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ABSTRACT

CLAY MINERAL QUANTIFICATION USING

GRAVIMETRIC ANALYSIS

Sarwenaj Ashraf, M.S.

The University of Texas at Arlington, 2008

Supervising Professor: Anand J Puppala

The current procedure used by the Texas Department of Transportation (TxDOT) to
determine the type of stabilizer is based mainly on the Plasticity Index (Pl) and the gradation of
the soil. This method of stabilization does not always work because two soils with the same Pls
can have very different shrink/swell potential, plastic limits or liquid limits, hence their behavior
may be very different. This is mainly due to the fact that two soils that have the same PI can have
very different clay mineral composition. Montmorillonite and kaolinite are the clay minerals that
cause swelling/shrinking in soils.

Chittoori (2008) had developed three models to quantify the clay minerals using Microsoft
Excel Solver, Regression Equations and Atrtificial Neural networks. The main objective of this
research was to validate the recently developed models by Chittoori 2008 for quantifying
montmorillonite and kaolinite. It was found that although all the models gave fair predictions, the
regression equation accurately quantified high percentages of montmorillonite — the mineral that

is the main cause of swelling and water retention in soils.
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CHAPTER 1

INTRODUCTION
1.1 Introduction

Soils are a mixture of mineral and organic constituents that are in solid, gaseous and
aqueous states. The physical state and the chemical makeup of the soils contribute to their
suitability for engineering and commercial purposes. It is very important to understand the total
structure of soils in order to predict how they will behave under natural conditions.

Over the years, soil stabilization has been a topic of great interest and discussion
amongst civil engineers. Extensive research was documented with concerning engineering
properties, reliability and durability of various types of stabilized materials (Tayabji 1982;
Haussman 1989; Moseley and Kirsch, 2004; Puppala et al., 2006). Soil stabilization significantly
reduces the construction and maintenance cost associated with building pavements on expansive
or poor quality soils as well as increase rider comfort and satisfaction. The stability of the soil
beneath the pavement influences the performance of the pavement to a great degree. But in
some cases, even after sub grades are stabilized and treated using standard procedures
developed by federal agencies, these pavements fail or they have cracks which eventually cause
failures. Every year, millions of dollars are spent over maintenance of these pavements. It is not
due to poor design that most of these failures occur, as the designs take into consideration all the
load factors and water conditions associated with the given area. What they do not take into
consideration, or they overlook is the mineral composition of the soils. None of the current design
procedures address the affect soil minerals have on the stabilization process used for sub grade
improvement.

The current procedure used by the Texas Department of Transportation (TxDOT) to

determine the type of stabilizer is based mainly on the Plasticity Index (Pl) and the gradation of



the soil. Figure 1.1 illustrates how the Pl of the soil is used to determine the kind of stabilizer to
use. This method of stabilization does not always work because two soils with the same Pls can
have very different shrink/swell potential, plastic limits or liquid limits, hence their behavior may be

very different.

and
Atterberg Limits

225% Passing No. 200 Sieve

Lime-Fly Ash (FS)
Asphalt (Pl < 6) Fly Ash [(CS) Lime-Cement
Lime-Fly Ash (FS) Cement Lime-Fly Ash (FS)

Figure 1-1 Additive Selection Criteria for Subgrade Material Using Soil Classification (Chittoori,
2008)

Most soils are the result of the weathering of rocks. The rocks consist partly of chemically
stable and partly of chemically less stable minerals (Terzaghi and Peck, 1960). When the
chemical weathering of rocks occur, the stable minerals remain practically unaltered but the less
stable minerals transform to very small particles that have a scale-like or flaky crystal form
(Terzaghi and Peck, 1960). As further transportation occurs via running water, etc. the
aggregates are broken down further and also subjected to grinding and impact. The grinding
causes the flaky particles to be broken down into smaller particles. These broken down flakes

constitute the very fine fraction of natural soils. There are various kinds of soil minerals, but the



primary minerals that are taken into consideration and contribute to soil behavior are
montmorillonite, kaolinite and illite.

1.2 Research Objectives

The main objective of this research is to validate the models developed by Chittoori
(2008). Thirty artificial samples have been prepared, each with a different percentage of the
minerals. The artificial samples consisted of mixtures of montmorillonite and kaolinite only. The
samples were mixed so that each had a different proportion of the minerals. The purpose of this
is to figure out the actual behavior of the minerals without the influence of external factors. The
goals of this research are listed below.

1. Perform chemical analyses on the samples. The chemical analyses consist of three
methods that have been used in the literature. They are — Cation Exchange Capacity
(CEC), Specific Surface Area (SSA) and Total Potassium (TP).

2. Use the values obtained from the above mention analyses to determine the percentage
of each mineral present in the different samples. These percentages will be obtained
using three methods. The first method uses the solver function of Microsoft office Excel,
the second method involves regression equations, and the third involves the use of
artificial neural network model developed by Chittoori (2008).

3. Compare the predicted percentages to the actual percentage mixed and correlate the
accuracy of the prediction.

4. Provide future recommendations as deemed necessary after reviewing the predictions.

1.3 Organization and Summary

This section will provide a brief overview of the contents of the following chapters.

Chapter 2 provides a review of the literature available on clay minerals and the studies
conducted by various researchers to better understand and quantify them. It also provides the
different methods that are currently in practice for the identification and quantification of clay
minerals. It also provides information about the chemical properties that can be used to quantify

the clay minerals.



Chapter 3 gives the detailed procedures of the various chemical tests used in this study.
Test procedures for the Cation Exchange Capacity (CEC), Specific Surface Area (SSA), and
Total Potassium (TP) are explained thoroughly.

Chapter 4 includes all the test results obtained from the samples. These results are used
to analyze and quantify the percentage of each mineral present using the models developed by
Chittoori 2008. It includes a brief description of the models and the percentage of minerals
derived using them. Analysis and comparison of the predicted percentages with the actual mix
percentage is also discussed in this chapter.

Chapter 5 provides the summary and conclusions of the research. It addresses the future
research needs to improve the predictions and correlation of the data. It also addresses the

possible reasons for the errors encountered in the data.



CHAPTER 2

LITERATURE REVIEW
2.1 Introduction

Soil stabilization with the aid of chemical additives has been in practice for many years
now. The kinds of chemicals or additives to use for the stabilization have been discussed at
length by various researchers and many innovative methods have been discovered (Tayabji et
al., 1982). One of the areas where soil stabilization has been used to a great extent is
pavements. The stability of the soil beneath the pavement influences the performance of the pave
to a great degree. Although many pavements are performing very well after being treated, there
are still some cases where the soil stabilization technique did not work like it should have. These
failures may be blamed on the kind of stabilizer used, the amount of stabilizer used, or on the
properties and mineral content of the soil (Little et al. 2000).

Currently, the Texas Department of Transportation (TxDOT) uses the Plasticity Index (PI)
and gradation of the soil to determine the kind of stabilizer to be used. Figure 2.1 illustrates how
the Pl and gradation are used to determine the type of stabilizer to be used. As mentioned before,
this method of stabilization does not always work because two soils with the same Pls can have
very different shrink/swell potential, plastic limits or liquid limits, hence their behavior may be very

different.



and
Atterberg Limits

226% Passing No. 200 Sieve

Lime-Fly Ash (FS)
Asphalt (Pl < 6) Fly Ash {CS) Lime-Cement
Lime-Fly Ash {(FS) Cement Lime-Fly Ash {(FS)

Figure 2-1 TxDOT Additive Selection Criteria for Subgrade Material Using Soil Classification
(Chittoori 2008)

Most soils are the result of the weathering of rocks. The rocks consist partly of chemically
stable and partly of chemically less stable minerals (Terzaghi et al., 1960). When the chemical
weathering of rocks occur, the stable minerals remain practically unaltered but the less stable
minerals transform to very small particles that have a scale-like or flaky crystal form (Terzaghi et
al.,, 1960). As further transportation occurs via running water, etc. the aggregates are broken
down further and also subjected to grinding and impact. The grinding causes the flaky particles to
be broken down into smaller particles. These broken down flakes constitute the very fine fraction
of natural soils. There are various kinds of soil minerals, but the primary minerals that are taken

into consideration and contribute to soil behavior are montmorillonite, kaolinite and illite.



2.2 Clay Minerals

2.2.1 Montmorillonite

Montmorillonite, a clay silicate, is a member of the smectite family. They form by
crystallization from solution high in soluble silica and magnesium. Montmorillonite has a 2:1 layer
structure. They have an octahedral sheet along with two tetrahedral sheets, in which oxygen
atoms are shared (Borchardt, 1977). All tetrahedra in the sheets contain Si** ions. Aluminum is
the normal ion in the central sheet, but about one-eighth of the octahedra contain Mg as a
substituting ion for AI** The negative charge caused by substitution is neutralized by various
hydrated cations adsorbed to the surface of sheets. The force of bonding between cations and
the sheets is not very strong and depends on the amount of water present. In dry
montmorillonites the bonding force is relatively strong. When wet conditions occur, water is drawn
into the interlayer space between sheets and causes the clay to swell dramatically (expanding
clay) (Borchardt, 1989).

