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ABSTRACT 

 

MODELING AND SIMULATION OF A GENERAL MOTORS CONVEYOR SYSTEM 

USING A CUSTOM DECISION OPTIMIZER 

 

Mirza Mohammad Lutfe Elahi, M.S. 
 
 

The University of Texas at Arlington, 2008 
 
 
 

Supervising Professor: Gergely V. Záruba 
 

The temporal behavior of conveyor systems can be modeled using discrete 

event (DE) simulations. DE modeling provides a quick and cost effective method for 

analyzing complex problems as different scenarios can be tested rapidly without 

affecting the day to day activities of production systems. A simulation model coupled 

with decision optimization on routing choices enables the evaluation of different 

decision strategies. 

In the General Motors paint shop at Arlington, Texas, the complex conveyor 

system moving cars to the paint booths has been observed to mix up same color 

batches of cars coming from the body shop. At the paint booth, every time two 

consecutive cars have a different color the paint head needs to be cleaned and primed 

with the new color; the cost of such paint head changes accumulates to a significant 

expense annually. By observing the decision making process on the conveyor system 
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it was apparent that better routing decisions could be made, thus reducing the resource 

wastage. 

In this work a DE based simulation model is developed for the General Motors 

paint shop conveyor system. The simulation model interacts with a decision optimizer 

at four critical points in the system trying to regroup batches of different color cars. 

Simulation results of the current decision making policies are compared to that of the 

proposed optimized policies, showing that significantly better performance can be 

achieved in terms of number of paint head changes.  
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CHAPTER 1 

INTRODUCTION 

Most manufacturing systems are characterized by a list of operations in a 

particular sequence, that a part or job has to undergo before it exists the system. 

Developing a simulation model that covers the explicit details of manufacturing 

systems, to represent reality is a complex task. The simulation model offers great 

opportunities for studying system response when structural relationships within the 

model are altered. System responses can be further studied for change in decision 

policies in a timely and cost effective manner.  

Discrete event (DE) simulation offers many conveniences that makes it 

attractive tool for analysis. It can “compress time” so that years of activities can be 

simulated in minutes and in some cases in seconds. Simulation of a complex system 

simplifies the study of alternatives and helps in developing optimal or near-optimal 

policies for system management. Simulation of complex manufacturing systems 

provides an analytical tool to identify bottlenecks and to control system parameters.  

1.1 Problem Statement 

General Motors (GM) Corporation is the largest automotive manufacturer in the 

world. In the Arlington, Texas paint shop of GM, about 1,000 vehicles a day get painted 

in two shifts. Cars in same-color batches enter the paint shop on a conveyor from the 

body shop. Between two consecutive color-batches there may already be some mix up 

of colors as cars come in from body shop. Shuffling cars inside the paint shop creates 
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more mixing between consecutive batches. At the paint booth, which is completely 

automated, those color-batch shuffles can result in a significant number of paint 

changes in the paint heads. As a paint robot at each paint booth, receives a new car it 

obtains the color code to which the car needs to be painted.  If the next car is of a 

different color then the paint robot has to flush its paint head with solvent and prime it 

with the new color. Such “paint head replacements” (we are going to refer to the 

change of paint in the paint head as paint head change) cost USD 15 in average and 

thus the cumulative cost of the replacements over a year is well above USD 1,200,000. 

This incurs a huge impact on GM’s production cost and moreover it contributes to 

environmental pollution. Thus plant leaders were looking at finding a solution to reduce 

the number of paint head changes. Experimenting with the facility’s conveyor layout is 

not an option that can be pursued, as it incurs huge setup cost and can cause 

significant down times. However, a simulation study of the current facility could be an 

effective method to study the response to changes in the system or how decisions on 

routing cars are made in the system. Such a modeling and simulation approach can 

save a significant amount of cost, time, and engineering effort.  

