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ABSTRACT

COMPUTATIONAL ANALYSIS OF STRUCTURE AND FUNCTION OF

GENOMIC SEQUENCES

Abanish Singh, Ph.D.

The University of Texas at Arlington, 2008

Supervising Professor: Nikola Stojanovic

The genetic code consists of long chains of deoxyribonucleic acid (DNA) present

in every cell of a living organism. These chains contain both functional and non-

functional DNA sequences, and their proportion in the mix varies widely along the

tree of life. Generally, more complex organisms tend to feature large amounts of

“junk” DNA, whose importance is still subject of a debate in the scientific circles.

The functional sequences include coding sequences (genes) and various types of

signals, mostly, but not exclusively, controlling the regulation of coding sequences, i.e.

activating and deactivating the expression of genes, during the developmental stage,

in response to external stimuli, or during housekeeping activities in a cell or organism.

Such expression leads to the production of various ribonucleic acids (RNAs), out of

which the most common is messenger RNA (mRNA) which serves as a template for

chains of amino acids, or polypeptides. The polypeptides themselves fold and group

into proteins, providing structural components and functionalities to the living cells

and tissues. Regulatory signals in DNA tend to act as parts of complex networks,

whose structure and dynamics have been subject to biomolecular studies for many
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decades. Recently, especially after sequencing of several major eukaryotic genomes has

been completed, these studies have become increasingly computational. The applied

techniques focus on sequence features, such as periodicity, motif over–representation,

phylogenetic conservation, sequence or structural homology, or the experimental data

about binding effects, patterns of gene co–expression, and, more recently, epigenetic

information.

Over the last several years, the search for functional elements in human and

other genomes by exploiting motif over-representation became increasingly popular.

Although there has been some success in this field, the existing tools are still neither

sensitive nor specific enough, usually suffering from the detection of a large number

of false positive signals. Given the properties of genomic sequences, some of which

we analyze in this document, this is not unexpected, but one can still find interesting

signals worthy of further computational and laboratory investigation.

In this thesis we present several algorithms for DNA sequence analysis, and in

particular the identification and characterization of short motifs. We start with pre-

senting an efficient algorithm to find significant variable motifs shared within target

sequences, generally taken from the upstream regions of co-expressed genes. Various

filtering techniques have been applied to this problem in the past, but in our view it

is important that we generate complete data, upon which separate selection criteria

can be applied, depending on the nature of the sites one wants to locate. Though

we primarily intended to develop software to locate the significant motifs based on

their over-representation in the given DNA sequences, we also attempted to elucidate

why such software often fails in locating the real elements. We have thus performed

a study of the repetitive structure and distribution of short motifs in human ge-

nomic sequences. In most mammalian species about half of the genome consists of

known or readily recognizable repeated elements, and we demonstrate that in addi-
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tion to these repeats human genomic sequences feature many short motifs which are

significantly over-represented, and that their frequency varies only slightly between

random repeat–masked sequences and regions located immediately upstream of the

known genes.

Recent studies have established the existence of evolutionary (and thus presum-

ably functional) constraint on only about 5% of the human genome. If a half of it

consists of known repeated sequences, that leaves an open question about the source

of the remaining 45%, for which we postulate that it should have mostly originated

from ancient transpositional or other duplication activity. The original copies could

have become so broken over time that they cannot be recognized as such any more,

giving rise to seemingly unique sequences which nevertheless share large numbers of

greatly over–represented short motifs. We have developed an algorithm, and written

software which efficiently associates these motifs and reconstructs the consensus se-

quences of possible ancient broken repeats. We have found a significant number of

new large repeated sequences, in addition to the previously characterized transpos-

able elements and other duplications in the human genome, and we have built their

consensus sequences and attempted to characterize them. We believe that in view of

a recently proposed model postulating that transposable elements have been a sig-

nificant source of transcriptional regulatory signals, further study of broken genomic

repeats would be very useful.

The software implementing our methods have been made available in the public

domain, and we have also developed a web server to enable on–line access to our tools

by other investigators.
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CHAPTER 1

INTRODUCTION

The genome of every living organism holds the key hereditary information and

consists of long chains of deoxyribonucleic acid molecules known as DNA. These chains

are organized in compact units, confined to limited volume, and known as chromo-

somes. The chromosomes are present in pairs (one copy inherited from each parent) in

each cell of an organism and comprise both functional and non-functional DNA. The

genome is the complete set of DNA of an organism. It may contain as less as 500 genes

in some bacteria to as many as 40,000 in humans [22]. A gene is a basic unit of hered-

itary information; it is a specific segment of DNA which serves as a unit of function by

encoding a particular ribonucleic acid, or RNA. Generally, more complex organisms

tend to feature large amounts of “junk” DNA, whose importance is still a subject of

debate in scientific circles. The functional sequences include coding sequences (genes)

and various kinds of signals–mostly, but not exclusively, controlling the regulation of

coding segments, activating and deactivating the expression of genes in response to

the needs of the cell or organism, during developmental stage, or in response to exter-

nal stimuli. Such expression leads to the production of RNAs, most of which serve as

a template for chains of amino acids, or polypeptides. The polypeptides themselves

fold and group into proteins, providing structural components and functionalities to

the living cells and tissues. These proteins may work independently or as part of

multi-protein assemblies. The role of regulatory sequences, which includes promoters

and supplementary modules targeted by various transcription factors, is to have these

proteins produced at the appropriate time and place.
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2

1.1 Biological significance of the motifs search

The gene expression is a process of information transfer from DNA into RNA,

further into proteins. It involves two major phases: transcription and translation. A

human cell contains a large number of genes (the final number is yet to be confirmed).

Some of these genes are expressed all the time and are responsible for controlling run

type metabolic functions or respiration; some are expressed when cells enter particular

pathways of differentiation; and the others are expressed when the conditions in

and around the cells change. Gene regulation is the coordinated control of gene

expression. It has attracted much attention of researchers in the recent past, as we

have been striving to know the spatial and temporal differences in how genes are

expressed, related to developmental control of an organism, cell differentiation and

tissue specificity, production of hormones and enzymes, cellular responses to stress

such as disease or adverse physical conditions, and a number of other issues [67].

Gene expression is substantially different in bacteria (prokaryotes) and higher

organism (eukaryotes), which maintain their DNA in a nucleus. There are several

mechanisms used by eukaryotes to regulate the gene expression. These mechanisms

are generally of two types: transcription level regulation and post transcription level

regulation. The mechanisms of transcription level regulation are responsible for al-

tering the rate of transcription either by activating or silencing the process. They

include modification of chromatin structure of the DNA which makes genes hidden

from or invisible to transcription, control through special proteins called transcription

factors (which bind to DNA sites to cause an enhancing or suppressing activity), or

silencing the transcription through genomic imprinting. The post transcription level

regulation is done by altering the rate of RNA processing (while still in the nucleus),

altering the stability of mRNAs and the rate of their degradation, and by altering the

efficiency of ribosomes which translate the mRNA into polypeptides. This regulation
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includes the mechanisms such as RNA splicing, control of the amount of gene product

by stability of RNA, modulation of translation because of non-coding sequences in

mRNA, and use of antisense (siRNA) to stop or slowdown the translation.

It is well known that transcription level regulation, in which the transcription

is activated or suppressed by specialized proteins, is the most important mechanism

of gene regulation. Each gene has a transcription start site (where RNA polymerase

II binds to initiate the transcription) and regulatory regions like enhancers, silencers

and promoters. These regulatory regions have to fulfill several requirements in order

to serve biological functions in transcriptional control. In general, the promoter is an

integral part of a gene and often makes sense only in the context of its own gene. The

function of a promoter is to mediate and control the initiation of the transcription of

the gene located immediately downstream to it. The promoter sequence is present in

only one of the two DNA strands and the presence of a promoter determines which

one of the two strands is to be used as a template for copying the DNA to RNA in

the transcription process. The RNA polymerase binds at the promoter to initiate this

process. The promoter is a necessary region to achieve the transcriptional initiation,

but it may not be sufficient to completely determine the regulation. In addition,

the polymerase complex which binds the promoter and initiates the transcription is

mainly concerned with accurately copying the DNA into RNA, but not with deter-

mining from where or when to start. Selecting the location to start the copying is the

function of other types of protein called activators. The main players in the promoter

activation are specialized proteins called transcription factors. There are varieties of

transcription factors in a cell and all of them contain a DNA binding domain, which

enables them to bind with genomic DNA, and an activator domain, which can have

either an activating or suppressing activity. The factor brings its activator domain

to a specific location by binding to genomic DNA at a specific site. The transcrip-
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tion factor binding sites are usually short 8-20 nucleotide stretches which are covered

by proteins upon binding. Surprisingly, the sequences for binding sites for the same

protein can vary considerably.

The transcription factors (TF’s) binding sites located in upstream, downstream,

or even in intronic regions of eukaryotic genomes are called cis-acting elements. These

sites play a significant regulatory role in gene expression. Many of them often occur

together, in groups called modules, which denote the set of TF’s binding sites located

close to each other and which have a cumulative effect on gene expression. By binding

the appropriate sites, the transcription factors can increase or decrease the expression

of genes. The binding sites causing an increase in gene expression are known as

enhancers, and if they cause a decrease in gene expression they are known as repressors

or silencers. The promoters are generally not a part of the set of enhancers. They

are the binding sites for the proteins which initiate gene transcription process, and

enhancing or silencing are the activities apart from the core initiation. It has been

found that more then one gene expressed together have similar cis-acting elements,

and a set of same TF’s can initiate, activate or suppress the regulation of these genes.

The phenomenon is called co-regulation. A gene which itself encodes a transcription

factor can regulate the expression of many other genes which have the binding sites

for its product. This relation can be used to establish a complex regulatory network,

where one gene controls the expression of other genes.

Gene expression is regulated by a network of protein-DNA and protein-protein

interactions. Most of the transcription factor binding sites occur within a few hundred

bases upstream of the transcription start sites of their targets, although many can be

quite distant. It is also generally accepted that the binding of transcriptional enzymes

is directed by specific motifs in DNA sequences. However, while there are proteins

which bind specifically to exact sequences of bases, most transcription factors are
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rather promiscuous in their choice of a preferred binding consensus. This indicates

that sequence motifs may only be a part of the regulatory signal.

In summary, the TF’s binding sites are small DNA motif sequences which play

an important roles in gene expression, and they are proximally or distantly located in

non-coding regions. The computational prediction and identification of these motifs

can help with the understanding of the underlying process of gene regulation.

1.2 Previous work on motifs finding

The search for transcription factor binding sites is one of the most popular

subfields of bioinformatics, and many algorithms have been developed over more

than a decade of intensive research [66, 94, 57, 46, 44]. Some computational methods

were developed even before whole eukaryotic genome sequences became available,

for example determining the minimal sequences necessary for transcription in cell-

culture based systems, identifying sequences potentially available for transcription

factor binding, in vitro approaches to identify sequences that bind various regulatory

proteins, and enhancer and promoter tapping studies. But, these methods were slow,

difficult, expensive, and not well suited for easy and fast understanding of the gene

regulation system. Meanwhile, as the landmark in genomics studies the whole-genome

sequences for human [47], and other closely and distantly related species were made

available around 2001. Furthermore, a number of computational methods based on

sequence comparison and other statistical approaches were developed to identify the

transcription factor cis-acting binding motifs.

Apart from the laboratory methods, the computational approaches to identify

cis-acting elements can be concerned with the identification of potential TF’s binding

sites in isolation, or the identification of cis-acting regulatory modules. The examples

of the first kind of approaches include the identification of regulatory regions by
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comparing genomic sequences, identification of regulatory regions by correlating their

presence with gene expression patterns, and identification of motifs based on their

over-representation. The methods for the identification of cis-acting modules first

identify all occurrences of regulatory motifs in the target area, and then use clustering

to detect potential modules.

Closely or distantly related species have conserved sequences representing or-

thologous genes, which are resulted by their evolutionary history or function. The

non-coding parts of a genome may have many conserved motifs, too. It is likely that

conserved motifs in non-coding sequences are cis-acting regions regulating gene ex-

pression, although this needs not necessarily be the case. It has been found in various

experiments that human [47] and mouse [69] genomes share many regulatory motifs.

Wasserman et al. [102] have identified common binding sites in human and mouse

using sequence comparison method, and this algorithm has been used by many oth-

ers. In this approach the homologous genes in two related species are identified and

then non-coding DNA, both upstream and downstream, are compared. If we get any

conserved motifs in the results, they are likely cis-acting elements. This approach

has some limitations: two species for which the DNA non-coding sequences are being

compared must be close enough to have many homologous regions, and this approach

does not give any functional information about the conserved sites.

Tavazoie et al. [94] analyzed the expression pattern of mRNAs of Saccharomyces

cervisiae over a series of time points during a cell division cycle. After grouping and

clustering the expression profile based on their common expression patterns across

many time points and then searching for common upstream DNA motifs, they were

able to identify 18 motifs spread over 12 different clusters. This approach also has

limitations; clustering may not be a good way to identify co-regulated genes, and

motif may occur in various genes not sharing the common expression pattern. Later,
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the same group came up with a solution to some of its early shortcomings [57]. To

determine the significance of the motifs, the criteria of group specificity and position

bias were used. This approach identified a large number of experimentally verified

motifs in the S. cervisiae genome. Bussemaker et al. [46] proposed another approach

known as Regulatory Elements Detection Using Correlation with Expression (RE-

DUCE), which was based on the assumption of a linear additive model for the effect

of different regulatory motifs. Each motif may have either a positive or negative in-

fluence on the expression level of the gene found downstream of it. This approach was

able to detect many experimentally known cis-acting elements as well as to predict

some new ones; however, it can account only for 30% of the total signal present in

genome-wide expression pattern.

The same research group [44, 45] also proposed a purely computational approach

to detect over-represented motifs in a genome of single species. Their algorithm works

by iteratively building words from a text, determining the probability of occurrence

of all letters of the alphabet in the text, and adding words that have a non-zero

probability to the dictionary. Expected frequencies for all combinations of two or

more letters are calculated based on that probability. The occurrence frequencies of

the words are obtained from the text, and the combinations which occur in the text

with given significance are added to the dictionary. To validate this algorithm, it

was tested against the novel Moby Dick, by Herman Melville (1851), by removing all

non-alphabet characters, concatenating the text, and inserting random junk letters

in-between to expand the text three times. This algorithm is known as the Moby

Dick algorithm. As a result of this test, 740 out of 1050 most significant words were

English words, or composite words. Though DNA sequences are likely to be harder to

deal than English words, the algorithm has shown promising results when applied to
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600 bp long upstream sequences of the yeast genome. However, this algorithm does

not provide any functional annotation of the detected motifs.

The early approaches to regulatory signal finding relied on a rather naive as-

sumption that the target sites of proteins must feature information content sufficient

for them to be recognized. Disillusionment soon followed, as any attempt to isolate

functional elements in DNA resulted in an enormous number of false positives. Recent

methods have thus concentrated on the incorporation of additional information to the

raw sequence data. They often relied on phylogenetic conservation [32, 19, 90, 75]

or search for clusters whose elements matched experimentally confirmed consensus

motifs [19, 90], retrieved from databases such as TRANSFAC [99] or Jaspar [15].

The latter methods exploited the fact that proteins involved in the initiation of tran-

scription rarely, if ever, act in isolation, the basis postulate of the regulatory module

finding. In a recent study, structural aspects of TF-DNA interaction has also been

exploited to supply the additional information [86] for motif finding.

With the advances in microarray technology large sets of putatively co-expressed

genes became available, stimulating the development of new methods to detect con-

served motifs in their upstream sequences [57, 19]. It is intuitive that if a group of

genes is co-ordinately regulated, it should be controlled by the same transcription fac-

tors. From the hypothesis that protein binding is directed by DNA sequence motifs it

follows that same motifs should be present in all regulatory sequences, moreover, as

a cluster or clusters. This led to the exploitation of motif over-representation in the

target sequences. In addition, it has been observed in yeast that the promoter regions

are often characterized by multiple occurrences of the same binding motif [55], and

it has been postulated that it may be the case in higher eukaryotes, too. These as-

sumptions stimulated the search for over-represented, or “surprise”, motifs in related

sequences [12, 56].
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1.3 Transposable DNA repeat elements

It has been well known, and for a long time now, that genomic sequences, even

in large “junk” areas, are not random assemblies of four letters. In a series of sem-

inal studies initiated more than four decades ago, Britten, Davidson and colleagues

demonstrated that the nuclear genome of diverse eukaryotes contained a large frac-

tion of repetitive DNA [37], and recent large–scale genome sequencing has established

the ubiquitous occurrence of repeats. They can be of a tandem nature, however

it is the interspersed sequences which generally represent the major component of

repetitive DNA [47]. Most of these are derived from mobile (transposable) genetic

elements (TE’s), fragments of DNA which can move around and insert into new chro-

mosomal locations, often duplicated in the process. Thus, transposable elements or

their remnants tend to represent the single largest component of eukaryotic genomes,

accounting, by the latest estimates, for 10% of the tiny genome of the nematode C.

elegans, about 45% of the human genome and about 80% of the maize genome, to

mention just a few (C.Feschotte and E.Pritham in [73]). These transposable elements

can be divided into different classes, and a brief description of several major categories

is given below:

1. Tandem array repeats: These repeats are composed of multiple head to tail

repetition of simple sequences. Such repeats are also known as local repeats.

They can be further divided into:

• Micro–satellites and mini–satellites: The micro–satellites are also re-

ferred to as simple sequence repeats, and the mini–satellites are known as

variable number repeats. These types of repeats are defined by 3 parame-

ters: pattern, length, and number. The length of these repeats is usually

1-6 bp, and sometimes the upper boundary is extended up to 10-13 bp.
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• Satellite and telomeric repeats: The satellites are arrays of 103 -107

tandemly repeated units located in well defined chromosomal regions, such

as centromeres and telomeres. Centromere is the point where the two sister

chromatids touch, and telomeres are the ends of a chromosome.

2. Interspersed repeats: These are the scattered pieces of the transposable

elements which were active in the human genome or genomes of our ancestors.

These can be further divided into:

• Non LTR retrotransposons: The retro elements proliferate by the re-

verse transcription of their RNA, expressed in a host cell. These are also

referred as Long Interspersed Repeat Elements (LINE), and their short

associates are referred to as Short Interspersed Repeat Elements (SINE).

Other examples of non-LTR retrotransposed elements are processed pseu-

dogenes, although strictly speaking they are not transposons.

• LTR Retrotransposons: These are retrovirus-like elements retrotrans-

posed in a genome, and inherited by a host from generation to generation.

These are flanked by long terminal repeats (LTRs).

• DNA transposons: The transposable elements which move from one ge-

nomic site to another in the form of DNA only, are known as DNA trans-

posons. They work like “cut and paste”. Both ends of DNA transposons

have terminal inverted repeats (TIRs), which are identified by transposase

enzymes to cut the DNA. Most, if not all, transposons encode an enzyme

called transposase that acts much like λ-integrase by cleaving the ends of

the transposon as well as its target site.

3. Segmental duplications: A segmental duplication occurs in a region con-

taining several partially degraded mobile elements of various types followed by
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mutation of duplicated regions including insertion, deletion, and rearrangement.

Apparently, this kind of repeat seems to be beyond annotation.

Large–scale DNA sequencing has revealed that most of the repetitive DNA is

derived from the activity of transposable elements, i.e. sequences that are able to

move and replicate within a genome. An important and virtually universal feature

of transposons, regardless of their classification, is that the large majority are not

capable of further transposition [16, 25]. Most are found as defective copies, which

cannot encode the proteins necessary for their movement — for some this is a natural

form, while for others it is the result of sequence degradation or deletion at the time of

insertion. Consequently, once integrated, most sequences will never transpose again,

and they can be regarded as molecular fossils. Regardless of their origin and of the

mechanisms responsible for their inactivation, it is widely accepted that fossilized

transposons, as a whole, do not assume function to the host. Consequently, inactive

copies of transposable elements are progressively eroded by mutations accumulating

at a neutral rate until they become unrecognizable, so the largest portion of most

multi-cellular and even some single–celled eukaryotic genomes can be regarded as an

enormous transposable element graveyard (C.Feschotte and E.Pritham in [73]).

1.4 Identification of repeats in DNA sequences

Traditionally, the first task in the analysis of transposable elements is the assem-

bly of the repeat library. It consists of defining all repeats within the genome, demar-

cating their boundaries, subdividing related copies into families and reconstructing

a consensus sequence representative of each family. The annotation of repeats then

includes the mapping (or masking) of regions which correspond to a given family, on

the basis of the similarity to their consensus sequences compiled in a depository such

as RepBase [52, 51]. The major limitation of this homology–based approach is that
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only sequences similar to these previously described will be identified. It could be a

satisfactory approach if the query sequence originates from a species which is closely

related to one for which a comprehensive catalog of repeats is available. Otherwise,

homology–based searches will tend to reveal only these elements which are relatively

intact and contain protein–coding sequences similar to those typically found in known

transposons (such as reverse-transcriptase and transposase).

Another computational method for identifying transposons consists of de novo

strategies, designed to identify repeated sequences in a genome based on their copy

counts, without resorting to homology with an outside catalog. Two basic approaches

have been employed for de novo identification of repeats: query vs. query similar-

ity searches and word counting/seed extension. The former relies on genome self–

comparison, where an entire genome is aligned to itself. This step generates a series

of pairwise or local alignments (using blast [92] or blast–like programs). Pairwise

alignments are then converted into multiple alignments, and clustering methods are

used to group related sequences into families, based on a pre-set or user–defined

threshold of similarity and alignment length [104]. Miropeats [53], RepeatFinder [76],

RECON [104] and PILER [85] use this approach. Most of them are computationally

intensive, requiring vast memory capacity and substantial processing time, which

varies with the size and complexity of the query sequence. Their results are also

significantly affected by the relative lack of sensitivity of the programs used for the

initial self-comparison (blast, for instance) and subsequent problems related to the

clustering methods, which often lead to imprecise definitions of the repeat ends. An

alternative and increasingly popular approach involves word counting and seed exten-

sion. These methods bypass the need for whole genome alignments by building a set

of repeat families starting with short strings (seeds) repeated in the genome. These

seeds are progressively extended into a consensus through comparisons of their copies
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in the query sequence. RepeatScout [14] and ReAS [89] have been developed imple-

menting this approach. A brief description of four major programs — RECON [104],

PILER [85], ReAS [89], and RepeatScout [14] — is given below.

1. RECON: This is a de novo approach based on single linkage clustering of pair-

wise alignments, with extensions. These extensions were (1) using multiple

alignment information to define the boundaries of individual copies of repeats,

and (2) distinguishing homologous but distinct repeat elements for the biolog-

ically reasonable clustering. The problems with the single linkage clustering of

pairwise alignments were (1) the use of overlap to infer syntopy would cause er-

ror if overlapping images were of different length, and (2) inter-family similarity

— lumping of related but distinct families together, as many of repeat families

could be evolutionary related. As a solution to these problems, the RECON uses

the collection of the endpoints in multiple alignment of the images in filtering

out elements after the initial definition. The RECON considers two elements

to be distinct if the length of non-conserved bases adds up more than certain

length of two sequences. While applying a graph based clustering, the signifi-

cant alignments between same families are represented by primary edges of the

graph, and significant alignment between different families are represented by

secondary edges. The algorithm of the RECON program works in the following

steps:

• Obtain local alignment of input sequence to itself.

• Define elements from the obtained alignment:

– First, define elements using single coverage information.

– Reevaluate elements after filtering out misleading images.

– Stabilize the definitions — if an element is split and considered to

be composite, elements forming the alignments with the composite
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elements will be reevaluated, and this process will continue until all

the definitions of the elements stabilize.

• Group elements into the families on the basis of their sequence similarity:

– Build a graph of the element–family relationship — this relationship is

determined and converted in to graph H(V ,E), where V = elements

and E = relationship, primary or secondary based on the similarity

and length of the non-conserved region.

• Find all connected components of graph H(V ,E) based on primary edges,

and for each connected component, define a family as the set of all elements

in the component.

Pros: The RECON was a significant improvement over the single linkage clus-

tering. When first reported 6 years ago, it was an important work that at-

tempted to identify the boundaries of repeats using the aggregation of endpoints

from multiple alignment. In real application it became a dominant tool, and

was used to construct the library of C.briggsae repeat families.

Cons: Though no asymptotic analysis of CPU/memory usage was given, the

approach used in the RECON was inefficient, as it took 39 CPU hours and

750 mb RAM for 9mb sequence. Also, the RECON is unable to recover highly

fragmented families in one piece, and the program can fail if its simple as-

sumption about alignment-end-clustering is violated. The program attempts to

define the boundaries based on the alignment, but the local alignment usually

does not correspond to the biological boundaries. Also, the program can not

distinguish between multi copy genes/pseudogenes, segmental duplication, and

transposons.