A characteristic feature of montmorillonite is the extensive surface for the adsorption of
water and ions, therefore the cation exchange capacity of montmorillonite is very high (Borchardt,
1989). Layers of the smectite group range in thickness from 0.98 to 1.8 nm or more. They are
mainly responsible for the shrinking and swelling characteristics of soils and have adhesive
properties that help prevent erosion. They absorb large quantities of water, due to their expanded
lattice structure, leading to a lower strength, which causes large and destructive landslides as
well as creep (Borchardt, 1989). Their negative charge and expansive nature makes them very

reactive in soil environments and makes them susceptible to absorb herbicides and pesticides.
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Figure 2-2 Montmorillonite structure

Figure 2-3 Scanning Electron Micrograph of MontmorilloniteSource:
http://www.webmineral.com/specimens/Smectite.jpg
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2.2.2 lllites

llites are part of the mica family. Micas are 2:1 phyllo-silicates, which mean layered
silicates. Each layer is composed of two tetrahedral sheets and one octahedral sheet. They have
cations between their interlayer, which balances a high layer charge. The most important and
extensive cation is potassium (K). Micas are found in shales, slates, phyllites, schists, gnesses,
granites, etc. and in sediments that have been derived from these rocks (Fanning et al., 1977).
llites are the dominant clay minerals in argillaceous rocks and are formed by the weathering of
silicates (primarily feldspar), through the alteration of other clay minerals, and during the
degradation of muscovite (Fanning et. al., 1977). Formation of illite is generally favored by
alkaline conditions and by high concentrations of Al and K. The number of inter particle contacts
is less in micas and hence the cohesive forces between the crystallites are weak (Thompson and
Ukrainczyk, 2002). The degree to which illite crystals contact adjacent grains is a function of soil

water content as well as particle size, shape and flexibility (Fanning et al., 1977)

MODIFIED FROM GRIM (1962)

Figure 2-4 Structure of lllite
(Source: http://pubs.usgs.gov/of/2001/0f01-041/htmidocs/clays/illite.htm)




Figure 2-5 Scanning Electron Micrograph of lllite
(Source: http://www.ktgeo.com/tSEM4C.jpg)

2.2.3 Kaolinite

The kaolinite group of minerals includes a lot of different kind of minerals including
kaolinite, dickite, nacrite, and halloysite, and the trioctahedral minerals antigorite, chamosite,
chrysotile, and cronstedite. Kaolinite is usually abundant in warm and moist climates. Kaolinite's
structure is composed of alternate silicate sheets (Si,Os) and aluminum oxide/hydroxide sheets
(Al(OH),) called gibbsite sheets. The silicate and gibbsite layers are tightly bonded together with
only weak bonding existing between these silicate/ gibbsite paired layers (Dixon, 1977). The
structure is very similar to the Serpentine Group and at times the two groups are combined into a
Kaolinite-serpentine Group It is a 1:1 layer structured alumino silicate, with one tetrahedral sheet
linked to one octahedral sheet by oxygen atoms (Dixon, 1977). Aluminum ions occupy two thirds
of the octahedral positions and Silicon ions occupy the tetrahedral positions. The aluminum and
silicon ions are arranged as shown in Figure 2.6. Every third row in the octahedral sites is vacant
and hydroxyl ions, which make up the surface plane of the octahedral anions, bond their

hydrogen atoms to the adjacent oxygen sheets (Dixon, 1977).
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STRUCTURE OF A KAOLINITE LAYER

’

MODIFIED FROM GRIM (1962)

Figure 2-6 Kaolinite Structure
Source: http://pubs.usgs.gov/of/2001/0f01-041/htmldocs/clays/kaogr.htm

Figure 2-7 Scanning Electron Micrograph of Kaolinite
http://www.webmineral.com/specimens/Kaolinite.jpg

When viewed with an electron scanning microscope, kaolinites usually appear as

hexagonal structures. Other minerals like vermiculite also display this characteristic but kaolinites

11



retain their structure even when heated to 1000°C (1273K) (Dixon, 1977). However, kaolinites are
altered by dry grinding for even a short period of time (Dixon, 1977).

2.3 Identification of Clay Minerals

Soil minerals are identified primarily by their elemental composition and structure. This
section is aimed to provide an overview of the different methods that are currently available to
identify clay minerals. X-ray diffraction is the most widely used method of identification of the
amount of information that can be gathered from x-ray diffraction results, but sometimes other
methods like chemical analyses in conjunction with x-ray diffraction are also used (Dixon, 1977).
2.3.1 X-Ray Diffraction

Clay minerals are characterized to be crystalline in nature, i.e. they have long range
structure that repeats itself for hundreds of nanometers to millimeters. These kinds of minerals
can be identified by X-ray diffraction studies because each crystal contains planes of atoms
separated by constant distance which is due to the periodic nature of the standard spacing of the
atoms (Whittig & Allardice, 1986). But there are minerals that have a short range structure which
extends only to a few nanometers; they are referred to as amorphous or non-crystalline.
Identifying these kinds of minerals is a challenge. But, procedures like vibrational spectroscopy
or X-ray absorption have been developed to identify these kinds of minerals.

When an X-ray beam falls on equally spaced atoms of a crystalline mineral they are
transmitted, absorbed or scattered (Cullity, 1978). When scattering they can be scattered
coherently (without loss of energy) or incoherently (with loss of energy). The coherently scattered
light will form an interference pattern when the scattering centers are arranged in a regular array
and the distance between scattering centers is comparable to the wavelength of the light and this
phenomenon is called diffraction (Amonette, 2002). When the incident beams of X-rays are
diffracted a detector captures the beam and converts the analog signal into digital data which can
be plotted. Using Bragg’'s law the data is the distances between the planes of the atoms are
measured. The basis for the identification of crystals using X-ray diffractions is that, no two

minerals have same inter atomic distances similar in three dimensions and so have different
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intensities. This intensity pattern is compared with standard patterns for known materials.
Extensive X-ray diffraction data for clay minerals and other soil minerals are given by Grim
(1953), Whittig and Allardice (1986), and Moore and Reynolds (1989). A detailed analysis of X-
ray patterns is given by Mitchell and Soga (2005).

As the size of the clay particles is small it is difficult to study single crystals, hence
powder diffraction method is generally used for soils. In this method small sample of particles,
containing all possible orientations is kept under the X-ray beam. This method works because of
the large number of particles that insure that some will be oriented in the right way to produce the

desired reflection (Whittig & Allardice, 1986).

Principles
Consiructive intarfarance ol coharantly scatterad X-rays
produces diffraction peaks related 1o spacing ol atomic planes
In sample {i.e., d-spacing} and wavelsngth of X-rays (L}

]

Bragg's Law
na = 24d5in{0)
]
Experimenial Setup /" \
X-ray Tube 'y a Datsctor
. or Synchroiron Source
Typical Culput Sample
Intensitios of peaks -
plotled vs. angla in 2
degreas 2&, ar vs. d, E
1] 2D >3 +#0
Degreas 26 (Co-K, X-rays)
Advantages Disadvantages
Minimzal sample prep Mot pood lor pooarly orderad
‘Well-established dalabase materials

Microanalysis possible (SXAD) Quantilication diflicull

Figure 2-8 Principles, Setup and Typical Output for X-ray Diffraction Pattern
Narasimha Rao (1993) has used XRD and SEM techniques to successfully identify the

formation of the compounds such as Calcium Aluminate Hydrate and Calcium Silicate Hydrate
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when the soil is treated with lime. In the study conducted by Yan and Jin (2004), clay mineral
composition and smectite contents were measured using XRD and dye absorption methods.
They have concluded that the laboratory spectral measurement and analysis techniques to the
dried and homogenous swelling soils can be productively used for quickly, economically, and
conveniently identifying swelling soils, estimating the contents of smectite, colloid, and clay in
fields.

2.3.2 Thermal Analysis (TA) Methods

In this technique mineral identification is achieved by evaluating the weight loss and
enthalpy changes in the soil sample with temperature. Thermal analysis has been used by many
researchers (Norton, 1939; Benham, 1990; Karathanasis and Harris, 1994; Wunderlich, 1990) to
identify clay minerals in soils. The most common methods used in TA are thermal gravimetric
analysis (TGA) and differential scanning calorimetry (DSC) (Beck, 2004). A detailed explanation
of these methods can be found in Karathanasis and Harris (1994).

In TGA the weight of the soil sample is monitored by changing the temperature at
constant rate. Many researchers (Barshad, 1965; Dish and Duffy, 1990) had used the TGA
method to identify and quantify soil minerals. In DSC method the energy required to maintain the
soil sample and the reference material at same temperature during heating is measured and
evaluated. A detailed explanation of this technique is given by Karathanasis and Harris (1994)
and Beck (2004). Figure 2-9 describes in detail the process of thermal analysis which can be

used for the identification of minerals.
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Figure 2-9 Principles, Setup, and Output for Common Thermal Analysis (from Amonette, 2002)
2.3.3 Atomic Absorption Spectrometry (AAS)

Atomic Absorption Spectrometry (AAS) has been used for the identification of elements
from quite long time. Atomic absorption as the name implies, depends on the measurement of
atomic species. The whole technique depends on the ability to consistently atomize the element
of interest in a reproducible manner in both samples and standards. Baker and Suhr (1982) give
the principles involved and the different literatures available.

When an atom is excited by thermal energy or other energy sources they emit radiation
by dropping down to less energetic states or to the ground states as atoms always try to be in
ground state at all times. This can be given by the following equation (Baker and Suhr, 1982):

M+hv > M >M+hv
Where M = Neutral atom, h = Planks constant, and v = Frequency of the irradiating light.
AAS relies on the absorption of a photon having the exact energy needed to convert an atom or

ion in the ground state to an excited state. For each element to be to be determined, a lamp
15



producing light of appropriate energy irradiates the atomized sample, and the loss of intensity in
this light is used to determine the amount of element present (Amonette, 2002).

The only difference between Atomic Absorption Spectrometry and Atomic Emission
Spectrometry (AES) is that in the later the intensity of the light that is emitted is measured and in
the earlier case absorbed light intensity i.e. the loss in the intensity is measured. Figure Figure
2-10 gives a pictorial representation of different methods for elemental analysis in which the

sample is completely destructed.
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Figure 2-10 Different Methods for Elemental Analysis in Which the Sample is
Completely Destructed (from Amonette, 2002)
Majority of non-destructive soil/clay testing depend on the excitation of atoms in the
specimen to produce X-ray characteristics of each element present based on the energies and

the intensities of the X-ray produce elements are identified and quantified. X-rays are produced
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in two stages. In the first stage a vacancy is created in the inner shell of an electron and then in
the second stage that vacancy is filled by a higher energy electron coincident with the release of
an X-ray photon. The vacancy is created when the atom absorbs the energy from an energy
source in the form of a photon or a charged particle. X-rays produced by absorbing the energy
from photons are called X-ray fluorescence (XRF) and that by charged patrticles are called X-ray
emission (XRE). The energy source for XRF can be X-rays from an X-ray tube or gamma rays
from nuclear decay. For the XRE a variety of high energy charged particles can be used,
although electrons and protons are the most common. (Amonette, 2002)

2.3.4 Vibrational Spectroscopy (VS)

Vibrational spectroscopy provides the most definitive means of identifying the surface
species generated upon molecular absorption and the species generated by surface reactions. In
principle, any technique that can be used to obtain vibrational data from solid state or gas phase
samples including infrared spectroscopy and Raman spectroscopy methods can be applied to
study soil surfaces.

Figure 2-11 gives a pictorial representation of the experimental setup of vibrational
spectroscopy along with its advantages and disadvantages.

