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ABSTRACT 

 

ROOM-TEMPERATURE SINGLE-ELECTRON DEVICES 

BASED ON CMOS FABRICATION TECHNOLOGY 

 

 

Vishva Ray, PhD 

The University of Texas at Arlington 

Supervising Professor: Seong Jin Koh 

Single-electron devices, in which the transport and storage of individual electrons is 

precisely controlled, have many potential benefits in the field of electronics, optics, and sensors. 

Fabrication of these devices requires the arrangement of device components (Coulomb island, 

source, drain, and gate electrodes) with nanometer scale precision. Although several methods 

have successfully demonstrated single-electron behavior, large-scale fabrication of single-

electron devices has not been possible. 

This research aims to –   

• Come up with a method which would allow the fabrication of single-electron devices on a 

large scale, 

• Make the fabrication method compatible with current CMOS technology, and, 

• Enable room-temperature operation of the single-electron devices. 

A major achievement of this research has been the creation of a new single-electron 

device structure within the framework of current CMOS technology which has allowed for the 

fabrication of single-electron devices on a large scale and in parallel process. This was made 

possible by employing a vertical electrode configuration where the source and the drain 

electrodes were separated by a thin layer of dielectric medium (~10 nm). Next, Coulomb islands 



 vi

were attached to the exposed sidewalls of the dielectric film using a combination of colloidal and 

surface chemistry. Individually addressable gate electrodes were then incorporated in devices, 

also in complete parallel processing. 

 Subsequent I-V measurements of these devices have yielded Coulomb blockade, 

Coulomb staircase, and Coulomb oscillations at room temperature and at low temperature. A 

systematic study of the single-electron charging/tunneling was carried out utilizing different sizes 

of Coulomb islands. The dependence of the nature of the Coulomb blockade and Coulomb 

staircase on nanoparticle size, temperature, and location of the Coulomb island were also 

investigated. Simulations based on the orthodox theory are in excellent agreement with the 

experimental results. 

 Another challenge toward the realization of nanoscale devices is to develop a technique 

which enables an accurate and reliable positioning of nanostructures onto the targeted locations. 

Combining wet chemistry and CMOS fabrication technology, a method was developed which 

enables precise positioning of nanoparticles in the gap between two electrodes. Such precise 

positioning of nanoparticles could be utilized to improve the yield of single-electron devices.  
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CHAPTER 1 

INTRODUCTION 

1.1 Overview 

In 1958 Jack Kilby working as an engineer in Texas instruments demonstrated the first 

working integrated circuit [1.1] for which he was awarded the Nobel Prize in Physics in 2000. 

Since then the growth of the modern semiconductor industry has been nothing short of 

phenomenal. Intel co-founder, Gordon E. Moore, published a famous article in Electronics 

magazine in 1965 in which he said that the number of transistors in a chip would double every 

year and predicted that this trend would continue into the next decade [1.2]. After Gordon 

Moore’s initial prediction, the growth slope changed in the mid 1970s so that the number of 

transistor on a chip doubled every 18 months and for the next thirty years the device density on 

a chip has followed the famous “Moore’s Law” [1.3,1.4]. The motivation for the miniaturization of 

devices include better device performance (faster operation, lower power consumption), smaller 

production costs per unit device (cheaper fabrication, less material input), and added 

functionalities.  

Over the last few decades, the microelectronics industry has seen the continuous 

evolution of fabrication tools as well as materials and processes to keep up with the need to 

increase device density. Parallelly, significant research is being carried out to come up with new 

concepts that may be used in conjunction with traditional CMOS devices. The use low 

dimensional objects such as carbon nanotubes [1.5-1.10], nanowires [1.11-1.13], individual 

molecules [1.14,1.15], quantum dots and metallic nanoparticles [1.16-1.18] are being 

investigated as possible candidates for applications in future electronic devices and sensors. 

However, as emerging technologies, these proposals must overcome many significant 

difficulties before they can realistically be implemented. 
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1.2 Single-electron devices 

The International Technology Roadmap for semiconductors lists the various emerging 

technologies which might assist in the scaling of microelectronic devices under each category in 

the emerging technology sequence shown in Figure 1.1. In this, single-electron devices are of 

particular interest because of their predicted use in memory as well as logic applications. The 

advantages of single-electron devices over conventional silicon devices include their ultra-low 

power consumption, scalability down to the sub-nanometer range, and their ability to detect an 

extremely small amount of charge (theoretically down to a fraction of the charge of a single 

electron). These properties of single-electron devices could potentially benefit a variety of 

applications including commercial electronics, military, and space applications.  

Despite the advantages of single-electron devices, their implementation is still in its 

infancy. A critical requirement for the fabrication of these devices is that the device components 

(Coulomb island, source, drain, and gate electrodes) be arranged with nanometer scale 

precision. This has so far been carried out using sophisticated nanoscale pattern definition 

techniques such as nano-oxidation using STM [1.16], e-beam lithography/shadow mask 

evaporation [1.17], electromigration [1.18], mechanically controlled break junctions [1.19, 1.20], 

etc. Although successful demonstration of single-electron behavior in devices has been 

reported using the aforementioned techniques, their fabrication has been limited to single 

device units or a combination of a few device units. Practical applications require that several 

single-electron devices be fabricated simultaneously and over a wafer-scale.  

One of the objectives of this study is to fabricate single-electron devices, which operate 

at room temperature, on a large-scale, in parallel process, while using materials and processes 

within the framework of CMOS processing technology. Such multiple and individually 

addressable devices might enable the fabrication of chip-level integrated systems of single-

electron devices. This method could also be applied to large-scale and parallel synthesis of 

other nanoscale devices and sensors using nanowires, carbon nanotubes, quantum dots etc. 
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Figure 1.1 Emerging technology sequence of the Engineering, Research and Development 
section of the International Technology Roadmap for Semiconductors [1.21]. 
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1.3 Organization of this thesis 

The advantages of single-electron devices such as the ability to store and transport 

single electrons, very low operational power consumption, and the fact that they have a huge 

potential for a variety of practical applications was the major motivation to study single-electron 

transport in metallic nanoparticles. An important objective of this research was to create a new 

single-electron device structure within the framework of current CMOS processing technology 

which would enable the fabrication of single-electron devices on a large-scale and in complete 

parallel processing. Demonstration of room-temperature single-electron behavior using the 

proposed device structure was an equally important goal. 

In Chapter 2, two single-electron device structures, the double junction single-electron 

device and the single-electron transistor, will be introduced. This chapter identifies the basic 

components of single-electrons devices, how these components are arranged in a double 

junction single-electron device and a single-electron transistor along with the equivalent circuit 

diagrams of the devices. To understand the electrical characteristics of single-electron devices, 

the equations governing the electron transport in these devices will be derived and how the 

results correspond to the observation of phenomena that are unique to single-electron devices 

will be explained. The tunneling or transport of single electrons in these devices will also be 

explained qualitatively using potential diagrams for both devices. 

In Chapter 3, a brief history of single-electron devices and the noteworthy achievements 

that have been accomplished in the field will be presented. This will be followed by the 

description of the new single-electron device structure and the advantages that it has over the 

other methods that have been used to fabricate devices so far. 

Chapter 4 will deal exclusively with the fabrication of the single-electron devices using 

only CMOS compatible processing techniques. The fabrication was done on a 4 inch silicon 

wafer. The devices were fabricated using a combination of optical lithography, e-beam 

evaporation, plasma enhanced chemical vapor deposition (PECVD), formation of self-
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assembled monolayers (SAMs), RF magnetron sputtering, and reactive ion etching (RIE). 

Special precautions that are needed to mount the completed devices on chip carriers and 

details of wire bonding techniques will also be presented. 

The measurement set-up for the electrical characterization of the single-electron 

devices at various temperatures will be presented in Chapter 5. This will be followed by the 

analysis of the electrical characterization data from many fabricated single-electron devices. 

Depending on device configurations, the different I-V characteristics and how they describe 

single-electron transport for each configuration will be described. These devices show single-

electron behavior not only at low temperatures but at room-temperature as well, implying that 

practical applications for single-electron devices with the new single-electron device structure 

are feasible. 

 A new method with which charged nanostructures can be placed with nanometer scale 

precision on desired substrate locations will be presented in Chapter 6. Experimental methods 

involving this new technique will be applied to align Au nanoparticles of various sizes with a very 

high degree of precision. A model explaining such precise positioning will be discussed and 

detailed calculations regarding the nature of the aligning forces will be calculated using 20 nm 

diameter Au nanoparticles as a model system. How this method can be implemented in case of 

single-electron devices to improve device yield will also be included in this chapter. 

  In the concluding Chapter 7, the achievements of this study will be summarized and 

some experiments will be proposed that could be a continuation of this work in future. 
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CHAPTER 2 

THEORY OF SINGLE-ELECTRON TUNNELING 

2.1 Introduction 

 In the previous chapter, single-electron devices as promising candidates for 

applications in future electronic devices and sensors were presented. In this chapter, we will 

discuss how electron transport occurs in single-electron devices. The outline of this chapter is 

as follows: 

(a) We will start by describing a tunnel junction which is one of the most important 

components of single-electron devices. 

(b) The arrangement of the device components (Coulomb island, tunnel barriers, source 

and drain electrodes) in a double junction single-electron device and its equivalent 

circuit will be presented next. This will be followed by the derivation of an expression for 

the free energy of this single-electron device.  

(c) The expression for the free energy of a double junction single-electron device will be 

used to explain the Coulomb blockade and the Coulomb staircase which are decisive 

indications of single-electron transport in these devices. How the nature of the Coulomb 

blockade and Coulomb staircase is influenced by various device component 

parameters will also be analyzed. A qualitative understanding of the Coulomb blockade 

and Coulomb staircase will be explained with the aid of electrostatic potential diagrams 

for this device. 

(d) Next, a second single-electron device, the single-electron transistor will be introduced. 

The arrangement of device components for a single-electron transistor will be 

presented followed by the derivation of an expression for the free energy of this device. 

The existence of Coulomb diamonds and Coulomb oscillations which are current-
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voltage characteristics unique to single-electron transistors will be explained using the 

expression for the free energy of this device. The appearance of Coulomb oscillations in 

the I-V characteristics of the device will also be explained with the aid of electrostatic 

potential energy diagrams. 

(e) In the concluding part of this chapter, the electron tunneling rate through a tunnel 

junction will be calculated using Fermi’s Golden-Rule calculations and the change in the 

free energy of the single-electron device system as a single electron tunnels through a 

particular tunnel junction. Once the tunneling rate of electrons through all the tunnel 

junctions of a single-electron device is known, an expression for the total current in the 

device will be derived. 

 

2.2 Tunnel junction 

 One of the essential elements of single-electron devices is a tunnel junction. A tunnel 

junction is a circuit element consisting of two conductors which are separated by a thin dielectric 

layer.  

 

 

Figure 2.1 (a) Schematic of a tunnel junction (b) Equivalent circuit of a tunnel junction 

 

A tunnel junction can be represented by a capacitor C  and a resistor R  connected in 

parallel. The capacitor in a tunnel junction differs from a classical capacitor in that it permits the 

tunneling of electrons across the dielectric barrier when energetically favorable. Although 

represented as a resistor, the tunneling resistance is fundamentally different from an Ohmic 

(a) (b) 
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resistor. In an ordinary resistor, charge flow due to the motion of electrons is continuous. But for 

a tunneling resistor, the motion of electrons through it is discrete, i.e., electrons move through it 

one at a time. Figure 2.1 shows the arrangement and the equivalent circuit of a tunnel junction. 

 

2.3 Double junction single-electron device 

 A double junction single-electron device is formed when a Coulomb island is placed 

between two electrodes such that the island is separated from the electrodes by tunnel barriers 

as illustrated schematically in Figure 2.2 (a). Figure 2.2 (b) shows the equivalent circuit of a 

double junction single-electron device which can be represented as two tunneling junctions 

connected in series. 

2.3.1 Free energy of a double junction single-electron device 

 The rate of electron tunneling across a tunnel junction Γ  can be calculated from the 

orthodox theory of single-electron tunneling developed by Averin and Likharev [2.1, 2.3] using 

Fermi’s Golden Rule [2.3] and is given by: 

                                                     
)exp(1

1
2

Tk
F
F

Re
B

Δ−

Δ−
=Γ                                                (2.1) 

where FΔ  is the free energy change of the system when the electron tunnels across the 

junction, R  is the tunneling resistance of the junction, e  is the unit charge of an electron (1.602 

× 10-19 Coulombs), Bk  is the Boltzmann Constant (8.617 × 10-5 eV/K), and T  is the absolute 

temperature. From equation (2.1), the change in the free energy of a single-electron device has 

to be known in order to calculate the electron tunneling rate across a barrier. Once the electron 

tunneling rate through a tunnel junction is known, the current through the device can be 

calculated. The equations for the current through a single-electron device will be derived later in 

this chapter. First, we will derive an expression for the free energy of a double junction single-

electron device. 
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Figure 2.2 Schematic of a double junction single-electron device. (a) Schematic arrangement of 
single-electron device components (i.e., source electrode, drain electrode, and Coulomb island). 
The Coulomb island is separated from the electrodes by tunnel barriers. (b) The equivalent 
circuit of a double junction single-electron device which can be represented as two tunnel 
junctions connected in series. SR , SC , and DR , DC  denote the resistances and capacitances 
of the tunnel junctions between the source electrode and the island, and between the drain 
electrode and the island, respectively. 
 

  

 

 

 

 

 

(a) 

(b) 
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The free energy of a single-electron device is obtained by calculating the total 

electrostatic energy stored in the individual tunnel junctions of the device (capacitive charging 

energy) and subtracting the work done to move electric charges in and out of the Coulomb 

island.  

The model for electrostatic interaction in single-electron devices is based on the 

capacitive charging energy [2.1, 2.3] in which a tunnel junction is modeled as a parallel plate 

capacitor. An initially uncharged parallel plate capacitor can be charged by transferring a charge 

Q  from one plate to the other leaving the former plate with a charge of Q−  and the latter plate 

with a charge of Q+ . Once a charge transfer takes place, an electric field is set up between 

the plates which opposes any further charge transfer. In order to fully charge the capacitor, work 

has to be done against this field which becomes the energy stored in the capacitor.  