In order to understand how the conveyor system could shuffle up batches of 

cars we need to take a look at how the paint shop works. There are two work stations 

in the paint shop where human interactions are needed. During union mandated shift 

breaks those work stations cease working, i.e., the conveyors stop delivering vehicles 

to next conveyors and previous conveyors have to be stopped not to deliver more cars 

into these work stations. The usual way to deal with such “burstiness” in supply is 

solved by introducing buffers. Thus, during shift breaks and at the end of each shift, 
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buffers conveyors are used to accumulate and store cars. Every shift in paint shop 

starts with those buffers filled to their capacity. These buffer conveyors subsystems 

usually consist of several parallel conveyors. At the beginning and end of these buffer 

conveyors there are critical points where decisions have to be made on how to split or 

merge to/from the parallel conveyors. One subsystem we have identified as a 

bottleneck in the paint shop contains five parallel buffer conveyors with same size. 

Originally splitting and merging were done in round robin fashion in this subsystem, 

i.e., although this subsystem did not introduce any more shuffling, it was not used to 

“unshuffle” cars back to their correct order. Another subsystem contained two buffer 

conveyors with different sizes – one is referred to by GM as short loop while the other 

has a descriptive name: long loop. The long loop is almost ten times longer than short 

loop. In the original set-up, the plant management gave preference to the short loop for 

splitting at the ingress of this block if there is space at the start of short loop. At the 

egress the subsystem another decision has to be made as to which of the vehicles 

should be pulled first from these two conveyors. Again, currently the short loop is 

preferred if there is a vehicle in it readily available. As a result, this splitting and 

merging adds more shuffling between different color-batches of cars.  

To reorder or to shuffle as little as possible those mixes poses a difficult 

scheduling problem with high complexity due to physical space constraints. Moreover 

new scheduling algorithms cannot be tested on the system as their outcome may be 

questionable and cause a significant production loss at the paint shop. 
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1.2 Contribution 

Discrete event simulations of temporal systems can provide a good way to 

evaluate various decision strategies and to optimize their parameters. Different 

algorithms can be studied for their effectiveness in optimizing the paint head changes 

without affecting the day to day activities at the plant. In this work we develop a 

discrete event simulation model of the GM Arlington, Texas paint shop conveyor 

system which interacts with the decision optimizer. Although our simulator was 

developed specifically for this paint shop, the objects can be reused to create 

simulations of other conveyor systems. We have interfaced our simulator with decision 

optimization libraries and used optimization strategies developed by colleagues. We 

will show simulation results for two scenarios – one without the decision optimizer 

which reflects the current paint shop's conveyor system and another one using the 

decision optimizer. By analyzing the output traces we can compare the performance (in 

terms of paint head changes) between the current system and the proposed optimized 

decisions. 

1.3 Organization 

The rest of this Thesis is organized as follows. Chapter 2 describes the 

background information needed on simulation studies, discrete event simulations, 

modeling conveyor systems and optimization techniques. Important concepts relevant 

to those areas will be discussed. Chapter 3 describes the current model of GM’s plant 

and provides the simulation model we developed. It also outlines the decision optimizer 

that we used in our simulations. In Chapter 4 we detail our experimental set up for our 
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simulation. Discussions on results can be found in Chapter 5. Chapter 6 concludes the 

work with the summary of the project and points to some possible future work.  
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CHAPTER 2 

BACKGROUND 

2.1 Simulation 

Simulation is a powerful and cost effective tool for modeling real world systems. 

Software modeling of complex real world system has become one of the most used 

decision making tools in many fields, especially in engineering, manufacturing, 

telecommunication, military and transportation. Simulation provides a cost effective 

way of collecting information for decision making. The size and complexity of real 

systems rarely allow physical study on the system itself to provide information. Hence 

discrete event simulation has become a method of choice to analyze complex systems. 

The success in applying discrete event simulation depends on the depth and breadth 

of the underlying model as an approximation of the system [1]. A survey of simulation 

modeling using discrete event simulation in manufacturing plants can be found in [2]. 

2.2 Simulation of Manufacturing Plants in Automotive Industry 

Simulation of industrial systems has been prevalent since the early 1960s. 