There are, however, only two techniques that are commonly used for vibrational studies
of molecules on surfaces. These are Infrared (IR) Spectroscopy and RAMAN Spectroscopy
Infrared spectroscopy involves the direct measurement of infrared light absorbed or emitted by a
specimen. Raman spectroscopy on the other hand, is an incoherent-scattering technique in
which the loss or gain in energy by the interaction of light with the atoms in a bond is measured
(Amonette, 2002). A detailed review of the vibrational spectroscopy is given in VS. Vibrational
spectroscopy is particularly well suited for characterization of minerals containing hydroxyl,
carbonate or sulfate groups and for studies of organic molecules associated with minerals
surfaces.

Linker et.al (2005) studied that the use of mid-infrared attenuated total reflectance (ATR)

spectroscopy enables direct measurement of nitrate concentration in soil pastes. But their
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accuracy depends on the soil type which again depends on the varying contents of carbonate,
whose absorbance band overlaps the nitrate band.

Kariuki et al. (2003) has investigated the effectiveness of spectroscopy in identifying the
swelling indicator in soils. They used coefficient of linear extensibility (COLE) and the linear
extensibility (LErod), as the controlling methods to classify the soils into swelling potential groups
and to assign them to dominant clay mineral types. The study indicated that spectroscopy can be
used in classifying soils however; high organic matter and the presence of moisture were found to
affect area and depth intensities and would require consideration in such applications.

According to Blake and Gassmann (2001) bench-top Fourier transform infrared
spectrometer and specular reflection accessory can be used to detect soil surface contaminants.
They found that the volume scattering features showed a significant depolarization of the light,
the degree of polarization after reflection is less than or equal 20%, and the surface scattering

features retained a much higher degree of polarization upon reflection, >75%.
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Figure 2-11 Experimental Setup of Vibrational Spectroscopy (from Amonette, 2002)
2.3.5 X-ray Absorbance Spectroscopy (XAS)

X-ray absorption spectroscopy is an element-specific probe of the local structure (short
range) of elements in a sample (XAS). Interpretation of XAS spectra commonly uses standards

with known structures, but can also be accomplished using theory to derive the structure of a
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material. In either case, the species of the material is determined based on its unique local
structure. An important advantage of this technique is its utility for heterogeneous sample, a wide
variety of solid and liquids, including whole soils and liquids, can all be examined directly and
nondestructively. Additionally, since the local structure does not depend on long-range crystalline
order, the structure of amorphous phases (and that of dissolved species) is easily achieved
(XAS).

X-ray absorption spectroscopy is commonly divided into two spectral regions; the first is
the X-ray absorption near edge structure (XANES) spectral region and the second is termed the
extended X-ray absorption fine structure (EXAFS) region (Amonette, 2002). XANES spectra are
unique to the oxidation state and speciation of the element of interest, and consequently are often
used as a method to determine the oxidation state and coordination environment of materials.
EXAFS spectra are best described as a series of periodic sine waves that decay in intensity as
the incident energy increases from the absorption edge (Amonette, 2002). These sine waves
result from the interaction of the elected photoelectron with the surrounding atomic environment.
As such, their amplitude and phase depend on the local structure of excited atom. Since this
interaction is well understood, theory is sufficiently advanced that the local structure of the excited
atom can be determined by matching a theoretical spectrum to the experimental spectrum. This
fitting yields many types of information, including the identity of neighboring atoms, their distance
from the excited atom, the number of atoms in the shell, and the degree of disorder in the
particular atomic shell (as expressed by the Debye-Waller factor) (XAS). These distances and
coordination numbers are diagnostic of a specific mineral or adsorbate-mineral interaction;
consequently, the data are useful to identify and quantify major mineral phases, adsorption
complexes, and crystallinity.

2.4 Clay Mineral Quantification

Clay minerals can be quantified in two ways. One is using x-ray diffraction results and the
other is chemical mass balance equations. Clay mineral content may also be determined by using

a combination of the two methods mentioned above. Kaufhold et al. (2002) discusses and
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compares three methods for the quantification of montmorillonite. Ten bentonite samples were
tested by each method and the results correlated to check whether the methods gave an
accurate estimation or not. Method A uses quantitative separation of the < 2-Am fraction in
combination with XRD-analysis. Method B utilizes cation exchange capacity (CEC), layer charge
(LC) and variable charge. Method C, a new method, uses the comparison of the

CEC of a bentonite with the CEC of the respective pure montmorillonite fraction is proposed. This
new method provides accurate values for montmorillonite contents, but is restricted to bentonites,
which are free of X-ray amorphous fine-grained constituents. By combining the results of all
methods, the layer charge (charges/half unit cell (HUC)) was calculated.

The results obtained by the three methods for quantifying the amount of montmorillonite
are given below. It can be seen that the results from the three methods correlate well. It is
observed in the paper that the range of values gotten from the three methods is within a range of
+ 2.5% of one another. Only two samples do not correlate well and the paper discusses the

factors on why that is the case.

Sample Method A Method B Method C

Semiqu. XRD of <2 pm fraction CEC and layer charge (LC) Cylinder enrichment

<2um I Kin Mnt LC CECH 4 Muue  Mnt CEC CEC10004) Mnt

% wiw] ["ewiw] [% wiw] [% wiw] [CHUC] [meq/100 g] [g/mol] [% w/w] [meg/100 g] [meq/100 g] [% wiw]
BK 69 69 0.31 63 366 75 70 100 70
FE 72 2 70 0.35 43 366 45 51 68 74
GOG 85 85 0.32 77 364 87 86 101 85
M 82 ! 82 0.33 79 362 86 87 104 83
0G 76 1 75 0.29 62 363 79 70 88 80
op 82 82 0.32 83 364 94 89 103 87
RAB 80 I 78 0.32 68 Jo4 77 74 94 79
RAN 84 2 82 0.32 70 366 80 79 100 79
RB 78 77 0.33 66 364 73 73 99 74
UA 80 80 0.35 T8 370 82 83 99 84
mean 78 mean T8 mean 79

Figure 2-12 Comparison of Results for montmorillonite quantification (Kaufhold et al., 2002)
The paper concludes that all three methods presented are suitable for determining
montmorillonite quantity. The limitation of Methods A and C is that they cannot be used if fine
grained poorly crystallized phases are present. Method A can be used if the phases are

ferrinydrite, carbonates, and organic matter. No limitations were identified for Method B and
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Method C can be used if fine grained XRD amorphous phases are absent. It is also indicated that
Method C is the most economical method and can be used in most cases. Finally, it is mentioned
that montmorillonite content can be predicted using the methods described with an accuracy of +
5%.

XRD alone can also be used to quantify clay minerals. There are several different types
of XRD tests and some of them have been briefly discussed in the following section.

Theoretically the diffraction peaks are related to the diffraction planes present in the
sample, hence using the relative intensities of the peaks the concentration of the mineral species
present in the test specimen can be estimated (Whittig & Allardice, 1986). However, there are
other factors such as crystal perfection, chemical composition, variation in sample packing,
crystal orientation and presence of amorphous substance that influence the diffraction peaks
(Jackson, 1969). A detailed explanation of the influence of these factors on the diffraction maxima
can be found in Whittig and Allardice (1986). The influence of these factors in the process of
mineral quantification can be overcome by the use of standard mineral. There are two different
methods to quantify minerals using standards are a) Internal standards b) External standards. In
the internal standards method known amounts of a mineral not already present in the sample is
added and the sample is analyzed under the X-ray machine and the diffraction peaks are
recorded. These peaks are compared with the standard sample (without the addition of internal
standard) to obtain the percentage of the minerals present. A more detailed explanation can be
obtained in Whittig and Allardice (1986).

Due to the unavailability of the complete diffraction data and the draw backs of the above
methods innovative methods involving full pattern modeling have been developed. One such
method is the Rietveld method, which yields a calculated pattern that can be described as the
sum of all the patterns for each phase in the sample (Kahle et al., 2002). In this method,
differences between the calculated and the observed patterns are minimized by a refinement
procedure that uses a least square algorithm. The final quantifications are obtained from the final

values of the refined scale factor of each phase. There is another full pattern modeling method
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known as the Arquant model developed by Blanc et al. (2006) which has been successfully
applied for clay mineral quantification in soils and rocks.

Other methods such as Absorption-diffraction method and the methods based on mineral
intensity factors are also developed and a brief explanation of these methods can be found in
Kahle et at. (2002).

Figure 2.13 gives a flowchart of the protocols for the above referred methods.

|Known Addition ‘ |Ahsorpﬂon—Diffraction | | Full-pattem-fitting | |Mjnera1 Intensity Factors (MIFs)
| phase identification in mixture with unknown composition (soil sample)
! | + 4
ladd known amount of a minetal determine peak iniensity 1., of Select method (for example Rietveld) determine MIFs for the phases in the
ipresent within the mixture to the phase @ in the mixture and software (for example mixture by for example 1:1 mixture
ithe mixture Siroquant, Autoquan) with suitable reference phase
| 4 } 4
measure intensity* of suitable prepare sample containing only fit observed diffraction pattern with determine peak intensities in the
peakis) phase ¢ synthetic/calculated pattern mixture (as desited: add internal
standard (I8} as reference phase)
i | 4 4
repeat several times, determine peak intensity lop of check goodness of fit determine mineral weight fractions
increase/decrease amount of pure phase c (statistical parameters, difference curve),|  |(a): with I8:
selected mineral with every if necessary continue refinement W, ={1/MIF ) (Wil
addition (b): 100% approach:
W, = (1,/MIF )/ 5(1,/MIF,)
| } +
plot peak intensity versus amount determine mass absorption software calculates weight fractions
ladded coefficients p for pure phase (with crystallographic
and for mixture phase parateters refined)
} }
lextrapolate to zero amount to calculate weight of fraction
jobtain mineral weight fraction in W, = (T, o) (yp)
the sample

Figure 2-13 Protocols for XRD-based quantification of clay minerals in soil clay samples
(From Kahle et al., 2002)

Smith et.al., (1986) have developed a different scheme using XRD data which is based
on the analysis of the whole diffraction pattern from 2°- 50° 26 through comparisons with a
reference database of diffraction traces obtained from a set of carefully purified reference clay
samples run under the same conditions.