 Let us assume that the capacitor plates carry a charge of q  and the potential difference 

between the plates is V . Now, the work done in transferring an infinitesimal amount of charge 

dq from the negatively charged plate to the positively charged plate can be written as: 

                                                                    VdqdW =                                                           (2.2) 

In order to calculate the total work done )(QW  in transferring a charge Q  from one plate to the 

other we can divide this charge into small increments dq , calculate the incremental work done 

dW in transferring this incremental charge using equation (2.2), and then add up all of these 

works. The potential difference between the plates V is a function of the charge transferred.  

                                                               
C
qqV =∴ )(                                                             (2.3) 

where C  is the capacitance of the parallel plate capacitor.  

Equations (2.2) and (2.3) can be combined and expressed as: 

                                                                    
C

qdqdW =                                                          (2.4) 
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Now, the total work done in transferring charge Q  from one plate to another is obtained by 

integrating equation (2.4) from when there is no charge on the capacitor to when the capacitor 

is charged with Q . 

                                                   
C

Q
C

qdqQW
Q

2
)(

2

0
==∴ ∫                                                     (2.5) 

Since the work done W  in charging the capacitor is the same as the energy stored in the 

capacitor E , the expression for the energy stored in a parallel plate capacitor is: 

                                                                     
C

QE
2

2

=                                                              (2.6) 

Figure 2.3 shows the equivalent circuit of a double junction single-electron device. 

Initially, the device is not connected to any external voltage sources and the number of extra 

electrons in the Coulomb island is defined as zero. Voltage sources SV  and DV  are now 

connected to the source electrode and the drain electrodes, respectively. If SN  number of 

electrons tunneled into the island through the tunnel barrier between the source and the island 

and DN  number of electrons tunneled out of the island through the tunnel barrier between the 

island and the drain, then the net number of excess electrons in the Coulomb island N  is equal 

to DS NN − . The external voltage sources build up charges DQ  and SQ  in the tunnel 

junctions. These charges can be expressed as: 

                                                                  )( ISDDD VCQ ϕ−=                                        (2.7) (a) 

and                                                             )( SISSS VCQ −= ϕ                                        (2.7) (b) 

where ISϕ  is the electrostatic potential of the Coulomb island. Therefore, the voltage drop 

across the tunnel junction between the drain and the island is ISDV ϕ−  and that between the 

island and the source is SIS V−ϕ . 
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 In addition, there is usually a fractional electron charge known as the background 

charge 0Q  present in real structures. This non-integer offset charge on the Coulomb island 

arises due to the combination of the difference in the workfunctions of the metals forming the 

tunnel junctions [2.3, 2.13] and random charges that are trapped near the tunnel junctions. 

Tunneling allows an integer number of excess electrons to accumulate on the island so that the 

net charge Q  on the island can be written as: 

                                     DS QQQNeQ −=+−= 0                                                   (2.8) 

where DS NNN −=  is the net number of excess electrons on the island (which is an integer).  

Substituting equation (2.7) in (2.8) and solving for ISϕ , we get 

                                     )()(0 ISDDSISS VCVCQNe ϕϕ −−−=+−   

                                ISDDDSSISS CVCVCCQNe ϕϕ +−−=+−⇒ 0  

                                DDSSDSIS VCVCCCQNe −−−=+−⇒ )(0 ϕ  

                                          
TOT

DDSS
IS C

QNeVCVC )( 0−−+
=∴ϕ                                            (2.9) 

where DSTOT CCC +≡ . 

The voltage drop across the tunnel junction between the island and the source SIS V−ϕ  can be 

simplified by substituting the value of ISϕ  from equation (2.9) in SIS V−ϕ . Therefore, 

                                   S
TOT

DDSS
SIS V

C
QNeVCVC

V −
−−+

=−
)( 0ϕ  

                                                   
TOT

DSSDDSS

C
CCVQNeVCVC )()( 0 +−−−+

=  

                                                   
TOT

SDSSDDSS

C
VCVCQNeVCVC −−−−+

=
)( 0  
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Figure 2.3 Equivalent circuit diagram of a double junction single-electron device. The two tunnel 
junctions are shown in the dashed red boxes. SQ  and DQ  are the capacitor charges, SV  and 

DV  are the voltage sources connected to the source electrode and drain electrode, 

respectively, and SN  and DN  are the integer number of electrons which have tunneled across 

the junction between the source and the island, and the island and the drain, respectively. ISϕ  
is the electrostatic potential of the Coulomb island. 
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( ) ( )
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)( 0−−
=−∴ϕ                                                      (2.10) 

where SDDS VVV −≡ . 

Similarly, the voltage drop across the tunnel junction between the drain and the island ISDV ϕ−  

is simplified by substituting ISϕ  from equation (2.9) in ISDV ϕ− . Therefore, 

                                   
TOT

DDSS
DISD C

QNeVCVC
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)( 0−−+
−=−ϕ  

                                                   
TOT

DDSSDSD

C
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ISD C

QNeVC
V
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=−∴ ϕ                                                       (2.11) 

The total electrostatic energy stored in the system TOTE  is the sum of the electrostatic 

energy stored in the capacitors of the individual tunnel junctions. Therefore, 

                                                            
S

S

D

D
TOT C

Q
C

QE
22

22

+=                                                 (2.12) 

Substituting the values of SQ  and DQ  from equation (2.7) into equation (2.12), we get: 
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                                    ( ) ( )22

2
1
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SISSISDDTOT VCVCE −+−=∴ ϕϕ                               (2.13) 

Substituting the values of ISDV ϕ−  and SIS V−ϕ  from equations (2.11) and (2.10), 

respectively in equation (2.13), the total electrostatic energy stored in the double junction single-

electron device is given by: 
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An electron can be added or subtracted from the Coulomb island in the following four ways: 

• Electron tunnels into the island from the drain electrode. 

• Electron tunnels into the island from the source electrode. 

• Electron tunnels out of the island to the drain electrode. 

• Electron tunnels out of the island to the source electrode. 

If one extra electron is added to the Coulomb island changing its electron occupancy 

from N  to 1+N , then the change in the electrostatic energy of the system is given by: 
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0

22
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2
11

2
1 QNeVCC

C
QeNVCC

C
E DSDS

TOT
DSDS

TOT
TOT −+−−++=Δ +  
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 ( ){ }[ ] { }[ ]2
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0 2
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C

E
TOTTOT
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 ( )( )[ ]00002
1 QNeQeNeQNeQeNe

C
E

TOT
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                                             ( )⎥⎦
⎤

⎢⎣
⎡ −+=Δ∴ +

02
QNee

C
eE
TOT

TOT                                        (2.15) 

Similarly, if one electron is removed from the Coulomb island changing its electron occupancy 

from N  to 1−N , then the change in the electrostatic energy of the system is given by: 

       ( ){ }[ ] { }[ ]2
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C
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DSDS

TOT
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 ( ){ }[ ] { }[ ]2
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0 2
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C

QeN
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E
TOTTOT

TOT −−−−=Δ⇒ −  

 ( )( )[ ]00002
1 QNeQeNeQNeQeNe

C
E

TOT
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                                                ( )⎥⎦
⎤

⎢⎣
⎡ −−=Δ∴ −

02
QNee

C
eE
TOT

TOT                                     (2.16) 

Combining equation (2.15) and (2.16), we get the change in the electrostatic energy of the 

system when a single electron is added to or subtracted from the Coulomb island as: 

                                                ( )⎥⎦
⎤

⎢⎣
⎡ −±=Δ∴ ±

02
QNee

C
eE
TOT

TOT                                     (2.17) 

where the ±  sign refers to the addition/subtraction of a single electron to/from the island.  

In addition to the electrostatic energy stored in the capacitors, the work done by the 

voltage sources must also be taken into account to calculate the free energy of the system. 

Work is done by the voltage sources in transferring electrons into and out of the Coulomb island 

as well as supplying the necessary charges to the capacitor plates due to polarization.  
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 The charges built up in the tunnel junctions by the voltage sources can be expressed by 

combining equations (2.7), (2.10), and (2.11) as: 

                                  ( )[ ]0)( QNeVC
C
C

VCQ DSS
TOT

D
ISDDD −+=−= ϕ                      (2.18) (a) 

                                   ( )[ ]0)( QNeVC
C
C

VCQ DSS
TOT

S
SISSS −−=−= ϕ                      (2.18) (b) 

If the electron occupancy in the Coulomb island changes from N  to 1+N , the change in the 

charge stored in the tunnel barrier between the drain electrode and the island is given by: 

                                                    N
D

N
D

NN
D QQQ −=Δ ++ 1,1  

                   { }[ ] { }[ ]00)1( QNeVC
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D +−−−++=  

                                                     e
C
CQ

TOT

DNN
D =Δ∴ + ,1                                                        (2.19) 

Similarly, the change in the charge stored in the tunnel junction between the island and the 

source electrode when the electron occupancy in the Coulomb island changes from N  to 

1+N  is given by: 

                                                    N
S

N
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NN
S QQQ −=Δ ++ 1,1  

                   { }[ ] { }[ ]00)1( QNeVC
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                   [ ]00 QNeVCQeNeVC
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SNN
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If the electron occupancy in the Coulomb island changes from N  to 1−N , the change in the 

charge stored in the tunnel barrier between the drain electrode and the island is given by: 

                                                    N
D

N
D

NN
D QQQ −=Δ −− 1,1  

                   { }[ ] { }[ ]00)1( QNeVC
C
CQeNVC

C
C

DSS
TOT

D
DSS

TOT

D −+−−−+=  

                   [ ]00 QNeVCQeNeVC
C
C

DSSDSS
TOT

D +−−−−+=  

                                                     e
C
CQ

TOT

DNN
D −=Δ∴ − ,1                                                     (2.21) 

Similarly, the change in the charge stored in the tunnel junction between the island and the 

source electrode when the electron occupancy in the Coulomb island changes from N  to 

1−N  is given by: 

                                                    N
S
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NN
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The work done by the voltage sources if an electron is added to the Coulomb island 

from the drain electrode is: 

                    [ ] ( )S
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The total work done by the voltage sources if an electron is subtracted from the 

Coulomb island to the drain electrode is: 
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 20

The total work done by the voltage sources if an electron is added to the Coulomb 

island from the source electrode is: 
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The total work done by the voltage sources if an electron is subtracted from the 

Coulomb island to the source electrode is: 
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                            D
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TOT
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S eV
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eV
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W −=Δ⇒ −  

                            ( )SD
TOT

D
S VVe
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W −−=Δ⇒ −  
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TOT

D
S eV
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W −=Δ∴ −                                                (2.26) 

From equations (2.23), (2.24), (2.25), and (2.26), we can see that the work done by the 

voltage sources in adding or subtracting an electron to or from the Coulomb island is 

independent of the number of electrons originally residing in the island. Therefore, if SN  

number of electrons tunnel into the island from the source electrode as shown in Figure 2.3, the 

total work done by the voltage sources will be: 

                                                     DS
TOT

D
SSS eV

C
C

NWN =⋅ +                                               (2.27) 

and if DN  number of electrons tunnel out of the island to the drain electrode as shown in Figure 

2.3, the total work done by the voltage sources will be: 

                                                      DS
TOT

S
DDD eV

C
C

NWN =⋅ −                                             (2.28) 

Combining equations (2.14), (2.27) and (2.28), we get the free energy of a double 

junction single-electron device system ),( DS NNF corresponding to the schematic shown in 

Figure 2.3 as the difference between the electrostatic energy of the system and the work done 

by the voltage sources: 

( ) ( )−+ ⋅−⋅−= DDSSTOTDS WNWNENNF ),(  
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( ) [ ] ( )DSSD
TOT

DS
DSDS

TOT
DS NCNC

C
eV

QNeVCC
C

NNF +−−+=∴ 2
0

2 )(
2

1,                  (2.29) 

 

2.3.1 Coulomb blockade in a double junction single-electron device 

We may now look at the condition for Coulomb blockade based on the change in the 

free energy with the tunneling of an electron through either junction.  

Consider the case when an electron tunnels into the Coulomb island from the source 

electrode changing the electron occupancy in the island from N  to 1+N . The change in the 

electrostatic energy of the system due to this event is given by equation (2.15). The work done 

by the voltage sources to make this electron tunnel is given by equation (2.25). Combining 

these two equations, we get the change in the free energy of a double junction single-electron 

device when an electron is added to the island as: 

                                        +++ Δ−Δ=Δ STOTS WEF  

                                   ( ) ⎥⎦
⎤

⎢⎣
⎡ −−+=Δ⇒ +

DSD
TOT

S VCQNee
C

eF 02
                       (2.30) 

Similarly, if the electron occupancy in the island changes from N  to 1−N  as a result of an 

electron tunneling out of the island to the source electrode, the change in the free energy of the 

device is obtained by subtracting equation (2.26) from equation (2.16). This gives: 

                                                         −−− Δ−Δ=Δ STOTS WEF  

                                       ( ) ⎥⎦
⎤

⎢⎣
⎡ +−−=Δ⇒ −
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S VCQNee
C

eF 02
                   (2.31) 

Combining equation (2.30) and equation (2.31), we get: 

                                      ( ) ⎥⎦
⎤

⎢⎣
⎡ −±=Δ ±

DSD
TOT

S VCQNee
C

eF m02
                                      (2.32) 
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The electron occupancy in the island can also change from N  to 1+N  as a result of an 

electron tunneling into the island from the drain electrode. In this case, the change in the 

electrostatic energy of the system is given by equation (2.15) and the work done by the voltage 

sources by equation (2.23). Combining these, we get the free energy of the system when an 

electron is added to the island from the drain electrode as: 

                            +++ Δ−Δ=Δ DTOTD WEF  

                                   ( ) ⎥⎦
⎤

⎢⎣
⎡ +−+=Δ⇒ +

DSS
TOT

D VCQNee
C

eF 02
                        (2.33) 

Similarly, if an electron tunnels out of the island to the drain electrode, the change in the free 

energy is given by equations (2.26) and (2.24) as: 

                                                         −−− Δ−Δ=Δ DTOTD WEF  

                                       ( ) ⎥⎦
⎤

⎢⎣
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D VCQNee
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eF 02
                    (2.34) 

Combining equations (2.33) and (2.34), we get: 

                                     ( ) ⎥⎦
⎤

⎢⎣
⎡ ±−±=Δ ±

DSS
TOT

D VCQNee
C

eF 02
                                        (2.35) 

It must be mentioned here that the number of excess electrons in the Coulomb island 

N  in equations (2.32) and (2.35) is such that N  is an integer which is nearest to e
Q0  i.e., 

20
eQ ≤ . 