Simulation has been used to study wide range of problems in automotive 

manufacturing. A simulation study of an entire GM assembly plant was performed to 

increase its production throughput in [3]. Simulation and optimization studies helped to 

improve car body production at PSA Peugeot Citroën [4]. A simulation-based decision 

support was developed in Training, Operations, and Planning for Visteon's Sterling 



 

7 
 

Plant [5]. The simulation models available in literature for automotive industry are 

developed mostly by the experts within the plant. The simulation model developed in 

this study utilizes the data collected from The Arlington, Texas GM plant and covers 

the details of the paint shop of the plant in detail.  

2.3 Modeling Conveyors and Queuing Systems 

Queuing systems have been extensively simulated and studied in past. Mostly 

two kinds of queuing systems are used which are either open loop or closed loop 

systems. In an open loop system, work arrives from outside the system at the rate 

independent of system and beyond the control of system managers. Closed loop 

systems from open loop systems can be distinguished by control over work arrival 

time. A lot of the manufacturing, transportation and telecommunication systems are 

characterized by closed loop systems. In addition to choosing routing, sequencing and 

scheduling policies, the ability to control jobs arrival based on state of the system offers 

system managers a valuable tool for decision making. This motivates the study of 

routing and scheduling policies for simulation models designed to optimize the 

response of the system.  

Conveyors, since their invention, have been the backbone of industries for 

transporting materials within the manufacturing plant. In simulation modeling there are 

generally two types of conveyors: accumulating and non-accumulating conveyors. 

Most of conveyors that appear in simulation models are simplistic. Although simulation 

of the conveyors is simplistic in nature, it is necessary to obtain appropriate 

information, such as, the type of the conveyor, conveyor speed, capacity and other 

factors to model it as realistically as possible. For a production line where the 
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movement of jobs is completely controlled by the conveyors, the aforementioned 

conveyor parameters play an important role in developing a synchronized system. 

2.4 Decision Optimization 

Mathematical optimization techniques have been widely used in variety of 

fields, especially in job scheduling, inventory planning, transportation, logistics 

planning, telecommunication optimization and resource planning. Such optimization 

techniques have been used in past and are still in use in the automotive industry for the 

same purposes.  

2.4.1 Linear Programming 

Linear programming gives the direction of a method to achieve the optimal 

result in a given mathematical model (objective function), given a set of constraints 

represented as a set of linear equations. This method is an optimization technique of a 

linear objective function, subject to linear equality or inequality constraints. Integer 

linear programming is a particular case of linear programming where some or all of the 

unknown variables can only take integer values. While there are polynomial solutions 

to linear programming problems, solving integer linear programming problems has 

been shown to be NP-hard. There are three common variations within integer linear 

programming: 

 Pure Integer Programming (IP) -- all variables are integer. 

 Mixed Integer Linear Programming (MILP) -- some variables are integers. 

 Zero-one IP -- the integer variables are binary which can take either one 

(yes) or zero (no). 
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Integer linear programming can be applied extensively to various fields in 

financial planning, resource planning and also to solve some complex engineering 

problems. Linear programming is used in manufacturing, transportation, energy, and 

telecommunications industries. It has proven to be useful in modeling diverse types of 

problems. For example the simulation study in [3] uses, linear programming to optimize 

job scheduling and thereby increase its production throughput. 

2.4.2 Dynamic Programming 

Dynamic programming which is similar to divide and conquer method, solves a 

problem by integrating the solutions of sub problems. When sub problems overlap, 

dynamic programming is a good choice to solve that problem. It reduces the 

computation of the same problem again and again by solving it only once. It saves the 

solution in a table and uses the saved solution when it encounters the same sub 

problem next time.  

The development of a dynamic-programming solution can be broken into a 

sequence of four steps [6]. 