Quantitative determinations of the amount of clay minerals based on simple comparison
of the diffraction peak heights or areas are not very accurate due to many factors like differences
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in absorption coefficients, particle orientations, crystallinity and other factors (Mitchell & Soga,
2005). As a result other techniques have been developed that accounts for the above mentioned
differences and are currently being used for the clay mineral quantification (Alexaides & Jackson,
1966; Hodgson & Dudeney, 1984; Johnson et.al., 1985; Randall et.al., 1994).

Hodgson and Dudney (1984) have developed an analysis procedure which uses both

XRD data and chemical mass balance concepts to estimate the percentage of each mineral in a
soil. Johnson et al. (1985) developed a program of simultaneous linear equations to develop the
component proportions of minerals in soils and sediments. This method also uses both XRD data
and the chemical data to quantify the clay minerals in the soil. Both these methods require a
detailed chemical analysis data.
Chemical mass balance alone can also be used to quantify clay minerals in soils. Many
researchers (Alexaides and Jackson, 1966; Hodgson and Dudeney, 1984; Johnson et.al., 1985)
have already used elemental mass balance techniques to asses each mineral percentage in the
soil samples. In these methods amount of each element is measured with the help of laboratory
chemical analysis of the soil sample and this information is used to formulate simultaneous
equations which can be solved to obtain the percentage of the minerals in soils.

Randall et al. (1994) compared four such methods of clay mineral quantification using
elemental mass balance methods and highlighted their corresponding strengths and weaknesses.
A brief description of those methods is given here. These methods primarily are solving a system
of simultaneous linear equations which are formulated using the elemental information of the soil
specimen and the minerals for which they are being analyzed. A detailed explanation of how
these methods work can be found in Randall et al. (1994).

Various indirect methods involving the use of chemical species measurements and
physical characteristic measurements can be used to identify the dominating clay minerals in the
soils and even approximate quantification of dominating clay minerals. Currently clay mineral
quantification using elemental information has only been explored. However, there are other

properties of soils that can be used to approximate the clay mineral information.
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In this research a new model was developed using few such properties. Those chemical
properties of the soils which can be used to assess the dominating clay mineral are described in
the following sections.

2.4.1 Cation Exchange Capacity (CEC)

The cation exchange capacity (CEC) of a soil is simply a measure of the quantity of
readily exchangeable cations neutralizing negative charge in the soil. According to Camberato
(2001), CEC refers to the quantity of negative charges in soil existing on the surfaces of clay and
organic matter. The positively charged ions or cations are attracted by negative charges, hence
the name ‘cation exchange capacity’. Soil CEC is normally expressed in units of charge per
weight of soil. Two different, but numerically equivalent sets of units are used: meg/100 g
(milliequivalents of charge per 100 g of dry soil) or cmol/kg (centimoles of charge per kilogram of
dry soil). CEC is a good indicator of soil reactivity with the chemical species.

The negative charges in the soil are obtained from the following sources and reactions

(Rhoades, 1982):

(a) Isomorphous substitution within the structures of layer silicate minerals
(b) Broken bonds at mineral edges and external surfaces

(c) Dissociation of acidic functional groups in organic compounds

(d) The preferential adsorption of certain ions on the particle surfaces.

The first of these charges is permanent and is independent of pH and the rest are
dependent on pH. CEC is not independent of the conditions under which it is measured hence it
is necessary to measure the soils capacity to adsorb cations from an aqueous solution of the
same pH, ionic strength, dielectric constant and composition as that encountered in field.

There are numerous methods for determining CEC and many will give quite different
results. As given by Rhoades (1982), the following four methods can be used for CEC
determination. Summation method: The exchangeable cations are displaced with a saturating salt
solution and the CEC is taken as an equivalent sum of exchangeable cations present in the
reacted “leachate”. Direct Displacement method: In this method the soil is saturated with an index
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cation and the adsorbed cation and the small amount of solution entrained by soil after
centrifuging are displaced directly with another salt solution without further treat of the soil. The
saturating cation and anion are then determined in the resulting extract, and their difference is
taken as equal to the CEC of the soil.

Displacement after washing method: After the exchange sites have been saturated with
an index cation in the above type of process, the soil can be washed free of excess saturating
salt. The amount of index cation adsorbed by the soil can then be displaced and determined.

Radioactive tracer method: In this method, after saturating the soil CEC with a known
index cation, the saturating solution can be diluted and labeled with a radioactive isotope of the
saturating cation. The concentration of the index cation in the solution is then determined, and
the distribution of the isotope (and hence of the total cation) between the two phases is given by
measuring the radiation in the solution and the soil plus solution. There is a significant variation in
the results obtained by the above four methods as there are many complicating interactions
between saturating, washing, and extracting solutions. Also, CEC is not an independent and a
single valued soil property (Rhoades, 1982).

Camberato (2001) says the primary factor determining CEC is the clay and organic matter
content of the soil. Higher quantities of clay and organic matter beget higher CEC. Different
types of clays have different CECs. Stewart and Hossner (2001) reported unusually high cation
exchange capacity (CEC) values relative to clay content for lignite overburden and mine soils.
On an average, the CEC values are found to be greater than 100meg/gm. A comparison of
methods for particle-size distribution suggests that the major reason lignite overburden samples
have CEC to percent clay ratios greater than one is due to incomplete dispersion of aggregates of
clay minerals or shale fragments. Another important factor influencing the CEC to percent clay
ratio was the presence of organic materials in the samples. Lignite may make a significant

contribution to CEC in overburden materials.
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2.4.2 Specific Surface Area (SSA)

The specific surface area of a soil sample is the total surface area contained in a unit
mass of soil. Soils with high specific surface areas have high water holding capacities, more
adsorption of contaminants, and greater swell potentials. Specific surface is therefore an
important parameter.  Specific surface is closely tied to particle size distribution. This
phenomenon is explained by Campbell (2005) with a simple thought experiment in which a 1 cm?®
cube with a density 1 gm/cm?® is considered. This cube has a specific surface area of 6 cm?/g.
Now, if this cube is divided into smaller cubes of 1 mm on the side, the resulting 1000 cubes
would have the same mass of material, but its specific surface area will be 60 cm?/g, similarly if
the cube were to be divided into 10'? cubes of 1 um on a side, the surface area would be 6 x
104cm2/g hence it could be understood that within the same mass, presence of smaller particles
will result in higher specific surface area. It should be noted here that a soil with high specific
surface area has high water holding capacity and greater swell potential.

Various approaches have been used to measure specific surface area, including
adsorption of nitrogen and other gases on the soil (Yukselen and Kaya, 2006). The most
commonly used method uses the adsorption of ethylene glycol monoethyl ether (EGME) (Carter
et al. 1986). This involves saturating prepared soil samples, equilibrating them in a vacuum over
a CaCl,-EGME solvate, and weighing to find the point when equilibrium is reached. The specific
surface is then determined from the mass of retained EGME in comparison to the amount
retained by pure montmorillonite clay, which is assumed to have a surface area of 810 mz/gm
(Carter et al. 1986). The measurement typically takes around two days to complete. Soil is
typically in a hydrated state, and surface area measurements should apply to that state. It would
therefore be ideal if water could be used as the probe to determine the specific surface area.

Quirk (1955) reviewed such measurements and concluded that water clusters around
cation sites, and can therefore lead to errors in the measurements. Recent work which uses
more modern methods for measuring the energy state of the water in the soil, have shown

promise as simple methods for determining specific surface of soil samples. A comprehensive
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evaluation of the EGME method for geotechnical usage was done by Cerato and Lutenegger
(2002). They concluded that the method is applicable to a wide range of mineralogies and is
capable of determining specific surface area ranging from 15 to 800 mz/g. They also indicated
that the procedure is repeatable and gives reliable results.
2.4.3 Total Potassium

Potassium is an element which can be used to detect the presence of the mineral illite.
Potassium belongs to the alkali metals in the periodic table that are characterized by a single
electron in the outer most shell. This electron is easily lost and they readily form stable
monovalent ions (Knudsen et al., 1982). There are many methods available for the determination
of potassium in soils but the one proposed by Knudsen et al. (1982) is widely used. Potassium is
the inter layer cation in the clay mineral illite and illite is the only clay mineral to have potassium in
its structure (Mitchell and Soga, 2003). Hence measuring the amount of potassium ion in the soil
gives a direct indication of the presence of the mineral illite. The test procedure formulated by
Knudsen et al. (1984) was followed to obtain the amount of total potassium present in the soil.
The method involves a double acid digestion technique developed by Jackson (1958) which uses
two acids (Hydrofluoric acid and Perchloric acid) to break the mineral structure of the soil and
extract the potassium ions from the structure. Once the potassium is extracted, its concentration
in the solution can be obtained with the help of a spectrophotometer or any other suitable device.
It should be noted here that the potassium measurement directly provides the percent lllite clay
mineral in a given soil since illite is the only clay mineral to have potassium as an interlayer
cation.

2.5 Case Studies

Different quantification methods can be used in combination to get accurate results about
the amount of mineral present in the soil sample. Islam et al. (1986) discusses XRD and identifies
it as the best quantification method available, but also acknowledges that most of the time major
difficulties are encountered in the determination of the true relationship between XRD intensities

and weight proportions of the minerals in soils and sediments. He goes on to discuss the process
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used to derive the correct values of the constant K,, This constant is used to correlate the peak
intensity, obtained from XRD, to the mineral content of the soil.

The study considered four soils obtained from different regions of Bangladesh and used a
combination of XRD, CEC and selective dissolution techniques to obtain the mineral content of

the soils. The different regions studies are shown in Figure 2.14.

BAKNGLADESH

3¢ WOkm

Figure 2-14 Map of Bangladesh showing approximate locations of the sampling sites. 1.Batra; 2.
Ghior 3. Naraibag; 4. Ghatail. (Islam et al, 1986)

The mineral contents of the soils were found by using a combination of XRD and

chemical analyses methods, namely Cation Exchange Capacity and Selective Dissolution
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methods. The details of the test and the chemical analyses used are described very briefly in the
following section. A more detailed description can be found in the original paper.