2. PILER: This tool also begins with comparing target DNA sequences against

itself to identify the local alignments between the regions, much similar to the
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RECON, but it differs in the process of the identification and classification of

the repeats. The PILER focuses on identifying the subsets of the hits — those

form a characteristic pattern of a given type of repeat. It uses the PALS —

a program for Pairwise Alignment of Long Sequence, optimized for aligning a

sequence to itself — to get the local alignment. The algorithm of the PILER

works in the following steps:

• Take an array c[x] of length L, where L is sequence length, and initialize

the array to 0s.

• Take each image Q in a set of images, resulted from self–alignment, and

increase c[x] by 1 at all corresponding positions of an image. Now c[x]

would have copy count of base x.

• Scan array c[x], and check for all piles — i.e. if c[x -1] = 0 & c[x] > 0, or

if x starts a new pile — and replace the c[x] with sequential pile number.

• Create a data structure for P empty piles — i.e. set of images.

• Again go through each image Q in a set, and find pile sequence number

associated to this image by looking p = c[start(Q)], and add image Q to

pth pile in the data structure P.

Pros: The PILER searches have high specificity with sensitivity that varies

with genomes. The tool avoids combinatorial explosion of local alignments

without discarding functional similarities. Also, it attempts to find the bound-

aries induced by evolutionary process or inferred from biological mechanisms in

contrast to other tools, such as RepeatFinder and RECON.

Cons: Because of using incomplete sets of overlapping hits from PALS to reduce

computational work, the PILER exhibits very low sensitivity, and, sometimes,

it also ends up misidentifying two or three concatenated instances as one.
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3. ReAS: The ReAS attempts to recover ancestral sequences for transposable ele-

ments (TE) from the unassembled reads of whole genome shotguns. In general,

in the whole genome shotgun approach, some of the unassembled reads are due

to centromeres or telomeres, but Li et al., 2005 claims that in the rice genome

many such reads are recent TE’s. Unassembled reads are the most informative

for TE recovery as they are the least diverged from their ancestral sequences.

The ReAS algorithm works in the following steps:

• Select high depth K-mers:

– The depth is the number of times a K-mer appear in the shotgun

data, the copy number is the number of times a K-mer appears in an

assembled genome, and the coverage is the depth divided by the copy

number.

• Retrieve all of reads that contain a K-mer.

• Assemble these reads in to an initial consensus sequences (ICS).

• Look for the new K-mers at both the right and the left of a consensus (i.e.

ICS), and use these K-mers as secondary seeds to iteratively extend the

ICS until no further extension are possible.

• The final consensus is a ReAS transposable element.

Pros: As the ReAS finds TE’s using shotgun assemblies, this approach may

help in reducing the error in assembling whole genome shotguns.

Cons: The ReAS works on an assumption that TE’s must exist at a high copy

number, and must not be so old that they are no longer recognizable. This

high copy number assumption is a big constraint for the ReAS. For example, if

we look at RepBase TE’s, only half of the 17-mers have the depth of 14 — as

per the settings which were used for the rice genome — so the other half could

never been recovered by the ReAS.
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4. RepeatScout: This tool is a de novo method to find the set of repeat families

by extending the seed-motifs to the longer sequences. This tool uses high fre-

quency l-mers — short sequences of length l — as the seed-motifs, and greedily

extends each seed motif to a progressively longer sequence, following the dynam-

ically inferred alignments between the consensus sequence and its occurrences

in a genome. The RepeatScout utilizes an efficient method of similarity search,

and enables a rigorous definition of the repeat boundaries. The algorithm works

in the following steps:

• Find all l-mers of a given length.

• Align the sequences having a l-mer by greedily extending 1 bp at a time.

• Discard a sequence after it stops aligning with the consensus.

• Stop extending when the most sequences no longer align.

• First extend in the right of a l-mer, then extend in the left in similar way.

Pros: The RepeatScout enables a rigorous definition of the repeat boundaries.

The tool works in orders of magnitude faster as compared to other tools like

the RECON and the RepeatFinder. Also, it is more sensitive to the RECON,

as more than 4% of the C.briggsae genome was identified as repeat which was

missed by the RECON.

Cons: The identification of the repeats depends on the fixed size of a complete

l-mer. In such case, it would not be possible to recover ancient repeats because

those got decayed too much, and no complete l-mer could be chosen for the

extension. In locating the repeats, the performance of the RepeatScout fully

depends on the RepeatMasker. Also, like the RECON, the RepeatScout cannot

distinguish between the multi copy genes/pseudogenes, segmental duplication,

and transposons.
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De novo repeat identification methods are powerful because they generate a

catalogue of repeats present within a query sequence without a priori knowledge of

their characteristics and classification. A major pitfall of these approaches is that

they can only be applied to queries representing considerable sequence data, such as

whole–genome shotgun sequences. A related problem is the identification of low copy

number repeat families. This is because of the increasing number of false positives

— including host–gene families and segmental duplications — as the copy number

cutoff of the program is decreased. De novo repeat identification programs will also

tend to miss or split composite repeats — i.e. repeats made of several independently

repeated units — or families with highly variable structure.

1.5 Transposable elements and regulatory networks

Barbara McClintock discovered transposable DNA elements early in her ca-

reer [23], for which she was recognized with Nobel prize in 1983. The TE’s are major

components of eukaryotic genomes, contributing about 50% of the size of mammalian

sequences. It has been known for a while that in order to survive transposable ele-

ments replicate themselves faster than the host that carries them, and move around

to different positions within the host genome. Many scientists regarded the TE’s as

“junk” DNA, genomic burden, unnecessary ballast, selfish DNA, or a parasite, but the

real functions of transposable elements remain poorly understood. In recent studies,

the earlier notions about the TE’s have been expanded, and it has been proposed

that they have been a significant source of transcription regulatory signals [21, 26].

Some of these studies [80, 21, 81, 54, 17, 71, 26] have suggested that TE’s have also

had a key role in the evolution of eukaryotic gene regulation. These studies have

elucidated several ways in which TE’s can influence the expression of a nearby gene.

Moreover, a large number of regulatory elements, including the signals which are nor-
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mally used by TE’s to control their own expression and several TF binding sites, have

been identified in active TE’s, or in computationally reconstructed sequences of TE’s.

In addition to creating new regulatory networks the replications and movements of

TE’s may rewire the existing ones, too. The TE-mediated shuffling and duplication

of cis-regulatory elements is one way to modify an existing genetic network [33].

1.6 Our contribution

With the availability of sequences of a large number of eukaryotic genomes over

the last several years, the efforts to characterize non-coding functional DNA elements

have intensified [98]. Comprehensive studies of the effectiveness of many motif-finding

tools [63, 70] have shown that while there has been some success in the binding site

recognition, the existing methods are not nearly satisfactory. Our ability to predict

and identify TF’s binding sites in DNA sequences is significantly limited, possibly

because of the following:

• These sites may be proximal or distal — their locations are not well understood

yet.

• The length of transcriptional protein binding sites is usually very short.

• Gene regulation may also depend on the spatial configuration of DNA and other

epigenetic phenomena.

• An isolated site may have no regulatory function.

• Detection of motifs through over-representation or conservation may be ham-

pered by pieces of randomly repeated/conserved sequences.

• Transcription factors generally feature very non-specific binding preferences [59],

and that permits for wide variations in the motif consensus, making it difficult

to isolate the motifs.
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The solution to some of these issues may lie in the simultaneous study of a large

number of closely related sequences, which are becoming increasingly available [74].

This was one of the major methods of the ENCODE project [97, 98], which in its pilot

phase aimed at the development of high–throughput techniques for the classification

of DNA elements within a set of target regions, comprising approximately 1% of the

human genome.

It is intuitive that if a group of genes is coordinately regulated, it should be con-

trolled by the same transcription factors. Though we are not still clear how important

are DNA motifs per se, common wisdom is that DNA–protein binding activity, to a

great extent, is directed by these motifs. Consequently, the same motifs should be

present in all observed upstream regulatory sequences of coordinated regulated genes,

moreover as a cluster, or multiple clusters representing targets for the transcriptional

initiation complexes [19, 77, 90]. This assumption has led to the exploitation of motif

over-representation in the target regions.

As a part this thesis, we present an efficient algorithm to find all significant

variable motifs in given sequences. Our approach is motivated by the consideration

that it is better to detect every motif which appears statistically significant, and upon

which separate selection criteria can be applied depending on the nature of the sites

one wants to locate. We have written a software MotFi which efficiently searches

through multiple upstream sequences and lists all the significant degenerate motifs

shared within subsets of these sequences. The underlying algorithm of this software [8]

is described in the Chapter 2 of this thesis, and our software is publicly available on

our webserver. MotFi takes an input file with sequences in Fasta format, finds the

list of significant motifs, and generates a PDF file showing the visualization of the

spatial distribution of selected motifs in the input sequences. In order to have a better

insight about the functions and possible biological properties of the listed motifs, our
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server also supports the matching of the reported motifs in RepBase and JASPAR

databases. For detecting weak similarities in many sequences our algorithm favorably

compares to other methods, such as Gibbs sampling [27] (as our method can rapidly

detect all the significant motifs) or the BEST [28] suite of tools (featuring better

sensitivity in our tests on known regulatory motifs described in TRANSFAC [99]).

While working on the MotFi software, we realized that any given selection crite-

ria returns too many results. More puzzling was the observation that a large number

of listed motifs showed extremely significant p-values. Though we primarily intended

to develop software to locate the significant motifs based on their over-representation

in the given upstream DNA sequences, we have also attempted to understand why

every search for over-represented motifs returns many results, and why every motif–

finding software often apparently fails in locating the real elements. We have thus

performed a systematic study of the repetitive structure of DNA and the distribution

of short motifs in human genomic sequences. In most higher eukaryotes, about half

of the genome consists of known repeated elements, and we demonstrate that in ad-

dition to these known repeats human genomic sequences feature many short motifs

which are significantly over-represented, as well as that their frequency varies only

slightly between random repeat–masked sequences and regions located immediately

upstream of the known genes. It is well known that even non-functional parts of

a genome are not a random assembly of four letters, so the analysis of statistical

features of DNA sequences often involves a non-trivial background model, such as

these based on Markov models or hidden Markov models. We have done extensive

simulations [4, 6] in which the number of repeated elements in randomly generated

synthetic sequences was almost perfectly conforming to the Poisson expectation, but

the number of repeated motifs in repeat–masked random intergenic DNA was far

greater than expected. In consequence, any search for over-represented sequences is
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bound to return many results. Depending on what we search for, most would likely be

false positives. This analysis of repetitive structure and distribution of short motifs

in selected part of the human genome [4, 6] is included in the Chapter 3 of this thesis.

After looking at the distribution of short motifs, we have also attempted to an-

swer the following question. It is well known that around 50% of the human genome

consists repeated DNA and less than 5% is known to be under evolutionary (and

thus presumably functional) constraint, so where does remaining 45% DNA in hu-

man genome come from? In an effort to answer this question we have postulated that

most of such DNA is a result of ancient transpositional activity (the segmental dupli-

cation could have also played a role), with copies becoming so broken over time that

they cannot be recognized as such any more. These broken copies of repeated long

DNA elements could result in the over-representation of short motifs we have seen in

human genomic sequences. We have developed an algorithm and written a software

tool, RepFi, which efficiently associates these significantly repeated short motifs and

locates possible ancient repeats. The underlying algorithm of RepFi has been de-

scribed in [5, 2]. The RepFi software attempts to mutually associate groups of short

significantly over-represented motifs readily found throughout genomic sequences, and

construct the consensus of large substantially broken blocks. Our results have been

encouraging, and our simulations have confirmed some of our expectations. This work

is included in Chapter 4 of this thesis. In Chapter 5 we have presented a method to

reconstruct the consensus sequences of the broken repeated elements and to classify

them as transposable elements by integrating our approach with a previously devel-

oped computational tool for the classification of repeated elements [72]. We have

also attempted to find unknown repeats in the entire repeat-masked human genome

and we have built a library of consensus sequences of these repetitive segments. We

believe that our RepFi software would prove to be a useful tool for the identification
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of ancient (broken) transposable elements, those which could have not been located

yet, in the human and other genomes. According to a recently proposed model of

transposable elements, TE’s have been a significant source of transcription regulatory

signals [80, 21, 26], and the alignment of human genomic sequences to their ortholo-

gous regions in other mammals have provided an estimation of TE exaptation which

reveals that fixed TE sequences have indeed been under functional constraints [26].

In view of these studies, the identification and characterization of the broken genomic

repeats may benefit further genomic research.



CHAPTER 2

IDENTIFICATION OF SHORT OVER-REPRESENTED VARIABLE
MOTIFS IN REGULATORY SEQUENCES

Gene expression is regulated by a complex mechanism involving binding of nu-

merous transcription factors to sites often, but not always, found in the relative prox-

imity to the gene. Because of the protein interactions taking place in cis–regulation,

their DNA binding sites have been postulated to be multiplied and clustered in these

areas. Over the last several years the search for functional elements in human and

other genomes by exploiting motif over-representation became increasingly popular.

As discussed in the previous chapter, many methods have been developed for predict-

ing the candidate motifs of the transcription factor binding sites. With the increased

interest in the search for non–coding functional elements in newly sequenced genomes,

the effectiveness of many motif–finding tools has also been evaluated [63, 70]. Not

surprisingly, this evaluation has shown that, while there has been some advancement

in binding site recognition, the existing methods are not nearly satisfactory, and given

the properties of genomic sequences this is not unexpected. In this chapter, we de-

scribe a new efficient algorithm for the identification of significant variable motifs in

the given upstream sequences of co-regulated genes based on motif repetitions. We

have developed methods for the characterization and visualization of these motifs,

and for relating the layout of the site clusters in the promoter regions of different

genes.

We have attempted to characterize the upstream promoter regions of several sets

of known duplicated and co-expressed genes, estimating the similarity of the module

layout, and relating it to the environment found in presumably neutral segments of

24
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DNA. In order to avoid over-reliance on either known regulatory motifs (which may

be limiting, or even misleading) or extensive sequence conservation (which may be

difficult to detect in extensively rearranged sequences), we opted for an approach that

builds the list of repeated candidate sites, then filters out those which are unlikely

to have been repeated due to a functional constraint (i.e. not at random). This

approach thus allows for independent cross–validation with other methods, and may

also point to other previously undescribed but significant features present in the

promoter regions.

In our approach we aim to detect everything that appears significant and then

process the results looking at the number of regions sharing the motif, motif com-

position , database hits, clustering patterns, or positional conservation. The lat-

ter can be sometimes used to locate the motifs using sequence alignments. How-

ever, this approach is vulnerable to the quality of the alignment, and may miss

quite a few positionally conserved elements simply by not aligning them precisely on

the top of one another. We have thus developed a software MotFi which searches

through gene regulatory sequences and lists all significant variable motifs shared

within subsets of these sequences. This software is available for public use, on a

webserver (http://bioinformatics.uta.edu/toolkit/motifs) and for download (http:/

/bioinformatics.uta.edu/toolkit/download). Our algorithm favorably compares to

other methods for detecting weak similarities in many sequences, such as Gibbs sam-

pling [27] (as it can rapidly detect all significant motifs) or the BEST [28] suite of

tools (featuring better sensitivity in our tests on known regulatory motifs described

in TRANSFAC [99]). In identifying the significant variable motifs, over-representation

of motifs, either within a single putative promoter region or within multiple promoter

regions of co-expressed genes was our primary guide.
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2.1 Estimating the over-representation of motifs

In order to understand and estimate the over-representation of repeated motifs,

we focused primarily on the answers to three questions:

1. How many times will a pattern of n characters show up in a sequence of length

l characters, solely due to chance?

2. How many distinct patterns of n characters will show up m times in a sequence

of length l characters, by chance?

3. What should be the minimum length l of a sequence to expect a chance occur-

rence of a pattern of n characters at least twice?

To answer the above questions we used Poisson distribution. Let P (n) be the proba-

bility of occurrences of a pattern of n characters, and λ be the rate of occurrence in

a sequence of l characters.

P (n) =

(

1

4

)n

(2.1)

λ = Total occurrences X Probability (2.2)

= l

(

1

4

)n

(2.3)

Using the Poisson density, we can compute the probability of m occurrences of this

pattern in l characters of the sequence:

P (λ,m) =
λme−λ

m!
(2.4)

The m patterns of n characters would comprise m times n characters out of l char-

acters of the sequence. So, we can compute the probability P of such patterns:

P =
mn

l
=

(

1

4

)n

(2.5)

m =
l

n

(

1

4

)n

(2.6)

We know that the total number of possible distinct patterns of n characters can be

4n; hence, the rate of occurrence of these patterns in l characters of the sequence, λ,
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will be l
4n . Thus, we can compute the probability of a pattern of n characters in l

characters of the sequence:

P (λ,m) =
λme−λ

m!
(2.7)

Since we know the total number of possible distinct patterns of n characters is 4n,

we can compute the number of such distinct patterns, N , appearing m times in l

characters of the sequence:

N =

[

λme−λ

m!

]

4n (2.8)

If we expect at most p% chance of seeing a n character pattern at least q times (where

q ≥ 2) in l characters of the sequence, then,

λ =
l

4n
(2.9)

P (x ≥ q) = 1− P (x = 1)− P (x = 0) (2.10)

= 1−
λ1e−λ

1!
−

λ0e−λ

0!
(2.11)

= 1− e−λ(λ + 1) (2.12)

= 1− e−
l

4n

(

l

4n
+ 1

)

(2.13)

= 1− e−
l

4n

(

l

4n
+ 1

)

≤
p

100
(2.14)

Using the above equation, we can estimate l, the length of input sequence, based on

at most p% expected chance of seeing a pattern of n characters at least q times in

the sequence.

Even assuming a pure Poisson model discussed above, the number of short

repeats expected by chance is large in any significant sequence interval. Ideally, when

examining m upstream sequences of related genes we would like to set the length such

that m or more occurrences of even a short motif would be significant. Unfortunately,
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Table 2.1. Maximal size Li of individual upstream regions necessary to guarantee 0.01
level significance for a motif of length k repeated m or more times in n sequences.

k = 3 k = 4 k = 5 k = 6 k = 7 k = 8
m = 2 4 19 76 304 1216 > 2000
m = 3 9 37 148 595 > 2000 > 2000
m = 4 13 52 210 843 > 2000 > 2000
m = 5 16 65 261 1047 > 2000 > 2000
m = 6 19 76 304 1218 > 2000 > 2000
m = 7 21 85 340 1363 > 2000 > 2000
m = 8 23 92 371 1487 > 2000 > 2000

as shown in Table 2.1, the sequence lengths needed to assure 0.01 significance of a

motif of length k in m different segments, if it occurs m or more times, would be

unacceptably short. If we would want to include all bases upstream of the genes

likely to contain regulatory signals the observed sequences would become so long that

a short motif would need to be excessively redundant in order to be recognized as

significant. With these sequence lengths many more motifs would start showing up by

chance. If we consider a 5’ regulatory region of a gene to consist of about 500 bases,

then the minimal length of a detectable motif is about 6. These are the numbers for

exact repeats — if we permit some variability then we would be forced to either look

at much shorter regions, include more co-regulated genes (if any), or seek long motifs

only.

2.2 Validating the estimation of the over-representation model

In order to validate the Poisson distribution based model of the over-representation

of motifs (discussed in section 2.1), we have performed a study of the distribution of

these motifs in human upstream sequences along with synthetic random sequences

and random genomic sequences. The synthetic random sequences have been generated

by a computer program using four letters A, C, G and T; random genomic sequences
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Figure 2.1. Expected and actual occurrences of short repeated motifs of length 5 in
synthetic random sequences.
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Figure 2.2. Expected and actual occurrences of short repeated motifs of length 5 in
random genomic sequences.

are intergenic, interspersed element free sequences extracted from ENSEMBL [35];

and human upstream sequences are upstream sequences of known human genes. We

used the Poisson distribution based model — discussed in section 2.1 — to calculate

the expected number of repeats. The Figures 2.1, 2.2 and 2.3 show the graph of

expected and actual numbers of occurrences of 5 base long motifs (on Y axis) versus

the number of repeats of 2, 3,..,10 times (on X axis) in two 1000 base long samples

of random synthetic, random genomic and human upstream sequences respectively.

Figures 2.4, 2.5 and 2.6 show the same distribution for motifs of length 8.

From the results of this experiment it is quite evident that the nature of the

distribution of short repeated motifs is different for all three types of sequences con-
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Figure 2.3. Expected and actual occurrences of short repeated motifs of length 5 in
human sequences upstream of several known genes.
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Figure 2.4. Expected and actual occurrences of short repeated motifs of length 8 in
synthetic random sequences.

sidered in our experiments. In synthetic random sequences the actual occurrence of

short repeated motifs conforms well with the Poisson distribution, validating the es-

timation of over-representation based on Poisson distribution. However, in the case

of random genomic sequences and upstream sequences of the genes the actual occur-

rence deviates from the Poisson distribution. Chapter 3 includes an extensive study

of structure and distribution of short repetitive motifs in different kinds of sequences.

We believe that the deviation in actual occurrences of short repeated motifs

against the Poisson distribution expectation has biological significance, since the na-

ture of the repeats is not random. Thus, in this chapter we focus on a study of short

repeated motifs in upstream sequences of several sets of co-expressed genes. We have
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Figure 2.5. Expected and actual occurrences of short repeated motifs of length 8 in
random genomic sequences.
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Figure 2.6. Expected and actual occurrences of short repeated motifs of length 8 in
human sequences upstream of several known genes.

developed an algorithm and designed software, MotFi, based on this algorithm to

identify the most significant variable motifs in the given sequences.

2.3 Algorithm

Our algorithm receives a set of sequences — in which significantly over–represented

motifs should be identified, and outputs the list of the motifs filtered by user–definable

criteria. These criteria include the following parameters: minimal motif length, min-

imal number of input sequences where the motifs are present , likelihood of their

occurrences by chance, and the permitted degeneracy — the minimal percentage of

conserved bases in all occurrences of a motif. This output can be further processed
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by a set of tools which we have developed — such as cross–matching, filtering, graph-

ical representation of motif positions, and finding hits in the RepBase and Jaspar

databases. We start by identifying all exact repeated strings of length 2 or more

in the input sequences on both strands. Using these exact repeats strings as seed

sequences, we attempt to identify the variable repeated motifs.

2.3.1 Identification of the exact repeated seeds

To identify the exact repeated seed sequences in the given sequences, we use

the suffix tree data structure — the concept was first introduced as a position tree

by Weiner in 1973 [82]. The construction of the suffix tree was greatly simplified by

McCreight in 1976 [34], and also by Ukkonen in 1995 [39]. Ukkonen provided the first

linear-time online-construction of suffix trees, now known as Ukkonen’s algorithm.

The suffix tree is a well known method, and widely used in similar applications [12,

41, 43, 38, 65, 24, 42, 29].

A suffix tree is a data-structure which stores all suffixes of a string in a graph

theoretic way. If S[1..n] = s1s2...si...sn is a string, then Si = sisi+1...sn is the suffix

of the string S that starts at position i. The suffix tree T for the string S[1..n] is a

rooted directed tree with n leaves, and defined as a tree such that:

• There is one to one relationship between the suffixes of S and the paths from

the root to the leaves in T .

• All internal nodes in T have at least two children — outgoing edges, with each

outgoing edge leveled with different characters of a suffix Si of the string S[1..n].

• Each edge in T spells a non-empty string.

In order to insure that no suffix is a prefix of another, a terminal symbol— other than

the characters of the string S[1..n] — is added at the end of the string S[1..n]. For a
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string S of length n, there can be at most n−1 internal nodes, and n+(n−1)+1 = 2n

total nodes, as all internal non-root nodes are branching.

In our implementation of the suffix tree for multiple DNA sequences — as these

sequences comprise of four letters A, C, G, and T — we used nodes in the graph with

four outgoing pointers and one incoming pointer. We considered the link–list of such

nodes as an edge of the graph. Before building the list of suffixes, we appended each

input DNA sequence with a special terminal symbol. While searching the suffix tree

for the exact repeat strings and their positions in the sequences, we exploited these

special terminal symbols — present on the edges of the tree — to find the ends of

the input sequences. We have developed an efficient tree traversal algorithm in which

each node is visited only once to find all exact repeat strings and their coordinates in

the input sequences. The algorithm is based on an elegant use of indexing and stack

implementation, and it works in two phases: forward action and backward action.

