∼ 4.

The final det(J) of the second approach to enforce the solvability constraint is

out of sync with the monitor function, which is similar to the det(J) result of the

“optimizing f 1 to f 3” column illustrated in Table 4.1. This indicates that the out of

sync problem is not caused by enforcing the solvability constraint or not.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.28. (a) to (c) are the slice 17, 33, and 49 of the synthetically generated
reference images R respectively. (d) to (f) are the slice 17, 33, and 49 of the test
images T registered to the R using nonrigid image registration method version one
that optimizes f 1 to f 4 with the first constraint approach. (g) to (i) shows the residual
difference between (a) to (c) and (d) to (f).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.29. (a) to (c) are the slice 17, 33, and 49 of the synthetically generated
reference images R respectively. (d) to (f) are the slice 17, 33, and 49 of the test
images T registered to the R using nonrigid image registration method version one
that optimizes f 1 to f 4 with the second constraint approach. (g) to (i) shows the
residual difference between (a) to (c) and (d) to (f).
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Summarizing the experiments conducted in Sec. 4.8 and Sec. 4.9, the proposed

registration algorithm version one works best if we optimize the monitor function and

three curl components without the solvability constraint.

Theoretically, without the solvability constraint, the solved intermediate vector

field η may not be accurate. On the other hand, if the gradient decent optimization

process can find the global optima, then it may lead the whole system to fulfill the

solvability constraint. The observed absolute mean of ∇ · (∇× η) of the registration

algorithm version one without the solvability constraint is 0.0162, which is quite close

to 0.

The reason of why enforcing the solvability constraint does not result in good

outcome is because that when the solvability constraint is enforced, it alters df 2, df 3,

and df 4 suggested by the gradient decent optimization process. Therefore, it may

mislead the registration process and generate the poor result.



CHAPTER 5

SUMMARY

5.1 Accomplishments and Issues

Two versions of the proposed nonrigid image registration algorithms have been

implemented. The third version was not implemented due to the difficulty of the

optimization derivation explained in Sec. 3.4.3. The problem could be solved if the

intermediate vector field η is solved on the moving grid generated by the deformation

function φ(ξ) instead of on the original grid ξ, but by doing so, more computational

difficulty will occur which can be an interesting topic in the future works.

In the proposed algorithms, a div-curl solver is essential for obtaining the inter-

mediate vector field η. The LSFEM inverse filtering method was first introduced to

avoid the large matrix computation and the SOR method was adopted to obtain an

approximated LSFEM inverse filter. Later, a more accurate way to solve the η by the

Poisson solver was introduced. Therefore, we reformed the div-curl system of η into

a Poisson’s equation set, which turned out to be more accurate and more efficient.

To register efficiently, Chapter 3 derives a high performance gradient descent

optimizer that implements the gradient of SSD with respect to the monitor function

and curl values in the form of convolution.

The registration quality and computational performance comparison of the pro-

posed nonrigid image registration with the LSFEM inverse filtering and Poisson solver

approach was conducted in Sec. 4.2. As expected, using the Poisson solver outper-

forms the inverse filtering approach.

89
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Sec. 4.4 compares the proposed nonrigid image registration algorithm version

one and two. Version one appears to outperform version two, but the cause of this

result is still unknown at this time. However, it is worthwhile to discover that why

version two cannot work as well as version one does in the future.

The noise tolerance capability of the proposed registration algorithm is demon-

strated in Sec. 4.7. With the capability to register images quite accurately (mean

error under 0.5 pixel) under 10 dB SNR noise indicates that the proposed algorithm

has an excellent noise tolerance feature.

Theoretically, the solvability constraint is necessary for the 3D image registra-

tion of the proposed registration algorithm, but the experiments conducted in Sec. 4.8

and Sec. 4.9 suggest that it is not necessary to enforce this constraint in the proposed

algorithm. This is because of the solvability constraint self-retaining feature of the

gradient decent optimization process, in other words, if the gradient decent optimiza-

tion can accurately optimize the monitor function and curl components, the solvability

constraint should be automatically fulfilled.

Summarizing the experiments conducted in Chap. 4, we demonstrated the ex-

celled registration quality, robustness, and good noise tolerance of the proposed algo-

rithm.

5.2 Contributions

Traditional image registration models minimize the cost functional comprising

a similarity functional and a regularization functional.

cost functional = similarity functional + β × regularization functional
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Chapter 3 formulates three versions of the nonrigid image registration algo-

rithms based on the well-established deformation based grid generation method that

can simplify the traditional variational model. The main feature of the proposed

algorithm is the capability to control the area/volume of the resulting deformation

field, therefore, the regularization term can be discarded.

In the proposed model, there is only one term in the cost functional — the

similarity functional. It is favorable to avoid the regularization functional because

the regularization parameter β is application specific, can only be determined from

experiments, and varies with different tissues. If the β is set too low, the resulting

deformation field may suffer from grid folding; if the β is set too high, then the

regularization term weighted too much, and the registration result becomes poor.

Therefore, containing the similarity functional only in the cost functional is one of

the advantages of the proposed model over the traditional model.