The soils were treated with 1N NaOAc (pH 5) and H,O,, and then treated with 1N NaOAc
(pH7) and Ni-dithionite. After complete dispersion in distilled water, the samples were centrifuged
to obtain three different size fractions. These size fractions were saturated with Mg®*, K*. The
Mg®* saturated fractions were x-rayed in the air dried and glycol solvated states and the K*
saturated ones were X-rayed after air drying and heating to 300 and 550°C for 2 h (Islam et al,
1986)

Alexiades and Jacksons’ technique of selective dissolution was used to quantify mica,
quartz and feldspar and ion exchange analyses were used to quantify vermiculites and smectites.
For the determination of mica, quartz and feldspars, the samples were treated with Na,S,0; to
decompose mica and other layer-silicates (smectite, vermiculite, kaolinite, and chlorite). The
layer-silicate relics were dissolved by washing with 3 N HCI and then boiled with 0.5 N NaOH for
2.5 min, leaving quartz and feldspar in the residue. The residue was further treated with HF-HCIO,
and 6 N HCI to determine K, Na and Ca of feldspars. It was concluded that mica was the
dominant mineral in 10 out of the 12 samples. In addition, Batra and Ghior soils have smectite as
the dominant mineral. It was observed that for some samples, mineral contents predicted using
XRD gave a lower number when compared to the amount predicted using chemical analyses.
This was thought to be caused by the treatment used for the XRD preparation.

From this paper, it can be concluded that although X-ray diffraction can be used for
quantification, results are more accurate when chemical analyses are used in addition to XRD.
The mineral contents obtained by using a combination of XRD, CEC and SDA are summarized in

Figure 2-15.
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Size %
Sail Depth fraction  Methods
series cm Hm applied Mi Sm V VH K Ch MiCh F Q Amor Sum
Batra 0-15 <0-2 CEC/SDA 24 4! 10 nd. 7 nd nd 0 0 T 107
K-ray 24 48 8 6 2 3 8 0 0 nd
2-0-2 CEC/SDA 46 2 5 nd. 11 nd nd 10 14 4 [0
X-ray 40 1 6 5 6 7 11 12 nd
2002 CEC/SDA 37 0 I nd. 4 nd. nd. 21 35 2 110
X-ray B 0 2 4 3 35 1 15 33 ad
Nargibag 15-24 <02 CEC/SDA 34 11 6 nd. 33 nd. nd. 0 O 10 108
X-ray 4 9 5 7 37 2 5 0 0 nd
202 CEC/SDA 37 0 9 nd 10 nd nd 14 11 5 1
Keray ;0 7 5§ 9 5 5 19 12 nd
22 CEC/SDA 32 0 3 nd 9 nd nd 19 37 3 117
X-ray 300 2 5 9 5 4 16 30 nd
Ghicr 0-8 <02 CEC/SDA 26 38 15 nd. 7 nd. nd. 0 0 & I[11
X-ray 2 41 15 7 3 3 7 0 0 nd
2-0.2 CEC/SDA 49 3 12 nd. 9 nd nd 11 12 3 108
Xoray 42 0 11 2 10 5§ 2 13 15 nd
20-2 CEC/SDA 38 0 3 nd 6 nd nd 18 40 1 115
X-ray 5 0 3 31 7 13 3 12 35 nd
Ghatail 12-30 <02 CEC/SDA 35 7 10 nd 18 nd nd O 0 11 108
X-ray 3 7 6 19 26 2 [ ¢ 0 nd
2-0.2 CEC/SDA 38 0 11 nd 21 nd. nd 7 9 4 105
XK-ray 41 0 9 7 25 3 5 6 4 nd
202 CEC/SDA 31 D 4 nd. 6 nd. nd. 2 35 2 117
X-ray 25 0 5 6 6 5 6 17 31 nd
n.d. = not determined

Figure 2-15 Mineral content of the four soils (Islam et al., 1986)

Many researchers (Engler et al., 1987; Ouhadi et al 2003) have discussed the benefits of
using chemical analyses in addition to XRD to quantify clay minerals. A lot of problems can arise
if the mineral content of the soil is not carefully identified and quantified. Wang et al. (2004)
discusses the benefits of knowing the mineral content of the soil before designing a stabilization
process.

Etringite, or calcium sulfoaluminate, formation in sulphate rich soils leads to swelling of
the soil. Wang et al., (2004) discusses the minerals that promote etringite formation. When soils
containing kaolinite and montmorillonite are stabilized with lime, etringite forms due to the
presence of aluminum in the mineral structures. The paper discusses a case where a road

heaved in just a few days after being stabilized with type | cement. Upon investigation, it was
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found that the heaving was caused by the minerals in the soil which caused etringite to form.
Different techniques including x-ray diffraction, thermal analysis, differential scanning colorimetry,
infrared spectroscopy, scanning electron microscopy and x-ray absorption near edge structure
(XANES) were used to identify and quantify the sulphate and clay mineral content. Using
thermogravimetric analyses it was found that there was about 7.8% gypsum in the soil, but for the
same soil x-ray quantification indicated a value of about 12.9% (Wang et. al, 2004). After the
gypsum was removed from the soil using acid dissolution, it was found that kaolinite was the
dominant mineral when compared to illite and montmorillonite, and montmorillonite was found to
have the lowest concentration in the soil.

Wand et al, (2004) recommends that better quantification methods be used to properly
quantify the clay minerals. Multiple analytical techniques are needed for detailed and quantitative
analyses of the sulfate and clay minerals in soils susceptible to sulfate attack (Wang et al, 2004).
The issue of cost is also important because as the number of techniques needed to come up with
an accurate quantification increases so does the cost.

2.6 Summary

This chapter serves as a review of the available literature on clay mineralogy, their
identification and quantification. The different types of clay minerals usually found have been
described briefly and several methods of identification have also been discussed. Some of the
cost effective chemical analyses methods have also been explained. Furthermore two case
studies have been discussed to provide perspective on the importance of clay mineral

quantification.
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CHAPTER 3

EXPERIMENT METHODOLOGY
3.1 Introduction

The dominant clay minerals that are found most frequently in expansive soils are
montmorillonite and illite. Different methods have been discussed in the literature to quantify the
amount of minerals present. These methods, although adequately accurate, require expensive
equipments and trained analysts. Also, just using Pl to determine the type of stabilizer required is
not a reliable method because Pl does not truly represent the behavior of the soil.
Three chemical properties of soil namely cation exchange capacity (CEC), specific surface area
and total potassium are used for the determination of the dominating clay mineral (Chittori, 2008).
The test procedures that can be used to determine these properties will be discussed and
outlined in this chapter.
For this research 40 artificial samples and 4 natural soil samples were used to validate the
authenticity of the test methods developed. The artificial samples consisted of mixtures of
montmorillonite, illite and kaolinite only. The samples were mixed so that each had a different
proportion of the minerals. The purpose of this is to figure out the actual behavior of the minerals
without the influence of external factors. A detailed description of each method is given in this
chapter along with how the results can be used to determine the mineral content of the sample.

3.2 Test Methods

The three chemical properties that are used to determine the mineral content are:
1. Cation Exchange Capacity (CEC)
2. Specific Surface Area (SSA)

3. Total Potassium (TP)
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3.2.1 Cation Exchange Capacity (CEC)

The Cation Exchange Capacity (CEC) of a soil can be defined as the capacity or the
ability of the soil to exchange free cations that are available in the exchange locations.
Montmorillonite is the most problematic mineral present in soils, from a geotechnical engineering
perspective, since the presence of this mineral leads to water retention and hence expansive
soils. If the results from a CEC test have a high value, it is an indication of a high amount of
montmorillonite and therefore suggests that the soil is an expansive soil. Likewise, a low CEC
value indicates the presence of kaolinite or illite, both of which are not expansive in nature.

One of the earliest methods and the most commonly used method, for determining the
CEC of a soil was proposed by Chapman in 1965 and this is the method that is used for CEC
determination. A saturating solution is added to the sample and then an extracting solution is
used to remove the adsorbed cations. The saturating solution used for this research is
ammonium acetate (NH,OAc) at pH 7 and the extracting solution used is potassium chloride
(KCI). When using natural soil samples, the soil has to be treated for organics using 30%
Hydrogen Peroxide (H20,).

After the treatment, 125 ml of ammonium acetate (NH,OAc) is added to a 25g sample,
shaken for half an hour and set aside for 16 hours. This is done to ensure that all the exchange
locations are occupied by ammonium ions (NH,"). The solution is filtered using a Buchner Funnel,
while applying a light vacuum, and washed with 5 separate 25ml additions of NH,OAc. This is
done to filter out all the cations replaced by the NH,". Any excess NH,OAc is washed out by 8
separate 10ml additions of 2-propanol. This step ensures that any excess ammonium ion is
washed out. The leachate is discarded. Now the sample is washed with 8 separate 25ml
additions of 1 molar potassium chloride solution. The potassium ions substitute the ammonium
ions and these are leached out into the solution. The amount of ammonium ions can be
determined by using a spectrophotometer. Therefore, the concentration of ammonium ions in the
KCI extract gives the CEC of the sample. The steps followed to determine the CEC are given in

figures 3.1 and 3.2.
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Start

A 4

Take 25.0 g of soil in a 500
mL flask

A 4

Add 125 mL of the 1 M NH,OAc
(shake thoroughly, and allow to
stand 16 hours (or overnight))

A 4

Transfer the soil into another beaker using a 5.5
cm Buchner funnel with retentive filter paper
applying light suction. If the filtrate is not clear,
refilter through the soll

A 4

Now, wash the soil four times with 25 mL additions
of the NH,OAc, allowing each addition to filter
through, but not allowing the soil to crack or dry.

\ 4

Wash the soil with eight separate additions of 95% 2-
Propanol

\ 4

Leach the soil with eight separate 25 mL additions of 1 M
KCI, discard the soil and transfer the leachate to a 250 mL
volumetric flask. Dilute to volume with additional KCI.

\ 4
Determine the amount of NH, in
the solution by using the
spectrometer

Figure 3-1 Flowchart of procedure to determine CEC
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Figure 3-2 Photographs illustrating the various steps to determine CEC

3.2.2 Specific Surface Area (SSA)

The specific surface area of a soil can be defined as the total surface area per unit mass
of sample. The SSA is dependent on the particle size of the sample. Smaller particles tend to
have a high SSA. This indicates that they have more surface area available for adsorption and
hence can retain more moisture. Soils rich in montmorillonite or expansive soils usually have a
high SSA.