During forward action, it recursively traverses the tree, and records each character

of the path in a stack, along with the information about the terminal symbol, if any,

associated to a character. The stack based data structure, in addition to recording the

characters of the graph edges, also includes two arrays linked to each character — one

for recording the sequence ID of a terminal symbol, if any, associated to the character,

and the other for recording the distance of the character from the ends, where terminal

symbols are present. This data structure also records if there is a branching in the

suffix tree at any character. The branching represents internal nodes of the suffix

tree. Once forward action is completed for a path of traversal, virtually hitting the

endpoint, the backward action uses the information stored in the stack based data

structure, and starts removing the characters one by one — based on last in first

out — and copying the contents of two arrays to the next character. However, the

contents of the array having the distances from the ends are increased by one before
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Table 2.2. Variables used in Algorithm 2.3.1

Temp Pointer to start tree traversal
StackTop Variable for stack top, initialized to zero
STACK Stack data structure (array) to store the symbols
Seq A list associated to each symbol in STACK to store sequence id
Pos A list associated to each symbol in STACK to store position index
Symbol A character variable to record sequence characters ‘A’, ‘C’, ‘G’, and ‘T’
TerminalSymbol Variable for special characters appended to each sequence
StringSymbol Variable for the four sequence characters ‘A’, ‘C’, ‘G’, and ‘T’
TerminalSymbol−
SequenceID Variable for the sequence id corresponding to a terminal symbol
NumOfBranches Number of branches at a node in the suffix tree
ExactRepeatString String variable to store exact repeated string

copying them to the array of the next character. The schematic representation of the

data structure is shown in Figure 2.7, the pseudo-code of the tree traversal algorithm

is shown in Algorithm 2.3.1, and the list of variables used in this algorithm is given

in Table 2.2.

2.3.2 Identification of the variable motifs

After the original list has been built, we identify the repeats which co-occur

at least twice, at a constant distance, and name them potential mates. We use all

sites of co-occurrence to build the putative consensus sequence of the variable motif

according to the following rules:

1. If the bases at the m-th positions of all loci where the mates have been found

are identical, we choose the uppercase character in the consensus, and we record

the number of loci as the number of conserved characters.

2. If there is a majority base at the m-th positions of all loci of co-occurrences, we

choose the lowercase character in the consensus, and we record the number of

occurrences of the majority base as the number of conserved characters.
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Algorithm 2.3.1: Suffix Tree Traversal(Temp)

//Forward action
Visit node Temp

STACK[StackTop].Symbol ← Temp.StringSymbol
if TerminalSymbol exists-at-node Temp

do























n ← 0
for each TerminalSymbol at-node Temp

do







STACK[StackTop].Seq[n] ← TerminalSymbolSequenceID
STACK[StackTop].Pos[n] ← 0
n++

if Branching exists-at-node Temp

do







































































































































if NumOfBranches >= 2
do

{

STACK[StackTop].Branch ← TRUE
for each Branch B

do















































































































StackTop++
Suffix Tree Traversal(B)
//Action after returning from recursive call.
//Backward action
if STACK[StackTop].Branch == TRUE

do















ExactRepeatString ← STACK[0..StackTop].Symbol
for each SequenceID S in STACK[StackTop].Seq[ ]

do

{

RepeatPosition-in-Sth-Sequence ← ((Length-of-Sth
-Sequence) - (StackTop+1+ STACK[StackTop].Pos[indexS ]))

//Move the lists from StackTopth position, and append them to the lists at
// StackTop-1th position.
for each SequenceID S in STACK[StackTop].Seq[ ]

do

{

STACK[StackTop-1].Seq[index′

S
] ← STACK[StackTop].Seq[indexS ]

STACK[StackTop-1].Pos[index′

S
] ← STACK[StackTop].Pos[indexS ]+1

Initialize STACK[StackTop] along with lists at StackTopth location.
StackTop− −

3. If the m-th position of all putative consensus locations does not feature a ma-

jority base, we assign ‘N’ to that position and record the number of occurrences

of the most common base as the number of conserved characters1.

We then determine whether the percentage of conserved characters exceeds a given

threshold (95% in our tests). If that holds, we accept the consensus and attempt

1Alternatively, we could have used the information content, but it would not be of much help

unless we could confirm a bias in the overall distribution of bases.



36

Figure 2.7. An example of strings, suffixes, suffix tree, and tree traversal data-
structure. This figure shows three sequences — S1, S2, and S3 — their suffixes,
suffix tree, and the data structure, as used by Algorithm 2.3.1, to traverse the suffix
tree while identifying the exact repeat strings in the given sequences.

further refinement by recursively searching for additional elements co-occurring with

the newly built consensus. The identification of pairs can be efficiently done with the

help of an indexing scheme shown in Figure 2.8.

Finally, we combine the consensus motifs with the remaining exact repeats,

reindex the list, and attempt to collapse substantially overlapping elements. This is

necessary because components of the motifs may have separate occurrences elsewhere,

and thus could have been identified as separate, distinct repeats. If these separate

occurrences of the motifs permit, their inclusion in the broader consensus is done

now. A high–level pseudo–code of our approach is shown in Algorithm 2.3.2, and the

list of variables used in this algorithm is given in Table 2.3. This algorithm extends

the variable motifs until a given threshold for motif score and p-value are satisfied,

and build their consensus.
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for each repeat

List of repeats

Index array, listing the repeats starting at each position in the original sequence

List of positions

Figure 2.8. A schematic representation of the indexing to find neighboring repeats.

Table 2.3. Variables used in Algorithm 2.3.2

num repeats Number of repeats
num positions Array for number of repeat positions for each repeat
num motifs Number of motifs
seed Exact repeated string
max gap size Maximum gap between two exact repeated seed strings

2.3.3 User–definable significance criteria

Our algorithm finds all repeated motifs with user–definable significance criteria,

which includes length of consensus, repeat count, sequence sharing, motif p–value,

and significance score. The maximal allowable distance between the anchoring exact

repeats is also a parameter to the program, and by default set to 3. No motif copy is

lost until the final filtering of the list; however, those which partially overlap and fail

to create a consensus scoring above the threshold will be considered separate motifs,

and may not be sufficiently significant to be reported. The program uses Shannon’s

uncertainty, by default set to 1.5, to filter out simple motifs, as an optional parameter.

Our program also includes an option to search the motifs in both strands of DNA.
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2.3.3.1 Computing significance score for a motif consensus

To establish how significant a motif consensus is, we associate a significance

score to it which represent the motif strength between 0 and 1. We calculated this

score based on the nucleotide bases participating in the consensus building. Assume

that the two given exact strings S1 and S2, of length l1 and l2, respectively, are

present together separated by a gap g at all n different occurrences in a given set

of DNA sequences, serving as the left and right anchors of a broken sequence motif.

We attempt to build the consensus among all these n co-occurrences of the broken

sequence motif. Assume that the motif consensus sequence is given by C0C1C2...CL−1,

where L denotes the length of the motif. One such example is given below:

Let us assume that S1 = ACT, S2 = TAT, g = 3, and n = 5.

⇒ l1 = 3, and l2 = 3

⇒ L = l1 + g + l2 = 3 + 3 + 3 = 9

ACTTACTAT : motif sequence at occurrence 1

ACTTCATAT : motif sequence at occurrence 2

ACTTACTAT : motif sequence at occurrence 3

ACTCAGTAT : motif sequence at occurrence 4

ACTGGATAT : motif sequence at occurrence 5

—————————

ACTtaNTAT : Consensus motif sequence

Assuming Mi,j | 0 ≤ i < n and 0 ≤ j < L represents an element (i.e. character)

in a matrix M of nucleotides participating in the consensus building for a given motif

m. The consensus sequence C0C1C2...CL−1 of motif m is built by choosing the most

frequent (i.e. majority) nucleotide base at jth column of the matrix M ; however in

cases of ambiguity, we choose “N” as a wild-card character. We denote the significance
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score of m as Score(M). In order to compute the Score(M) for a motif consensus m,

we count the frequency of the character Cj in the jth column of the matrix M , and

sum these counts together for all the characters in the consensus (i.e. 0 ≤ j < L) to

get the count of significant characters in the matrix. In case of wild-card character

“N” in the consensus, we add the frequency of any one of the characters causing

ambiguity at the jth column of the matrix M to the count of significant characters,

and, finally, divide this count by the total characters in the matrix. The mathematical

formula for Score(M) is given below:

Score(M) =
Significant characters in M

Total characters in M
(2.15)

=

∑L−1
j=0

∑n−1
i=0 Freq(Cj)

nL
(2.16)

=

∑l1+g+l2−1
j=0

∑n−1
i=0 Freq(Cj)

n(l1 + g + l2)
(2.17)

=
l1n +

∑l1+g−1
j=l1

∑n

i=0 Freq(Cj) + l2n

n(l1 + g + l2)
(2.18)

=
n(l1 + l2) +

∑l1+g−1
j=l1

∑n−1
i=0 Freq(Cj)

n(l1 + g + l2)
(2.19)

2.3.3.2 Estimating p–value for a motif

In order to compute the probabilistic significance of a motif, we used Poisson

probability distribution (as shown in Equation 2.4) to model the motif occurrences,

and computed the P-Value, the probability that these occurrences of the motif have

arisen by pure chance. For a motif having m occurrences, this P-Value is given below:

P-Value = 1− Sum of probabilities of 0 to m-1 occurrences (2.20)

= 1−
m−1
∑

i=0

P (λ, i) (2.21)

= 1−

[

λ0e−λ

0!
+

λ1e−λ

1!
+ ... +

λm−1e−λ

(m− 1)!

]

(2.22)
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2.3.3.3 Computing uncertainty associated to a motif

As mentioned earlier, we have used Shannon’s uncertainty to filter out the

simple motifs. Assuming Nb is the count of the base αb in a motif mi, where αb ∈

{A,C,G, T}, and N is the sum of the counts of all four bases. The uncertainty H(mi)

for a motif mi is given below:

H(mi) = −

T
∑

b=A

P (αb) log2 P (αb) (2.23)

= −

[

NA

N
log2

NA

N
+

NC

N
log2

NC

N
+

NG

N
log2

NG

N
+

NT

N
log2

NT

N

]

(2.24)

We calculate the uncertainty associated to each motif in the list, and filter out the

motifs which have uncertainty more than a given value, as provided by the user. This

approach enables us to filter-out all simple sequences from the list of motifs.

2.3.4 Algorithm performance

Our algorithm to identify variable motifs works in several phases. Although

it is very difficult to estimate its performance in a closed form, the running time of

the algorithm is the sum of the processing of the suffix tree and the building of the

consensus sequences of variable motifs. If we denote the number of sequences in the

input by s, and their maximal length by L, then we need O(sL) time to identify

the original (anchoring) exact repeats. However, we also need to maintain records

of all their positions. This adds another complexity factor of q, the total expected

number of positions featuring an occurrence of a repeat. The estimation of q under

the Poisson model is given below:

Total patterns of i bases = 4i (2.25)

λ =
L

4i
(2.26)
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P (λ, j) =
λje−λ

j!
(2.27)

Patterns of i bases with j occurrences = (Total patterns)P (λ, j) (2.28)

= 4i

(

λje−λ

j!

)

(2.29)

Total positions of occurrences = (Occurrences)(Patterns) (2.30)

Positions of j occurrences of i bases = j4i

(

λje−λ

j!

)

(2.31)

Positions of all occurrences of i bases =
sL
∑

j=2

j4i

(

λje−λ

j!

)

(2.32)

= 4i

(

sL
∑

j=2

j
λje−λ

j!

)

(2.33)

Let all positions of pattern occurrences = q (2.34)

q =
L
∑

i=2

4i

(

sL
∑

j=2

j
λje−λ

j!

)

(2.35)

=
L
∑

i=2

4i

(

sL
∑

j=2

j

(

L
4i

)j
e−

L

4i

j!

)

(2.36)

=
L
∑

i=2

4i

(

sL
∑

j=2

(

L
4i

)j
e−

L

4i

(j − 1)!

)

(2.37)

The expected number of repeats or patterns (each counted only once) is estimated

using Equation 2.8, as shown below:

Let expected number of patterns = r (2.38)

Patterns of i bases with j occurrences = 4i

(

λje−λ

j!

)

(2.39)

Patterns of i bases with all occurrences =
sL
∑

j=2

4i

(

λje−λ

j!

)

(2.40)

= 4i

(

sL
∑

j=2

λje−λ

j!

)

(2.41)
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All expected patterns =
L
∑

i=2

4i

(

sL
∑

j=2

λje−λ

j!

)

(2.42)

r =
L
∑

i=2

4i

(

sL
∑

j=2

λje−λ

j!

)

(2.43)

=
L
∑

i=2

4i

(

sL
∑

j=2

(

L
4i

)j
e−

L

4i

j!

)

(2.44)

While it is difficult to express these estimates in a closed form, our simulations over

relevant ranges have shown that r was bounded by sL, and q was slightly super-linear

to sL (the function we compared it with was logarithmic).

Locating the mates and extending the repeat consensus is primarily dependent

on r, since we need to make an attempt for each repeat in our list. If g is the number

of positions we allow to separate exact repeats (while still considering them mate

candidates), h is the number of repeats examined (and thus the upper bound to the

number of mates themselves) and ri is the number of occurrences of one repeat R,

the time necessary to examine the neighborhood at every occurrence of R is
∑ri

j=1 hs.

Although ri can theoretically be as large as sL, in practice it would be around q/r

on average. If T0 is the time necessary to recursively refine and extend the initial

consensus whenever a co-occurring pair is found, the time necessary to handle the

neighborhood of one repeat R is bounded by ghT0
∑ri

j=1 hs. As we look for variable

motifs with only a very limited number of spaces between their conserved parts, we

can consider g as a constant. Due to our indexing scheme (Figure 2.8), the same

applies to h. However, for each repeat we still need to look at all of its occurrences.

The estimate for T0 is similar to the time needed to build the original consensus, i.e.

proportional to ghT1
∑ri

j=1 hs, where T1 is the complexity of further extensions. Since

a large number of extensions would imply very large motifs, which are rare under the

conditions in which this program has been designed to run, we can consider it as a
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very small constant (2 to 3) on average. We shall denote this value by t. The total

execution time for the location of mates and building consensuses for one repeat is

thus O((q/r)t), on average. This cost would apply to all r repeats, so the total cost

of forming initial motifs would be O(r(q/r)t).

The final refinement step will on average take time proportional to the final

number of motifs. The creation of each consensus can potentially add another repeat

to our list if these identified as mates also have separate occurrences that cannot

be merged. Consequently, the number of motifs can grow as large as O(r(q/r)t).

However, due to the re-indexing step before the refinement, this last step can be done

in time proportional to the number of motifs. Since any motif that has been merged

ceased to exist independently, multiple iterative refinements in this step cannot add to

the complexity. The total time needed for the execution of our algorithm, on average,

is thus O(r(q/r)t).

The space needed is dominated by that necessary to store all original repeats

and the discovered consensus motifs, since the suffix tree uses space proportional to

the number of its leaves, sL. As the number of motifs cannot exceed the time needed

for their discovery, the space requirement is also O(r(q/r)t).

Usually t, the exponential factor in our estimates, will be very small (2 or 3),

and q/r (the number of occurrences of an average repeat) is a small number, too, so

the algorithm would be efficient. However, there are some real–world scenarios under

which our program would not perform well. If the sequences examined consist of,

for instance, ALU repeats or nearly identical genomic regions, this would result in

many extensions, and consequently very large values of t. This would lead to poor

performance in terms of both time and space. Fortunately, such sequences are simple

to detect and filter before the program is applied, and we have not encountered this

problem in practical runs.
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2.4 Applications

In order to study the performance of our software, we looked at several eukary-

otic datasets, including the CAVEOLIN cluster and MLL target genes.

Our first dataset was taken from the caveolin gene regions of 8 vertebrates.

Caveolins encode integral membrane proteins that act as scaffolds to sequester and

organize lipids and proteins in signaling complexes [36]. Their expression is highly

regulated, and CAV1 and CAV2 are target genes for PPARγ. However, previous stud-

ies were unable to identify sequences matching the DR-1 consensus binding element

(AGGTCAnnnAGGTCA) of the PPARγ/RXR heterodimer. Indeed, we have found

only a fraction of this element, as motif AGGTCACNNAGC, repeated twice in the

upstream sequences of CAV2 and CAV3 genes.

We first concentrated on the upstream regions of CAV1, CAV2 and CAV3 genes

in the human sequence. With the shortest reportable motif length set to 5, consensus

strength at 0.95 and the likelihood of occurring by chance at less than 0.01, there were

416 significant motifs occurring in at least 2 out of 3 sequences, and 126 occurring in

all 3. With these numbers in mind, we were interested to determine if any of these

motifs were phylogenetically conserved.

Table 2.4. The number of significant short variable motifs discovered in the (left)
promoter sequences of 8 vertebrate CAV1 genes, and (right) 8 random synthetic 4-
letter sequences, under various stringency levels: the columns represent the minimal
number of motif occurrences and the rows show the minimal motif length.

4/8 5/8 6/8 7/8 8/8 4/8 5/8 6/8 7/8 8/8
5 231 127 92 44 23 100 73 45 21 19
6 224 111 71 35 18 99 72 42 19 18
7 194 93 57 29 13 92 66 39 16 17
8 159 59 29 11 1 74 41 26 4 1
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Table 2.5. Highest scoring repeated motifs found in the upstream sequences of cave-
olin genes. SH — significance in homology; SP — significance in paralogy; OC —
occurrences, homology; OP — occurrences, paralogy

Consensus SH SP OH OP TRANSFAC hits Hit strength
CCccCC 0 4× 10−5 59 4 human SP1–4 100%
GGctcCC 2× 10−16 10−4 39 3 human NF-Atp 100%

rat MAPF2, YY1 100%
CAtccCT 3× 10−15 4× 10−5 28 5 human NIP, PEA3 100%
CCACAC 7× 10−10 6× 10−4 12 4 multiple 80%
CAGgGA 2× 10−5 10−4 15 3 multiple 80%
GGgNGA 2× 10−4 10−7 16 7 multiple 91.7%
ACttTT 8× 10−4 4× 10−3 12 6 multiple 80%

Using the Ensembl browser [35], we have extracted 8 sequences of length 500

located upstream of the Caveolin-1 gene in fugu, zebrafish, chicken, mouse, rat, dog,

chimpanzee and human. The number of short motifs discovered under varying strin-

gency levels (all highly significant) is depicted in Table 2.4, along with the number

of significant motifs discovered in completely random synthetic sequences of 4 DNA

letters, which served as a control.

Looking at the intersection of the sets of motifs discovered in the promoter

regions of CAV1, CAV2 and CAV3 in the human sequence, on one side, and the motifs

discovered in the promoter regions of CAV1 in 8 vertebrates, we again identified large

sets under various stringency levels. When we imposed a requirement that a motif

must be present in all 3 human genes, and in all 8 vertebrate CAV1, with minimal

reportable length of 6, we identified 7 motifs shown in Table 2.5. The top two of

these motifs had a perfect hit with the TRANSFAC [99] database, and the remaining

could be found as weaker matches. Although our goal was solely to identify the short

repeated variable elements in promoter regions of related genes, such TRANSFAC

hits may help elucidate their role. The spatial distribution of these motifs in the
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upstream regions of human caveolins is shown in Figure 2.9. In general, very few

significant repeated motifs exhibit positional conservation, when they can be detected

by multiple alignments, and they may thus serve for further refinement of the repeats

from our lists.

In another test, we have applied our software to 1000bp of 7 putative target

genes of the MLL transcriptional complex (Mixed Lineage Leukemia genes [58]). Af-

ter filtering for poly-A and other simple sequences, including tandem repeats, our

program has identified 27 significant motifs, including several that warrant further

experimental study. In an effort to reduce the number of significant motifs, we have

also applied our software to 500bp of same the 7 putative target genes and have suc-

cessfully reduced the number of significant motifs to 11. The layout of these motifs

is shown in Figure 2.10.

In another experiment, we considered 1000 bases flanking the 5 region of three

genes, CYBB, HBG1 and HBZ (LocusLink Ids 1536, 3047 and 3050), which are co-

regulated by the transcription factor CP1, and share the repeated motif CCAAT

in their 5 flanking regions. Our software identified 18 significantly repeated short

consensus motifs, and one of these consensus sequences has motif CCAAT. This

consensus ranked 13th out of 18 motifs. The layout of these motifs is shown in

Figure 2.11 and the motif CCAAT is being represented by red colored star (number

13). However, when we used the BEST suite of programs [28] with same set of flanking

regions, CCAAT was not even present in the top 25 motifs.

2.5 Discussion

Our software has, so far, performed well. It was finding the motifs efficiently,

and it has shown good sensitivity. Many of the motifs it has identified were also

present in the TRANSFAC database of experimentally confirmed sequences.Though
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the number of motifs reported by our tool tends to be large, this is a common prob-

lem shared by all motif finders, and stems from the structure of genomes, or at least

eukaryotic genomes. One weakness of our current approach is that it cannot identify

motifs featuring insertions and deletions. While more than one or two such modifi-

cations of a consensus would probably result in a loss of binding affinity, permitting

some may further improve the sensitivity of our software. For this reason, in one

of our experiments done on yeast genes we have failed to recognize a well described

common promoter. However, even our present algorithm detects an overabundance

of significant motifs, and one can easily imagine that with permitted insertions and

deletions this number would substantially increase.

While working with MotFi and carrying out the study described in this chapter,

we have observed that any given selection criteria returned large numbers of motifs

with extremely significant p-values. Though this observation was a bit puzzling,

it also motivated us to perform an extensive study of the repetitive structure and

distribution of short motifs in human genomic sequences, in an attempt to know

why every motif finding software often failed in locating the real elements. In this

study [6] we have described and quantified the remarkable micro-repetitive structure

of the human genome, and shown that it is impossible to reliably identify functional

motifs solely based on the occurrence counts, even after known repeats have been

excluded. This study is described in the next chapter.
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Algorithm 2.3.2: Identification of variable motifs()

// Build the suffix tree
Initialize the tree to empty
for i← 1 to s // s: the number of input sequences
do

{

Append the branches corresponding to sequence i to the tree
// Find the exact repeats
Traverse the tree depth-first and collect the terminal points
List position and repeat text of each branching internal node
// Build the Index
for i← 1 to num repeats

do

{

for j ← 1 to num positions[i]
do

{

Create an index array entry at position[j]
// Identify variable motifs by their consensus sequences
for i← 1 to num repeats

do

{

// Create a list of motifs
create consensus(i) // Function call listed below

Merge the list of consensus motifs with simple repeats
Rebuild the index of repeat (motif) position
// Refine the list of identified motifs
for i← 1 to num motifs

do







repeat

Attempt to merge neighbors of i in a single consensus
until no further refinement possible

// Report the significant motifs
Filter the motifs according to significance and other criteria

Algorithm 2.3.3: create consensus(seed)

for i← 1 to max gap size

do































// Find repeated neighbors for i (fixed gap size)
for j ← 1 to num positions[seed]

do















List the neighbors of seed at j using the index
for each neighbor N occurring more than once

do

{

Build consensus C of seed and N

create consensus(C) // Recursive call
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Figure 2.9. The layout of motifs in the upstream sequences of caveolin genes. The
overrepresented motifs shown in these sequences are 1. CCccCC, 2. GGctcCC, 3.
CAtccCT, 4. CCACAC, 5. CAGgGA, 6. GGgNGA, and 7. ACttTT.

Figure 2.10. The layout of motifs in the upstream sequences of MLL direct target
genes. The overrepresented motifs shown in these sequences are 1. CCAgacCAG, 2.
CCAgccCTG, 3. GCCgCCA, 4. ATTNcaGGG, 5. GGGNcaTCT, 6. GCCaNCAC,
7. TGGaAGG, 8. AGCcAGC, 9. GCCtGGG, 10. CTCaCCA, and 11. CTGcAAG.
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Figure 2.11. The layout of 18 motifs in the upstream sequences of CYBB, HBG1
and HBZ genes which are co-regulated by CP1 factor. The overrepresented motifs
shown in these sequences are 1. CTAAaccTTG, 2. TCActaTGT, 3. CAGggCTG, 4.
CCAgcCTG, 5. CTCNccTGA, 6. TGGctCAT, 7. CCTCaNcTGA, 8. ACATtaGGT,
9. CAGGgcTGC, 10. GTGGcTCAT, 11. TCTGATAA, 12. ACTGNgNCCT, 13.
TGACCAAT, 14. CAGgGCTG, 15. GTGGcTCA, 16. CATNNGGT, 17. TGGcT-
CAT, and 18. TTGttACT.



CHAPTER 3

MICRO-REPETITIVE STRUCTURE AND DISTRIBUTION OF
SHORT MOTIFS IN HUMAN GENOMIC SEQUENCES

As we have discussed in the previous chapter, our every attempt to locate

significantly repeated DNA elements returned a long list with extremely significant

p-values. In order to achieve better insight into such behavior of human DNA se-

quences, we have performed an extensive study of the structure and distribution of

short motifs in human genomic sequences, and shown that in addition to known

long repeated DNA sequences human genome features many short motifs which are

significantly over-represented, and that their frequency varies only slightly between

random repeat–masked sequences and regions located immediately upstream of the

known genes [6, 4]. In this study we have done extensive simulations and analysis

of real data in order to identify the short motifs conservation pattern in the human

genome, particularly in the ENCODE target regions. While the number of repeated

elements in randomly generated synthetic sequences was almost perfectly conform-

ing to the Poisson expectation, the number of repeated substrings in repeat–masked

random intergenic sequences was far greater than expected. This bias appears to be

genome–wide, as it persisted even when we simultaneously considered many addi-

tional randomly collected human sequences, varying in size between 100 and 4,000

characters. Consequently, any search for conserved motifs is bound to return many

results, and, depending on what we search for, most would likely be false positives.