 For a double junction single-electron device where the island is initially free of excess 

electrons, i.e., 0=N , equation (2.32) reduces to: 

                                       ( ) ⎥⎦
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⎢⎣
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                                  ( )⎥⎦
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S m                                               (2.36) 

and equation (2.35) reduces to: 
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D                                                (2.37) 

 In a single-electron device, electron tunneling can only take place if the system free 

energy reduces as a result of the tunneling event. Therefore, from equations (2.36) and (2.37) 

the conditions for no tunneling to occur in a double junction single-electron device become: 

                                       ( ) 0
2 0 >⎥⎦
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and                                ( ) 0
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If ( ) 0
2 0 >⎥⎦

⎤
⎢⎣
⎡ ++=Δ − QVCe

C
eF DSD
TOT

S , then, 

                                                               DS
D

V
C

Qe

<
−− 02                                                (2.39) (b) 

If ( ) 0
2 0 >⎥⎦

⎤
⎢⎣
⎡ −+=Δ + QVCe

C
eF DSS
TOT

D , then, 



 25
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and if ( ) 0
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 Equation (2.39) implies that four different inequalities have to be satisfied 

simultaneously to obtain the condition for Coulomb blockade in a double junction single-electron 

device. The four different cases are elaborated below: 
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Case (d): If 
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 For 
2

0 0
eQ <<  or 0

2 0 <<− Qe
, equations (2.39) (a) and (2.39) (d) are always 

positive and equations (2.39) (b) and (2.39) (c) are always negative.  
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and                                                  
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From Case (c), 
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and                                                  
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The two inequalities in Case (a) can be represented by the area marked Case (a) in 

Figure 2.4. This area is obtained by simultaneously solving the inequalities given by equations 

(2.41) (a) and (2.41) (b). The width of the Coulomb blockade DSVΔ  is obtained from equation 

(2.40) (a) as: 
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The two inequalities in Case (b) can be represented by the area marked Case (b) in 

Figure 2.4. This area is obtained by simultaneously solving equations (2.41) (c) and (2.41) (d). 

The width of the Coulomb blockade DSVΔ  is obtained from equation (2.40) (b) as: 
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Figure 2.4 Numerically plotted 
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 vs 
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Q0  curves for Cases (a) – (d) described by equations 

(2.40) (a) – (d) in Section 2.3.1. These curves are obtained by solving the inequalities derived in 
equations (2.41) (a) – (h). 
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The two inequalities in Case (c) can be represented by the area marked Case (c) in 

Figure 2.4. This area is obtained by simultaneously solving equations (2.41) (e) and (2.41) (f). 

The width of the Coulomb blockade DSVΔ  is obtained from equation (2.40) (c) as: 
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The two inequalities in Case (d) can be represented by the area marked Case (d) in 

Figure 2.4. This area is obtained by simultaneously solving the inequalities given by equations 

(2.41) (g) and (2.41) (h). The width of the Coulomb blockade DSVΔ  is obtained from equation 

(2.40) (d) as: 
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From the results obtained from equations (2.42) (a) – (2.42) (d), the width of the Coulomb 

blockade DSVΔ  for Case (a) – Case (d) can be tabulated as follows: 

 

Table 2.1 Width of the Coulomb blockade DSVΔ  for Cases (a) – (d). 

Case DSVΔ  

a 
( )( )

DS

e

CC
QC 02 −Σ  

b 
SC

e  

c 
DC

e  

d 
( )( )

DS

e

CC
QC 02 +Σ  
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It can be seen from equations (2.42) (a) – (2.42) (d) that the Coulomb blockade in a double 

junction single-electron device depends on the parameters SC , DC , and 0Q .  

If 
20
eQ = , then from equation (2.42) (a), the width of the Coulomb blockade is: 

                                                        

( )

DS
DS CC

eeC
V

⎟
⎠
⎞

⎜
⎝
⎛ −

=Δ
Σ 22

 

                                                   0=Δ⇒ DSV  

Therefore, no Coulomb blockade will be observed in devices where 
20
eQ = . 

If 
20
eQ −= , then from equation (2.42) (d), the width of the Coulomb blockade is: 

                                                        

( )

DS
DS CC

eeC
V ⎭

⎬
⎫

⎩
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛−+

=Δ
Σ 22

 

                                                   0=Δ⇒ DSV  

Therefore, no Coulomb blockade will be observed in devices where 
20
eQ −= . 

If 00 =Q , then from equation (2.42) (a), 

                                                              

( )

DS
DS CC

eC
V

⎟
⎠
⎞

⎜
⎝
⎛

=Δ
Σ 2

                                             (2.43) (a) 

and from equation (2.42) (d), 

                                                              

( )

DS
DS CC

eC
V

⎟
⎠
⎞

⎜
⎝
⎛

=Δ
Σ 2

                                             (2.43) (b) 
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If 00 =Q  and CCC DS == , then CCCC DS 2=+=Σ . Therefore, the width of the 

Coulomb blockade from equations (2.43) (a) and (2.43) (b) becomes: 

                                                             

( )
2
2

2

C

eC
VDS

⎟
⎠
⎞

⎜
⎝
⎛

=Δ  

                                                        
C
eVDS =Δ⇒                                                                (2.44) 

If 00 =Q  and DS CC > , then from equation (2.42) (b), 

                                                                 
S

DS C
eV =Δ                                                    (2.45) (a) 

and for 00 =Q  and SD CC > , equation (2.42) (c) gives: 

                                                                
D

DS C
eV =Δ                                                     (2.45) (b) 

Combining equations (2.45) (a) and (2.45) (b), we can say that for 00 =Q  and for different SC  

and DC : 

                                                          
),max( DS

DS CC
eV =Δ                                               (2.46) 

Figure 2.5 shows the simulated I-V characteristics of a double-junction single-electron 

device and the dependence of the Coulomb blockade for the various values of 0Q . The 

simulation was done using aFCC DS 3==  and Ω== GRR DS 8  at KT 0= . The three 

different values of 0Q  which were used for the simulation are 00 =Q  (Red), 
40
eQ =  (Blue), 

and 
20
eQ =  (Green). 
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Figure 2.5 Simulated I-V characteristics of a double-junction single-electron device showing the 
effect of 0Q  on the width of the Coulomb blockade. Red: Simulated I-V characteristics of a 

double-junction single-electron device using aFCC DS 3== , Ω== GRR DS 8 , 00 =Q , 

and KT 0= . Blue: Simulated I-V characteristics of a double-junction single-electron device 

using aFCC DS 3== , Ω== GRR DS 8 , 
40
eQ = , and KT 0= . Green: Simulated I-V 

characteristics of a double-junction single-electron device using aFCC DS 3== , 

Ω== GRR DS 8 , 
20
eQ = , and KT 0= . 
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2.3.2 Coulomb staircase in a double junction single-electron device 

 If the double junction single-electron device is such that its tunnel junctions are 

asymmetric i.e., DDSS CRCR >>  or DDSS CRCR << , then as DSV  is increased beyond the 

Coulomb blockade, the current rises in jumps giving a staircase like appearance as shown in 

Figures 2.7 and 2.8. This stepwise rise in the current of the single electron device with 

increasing source-drain bias is known as the Coulomb staircase. Each jump in the I-V 

characteristics corresponds to applied source-drain voltages where one more electron is added 

to or subtracted from the Coulomb island. Each plateau therefore corresponds to the stable 

regime with a fixed integer number of electrons in the island.  

The Coulomb staircase in double junction single-electron devices can be qualitatively 

understood using the electrostatic potential diagrams of a device as shown in Figure 2.6. We 

assume a highly asymmetric device with SD CC >  and SD RR >>  so that SSDD CRCR >> . 

Initially, no voltage is applied across the device under which the Coulomb island is assumed to 

have N  number of extra electrons in it as shown in Figure 2.6 (a). 

The electrostatic potential of the island ( )NISϕ  having N  number of excess electrons 

in it is given by equation (2.9) as: 

                          ( )
TOT

DDSS
IS C

QNeVCVC
N

)( 0−−+
=ϕ  

If the electron occupancy in the island increases by one, then the resulting change in 

the electrostatic potential of the island +Δ ISϕ  is: 

     ( ) ( )NN ISISIS ϕϕϕ −+=Δ + 1  

( ){ } { }
TOT

DDSS

TOT

DDSS
IS C

QNeVCVC
C

QeNVCVC 001 −−+
−

−+−+
=Δ⇒ +ϕ  

TOT
IS C

e
−=Δ∴ +ϕ                                                                                               (2.47) (a) 
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Figure 2.6 Schematic of the mechanism of current flow in an asymmetric ( SD CC >  and 

SD RR >> ; SSDD RCRC >> ) double junction single-electron device. (a) When no source-
drain bias is applied. (b) When a small source-drain bias is applied such that it is not enough to 
add an electron to the island. The device is under the Coulomb blockade regime. (c) Application 
of a suitable source-drain bias causes an electron to tunnel into the island from the source 
electrode. (d) The asymmetry causes the island to retain the extra electron till it can go back to 
the ground state when the electron tunnels out of the island into the drain electrode. 

 

 

(a) (b) 

(d) (c) 
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Similarly, if the electron occupancy in the island decreases by one, then the resulting 

change in the electrostatic potential of the island −Δ ISϕ  is: 

     ( ) ( )NN ISISIS ϕϕϕ −−=Δ − 1  

( ){ } { }
TOT

DDSS

TOT

DDSS
IS C

QNeVCVC
C

QeNVCVC 001 −−+
−

−−−+
=Δ⇒ −ϕ  

TOT
IS C

e
=Δ∴ −ϕ                                                                                                  (2.47) (b) 

From equation (2.47), we can say that the addition or the subtraction of a single electron to or 

from the Coulomb island changes the electrostatic potential of the island by an amount 
TOTC
e

.  

The voltage drop between the Coulomb island and the source electrode is given by 

equation (2.10) as: 

                                              
( )

TOTTOT

DSD
SIS C

QNe
C

VC
V 0−

−=−ϕ                                     

and the voltage drop between the drain electrode and the island is given by equation (2.11) as: 

                                            
( )

TOTTOT

DSS
ISD C

QNe
C

VC
V 0−

+=−ϕ                                      

Since for this device we have assumed that SD CC > , the term 
TOT

DSD

C
VC

 in SIS V−ϕ  of 

equation (2.10) is larger than the term 
TOT

DSS

C
VC

 in ISDV ϕ−  of equation (2.11).  

Assuming that the source electrode is grounded, when a positive source-drain voltage 

DSV  is applied, the potential of the island closely follows that of the drain electrode as shown in 

Figure 2.6 (b). Due to this, the voltage drop between the island and the source electrode is 

larger when compared to the voltage drop between the drain electrode and the island. As long 
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as the voltage drop between the island the source electrode is less than 
TOTC
e

2
, an electron 

cannot tunnel into the island from the source electrode. When the voltage drop between the 

island and the source electrode reaches 
TOTC
e

2
, a single electron can tunnel into the island 

from the source electrode thereby increasing the electron occupancy in the island by one. The 

addition of the extra electron into the island causes the potential of the island to drop by an 

amount 
TOTC
e

. If a change in the voltage of DSVΔ  brought about the tunneling event from the 

source electrode to the island, then just before the tunneling of the electron from the source to 

the island occurred, the voltage drop between the island and the source from equation (2.10) is 

TOT

DSD

C
VC Δ

. This voltage drop will be equal to the drop in the potential of the island due to the 

addition of the extra electron. Therefore: 

                                               
TOTTOT

DSD

C
e

C
VC

=
Δ

 

                                         
D

DS C
eV =Δ⇒                                                               (2.48) 

As SD RR >>  the time taken for this extra electron to tunnel out into the drain electrode 

from the Coulomb island is much larger compared to the time taken for an electron to tunnel into 

the island from the source electrode. Therefore, the island remains in the charged state for most 

of the time. As soon as an electron tunnels out of the island into the drain electrode (Figure 2.6 

(d)), it is immediately replenished by another electron from the source electrode.  

If the asymmetry of the double junction single-electron device is such that SD CC <  

and SD RR <<  so that SSDD CRCR << , then the term 
TOT

DSS

C
VC

 in ISDV ϕ−  of equation (2.11) 
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will be larger than the term 
TOT

DSD

C
VC

 in SIS V−ϕ  of equation (2.10). If the source electrode is 

grounded and a positive source-drain bias DSV  is applied, the potential of the island will tend to 

remain closer to the source electrode. With increasing bias, the voltage drop between the drain 

and the island becomes larger compared to the voltage drop between the island and the source. 

When the magnitude of this drop reaches 
TOTC
e

2
, an electron from the island tunnels out into 

the drain electrode. If a voltage change of DSVΔ  caused the electron to tunnel from the island 

to the drain, then the voltage drop between the drain and the island just before this tunneling 

occurred from equation (2.11) is 
TOT

DSS

C
VC Δ

. Equating this voltage drop to the shift up in the 

potential of the island due to the removal of one electron, we get: 

                                                            
TOTTOT

DSS

C
e

C
VC

=
Δ

 

                                         
S

DS C
eV =Δ⇒                                                               (2.49) 

Since we have assumed DS RR >>  for this double junction single-electron device, the 

time taken for electrons to tunnel into the island from the source electrode is much larger than 

the time taken for them to tunnel out of the island into the drain. Therefore, island will continue 

to remain with a deficit of one electron till it is brought back to its original charge state when an 

electron tunnels into it from the source electrode. 