In agronomy, adsorption of Ethylene Glycol Monoethyl ether (EGME) is the most
commonly used procedure. The sample is saturated with 3 ml of EGME and then placed in a
dessicator over a CaCl,— EGME solvate. A vacuum is applied and then the samples are weighed
every 2 hours to find the point when equilibrium is reached. Specific surface is then determined
from the mass of retained EGME in comparison to the amount retained by pure montmorillonite
clay, which is assumed to have a surface area of 810 m2/g (Carter et al. 1986). It usually takes
two to three days for the samples to reach equilibrium. Cerrato and Lutenegger evaluated the
method in 2002 and determined it to be viable for use in geotechnical investigations. They

determined that the procedure is applicable for a wide variety of soil minerals, since SSA can
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measure values ranging from 15 to 800 m%g. They also determined that the test procedure is
repeatable and gives reliable results. The steps used to determine the SSA by EGME saturation

are explained in figures 3.3 and 3.4.

Start

A 4

Weigh 1.1 g of treated soil
into a tared aluminum can

A 4

Dry the sample in oven at 100 —
110°C for 24 hrs

!

Weigh the dried sample taking care
not to adsorb atmospheric water.

\ 4
Add 3 mL of EGME to make slurry

Place the can with slurry in the chamber
containing CaCl,-EGME solvate over a
hardware cloth

Close the lid of the chamber and place it
in desiccator containing CaCl,

Wait for 30 minutes and evacuate for 45
minutes and close the stopcock. After 6 to 7
hours, release vacuum

Now weigh the soil sample in the can with the lid of the aluminum
can. Repeat weight measurements for every 2 to 4 hours of
evacuating until there is no further decrease in the weight (W,)

Figure 3-3 Flow chart of SSA procedure
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Figure 3-4 Photographs illustrating the various steps of SSA determination

3.2.3 Total Potassium (TP)

lllite is the only clay mineral, among the dominant clay minerals, that has potassium as
an interlayer cation. Measuring the potassium content in a soil give a direct indication of how
much illite is present in the soil. The procedure developed by Knudsen et al. (1984) has been
followed to determine the amount of potassium ion present in the soil. This method utilizes a
double acid digestion procedure developed by Jackson 1958. The two acids are hydrofluoric and
perchloric acid, which break up the mineral structure and hence extract the potassium ion from
the soil. The concentration of the potassium ion can be easily measured by a spectrophotometer.

A 0.1000 g sample of the soil is taken in a Teflon container. The original procedure
recommends the use of a platinum vessel for the experiment, since hydrofluoric acid dissolves
silica (the main component of glass vessels). Since platinum vessels are very expensive, they are
not feasible for the experiment. Teflon vessels, on the other hand, are relatively cheaper,
resistant to hydrofluoric acid and can withstand temperatures of about 200°C.

5 ml of hydrofluoric acid and 0.5 ml of perchloric acid are added to the sample. The

mixture is placed on a hot plate and heated to 200°C. In this process dissolves the silicate
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mineral structure is dissolved by hydrofluoric acid, releasing the interlayer cations and the organic
matter in the sample is oxidized by the perchloric acid. After heating up to 200°C, the vessel is
cooled and another 5 ml of hydrofluoric acid followed by another addition of perchloric acid is
added. The solution is now heated until it is dry. This step is done to ensure that all the cations
have been released and all the organic matter dissolved. The final step is the addition of 5 ml of
6N Hydrochloric acid and heating up the mixture until it boils. The solution can now be used to
determine the amount of potassium ions present, using a spectrophotometer. The steps used to
determine total potassium are described and illustrated in figures 3.5 and 3.6.

The results obtained from the above tests are explained in Chap 4

Heating the sample Colorimetric
on a hot plate Add 6N HCI determination of
potassium concentration

Figure 3-5 Photographs illustrating the various steps of Total Potassium determination
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Start

v

Take 0.1000 g of finely ground soil
in a 60 ml Teflon digestion vessel

\ 4

Wet the soil with few drops of water
and then add 5 ml of HF and 0.5ml
of HCIO, to the vessel

A 4
Heat the soil-acid mixture on hot plate until

fumes of HCLO, appear or heat till the
temperature in more than 200 °C

\ 4

Cool the vessel and then add 5 ml of HF. Place
the vessel on a hot plate and cover nine tenths of
the vessel top using the ported closure

\ 4

Heat the crucible to 200-225 ° C and evaporate
the solution to dryness

\ 4

Again cool the crucible and add 2 ml of water and
few drops of HCIO,

\ 4

Replace the vessel on the hot plate and
evaporate to dryness

\ 4

Now remove the crucible from the hot plate and when it is
cool, add 5 ml of 6N HCI and 5 ml of water

A 4

Place the vessel back on the hot plate and boil it slightly. If
the sample doesn’t dissolve repeat the steps 2 through 9

Figure 3-6 Steps to determine Total Potassium (TP)
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3.3 Summary

This chapter provides a detailed description of the methodology used to quantify the
dominant clay minerals — montmorillonite and illite. The results obtained from the described test
have been used in the next chapter to predict the quantity of montmorillonite and illite present in

the artificial mixtures.
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CHAPTER 4

RESULTS AND ANALYSIS
4.1 Introduction

This chapter provides the results and analysis of the chemical and mineralogical methods
that have been explained in the previous chapter. These results serve as a way of validating the
methodology developed by Chittoori 2008. A total of 30 artificial mixtures were prepared. Cation
Exchange Capacity (CEC), Specific Surface Area (SSA) and Total Potassium (TP) were
performed on them to determine the percentage of illite and montmorillonite present in each
sample. A statistical model, regression equations and an artificial neural network have been used
to determine the percentage of minerals present in each sample. The 30 samples consisted only
of the minerals illite and montmorillonite, along with traces of some other 1:1 minerals, mixed at
different percentages.

4.2 Repeatability of Tests

As discussed in the previous chapter, several chemical methods — namely cation
exchange capacity (CEC), specific surface area (SSA) and total potassium (TP) have been used
to determine the mineral percentages of each sample. A very important task is to address the
repeatability of the test. To ensure the consistency of the results, each test was performed thrice
on three different soil samples. The results are presented in Table 4.1 and it can be observed that
the standard deviations between the results are very low. This indicates that the tests have very
good repeatability.

The test results obtained for all thirty soil samples are given in Table 4.2. These results
have been obtained from the Cation Exchange Capacity (CEC), Total Potassium (TP) and
Specific Surface Area (SSA) tests. Once these three properties are obtained, the clay minerals

present in the soil can be quantified based on the assumption that each clay mineral in the
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sample contributes linearly to the content present. As mentioned earlier, a major assumption of
this research, based on the XRD analysis, is that the fine fractions of the soil specimens contain
Montmorillonite and lllite as the dominant minerals. The range of values obtained from the
literature for pure minerals are given in Table 4.3

Table 4-1 Test Results to Show Repeatability of the Procedures

Soil Type : El Paso

Trial 1 | Trial 2 | Trial 3 | Mean | SD

CEC, meq/ 100 gm | 55.2 57.7 53.3 55.40 | 2.21

SSA, m“/gm 158 164 161 161.00 | 3.00

TP, % 3.6 3.6 3.8 3.67 |0.12

Soil Type : Paris

Trial 1 | Trial 2 | Trial 3 | Mean | SD

CEC, meq/ 100 gm | 130.1 | 133.9 | 1354 | 133.13 | 2.73

SSA, m’/gm 431 424 440 | 431.67 | 8.02

TP, % 0.77 0.79 0.78 0.78 | 0.01

Soil Type : Bryan

Trial 1 | Trial 2 | Trial 3 | Mean | SD

CEC, meq/100gm | 77.4 79.1 75.2 77.23 | 1.96

SSA, m“/gm 207 202 204.9 | 204.63 | 2.51

TP, % 1.37 1.4 1.32 1.36 | 0.04
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Table 4-2 CEC, SSA and TP values of the soil samples

1 1 81.3 418 3.000
2 2 50.6 266 2.725
3 4 26.7 248 3.450
4 6 34.9 248 2.250
5 7 41.7 174 3.575
6 8 31.8 132 2.400
7 9 107.9 221 2.950
8 10 43.4 172 2.500
9 12 49.2 194 2.850
10 13 45.8 219 2.500
11 14 120.2 239 2.350
12 15 76.9 133 1.860
13 18 147.4 324 2.425
14 19 91.6 226 1.950
15 20 142.8 291 2.625
16 21 89.4 240 2.200
17 27 43.5 97 1.900
18 28 178.8 378 1.275
19 29 149.8 352 2.000
20 30 152.9 387 1.350
21 31 140.5 355 2.100
22 32 171.9 431 1.350
23 33 156.1 403 1.675
24 34 179.7 434 1.650
25 35 173.6 203 1.450
26 36 171.1 187 1.325
27 37 189.5 218 1.150
28 38 188.6 221 1.275
29 40 194.0 166 1.500
30 43 183.2 208 1.225
31 45 129.9 169 1.650
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Table 4-3 Range values of SSA, CEC and TP for pure clay minerals

Mineral Type CEC, meq/100 gm | SSA, m“/gm % Potassium
lllite 15to 60 80 to125 6
Kaolinite 1to 6 510 45 0
Montmorillonite 80 to160 850 0

4.3 Quantification Procedure

It can be seen from the literature that several methods are available for the quantification
of clay minerals. Some of these methods rely on XRD peaks to quantify the amount of minerals
present based on the intensity of the peaks. Other methods rely on the use chemical analyses to
predict the quantity of minerals present. For the purpose of this research, the focus was given on
chemical analysis to quantify the clay minerals present in the different samples.

The first method, developed by Chittori 2008, utilizes the solver function of Microsoft Excel.
Using information from the literature available, the mineralogical compositions of different soils

can be estimated using the following set of three simultaneous equations:

%M x CECy + %K x CECk + %Il x CEC, = CECi (1)
%M x SSAy + %K x SSAK + %l x SSA, = SSA (2)
%M x TPM + %K x TPK + %I x TP| = TPsoiI (3)

Where,

%M, %K, %l are the percentages of the minerals Montmorillonite, Kaolinite, and lllite present in
the soil sample;

CECy, CECk, CEC, are the CEC values of the pure minerals Montmorillonite, Kaolinite, and lllite
present in the soil sample, respectively;

SSAn, SSAk, SSA, are the SSA values of the pure minerals Montmorillonite, Kaolinite, and lllite

present in the soil sample, respectively;
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TPw, TPk, TP, are the TP values of the pure minerals Montmorillonite, Kaolinite, and lllite present
in the soil sample, respectively;

CECq.i, SSAi, TP, are the values of the properties CEC, SSA and TP of the soil samples.