In order to gain a better perspective on our ability to characterize significant over-

represented motifs in different regions of the human genome, we have looked at the

number of short (less than 20 bp) repeats, both exact and approximate in various ge-

51
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nomic environments and synthetic sequences. Although studies have been performed

regarding the distribution of tandem repeats [61] and larger interspersed repeats [47],

we are unaware of any systematic examination of the genome–wide occurrences of

very short interspersed motifs.

3.1 Study of the distribution of short exact repeated motifs

This section includes a description of our datasets – both simulation and real ge-

nomic, the algorithm for counting the exact motifs in these datasets, and the analysis

of the distribution of these motifs.

3.1.1 Datasets

To start with the analysis, we have created 6 different datasets, each consisting

of 100 sequences of 500 bases in length. Although we looked at other possible segment

lengths, as short as 50, and as long as several thousand, the results on short exact

sequences were not substantially different and length 500 was well suited for the

consideration of regions immediately 5’ to known genes. Although the issue is still

unresolved, some studies have shown that most cis–acting regulatory elements appear

to cluster in the gene upstream regions of about this length [93]. Four of our datasets

were synthetic, containing sequences created by assembling A’s, C’s, G’s, and T’s

using a random number generator on Unix, and sequences generated by second, third,

and fifth order Markov Models (MMs), trained on one million bases taken from human

chromosome 2 obtained through the Ensembl [35] genome browser. These specific

MMs have been selected because the second and the third order are widely used in the

simulation of genetic sequences, and the fifth order is popular in gene–finding tools.

We were especially interested in the behavior of the second order Markov Model, as it

has been used to generate control sequences in a comprehensive evaluation of motif–
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Table 3.1. Variables used in Algorithm 3.1.1

MotifLength Length of a motif string
Sequence Input sequence character array
Hash Variable for the hash code of a motif string
LoPos Array index in Sequence corresponding to the right end of a motif string
HiPos Array index in Sequence corresponding to the left end of a motif string
HiFact Variable for the factor corresponding to the left most character of a motif string
MotifList Hash table (array) to store motif counts

finding tools [63]. Strings generated by even higher order MMs were considered in

order to confirm trends, but not studied in detail. The remaining two datasets were

real DNA sequences: one was constructed from the upstream regions immediately

5’ to annotated Ensembl human genes, and the other consisted of random repeat–

masked human intergenic sequences. The total length of sequences in each dataset

was 50,000 bases (300,000 letters total).

3.1.2 Algorithm for counting exact motifs

In order to count short exact repeated oligonucleotides we used a modification

of the Karp–Rabin pattern matching algorithm [88], locating all repeats of specified

length in time linear with the size of the sequence. The original Karp–Rabin method

was based on numerical keys to code patterns, and we used such keys as indices to a

hash table counting the number of occurrences of each motif. The pseudo-code of this

modified approach is shown in Algorithm 3.1.1, and the list of variables used in this

algorithm is given in Table 3.1. This algorithm returns an array where array indices

are codes or numerical keys to the motifs of a given length, and corresponding array

values are counts of the motifs occurrences. As we scan a given genomic segment

to count the motifs, we increase the array values at the indices corresponding to the

motifs.



54

Algorithm 3.1.1: Modified Rabin-Karp(MotifLength, Sequence[0..n− 1])

Hash ← 0
HiPos ← 0
LoPos ← MotifLength - 1
//Compute initial hash
for i← HiPos to LoPos

do















if (Sequence[i] == ‘A’) Hash ← Hash*4
else if (Sequence[i] == ‘C’) Hash ← Hash*4 + 1
else if (Sequence[i] == ‘G’) Hash ← Hash*4 + 2
else if (Sequence[i] == ‘T’) Hash ← Hash*4 + 3

MotifList[Hash] ← MotifList[Hash] + 1
HiFact ← 1
for i← 1 to MotifLength− 1
do

{

HiFact ← HiFact*4
while Sequence[LoPos + 1] != NULL

do











































































if (Sequence[HiPos] == ‘A’) Hash ← Hash
else if (Sequence[HiPos] == ‘C’) Hash ← Hash - HiFact
else if (Sequence[HiPos] == ‘G’) Hash ← Hash - 2*HiFact
else if (Sequence[HiPos] == ‘T’) Hash ← Hash - 3*HiFact

HiPos ← HiPos + 1
LoPos ← LoPos + 1
if ( Sequence[LoPos] == ‘A’) Hash ← Hash*4
else if (Sequence[LoPos] == ‘C’) Hash ← Hash*4 + 1
else if (Sequence[LoPos] == ‘G’) Hash ← Hash*4 + 2
else if (Sequence[LoPos] == ‘T’) Hash ← Hash*4 + 3

MotifList[Hash] ← MotifList[Hash] + 1

return (MotifList)

3.1.3 Results and analysis

We ran our program separately for motif lengths varying between 4 and 9, and

recorded the total numbers of repeated elements in Table 3.2. Since the repeats have

been counted separately for each of the 100 sequences in each dataset, the recorded

values include the mean (µ) and the standard deviation (σ) for all runs. In addition to

the empirically determined counts we have also recorded the expected numbers of the

repeats, based on the Poisson model. As it can be seen from the Table 3.2, there were
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Table 3.2. The mean numbers (µ) and standard deviations (σ) of repeated patterns
of different lengths in different types of nucleotide sequences. Pattern counting has
been done over 100 sequences of length 500 in each category.

Pattern Expected Random 2nd Order 3rd Order 5th Order Random Upstream
Length Number Synthetic Markov M. Markov M. Markov M. Genomic Regulatory
4 429.06 µ = 425.74 µ = 437.99 µ = 432.84 µ = 432.23 µ = 438.97 µ = 433.92

σ = 6.36 σ = 8.12 σ = 7.1 σ = 6.91 σ = 8.5 σ = 9.94
5 193.16 µ = 189.18 µ = 237.83 µ = 222.98 µ = 222.27 µ = 261.64 µ = 260.11

σ = 15.59 σ = 17.0 σ = 16.68 σ = 15.83 σ = 33.49 σ = 30.67
6 57.46 µ = 55.16 µ = 84.33 µ = 74.58 µ = 75.88 µ = 106.62 µ = 115.31

σ = 12.51 σ = 15.16 σ = 13.27 σ = 14.66 σ = 43.5 σ = 37.72
7 15.03 µ = 14.0 µ = 24.5 µ = 21.82 µ = 23.3 µ = 38.66 µ = 47.54

σ = 5.77 σ = 9.97 σ = 7.81 σ = 9.48 σ = 44.31 σ = 29.88
8 3.8 µ = 3.12 µ = 7.05 µ = 5.75 µ = 6.87 µ = 15.72 µ = 21.3

σ = 2.75 σ = 5.15 σ = 4.16 σ = 5.19 σ = 44.26 σ = 21.62
9 0.95 µ = 0.56 µ = 1.94 µ = 1.47 µ = 1.97 µ = 8.57 µ = 11.33

σ = 1.17 σ = 2.42 σ = 1.92 σ = 2.25 σ = 44.04 σ = 15.67

only insignificant differences between the models for motifs of length 41. Starting with

length 5, an obvious pattern emerges, in which the number of repeats in sequences

created by the random number generator correlates with Poisson predictions very

well, but none of the other models do. Figure 3.1 shows graph plots between the

mean numbers (µ) of repeated patterns and the pattern lengths in different types of

nucleotide sequences. Though the visual look of these plots gives an impression of

similarity among all the datasets, a statistical analysis does not confirm that. We used

chi-square test on the µ values in the columns of Table 3.2 to measure the similarity

or correlation between each pair of datasets.

The chi-square test allows us to detect whether two random variables are re-

lated, or a model has good fit with the data. To start with, we assert a null hypothesis

that the model does fit the data or two variables are related, and we attach a level of

1However, when the individual numbers of motifs occurring a particular number of times were

taken into account there were considerable differences between the models, as outlined below.
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Figure 3.1. The mean numbers (µ) of repeated patterns of different lengths in different
types of nucleotide sequences. Pattern counting has been done over 100 sequences of
length 500 in each category.

significance to reject this hypothesis. Assuming there are k intervals or categories in

a dataset, each with ei expected value and xi data value where i varies from 1 to k,

the chi-square χ2 is given by following equation:

χ2 =
k
∑

i=1

(ei − xi)
2

ei

(3.1)

With Chi Square, we calculate a value from the data using the above equation, and

then compare this value to a critical value from a Chi Square table with degrees of

freedom corresponding to that of the data. If the calculated value is equal to or

greater than the critical value (table value), the null hypothesis is rejected. If the

calculated value is less than the critical value, the null hypothesis is accepted. The

degrees of freedom for a dataset is given by the following criteria:

Degrees of Freedom = (No. of Categories in Datasets)- (No. of Datasets)(3.2)

⇒ = k − 1 (... No. of datasets is normally 1.) (3.3)
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Table 3.3. Chi–square confidence levels for the compared data sets, indicating the
likelihood that sequences in the compared set pairs (column-wise in Table 3.2) have
indeed been drawn from the same distribution. MMn abbreviates nth order Markov
model.

Expected Random 2nd Order 3rd Order 5th Order Random Upstream
Number Synthetic Markov M. Markov M. Markov M. Genomic Regulatory

Expected 1.0 > 0.995 < 0.005 ≈ 0.02 < 0.005 << 0.005 << 0.005
Random > 0.995 1.0 < 0.01 ≈ 0.2 ≈ 0.1 << 0.005 << 0.005
MM2 < 0.005 < 0.01 1.0 ≈ 0.6 ≈ 0.8 ≈ 0.025 < 0.005
MM3 ≈ 0.02 ≈ 0.2 ≈ 0.6 1.0 > 0.995 < 0.005 < 0.005
MM5 < 0.005 ≈ 0.1 ≈ 0.8 > 0.995 1.0 < 0.005 < 0.005
Genomic << 0.005 << 0.005 ≈ 0.025 < 0.005 < 0.005 1.0 ≈ 0.8
Regulatory << 0.005 << 0.005 < 0.005 < 0.005 < 0.005 ≈ 0.8 1.0

Indeed, a chi-square test on the columns of Table 3.2 (µ values), whose results

are shown in Table 3.3, confirmed with very high confidence that random synthetic

sequence draws from the same distribution as Poisson prediction, but rejected other

datasets (except, weakly, the higher order MMs). There were more repeats than

expected in all Markov Models and they corresponded well to each other, confirmed

by solid p–values. A weak similarity has also been found between the second order

Markov Model and random intergenic sequences. This, on one hand, justifies its use in

modeling genomic environments, but it also advises caution concerning the use of the

MMs in simulations. It was surprising, and somewhat discouraging for the attempts

of locating functional elements through over-representation, that random intergenic

repeat–masked (and thus, presumably, reasonably unique) sequences featured about

the same number of short repeated motifs as sequences taken upstream of the genes.

The chi–square test was conclusive on this, with the p–value indicating a strong

agreement. As for the correspondence between the real sequences and the models,

random genomic sequences appear to have somewhat similar number of repeats as

the second order Markov Model, but are otherwise quite distinct from any other
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simulated dataset. Overall, real genomic sequences were similar to each other, but

not to the models, Markov Models mutually agreed well, but otherwise did not show

significant similarity to other datasets, and synthetic sequences corresponded well to

the Poisson prediction (a “sanity check”), but their composition was different than

that of Markov Model simulated data, and dramatically different than that of the

real sequences.

We next analyzed these relationships at a finer granularity, looking separately

at each motif length, and for each length separately at the number of motifs repeating

n times, where n was varied between 2 and 10 or more (the latter counted together).

Although we did full analysis for all motif lengths in our range, the results were similar,

and we show the representative sample for motif lengths 4, 7, and 9 in Table 3.4. The

graph plots between the mean numbers (µ) of patterns and repeated times (n, where

n varies from 2 to 10) for different types of nucleotide sequences of lengths 4, 7,

and 9 are shown in Figures 3.2, 3.3, and 3.4 respectively. As before, the sequences

generated by using random numbers corresponded to Poisson predictions consistently

well, while there was a discrepancy between these two and all other models. There

was a somewhat weak mutual agreement between different Markov Models (at least

two of the three corresponded to each other in every test), and occasionally between

random genomic and gene upstream sequences, but the fit between the synthetic and

real data was consistently poor.

In this round of testing we have applied the chi–square test on all combinations

of models, separately for each motif length, using the sums of the number of repeats

in 100 runs as our samples xi, where i corresponded to the number of times the motifs

have been repeated (so, for instance, in the test for motifs of length 7, x3 was the count

of motifs of length 7 repeated 3 times). This method provided us the sufficient sample

size in each category i, which could have otherwise been a problem, having in mind
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Figure 3.2. The mean numbers (µ) of patterns of length 4 repeated n times in
different types of nucleotide sequences, where n varies between 2 and 10 or more.
Pattern counting has been done over 100 sequences of length 500 in each category.

the relative scarcity of long exact motifs repeated many times. Unfortunately, for all

comparisons except these involving Poisson expectations we needed to estimate the

expected values from the data, and thus substantially reduce the number of degrees

of freedom, which has made our analysis of longer repeats somewhat unreliable.

Interestingly, while there was a good agreement in the repeat distribution in

random genomic and gene upstream sequences for motifs of length 4, the chi–square

test failed for every other length. As it can be seen from Table 3.4(Figures 3.3, 3.4)

for lengths 7 and 9, gene upstream sequences appear to feature a preference to an

increased number of moderately repeated motifs, while random genomic sequences

are biased towards smaller numbers of these repeated more dramatically (5 or more

times). This pattern was consistent for all considered motif lengths, however the

fewer motifs of higher repeat count compensated for the lower number of moderately

repeated motifs, resulting in an overall similarity in the overall number of repeated

sequences throughout our test sets, regardless of their proximity to the genes. Under
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Figure 3.3. The mean numbers (µ) of patterns of length 7 repeated n times in
different types of nucleotide sequences, where n varies between 2 and 10 or more.
Pattern counting has been done over 100 sequences of length 500 in each category.

any circumstances, the number of short repeated motifs in the genomic sequences was

greater than in any of the synthetic models, and far greater (an order of magnitude

for longer motifs) than the Poisson expectations.

3.2 Analysis of most common short degenerate motifs

After experiencing this dramatic micro–repetitive structure of the human genome

we were interested to find the most common short motifs significantly repeated in the

ENCODE regions. Although the program used above was capable of locating short

exact motifs in sequences of any length, in linear time, concentrating on perfect con-

servation appeared to be too restrictive. We have thus used our tool for finding short

variable repeated motifs, described in detail in [6].

Briefly, our software starts by locating all exact repeated patterns in given

sequences, including dinucleotides. This seeding step is done in time slightly super–

linear to the length of the sequences, using the suffix tree data structure [82], which
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Figure 3.4. The mean numbers (µ) of patterns of length 9 repeated n times in
different types of nucleotide sequences, where n varies between 2 and 10 or more.
Pattern counting has been done over 100 sequences of length 500 in each category.

has recently been applied to problems similar to ours [41, 43]. After building the

original list of repeats, we use an indexing scheme to quickly locate all neighbors of a

given (seed) motif, and search for all pairs that appear to be substantially repeated

together, at a fixed distance. Whenever such pairs are found we build the tentative

consensus of the approximate motif, and recursively try to extend it with additional

seed elements and overlaps. The consensus building continues until a certain quality

threshold, usually set to 0.9 (90%) or 0.95, cannot be maintained any longer. We

label all positions of absolute conservation with uppercase letters, and assign them the

weight based on the number of sites participating in the construction of the consensus.

Positions featuring a majority character, but occasionally broken with a mismatch

are labeled with a lowercase character, whose weight is determined based on the

number of sites which agree. When there is no agreement at a position it is signified

by character ‘N’. The final consensus motif is reported based on the probabilistic

evaluation of its length, weight, and the number of occurrences.
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Since the program assumes that it has been given a set of sequences, rather than

a single one, it considerably reduces the search space by filtering out the motifs which

do not appear in the minimal number of distinct segments (a settable parameter).

Unfortunately, when the sequences in the input are very similar (such as vertebrate

ultra-conserved sequences, or even just homologous sequences from closely related

species), this causes a theoretically exponential explosion of the recursive refinement

step. However, such situations are rare (after repeat masking, most intergenic se-

quences do not exhibit good conservation of motifs longer than about a dozen bases),

and easily detectable. On average, our software is capable of locating all significantly

repeated variable motifs quickly and accurately.

We ran this motif–detection program on the entire set of ENCODE regions,

obtained through Ensembl, after masking the repeats. The repeat masking step was

done since there was little purpose in trying to find common short repeated motifs

in the presence of known long repeat elements. We performed 150,000 runs on 5

to 10 randomly chosen segments of length 1000, setting the program parameters so

that only elements which have been found in all segments were reported. We have

not excluded known exons from our test data — it simplified the selection and, since

exons generally comprise less than 2% of the human genome we believed that they

would not significantly affect our results.

Although we recorded only motifs of length 7 and above, their number was in the

thousands even after filtering these which were nearly identical or inverse complements

of each other, and these featuring extremely simple sequence (all A’s, for instance) or

tandem repeats. All these motifs do deserve further classification, but at this time we

have limited our study only to about two dozen which were statistically least likely to

occur by chance. Since our repeat masked ENCODE sequences contained 40,645,510
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bases, counting both strands, in a completely random string of this length a motif of

size 10, for instance, would be expected to be found about 39 times. We used such

considerations as a basis for the selection of the top choices, where the effective length

of the string was calculated by assigning different weights to differently conserved

positions (1 for an uppercase letter, 0.5 for lowercase and 0 for an ‘N’ — this could

have been further refined by using the exact weights of the identified motifs, but for

this study that was not necessary).

In order to do a tentative characterization of the discovered motifs, we have

checked them against the human entries in RepBase [52] for possible membership in

a known repeat family, and TRANSFAC [99] for a possible functional role. Table 3.5

summarizes this information for 4 longest motifs in our list (the fifth one of that size

was (CTG)4, which we filtered out), and Table 3.6 provides the same account for the

top 5 motifs after these with two or less G’s or C’s were removed. The remaining

top motifs were either degenerated poly-A’s (or poly-T’s), or a combination of A’s

and T’s. Although they are also potentially significant, we have not studied them in

detail, since poly-A tails are known to be present in many copies in genomic sequences.

One explanation for their prevalence is in that they are derived from the terminus

of non-LTR retrotransposon repeats. These elements are abundant in the human

genome (over 2.3 million copies spanning over one third of the genome) and they are

characterized by a stretch of poly-A’s at their 3’ end [47]. Because of its variable

length and rapid mutational degradation, part or all of the 3’ poly-A terminus of

non-LTR retrotransposons may often remain after repeat masking.

Even as the number of matches our top motifs had in RepBase generally ex-

ceeded what would be expected by chance only, these hits were not concentrated in

a single repeat class, and thus probably do not represent remnants of a particular

mobile element, at least not one of a known classification. Similarly, their TRANS-
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FAC matches do not appear to lend strong support to the hypothesis that they may

be functional protein binding sites — the examined sequence was human, but most

of the hits were in non–human elements, or elements which are common in repeated

sequences throughout the mammalian lineage (or even broader). While these motifs

are clearly strongly repetitive, and some also likely functional, further studies are

needed in order to characterize their nature and origins.

3.3 Discussion

The micro–repetitive structure of the human genome we have described above

advises us caution when using over-representation for the determination of functional

DNA elements. At present, most motif–finding tools do not solely rely on a single motif

frequency, taking into account other features of biological relevance, such as cluster-

ing of the motifs, matching against experimentally confirmed consensus patterns, or

evolutionary conservation. While each of these approaches has merits, they all have

weaknesses. Clustering of over-represented motifs may very well be a consequence of

their common source in an ancient repeat (i.e. transposed sequence) not recognized

by the RepeatMasker or other repeat–finding tools, such as RepeatScout [14]. Almost

all of the most frequent motifs we looked at in ENCODE had hits in RepBase, and of-

ten in TRANSFAC, too. On the other hand, methods based on phylogenetic footprints

may be overly dependent on positional conservation. The ultimate classification of

any DNA segment must be done in the laboratory, and the construction of a detailed

map of the repetitive landscape of the genome can be of great help in this process.

The fact that for exact motifs of length 5 or more there was no good chi–square

agreement between random genomic and gene upstream sequences is potentially sig-

nificant. The noticed bias towards more copies of single motifs in intergenic regions

may indicate the same origin of the sequences, presumably by many overlapping in-
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sertions of DNA mobile elements, but different selection pressures after some of the

regions acquired a functional role. Under this scenario, further insertions, which

would lead to even more random motif copies in non-functional segments would be

harmful in regulatory regions, and thus selected against. TRANSFAC hits in organ-

isms other than human would also point in this direction, as parts of ancient repeats

shared among the species may have acquired function in some, but not all, of them.

Even if database lookups for functional patterns often result in a large number of false

positives, the fact that not every one of our top motifs had a match indicates that a

selection of sensible candidates for further study is possible. Our study could have

been made more complete in many ways, as we have realized that we needed to map

the discovered motifs back to their original genomic locations, looking at their group-

ings and experimental evidence. If most of the short frequent motifs indeed originate

in layered ancient transpositional activity, some of them will show significant patterns

of co-occurrence. However, we may have been too far reaching when taking on the

analysis of the human genome first. It would be worthwhile to also look at a simpler

genome, like that of a worm, and check if one could record similar patterns there.

The study described in this chapter has shown an over-abundance of short motifs

in human genomic sequences, but the source of this abundance remained unclear,

which motivated us to carry out further study. We have postulated that most of these

DNA elements originate in ancient transpositional activity, with copies becoming so

broken over time that they cannot be recognized as such any more, and our efforts

to confirm this hypothesis are described in the next two chapters.
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Table 3.4. The mean numbers (µ) and standard deviations (σ) of repeated patterns
of length 4, 7 and 9 in different types of nucleotide sequences. For each motif length,
the corresponding rows represent the numbers of motifs repeated n times, where n
varies between 2 and 10 or more. Pattern counting has been done over 100 sequences
of length 500 in each category.