1. Characterize the structure of an optimal solution 

2. Recursively define the value of an optimal solution 

3. Compute the value of an optimal solution in a bottom-up fashion 

4. Construct an optimal solution from computed information   

Dynamic programming has been used widely in search and optimization 

techniques. It has been used in inventory management, job scheduling, resource 

planning and work force scheduling. 
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CHAPTER 3 

 MODEL AND IMPLEMENTATION 

3.1 Current Model 

The paint shop at GM can be divided into different logical blocks. Figure 3.1 

depicts the current GM paint shop plant which serves as a basis of our model. 

 

 

 

Figure 3.1 Logical block diagram of paint shop 



 

11 
 

Each block represents a painting (sub) process. Each process consists of 

conveyors with different capacities and speeds (both of which are fixed). Some of the 

processes have more than one conveyor in order to synchronize the entire system. For 

our study, we have considered 11 processes in the paint shop. Each car starts with the 

phosphate process and goes through all of the other processes once to complete the 

paint job.  

The entire shop works in two shifts per day. The first shift starts at 6:00 AM in 

the morning. There are three shift breaks during this shift. First one occurs at 8:30 AM 

for 23 minutes. Next one is at 11:00 AM for 30 minutes and the last one is at 1:30 PM 

for another 23 minutes. The shift ends at 2:30 PM. 

Each car enters paint shop from body shop and starts with the phosphate 

process where body of the vehicle is cleaned and coated with phosphate solution. In 

elpo (electrophoretic priming operation) the body of the vehicle is covered with a 

special substance to protect it from corrosion. Then the body needs to be heated and 

baked to finish the elpo process; the cars enter the elpo oven which is a slower 

process than the previous two. For this reason it has two parallel conveyors to 

synchronize the speed of the conveyors with the previous process. After finishing the 

elpo oven cars enter the elpo strip bank; this is basically a buffer. It has two conveyors, 

one is short loop and another is long loop. The capacity of long loop is almost 10 times 

the capacity of short loop. The next process is west loader and this is the first place in 

the paint shop where human interaction is needed. In this process cars are moved from 

one support frame (skid) to another manually. The two conveyors from the elpo strip 

bank merge just before the west loader. The next process in the sequence is the sealer 
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booth after which cars are delivered to the prime booth. The purpose of the prime 

booth is to spray primer on the body of the car which improves the adherence of the 

paint to body of the car. Then the body of the car needs to be baked again as it enters 

the prime oven. It takes long for a car to pass through the oven area thus the 

conveyors needs to be slow inside the oven; instead of having one long oven, the 

prime oven is implemented using a relatively short oven with three parallel lines. Each 

car enters one of the conveyors in sequence from prime booth. The cars from prime 

oven are delivered in the same order as they enter. Then cars enter the prime strip 

bank which has five parallel buffer conveyors (the prime strip bank is one of the buffers 

used to store cars while human labor is suspended). Cars pulled from prime strip bank 

are merged to form a single queue and are sent to moist sand where any scratch is 

identified and fixed. Once the cars pass through this process they are scheduled to be 

painted in one of the three color booths. Cars in the repair section of the paint booth 

are some time scheduled to enter back to either color booth or moist sand. This part of 

the paint shop is not considered for our study. 

There are two places in the paint shop where human interaction is needed. One 

is just after elpo strip bank, i.e., the west loader and another is just before the prime 

booth. During shift breaks, elpo strip bank stops delivering any car to west loader. The 

sealer booth also stops delivering cars to the prime booth; it does not have to 

accommodate cars from previous process because elpo strip bank does not deliver 

any car to west loader. The conveyors in elpo strip bank and prime strip bank are used 

as buffer conveyors. At the end of each shift, there should be no cars in any of the 
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processing conveyors except in elpo strip bank and prime strip bank (which are used 

as buffers).  

There are thus four major decision points in the paint shop (as depicted with a 

scratched head in Figure 3.1). Two points are for splitting from a single conveyor to 

multiple conveyors and two for merging from multiple conveyors to a single conveyor. 