Possible Applications The proposed algorithm can be easily applied to do the

volume preserving [53] nonrigid image registration for incompressible content since

the proposed algorithm can control the volume through setting the boundary on the

monitor function. Another interesting application is for the cardiac image registration

[54]. The proposed algorithms is capable to register accurately in large deformation

cases, which fit in with the large deformation feature vastly seen in the cardiac imaging

field.

Other possible applications are fusion of images from different modalities [6,

7], super-resolution in positron emission tomography (PET) imaging [8], visualizing

diffusion tensor MR images (DTI) [9, 10], atlas based segmentation [11, 12], geometric

correction of functional magnetic resonance imaging (fMRI) [13], pattern recognition
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[14], etc. The purposed image registration in these applications is to establish the

correspondence among the pixels/voxels of image pairs.

5.3 Future Works

In the future, the proposed algorithm is going to be applied to the possible

applications mentioned in the previous section.

University of Iowa has started the Non-rigid Image Registration Evaluation

Project (NIREP) [55]. It extends prior image registration validation projects and

provides image validation database for evaluating nonrigid image registration algo-

rithms. This is a good opportunity to collaborate with them to extensively validate

the registration algorithm proposed in this dissertation.

Currently, the registration is performed on the original grid points, it is intrigu-

ing to explore the possibility to compute on the deformed grid points. By doing this,

the registration accuracy may be further improved.
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[15] R. Bajcsy and S. Kovačič, “Multiresolution elastic matching,” Computer Vision,

Graphics, and Image Processing, vol. 46, no. 1, pp. 1–21, 1989.

[16] J.-P. Thirion, “Image matching as a diffusion process: an analogy with maxwell’s

demons,” Medical Image Analysis, vol. 2, no. 3, pp. 243–260, 1998.



95

[17] G. Christensen, R. Rabbitt, and M. Miller, “Deformable templates using large de-

formation kinematics,” Image Processing, IEEE Transactions on, vol. 5, no. 10,

pp. 1435–1447, 1996.

[18] B. Fischer and J. Modersitzki, “Curvature Based Image Registration,” Journal

of Mathematical Imaging and Vision, vol. 18, no. 1, pp. 81–85, 2003.

[19] J. Modersitzki, Numerical Methods for Image Registration. Oxford University

Press, 2004.

[20] M. Bern and D. Eppstein, “Mesh generation and optimal triangulation,” Com-

puting in Euclidean Geometry, vol. 1, pp. 23–90, 1992.

[21] K. Miller and R. Miller, “Moving finite elements. i,” SIAM Journal on Numerical

Analysis, vol. 18, no. 6, pp. 1019–1032, 1981.

[22] K. Miller, “Moving finite elements. ii,” SIAM Journal on Numerical Analysis,

vol. 18, no. 6, pp. 1033–1057, 1981.

[23] N. N. Carlson and K. Miller, “Design and application of a gradient-weighted

moving finite element code i: in one dimension,” SIAM J. Sci. Comput., vol. 19,

no. 3, pp. 728–765, 1998.

[24] ——, “Design and application of a gradient-weighted moving finite element code

ii: in two dimensions,” SIAM J. Sci. Comput., vol. 19, no. 3, pp. 766–798, 1998.

[25] G. Liao and D. Anderson, “A new approach to grid generation,” Applicable

Analysis, vol. 44, no. 3, pp. 285–298, 1992.

[26] G. Liao, T. Pan, and J. Su, “A numerical grid generator based on moser’s defor-

mation method,” Numerical Methods for Partial Differential Equations, vol. 10,

no. 1, pp. 21–31, 1994.

[27] X. Cai, B. Jiang, and G. Liao, “Adaptive grid generation based onthe least-

squares finite-element method,” Computers and Mathematics with Applications,

vol. 48, no. 7-8, pp. 1077–1085, 2004.



96

[28] J. Thompson, Z. Warsi, and C. Mastin, Numerical grid generation: foundations

and applications. Elsevier North-Holland, Inc. New York, NY, USA, 1985.

[29] T. Baker, “Mesh generation: Art or science?” Progress in Aerospace Sciences,

vol. 41, no. 1, pp. 29–63, 2005.

[30] G. Liao, T. Pan, and J. Su, “A numerical grid generator based on moser’s defor-

mation method,” Numerical Methods for Partial Differential Equations, vol. 10,

no. 1, pp. 21–31, 1994.

[31] B. Semper and G. Liao, “A moving grid finite-element method using grid de-

formation,” Numerical Methods for Partial Differential Equations, vol. 11, pp.

603–615, 1995.

[32] P. Bochev, G. Liao, and G. dela Pena, “Analysis and computation of adaptive

moving grids by deformation,” Numerical Methods for Partial Differential Equa-

tions, vol. 12, no. 4, pp. 489–506, 1996.

[33] L. Jie, “New development of the deformation method,” PhD dissertation, The

University of Texas at Arlington, 2006.

[34] B. Jiang, The Least-Squares Finite Element Method: Theory and Applications

in Computational Fluid Dynamics and Electromagnetics. Springer, 1998.
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