Length/ Expected Random 2nd Order 3rd Order 5th Order Random Upstream
Repeats Number Synthetic Markov M. Markov M. Markov M. Genomic Regulatory
4/2 69.25 µ = 70.28 µ = 50.05 µ = 55.42 µ = 55.16 µ = 45.17 µ = 47.19

σ = 6.2 σ = 6.97 σ = 6.77 σ = 7.94 σ = 8.38 σ = 9.42
4/3 45.09 µ = 44.86 µ = 37.64 µ = 39.04 µ = 38.93 µ = 31.68 µ = 31.05

σ = 5.84 σ = 5.53 σ = 5.32 σ = 4.99 σ = 8.1 σ = 7.69
4/4 22.02 µ = 21.36 µ = 24.39 µ = 22.7 µ = 23.21 µ = 20.13 µ = 19.0

σ = 3.9 σ = 4.34 σ = 4.7 σ = 4.37 σ = 4.73 σ = 5.27
4/5 8.6 µ = 8.17 µ = 12.8 µ = 11.69 µ = 11.12 µ = 11.65 µ = 11.0

σ = 2.8 σ = 3.18 σ = 3.14 σ = 3.08 σ = 3.12 σ = 3.46
4/6 2.8 µ = 2.83 µ = 5.44 µ = 4.52 µ = 4.56 µ = 6.41 µ = 5.81

σ = 1.73 σ = 2.34 σ = 1.83 σ = 1.86 σ = 2.38 σ = 2.28
4/7 0.78 µ = 0.73 µ = 2.51 µ = 2.16 µ = 2.09 µ = 3.67 µ = 3.17

σ = 0.8 σ = 1.47 σ = 1.38 σ = 1.39 σ = 2.02 σ = 1.9
4/8 0.19 µ = 0.23 µ = 0.94 µ = 0.69 µ = 0.77 µ = 1.8 µ = 1.79

σ = 0.47 σ = 1.01 σ = 0.81 σ = 1.0 σ = 1.39 σ = 1.37
4/9 0.04 µ = 0.03 µ = 0.38 µ = 0.33 µ = 0.41 µ = 1.32 µ = 1.13

σ = 0.17 σ = 0.64 σ = 0.57 σ = 0.62 σ = 1.43 σ = 1.35
4/10+ 0.01 µ = 0 µ = 0.16 µ = 0.12 µ = 0.23 µ = 0.79 µ = 0.74

σ = 0 σ = 0.39 σ = 0.32 σ = 0.51 σ = 1.56 σ = 1.09
7/2 7.4 µ = 6.97 µ = 11.8 µ = 10.39 µ = 10.86 µ = 15.85 µ = 18.51

σ = 2.87 σ = 4.85 σ = 3.64 σ = 4.12 σ = 6.58 σ = 9.25
7/3 0.07 µ = 0.02 µ = 0.3 µ = 0.3 µ = 0.39 µ = 0.75 µ = 1.52

σ = 0.14 σ = 0.61 σ = 0.59 σ = 0.72 σ = 1.62 σ = 2.7
7/4 0.001 µ = 0 µ = 0 µ = 0.01 µ = 0.05 µ = 0.06 µ = 0.47

σ = 0 σ = 0 σ = 0.01 σ = 0.22 σ = 0.24 σ = 1.11
7/5 0 µ = 0 µ = 0 µ = 0.02 µ = 0.03 µ = 0.13 µ = 0.18

σ = 0 σ = 0 σ = 0.14 σ = 0.17 σ = 0.91 σ = 0.52
7/6 0 µ = 0 µ = 0 µ = 0 µ = 0.01 µ = 0.13 µ = 0.13

σ = 0 σ = 0 σ = 0 σ = 0.01 σ = 1.01 σ = 0.44
7/7 0 µ = 0 µ = 0 µ = 0 µ = 0 µ = 0.06 µ = 0.03

σ = 0 σ = 0 σ = 0 σ = 0 σ = 0.42 σ = 0.17
7/8 0 µ = 0 µ = 0 µ = 0 µ = 0 µ = 0.07 µ = 0.06

σ = 0 σ = 0 σ = 0 σ = 0 σ = 0.6 σ = 0.24
7/9 0 µ = 0 µ = 0 µ = 0 µ = 0 µ = 0.14 µ = 0.03

σ = 0 σ = 0 σ = 0 σ = 0 σ = 1.3 σ = 0.17
7/10+ 0 µ = 0 µ = 0 µ = 0 µ = 0 µ = 0.08 µ = 0.03

σ = 0 σ = 0 σ = 0 σ = 0 σ = 0.8 σ = 0.17
9/2 0.48 µ = 0.28 µ = 0.97 µ = 0.72 µ = 0.92 µ = 2.07 µ = 3.81

σ = 0.58 σ = 1.21 σ = 0.96 σ = 1.07 σ = 3.18 σ = 5.72
9/3 0 µ = 0 µ = 0 µ = 0.01 µ = 0.03 µ = 0.21 µ = 0.33

σ = 0 σ = 0 σ = 0.01 σ = 0.17 σ = 1.6 σ = 0.9
9/4 0 µ = 0 µ = 0 µ = 0 µ = 0.01 µ = 0.05 µ = 0.15

σ = 0 σ = 0 σ = 0 σ = 0.01 σ = 0.26 σ = 0.57
9/5 0 µ = 0 µ = 0 µ = 0 µ = 0 µ = 0.13 µ = 0.07

σ = 0 σ = 0 σ = 0 σ = 0 σ = 1.01 σ = 0.35
9/6 0 µ = 0 µ = 0 µ = 0 µ = 0 µ = 0.13 µ = 0.06

σ = 0 σ = 0 σ = 0 σ = 0 σ = 1.29 σ = 0.28
9/7 0 µ = 0 µ = 0 µ = 0 µ = 0 µ = 0.09 µ = 0.07

σ = 0 σ = 0 σ = 0 σ = 0 σ = 0.8 σ = 0.29
9/8 0 µ = 0 µ = 0 µ = 0 µ = 0 µ = 0.03 µ = 0.01

σ = 0 σ = 0 σ = 0 σ = 0 σ = 0.3 σ = 0.01
9/9 0 µ = 0 µ = 0 µ = 0 µ = 0 µ = 0.1 µ = 0.01

σ = 0 σ = 0 σ = 0 σ = 0 σ = 0.1 σ = 0.1
9/10+ 0 µ = 0 µ = 0 µ = 0 µ = 0 µ = 0.04 µ = 0.01

σ = 0 σ = 0 σ = 0 σ = 0 σ = 0.4 σ = 0.01
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Table 3.5. Longest repeated consensus motifs in the ENCODE regions, after filter-
ing known repeats, simple sequence and tandem repeats. Uppercase letters indicate
positions which were perfectly conserved, lowercase letters represent positions where
there was a clear majority character, and N’s indicate non-conserved positions. Only
100% TRANSFAC hits are listed. If there was such hit within human factors, others,
if any, were omitted. In the absence of a human hit, other factors are indicated by
(*) following the factor name.

Motif Effective Expected count Occurrences Matches in Matches in
consensus length in ENCODE in ENCODE RepBase TRANSFAC
TTTaNaAAAGAAA 11 9.7 135 Multiple (5) NF-AT1
ATGTNtNTTAAA 9.5 77.5 327 Multiple (5) MIG (*)
CTGTTTNaNTTT 9.5 77.5 281 Multiple (5) HNF-3α, HNF-3B
AAAATgNcTTTT 10 38.8 125 Multiple (6) YY1

Table 3.6. Five most significant repeated consensus motifs in the ENCODE regions,
after filtering known repeats, simple sequence, tandem repeats and GC–poor repeats.
Uppercase letters indicate positions which were perfectly conserved, lowercase letters
represent positions where there was a clear majority character, and N’s indicate non-
conserved positions. Only 100% TRANSFAC hits are listed. If there was such hit
within human factors, others, if any, were omitted. In the absence of a human hit,
other factors are indicated by (*) following the factor name.

Motif Effective Expected count Occurrences Matches in Matches in
consensus length in ENCODE in ENCODE RepBase TRANSFAC
CCCAgNNCTG 7.5 310.1 2692 Multiple (47) SV40 – unknown (*)
GGGNNcTGGG 7.5 310.1 2621 Multiple (37) SV40 – unknown (*)
AGANNcAGAA 7.5 310.1 2586 Multiple (81) —
CTGNNtTCCT 7.5 310.1 2251 Multiple (56) E74A (*)
AGGNNtGGGG 7.5 310.1 2240 Multiple (42) —



CHAPTER 4

IDENTIFICATION OF REPEATED SEGMENTS RESULTING FROM
CO-OCCURRENCES OF ASSOCIATED SHORT

OVER-REPRESENTED MOTIFS

In the study presented in the previous chapter, we have analyzed a remarkable

over-representation of many short motifs throughout presumably unique human ge-

nomic sequences, as well as (to a lesser extent), Markov model generated sequences

trained on human chromosomes. Our findings clearly indicated that: first, all ge-

nomic sequences feature dramatically higher numbers of repeated short motifs than

one would expect by chance; and second, the differences in numbers of such motifs do

not appear to be significant between random intergenic and presumably regulatory

sequences upstream of the known genes, despite of the trend that one can notice in

the last two columns of Table 3.2. Repeatedly, chi-square tests performed on these

columns and other data could show only a mild, but inconclusive, bias.

In several studies carried out more than four decades ago, it has been demon-

strated that the nuclear genome of diverse eukaryotes contained a large fraction of

repetitive DNA [68, 87, 37]. While more recent insertional events can be readily

identified due to the high similarity of the copies, characterization of more ancient

insertions remains a challenge. In the human genome, almost half of the sequence

is considered unique, but only a small fraction (about 5% of the total) is thought

to be functional, whether coding or not. This leaves an open question about the

origin and role of the unique non–functional sequence, and we have postulated that

the micro–repetitive structure of genomic sequences which we have observed stems

mostly from the broken remnants of ancient transposons, which have been degraded

68
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so much that they cannot be recognized as such by present repeat–finding methods.

Other than these fragmented transposons, the segmental duplication could have also

contributed to overabundance of short motifs.

In this study we present a new algorithm, RepFi (earlier named Association-

Finder [5]), for de novo the identification of DNA repeats, which attempts to mutually

associate groups of short significantly over-represented motifs, readily found through-

out genomic sequences, and construct the consensus of larger, substantially broken

elements. Our results have been encouraging and our simulations have confirmed our

expectations [5, 2], although we still need to perform biological analysis of many seg-

ments we have identified in real genomic data. The goal of this part of the work was

in the identification of positions containing a signature of ancient transposon activ-

ity, rather than classifying the elements, or even determining their exact boundaries.

Once our tool has pointed to these locations, further study is needed to characterize

their exact layout and possible evolutionary history, and we provide such study in

Chapter 5.

4.1 Algorithm

Our algorithm works in several phases:

1. Locating short motifs v′
i significantly over-represented in the genomic segment

S under consideration.

2. Filtering the list of v′
i in order to retain only motifs vi which satisfy the minimal

criteria of size, structure, and copy count, and mapping them back to their

original locations in S.

3. Building a graph G with vi as vertices, and weighted undirected edges eij re-

flecting repeated co-occurrences of vi and vj within predefined windows of width

w.
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4. Post–processing G in order to remove eij which are likely to have arisen by

chance.

5. Locating cliques in G, representing groups of motifs which repeatedly co–occur

within distance w.

6. Merging the cliques which share a substantial number of motifs into units cor-

responding to a single repeat element.

7. Mapping the merged cliques back to their genomic locations.

4.1.1 Selecting the seed motifs

We start by counting the number of occurrences of each oligonucleotide of length

5 through 12 in the genomic segment S under consideration. For this we used a

modification of the Karp–Rabin pattern matching algorithm [88], locating all repeats

of specified length in time linear with the size of the sequence. The original Karp–

Rabin method was based on numerical keys to code patterns, and we used such

keys as indices to a hash table counting the number of occurrences of each motif.

The pseudo-code in Algorithm 3.1.1 represents the modified version of Karp–Rabin

algorithm. After obtaining the counts, we scan through the table in order to identify

these motifs v′
i which are most significantly over-represented in S. As mentioned

earlier, any genomic sequence features a very large number of such motifs, so we

select only these with p-values less than 10−5, as measured by Poisson distribution

shown in Equation 2.22. However, we also had to take care that the selected motifs

are truly informative, as well as that they make a good mixture of different sizes.

The later was necessary because it is expected that more recently inserted copies

would share longer motifs, while the ancient ones would have only short pieces in

common, and we did not want to overlook any group. We controlled this mixture by

maintaining a separate measure of base count b so that if e is the expected number
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Table 4.1. Variables used in Algorithm 4.1.1

HashV alue The integer value used to code a motif string
MotifLength Length of the motif coded by HashV alue
Dividend Variable used for dividend
Remainder Variable used for remainder
Motif Character array to store the motif string
Position Variable used for array index in the Motif array

of copies of v′
i in S, we require that the actual number of occurrences of v′

i be greater

than e + b. Although this is a heuristic measure (guided by the expectation that a

long motif still has to be present in a sufficient number of repeat copies, no matter

what its p–value is) we have fine–tuned it through several thousand test runs under

different settings. For large genomic segments (of more than 10 million bases) we

have set b = 1000.

We scan the table (motif list) returned by Algorithm 3.1.1, and select the in-

dices (hash values) corresponding to the motif counts meeting maximum p-value and

minimum copy number conditions, as mentioned above. The algorithm used to con-

vert integer hash values to motif strings is shown in Algorithm 4.1.1, and the list of

variables used in this algorithm is given in Table 4.1.

We also looked at the structure of the motifs, and eliminated these consist-

ing of simple sequence (mostly remnants of poly-A tails) and tandemly repeated

structure. For simple sequence identification, we measured the overall uncertainty

(−
∑T

c=A pc log2 pc, by Shannon’s information theory, estimating pc’s from base counts

within the motif as shown in Equation 2.24), and discarded v′
i with the uncertainty

lower than 1.5 bits.

The remaining candidate motifs were scanned for significant mutual overlaps.

We have modified the original Smith–Waterman [96] algorithm to produce maximal
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Algorithm 4.1.1: Convert Hash To Motif String(MotifLength, HashV alue)

Dividend ← HashValue
Remainder ← 0
Position ← MotifLength - 1
while Divident > 0

do







































Remainder ← Dividend % 4
if (Remainder == 0) Motif[Position] ← ‘A’
else if (Remainder == 1) Motif[Position] ← ‘C’
else if (Remainder == 2) Motif[Position] ← ‘G’
else if (Remainder == 3) Motif[Position] ← ‘T’

Position ← Position -1
Dividend ← Dividend/4

return (Motif)

gap–free local alignments and to get mutual overlap character counts. We eliminated

all motifs where mutual overlap with one of higher p–value motif — as measured

by Poisson distribution shown in Equation 2.22 — spanned more than 80% of the

length of the shorter motif. The remaining motifs comprised our seed set vi. The

pseudocode of the modified Smith–Waterman algorithm is shown in Algorithm 4.1.2,

and the list of variables used in this algorithm is given in Table 4.2. The rationale

behind the filtering of the similar (overlapped) motifs were to reduce the number of

candidate motifs, which would in turn reduce the processing time in mapping the

selected motifs to the genomic segment S, building a connectivity graph of these

motifs, and allocating the maximal cliques from this connectivity graph.

After the seed motifs vi have been identified, we scan the original genomic

sequence in order to find all positions of their occurrence. For this we used the Aho-

Corasick [11] algorithm, matching vi’s all at once. As this algorithm uses time and

space linear in size to the sum of the text and patterns we could do the matching

efficiently, recording all positions of vi in S within seconds.
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Table 4.2. Variables used in Algorithm 4.1.2

Motif1 String (character array) for first motif
Motif2 String (character array) for second motif
M Length of first motif
N Length of second motif
Fi,j Score at the ith row and jth column of the matrix
Fmax Largest score in the matrix

Algorithm 4.1.2: Modified Smith–Waterman(Motif1, Motif2)

//1. Initialization:
M ← Length of Motif1

N ← Length of Motif2

for i← 1 to N

do
{

Fi−1,0 ← 0
for j ← 1 to M

do
{

F0,j−1 ← 0
//2. Iterations:
for i← 1 to N

do







for j ← 1 to M

do

{

if ( Motif1[i] == Motif2[j]) Fi,j ← Fi−1,j−1 +1
else Fi,j ← Fi−1,j−1

//3. Find max overlap characters count
Fmax ← 0
for i← 1 to N

do
{

if (Fmax < Fi,M ) Fmax ← Fi,M

for j ← 1 to M

do
{

if (Fmax < FN,j ) Fmax ← FN,j

return (Fmax)

The Aho-Corasick algorithm [11] was developed to facilitate bibliographic searches,

simultaneously looking for several patterns in a possibly very long text. It also runs

in linear time. It combines the ideas of the Knuth-Morris-Pratt algorithm [31] with

finite state machines (FSM), and it consists of two phases — constructing a finite

state machine for the given set of patterns and then using the machine to process the
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string. In the first phase, the algorithm constructs a finite state automaton using the

set of patterns based on a lexicographic tree. The number of its states depends on the

length of the common prefix in the patterns. It creates a node for every character in

each pattern, as long as the character does not extend an already formed prefix. In an

extension from the lexicographic tree to a finite state automaton, the Aho-Corasick

algorithm computes failure functions, which return a link to a node or state for a

particular input at some particular state. The failure links are determined for each

state in the automaton. In the second phase, the text that is to be searched is parsed

using the automaton constructed in the first phase. A goto function returns a link

to the next node on reading an input character, when it is in some particular state.

This function is called repeatedly during the parsing. When on reading some input

the goto function fails to return a node, then the failure function is invoked. The

algorithm also uses an output function for reporting matches and handling special

cases of embedded patterns. Typically, the Aho-Corasick algorithm runs in linear

time O(l + n), where l is the combined length of all patterns and n is the length of

the text. This algorithm has wide applications in many fields due to its high speed

and capability of matching multiple patterns.

4.1.2 Building the connectivity graph

Once having the list of vi’s, we look at their associations, i.e. occurring together

in clusters at different locations in similar layout, in genomic segment S. For that

purpose, we start with defining the pairings and distinct pairings of motifs:

Definition[Motif pairings] If we denote each distinct occurrence of a motif vi by vk
i ,

we define the set of pairings



75

P = {(vk
i , v

l
j)|k ∈ [1, ni], l ∈ [1, nj],

i, j ∈ [1,M ], i 6= j, d(vk
i , v

l
j) ≤ w},

where ni and nj are the number of occurrences of vi and vj in S, respectively, d(vk
i , v

l
j)

is the distance between motifs vk
i and vl

j in the genome, M is the total number of

motifs, and w is a pre-defined window size.

Definition[Distinct motif pairings] We form the distinct motif pairings set DP from

P by replacing all occurrences of (vk
i , v

l1
j ) and (vk

i , v
l2
j ) with a single pair (vk

i , v
l
j) (vl

j

unifying all vlm
j such that (vk

i , v
lm
j ) ∈ P), and all pairings (vk1

i , vl
j) and (vk2

i , vl
j) with

a single pair (vk
i , v

l
j). In other words, in DP each vk

i connects to one and only one vl
j,

and each vl
j connects to one and only one vk

i .

Knowing the exact position of each occurrence of vi, further on referred to as a

vertex, we construct the edges connecting them in the following way. Sliding a window

of a pre-defined size w from the beginning of S, we build (and subsequently update) an

adjacency list. We have left the widow size as a parameter to our software. However

in an attempt to make a good guess about the window size to achieve the best overall

results, we have calibrated the window size parameter using simulation data, and

these calibration results are discussed in Section 4.1.2.1. Also, our experiments on real

genomic data (ENCODE regions) have indicated that in human genomic sequences,

the best overall results can be achieved for sizes around 1000. However, this size may

vary from one organism to another depending upon the sizes of the repeats in them.

This introduces some skepticism about how much our software can be adjusted to

identify significantly diverged short elements, such as human ALUs, as the number

of associated conserved short motifs within their span might be too small to form a

large enough set of significant associations.
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As we move the window through S, jumping from one motif vi to the next vj

(where it is possible that i = j), we count the number of occurrences cij of each

(vi, vj) ∈ DP , and at the end we assign cij as the weights of the edges eij connecting

vi’s and vj’s. After assigning the weights we retain eij only if the probability of a

random association of vi and vj, assuming the uniform distribution of motifs in S,

is less than 0.05 (this is a parameter to our program, and it can be adjusted with

respect to the desired tradeoff between sensitivity and specificity). We do that as

follows. As before, let ni and nj be the observed numbers of occurrences of motifs

vi and vj, and let cij be their observed number of co-occurrences within the intervals

of width w. Then, if we denote the total length of S by L, the expected number of

occurrences of vj in a single interval of width w is:

τ =
Total observed number of occurrences of vj

Total length of S
∗ w (4.1)

=
nj

L
w =

njw

L
(4.2)

Using the Poisson distribution (Equation 2.4) with τ rate of occurrences of vj, we

estimate the probability of any interval containing vi also accommodating one or

more vj’s as 1− e
−τ , and the expected number of such intervals as ni(1− e

−τ ).

Probability of no occurrence of vj = P (τ, 0) (4.3)

=
τ 0
e
−τ

0!
(4.4)

= e
−τ (4.5)

Probability of one or more occurrences of vj = 1− e
−τ (4.6)

Expected intervals having vi and one or more vj = ni(1− e
−τ ) (4.7)
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Under the Poisson model (Equation 2.4) with ni(1 − e
−τ ) (rate of) expected one or

more times co-occurrences intervals of vi and vj, the probability of a random variable

X representing the chance co-occurrence of vi and vj, cij or more times within the

distance of w or less is given by:

P(X ≥ cij) = 1−
∑

P(0 ≤ X ≤ cij − 1) (4.8)

= 1−

cij−1
∑

k=0

P (ni(1− e
−τ ), k) (4.9)

= 1−

cij−1
∑

k=0

[ni(1− e
−τ )]keni(1−e

−τ )

k!
(from Equation 2.4) (4.10)

For an easy understanding, we show an example of motifs layout, corresponding

graph, and the clique in Figure 4.1. This example (in part A) includes five motifs,

each shown in different colored boxes in the motifs layout. We scan this motifs layout,

and build a graph of five vertices (v1, v2, v3, v4, and v5), each shown in different

colored circles. The associations among these motifs in the given layout are shown

by the black edges in the graphs. The thickness of these edges represents the edge

weight. It is clear from the initial graph that the thin edges e23, e24, and e45 have

shown up just by chance, and, hence, are removed before attempting to identify the

maximal clique. The clique comprises the vertices v1, v3, and v4, indicating a strong

association in the co-occurrences of the motifs represented by the color “grey”, “red”,

and “blue”.

4.1.2.1 Window size calibration

In order to prepare a dataset for our calibration experiments, we have chosen

two Repbase elements, TIGGER2 and L1MCA 5, to insert into the testbed sequence —

as described in the Section 4.2 — with different copy numbers, roughly reflecting the
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Figure 4.1. Motifs layout, graph, and clique. The top figure (A) shows an example of
motifs layout, where colored boxes represent different motifs. The bottom figure (B)
shows corresponding initial graph, filtered graph, and the maximal clique. In these
graphs, colored circle represent the vertices (i.e. motifs) and black lines represent the
edges, where the thickness of an edge represents its weight.

general genomic frequencies of their superfamilies. We introduced random mutations,

degrading these sequences at 10, 20 and 30 percent. We have used this dataset in

order to determine the best values for the interval width w and probability threshold

for cij’s. We have performed simulation runs with interval width ranging from one

half of the estimated repeat element size to 1.5 times the estimated repeat element

size, and for the thresholds ranging from 0.1 to 0.001. As expected, probability–wise

the best results have been achieved for common statistical significance cutoffs, with

p–values around 0.05 and 0.01. Using the threshold of 0.05, we calibrated the window

size w with respect to the estimated element size, and we have shown the result of

this calibration in Figure 4.2.

We generated data for 10%, 20%, and 30% sequence divergence (since the orig-

inal insertions of exact copies). While the repeats could have still been recognized

with high sensitivity and specificity (and by any method), for divergence up to about

20%, at 30% decay the optimal balance between the sensitivity (at 0.6, i.e. 61%) and
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Figure 4.2. Calibration results for the window size w. The left chart (a) shows the
results concerning the sensitivity, and the right one (b) specificity. Black box indicates
data for 10% sequence decay, white box 20% and patterned circle 30%. L indicates
the repeat element length.

specificity (at 0.5) has been achieved for window size matching the size of the inserted

elements. However, at that divergence no data could have been obtained at smaller

window sizes (of less than 1500 bases) corresponding to windows of half (or less) of

the inserted element length, resulting in 0 specificity and 0 sensitivity (as no signif-

icant cliques could have been formed, by the process described below). This raises

some skepticism about whether our software can be adjusted to identify significantly

diverged short elements, such as human ALUs.

Another reason for performing the calibration was our desire to quantify how

much the output quality depends on the correct guess of the inserted element size.

Up to 20% decay the sensitivity was steadily high (at more than 0.95), however

already at this level the specificity was suffering as the window lengths became shorter.

The differences were even more dramatic at 30%, when the specificity was rapidly

climbing with the window size, but the sensitivity was equally rapidly dropping. In

consequence, while an approximate guess of a target element length (within ±10%−

15% of its correct size) would still generate good results, a less precise one would lead

to a substantial bias. However, due to the interplay and monotonicity of sensitivity
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and specificity one can decide which side is better to err, depending on the particular

circumstances.

4.1.3 Clique allocation and post–processing

After the motif association graph G has been constructed, we proceed by build-

ing the cliques of its vertices.The clique problem is known to be NP–complete, and

the approximate solutions would not serve our purpose well, so we used a heuris-

tic algorithm for maximal clique enumeration, which we nevertheless sped up by an

efficient implementation. It was based on finding the groups of vi’s forming maxi-

mal cliques in G by locating the intersections among the adjacency lists. This was

achieved through indexing and by using the C++ standard template library function

set intersection.

In this approach, we start with the graph G = (V,E), which has N vertices vi’s

(i.e. v1, v2, ..., vN). We denote the adjacency list of each vertex vi by AdjList(vi)

and the kth vertex in this adjacency by AdjListk(vi). Assuming that the vertices v1,

v2, ..., vN are arranged in decreasing order of degrees or edge counts, we visit each

vertex in the graph G in this order of decreasing degrees and find the intersection

between the adjacency list of the vertex being visited and the adjacency lists of all

of its neighbors (i.e. all vertices present in the adjacency list of the vertex being

visited). If this intersection is not a empty set, we consider it as one maximal clique

and denote it by CLQ(vi). If CLQ(v1) is the same to the adjacency list of any of

the vertex AdjListk(vi), we tag this vertex AdjListk(vi) to “not to visit” in future

for finding the intersection between its adjacency list and the adjacency lists of all

of its neighbors. One disadvantage of this approach is that we get duplicate cliques

in our list which we filter-out at the end of clique enumeration step. The pseudo-

code of this approach is given in Algorithm 4.1.3, and the list of variables used in
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Table 4.3. Variables used in Algorithm 4.1.3

N Number of vertices vi’s in the graph G
AdjList(vi) Adjacency list of the vertex vi

AdjListk(vi) kth vertex in the adjacency list of the vertex vi

CLQ Array of cliques

this algorithm is given in Table 4.3. As mentioned earlier, the algorithm described

in Algorithm 4.1.3 may return some similar or closely related cliques. So once the

cliques have been formed, we proceed to filter out the similar cliques and merge these

likely to correspond to a single consensus of a repeated element. Because the window

sizes w used to determine the initial motif associations are in general smaller than

the average repeat, without merging this would result in the fragmentation of the

element consensuses.