Splitting points are at the entry points of elpo strip bank and prime strip bank. There are 

two conveyors in elpo strip bank, short loop and long loop; originally, short loop is given 

preference over long loop. The prime strip bank is another buffer. There are five 

conveyors in parallel which have equal capacities and conveyor speeds. Currently, 

cars are pushed to the prime strip bank in a round robin fashion. Figure 3.2 shows the 

splitting and the merging points (white circles) in elpo strip bank and prime strip bank. 

 

      

 

(a)                                                    (b) 

Figure 3.2 (a) elpo strip bank split (b) prime strip bank split 

Merging points are at the end of elpo strip bank and prime strip bank where one 

conveyor has to be selected for the next outgoing car. Currently, short loop is given 
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preference over long loop for merging to a single queue at end of elpo strip bank. 

Merging at the end of prime strip bank, works in the same way as splitting. For 

example, if the last car was pulled from first conveyor then the next car should be 

pulled from second conveyor. If no car is available to pull from second then it takes 

from third and so on. These four points have been considered for optimization and 

regrouping the batch sizes. Figure 3.3 shows the merging points (white circles) in elpo 

strip bank and prime strip bank. 

            

              

 

(a)                               (b) 

Figure 3.3 (a) elpo strip bank merge (b) prime strip bank merge 

There are more splitting and merging points at the beginning and ending of elpo 

oven, prime oven and color booth. However all of the splitting and merging algorithms 

currently used do not affect the response variable, i.e., cars per head changes. The 

order of the batches is well maintained in these work stations. . The order of the 

batches is well maintained at these points.  
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Figure 3.4 depicts the class diagram that represents the entire simulation model 

as implemented. Thus, the DE simulation model is developed in C++ and a PERL 

script is used to run the different iterations of the simulation for different set of inputs 

and to reach a high confidence level on a low mean error. 

In Figure 3.4 PaintShop is the main class that represents the entire paint shop. 

All processes are members of the class PaintShop. Processes are inherited from 

BaseStep which contains the common functionalities of each process. Each process is 

associated with either a single or multiple numbers of Conveyor objects according to 

the configuration. 

Class CarGenerator creates car object and schedules them for delivery in same 

color batches to the PaintShop. This is also the object that is used to model mixing of 

car colors among batches trying to model the output of the body shop of GM.  

Structures SimEvent, DSEvent and EndSimulation represent the discrete event 

simulation engine [7]. They manage the event queue and thus the simulation clock. 

Class Conveyor has all the functionalities of a conveyor. It maintains a queue 

for car objects and simulates car movement by scheduling events into the event queue.  

Class Config [7], which is a global object, reads all the configuration data from a 

file; this data is managed by class PaintShopData which is a singleton object. When 

data is needed for any part of the program like conveyor capacities for any processes 

then PaintShopData provides the required information. Class Rstream [7] which is also 

a global object is used to generate random numbers that are needed to mix the 

batches. 
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For merging the simulation checks the conveyors at the end of each bank 

periodically (with an expected period of car arrival). For elpo strip bank if both of the 

loops have cars ready to deliver then the decision optimizer is called which will make a 

decision on from which conveyor to take the next car. If only one of the conveyors have 

a car ready to be delivered then the decision optimizer is not called and the trivial 

solution is going to be used. Similar process is followed for the prime strip bank. Figure 

3.5 depicts this interaction between the discrete event simulation and the decision 

optimizer. 

 3.3.1 Splitting Single Queue to Multiple Queues 

In optimizing the decisions made for splitting a single queue to a multiple 

queues the color codes of the previous cars in each of the destination queues must 

also be taken into account. An integer linear programming model optimizes the 

grouping of cars of similar colors. The optimization model is based on minimum cost 

multi commodity flow model. It is a (0,1) boolean programming model that takes into 

account the color code of the last car that was pushed to different conveyors and also 

the color code of the car at the decision point. The cost of pushing a car to a particular 

conveyor is ‘0’, if the color codes are the same as the previous car in the conveyor and 

‘1’ otherwise. The model developed is solved using CBC [8] open source solver. In 

addition, the optimizer receives the following parameters that could influence the 

decision:  

1. Total Number of cars in a single queue to be split. 

2. Number of empty skids available in different conveyors. 
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 For the optimization to give a feasible result, the capacity constraints, i.e., the 

sum of individual commodities flowing across an arc should be equal to one and flow 

balance constraints, i.e., number of arcs coming into a node should be equal to number 

arcs flowing out of the node must be satisfied. In addition to these two constraints the 

total number of cars in the queue about to be split must always be either less than or 

equal to numbers of empty skids available at all the conveyors. 