4.3.1 Microsoft Solver Function

Solving the simultaneous equations is a very tedious task and the measured CEC and
SSA values for the pure minerals do not remain constant, as only a range of values can be
obtained from the literature. To solve this problem, a solution was developed by Chittoori 2008,
using the Solver function of Microsoft Excel® program. Solver is part of a suite of commands
sometimes called “what-if” analysis tools. Using this function an optimal value can be obtained for
a formula in one cell, called the target cell in a worksheet, by adjusting the values in the cells,
called changing cells, which can be specified to produce the result that is specified from the target
cell formula. Constraints can be applied to the changing cells to restrict the values that Solver can
use in the model to obtain the specified value for the target cell. A more detailed explanation on
how the solver function works can be obtained in the help manual of MS Excel (2007).

The target cell is the absolute error defined as the difference between the measured CEC
and SSA and the calculated CEC and SSA. Calculated CEC and SSA are defined as the CEC
and SSA values that are obtained after substituting the acquired mineral percentages back in
equations (1), (2) and (3). The changing cells are the CEC and SSA values of the pure minerals
along with the percentages of the minerals illite, kaolinite and montmorillonite. Figure 4.1 shows a
shapshot of the program.

Table 4.4 shows the original percentages of each mineral in the soil samples. Table 4.5
gives the predicted mineral percentages of all the twenty four soils obtained by solving the
equations using the Microsoft Solver Function explained above. Since the procedure is iterative, it
is important to check the values for the specific surface and cation exchange capacity by
comparing with the original mineral percentages mixed in the artificial sample.

Figures 4.2 and 4.3 show the comparison between the predicted values and the original

values for each mineral.
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Figure 4-1 Snapshot of the Microsoft Excel® program used for the quantification of clay minerals.
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Table 4-4 Original Percentages of Mineral in the Samples

Soil | Sample % Y%
No. # lllite | Montmorllonite
1 2 52.20 11.98
2 27 59.59 12.73
3 4 53.21 15.17
4 45 52.80 17.78
5 8 54.23 18.35
6 15 47.84 20.78
7 6 55.24 21.53
8 10 48.86 23.97
9 12 49.87 27.15
10 7 57.27 27.90
11 19 43.49 29.58
12 21 44.50 32.77
13 13 51.90 33.51
14 1 59.29 34.26
15 9 52.91 36.70
16 14 53.93 39.88
17 20 47.54 42.31
18 18 48.56 45.50
19 31 34.78 47.18
20 29 35.80 50.37
21 28 36.81 53.55
22 33 30.43 55.98
23 30 37.82 56.73
24 32 31.44 59.17
25 34 32.46 62.35
26 36 26.08 64.78
27 40 33.47 65.53
28 35 27.09 67.97
29 43 20.71 70.40
30 37 21.72 73.58
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Table 4-5 Predicted Percentage of Minerals obtained Using Microsoft Excel® Solver

H o, o,
ﬁg“ sample | it | Montmarillonite

1 1 50 50

2 2 | 454 38.1
3 4 | 575 33.6
4 6 | 375 36.1
5 7 | 596 20.9
6 8 40 16.3
7 9 | 492 30.1
8 10 | 417 228
9 12 | 475 25.8
10 13 | 417 30.7
11 14 | 392 34.4
12 15 | 31 17.6
13 18 | 438 48.1
14 | 19 | 325 33

15 | 20 | 438 39.2
16 | 21 | 367 34.9
17 | 27 | 317 115
18 | 28 | 213 60

19 | 20 | 333 54.1
20 | 30 | 225 61.4
21 31 35 54.4
2 | 32 |25 68.8
23 | 33 | 279 63.4
24 | 34 | o275 68.6
25 | 35 | 242 30.2
2% | 36 | 221 7.8
27 | 37 | 192 33.4
28 | 38 | 213 33.6
20 | 40 | 25 23.9
30 | 43 | 204 30

31 45 | 275 24.1
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Figure 4-2 Comparison of Predicted Percentage lllite with Original Percentage
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Figure 4-3 Comparison of Predicted Percentage Montmorillonite with Original Percentage

It can be observed from the graphs that the Microsoft Excel Solver program developed by
Chittoori (2008) has yielded close predictions for both montmorillonite and illite contents. Most of
the data for both minerals are within the + 20 % range of the true percents. It can be observed
that for high percentages of montmorillonite, the model was not accurate as three samples were
under predicted by about 40% of the actual percentage. For illite percentage, the prediction was
fair and most of the predicted data are again within the +20% range. It can be observed that only

for a handful of artificial clay specimens, this method did not give a good correlation.

50



4.3.2 Regression Equations

As mentioned earlier, solving the simultaneous equations is a very tedious process and
involves numerous iterations. In order to provide a simpler way to calculate the mineral
percentages from the CEC, SSA, and TP values obtained, Chittoori 2008 developed a
methodology to determine mineral quantity using regression equations. The following equations

were recommended by Chittoori 2008.

Yol = [%}d 00
(4)
%M =—-2.87+0.08xSSA+0.26x CEC (5)

where,

Yol = Percentage of the mineral illite
%M = Percentage of the mineral montmorillonite
TP = Total potassium

CEC = Cation exchange capacity
SSA = Specific surface area

Equation 4 can be used to determine the percentage of illite present in the soil based on
the Total Potassium values of the soil. Equation 5 is the regression model developed by Chittoori
2008 to obtain the percentage montmorillonite in the soil and this equation considers two
independent measurements, namely Specific Surface Area and Cation Exchange Capacity. The
predictive performance of the multiple regression models is measured through the coefficient of
determination (Rz). The coefficient of determination (RZ) for equation 2 was found to be 0.95,

which indicated that the model can be used to give accurate predictions.
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Table 4.6 gives the approximate mineral percentages of all the thirty soils obtained by solving the

regression equations presented in this section.

Table 4-6 Percentage of Minerals obtained Using Regression Equations

H o, o,

?lc:.l sample | " | \ontmorilionite
1 1 | 5000 51.70
2 2 | 4542 31.53
3 4 | 5750 23.88
4 6 | 37.50 26.02
5 7 | 5958 21.87
6 8 | 40.00 15.96
7 9 | 49.17 42.86
8 10 | 4167 22.18
9 12 | 4750 25.45
10 | 13 | 4167 26.59
11 14 | 3917 47.49
12 | 15 | 31.00 27.78
13 | 18 | 4042 61.35
14 | 19 | 3250 39.05
15 | 20 | 4375 57.55
16 | 21 | 3667 39.55
17 | 21 | 3167 16.17
18 | 28 | 2125 73.86
19 | 20 | 3333 64.20
20 | 30 | 2250 67.85
21 31 | 35.00 62.08
2 | 32 | 2250 76.27
23 | 33 | o7 69.98
24 | 34 | 2750 78.60
25 | 35 | 2417 58.51
26 | 36 | 2208 56.53
27 | 37 | 1917 63.86
28 | 38 | 21.25 63.81
20 | 40 | 25.00 60.83
30 | 43 | 2042 61.37
31 45 | 27.50 44.45
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Figure 4-5 Comparison of Calculated Percentage lllite with Original Percentage

It can be observed from the graphs that the regression model equations, developed by
Chittoori (2008) successfully predict most of the montmorillonite percentage, within a range of
about + 20%. This model also successfully predicts the high mineral percentages that the
Microsoft Excel Solver model failed to predict accurately. That accurate prediction of high
montmorillonite content is a very crucial part of the research, since montmorillonite is the mineral

that causes the most drastic swelling and shrinking behavior in clays.

For illite, again most of the predictions are again within the + 20% range with only a
handful below the -20% range. Even though these are below the lower range, they are still close
to it and not too scattered. The prediction of illite percentage, by both the Microsoft Solver Model
and Regression Equation model, follow the same pattern since the equation used to calculate the
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percentage is the same. Hence, it can be said that the regression model gives a fair prediction of

montmorillonite and illite.

4.3.2 Artificial Neural Network Model

An artificial neural network (ANN), also called a "neural network" (NN), is a
mathematical model or computational model that is based on biological neural networks that exist
in the structure of the human brain. It consists of an interconnected group of artificial neurons and
processes information using a connectionist approach to the computation. ANN is an adaptive
system that changes its structure based on external or internal information that flows through the

network during the learning phase.

It is an emerging technique that has been applied to many geotechnical engineering
applications successfully by many researchers (Shahin et al., 2001). Transportation Research
Board (TRB) has summarized the state-of-the-art ANN applications in geotechnical engineering
(E-C012, 1999). As stated earlier, neural networks aim to predict the relationship between the
inputs and outputs. This can be achieved by repeatedly feeding the known examples of
input/output relationships to the model and minimizing the error function defined between the
measured and predicted outputs by the model. A more detailed explanation of the model used to
quantify clay minerals has been developed by Chittoori 2008. The network architecture developed

by Chittoori 2008 is shown in figure 4.6

The model that is used was trained by the data obtained by Chittoori 2008. The predicted

mineral percentages using this model are given in Table 4.7
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Figure 4-6 Neural Network Architecture (Chittoori 2008)
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Table 4-7 Percentage of Minerals obtained Using Neural Network Analysis

H o, o,

?lc:.l sample | " | \ontmorilionite
1 1 | 6135 68.92
2 2 | 5837 41.66
3 4 | 6518 36.90
4 6 | 49.62 41.98
5 7 | 6565 2451
6 8 | 51.27 24.94
7 9 | 5913 28.13
8 10 | 5358 27.88
9 12 | 5965 28.88
10 | 13 | 5417 34.40
11 14 | 4529 32.90
12 | 15 | 3261 23.56
13 | 18 | 46.39 47.28
14 | 19 | 3593 34.33
15 | 20 | 5142 39.99
16 | 21 | 4381 35.76
17 | 27 | 3568 22,57
18 | 28 | 1813 59.42
19 | 29 | 3444 54,52
20 | 30 | 2007 62.95
21 31 | 38.27 55.51
22 | 32 | 1989 66.86
23 | 33 | 2645 63.73
24 | 34 | 2503 65.41
25 | 35 | 1957 30.31
26 | 36 | 18.05 28.90
27 | 37 | 1610 34.26
28 | 38 | 17.26 33.87
20 | 40 | 1953 25.17
30 | 43 | 16.84 32.34
31 45 | 24.45 25.79
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Figure 4-8 Comparison of Predicted Percentage Montmorillonite with Actual Percentage

From Figure 4.7, it can be observed that the most of the data fall within the range of +
20%. The artificial neural network gives a fair correlation between the actual and predicted illite

percentages. As observed with the previous methods, some percentages were under predicted

For the correlation between the predicted and actual percentages of montmorillonite, it
can be observed that although most of the data fall within the +20% ranges, three samples with
high percentages of montmorillonite are not getting predicted accurately. The data for these three

samples are being under predicted by about 40%, which is not acceptable.
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4.4 Interpretation of Results

To prevent the predictions of the percentages of minerals from being biased, the samples
were prepared beforehand, by a different person, and the percentages of minerals in the mixtures
were not revealed. In order to get better interpretations of the percentages from the results, the
artificial samples have been divided into two groups based on the original mixture percentages.
Group A consists of the samples that have montmorillonite as the dominant mineral and Group B
consists of those that have lllite as the dominant mineral. Table 4.8 and Table 4.9 show a

breakdown of the samples according to their mineral dominance.