Algorithm 4.1.3: Maximal Clique Enumeration(G)

//1. Initialization:
for each vertex vi Visit(vi) ← TRUE
//2. Clique Enumeration:
for i← 1 to N

do



















if (Visit(vi) == TRUE)

do











CLQ(vi) ← AdjList(vi) ∩
[

∩
|AdjList(vi)|
k=1 AdjList(AdjListk(vi))

]

for k ← 1 to |AdjList(vi)|
do

{

if (CLQ(vi) == AdjListk(vi)) Visit(AdjListk(vi)) ← FALSE
return (CLQ)

We estimate the distance between cliques Ci and Cj, viewed as sets of motifs,

using the classical formula for Jaccard set similarity, d(Ci, Cj) =
Ci∩Cj

Ci∪Cj
[79]. Our sim-

ulation runs have indicated that the best results are achieved for d(Ci, Cj) threshold
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set at 0.5, which, under optimal circumstances (distinctly different repeat elements

with copies degraded less than 10%) gave us 100% accuracy. In general, merging

accuracy was highly variable, as the known sequence repeats are members of different

families and superfamilies, and as such feature a certain degree of similarity, which

for highly degraded copies may lead to incorrect classification. For this purpose one

can also apply statistical reasoning concerning a chance occurrence of a clique of a

certain size in a random graph, however our graph is far from random, being itself

built around associations that were unlikely by chance. In consequence, and guided

by the desire to identify highly diverged repeated elements (which would show as a

collection of small cliques, rather than one of a substantial size), we strived to consider

cliques as small as possible. However, due to an almost certain occurrence of at least

one (and usually many more) clique of size 3 still relatively high incidence of these

of size 3 in any non–trivial graph with a number of edges at least comparable to the

number of vertices (established both through our experiments and by probabilistic

considerations), and still a relatively high likelihood of these of size 4, in our analysis

we had to limit ourselves only to cliques of size 5 and larger. This is yet another

parameter to our software, and we advise the users to estimate it in accordance to

the approximate age of the elements desired to be found.

Another, and complementary, problem is fragmentation — one element being

represented by more than one clique. If this stems from the physical fragmentation in

the genome further analysis (beyond the scope of this study) needs to be done. Oth-

erwise, especially in the cases when window size w is much smaller than the element

the fragmentation would call for the collapsing of overlapping cliques. Unfortunately,

this opens a Pandora’s box of undue extensions, so we preferred to keep our approach

clean. In an extension of this work one may want to look at the significant associa-
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tions of cliques, but that should be done with caution, and only after the mapping of

the element positions back in S.

4.1.4 Mapping the cliques on the genome

The last step performed by our software is the mapping of the cliques back to

the genome, and we did this using the algorithm for locating the constrained heaviest

segments. This algorithm, whose early version has been described by Jon Bentley [48],

and later used and modified by several authors (with a rigorous treatment of its vari-

ants given in [103], [100], and [62], among others), works on arrays of numerical scores,

locating areas which “peak” over their environment in terms of their cumulative score,

in time linear to the size of the score array. Briefly, a constrained heaviest segment is

an interval Ii..j whose cumulative score Sij is greater than or equal to the cumulative

score Skl of any of its subintervals Ik..l, where i ≤ k ≤ l ≤ j, and for which there is no

interval Im..n, where m ≤ i ≤ j ≤ n and either m < i or n > j, with Smn ≥ Sij. By

keeping track of the local minima and maxima of the cumulative score within the ar-

ray, counting from its beginning, and updating the information about previous lower

minima and higher maxima as the algorithm progresses through the array, one can

report all constrained heaviest segments by the time the last array entry is processed

(amortized linear time). A high-level pseudo-code of the our variant of constrained

heaviest segment algorithm is shown in Algorithm 4.1.4, and the list of variables used

in this algorithm is given in Table 4.4.

We use this algorithm for mapping our cliques in the following way. We first

assign a slight negative score (−1) to all base positions in S. As we know the genomic

positions of each of our vi, for each clique we go back to the locations of its constituting

motifs, and assign a positive score to each base in the motif. The optimal value for

this score highly depends on the degradation level of the element represented by the
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Table 4.4. Variables used in Algorithm 4.1.4

Score Array of scores
Scorei Score at the i-th location of the Score array
Upward True if score changes from negative to positive in the Score array
Downward True if score changes from positive to negative in the Score array
PrevCumulativeScore Variable for previous cumulative score
CumulativeScore Variable for cumulative score,initialized to 0
N Constrained heaviest segment count, initialized to 0
StratN Start position of the N -th segment
EndN End position of the N -th segment
StartScoreN Cumulative score at the start of N -th segment
EndScoreN Cumulative score at the end of N -th segment

Algorithm 4.1.4: Constrained Heaviest Segments(Score)

for each Scorei in Score array from left to right

do



























































































PrevCumulativeScore ← CumulativeScore

CumulativeScore ← CumulativeScore + Scorei

if (Upward)

do







StartN ← i

StartScoreN ← PrevCumulativeScore

while (StartN−1 > PrevCumulativeScore) StartN ← StartN−1

if (Downward)

do































EndN ← i− 1
EndScoreN ← PrevCumulativeScore

while (EndN−1 ≤ PrevCumulativeScore)

do







EndN−1 ← EndN

EndScoreN−1 ← EndScoreN

N ← N − 1

clique, varying from +1 for perfectly conserved copies, to about +15 for very degraded

ones (more than 30%). Since the degradation levels of repeat elements in any genome

substantially varies, and is not known up front, we have by default set the score to

the average value +7, which gave us reasonable results.
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Table 4.5. The performance of our software on the ENCODE regions of the human
genome.

Tool Sensitivity Specificity
RepeatScout 0.435 0.997
PILER 0.172 0.997
RepFi 0.594 0.506

After assigning the scores we identify the constrained heaviest segments in S,

and consider them as the locations of the copies of the repeat element represented

by the clique. It is worth noting that this method bypasses the need to repeat mask

the genome with the established consensus as a separate last step, which is the most

time–consuming component in the performance of most de novo repeat finders (which

generally use RepeatMasker [18] software for this purpose).

4.2 Results

When evaluating the performance of our RepFi software, we were first interested

in how well it would locate the known repeats in a relatively well annotated genome

(such as human, where the richest libraries are available) and, second, how well it

would do in comparison with other de novo repeat finders. For this purpose we have

looked at the ENCODE [98] regions, repeat masked them with RepeatMasker [18]

using the RepBase [52, 51] depository, and compared the masked positions with these

annotated by RepFi, RepeatScout [14] and PILER [85]. Using the approach as shown

in Figure 4.3, we have counted the number of bases classified as true positives (TP),

false positives (FP) and false negatives (FN), then calculated the sensitivity as the

ratio TP
TP+FN

and specificity as TP
TP+FP

[50, 60]. The results of this comparison are

shown in Table 4.5.
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Figure 4.3. Approach to compute sensitivity and specificity: “Red” colored line
represents real repeat element and “black” colored line represents computationally
identified repeat element. “TP”, “FP”, and “FN” represent part of real element
identified computationally, additional part of computationally identified element, and
part of real element missed in computational identification, respectively [50, 60].

Table 4.6. The performance of our software on the simulated data set, experiment
1 (one inserted element, 150 copies). “Sn” stands for “Sensitivity” and “Sp” for
“Specificity”.

Degradation PILER PILER RepeatScout RepeatScout RepFi RepFi
Sn Sp Sn Sp Sn Sp

0% 0.981 0.999 0.979 1.0 0.978 0.982
10% 0.0 0.0 0.979 1.0 0.961 0.968
20% 0.0 0.0 0.979 1.0 0.855 0.906
30% 0.0 0.0 0.0 0.0 0.512 0.516

Our tool was the fastest, taking just about 9.5 minutes for the annotation of

the entire ENCODE on a Unix server with dual 3.08Ghz processors and 4Gb of main

memory, as opposed to about 1 hour and 10 minutes taken by RepeatScout to create

the library, and additional 11.5 hours to repeat mask the regions using the new library

as an input to the RepeatMasker. PILER took 41 minutes to construct the consensus

elements, and additional 10.5 hours to mask the original genomic segment.

As we were expecting, our sensitivity was better than that of other de novo

repeated element finding tools, as we are capable of identifying more degraded seg-
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ments, even as we require progressively more copies for more divergent elements. On

the other hand, it was somewhat surprising that none of de novo repeat finders could

detect more than 59.4% of the already annotated human repeats (especially PILER,

whose overall sensitivity was surprising).

In terms of specificity, our expectations were also confirmed. Since our tool has

primarily been built to pinpoint the highly divergent copies — these which cannot

be recognized by RepeatMasker (if they are present in its underlying library at all)

or other de novo repeat finding tools — many of our findings were classified as false

positives in this test. However, we expect that some, if not most, of these were

actually true positives of elements not detected by other tools.

In order to confirm this, and establish a better measure of the true specificity of

our software, we have thus created a well–controlled test environment. It consisted of

1.3 million bases of “testbed” sequence into which we inserted previously characterized

repeats. The testbed data has been built to resemble a real genomic environment as

faithfully as possible, but at the same time to be free of repeated elements. One

third of it was composed of an entirely random assembly of four DNA letters, another

third was produced by a second–order Markov model trained on one million bases

from human chromosome 2 obtained from the Ensembl [95] genome browser, and the

last third has been obtained from real bacterial sequences (E. coli from GenBank).

As prokaryotic genomes feature little repetition, we have included these segments

because we wanted to have a fraction of real genetic data in the testbed sequence,

but did not want to bias it too much since there are considerable differences between

prokaryotic and eukaryotic DNA.

In the first experiment (which was more of a “sanity check”) we have inserted

150 copies of the TIGGER2 element whose consensus sequence is recorded in the

RepBase database. While this number of copies in a relatively short “genomic”
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Table 4.7. The performance of our software on the simulated data set, experiment 2
(two inserted elements, 150 copies each). “Sn” stands for “Sensitivity” and “Sp” for
“Specificity”.

Degradation PILER PILER RepeatScout RepeatScout RepFi RepFi
Sn Sp Sn Sp Sn Sp

0% 1.0 0.999 1.0 0.999 0.998 0.982
10% 0.0 0.0 0.999 0.999 0.973 0.979
20% 0.0 0.0 0.999 0.999 0.748 0.738
30% 0.0 0.0 0.0 0.0 0.708 0.593

segment might be unrealistic, we can identify substantially degraded elements only

if they are present in large copy numbers (while other tools cannot detect them at

all), and, besides, TIGGER2 belongs to the DNA transposon class and elements of

this class can be found in about 400,000 copies in the human genome. While not

all members of this family are so similar to each other to fully justify our number of

copies of a single one, we nevertheless found this approach useful to give us rough

performance estimates for our software.

We then proceeded to introduce random mutations to both the testbed sequence

and the inserted repeated copies, degrading them for 10, 20, and 30 percent. In each

of these settings the performance of our software, as well as the comparison with that

of the RepeatScout and PILER, in our controlled environment, is shown in Table 4.6.

We have omitted the comparison with RepeatMasker, since the repeat we worked with

has been taken from its own underlying library, and the RepeatMasker would thus do

well in detecting it even at 20% and higher degradation (actually, losing only a small

percentage of occurrences even at 30% decay). However, RepeatMasker’s performance

is not guaranteed at divergence ranges of 30% or higher, while our software can still

find useful data with reasonable accuracy.
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Table 4.8. The performance of our software on the simulated data set, experiment
3 (three inserted elements, 150 copies each). “Sn” stands for “Sensitivity” and “Sp”
for “Specificity”.

Degradation PILER PILER RepeatScout RepeatScout RepFi RepFi
Sn Sp Sn Sp Sn Sp

0% 1.0 0.999 0.982 0.999 0.998 0.941
10% 0.0 0.0 0.998 1.0 0.939 0.970
20% 0.0 0.0 0.996 0.999 0.724 0.638
30% 0.0 0.0 0.0 0.0 0.646 0.599

The results of this test led us to believe that about half of our declared false

positives in the real genomic sequences are actually true hits to degraded elements

which have not been previously identified and placed in the RepBase library. On the

other hand, the performance of PILER was again disappointing (at least under its

default settings), while RepeatScout has shown an abrupt change in behavior, from

finding everything to finding nothing, once the sequence divergence fell beyond its

tolerance threshold. Since it relies on exactly conserved k–mers in order to seed the

possible repeated sequences, it stops finding anything once the conservation of its

seeds becomes unlikely (a similar problem has been reported in the past with blast,

and experience has proven this to be a serious issue).

However, when RepeatScout finds that there is something repeated in the se-

quence it further relies on RepeatMasker (by supplying it an enhanced library) to

locate the positions of the repeats. Since RepeatMasker is doing such a good job rec-

ognizing the sequence, it resulted in high sensitivity and specificity in cases of up to

20% decay, even if RepeatScout itself has found only a small fraction of the elements

we have inserted. Without RepeatMasker’s aid the RepeatScout’s performance would

be more gradually declining and would have exhibited sensitivity inferior to our tool
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even at a 20% sequence divergence. In order to further corroborate our findings, we

have performed two additional simulation experiments. In the experiment number 2,

whose results are shown in Table 4.7, we have used the same testbed sequence, but

inserted 150 copies of TIGGER2 and 150 copies of L1MCA 5, an L1 non–LTR retro-

transposon (also taken from RepBase). In the third experiment we have inserted 3

elements, TIGGER2, L1MCA 5 and MLT1AR (an LTR retrotransposon), 150 copies

each — its results are shown in Table 4.8. As it can be seen from the tables, the

results of all our simulations were highly consistent, indicating that we have indeed

been successful in finding substantially broken elements invisible to other tools (at

least when they were present in high enough copy numbers).

4.3 Discussion

The micro-repetitive structure of human and other genomes still leaves us with

many puzzles. While it is intuitive to assume that even the unique DNA sequence

mostly derives from ancient (and thus hardly recognizable) mobile element activ-

ity, substantial further work was necessary to establish that for a fact. Despite the

inevitable limitations in the power of any approach due to the mutation amount

drowning the signal in noise, especially for short and low–copy–number elements, we

anticipated that the tool described in this chapter and its extensions will contribute

to resolving this puzzle.

In many respects, the software we describe in this chapter is still a work in

progress. It needs to be more extensively evaluated, especially in terms of its param-

eter settings. We have ran it on many simulated and real genomic datasets (ENCODE

regions), yet we still need to fully characterize its performance and the tradeoff be-

tween the sensitivity and specificity in the presence of a truly random mixture of

transposable elements of different lengths, compositions and copy numbers, and es-
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pecially these whose copies may have been broken during the evolution by layered

insertions of other elements within their span.

One deficiency of this tool is its lack of ability to establish the exact bound-

aries of the repeat elements it maps to its cliques. We have considered this to be

a separate problem, but much facilitated by the capacity to pinpoint the repeated

elements themselves and their locations. On another note, beyond its independent

use, our method, in particular, some of the techniques presented in Chapter 2, can

also be merged with that of RepeatScout. As previously mentioned, RepeatScout’s

performance considerably suffers from its quest for exactly repeated k–mers, and we

believe that it wold be substantially improved if it would instead use our inexact seed

motifs.

An alternative approach would be to build a consensus library for each of our

cliques (after initially mapping them to the genome), then submit it to RepeatMasker

to search for other occurrences of the element, which we may have missed. Using

RepeatMasker adds substantial power to RepeatScout, and it may also improve our

results, despite of the loss in time. Masking the repeats is generally not a time-

critical task, and spending a few additional hours on it may be worth the wait. After

many years RepeatMasker still remains the best tool for finding interspersed repeated

elements when good libraries are available, and the best use forde novo repeat finders

may indeed be in supplying it with new and enhanced element libraries. We have

done some work following this idea, and we describe it in the next chapter.

There are two possible improvements to our software which we have investigated

and comparatively evaluated. One is in that, instead of using an average weight score

in our detection of constrained heaviest segments, we start with very low weights and

longer seed motifs (appropriate for well conserved repeat copies), mask the resulting

blocks and exclude them from further consideration. That would set aside the best
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conserved copies, which would otherwise lead to incorrect mapping if their positions

were given greater weight (in an environment where repeat copies lie close to each

other the software would tend to merge two or more if they have sufficient weight to

bridge the gap between them). After that, we can re-run the software with higher

weight factors (and shorter seed motifs), and iteratively continue, setting aside more

and more degraded copies, until no further elements can be detected.

Though our approach as described in this chapter has successfully pointed out

the signatures of the broken repeated segments, our findings needed further biolog-

ical analysis. In addition to just mapping the cliques back to the genome, we need

to reconstruct the consensus sequences of the broken repeats, hopefully with precise

definitions of the ends. Such consensus sequences can then be used for further classi-

fication and characterization of the repeated elements. Another problem we still have

to address is that of repeat elements which have been broken by an insertion of yet

another transposon somewhere within their span. While our current approach would

allow for the allocation of fragments of such elements, we still need to work on their

correct classification. This is a daunting problem, however the more of the genome

we are able to characterize, the better chances we have of eventually understanding

the part that remains.

Continuing the study described in this chapter, we present our advancement

towards the reconstruction and classification of the sequences of broken repeated

elements in the next chapter.



CHAPTER 5

RECONSTRUCTION AND CLASSIFICATION OF THE SEQUENCES
OF BROKEN REPEAT ELEMENTS

In the previous chapter we have presented an algorithm RepFi to associate the

co-occurrences of the over-represented short sequences (exact motifs of length varying

from 7 to 14 bases), and we have shown that this algorithm indeed successfully finds

the remnants of broken repeated segments. Our next step was to reconstruct the

consensus sequences of these broken repeats and to see how well our repeat consensus

sequences could be classified as transposable elements. We were also interested in

knowing how well would our approach do in comparison with other de novo tools for

identifying previously known, as well as unknown repeats, in real genomic data.

So far, many families of repeats have been manually annotated and deposited in

databases such as Repbase [52, 51], then used by programs such as RepeatMasker [18]

to identify their traces in any given DNA segment. As we have mentioned earlier a

majority of these repeats are interspersed, resulting mostly from the activity and ac-

cumulation of transposable elements. More than half of the human genomic sequence

consists of known repeats, however a very large part has not yet been associated with

neither repetitive structures nor functional units. Also, we have postulated that most

of the seemingly unique content of mammalian genomes is a result of old transposi-

tions and other duplication activities resulting in copies which have diverged so much

that they cannot be recognized as such by current methods any more. The degener-

ation of these ancient repetitive elements could have resulted in the overabundance

of short repetitive sequences (motifs) throughout the human genome which we have

described earlier in this thesis.

93
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In this chapter we present our efforts to reconstruct the consensus sequences

of the broken repeated elements and to classify them as transposable elements, by

integrating a previously developed computational tool for the classification of repeated

elements according to biological criteria [72] with our approach [1].

5.1 Methods

We have already described the core method of the identification of degenerated

repeated sequences in a given genome in the previous chapter, and we have also postu-

lated that many short motifs which are dramatically over–represented in mammalian

genomes derive from ancient repeats which, over time, became so degraded by muta-

tions that they cannot be recognized as copies of the original elements any more (thus

creating an impression of a large amount of unique non–functional sequence). How-

ever, our core algorithm focuses solely on the identification of the repeated segments.

In this chapter we concentrate on our efforts to reconstruct the consensus sequences

of these segments, and to classify these consensus sequences as transposable elements,

if possible. In addition to these advancements, we have also introduced an iterative

approach in order to find repetitive sequences, where we first attempt to locate the

most conserved repeated elements, then follow by more degraded ones. Thus, our

final approach includes three major steps, as given below:

1. Identification of the repetitive segments.

2. Determining the consensus sequences and building the library of repeat families.

3. Classification of the consensus sequences of repeat families.

5.1.1 Identification of the repetitive segments

We start with the identification of short significantly repeated motifs, and try

to associate them into groups which seem to co-occur with suspicious frequency.
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Different transposons have copies conserved at different rates [26], and we as-

sume that these which are more similar (presumably corresponding to more recent

replication activity) will share long motifs in a relatively stable order, while these

which have been substantially degraded will feature random subsets of short motifs,

and in a more ad hoc manner (due to occasional randomly formed oligonucleotide

sequences or multiple insertions at loci close to each other).

We attempt to isolate the repeated sequences in a series of iterative runs by

choosing different motif sizes (starting with size 12-14 and decreasing it for every

subsequent run). In each iteration, we identify a set of sequences, starting with those

featuring most conserved copies and then looking for progressively more degraded

elements. At the end of each run we mask the sequences we have identified so far in

order to exclude them from further consideration, reduce the size of seed motifs we

attempt to cluster, and increase the number of times we need to see the seed motif

repeated before we include it in the list used for further consideration. We end this

process at about 30% degradation of the copies, when the motifs become so short

(7–8 characters) that their over–representation due to being a part of a transposable

element becomes dwarfed by the number of chance occurrences (i.e. the variance

of the numbers of chance occurrences), and when practically any transposon would

feature several copies of the motif. The exact calculation of these numbers and the

estimate of the probabilities of associations of such short seeds is a daunting task.

So we have established them by running a large number of simulations and recording

the effectiveness with which we could recognize longer degraded copies.

We have described various phases of each iterative run to identify the repetitive

segments in detail in the previous chapter (Section 4.1), and we have adopted almost

all these phases in our final algorithm, except one, i.e. merging the cliques. In the

final algorithm we do not attempt to find one clique corresponding to one repeated
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segment, as this phase would not be of much advantage. The list of the phases in the

identification of the repetitive segments, appropriately modified from the outline in

Section 4.1, is given below:

1. Locating short motifs significantly over-represented as candidate components of

longer repeated elements.

2. Filtering the list of these short motifs in order to retain only these which satisfy

the minimal criteria of size, structure, and copy count, and mapping them back

to their original locations in the genomic segment in question.

3. Building a graph with motifs as vertices, and weighted undirected edges reflect-

ing repeated co-occurrences of motifs within predefined windows.

4. Post–processing the graph in order to remove edges which are likely to have

arisen by chance.

5. Locating cliques in the graph, representing groups of motifs which repeatedly

co–occur within a predefined window.

6. Mapping the cliques back to their genomic locations.

7. Identifying the repetitive segments.

From this point we proceed to group the identified repetitive segments into

consensus sequences of individual repeats.

5.1.2 Determining the consensus sequences

The positions where the original cliques mapped to the genome can be used for

the determination of the consensus sequence of the corresponding transposon. For

well conserved copies resulting from recent insertional events this task is almost trivial,

however when copies are degraded more than about 15% it becomes a challenge.

We first looked at the heaviest segments resulting from the mapping of the

cliques, and for each pair we calculated their distance as measured by the number of
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shared motifs. Since that makes our problem one of the distance between sets, we

have first tried traditional measures such as Jaccard distance [79] and several other

alternatives, but they have not performed well in our context. We have thus modeled

this problem as a drawing of a random variable from the hypergeometric family of

distributions.

Motifs within the two segments we are comparing can be viewed as if they

belong to the same superset, we can label it S, of cardinality N : this is our original

set of seed motifs which we used to build the graph. We can label the segments we

are comparing as S1 and S2, of cardinality D1 =| S1 | and D2 =| S2 |. Thus, D1 ≤ N

and D2 ≤ N . We can also assume, without loss of generality, that D1 ≥ D2. We

model the intersection | S1

⋂

S2 | as an experiment in which we draw D2 motifs from

S, and consider the probability:

Pk(N,D1, D2) =

(

D1

k

)(

N−D1

D2−k

)

(

N

D2

) (5.1)

that the intersection of S1 and S2 contains exactly k motifs (i.e. that during the

“assembling” of S2 exactly k motifs came from S1). Consequently, if S1 and S2 share

K motifs, the probability that these two segments would share K or more of them

is calculated as PK =
∑D2

k=K Pk(N,D2, D2), and we can adopt it as a measure of

distance between S1 and S2. We use this distance as a basis for the single linkage

clustering of the segments. We set the cut on the resulting tree somewhat heuristically

(again optimized through simulations) so that in every cluster we have at least 3

segments. In general, it is better to err in placing too few segments in a single

cluster than placing too many, since similar consensus sequences can always be further

merged, while consensuses built from only distantly related elements are bound to

be poor. After the clusters of segments have been built, we proceed to align the
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DNA sequences corresponding to the segments placed in a single cluster. Rather than

writing the alignment software ourselves, we have interfaced to CLUSTALW [64], a

popular program for constructing multiple alignments. We then looked at the columns

of the resulting alignment in order to assign the consensus character to each position

(or, better say, ancestral character, since we are determining the most likely sequence

of the transposon whose copies we have identified). While many columns do yield a

natural consensus character, there is also a large fraction of these featuring substantial

ambiguity. Conservatively, one would want to assign the letter ‘N’ (as a “do not

know” or a “wildcard” character symbol) to these positions, but for our purposes

that would only lead to complications. Since we would like to use the consensus

sequences we build to further mine the genome for similarities not initially discovered

by our software, and also to attempt repeat classification, ‘N’ at any given position

would not be of help. In particular, the RepeatMasker program would automatically

consider it a mismatch, in addition to true character mismatches, potentially leading

to quite a few missed copies. In our tests, sequences with more than 10-15% N’s

did not yield almost any matches under RepeatMasker’s default settings, despite the

overall good agreement of other real characters.