From equations (2.48) and (2.49), the source-drain voltage range DSVΔ  over which the 

Coulomb island is most likely to have an integer number of electrons is: 

                                           
D

DS C
eV =Δ  if SD CC >                                         (2.50) (a) 
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or                                                     
S

DS C
eV =Δ  if DS CC >                                         (2.50) (b) 

Combining equations (2.50) (a) and (2.50) (b), the width of the plateau where the Coulomb 

island holds an integer number of electrons i.e., the width of the Coulomb staircase is: 

                                         ( )DS
DS CC

eV
,max

=Δ                                                    (2.51) 

Figure 2.7 shows the simulated I-V characteristics of a double junction single electron 

device having asymmetric tunnel junctions. The simulation parameters are aFCS 3= , 

aFCD 30= , Ω= MRS 80 , and Ω= GRD 8 . 0Q  was taken to be zero  and the simulation 

was done at KT 0= . 

The Coulomb staircase can also be observed if the tunneling resistances SR  and DR  

of the respective tunnel junctions are quite different. If SD RR >>  with CCC DS == , for 

example, then the rate of electron tunneling into the island through the barrier between the 

source and the island will be much faster than the electron tunneling rate from the island to the 

drain. This difference in the tunneling rate tends to maintain the number of electrons in the 

island at a fixed value. An electron tunneling into the island due to an increase in the source-

drain bias will stay inside the island till it tunnels out into the drain, the time of residence in the 

island being determined by the tunneling rate between the Coulomb island and the drain 

electrode. As soon as this electron tunnels into the drain, it can be immediately replenished by 

another electron from the source. In such a case, the current in the device is controlled by the 

number of electrons tunneling out of the island into the drain electrode.  

 Starting from 0=N  (electrically neutral Coulomb island) and assuming that the 

background charge 00 =Q , the first plateau in the I-V characteristics from C
e

DSV 2=  to 

C
e

DSV 2
3=  is the result of the sequence: 
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Figure 2.7 Simulated I-V characteristics of an asymmetric double junction single-electron device 
showing the existence of the Coulomb staircase. The simulation parameters are aFCS 3= , 

aFCD 30= , Ω= MRS 80 , Ω= GRD 8  and 00 =Q .  The simulation was done at KT 0= . 

Since SD CC > , the width of the Coulomb staircase 
D

DS C
eV =Δ .  
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010 =→=→=
ΓΓ

NNN
DS

 

where +ΓS  and −ΓD  are the tunneling rates into the island from the source electrode and out of 

the island into the drain electrode, respectively. The 0=N  to 1=N  transition occurs much 

faster than 1=N  to 0=N  since SD RR >> . The Coulomb island therefore remains in the 

1=N  state for the majority of the time. The first plateau therefore corresponds to a net 

average number of extra electrons on the Coulomb island which is approximately equal to one.  

Figure 2.8 shows three simulated I-V characteristics of a double junction single-electron device 

in which aFCC DS 3==  and 00 =Q  at KT 0= . Ω= MRS 80  for all three plots, 

Ω= MRD 240  (red line), Ω= MRD 400  (blue line), Ω= MRD 800  (green line). 

The width of the Coulomb staircase can also be derived from the expressions for the 

change in the free energy of a double junction single-electron device when a single electron is 

added/subtracted to/from the Coulomb island. To obtain the width of the Coulomb staircase 

using the change in the free energy of the system, we consider the schematic of a Coulomb 

staircase as shown in Figure 2.9 (a). Beyond the Coulomb blockade, electrons are added to or 

subtracted from the Coulomb island one at a time so that the plateaus correspond to a fixed 

integer number of electrons in the island.  

Since the necessary condition for the observation of a Coulomb staircase is asymmetric 

tunnel junction configuration, we will first consider an asymmetric tunnel junction which has 

SD CC >  and SD RR >>  such that SSDD RCRC >>  as shown in Figure 2.9 (b). The voltage 

drop between the Coulomb island and the source electrode is given by equation (2.10) as: 

( )
TOTTOT

DSD
SIS C

QNe
C

VC
V 0−

−=−ϕ  

and the voltage drop between the drain electrode and the island is given by equation (2.11) as: 
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Figure 2.8 Simulated I-V characteristics of an asymmetric double junction single-electron device 
showing the presence of a Coulomb staircase. The asymmetry is formed by keeping 

CCC DS ==  and SD RR >>  such that SSDD CRCR >> . The simulation parameters are: 

Red: aFCC DS 3== , Ω= MRS 80 , Ω= MRD 240 , 00 =Q , and KT 0= . Blue: 

aFCC DS 3== , Ω= MRS 80 , Ω= MRD 400 , 00 =Q , and KT 0= . Green: 

aFCC DS 3== , Ω= MRS 80 , Ω= MRD 800 , 00 =Q , and KT 0= . 
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( )
TOTTOT

DSS
ISD C

QNe
C

VC
V 0−

+=−ϕ  

As SD CC > , the term 
TOT

DSD

C
VC

 in SIS V−ϕ  is much larger than the term 
TOT

DSS

C
VC

 in ISDV ϕ− . 

Assuming that the source electrode is grounded, when a positive source-drain voltage 

DSV  is applied, the potential of the island closely follows that of the drain electrode as shown in 

Figure 2.9 (b). Due to this, the voltage drop between the island and the source electrode is 

much larger when compared to the voltage drop between the drain electrode and the island. 

When the voltage drop between the island and the source electrode reaches 
TOTC
e

2
, a single 

electron  can  tunnel  into the island from  the source  electrode thereby  increasing  the electron 

occupancy in the island by unity. In terms of the change in the free energy of the double junction 

single-electron device, this event can be represented as: 

                                                ( ) 010 <→Δ +
SF  

From equation (2.30), ( ) ⎥⎦
⎤

⎢⎣
⎡ −−+=Δ +

DSD
TOT

S VCQNee
C

eF 02
. Substituting 0=N  in 

equation (2.30) and solving the inequality ( ) 010 <→Δ +
SF  gives:               

  ( ) 00
2 0 <⎥⎦

⎤
⎢⎣
⎡ −−+ DSD

TOT

VCQee
C

e
 

0
2 0 <−−⇒ DSDVCQe

 

DSDVCQe
<−⇒ 02
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Figure 2.9 Schematic of Coulomb staircase in an asymmetric double junction single-electron 
device with SD CC >  and SD RR >>  such that SSDD RCRC >> . (a) Schematic of the DSI -

DSV  characteristics showing electron occupancy in the Coulomb island as a function of the 

applied source-drain bias DSV . (b) The voltage diagram of this device depicting the sequence of 

electron tunneling into and out of the island for a positive applied DSV . 
 

 

(a) 

(b) 
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D
DS C

Qe

V
02

−
>∴                                                                                                              (2.52) (a) 

Since the resistances of the tunnel junctions are such that SD RR >> , the rate of 

electrons tunneling into the island from the source electrode is must faster than the rate of 

electrons tunneling out of the island into the drain electrode. Therefore, the electron which had 

tunneled into the island from the source electrode will remain inside the island till it can tunnel 

out into the drain electrode. Once it tunnels out of the island, the electron occupancy inside the 

island goes back to its original charge state. The change in the free energy of the device due to 

this event is: 

                                                              ( ) 001 <→Δ −
DF                                                

From equation (2.34), ( ) ⎥⎦
⎤

⎢⎣
⎡ −−−=Δ −

DSS
TOT

D VCQNee
C

eF 02
. Substituting 1=N  in equation 

(2.34) and solving the inequality ( ) 001 <→Δ −
DF  gives: 

  ( ) 01
2 0 <⎥⎦

⎤
⎢⎣
⎡ −−− DSS

TOT

VCQee
C

e
 

0
2 0 <−+−⇒ DSSVCQe

 

02
QeVC DSS −<−⇒  

S
DS C

Qe

V
02

+−
>∴                                                                                                           (2.52) (b)         

 For the plateau region corresponding to one excess electron in the Coulomb island as 

shown in Figure 2.9 (a), the applied source-drain bias is not sufficient to add a second extra 

electron into the island. Therefore,  
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                                                              ( ) 021 >→Δ +
SF          

( ) 01
2 0 >⎥⎦

⎤
⎢⎣
⎡ −−+⇒ DSD

TOT

VCQee
C

e
      

0
2
3

0 >−−⇒ DSDVCQe
 

DSDVCQe
>−⇒ 02

3
 

D
DS C

Qe

V
02

3
−

<∴                                                                                                             (2.52) (c) 

For 
20
eQ < , 

DC

Qe
02

−
 from equation (2.52) (a) is always larger than 

SC

Qe
02

+−
 from 

equation (2.52) (b). Therefore, from equations (2.52) (a), (2.52) (b), and (2.52) (c), the source-

drain voltage range for which the Coulomb island will be stable with a maximum of 1=N  

electrons is: 

                                                        
D

DS
D C

Qe

V
C

Qe
00 2

3
2

−
<<

−
                                           (2.53) 

 For this asymmetric double junction single-electron device, if the source-drain voltage is 

further increased, a second excess electron can be added to the Coulomb island from the 

source electrode. In terms of the change in the free energy of the device this event is: 

                                                                ( ) 021 <→Δ +
SF  

( ) 01
2 0 <⎥⎦

⎤
⎢⎣
⎡ −−+⇒ DSD

TOT

VCQee
C

e
      

0
2
3

0 <−−⇒ DSDVCQe
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DSDVCQe
<−⇒ 02

3
 

D
DS C

Qe

V
02

3
−

>∴                                                                                                             (2.54) (a) 

At this voltage, ( )10 →Δ +
SF  is also possible. Therefore: 

D
DS C

Qe

V
02

−
>                                                                                                                  (2.54) (b) 

Since a third extra electron cannot be added to the island at this particular source-drain bias, 

                                                                 ( ) 032 >→Δ +
SF  

( ) 02
2 0 >⎥⎦

⎤
⎢⎣
⎡ −−+⇒ DSD

TOT

VCQee
C

e
      

0
2
5

0 >−−⇒ DSDVCQe
 

DSDVCQe
>−⇒ 02

5
 

D
DS C

Qe

V
02

5
−

<∴                                                                                                             (2.54) (c) 

At this voltage, an electron can tunnel out from the island into the drain electrode so that: 

                                                                ( ) 012 <→Δ −
DF  

( ) 02
2 0 <⎥⎦

⎤
⎢⎣
⎡ −−−⇒ DSS

TOT

VCQee
C

e
 

0
2
3

0 <−+−⇒ DSSVCQe
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02
3 QeVC DSS −<−⇒  

S
DS C

Qe

V
02

3
+−

>∴                                                                                                         (2.54) (d)         

and ( ) 001 <→Δ −
DF  

S
DS C

Qe

V
02

+−
>⇒                                                                                                         (2.54) (e) 

From the inequalities in equations (2.54) (a) – (2.54) (e), the voltage range for which the device 

can have a maximum of two excess electrons in the Coulomb island is: 

                                                        
D

DS
D C

Qe

V
C

Qe
00 2

5
2
3

−
<<

−
                                          (2.55) 

 If a negative source-drain bias is applied to this device, then at a certain voltage, an 

electron will tunnel out of the island into the source electrode leaving the island with a deficit of 

one electron. Therefore, 

                                                               ( ) 010 <−→Δ −
SF  

From equation (2.31), ( ) ⎥⎦
⎤

⎢⎣
⎡ +−−=Δ −

DSD
TOT

S VCQNee
C

eF 02
. Substituting 0=N  in 

equation (2.30) and solving the inequality ( ) 010 <−→Δ −
SF  gives:             

( ) 00
2 0 <⎥⎦

⎤
⎢⎣
⎡ +−− DSD

TOT

VCQee
C

e
 

0
2 0 <++⇒ DSDVCQe

 

02
QeVC DSD −−<⇒  
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D
DS C

Qe

V
02

−−
<∴                                                                                                           (2.56) (a)     

The island will continue to remain with a deficit of one electron till an electron tunnels into it 

through the drain electrode. The change in the system free energy due to this event is: 

                                                                ( ) 001 <→−Δ +
DF  

From equation (2.33), ( ) ⎥⎦
⎤

⎢⎣
⎡ +−+=Δ +

DSS
TOT

D VCQNee
C

eF 02
. Substituting 1−=N  in 

equation (2.34) and solving the inequality ( ) 001 <→−Δ +
DF  gives: 

( ) 01
2 0 <⎥⎦

⎤
⎢⎣
⎡ +−−+ DSS

TOT

VCQee
C

e
 

0
2 0 <+−−⇒ DSSVCQe

 

02
QeVC DSS +<⇒  

S
DS C

Qe

V
02

+
<∴                                                                                                              (2.56) (b)    

For the plateau region corresponding to 1−=N  electron in the Coulomb island as 

shown in Figure 2.9 (a), the applied source-drain bias will not be sufficient to remove a second 

electron into the island. Therefore, 

                                                                ( ) 021 >−→−Δ −
SF  

( ) 01
2 0 >⎥⎦

⎤
⎢⎣
⎡ +−−−⇒ DSD

TOT

VCQee
C

e
 

0
2
3

0 >++⇒ DSDVCQe
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02
3 QeVC DSD −−>⇒  

D
DS C

Qe

V
02

3
−−

>∴                                                                                                          (2.56) (c)     

From inequalities in equations (2.64) (a) – (2.64) (c), we can say that the voltage range 

for which the Coulomb island will have a minimum of 1−=N  electron is: 

                                                    
D

DS
D C

Qe

V
C

Qe
00 22

3
−−

<<
−−

                                         (2.57) 

 If the applied source-drain bias is further reduced, a second electron can tunnel out 

from the Coulomb island into the source electrode. The change in the system free energy due to 

this event is: 

                                                                ( ) 021 <−→−Δ −
SF  

( ) 01
2 0 <⎥⎦

⎤
⎢⎣
⎡ +−−−⇒ DSD

TOT

VCQee
C

e
 

0
2
3

0 <++⇒ DSDVCQe
 

02
3 QeVC DSD −−<⇒  

D
DS C

Qe

V
02

3
−−

<∴                                                                                                         (2.58) (a)     

At this voltage, ( )10 −→Δ −
SF  is also possible. Therefore: 

D
DS C

Qe

V
02

−−
<                                                                                                               (2.58) (b) 
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Since at this voltage, a third electron cannot be removed from the island into the source 

electrode, 

                                                                ( ) 032 >−→−Δ −
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The other transitions that are possible at this voltage are: An electron tunneling into the 

Coulomb island from the drain electrode so that: 
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DF  
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From the inequalities in equations (2.58) (a) – (2.58) (e), the voltage range over which the 

Coulomb island can have a minimum of 2−=N  electrons is: 
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 From equation (2.53), the voltage range over which the Coulomb island can have a 

maximum of 1=N  electron is 
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. The width of the Coulomb staircase 

DSVΔ  is therefore: 
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 From equation (2.55), the voltage range over which the Coulomb island can have a 

maximum of 2=N  electrons is 
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From equation (2.57), the voltage range over which the Coulomb island can have a 

minimum of 1−=N  electron is 
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From equation (2.59), the voltage range over which the Coulomb island can have a 

minimum of 2−=N  electrons is 
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 From the results of equations (2.60) – (2.63), we can see that for a double junction 

single-electron device which has asymmetric tunnel junctions with SD CC >  and SD RR >>  

such that SSDD RCRC >> , the width of the Coulomb staircase DSVΔ  is always 
DC

e
.  