The number of cars considered (look ahead) in the single queue before being 

processed may or may not have an impact on the final batch sizes as the result solely 

depends on the colors codes of cars. The optimization model is called for each car 

during the simulation before the decision is made to which conveyor the car needs to 

be forwarded. There should be at least one empty skid available in two or more 

conveyors for the optimization to have any effect on the batch sizes. 

3.3.2 Merging Multiple Queues to a Single Queues 

The currently employed algorithm at GM for merging cars from different 

conveyors to a single queue is just a round robin system with the color code of last car 

that was merged not playing a role. This also results in huge mixing of cars of different 

colors thus reducing the batch sizes. A dynamic programming model was developed to 

optimize the merging process and so trying to regroup cars into same color batches. 

The dynamic programming model was created to calculate the total number of color 

changes for each conveyor involved in the merging process. The model also took in to 

account the color code of the last car that that was merged in to the single queue. The 

outcome of the dynamic programming optimization depends also on the number of 

cars chosen in each conveyor (look ahead) for the process of merging. 
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The look ahead in each conveyor for the purpose of optimization plays an 

important role in the problem size of the dynamic programming problem. The size of 

the problem increases exponentially as the number of cars selected in each conveyor 

for optimization increases. During our experiments we have not seen an advantage to 

increase the look ahead beyond five cars. Thus for our study we limited this number to 

five in each conveyor for the five-to-one as well; for the merging between the short loop 

and the long loop we have used an asymmetric look ahead with five and ten 

respectively. The optimization model is called for each car during the simulation before 

the decision is made to merge to a single conveyor. There should be at least one car in 

two different conveyors for the optimization to have any effect on the batch sizes. 
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CHAPTER 4 

EXPERIMENTAL SETUP 

In this chapter we describe the discrete event simulation based experimental 

setup we used for our evaluation study. 

4.1 Input Parameters 

Simulator uses a configuration file for setting input and initialization parameters. 

Thus, we can control the simulation by changing the configuration file. The 

configuration file contains the following parameters: 

 Total simulation time (Total simulation time is the simulation clock time for 

which the simulation has to run to simulate the entire shift) 

 Car arrival time from car generator (body shop model) to paint shop. (Car 

arrival time is the inter arrival time of the individual skids containing cars 

coming from the body shop to the paint shop.) 

 Percentage of mixing in the car arrival process between two consecutive 

batches. (Mixing percentage represents the number of cars that can be 

randomly mixed at the beginning and end of batches. Generally, cars from 

the body shop are not batched strictly with the same color and thus there 

are some shuffled periods of colors between two consecutive batches. For 

example an input value of 20% mix means that 10% cars at the end of one 

batch mix with another 10% of the cars of the next batch.)  
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 Length of the conveyors of each process (number of cars) of each 

conveyor. (Each conveyor can have a different capacity - how many cars or 

skids it can hold maximally. Some painting sub-processes have multiple 

(parallel) conveyors with the same capacity while some of these compound 

processes have multiple conveyors with different capacities.) 

 Time it takes to move a skid from one “slot” to the next inside individual 

conveyors. (Cycle time is defined as the time it takes on a conveyor to move 

the skid ahead exactly one slot (i.e., from the time it takes the conveyor to 

move the beginning of one skid to the beginning of the next skid.) 

 Number of look ahead cars in both splitting and merging. (The optimizer 

always takes the decision based on the look ahead cars for both splitting 

and merging.) 

 Color codes of different batches 

 Size of the batches. (We experimented for different batch sizes ranging 

from 10 to 100.) 