Table 4-8 Samples Dominant in Montmorillonite

. Predicted Usin
?l%'_l San;ple Actual | Microsoft Exce?
Solver

1 31 4718 54.4

2 29 50.37 541

3 28 53.55 60

4 33 55.98 63.4

5 30 56.73 61.4

6 32 59.17 68.8

7 34 62.35 68.6

8 36 64.78 27.8

9 40 65.53 23.9

10 35 67.97 30.2

11 43 70.40 30

12 37 73.58 33.4

13 38 76.77 33.6
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Table 4-9 Samples Dominant in lllite

Soil | Sample % %
No. # lllite | Montmorllonite
1 2 52.20 11.98
2 27 59.59 12.73
3 4 53.21 15.17
4 45 52.80 17.78
5 8 54.23 18.35
6 15 47.84 20.78
7 6 55.24 21.53
8 10 48.86 23.97
9 12 49.87 27.15
10 7 57.27 27.90
11 19 43.49 29.58
12 21 44.50 32.77
13 13 51.90 33.51
14 1 59.29 34.26
15 9 52.91 36.70
16 14 53.93 39.88
17 20 47.54 42.31
18 18 48.56 45.50
(b)
Group A
(Montmorillonite
Dominant)
Artificial Samples
Group B
(lllite Dominant)

Figure 4-9 shows a flowchart to better illustrate the soil groups.

The results for group A soils are summarized in Table 4.10.
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Table 4-10 Predicted versus Actual Montmorillonite Percentages for Group A

% Montmorillonite
. Predicted
Soil Sample Prﬁ:ilg;;ed Predicted .With “.'i!h.
No. # Actual Microsoft Regregsmn Artificial
Equations Neural
Excel Solver
Network
1 31 47.18 54.4 62.08 55.51
2 29 50.37 54 1 64.2 54.52
3 28 53.55 60 73.86 59.42
4 33 55.98 63.4 69.98 63.73
5 30 56.73 61.4 67.85 62.95
6 32 59.17 68.8 76.27 66.86
7 34 62.35 68.6 78.6 65.41
8 36 64.78 27.8 56.53 28.9
9 40 65.53 23.9 60.83 25.17
10 35 67.97 30.2 58.51 30.31
11 43 70.40 30 61.37 32.34
12 37 73.58 33.4 63.86 34.26
13 38 76.77 33.6 63.81 33.87

Montmorillonite
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Figure 4-10 Comparisons of Actual Percentages of Montmorillonite with Predicted Ones
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It can be observed from figure 4.11 that the percentage of montmorillonite predicted
using the regression equations gave the most accurate predictions, especially in the cases where
the percentage of montmorillonite is greater than 50%. The other models give good predictions
when the percentage is less than 60% but for percentages greater than that, the results are
underestimated. It can be deduced that the montmorillonite content of soils can be accurately
predicted using the regression equations, within a 20% margin of error.

The results for soils in Group B are summarized in Table 4.11

Table 4-11 Predicted versus Actual lllite Percentages

% lllite

Pred_icted Predicted Pred_icted
Soil Sample .Usmg with ‘"f'?h.

No. # Actual MlIcE:rosoft Regression Artificial
xcel Equations Neural

Solver Network
1 19 43.49 32.5 32.50 35.93
2 21 44.50 36.7 36.67 43.81
3 20 47.54 43.8 43.75 51.42
4 15 47.84 31 31.00 32.61
5 18 48.56 43.8 40.42 46.39
6 10 48.86 41.7 41.67 53.58
7 12 49.87 47.5 47.50 59.65
8 13 51.90 41.7 41.67 54.17
9 2 52.20 45.4 45.42 61.35
10 45 52.80 27.5 27.5 24.45
11 9 52.91 49.2 49.17 59.13
12 4 53.21 57.5 57.5 65.18
13 14 53.93 39.2 39.17 45.29
14 8 54.23 40 40.00 51.27
15 6 55.24 37.5 37.50 49.62
16 7 57.27 59.6 59.58 65.65
17 1 59.29 50 50.00 61.35
18 27 59.59 31.7 31.67 22.57
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Figure 4-11 Comparisons of Actual Percentage of lllite with Predicted Ones

It can be observed that all the models give a fairly good prediction of the percentage of
illite in the sample. It can be further observed that for lower percentages of illite, all the data
points are giving good predictions. Therefore it can be said that all the models are equally
effective at predicting the percentage illite present.

4.5 Summary

It was observed that, for the quantification of montmorillonite, the model using regression
equations predicted the percentages more accurately than either the solver function of Microsoft
Excel or the artificial neural network model.

In this chapter the data obtained, from Cation Exchange Capacity (CEC), Total
Potassium (TP) and Specific Surface Area (SSA) done on thirty artificially prepared soil samples,

to quantify the dominant clay minerals present in soils have been presented and analyzed. The

64



results were predicted using the solver function of Microsoft Excel, regression and artificial neural
network models developed by Chittoori 2008. The repeatability of the test procedures has also
been addressed. The next chapter will discuss the conclusions that were arrived at from the

results and will provide the recommendations needed to improve the validity of the models.
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CHAPTER 5

SUMMARY, CONCLUSION AND RECOMMENDATIONS

5.1 Summary and Conclusion

Over the years, soil stabilization has been a topic of great interest and discussion
amongst civil engineers. Soil stabilization significantly reduces the construction and maintenance
cost associated with building pavements on expansive or poor quality soils as well as increase
rider comfort and satisfaction. The stability of the soil beneath the pavement influences the
performance of the pavement to a great degree. But in some cases, even after sub grades are
stabilized and treated using standard procedures developed by federal agencies, these
pavements fail or they have cracks which eventually cause failures.

The current procedure used by the Texas Department of Transportation (TxDOT) to
determine the type of stabilizer is based mainly on the Plasticity Index (Pl) and the gradation of
the soil. This method of stabilization does not always work because two soils with the same Pls
can have very different shrink/swell potential, plastic limits or liquid limits, hence their behavior will
be very different.

The main objective of this research was to validate the recently developed models by
Chittoori 2008 for quantifying montmorillonite and kaolinite. Thirty artificial samples were
prepared, each with a different percentage of the clay minerals. Since the intent is to identify the
expansive clay minerals, artificial samples with dominant clay minerals of montmorillonite and
illite were only considered. The atrtificial clay samples consisted of mixtures of montmorillonite,
illite and traces of kaolinite and other 1:1 minerals. The samples were mixed such that each had a
different proportion of the minerals. To maintain unbiased predictions and reporting, the
percentages were mixed by a different person and these percentages were not revealed to the

researcher until all the results had been reported. Then, the predicted percentages were
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compared to the original mix percentages and the results reported. The following section

summarizes the research, conclusion and recommendations. The repeatability of the Cation

Exchange Capacity, Specific Surface Area, and Total Potassium methods were verified by

performing each test thrice on three samples. The test results obtained indicated a very low

standard deviation between the results of each sample. This indicates that the tests have good

repeatability.

1.

The Microsoft Excel Solver program developed by Chittoori (2008) yielded close
predictions for both montmorillonite and illite contents. Most of the data for both minerals
are within the + 20 % range of the true percents. It was observed that for high
percentages of montmorillonite, the model was not accurate as three samples were
under predicted by about 40% of the actual percentage. For illite percentage, the
prediction was fair and most of the predicted data were again within the +20% range. It
was observed that only for a handful of artificial clay specimens, this method did not give

a good correlation.

It was observed that the regression model equations, developed by Chittoori (2008)
successfully predicted most of the montmorillonite percentages accurately, within a range
of about + 20%. This model also successfully predicted the high mineral percentages that
the Microsoft Excel Solver model failed to predict accurately. That accurate prediction of
high montmorillonite content is a very crucial part of the research, since montmorillonite is
the mineral that causes the most drastic swelling and shrinking behavior in clays. For
illite, again most of the predictions were again within the + 20% range with only a handful
below the -20% range. Even though these were below the lower range, they were still
close to it and not too scattered. The prediction of illite percentage, by both the Microsoft
Solver Model and Regression Equation model, follow the same pattern since the
equation used to calculate the percentage is the same. Hence, it can be said that the

regression equation model gives a fair prediction of montmorillonite and illite.

67



Using the Neural Network Analysis model developed by Chittoori 2008, it was observed
that for illite most of the data fall within the range of + 20%. The artificial neural network
gives a fair correlation between the actual and predicted illite percentages. As observed
with the previous methods, some percentages were under predicted. For the correlation
between the predicted and actual percentages of montmorillonite, it was observed that
although most of the data fall within the +20% ranges, three samples with high
percentages of montmorillonite are not getting predicted accurately. The data is being

under predicted by about 40%, which is not acceptable.

For the accurate quantification of high percentages of montmorillonite and illite, the
regression equation model developed by Chittoori 2008 was observed as giving the most
accurate data. This accurateness is very crucial as montmorillonite content of the soil
leads to drastic behavior in terms of swelling and shrinking. Although the other models
give fair prediction for low to medium percentages of montmorillonite and illite, they do

not give accurate results where high montmorillonite percentages are concerned.

For future studies, more soils need to be studied and kaolinite should be included in the
prediction analyses. Further research may also be done to include other 1:1 minerals and

also soils from different regions that exhibit swelling behavior.
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