Now let us consider another double junction single-electron device in which DS CC >  

and DS RR >>  so that DDSS RCRC >> . The schematic of the Coulomb staircase obtained in 

such a device is shown in Figure 2.10 (a). Figure 2.10 (b) is the illustration of the voltage 
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diagram of the device. The voltage drop between the Coulomb island and the source electrode 

is given by equation (2.10) as: 

                                              
( )

TOTTOT

DSD
SIS C

QNe
C

VC
V 0−

−=−ϕ                                     

and the voltage drop between the drain electrode and the island is given by equation (2.11) as: 
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QNe
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As DS CC >  in this device, the term 
TOT

DSS

C
VC

 in ISDV ϕ− of equation (2.11) is much 

larger than the term 
TOT

DSD

C
VC

 in SIS V−ϕ of equation (2.10). Assuming that the source electrode 

is grounded, when a positive source-drain voltage DSV  is applied, the potential of the island 

tends to remain near the source electrode as shown in Figure 2.10 (b). Due to this, the voltage 

drop between the drain electrode and the island is much larger when compared to the voltage 

drop between the island and the source electrode. When the voltage drop between the drain 

electrode and the island reaches 
TOTC
e

2
, a single electron will tunnel out of the Coulomb island 

into the drain electrode thereby changing the electron occupancy in the island from 0 to −1. The 

change in the free energy of the double junction single-electron device due to this event is: 
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Figure 2.10 Schematic of Coulomb staircase in an asymmetric double junction single-electron 
device with DS CC >  and DS RR >>  such that DDSS RCRC >> . (a) Schematic of the DSI -

DSV  characteristics showing electron occupancy in the Coulomb island as a function of the 

applied source-drain bias DSV . (b) The voltage diagram of this device depicting the sequence of 

electron tunneling out of and into the island for a positive applied DSV . 
 

 

(a) 

(b) 
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S

DS C

Qe

V
02

+
>∴                                                                                                             (2.64) (a) 

The Coulomb island will remain in the state with 1−=N  electrons till an electron from 

the source electrode tunnels into it. Since DS RR >> , the rate of electron tunneling out of the 

island to the drain electrode will be much faster than the rate of electrons tunneling into the 

island from the source electrode for positive source-drain biases. Therefore the island will 

remain in the state of 1−=N  electron for the majority of the time. When an electron tunnels 

into the island from the source electrode bringing it back to its original charge state, the change 

in the free energy of the device is: 
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For the plateau region corresponding to 1−=N  electron in the Coulomb island as 

shown in Figure 2.10 (a), the applied source-drain bias is not sufficient to subtract a second 

electron from the island. Therefore,  
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For 
20
eQ < , 

SC

Qe
02

+
 from equation (2.64) (a) is always larger than 

DC

Qe
02

−−
 from 

equation (2.64) (b). Therefore, from equations (2.64) (a), (2.64) (b), and (2.64) (c), the source-

drain voltage range for which the Coulomb island will be stable with a minimum of 1−=N  

electron is: 
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 Now if a more positive source-drain bias is applied, a second extra electron can tunnel 

out of the island into the drain electrode. Therefore: 
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At this voltage, ( ) 010 <−→Δ −
DF  is also possible.  

S
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+
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Since a third electron cannot be subtracted from the island at this particular source-drain bias, 
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At this voltage, an electron can tunnel into the island from the source electrode so that: 
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and ( ) 001 <→−Δ +
SF  
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Combining the inequalities in equations (2.66) (a) – (2.66) (e), the voltage range for which the 

device can have a minimum of 2−=N  electrons in the Coulomb island is: 
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 If a negative source-drain voltage is now applied, then at a particular voltage, an 

electron will tunnel into the island from the drain electrode thereby increasing the electron 

occupancy in the island by one. Therefore,  
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Due to DS RR >> , the island continues to hold the excess electron till it can tunnel out into the 

source electrode. The change in the system free energy due to this event is: 
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 For the plateau corresponding to 1=N  electron in the Coulomb island as shown in 

Figure 2.10 (a), the source-drain bias is not enough to add a second additional electron to the 

island. Therefore: 
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 Combining the inequalities in equations (2.68) (a) – (2.68) (c), we can say that the 

voltage span for which there can be a maximum of 1=N  electron in the island is: 
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 If the applied source-drain bias is further reduced, a second excess electron can be 

added to the Coulomb island from the drain electrode. The change in the free energy of the 

system due to the addition of a second electron to the island is: 
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At this voltage, ( ) 010 <→Δ +
DF  is also possible. Therefore: 
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Since at this voltage, a third extra electron cannot be added to the island from the drain 

electrode, 
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The other transitions that are possible at this voltage are: An electron tunneling out of the 

Coulomb island into the source electrode so that:  
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Combining the inequalities in equations (2.70) (a) – (2.70) (e), the voltage range over which the 

Coulomb island can have a maximum of 2=N  excess electrons is: 
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 From equation (2.65), the voltage range for which the Coulomb island can have a 

minimum of 1−=N  electron is 
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staircase DSVΔ  is therefore: 
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From equation (2.67), the voltage range for which the Coulomb island can have a 

minimum of 2−=N  electrons is 
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From equation (2.69), the voltage range for which the Coulomb island can have a 

maximum of 1=N  electron is 
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From equation (2.71), the voltage range for which the Coulomb island can have a 

maximum of 2=N  electrons is 
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 Combining the results of equations (2.80) – (2.83), we can see that for a double junction 

single-electron which has asymmetric tunnel junctions with DS CC >  and DS RR >>  such that 

DDSS RCRC >> , the width of the Coulomb staircase DSVΔ  is always 
SC

e
.  

 The table below summarizes the results obtained for the width of the Coulomb staircase 

DSVΔ  for the different asymmetric double junction single-electron devices as obtained from 

equations (2.68) – (2.71) and (2.80) – (2.83). 

 

Table 2.2 Width of the Coulomb staircase DSVΔ  for asymmetric tunnel junctions. 

Tunnel barrier parameters Width of Coulomb staircase DSVΔ  

SD CC >  and SD RR >>  

( )SSDD RCRC >>⇒  DC
e

 

DS CC >  and DS RR >>  

( )DDSS RCRC >>⇒  SC
e
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In general, the width of the Coulomb staircase DSVΔ  for an asymmetric double junction single-

electron device can be represented as: 

                                                       ( )DS
DS CC

eV
,max

=                                                      (2.76) 

 Figure 2.11 shows the simulated DSDS VI −  characteristics of an asymmetric double 

junction single-electron device in which SD CC >  and SD RR >>  such that SSDD RCRC >> . 

These parameters for the tunnel junctions correspond to the Case (c) of Table 2.1. The width of 

the Coulomb blockade for this device from Table 2.1 is equal to 
DC

e
. The width of the Coulomb 

staircase from equations (2.51) and (2.76) is ( )DS CC
e

,max
. Since SD CC > , the Coulomb 

staircase width is 
DC

e
. 

 The simulation parameters for this asymmetric double junction single-electron device 

are: aFCS 3= , aFCD 9= , Ω= MRS 80 , Ω= GRD 4 . 0Q  was taken to be zero and the 

simulation was done at a temperature KT 0= . As can be seen from the plot, the Coulomb 

blockade appears around the zero bias region. Since SD CC > , the width of the Coulomb 

blockade from Table 2.1 is 
DC

e
 which is equal to mV8.17 . The widths of the Coulomb 

staircases are also equal to  mV
C
e

D

8.17= . Since SSDD RCRC >> , the device will exhibit 

clear and crisp steps for the Coulomb staircase.  
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Figure 2.11 Simulated I-V characteristics of an asymmetric double junction single-electron 
device corresponding to Case (c) in Table 2.1 showing the existence of the Coulomb staircase. 
The simulation parameters are aFCS 3= , aFCD 9= , Ω= MRS 80 , Ω= GRD 4  and 

00 =Q .  The simulation was done at KT 0= . The width of the Coulomb blockade is 

mV
C
e

D

8.17= . Also, the width of the Coulomb staircase is equal to mV
C
e

D

8.17= .  
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2.4 Charging energy of a double junction single-electron device 

The electrostatic potential of the Coulomb island in a double junction single-electron 

device when it has N  excess electrons in it is given by equation (2.9) as: 
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IS C

QNeVCVC )( 0−−+
=ϕ  

By definition [2.8] the electrochemical potential of the Coulomb island with N  excess 

electrons in it ( )Nμ  is: 

                                          ( ) ( )NeEN ISN ϕμ ⋅+=                                                (2.77) 

where =NE  the highest occupied energy level of the Coulomb island when it contains N  

number of excess electrons in it. 

Substituting the value of ( )NISϕ  in equation (2.77), we get the expression for the 

electrochemical potential of the Coulomb island with N  excess electrons in it as: 
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We define the charging energy CE  of a Coulomb island as the difference in the 

electrochemical potential of the island with ( )1+N  and N  states. Therefore: 
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For metallic Coulomb islands of diameters larger than 1 nm, the separation of the energy states 

01 ≈−+ NN EE  [2.1]. Therefore, the charging energy can be expressed as: 
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( )[ ]NeeN
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=∴                                                                                                                        (2.79) 

From equation (2.79), it can be seen that the charging energy CE  of the Coulomb island is 

independent of the number of N , the number of excess electrons originally occupying the 

island.  

In order to observe the Coulomb blockade and Coulomb staircase in double junction 

single-electron devices, two important requirements must be satisfied [2.2]. 

(1)  The charging energy of the Coulomb island must be large enough compared to 

the thermal energy. From equation (2.79) we can see that the charging energy 

is inversely proportional to the capacitance of the island TOTC . Therefore, to 

have a large charging energy, the capacitance of the island must be small. 

Capacitance of the island can be reduced by decreasing the size of the 

Coulomb island. In particular, the charging energy must be larger than the 

average thermal energy TkB  of electrons. 

                                                    Tk
C
eE B
TOT

C >=
2

                                              (2.80) 

 where Bk = Boltzmann Constant = 8.617 × 10-5 eV/K, and T = Absolute 

temperature. 

(2) The total number of electrons of the island must be well defined. In other words, 

this means that the amount of charge on the island must be quantized in units 

of e . This requirement mandates that the resistance of the tunneling barrier at 

each junction be sufficiently large. In quantum mechanical terms, this condition 

implies that the wavefunctions of the electrons in the island are well localized 
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within the boundaries of the Coulomb island. Correspondingly, the tunneling 

resistance R  of the tunnel junctions must be large. The exact value of the 

resistance of a tunnel junction can be obtained by considering the energy 

uncertainty of an electron: 

                                             htE >ΔΔ                                                         (2.81) 

where EΔ  is the charging energy and tΔ  is the characteristic time for charge 

fluctuations, and h  is Planck’s constant. 

The characteristic time for charging a capacitor C  through a tunnel resistor R  

is given by: 

                             CRt ⋅=Δ                                                           (2.82) 

 

Substituting the values of EΔ  and tΔ  from equations (2.79) and (2.82), 

respectively in equation (2.80), we get: 
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C
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>⋅⋅
2

 

                                  2e
hR >⇒  

                                   Ω>∴ 25813R                                                         (2.83) 

Hence, in order to observe single-electron transport phenomena the 

resistances of the tunnel junctions must be greater than Ω25813 . 
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2.5 Electron transport in single-electron transistors 

 Figure 2.12 (a) shows the schematic and 2.12 (b) the equivalent circuit of a single-

electron transistor. As can be seen from Figure 2.12, a single-electron transistor is formed when 

an additional electrode (the gate electrode) is incorporated to a double junction single-electron 

device structure. A separate voltage source GV  is coupled to the Coulomb island through an 

ideal (infinite tunneling resistance) capacitor GC . This additional voltage modifies the charge 

balance on the island so that the net charge on the island Q  now requires an additional charge 

GQ  induced by GV  which can be expressed as: 

                                                          )( ISGGG VCQ ϕ−=                                                    (2.84) 

where ISϕ  is the electrostatic potential of the Coulomb island. 

The total charge on the Coulomb island now becomes: 

                                                GDS QQQQNeQ −−=+−= 0                                          (2.85) 

where 0Q  is a non-integer offset background charge on the Coulomb island which arises due to 

the difference in the workfunctions of the metals forming the tunnel junctions [2.3, 2.13] and 

random charges that are trapped near the tunnel junctions. 