For example, Table 5.1 shows a multiple alignment of the six sequences. At

the bottom of this alignment, “*” represents a fully conserved column, “.” repre-

sents a column where we can get a clear majority character, and “?” represents a

columns with ambiguity. If we attempt to find the consensus sequence from this

multiple alignment, the columns featuring a “*” and “.” do not pose a problem as

we have a clear choice. However, if we choose “N’s” in the columns featuring a “?”,

our consensus sequence may became very poor. We have thus decided to follow the

maximum likelihood principle for determining the consensus characters, and in cases

of ambiguity instead of assigning an “N” use evolutionary criteria (i.e. the existing
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Table 5.1. Multiple alignment of six sequences and their consensus sequence

G G A G T T T G A G A C C A G C C T G G G C A A C G T G G C
G G A G T T T G A G A T C A G C C T G G C C A A C A T G G C
G G A G T T T G A G A C C A G C C C G G C C A A C A T G G T
G G A G T G C A A T G A C A C G A T C - T C T G C G C A C T
G G A G T G C A G T A G C G C A A T C - T C G G C T C A C T
G G A G T G T G G T G G C A G G A T C - C T A G C T C A C T
* * * * * ? . . . ? . ? * . . . ? . ? . . . . ? * ? ? ? ? .
G G A G T G T G A G A G C A G C C T G G C C A G C G C G G T

knowledge about nucleotide substitution patterns). It is well known that the pre-

dominant substitution in vertebrates is the neighbor–dependent and irreversible CpG

mehylation deamination process (CpG → CpA/TpG) [84]. Furthermore, studies on

pseudogene sequences [40] have shown that, at least in the human genome, relative

substitution rates for four nucleotides can be arranged in the following relative or-

der: Substitution(G) > Substitution(C) > Substitution(A) > Substitution(T). We

use this information to resolve any ambiguity in cases where a majority character is

not clear and we choose the base with the higher substitution rate from the bases

(two or more) causing the ambiguity. We treat a gap in the multiple alignment as a

character, but choose it as the consensus (insertion/deletion) only if it is present in a

significant majority (80% or more ) of the aligned sequences. The consensus sequence

resulting from this approach for the multiple alignment in Table 5.1 is shown in the

bottommost row.

5.1.3 Classification of consensuses

Once the consensus sequence of each cluster of elements has been determined,

we proceed to establish its biological properties, and attempt its classification. For

that purpose we used the RepClass software [72], developed by our collaborators.

RepClass is a toolset which automatically classifies transposable elements pro-

vided by their consensus sequences. It is a high throughput workflow model, leverag-
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ing custom scripts and other third party programs such as WU-blast (Warren Gish,

1996–2004, http://blast.wustl.edu), and palindrome and inverted detection from the

EMBOSS suite [78], in order to classify transposons in new genomes. RepClass em-

ploys a multi–step approach which gathers information using several independent

methods, and combines the collected information in order to come up with a tenta-

tive transposon classification. In particular, RepClass integrates the results of three

independent classification methods: homology, target site duplication (TSD) search,

and structural search.

When using homology, the software tries to classify sequence consensuses by

comparing them to the already annotated transposon families in RepbaseUpdate [51].

During the target site duplication search, RepClass looks for TSDs which are usually

formed at the host site during the transposition. In the structural search it tries to

classify the elements by identifying their structural characteristics such as terminal

repeats flanking the transposon copies.

Classification of a single transposable element requires a single run of each

of the classification methods listed above. Therefore, the classification of elements

in a complete genome requires several hundreds of thousands of iterations. That

task takes anywhere from several days to several months, depending on the size

of the genome and the quality of its assembly, when done sequentially. Since the

classification methods used in RepClass are independent and since the classification

of one sequence is not dependent on the classification of any other, this process yields

to a parallel implementation, which scales well on clusters and grids. We have thus

run such implementation of RepClass on the Distributed and Parallel Computing

Center (DPCC) cluster at the University of Texas at Arlington. DPCC currently

consists of 81 dual processors, 2.667 GHZ and 2.44 GHZ Xeon compute nodes with

2GB of local memory each. The software used a varying number of processors on the
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Figure 5.1. Simulation results for consensus building in simulated environment, for
varying clustering thresholds and character assignment strategies. “Sn” stands for
Sensitivity and “Sp” for Specificity.

cluster for different genomes, from 20, 40, and 60 (different in several runs) processors

for the Drosophila genome to 100 for human.

The topmost division RepClass attempts to achieve is the classification of the

transposons into classes, depending on the presence of the traces of the reverse tran-

scriptase coding region. If they can be recognized the element can be classified as a

retroposon, replicating through an RNA intermediate. Otherwise, it is considered a

DNA–based. After that, RepClass attempts the identification of the right subclass:

for retroposons it looks at non–LTR retrotransposons (LINEs or SINEs), LTR retro-

transposons, DIRs and Penelope-s. If DNA–based , it attempts to recognize them as

Maverick-s, DNA transposons and Helitron-s. If the subclass has been successfully

identified, it goes one step further in an attempt to allocate the correct superfamily.

RepClass is as implementation of a distributed cluster and grid based workflow in

order to classify transposable elements. However, the details that work have been

omitted here, as they concern the work of another research group.
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Figure 5.2. Simulation results for consensus counts in simulated environment, for
varying clustering thresholds and character assignment strategies.

5.2 Calibration and testing

We have first run our program RepFi on both simulated sequences (providing

a well controlled environment in which we knew exactly how many repeats were in-

serted, and where they were), and real genomic data (human chromosome 21). We

have used these sequences to: 1) calibrate the numerous parameters to our software;

2) compare the performance of our software with other publicly available tools, Re-

peatScout in particular; and 3) to estimate how much our findings agree with the

annotations derived from RepBase Update, through use of the RepeatMasker. In

addition, we were also interested in how many of the consensuses we built can be

classified, and how would these classifications relate to these from manually estab-

lished genome annotations.

In order to calibrate the mostly orthogonal parameters to various components

of our software suite we have run several hundred simulation runs. We have described

the calibration of the core repeat finding in the previous chapter, and we here con-
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centrate only on our efforts to optimize the consensus building and the subsequent

classification. In order to evaluate the effectiveness of our consensus building ap-

proach, we ran the measurements in the simulated environment described in Section

4.2, Experiment 2. We finalized that setting by introducing random mutations into

the conglomeration, and degraded the sequence for about 30%.

In the simulation runs we have computed the sensitivity and specificity of re-

trieving the elements we had inserted (measured as the percentage of base positions)

for three sets of specifications: 1) substitution rate based approach to consensus

building with a minimum of 2 participating sequences (determined by the cutoff in

the clustering tree), 2) substitution rate based approach to consensus building with

a minimum of 3 participating sequences, and 3) ambiguity character (wildcard char-

acter ‘N’) based approach to consensus building with a minimum of 3 participating

sequences. We computed the sensitivity and specificity using the approach illustrated

in Figure 4.3. The outcome of this simulation is shown in Figure 5.1. In these sim-

ulations we have varied the clustering threshold (defined in the Section 5.1 above),

from 0.3 to 0.99. This calibration has indicated that our software achieves the best

tradeoff between the sensitivity and specificity at 0.4 and 0.6 threshold with a mini-

mum of 3 sequences in the alignment with maximum likelihood derivation (i.e. with

the substitution rate based consensus building approach). The segment clustering

threshold in these simulation runs indicates the minimal required sequence similari-

ties between two repeated segments. The higher values of this threshold would result

in a smaller number of segments in a cluster, and, in turn, smaller number of copies

of the repetitive segments. However, lower values of this threshold would result in

a greater number of segments in a cluster, but, on other hand, the higher number

of segments in a cluster would also result in a poorer consensus sequence, resulting

in a tradeoff between the quality of consensus and the number of repeat copies it is
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Table 5.2. Performance comparison of our algorithm and RepeatScout in identifying
known and previously characterized repeats.

RepFi Sn RepFi Sp RepeatScout Sn RepeatScout Sp
Experiment 1 0.5230201 0.8714505 0.4466029 0.9938296
Experiment 2 0.5752110 0.8680427 0.6082956 0.9840795

based on. Though minimal number of two sequences in a cluster is not a preferred

scenario, we have chosen this setting only to verify the sequence similarity among

two segments in a cluster resulting from a very high segment clustering threshold.

As expected with such settings, we obtained a very high number of clusters (thus,

consensuses) with the program setting a minimum of two sequences in a cluster. The

simulation results for the consensus counts in the simulated environment for varying

clustering thresholds and character assignment strategies are shown in Figure 5.2.

In the continuation of this work, we have decided to look at the results of

RepeatScout only, since it was both our observation and the result of other related

studies [91] that it generally outperforms other tools, including PILER. Moreover,

RepeatScout is now emerging as a de facto standard in de novo repeat annotation,

and thus as a benchmark with which any new solution should be compared.

Looking at the real genomic data, we have compared the performance of our

algorithm with that of RepeatScout, using human chromosome 21. Since this com-

parison was mainly targeted towards identifying known and previously characterized

repeats, it was easy to calculate the sensitivity (Sn) and specificity (Sp) by repeat

masking the chromosome 21 using the RepBase human library and the libraries pro-

duced by both programs, then comparing the masked characters. The results are

shown in Table 5.2. Again, we used the approach described in Figure 4.3 to calcu-

late the sensitivity and specificity. Experiments 1 and 2 have been performed under
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Table 5.3. Comparison of our algorithm and RepeatScout in identifying known and
previously characterized repeats. “Families” refer to the determined number of con-
sensus sequences.

Total Families
RepFi 1088
RepeatScout 422

different parameter settings for both programs. In Experiment 1, we used the l-mer

size for RepeatScout same as the smallest motif size (i.e. 7) in our case. The ra-

tionale behind it was to run RepeatScout and our software under a similar setting,

without any preference on the l-mer size. However, in Experiment 2, we attempted

to maximize the sensitivity of both tools by choosing the optimal l-mer size (i.e. 14)

in the case of RepeatScout and optimal threshold (i.e. 0.8 or more) for choosing a

gap over character in our case. The outcome of the comparison of our algorithm and

RepeatScout in identifying known and previously characterized repeats families are

shown in Table 5.3. We have also attempted to classify these families as transpos-

able elements using RepClass software. RepClass classified 570 families out of 1088

in our case and 235 families out of 422 in the case of RepeatScout. However, the

results of the RepClass classification were purely computational and they have not

been validated by a domain expert. We may have received some false positives in this

classification; however, that depends solely on the accuracy of RepClass, rather than

on the quality of the consensuses we have supplied to it.

The results shown in tables 5.2 and 5.3 indicate that our method achieves

results comparable with these of RepeatScout when identifying known, previously

characterized repeat families. However, the somewhat lower specificity of our program

also indicates that we may have found additional elements which are, presumably, too

broken to be readily recognized, and which have thus not been identified yet, either
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Table 5.4. Comparison of our algorithm and RepeatScout in identifying old, bro-
ken, previously unidentified repeats. “Families” refer to the determined number of
consensus sequences.

Total New Families
RepFi 183
RepeatScout 10

through manual annotation or other available tools. In order to see how well our

program would identify broken, old, and previously unknown repeats (and confirm

that we are indeed capturing these, and not just noise), we repeat masked chromosome

21 using the RepBase human library, and ran both our software and RepeatScout

on the remaining unmasked sequence. The results of this experiment are shown in

Table 5.4. It is worth noting that out of 10 repeat elements identified by RepeatScout

most were very small (on the order of 100 base pairs or less). In contrast, the elements

reported by our software were large, varying between 1000 and 5000 base pairs, on

average. The RepClass classified 28 repeat elements out 183 as transposable elements

in our case, and none from the RepeatScout’s output.

5.3 Identification of repeats in repeat-masked human genome

In the Section 5.2, we have shown that our approach to identifying the unknown

repeated DNA elements (i.e. the repeats in addition to those deposited in databases

such as Repbase was indeed successful. Although the repeated DNA elements (trans-

posable elements, segmental duplication, and other simple sequences) in the human

genome have been already well annotated, the nature of a large part of human DNA is

still unknown. Earlier in this thesis we have postulated that apparently unique non–

functional DNA could be a result of ancient repeat activities, primarily transposons,

but the segmental duplication could have also played a role. In order to understand
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the nature of the newly identified repeated elements, we have attempted to charac-

terize them by their copy numbers, lengths, occurrences within the known segmental

duplications, their intersection with the 28-way conserved elements in placental mam-

mals (established by publicly available large multiple alignment [101]) , and by their

intersection with the nested TE’s regions (John Pace, personal communication). We

have also used RepClass to classify these newly identified repetitive DNA elements

as transposable elements.

5.3.1 Approach

In order to identify new repeats in the repeat-masked human genome, we have

used methods as described in Section 5.1. We first repeat-masked the entire human

genome (chromosome by chromosome) using RepeatMasker with default settings, and

then used the unmasked sequences from each chromosome to identify new repeated

DNA segments. The following are the steps used in this experiment:

1. We repeat-masked complete the human genome, chromosome by chromosome.

2. We calculated the percentage of masked bases.

3. We ran our software on each repeat-masked chromosome, and identified the

library of the consensus sequences of the repeated segments.

4. We concatenated the libraries built from of all chromosomes in order to assemble

a comprehensive library.

5. We self-blasted the consensus sequences in the comprehensive library using WU-

blast (Warren Gish, 1996–2004, http://blast.wustl.edu) in order to find the sim-

ilarities among the consensus sequences resulting from different chromosomes.

6. We filtered out significantly overlapping consensuses by choosing the larger se-

quences in the blast hits, and built the final library of repeated consensus se-

quences.
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7. We repeat-masked all the pre-repeat-masked-chromosomes (from step 1) of the

human genome, and identified the exact copy numbers related to each consensus

sequence, using the output of RepeatMasker.

8. We re-calculated the percentage of masked bases as masked by RepFi software,

in addition to masked by RepeatMasker in Step 1.

9. We attempted to classify the consensus sequences in the final library as possible

transposable elements using RepClass.

All our runs on whole human genome data have been performed on the Dis-

tributed and Parallel Computing Center (DPCC) cluster. As RepeatMasker takes a

very long time to mask the entire genome in a single run, we have chosen to run it

by masking one chromosome at a time, executing all 24 runs (for all human chromo-

somes) in parallel on different nodes of the DPCC. This enabled us to have the entire

human genome repeat-masked in (approximately) 24 hours. In addition, since, RepFi

software is memory-expensive, working on the entire human genome in a single run

was not even possible. Therefore, we ran RepFi chromosome–wise too, again execut-

ing all 24 runs in parallel on the DPCC. The completion of these runs on the most

chromosomes took approximately 5 hours.

5.3.2 Results and analysis

After finishing the runs of our software on all human chromosomes and assem-

bling the final library of consensus sequences, we have found a large number (9890)

of consensus sequences, varying in size from 356 bases to 5861 bases. Their copy

numbers varied from 5 to 1118. These copy numbers have been counted based on the

output of RepeatMasker, which confirmed that our consensus sequences were indeed

representative of real repeated sequences. In an attempt to characterize them, we

have again used RepClass, which classified 314 of our consensus sequences as trans-
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Table 5.5. The summary of the results of the extended annotation of the entire human
genome.

Measure Description Values
Total number of new consensus sequences 9890
Shortest length of a new consensus sequence 356bp
Longest length of a new consensus sequence 5861bp
Smallest copy number of a new consensus sequence 5
Largest copy number of a new consensus sequence 1118
Masked percent of the human genome before RepFi run 51.13%
Masked percent of the human genome after RepFi run 55.71%

posable elements. Though it was encouraging to see that a good number of our new

elements were classified by RepClass, it was difficult to validate these results in an

automated way. Ultimately, the validation would require a manual lookup by a do-

main expert. We have also measured the percentage of masked bases, both before

starting and after finishing the runs of our software on the entire human genome. As

a result of this, we have found that the RepFi software has masked 4.6% of bases as

part of repetitive segments in addition to the known repetitive contents in the human

genome. The summary of these results is shown in Table 5.5.

In order to further characterize the repetitive regions identified by our software,

we have intersected these regions with segmental duplication regions, the regions of

the 28-way conserved elements in placental mammals, and regions of nested TE’s. We

then counted the total number of bases in the overlapping pieces of intervals. We used

the Galaxy online software (http://main.g2.bx.psu.edu/) to obtain the intersection

between the datasets (in Browser Extensible Data – BED format). The summary of

these intersections is shown in Table 5.6. Approximately 22% bases from our repeti-

tive regions were identified as previously established segmental duplications, and 8%

of bases were found in the 28-way conserved elements record in placental mammals.
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We have associated a simple probabilistic significance to these intersections, assuming

the following notation:

U = set of total bases in the human genome,

A = set of bases in the repetitive regions identified by our software,

B = set of bases in the record of the segmental duplications in the human genome,

and

C = set of bases in the 28-way conserved elements in the placental mammals record.

D = set of bases in nested TE’s regions record.

As total number of bases in the human genome (hg18) are 314193916 (i.e. |U | =

314193916), we have calculated the probabilities of the sets A, B, C, and D as given

below:

P (A) =
|A|

|U |
= 0.01546 (5.2)

P (B) =
|B|

|U |
= 0.20147 (5.3)

P (C) =
|C|

|U |
= 0.03562 (5.4)

P (D) =
|D|

|U |
= 0.00028 (5.5)

From our established counts in the intersections, the probabilities of A ∩ B, A ∩ C,

and A ∩D are given below:

P (A ∩B) =
|A ∩B|

|U |
= 0.00344 (5.6)

P (A ∩ C) =
|A ∩ C|

|U |
= 0.00126 (5.7)
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P (A ∩D) =
|A ∩D|

|U |
= 0.000036 (5.8)

We have also calculated the probabilities of a base being a part of A∩B, A∩C, and

A ∩D by chance, assuming that set A is independent of sets B, C, and D:

Pind(A ∩B) = P (A)P (B) = 0.00311 (5.9)

Pind(A ∩ C) = P (A)P (C) = 0.00055 (5.10)

Pind(A ∩D) = P (A)P (D) = 0.0000043 (5.11)

The probability P (A ∩ B) (Equation 5.6) is approximately equal to the probability

Pind(A ∩B) (Equation 5.9), and we conclude that sets A and B are indeed indepen-

dent, i.e. that we have gotten the intersections just by chance:

P (A ∩B) ≈ Pind(A ∩B) (5.12)

⇒ P (B)P (A/B) ≈ P (B)P (A) (5.13)

⇒ P (A/B) ≈ P (A) (5.14)

However, the probability P (A ∩ C) (Equation 5.7) is greater than the probability

Pind(A ∩ C) (Equation 5.10), i.e.:

P (A ∩ C) > Pind(A ∩ C) (5.15)

⇒ P (C)P (A/C) > P (C)P (A) (5.16)

⇒ P (A/C) > P (A) (5.17)

The probability P (A∩D) (Equation 5.8) is greater than the probability Pind(A ∩D)

(Equation 5.11), so:

P (A ∩D) > Pind(A ∩D) (5.18)

⇒ P (D)P (A/D) > P (D)P (A) (5.19)

⇒ P (A/D) > P (A) (5.20)
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Table 5.6. Intersection of RepFi consensus matching regions with known segmen-
tal duplications in the human genome, the 28-way alignment conserved regions in
placental mammals, and with nested TE’s regions record.

Set Description Base Pairs
Total bases in RepFi consensus matches (as identified by RepeatMasker): Set A 48,595,993
Total bases in known segmental duplication regions of the human genome: Set B 633,006,079
Total bases in 28-way alignment conserved regions in placental mammals: Set C 111,931,514
Total bases in the nested TEs regions record: Set D 895,662
Intersection in consensus matches and segmental duplication record (A ∩B) 10,815,661(22%)
Intersection in consensus matches and 28-way conserved regions (A ∩ C) 3,986,260(8%)
Intersection in consensus matches and nested TEs regions record (A ∩D) 113,247(0.2%)

As shown in Table 5.5, our software has identified 9890 consensus sequences.

Since it is very hard to look at each of them manually, we have chosen to analyze

only the top consensus sequences individually, at a finer granularity, by looking at

their lengths, total copy numbers, copies conserved 80% or more with respect to

their lengths, and their intersection with known segmental duplications. We have

also looked at the general structure of these sequences manually. We prepared three

sets of such consensus sequences: 1) Set 1 — top five sequences in copies conserved

80% or more with respect to their lengths, and classified by RepClass software; 2)

Set 2 — top five sequences in copies conserved 80% or more with respect to their

lengths, but not classified by RepClass software; and 3) Set 3 — top five sequences

in total copies, and classified by RepClass software. For the first set of consensus

sequences, as shown in Table 5.7, almost all sequences have shown a good number

of very well conserved copies (80% or more with respect to their lengths). However,

these copies were present in segmental duplication regions as their intersection with

segmental duplication had 100% overlap. These results served as a sanity check for

our program, i.e. as proof that it finds the repeated segments if they are present in the

given input sequence. At the beginning of our experiments, we have repeat-masked

the entire human genome to remove all the known repeated DNA elements. However,
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the repeat-masking had not removed the segmental duplications. It is conceivable

that some of these segmental duplications exhibit the over-representation of short

sequences (i.e. motifs), and hence our software identified them as repeated sequences.

Though we masked out all simple sequences and filtered out all other tandem repeats

during the RepClass runs, we have noticed that consensus sequence with Sequence

ID 9173 exhibited tandem repeats consisting of short sub-sequences.

For the second set of the consensus sequences (top five sequences in copies con-

served 80% or more with respect to their lengths, but not classified by RepClass

software), as shown in Table 5.8, the intersection with known segmental duplication

records have not shown consistency as compared to that of Set 1. This indicates that

conserved copies of the consensus sequences are not restricted to segmental duplica-

tions. For example, the consensus sequence with Sequence ID 9889 (3030 bases long)

was present in 395 well conserved copies; however, only 1.8% bases from these copies

had intersection with known segmental duplications. Surprisingly, there was no in-

tersection between the well conserved copies of the consensus sequence with Sequence

ID 6940 and the segmental duplications. Moreover, the consensus sequences with

Sequence ID 9889 and 8990 also exhibited tandem repeated short sub-sequences. A

Blat lookup at UCSC Genome Browser (http://genome.ucsc.edu/) on the consensus

sequence (Sequence ID 6940), which showed no overlapping with segmental dupli-

cations, has indicated that this consensus sequence is highly similar to the coding

region of an RNA gene that encodes a small nuclear RNA (snoRNA). We know that

snoRNA genes feature many copies in the human genome, so they could be treated

by our software as repeated elements.

Since we have not removed the segmental duplications in the beginning, we

have identified several well conserved repeated consensus sequences overlapping these

regions. However, our main objective was to locate the broken sequences, and we
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believe that these broken sequences would not exhibit well conserved copies. The

results shown in Table 5.9 represent our third set of consensus sequences (i.e. top

five sequences according to the total number of copies, and classified by RepClass).

These sequences are repeated in large copy numbers, but they do not show signifi-

cant intersections with known segmental duplications. However, the consensus with

Sequence ID 2402 was an exception in the sense that it also participated in our Set 1.

As shown in Table 5.6, only 22% of bases in our repetitive regions had an intersection

with known segmental duplications, and remaining 78% of the bases of these regions

are comprised of sequences which are not well conserved in their.

We were also interested to know whether our software would be able to iden-

tify the consensus sequences similar to the recently identified 7 families (MARE1,

MARE2, MARE3, MER124, MER128, MER135, and X3 LINE) of ancient trans-

posable elements [20]. The consensus sequences of these families are available in

RepBase, but they are not included in standard repeat-masking. When we com-

pared, using BLAST, our consensus sequences with the consensus sequences of these

families, we have found two families (out of 7) which were showing significant one–

to–one hit (with the identity of 68% or more): MER128 with our consensus Sequence

ID 1051 and X3 LINE with our consensus Sequence ID 6338. This indicated that

our method was indeed able to find the consensus sequences of some confirmed old

transposable elements.

5.4 Discussion

While the performance of our tool on well conserved, and thus very similar,

copies of recent transposons is comparable with that of other de novo finders (Ta-

ble 5.2), it clearly over–performs even the best current tools in the identification of

highly degenerated repeated elements (Table 5.4). However, while it can locate low–
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Table 5.7. The summary of the top 5 RepFi classified consensus sequences (Set 1)
having copies matching 80% or more of their lengths.

Sequence Length Total Copy Copies Matching Total Bases Bases in SD Intersect. SD Intersect.
Id Number 80% of Length in all Copies Matching with Copies with all

Occurrences 80% of Length 80% of Length Copies
9173 865 73 35 41663 28206 28206(100%) 41191(98%)
7088 2472 79 20 95066 48319 48319(100%) 93782(98%)
2402 3390 235 10 229540 32792 32972(100%) 217543(94%)
940 753 10 9 6557 6510 6510(100%) 6510(99%)
7064 576 14 7 5802 3403 3403(100%) 5802(100%)

Table 5.8. The summary of the top 5 RepFi unclassified consensus sequences (Set 2)
featuring copies matching 80% or more of their lengths.