 Car arrival checking time at the end of processes which have multiple 

conveyors (for merging). (At the end of some processes which have multiple 

conveyors like elpo strip bank and prime strip bank, the simulator has to 

check whether there is a car ready to pull for delivering it to next process. 

Thus, car arrival checking times represents how frequently the simulator 

has to check those conveyors.) 
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Table 1 shows the name of the processes and the cycle time required by those 

processes which are provided by GM. Table 2 lists values we used for other 

parameters. 

Table 4.1 Processes and their cycle time 

Process Cycle time (min) 

Phosphate 1 

Elpo 1 

Elpo strip bank 2.128 

Elpo load 0.933 

West loader 0.933 

Sealer booth 0.933 

Prime booth 0.933 

Prime oven 2.804 

Prime strip bank 0.857 

Moist sand 0.857 

Color booth 2.034 

 

 

 

 

 

 



 

24 
 

Table 4.2 Different parameters and their values 

Parameter Value 

Simulation time (min.) 1050 (min) 

Batch sizes 10 – 100 

Mix percentages (%) 0 - 30 

Car arrival checker at ELPO STRIP BANK 1.00001 

Car arrival checker at PRIME STRIP BANK 0.9 

Car arrival checker from body shop (min.) 1.00001 

 

4.2 Initial Conditions of Conveyors 

The conveyors in the simulation model start off being empty. However, GM 

starts each shift with two buffer blocks elpo strip bank and prime strip bank filled to 

capacity and phosphate is started 36 minutes before the shift begins, as this process 

takes some time before it starts depositing cars into the buffer conveyors. In order to 

cope with this two issues our simulation is primed (with a stopped paint booth) until all 

buffer conveyors filled up. In addition, we start the car generator 36 minutes before the 

shift starts so that phosphate remains full before the actual shift simulation starts. So 

the steady state condition for our simulation modeling is that phosphate, elpo strip bank 

and prime strip bank should be full at the beginning of the shift. Hence, we filled the 

buffer blocks first and then started the car generator 36 minutes before the shift starts. 

The warm up time for the system to reach the primed state is 476 minutes.  
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CHAPTER 5 

EXPERIMENTS AND RESULTS 

We ran experiments using the simulation model with different parameters for 

four different scenarios mainly distinguished by the mixing percentage. We considered 

four different kinds of mixing ratios: 0%, 10%, 20% and 30%.  

5.1 Cars per Paint Head Change 

In our experiment we traced color changes at the three paint booths after the 

simulation ran for an entire shift. We recorded the total number of color changes and 

total number of cars that finished the paint job from paint shop. Thus we could 

calculate the cars per paint head change value for particular mixing ratio and for 

specific batch sizes. 

5.2 Savings Calculation 

In order to translate the recorded values into numbers easily communicated to 

GM management, we calculated the financial benefit between the currently used model 

and the decision processes proposed. We have done that using the following simple 

calculation: 

 c = cost for changing a paint head 

d = total working days in a year 

  n= total number of finished paint jobs per shift  

  s = number of shifts per day 
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ijC = total savings for batch i  and mixing ratio j   

=ijd cars per head change for batch i and mixing ratio j  using current 

         algorithms 

=ijo  cars per head change for batch i and mix ratio j  using optimized 

         algorithms 

Therefore, ijC = ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−××××

ijij od
sndc 11

     (5.1) 

5.3 Confidence Level 

Using the mixing ratios for batch sizes involve the employment of a random 

number generator when generating batches. This turns our simulation into a Monte 

Carlo simulation, where depending on the random number seed each simulation run 

has a different outcome. Thus, an average over same setup but different seed 

simulations is obtained which is used to estimate the mean of the underlying random 

process as defined by the simulation. To obtain a 95% confidence that the relative 

error (compared to the average) of the average to the mean is less than 5%, the 

appropriate number of simulations were conducted.  