 From equations (2.7) and (2.84), the charges induced on the Coulomb island are: 

                                                           )( ISDDD VCQ ϕ−=  

                                                           )( SISSS VCQ −= ϕ  

and                                                     )( ISGGG VCQ ϕ−=                                                   (2.86) 

Substituting equation (2.86) in (2.85) and solving for ISϕ  gives: 

                       ISGGGISDDDSSISS CVCCVCVCCQNe ϕϕϕ +−+−−=+− 0  

                  GGDDSSGDSIS VCVCVCCCCQNe −−−++=+−⇒ )(0 ϕ  
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Figure 2.12 Schematic of a single-electron transistor. (a) Schematic arrangement of single-
electron transistor components (i.e., source electrode, drain electrode, gate electrode, and 
Coulomb island). (b) The equivalent circuit of a single-electron transistor. SR , SC , and DR , DC  
denote the resistances and capacitances of the tunnel junctions between the source electrode 
and the Coulomb island, and between the Coulomb island and the drain electrode, respectively, 
while GC  denotes the capacitance of the gate which is coupled to the Coulomb island. The gate 

is connected to a separate voltage source GV . 
 
 
 

(a) 

(b) 
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Σ

−−++
=∴

C
QNeVCVCVC GGDDSS

IS
)( 0ϕ                                                  (2.87) 

where GDS CCCC ++≡Σ . 

If SN  number of electrons tunneled into the island through the tunnel barrier between 

the source and the island and DN  number of electrons tunneled out of the island through the 

tunnel barrier between the island and the drain, then the net number of excess electrons in the 

Coulomb island N  is equal to DS NN − .  

The total electrostatic energy stored in the single-electron transistor TOTE  is the sum of 

the electrostatic energy stored in the capacitors of the individual tunnel junctions and the 

electrostatic energy stored in the gate capacitor. Therefore, 

                                                    
G
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D

D

S

S
TOT C

Q
C

Q
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Q
E

222

222

++=                                            (2.88) 

Substituting the values of SQ , DQ , and GQ  from equations (2.86) in equation (2.88) gives: 
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2
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Substituting the value of ISϕ  from equation (2.87) in equation (2.89) yields: 
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where GGDDSS VCVCVCA ++= , a constant. 
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Re-substituting GGDDSS VCVCVCA ++=  and GDS CCCC ++=Σ  in the above equation, 
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2
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where B  is a constant which is independent of N . The terms in the constant B  are: 
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                 (2.91) 

 If the electron occupancy in the island changes from N  to 1+N , then the change in 

the electrostatic energy of the system is: 
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Similarly, if the electron occupancy in the island changes from N  to 1−N , then the change in 

the electrostatic energy of the system is: 
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The voltage drop across the tunnel junction between the island and the source 

SIS V−ϕ  can be simplified by substituting the value of ISϕ  from equation (2.87) in SIS V−ϕ . 

Therefore,  
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where SDDS VVV −≡ . 

Similarly, the voltage drop across the tunnel junction between the island and the drain 

ISDV ϕ− can be simplified by substituting the value of ISϕ  from equation (2.87) in ISDV ϕ− . 

This gives: 
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, and the voltage drop across the capacitor between the island and the gate electrode ISGV ϕ−  

can be simplified by substituting the value of ISϕ  from equation (2.87) in ISGV ϕ− . This gives: 
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Now, the charges induced on the Coulomb island by the voltage sources can be 

expressed by substituting equations (2.94), (2.95) and (2.96) in (2.86). This gives:  
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G
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If the electron occupancy in the island changes from N  to 1+N , then the change in 

the charge stored in the tunnel barrier between the drain electrode and the island is given by: 

N
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Similarly, the change in the charge stored in the tunnel barrier between the island and the 

source electrode when the electron occupancy in the Coulomb island changes from N  to 

1+N  is given by: 

N
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N
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S QQQ −=Δ ++ 1,1  
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, and the change in charge stored in the capacitor between the gate electrode and the island 

when the electron occupancy in the Coulomb island changes from N  to 1+N  is given by: 
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If the electron occupancy in the island changes from N  to 1−N , then the change in 

the charge stored in the tunnel barrier between the drain electrode and the island is given by: 
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Similarly, the change in the charge stored in the tunnel barrier between the island and the 

source electrode when the electron occupancy in the Coulomb island changes from N  to 

1−N  is given by: 
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, and the change in charge stored in the capacitor between the gate electrode and the island 

when the electron occupancy in the Coulomb island changes from N  to 1−N  is given by: 
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The total work done by the voltage sources if an electron is added to the Coulomb 

island from the drain electrode is: 
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The total work done by the voltage sources if an electron is subtracted from the 

Coulomb island to the drain electrode is: 
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The total work done by the voltage sources if an electron is added to the Coulomb 

island from the source electrode is: 
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The total work done by the voltage sources if an electron is subtracted from the 

Coulomb island to the source electrode is: 
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From equations (2.104), (2.105), (2.106), and (2.107), we can see that the work done 

by the voltage sources in adding or subtracting an electron to or from the Coulomb island is 
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independent of the number of electrons originally residing in the island. Therefore, if SN  

number of electrons tunnel into the island from the source electrode in Figure 2.12, the total 

work done by the voltage sources will be: 
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and if DN  number of electrons tunnel out of the island to the drain electrode in Figure 2.12, the 

total work done by the voltage sources will be: 

                           ( )⎥
⎦

⎤
⎢
⎣

⎡
−+=⋅

ΣΣ

−
GD

G
DS

S
DDD VVe

C
C

eV
C
C

NWN                      (2.108) (b) 

Combining equations (2.90) and (2.108), we get the free energy of a single-electron 

transistor ),( DS NNF  in which SN  number of electrons has tunneled into the island from the 

source electrode and DN  number of electrons has tunneled out of the island into the drain 

electrode as the difference between the electrostatic energy of the system and the work done 

by the voltage sources: 
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where DS NNN −=  and B  is a constant which is independent of N , SN , and DN  given by 

equation (2.91).  

Grouping the N  dependent terms of the above equation gives: 
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We substitute DS NNM +=  and DS NNN −=  in the above equation so that 

2
NMNS

+
=  and 

2
NMN D

−
= . The free energy of the single-electron transistor can now 

be expressed as functions of M  and N  as: 
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Re-substituting the value of B  from equation (2.91), we get the free energy of the single-

electron transistor in terms of M  and N  as: 
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                                                                                                                                        (2.109) (c) 

 If an electron tunnels into the Coulomb island from the source electrode, then M  

changes from 1+→ MM  and N  changes from 1+→ NN . The free energy of the single-

electron transistor due to the additional electron occupying the Coulomb island in terms of M  

and N  as given by equation (2.109) (c) as: 
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The change in the free energy of the single-electron transistor when an electron tunnels 

into the island from the source electrode +Δ SF  can be obtained by subtracting equation (2.109) 

(c) from (2.110). This gives: 
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[The third term in parenthesis on equations (2.109) (c) and (2.110) cancel each other out since 

they are independent of M  and N ]. 
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 The change in the free energy of a single-electron transistor associated with the 

process of an electron tunneling into the Coulomb island from the source electrode +Δ SF  can 

also be obtained from equations (2.92) and (2.106) as:   

     +++ Δ−Δ=Δ STOTS WEF  
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From equations (2.111) and (2.112), we see that the expressions for the change in the free 

energy of a single-electron transistor are the same and it only depends on the number of extra 

electrons occupying the Coulomb island N . 

If an electron tunnels out of the Coulomb island through the junction between the island 

and the source electrode, the change in the free energy of the system is given by equations 

(2.93) and (2.107) as: 
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Combining equations (2.112) and (2.113), we get the change in the free energy of a single-

electron transistor when a single electron tunnels into or out of the Coulomb island through the 

tunnel barrier between the island and the source electrode as: 
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where ± denotes the tunneling into and out of the island, respectively. 

If an electron tunnels into the Coulomb island through the tunnel junction between the 

island and the drain electrode, then the change in the free energy of the single-electron 

transistor is given by equations (2.92) and (2.104) as: 
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                                (2.115) 

Similarly, if an electron tunnels out of the Coulomb island through the junction between the 

island and the drain electrode, the change in the free energy of the system is given by 

equations (2.93) and (2.105) as: 

     −−− Δ−Δ=Δ DTOTD WEF  
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Combining equations (2.115) and (2.116), we get the change in the free energy of a single-

electron transistor when a single electron tunnels into or out of the Coulomb island through the 

tunnel barrier between the drain electrode and the island as: 

               ( ) ( ){ }⎥⎦
⎤

⎢⎣
⎡ −+±−±=Δ

Σ

±
GDGDSSD VVCVCQNee

C
eF 02

                      (2.117) 

where ± denotes the tunneling into and out of the island, respectively. 
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2.5.1 Stability diagram of a single-electron transistor 

 Similar to double junction single-electron devices, electron transport in single-electron 

transistors can only take place if the free energy of the system reduces as a result of the 

tunneling event. From equations (2.114) and (2.117), conditions for tunneling can be written as: 
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 From equation (2.118) (a), the change in the free energy of the single-electron 

transistor if an electron tunnels into the island from the source electrode is: 
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At absolute zero temperature, tunneling is prohibited as long as the change in the free energy of 

the single-electron transistor is greater than zero. Therefore, the tunneling of an electron from 

the source electrode into the island is blocked when: 
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Similarly, at absolute zero temperature, an electron tunneling out of the Coulomb island into the 

source electrode is prohibited when: 
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Combining equations (2.119) (a) and (2.119) (b), we get the conditions for which an electron 

cannot tunnel into/out of the Coulomb island from/to the source electrode as: 
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Similarly, at absolute zero temperature, tunneling of an electron from the drain 

electrode into the Coulomb island is prohibited when: 
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and at absolute zero temperature, the tunneling of an electron from the Coulomb island out into 

the drain electrode is prohibited when: 
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Combining equations (2.121) (a) and (2.121) (b), we get the conditions for which an electron 

cannot tunnel into/out of the Coulomb island from/to the drain electrode as: 
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 Inequalities (2.119) (a), (2.119) (b), (2.121) (a), and (2.121) (b) are used to generate the 

stability diagram in the GDS VV −  plane of a single-electron transistor for different values of N  

as shown in Figure 2.13. Here we will discuss the formation of the central trapezoid 

corresponding to the regime where the Coulomb island is stable with 0=N  electrons. The 

other trapezoids can be obtained by substituting various integer values of N  in the inequalities 

listed above. The precise shape and the position of the stable regions depend on the 

capacitances, background charges, and the form of biasing. Here we will assume asymmetric 

biasing (i.e., DSD VV =  and 0=SV ). This is because we apply an asymmetric bias in all of the 

measurements described in the following chapters. 

From equation (2.118), tunneling of an electron is prohibited as long as 0, >ΔΔ ±±
DS FF  

and tunneling occurs when 0, <ΔΔ ±±
DS FF . To find the edge of the trapezoid in the stability 

diagram we will replace the inequality sign with the equal to sign which corresponds to the 

boundary between tunneling and no tunneling regions.  

From equation (2.119) (a), the boundary where the onset of tunneling occurs is:  

                                 SGGGDSD VCVCVCQeN −+=−⎟
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⎜
⎝
⎛ + 02

1
 

Substituting 0=N  in the above equation, we get: 

                                             SGGGDSD VCVCVCQe
−+=− 02

                                          

Since SV  is grounded (i.e., 0=SV ), the above equation reduces to: 

                                                      GGDSD VCVCQe
+=− 02

                                            (2.123) 
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To find out the intercepts equation (2.123) makes with the GV  axis and the DSV  axis, we 

substitute 0=DSV  and 0=GV , respectively in the above equation. Therefore the intercept 

equation (2.123) makes with the GV  axis is: 

                                                                
G

G C

Qe

V
02

−
=  

and the intercept the equation (2.80) makes with the DSV  axis is: 

                                                                
D

DS C

Qe

V
02

−
=  

Therefore, inequality (2.119) (a) corresponds to the edge of the central trapezoid marked by 1 in 

the stability diagram. 

From equation (2.119) (b), the boundary where the onset of tunneling occurs is:  
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⎜
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1
 

Substituting 0=N  and 0=SV  in the above equation, the intercepts made by the above 

equation with the GV  axis and DSV  axis are 
G

G C

Qe

V
02

+
−=  and 

D
DS C

Qe

V
02

+
−= , 

respectively. Therefore, inequality (2.119) (b) corresponds to the edge of the central trapezoid 

marked by 2 in the stability diagram. 

From equation (2.121) (a), the boundary where the onset of tunneling occurs is: 

                                    GGDGDSS VCVCVCQeN +−−=−⎟
⎠
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⎜
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⎛ + 02

1
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Substituting 0=N  and DSD VV =  in the above equation, the intercepts made by the above 

equation with the GV  axis and DSV  axis are 
G

G C

Qe

V
02

−
=  and 

GS
DS CC

Qe

V
+

−
−=

02 , 

respectively. Therefore, inequality (2.121) (a) corresponds to the edge of the central trapezoid 

marked by 3 in the stability diagram. 

From equation (2.121) (b), the boundary where the onset of tunneling occurs is: 
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Substituting 0=N  and DSD VV =  in the above equation, the intercepts made by the above 

equation with the GV  axis and DSV  axis are 
G

G C
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V
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+
−=  and 
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V
+
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=

02 , 

respectively. Therefore, inequality (2.121) (b) corresponds to the edge of the central trapezoid 

marked by 4 in the stability diagram. 

 To obtain the point of intersection of edge 1 and edge 4 of the central trapezoid, 

equations (2.119) (a) and (2.121) (b) are solved simultaneously. The inequality sign in both the 

equations are replaced with the equal to sign to find out the actual point of intersection. Thus: 

                                      SGGGDSD VCVCVCQeNe −+=−+ 02
 

and                               GGDGDSS VCVCVCQeeNe +−−=−− 02
 

By subtracting one equation from the other, we get: 

     GGSGDGGGDSSDSD VCVCVCVCVCVCe −++++=  

( )SDGDSSDSD VVCVCVCe −++=⇒  

DSDSGDSSDSD VCVCVCVCe Σ=++=⇒  
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Figure 2.13 Schematic of a stability diagram of a single-electron transistor. The shaded areas of 
the trapezoids correspond to the regions where no tunneling through either junction may occur, 
thus putting the device in the Coulomb blockade regime. The red lines forming the boundaries 
of the trapezoids represent the onset of tunneling in the device.  
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Σ

=∴
C
eVDS                                                                                                                        (2.124) 

Therefore, point of intersection of edges 1 and 4 of the central rhombus occur at 
Σ

=
C
eVDS . 