Sequence Length Total Copy Copies Matching Total Bases Bases in SD Intersect. SD Intersect.
Id Number 80% of Length in all Copies Matching with Copies with all

Occurrences 80% of Length 80% of Length Copies
9889 3030 606 395 1,340,322 1,155,873 21,169(1.8%) 242,394(18%)
9890 1073 546 353 451,019 356,828 109,031(30%) 148,427(32%)
6913 755 48 42 31,722 30,246 28,066(92%) 29,362(92%)
6953 1775 133 40 104,132 65,594 65,594(100%) 95,304(95%)
6940 817 57 38 33,717 28,636 0 281(.06%)

Table 5.9. The summary of the top 5 RepFi classified consensus sequences (Set 3)
with all copies (each copy is a repeat-masked region).

Sequence Length Total Copy Copies Matching Total Bases SD Intersect.
Id Number 80% of Length in all with all

Occurrences Copies
4645 1700 446 0 125428 9146 (7%)
7843 2572 393 1 21163 944(4%)
4451 1338 358 1 97096 407(.4%)
4420 1643 282 1 14083 473(3%)
2402 3390 235 10 229540 217543(94%)

copy number repeats in cases of well conserved elements, it is only capable of finding

intensively replicated highly degraded transposons. This places a constraint on its

power, however one which we have to accept. When the noise overwhelms the signal

there is very little one can do in order to reconstruct it.

Analyzing the on repeat–masked human genome, we have identified a significant

amount of repetitive DNA in addition to the known repeated elements; however,
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annotating this repetitive DNA remains a challenge. The number of our consensus

sequences was so large that we could not look at all of them. Although the RepClass

software has classified many of our consensus sequences as transposable elements,

validation of these elements is a daunting task. An important evidence one can use to

characterize a repetitive sequence as a transposable element is the existence of target

side duplications (TSDs) on both of its ends. The identification of the TSDs becomes a

slightly easier task if they are conserved at all or many occurrences of the transposable

elements; however, TSDs are not generally conserved at all sites. If these TSDs are

well conserved motifs, our software would treat them as over-represented motifs, and

it would identify them in the consensus sequences. Sometimes even if the TSDs are

not over-represented they can still be a part of our consensus sequences because of our

relaxed approach to building the consensus sequences (i.e. considering the gap over a

character only if the gap shows up more than 80% of cases). To locate the TSDs when

they are a part of the consensus sequences, we have divided a consensus sequence into

two parts and attempted to find the over-represented motifs using our MotFi software

discussed in Chapter 2). MotFi has successfully identified the repeated motifs with

very significant p-values in almost all the consensus sequences (except a few which

have been dominated by tandem repeats) included in tables 5.7 to 5.9. The size of

these motifs varied from 10 bases to 21 bases. Although we have observed conserved

occurrences of such motifs in almost all consensus sequences, the spatial distribution

and the list of selected motifs for Sequence ID 7088 are shown in Figures 5.3, as a

representative outcome. However, we do not have substantial evidence to characterize

these motifs as TSDs, as they can be some other signals (such as TF binding sites or

part of LTRs) or repeated for some other reason. Consequently, we could not acquire

sufficient evidence to annotate our consensus sequences as transposable elements using

an automated approach. We believe that a meaningful annotation will require manual
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Figure 5.3. The layout of overrepresented conserved motifs (possible candidates for
conserved TSDs) in the RepFi consensus sequence 7088. This sequence exhibited
copies (occurrences) matching 80% or more of its length and it was classified by Rep-
Class.The duplicated motifs shown in this sequence are 1. AAAACACTTTAAAA,
2. AATNNNTTTTAAAGT, 3. AGAGGCNNNCAGGC, and 4. CATTCNNNT-
TAAGG.

look up and analysis by a domain expert. Some parts of our repetitive regions have

shown the intersection with the 28-way conserved elements in pre–made alignment of

sequences from placental mammals. This indicates that in addition to transposable

elements and segmental duplications, the evolutionary natural selection may have

also played a role in accumulating repetitive DNA in the human genome.

There is still work that should be done to improve our system. We are not

content with the setting up of the cuts in the segment clustering tree in such way

that it results in a heuristic minimal amount of sequences in each cluster — these cuts

should be made so that the resulting clusters precisely correspond to the division of

elements into families a biologist would make when manually constructing a library.

This is a very difficult task to achieve, as reflected in the poor correspondence of any

automatically derived consensus (i.e. by any current tool) to the existing annotations

of classes of transposable elements. Nevertheless, a good share of the sequences we

discover do classify (although the RepClass classification have not been validated),

and even as most of our consensuses would need further work in merging, splitting,

trimming or extending this shows that the signal we capture is indeed real.



CHAPTER 6

SUMMARY AND PLANS

In this thesis, we have studied motif over-representation with respect to the

baseline Poisson model, and we have presented new efficient algorithms for finding

and characterizing significantly repeated motifs in genomic sequences. We have de-

veloped two major software tools (MotFi and RepFi) to identify the over-represented

motifs, and to associate their co-occurrences and reconstruct the consensus sequences

of presumed large broken repeated segments. These software tools are publicly avail-

able for download and web access at our website. The web link for MotFi soft-

ware is http://bioinformatics.uta.edu/toolkit/motifs and for RepFi software is http:/

/bioinformatics.uta.edu/toolkit/repeats. These software tools can be downloaded

from http://bioinformatics.uta.edu/toolkit/download, and installed for local use. We

are confident that the webserver for our MotFi software would prove to be a useful

tool to study the motifs in genomic sequences, especially putative regulatory regions.

However, the webserver for RepFi software is a prototype version because finding

repeats in short sequences is of limited use, and finding repeats in long sequences

requires substantial data transfer, processing time, and data storage space. We are

still evaluating the feasibility of the webserver for our RepFi software.

Our MotFi software has generally performed reliably. However, the number of

motifs it reported were usually large, even when only the items with highly signifi-

cant p-values were taken into account. The lengths of these motifs were also relatively

large. This may have been expected as long motifs are more likely to achieve high sta-

tistical significance, but it nevertheless warrants some further attention. We decided

118
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to record every motif which could possibly represent a signal, rather than relying on

filtering during the detection. We could then filter the results according to the number

of occurrences, motif composition, database hits (such as JASPAR [15], RepBase [52],

and TRANSFAC [99]), clustering patterns, positional conservation, and joint conser-

vation across orthology and paralogy. Often the hits in TRANSFAC database were

not conclusive, as we were regularly recording multiple significant hits for most of our

top motifs, and the JASPAR database is still small, with not many entries to match.

While applying our MotFi software, we were often finding motifs almost exclu-

sively comprised of A’s and T’s. We believe that such motifs are remnants of poly-A

tails. Finding them was not a surprise, as poly-A tails are known to be present in

many copies throughout eukaryotic genomic sequences. They could have been derived

by several mechanisms, such as from the terminus of non-LTR retrotransposon re-

peats. Though these motifs were potentially significant, we have chosen not to study

them further, and consequently filtered them out. Although the application of an

effective filtering criteria was not an easy task, by generating a large list of motifs

we were able to find promising candidates. Indeed, our list of high scoring motifs

included many experimentally confirmed sites. Furthermore, our approach success-

fully found motifs which were missed by other software tools, and these collected in

the BEST suite in particular. Our current algorithm works only on multiple input

sequences (presumably upstream sequences of the co-expressed genes) and it returns

variable motifs occurring in some subsets of these sequences. However, in the future

this algorithm may be possible to be extended to accept one long genomic segment

(a chromosome or even a complete genome). Another possible extension can be the

introduction of a facility to identify motifs featuring small insertions and deletions.

In this work we have observed that, in addition to known repeated elements,

the human genome features a micro–repetitive structure characterized by an over-
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abundance of short motifs. This result cautions us from using over-representation

for the determination of functional DNA elements because that inevitably results in a

large number of false positives. It is also difficult to find an adequate model of general

genomic environments. The Markov models which are commonly used to simulate the

DNA sequences have not shown good correlation with the real data with respect to

their micro–repetitive pattern. As a result of this work, we have observed a consistent

pattern for all considered motifs lengths indicating that the number of short repeated

motifs in the genomic sequences was far greater than in any of the synthetic models.

We have also observed that in upstream regulatory sequences of genes, the number

of larger motifs (of length 7 to 9) which were repeated less than 5 times was higher

in comparison to that of random genomic sequences, whereas the number of such

motifs repeated 5 or more times was higher in random genomic sequences. However,

the scope of this study was limited, as we have used relatively smaller datasets (100

sequences, each of 500bp, for each dataset). In the future, it would be interesting to

expand this study to much larger sequences (of chromosome size, at least).

We have also attempted to establish the source of the noticed over-abundance

of short motifs in human genomic sequences. Our RepFi software was able to find

many new broken repeated elements, thus confirming our postulate that much of

the over-abundance of short motifs throughout human genome is because of bro-

ken (presumably old) transpositional and other duplication activities. We have also

benchmarked the performance of this software against other existing tools. RepFi

has outperformed all other considered tools in identifying broken repeats with high

copy numbers. Our simulation runs have shown that our approach to reconstruct

the consensus sequences of broken repeated elements based on relative substitution

rates of the four DNA bases works well. We have observed that there is a tradeoff

between the copy number used to build the consensus and the quality of consensus
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sequences. Though it is very hard to characterize a poor quality consensus sequence,

one can still see the signature of broken repeats at multiple copies. The boundaries

and the length of the putative elements were other important issues related to our

consensus sequences. All repeat finding tools suffer from the problems regarding the

determination of the accurate repeat boundaries. Our approach to build the consen-

sus was very relaxed, as we choose a gap only in those cases where it was present

more than 80% of the aligning copies. This often resulted in very large consensus se-

quences, extending the elements at both ends. The lengths of our consensus sequences

heavily depended on the weight assignment during the constrained heaviest segment

identification. Although our iterative approach helped us overcome this problem to

some extent, we might still have ended up connecting several elements (represented

as segments) into one, many times. More calibration runs could indicate the right

weight assignment. However, it is hard to have a well controlled test environment

dataset for calibrations of this kind, one which would be similar to the real genomic

sequences, in the absence of good understanding of the nature of these sequences. In

our testbed sequences for the test environment datasets, we have attempted to make

these sequences as similar to real DNA sequences as possible. However, a lot more

can be done to improve the quality of these simulations, particularly by choosing

an evolutionary model for substitutions, and by increasing the length of the testbed

sequences. The test environment sequences can also be improved by choosing a more

realistic density of the repeated elements. One may also like to try the insertion and

deletion of the repeated elements nested within other ones. However, we do not think

that this would affect our computational approach, as constrained heaviest segment

algorithm would find these segments even if they are nested in each other.

Unlike other currently available tools, our program can find the locations of re-

peats in a genome even before their consensus sequences have been reconstructed, and
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thus it does not depend on the RepeatMasker to report them. Often this is all that a

user wants — to mask the clearly repetitive structures in order to concentrate on more

interesting sequences. Furthermore, our software can accomplish the basic masking

within minutes, with results comparable to what other tools such as RepeatScout

accomplish in hours because of their expense of running the time–consuming Repeat-

Masker matches. This is not to say that our software runs in an instant — for all

but short segments (where looking for repeats would not make much sense anyway)

it is indeed computationally expensive. It is just that it performs basic masking an

order of magnitude faster. However, there are cases where full annotation of large

genomes is needed, such as following a new round of sequencing and assembly. For

this purpose our program can be run in extensive mode, determining the consensuses

and invoking the RepeatMasker with this catalog (this strategy can detect additional

copies which have been omitted when segments were laid out), as well as performing

the classification. Depending on the genome size and the power of the computational

infrastructure one has, this may take days of computation; however, full de novo

annotation of complete genomes is not a common task executed daily, and in this

context one can afford the wait.

We have also attempted to find unknown repeats in the entire repeat-masked

human genome and identified a large number of consensus sequences of newly dis-

covered repetitive segments. Our software was able to identify around 4.6% more

interspersed repetitions in the human DNA, in addition to the known repeated ele-

ments. Some of our repetitive consensus sequences have shown well conserved copies

and shared significant amount of bases with known segmental duplications. However,

most of our repetitive regions (approximately 78%) have been found outside the seg-

mental duplication regions. Though these results have confirmed that our software

can successfully locate the repetitive elements (both broken and well conserved), char-
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acterization of these sequences remains a daunting task. We have used RepClass for

an automated classification of our consensuses, and it indeed classified a good num-

ber of these as transposable elements. However, we are not aware of any other way

to validate these results, except manual annotation by a domain expert. Therefore,

the RepClass classification results remained un-validated at this time. In the future,

we plan to build a library of reconstructed consensus sequences of the transposable

elements, i.e. these which have resulted from ancient repeat activities and which were

so far unrecognizable due to their fragmentation over a long period of time. As we

have seen in the results discussed in Chapter 5, many of our well conserved consensus

sequences overlapped with the known segmental duplications. However, this was not

a surprise as ancestral reconstruction of the segmental duplication has revealed punc-

tuated cores in the human genome [105], and these segmental duplications can be

annotated using tools like DupMasker [106]. We would also like to rerun our RepFi

program after masking all known repeated (transposable) elements and segmental

duplications from the human genome. More importantly, it would be interesting to

see if the broken repeated elements (and possibly ancient transposons) are somehow

associated with gene regulatory networks in human and other genomes. We would

also like to know why many of our consensus sequences are overlapping with 28-way

conserved track in the pre–made alignments [101]. Finally, we would like to see our

tool finding its place as a method of choice for the annotation of repeats in newly

sequenced genomes.
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In chapter 2 of this thesis, we have presented an efficient algorithm to find

all significantly over-represented variable motifs in the regulatory sequences of co-

expressed genes [8]. The key idea of our approach is to detect everything that appears

statistically significant. Further, we apply separate selection criteria depending on the

nature of the sites one wants to locate. We have written a software “MotFi” which

efficiently searches through multiple gene regulatory sequences and finds all significant

variable motifs shared within subsets of these sequences. The software accepts the

sequences in Fasta format, finds all significantly over-represented degenerate motifs,

and generate a pictorial layout of motifs. Also, in an attempt to characterize the

motifs, the software supports the search of the motifs in the RepBase and JASPAR

databases.

We have also developed an algorithm to efficiently associate the co-occurrences

of significantly over-represented motifs. This software can be used for de novo identi-

fication of repeats. This work has been described in Chapter 4. Our softwares MotFi

and RepFi are publicly available on webserver, both for web access and download.

This section describes the usage, architecture and technology of the webserver, and

visualization of results.

A.1 Motifs finding software: MotFi

The objective of the MotFi software is to locate significantly over-represented

variable motifs in the given sequences. It takes the input file with sequences in

Fasta format, finds the list of significant motifs, and generate a PDF file showing

the visualization of the selected motifs. In order to characterize the motifs for their

possible functional role, the software also provides an option to search these motifs

in the RepBase and Jaspar databases.
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Figure A.1. The web interface of MotFi software.

A.1.1 Web access

The MotFi software can be accessed on the web at http://bioinformatics.uta.edu/

toolkit/motifs. The web interface of the software is shown in Figure A.1.1. Using this

interface, one may upload the input sequences in Fasta format using two methods:

by uploading the file or by pasting the sequences in given text area. After selecting

the appropriate radio button, one may browse and upload the file containing the se-

quences, or copy and paste the sequences in the given text area. An example for the

format of input sequences is given below:

>Seq 1

ATCGAGCATTTCCAATAATAAGTGATGAGTCACCAATATCTAACTTTGTATT

>Seq 2

AATAAAGCTGGCGGCCGCGGGCTACTGCCAATATCCTGCGTTTGTGTGCGTG

>Seq 3

GAAACGCCAATCGTGGCTGCCAATATCCCTAAGGAGTGCCTGCCAATATCGC
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Figure A.2. The web report about significant motifs as generated by MotFi software.

Once the input sequences have been uploaded, the following parameters of the

software can be selected to get the desired filtering of motifs:

• Min Length of Consensus: Specify the minimum length of the consensus motifs.

For example, the length of CTtcNTA is 7.

• Min Repeat Count: Specify the minimum repeat count of the motif (in all given

sequences). For example, a motif may show up 1 time in one sequence, 2 times

in next sequence and 1 time in third sequence, so the total repeat count is 4.

• Min Sequence Sharing: The sequence sharing represents the number of different

sequences a motif shows up. For example, out of five sequences a motif shows

up in sequence 1, 2 , 3 and 5 but not in 4; in this case, the sequence sharing is

4.

• Max P-Value: The P-Value represents the probability of a motif showing up

by chance. Specify the maximum acceptable P-Value for the selection of the

motifs.
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• Min Significance Score: The significance score represents the score of the motif

consensus. Choose a minimum acceptable significance score for the selection

the motifs.

• Search in both Strands: Select this option if you want that motifs should be

looked in both strands.

• Filter-out Simple Sequences: The selection of this option enables the program

to filter out simple and low complexity sequences.

Once the input sequences are provided and parameters are configured in the

web interface, the software can be run by clicking the “Submit” button. After the

software completes it’s execution, a web report about the significant motifs, as shown

in Figure A.2, is displayed. The upper part of this report includes the significant

motifs, their repeat counts, p-values, sequences sharing, count of hits in the RepBase

database, and a “Detail” button associated to each motif. The lower part of the

report includes the visualization of the layout of selected motifs (in some browsers,

the visualization may not show up embedded in the original window but in a new

window). A click on the “Detail” button associated with each motif will display a

supplemental report showing the detail of the RepBase database hits and JASPAR

database matches.

A.1.2 Download

At this time the download for local installation is available only for Unix/Linux

systems. The Makefile for these platforms is supplied in the code directory. It is

zip-ed and tar-ed. So, it has to be uncompressed first, before running “make”. Also,

please make sure that you replace the first lines in Perl and Shell scripts with paths

appropriate for your system.



129

The MotFi software can be invoked by running the perl script MotFi.pl with

appropriate command line parameters. It accepts the following command line options:

-i <sequences input file>

-o <motifs output file>

-t <path of program files location, example /home/dirA/dirB>

-l <minimum motif length (optional): default=7>

-c <minimum repeat count (optional): default=3>

-n <minimum sequence sharing (optional): default=3 >

-p <maximum motif P-Value: default=.01>

-s <minimum significant score (optional): default=.99 >

-b <1 to choose single strand and 2 to choose both strand (optional): default=1>

-r <0 to choose no filtering of simple sequences and 1 to choose filtering (optional):

default=0>

The required parameters are sequences input file, motifs output file, and path of

directory where the software has been installed. For example, if one has installed the

software in the directory /home/programs/MotFi and invoking the MotFi.pl script

from the directory where the input.txt file is located, then:

$perl /home/programs/MotFi/MotFi.pl -i input.txt -o motifs.txt -t /home/programs/

MotFi

will execute the software. Also, one may choose other parameters depending upon

desired selection criteria as discussed in A.1.1. For the download version, the input

sequences format will also be the same as discussed in A.1.1.

A.2 Repeats finding software: RepFi

The RepFi software can be used to identify the repeats in genomic sequences.

Though primarily intended to identify to broken repeats, this software can be used
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Figure A.3. The web interface of RepFi software.

for de novo identification of all repeats. It takes input file with sequence in Fasta

format and finds the consensus sequences of repeated elements in the input sequence.

For multiple alignment, it uses the clustalw program.

A.2.1 Web access

The RepFi software can be accessed on the web at http://bioinformatics.uta.edu/

toolkit/repeats. The web interface of this software is shown in Figure A.3. This pro-

totype web-server can accept the sequence in Fasta format using two methods: by

uploading the file or by pasting the sequence in given text area. The file input option

can be selected using the appropriate radio button present at left side. The size of

the input sequence can be as large as 10MB; however, larger sequences may take

longer time and result in browser time out. The appropriate selection of following

parameters will help in finding the repeated elements in the given sequence.

• Minimum Length of Repeat: Specify the acceptable minimum length of repeated

element.
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• Maximum Length of Repeat: Specify the acceptable maximum length of re-

peated element.

• Clustering Similarity Threshold: This parameter represents similarity threshold

required for clustering the sequence segments. A higher threshold would result

in higher number of clusters, thus, in higher number of repeated consensus.

• Motifs P-Value: The P-Value represents the probability of a motif showing up by

chance. Specify the maximum acceptable P-Value for motifs (lmers) selection.

The associations among these selected motifs (lmers) are used in building the

repeated elements’ consensus. Specify the maximum acceptable P-Value.

• Min Frequency of Motifs (lmers): The motifs frequency represents the count of

a motif (lmer) showing up in the given sequence. A motif (lmer) is considered

to be over-represented (in this program) if it shows up more than this minimum

frequency plus expected count, where expected count is calculated by program

itself and the minimum frequency works as base count. The larger value of

this option would result smaller number of selected motifs, thus in turn, faster

execution of the program. For an idea, our simulation shows that for sequences

as large as chr 21, appropriate value of this frequency is 1000, however, for

smaller sequences (of length 2-5MB) it could be up to 50, and 0 for very small

sequences ( of order of few thousands).

Once input sequence is provided and parameters are configured at the web

interface, the RepFi software can be run by clicking at the “Submit” button. The

execution time of this software depends on the length of the input sequence. Once the

execution of the software is completed, the web application displays a report page as

shown in Figure A.4. This page includes the consensus sequences of all the repeated

elements in the given sequence.
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Figure A.4. The web report about repeated elements as generated by RepFi software.

A.2.2 Download

Before running the RepFi software, the one would need to download and install

the clustalw it on a server and change the path of it’s executable at line 204 (where the

clusatalw is being invoked) in the program named Cluster2Alignment2Consensus.cpp.

At this time the installation is available only for Unix/Linux systems. The Makefile

for these platforms is supplied in the code directory. It is zip-ed and tar-ed, so it has

to be uncompressed before running “make”. Also, one need to make sure that the

first line in the Perl script is replaced by the path appropriate for the server on which

the software is being installed.

The program takes input sequence in Fasta format and finds the consensus

sequences of repeated element in the input sequence. It accepts following command

line options:

-i <sequence input file>

-t <path of program files location, example /home/dirA/dirB>

-l <minimum length of repeat (optional): default=300>
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-x <maximum length of repeat (optional):default=5000>

-c <similarity threshold for clustering (optional): default=.98>

-p <maximum motif P-Value: default=.00001>

-f <minimum motif (lmers) frequency (optional): default=50>

-w <window size to find association of motifs (optional): default=1000>

The required parameters are sequence input file and the path for the directory

where one has installed the software. For example, if the software has been installed

in the directory /home/programs/RepFi and the RepFi.pl script is being invoked

from the directory where the “input.txt” file is located, then:

$perl /home/programs/RepFi/RepFi.pl -i input.txt -t /home/programs/RepFi

would execute the software. Also, one may choose other parameters depending upon

the desired selection criteria as discussed in A.2.1. As compared to the web access, the

download version of RepFi software includes “window size” as an additional optional

parameter. The window size represents the span over the sequence where association

among the over-represented motifs is to be looked. It is analogous to the average

length of repeats. In our simulations, we chose window size 1000. A higher value of

window size may slow down the performance of the software.

A.3 Technology

Both MotFi and RepFi softwares are collections of several C++ programs. For

download version, these programs are wrapped into Perl scripts. However, for web

version, we have chosen HTML forms and PHP scripts to invoke these software’s

components. In order to pass the UNIX environment variables (such as unlimited

stack size to Apache web users) to child process, we have used UNIX shell script to

wrap system command along with invocation of component program. All component

programs of the software are stored securely in our server. The web data space and
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workspace for these programs are configured in a separate area of the same server.

The hardware configuration of this server is: dual Xeon processors running at 3.06

Ghz, 2MB cache, 4GB memory, 365GB hard disk storage. The webserver is based on

Fedora 2 distribution of Linux with Apache 2.0.49.

A.4 Discussion

We believe that our MotFi software would prove a good tool to study the motifs

in regulatory sequences. In several experiments, the software has performed well by

finding the motifs efficiently with good sensitivity. The web access of this software

would serve as useful tool to the scientific community. The current settings of the

software can handle around a dozen sequences, each of size up to 1000bp. The reason

behind imposing such restrictions was to make the software run efficiently on our

webserver. We are hopeful that these settings would serve the purpose of most users;

however, for users with larger datasets, we would be happy to run these datasets

locally on our server and provide the results.

In many respects, the RepFi software is a work in progress and it’s webserver

is still a prototype version. We are evaluating the feasibility of running this software

online. The RepFi software presumably works on large datasets and its execution

time heavily depends on the distribution of motifs in the input sequence. Though

the software has delivered the expected results in most of our tests on the webserver,

there could very well be some cases where the browser may timeout and suspend the

execution of our software components.
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