Thus, if   

N is the sample sizes,  

m is the average over all samples,  

s is the standard deviation of total sample,  

Z(α ) is the normal percentile for α  confidence level, 
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then the absolute error is:  

( )
N
sZe α=  ,        (5.2) 

and thus relative error is: 

m
ere =          (5.3) 

If the target relative error t
er  is %5  but after an initial N=30 samples er > t

er  then 

we estimate the number of samples needed that will satisfy our target as:  

( )
⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

2

*
*
mr

sZN t
e

e
α        (5.4) 

5.4 Experimental Results and Discussions 

Here we are going to list our experimental results and provide discussions of 

them. We have run four different sets of experiments with the main difference being in 

the mixing ratios. For each set of experiments we used the batch size as the factor 

(and thus in the figures the batch size is depicted on the horizontal axis). For each set 

of experiments we have two figures, one showing the number of cars per paint head 

change for both the original GM as well as the optimized approach; the other shows 

the savings that can be achieved if GM was to switch over to the new optimization 

method (in US Dollars).  
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From Figures 5.3, 5.5, 5.7 we can observe that the cars per head change 

decreases when the batch size grows to 70-80 for mixing ratios 10%, 20% and 30%. 

To identify the unusual behavior we performed more experiments for three mixing 

ratios and traced same-color cars group at the three paint booths for different batch 

sizes and calculated the standard deviations. Figure 5.9, 5.10 and 5.11 depict the 

results of these experiments.  

 

Figure 5.9 Batch size vs standard deviations of same-color cars for mixing ratio 10% 
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Figure 5.10 Batch size vs standard deviations of same-color cars for mixing ratio 20% 

 

Figure 5.11 Batch size vs standard deviations of same-color cars for mixing ratio 30% 
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From the figures we can observe that the standard deviation of same-color cars 

at three paint booths are large for higher batch sizes, especially around 70 and 80. 

These results provide a hint that the low average cars per head change may be caused 

by the large differences between same-color cars group around batch sizes 70 and 80. 
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CHAPTER 6 

CONCLUSIONS AND FUTURE WORK 

In this thesis we presented a simulation study to gain insights into the paint 

shop conveyor system of the General Motors plant in Arlington, Texas. Simulation 

modeling of such complex systems can help in evaluating new routing decision making 

algorithms without interrupting day to day operations of the plant. In the GM paint shop 

cars to be painted are entering on a single conveyor from the body shop. When 

ordering the incoming cars at the body shop, attention is paid to group same color code 

cars thus creating batches of cars which need to be painted using the same color. 

Sometimes (due to the real-time behavior of the conveyors) the transition between 

batches is not clear cut. The paint shop conveyor system has been observed to make 

the situation worse, i.e., mixing the batches even more. This represents a problem, as 

by the time the cars reach the actual paint booths, they are out of sequence (when 

looking at their colors). If same color cars are painted then the color in the paint heads 

does not need to be changed which results in savings on solvent and paint. Thus, 

increasing the same color batch sizes at the paint booths is very beneficial. Better 

algorithms could be used at the paint shop conveyors to reorder cars to clean batches. 

In order to effectively and efficiently evaluate such algorithms a simulation model is 

needed. 

We have connected our simulation to an optimization framework that receives 

data from the simulator to make routing decisions and relays these decisions back to 
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the simulator. We experimented with different parameters to analyze the plant’s current 

performance (in the terms of how many cars can in average be processed at the plant 

without changing the paint in the paint head) and performance when using decision 

optimizer. We have analyzed the conveyor system using our model for various original 

batch sizes coming from the body shop and various degrees of how clear cut the 

transitions are (mixing ratio). We have done so for both the current decision making 

process as well as the optimizing approach. We have shown that GM could save as 

much as USD 550,000 if calculating with an average cost of USD 15 for a paint head 

change (a value confirmed by GM’s plant).  

Change in conveyor speed in long loop certainly has an effect on cars per head 

change at the paint booth. Increasing the speed of this conveyor will increase the 

number of available cars at the end of long loop to make merging decision. Further 

analysis may be required to study the effect of conveyor speed on cars per head 

change and the optimal batch size.   
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