 Similarly, the intersection between edges 2 and 3 of the central trapezoid is obtained by 

solving equations (2.119) (b) and (2.121) (a) simultaneously. This gives: 

                                     SGGGDSD VCVCVCQeNe −+=−− 02
 

 and                              GGDGDSS VCVCVCQeNe +−−=−+ 02
 

By subtracting one equation from the other, we get: 

     GGSGDGGGDSSDSD VCVCVCVCVCVCe −−+++=−  

( )SDGDSSDSD VVCVCVCe −++=−⇒  

DSDSGDSSDSD VCVCVCVCe Σ=++=−⇒  

Σ

−=∴
C
eVDS                                                                                                                      (2.125) 

Therefore, point of intersection of edges 2 and 3 of the central rhombus occur at 
Σ

−=
C
eVDS . 

The red lines in the stability diagram (Figure 2.13) represent the boundaries for the 

onset of tunneling given by equation (2.118) for different values of N . The trapezoidal shaded 

areas correspond to the regions where no solution satisfies equation (2.118), and hence 

Coulomb blockades exist in these regions. Each of these regions therefore correspond to a 

different integer number of electrons in the island which is stable. The variation of the gate 

voltage GV  allows us to tune between the stable regimes, essentially allowing us to add or 

subtract one electron at a time to the Coulomb island.  
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 When a small source-drain bias and no gate bias are applied to a single-electron 

transistor, it behaves as a double junction single-electron device. Under these conditions, the 

device is under the Coulomb blockade regime as described previously. Now if the gate bias is 

swept keeping the source-drain bias at a constant value, a measurement of the device current 

versus the gate bias will exhibit peaks in the current. These peaks are known as the Coulomb 

oscillations are they are a signature of electron transport in single-electron transistors. In the 

following sections, it will be shown how the gate voltage can be modulated to add/subtract 

single electrons to/from the Coulomb island giving rise to Coulomb oscillations. 

2.5.2 Charging energy of a single-electron transistor 

The electrostatic potential of the Coulomb island in a single-electron transistor when it 

has N  excess electrons in it is given by equation (2.87) as: 
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By definition [2.8] the electrochemical potential of the Coulomb island with N  excess 

electrons in it ( )Nμ  is: 

                                          ( ) ( )NeEN ISN ϕμ ⋅+=                                              (2.126) 

where =NE  the highest occupied energy level of the Coulomb island when it contains N  

number of excess electrons in it. 

Substituting the value of ( )NISϕ  in equation (2.126), we get the expression for the 

electrochemical potential of the Coulomb island with N  excess electrons in it as: 
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The charging energy CE  of a Coulomb island in a single-electron transistor is defined 

as the difference in the electrochemical potential of the island with ( )1+N  and N  states. 

Therefore: 
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For metallic Coulomb islands of diameters larger than 1 nm, the separation of the energy states 

01 ≈−+ NN EE  [2.1]. Therefore, the charging energy can be expressed as: 
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From equation (2.128), it can be seen that the charging energy CE  of the Coulomb island in a 

single-electron transistor is independent of the number of N , the number of excess electrons 

originally occupying the island.  

2.5.3 Coulomb oscillations in a single-electron transistor 

 The existence of conductance peaks or Coulomb oscillations in a single-electron 

transistor can be explained with the aid of the electrostatic potential diagram of the system as 

shown in Figure 2.14. Initially, no source-drain bias is applied across the device and under this 

condition, the Coulomb island is assumed to have N  excess electrons in it.  
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The electrostatic potential of the island is given by equation (2.87) as: 
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 If the electron occupancy in the island increases by unity, then the resulting change in 

the electrostatic potential of the island +Δ ISϕ  is: 
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Similarly, if the electron occupancy in the island decreases by one, then the resulting 

change in the electrostatic potential of the island −Δ ISϕ  is: 
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From equation (2.129), we can say that the addition or the subtraction of a single electron to or 

from the Coulomb island changes the potential of the island by an amount 
ΣC

e
.  

 Assuming that the source electrode is now grounded, when a positive source-drain 

voltage DSV and no gate voltage GV  is applied to the device, the potential of the island will rise 

with the rise in DSV . Now the potential of the island lies in between the source and the drain 

electrodes as shown in Figure 2.14 (a). As long as DSV  is small enough so that the voltage drop 

between  the island  and the  drain or the voltage drop between  the drain and  the island is less  
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Figure 2.14 Electrostatic potential diagrams of a single-electron transistor. (a) Single-electron 
transistor under Coulomb blockade regime under the application of a small source-drain bias 
and zero gate bias. (b) The application of a suitable positive gate voltage GV  increases the 
potential of the Coulomb island causing a single electron to tunnel into the island from the 
source electrode. (c) The extra electron tunnels out of the Coulomb island into the drain 
electrode and brings the island back to its original charge state. (d) Conductance versus gate 
voltage characteristics of a single-electron transistor. Arrow 1 denotes regions of Coulomb 
blockade and arrow 2 the Coulomb oscillation peak where the electron occupancy in the island 
changes by one.  
 
 
 

(a) (b) 

(c) (d) 
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than 
ΣC

e
2

, the tunneling of a single electron into the island from the source electrode or the 

tunneling of an electron from the island into the drain electrode, respectively is prohibited. Under 

these circumstances, the single-electron transistor is under Coulomb blockade. 

 Under this Coulomb blockade condition, now let a positive gate voltage GV  be applied 

to the single-electron transistor. This gate voltage increases the potential of the island according 

to equation (2.87). If the voltage drop between the island and the source electrode is still less 

than 
ΣC

e
2

, the device continues to remain under Coulomb blockade. In the DSI  versus GV  

characteristics of the device, the Coulomb blockade appears as regions of suppressed electrical 

conductance as shown by the arrow marker 1 in Figure 2.14 (d).  

 If the gate voltage is further increased keeping DSV  at the same level as before, a 

stage comes when the voltage drop between the island and the source equals 
ΣC

e
2

 and a 

single electron can therefore tunnel into the island from the source electrode thereby changing 

the electron occupancy in the island from N  to 1+N . Charges flow in from the external power 

supply to compensate for the additional electron in the island which is manifested as a sudden 

rise in the DSI - GV  of the device (Coulomb conductance peak) as shown by arrow marker 2 in 

Figure 2.14 (d). The extra electron tunnels out of the island into the drain electrode bringing the 

island back to having N  excess electrons as shown in Figure 2.14 (c).  

 With the further increase in the applied gate voltage, the Coulomb island becomes 

stable with 1+N  electrons and the device goes into Coulomb blockade again. The current in 

the DSI - GV  characteristics of the device again reaches the minima.  

 If a negative gate voltage is applied to the single-electron transistor when the device is 

under Coulomb blockade, the potential of the island starts to decrease. When the voltage drop 
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between the island and the drain electrode reaches 
ΣC

e
2

, an electron can tunnel out from the 

island and into the drain electrode. Therefore the electron occupancy in the island changes from 

N  to 1−N . This event too causes the appearance of a Coulomb oscillation peak in the DSI -

GV  characteristics of the device. 

Therefore, as the gate voltage is modulated, the conductance of the device oscillates 

between zero (Coulomb blockade) and non-zero (no Coulomb blockade). In the case of the 

Coulomb blockade, there is a fixed integer number of electrons in the island and the 

conductance of the device is at its minima. At the Coulomb conductance peak, the number of 

electrons in the island changes by one and the electrostatic potential by 
ΣC

e
. 

Figure 2.15 provides a simple graphical interpretation of the analysis presented above 

[2.8]. Figure 2.15 (a) shows the electron occupancy in the Coulomb island as a function of the 

gate voltage GV  for a small and constant source-drain bias DSV  such that in the absence of the 

applied gate voltage, the device would be under the Coulomb blockade regime. Figure 2.15 (b) 

is the plot of the change in the electrochemical potential of the island as a function of applied 

gate bias. This is obtained by solving equation (2.127). As can be seen from the plot, the 

application of a positive gate bias starts to lower the electrochemical potential of the island till a 

single electron can then tunnel into it. The addition of the extra electron to the island causes its 

electrochemical potential to increase by an amount equal to its charging energy 
ΣC

e2

. This 

results in the observation of a Coulomb conductance peak in the current versus gate voltage of 

the device as shown in Figure 2.15 (c). Upon further increasing the applied gate bias, the 

Coulomb island becomes stable with 1+N  electrons. The conductance drops to the minima till  
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Figure 2.15 (a) Electron occupation in the Coulomb island as a function of the applied gate 
voltage )( GV . The actual charge state of the Coulomb island is quantized and increases in a 

step-wise manner with GV . (b) Electrochemical potential )( Nμ  of the island as a function of 

GV . (c) Conductance of the single electron transistor as a function of GV . The peaks (non-zero 
current) in the plot are Coulomb oscillations which are observed only when the electron 
occupancy in the island changes by one electron.  
 

 

(a) 

(b) 

(c) 
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such a gate voltage is reached when the 2+N th electron can tunnel into the island resulting in 

the appearance of the next Coulomb oscillation peak. 

2.5.4 Interval between Coulomb oscillation peaks in a single-electron transistor  

The spacing between two adjacent Coulomb oscillation peaks of a single-electron 

transistor can be obtained by calculating the difference in the electrostatic potential of the 

Coulomb island before and after the addition of a single electron. 

From equation (2.129) (a), the change in the electrostatic potential of the Coulomb 

island when an electron is added to it +Δ ISϕ  is 
Σ

−
C
e

 and from equation (2.129) (b), the change 

in the electrostatic potential when an electron is subtracted −Δ ISϕ  is 
ΣC

e
.  

Since the source-drain bias voltage is kept at a constant value and the gate voltage is 

modulated to observe the Coulomb oscillations, let a change of GVΔ  cause the electron 

occupancy in the island to change by one. Therefore from equation (2.87): 

                                                              
ΣΣ

=
Δ

C
e

C
VC GG  

                                                         
G

G C
eV =Δ⇒                                                            (2.130) 

Therefore the interval between two adjacent Coulomb oscillation peaks GVΔ  in a single-

electron transistor where the source-drain bias is kept at a constant value is 
GC
e

. 
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2.6 Orthodox theory of single-electron tunneling 

The orthodox theory of single-electron tunneling was first developed by Kulik and 

Shekhter [2.10] for a particular case study, and was later extended for general systems by 

Averin and Likharev [2.1, 2.3]. The charging energy of the Coulomb island CE  is the largest 

energy in a single-electron device system. There is also room for comparison between the 

thermal energy of electrons TkB  and the quantum level spacing of single-particle states NEΔ . 

Therefore, the Coulomb blockade phenomenon can have two different regimes: 

(1) Classical Limit – In this, NBC ETkE Δ>> . If the electron temperature is 

larger than the single electron level spacing, the electron density of states in the 

Coulomb island is effectively continuous. This situation is known as the 

classical Coulomb blockade.  

(2) Quantum Limit – In this, TkEE BNC >Δ≥ . The single-particle energy levels 

retain their individual character if charging energy CE  and the single electron 

level spacing NEΔ  are comparable. Under this circumstance, the Coulomb 

island is treated as a quantum mechanical object with discrete single-particle 

density of states. 

For my experiments involving the study of single-electron behavior and the fabrication 

of single-electron devices, I used Au nanoparticles as the Coulomb islands. For metal 

nanoparticles with diameters more than 1 nm, NC EE Δ>>  [2.1]. So, I will only concentrate on 

describing and utilizing the classical Coulomb blockade in this thesis. 
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2.6.1 Electron tunneling rate through tunnel junctions 

 To calculate the electron tunneling rate though a tunnel junction, we consider a system 

comprising of j  tunnel junctions that are coupled together and characterized by the number of 

electrons that have passed through the junction { j }. 

                                            },.......,.......,,{}{ 21 Nj jjjjj =                                               (2.131) 

The electron tunneling rate for the j th junction is represented by ( )Nj
±Γ , where ± refers to the 

electrons tunneling into/out of the Coulomb island ( )1±→ NN . ( )Nj
±Γ  is obtained from the 

basic golden-rule calculation [2.3] and is expressed as: 
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where FΔ  is the change in the free energy of the system when an electron tunnels across a 

tunnel barrier, jR  is the tunneling resistance of the j th junction, e  is the unit charge of an 

electron (1.602 × 10-19 Coulombs) ( )0>e , Bk  is the Boltzmann Constant (8.617 × 10-5 eV/K), 

and T  is the absolute temperature. 

 To calculate the I-V characteristics of a double junction single-electron device or a 

single-electron transistor, we have to take into consideration four tunneling events: (a) tunneling 

of electron into the island though the tunnel barrier between the island and the drain ( )ND
+Γ , 

(b) tunneling of an electron out of the island through the tunnel barrier between the island and 

the drain ( )ND
−Γ , (c) tunneling of an electron into the island through the tunnel barrier between 

the island and the source ( )NS
+Γ , and (d) tunneling of an electron out of the island through the 

tunnel barrier between the island and the source ( )NS
−Γ .  
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 The change in the free energy for a double junction single-electron device when a 

single electron tunnels into or out of the Coulomb island was derived in equations (2.32) and 

(2.35) as: 

                        ( ) ⎥⎦
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 The change in the free energy for a single electron transistor when a single electron 

tunnels into or out of the Coulomb island was derived in equations (2.114) and (2.117) as: 
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Substituting the values of +Δ SF , −Δ SF , +Δ DF , and −Δ DF  from the above equations into 

equation (2.132), ( )NS
+Γ , ( )NS

−Γ , ( )ND
+Γ , and ( )ND

−Γ  can be obtained, respectively. The 

current in the double junction single-electron device or the single-electron transistor ( )VI  can 

be calculated by: 

                           ( ) ( )[ ]∑
∞

−∞=

−+ Γ−Γ=
N

DD NNNeVI )()( σ  

or                                      ( ) ( )[ ]∑
∞

−∞=

+− Γ−Γ=
N

SS NNNeVI )()( σ                                         (2.133) 

where ( )Nσ  is the ensemble distribution of the number of electrons in the Coulomb island 

[2.6]. The distribution ( )Nσ  is obtained by noting that the net probability for making a transition 

between any two adjacent states in the steady state is zero [2.6], i.e., 

                         ( ) ( ) ( )[ ] ( ) ( ) ( )[ ]111 +Γ++Γ+=Γ+Γ −−++ NNNNNN DSDS σσ                    (2.134) 
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Since +ΓS , −ΓS , +ΓD , and −ΓD  are known, the distribution ( )Nσ  can be solved using the 

normalization condition ∑
∞

−∞=

=
N

N 1)(σ  [2.6]. The current in single-electron devices can 

therefore be obtained by numerically solving equation (2.133).  
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CHAPTER 3 

NEW SINGLE-ELECTRON DEVICE STRUCTURE 

3.1 Introduction 

 In this Chapter, we will look back briefly into the history of single-electron devices and 

the recent advancements that have been made in the field of single electronics. This will be 

followed by the introduction of a new single-electron device structure which aims to overcome 

the shortcomings of the existing methods of fabricating single-electron devices. 

3.2 History of single-electron devices 

 Historically, Coulomb blockade effects were first predicted and observed in small 

metallic tunnel junctions. The dominant single-electron effect for small metal tunnel junctions is 

the charging energy due to the transfer of individual electrons. The effects of single-electron 

charging in the conductance properties of very thin metallic films was observed in the early 

1950s by Gorter [3.1] and Darmois [3.2]. Neugebauer and Webb [3.3] developed a theory of 

activated tunneling in which the activation energy was the electrostatic energy required to tunnel 

electrons into and out of the metal islands. 

 A number of experiments have been conducted to study the transport properties of 

metal clusters or islands embedded in an insulator and then connecting it to conducting 

electrodes. A schematic for such a structure for Au nanoparticles embedded in Al2O3 matrix is 

shown in Figure 3.1. Each metal cluster represents a Coulomb island like the one shown 

schematically in Figure 2.2 (a). Electrons may tunnel through the insulating medium from the 

electrodes to the islands and vice-versa. Giaever and Zeller [3.4] investigated the differential 

resistance of oxidized Sn islands sandwiched between two Al electrodes forming Coulomb 

islands down to 2.5 nm diameter. The size of the islands obtained in their experiments 

depended on the evaporating conditions of metallic Sn. They measured signs of Coulomb 
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blockade in these samples, that is, a region of high resistance for small applied biases followed 

by strong decrease in the resistance beyond a certain voltage.  

 Shortly after, Lambe and Jaklevic [3.5] performed capacitance-voltage measurements 

on structures similar to that of Giaever and Zeller. Their structures were defined with thick 

oxides between the islands and the substrate so that tunneling of electrons occurred only 

through the top contact. They observed oscillatory behavior in the differential capacitance 

measurements of the samples and interpreted it in terms of the addition of charges one by one 

to the islands as the bias voltages increased in multiples of 
C
e

, where C  is the substrate to the 

island capacitance.  

 At the same time, a detailed theoretical study of single-electron effects during tunneling 

was introduced by Kulik and Shekhter [3.6] based on the tunneling Hamiltonian method in order 

to derive a kinetic equation for charge transport. This kinetic equation approach was later 

improved by Averin and Likharev [3.7] to derive the Orthodox Theory of single-charge tunneling. 

The Coulomb staircase was first observed by Kuzmin and Likharev [3.8] and Barner and 

Ruggiero [3.9] in metallic island structures of similar structure as in Figure 3.1 except that the 

thickness of the insulation on one side of the Coulomb islands was much larger compared to the 

other side. 
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Figure 3.1 A cross section of embedded metal clusters such as Au in a dielectric medium. The 
ends of the dielectric film are connected to conducting electrodes for applying a bias from an 
external source. 
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3.2.1 Recent advancements in the field of single electronics 

 The creation of a nanometer scale gap between two conducting electrodes and then 

placing the Coulomb island in between the two electrodes such that it is separated from each of 

the electrodes by tunnel junctions of required thickness is the key towards the successful 

fabrication of single-electron devices. Up until 1980, the manipulation of individual nanoparticles 

and the creation of a nanoscale gap between two conducting electrodes was a formidable task. 

The discovery of the scanning tunneling microscope (STM) in 1981 proved to be an invaluable 

tool to study the single-electron transport phenomena in metallic and semiconducting 

nanoparticles. It has been used in several variations to demonstrate single-electron behavior. 

Hanna and Tinkham [3.10] reported a measurement of Coulomb staircase in a two-junction 

system using a STM. The carried out their measurements at a temperature of 4.2 K and 

simulated their data with the orthodox theory of single-electron tunneling. Kubaik and co-

workers [3.11] used an approach similar to Hanna and Tinkham to demonstrate single-electron 

transport at room temperature in gold nanoparticles. A schematic of their experimental set-up is 

shown in Figure 3.2 (a). The double junction is formed between a conducting Au {111} 

substrate, an organic self-assembled monolayer, individual crystalline Au clusters, vacuum, and 

a conducting Pt/Ir STM tip. The size of the Au clusters were ~ 1-2 nm in diameter. An ultrahigh 

vacuum STM was used to measure the current-voltage characteristics. When the tip was 

positioned over a cluster, current-voltage data showed a Coulomb staircase behavior. The 

experimental data was in good agreement with the semiclassical predictions for correlated 

single-electron tunneling. 

 Fabrication of single-electron transistor has also been reported by Matsumoto and co-

workers [3.12] by the nanooxidatation process for a TiOX/Ti system. Using the STM tip as a 

cathode, they were able to oxidize the surface of titanium metal into lines of TiOX of width of a 

few tens of nanometers. Using this process, they were able to define a source electrode, a drain 

electrode and a Coulomb island which were electrically isolated from each other by oxidized Ti 
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lines as shown in Figure 3.2 (b).  Upon suitably biasing the device, distinct Coulomb staircases 

were observed in the current-voltage characteristics. The underlying n-type silicon substrate 

was used as the back-gate to make the observed Coulomb staircase even more pronounced.  

 With the advent of nanofabrication techniques such as e-beam lithography, it became a 

tool of choice to fabricate devices, observe, and study single-electron behavior in nanoparticles. 

Klein and co-workers [3.13] successfully combined e-beam lithography and shadow mask 

evaporation to create a nanoscale gap between two conducting Au leads. Using linker 

molecules as tunneling barriers, CdSe nanocrystals were immobilized in the gap between the 

two leads to fabricate a single-electron device as shown in Figure 3.2 (c). I-V measurements 

carried out at 4.2 K yielded clear Coulomb blockade in the devices. A degenerately doped Si 

wafer was used as a back gate, applying a suitable bias to which could lift the Coulomb 

blockade and make the device act as a single-electron transistor. A Coulomb oscillation 

conductance peak was also observed when the gate bias was modulated keeping the source 

drain bias at a constant value. 

 Ralph and co-workers [3.14] have reported the fabrication of single-electron transistors 

using electromigration to create the source-drain electrode gap. A nanoparticle was then 

introduced in the gap between the electrodes and the entire structure rested on top on an 

oxidized aluminum film which also acted as the gate electrode as shown in Figure 3.2 (d). The 

finished devices were cooled to 4.2 K and the current-voltage curves were measured as a 

function of the gate voltage. Clear Coulomb staircases as well as Coulomb diamonds were 

observed for the devices representing single-electron transistor behavior.  

 In addition to the above mentioned methods, other techniques that have been used for 

the fabrication of single-electron devices include mechanically controllable break junctions 

[3.15, 3.16], use of an atomic force microscope (AFM) [3.17], electrodeposition [3.18, 3.19] and 

the use of silicon-insulator-silicon nanopillars [3.20]. 
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Figure 3.2 Approaches adapted for the fabrication of single-electron devices. (a) The use of a 
scanning tunneling microscope (STM) to study single-electron transport phenomena [3.11]. (b) 
The use of a STM for nano-oxidation of metallic Ti films to fabricate single-electron transistors 
[3.12]. (c) The use of a combination of e-beam lithography and shadow mask evaporation to 
fabricate single-electron transistor using CdSe nanoparticles [3.13]. (d) Fabrication of single-
electron transistors by using electromigration to create nanometer scale source-drain electrode 
gap [3.14]. 
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3.3 New single-electron device structure 

Although all of the above mentioned techniques and various others have been able to 

successfully demonstrate single-electron behavior in metallic as well as semiconducting 

nanoparticles, large-scale fabrication of single-electron devices using the abovementioned 

methods have not been possible mainly because of low throughputs, inability to accurately 

control the source-drain electrode gap for every device and/or because the processes are too 

slow for practical applications. Large-scale fabrication of single-electron devices is necessary to 

have multiple and individually addressable devices. If several such single-electron devices are 

integrated at the chip-level, these could be used in the microelectronics industry, military, space 

as well as other commercial applications.    

 One of the major aims of this research was to introduce a new single-electron device 

structure which would address the shortcomings of the existing methods by addressing three 

important issues: 

(1) Fabrication of single-electron devices on a large-scale and in parallel 

processing: Practical applications require that devices be fabricated on a 

large-scale and in parallel processing. In other words, this means that several 

single-electron devices must be fabricated in a single batch instead of 

fabricating them as single units. 

(2) Fabrication using CMOS compatible processes: CMOS fabrication 

technology has been developed and standardized over a period of about 40 

years. It has also been a proven method for wafer-scale fabrication of devices. 

Taking advantage of CMOS compatible processes ensures that the fabrication 

of single-electron devices carried out using existing equipment and recipes. 

(3) Room-temperature operation of single-electron devices: Another 

requirement for practical application of single-electron devices is that they be 

operable at room temperature. For this, the size of the Coulomb island should 
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be ≤  10 nm. Since the Coulomb island itself is in the nanometer scale, it 

requires that all other associated components of a single-electron device 

(source, drain, and gate electrodes and the tunneling barriers) be arranged in 

their respective positions around the Coulomb island with nanometer scale 

precision.  

 Figures 3.3 (a) and 3.3 (b) show the schematic of the new single-electron device 

structure which aims to realize the issues discussed above. The three key aspects of the new 

design are: 

(1) The gap between the source and the drain electrodes is defined by the 

thickness (h in Figure 3.3 (a)) of the intervening dielectric film. With deposition 

techniques such as plasma enhanced chemical vapor deposition (PECVD), the 

thickness of the film can be controlled with sub-nanometer scale precision over 

a large area. Hence, the source-drain electrode gap can be accurately 

controlled over the entire wafer on which the deposition is being done. 

(2) The drain, dielectric layer, and the source are vertically self-aligned in the 

architecture. This means that the gap between the source and the drain 

electrodes created by the sandwiched layer of dielectric film is the same all 

along the periphery of the source-drain electrodes. 

(3) The Coulomb islands are positioned on the exposed side-wall of the dielectric 

film so that an island which is well positioned in between the source and the 

drain electrons (like the one shown in Figure 3.3 (b) with the white arrow) will 

take part in electron transport. The lateral dimensions ( xL  and yL ), therefore, 

are not of significance to the operation of the single-electron device. This liberty 

of arbitrarily choosing the lateral dimensions of the device allows us to use 

photolithography and associated CMOS based pattern definition processes, 

enabling large-scale fabrication. 
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When a Coulomb island is suitably positioned in between the source and the drain 

electrodes like the one shown in Figure 3.3 (c), a double barrier tunnel junction is formed 

between the electrodes and the island. What forms in the dashed box shown in Figure 3.1 (c) is 

a double junction single-electron tunneling device and it can be represented by an equivalent 

electrical circuit as shown. A gate electrode can also be incorporated in a double junction 

single-electron tunneling device as represented schematically in Figure 3.3 (d). In this, the gate 

electrode is electrically isolated from the source and drain electrodes as well as the Coulomb 

island by means of a dielectric. Such a three electrode system with a Coulomb island is forms a 

single-electron transistor. An equivalent circuit of a single-electron transistor is shown to the top 

left corner of Figure 3.3 (d).  
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                                     (a)                                                                    (b) 

 

 

 

                                      (c)                                                                                    (d) 

 

Figure 3.3 Schematic of the new single-electron device structure (a) Vertical arrangement of the 
source and the drain electrodes. The thickness of the intervening dielectric film (h) defines the 
source-drain electrode gap. (b) Isometric view of the single-electron device structure. The 
source and the drain electrodes are self-aligned so that the gap between the source and the 
drain is uniform along the periphery of the device. The lateral dimensions ( xL  and yL ) can be 
of any dimension since the electron transport takes places only through an island positioned on 
the side-wall of the exposed dielectric layer (c) Schematic of a double junction single-electron 
tunneling device and its equivalent circuit (d) Schematic of a single-electron transistor and its 
equivalent circuit. 
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CHAPTER 4 

FABRICATION OF SINGLE-ELECTRON DEVICES 

4.1 Introduction 

 The detailed process of fabrication of single-electron devices will be described in this 

chapter starting from a 4 inch silicon wafer to finished devices ready for electrical 

characterization at room temperature and at cryogenic temperatures. Silicon wafers are used as 

substrates for making the devices which are fabricated using a combination of optical 

lithography, e-beam evaporation, plasma enhanced chemical vapor deposition (PECVD), self-

assembled monolayers, RF magnetron sputtering, and reactive ion etching (RIE). The 

equipments used to fabricate these devices are described in detail in the University of Texas at 

Arlington’s Nanofabrication Facility home page [4.1]. 

4.2 Thermal oxidation 

 A layer of silicon dioxide ~1.5 μm thick is used to isolate the single-electron devices 

from the silicon wafer. Four inch silicon {100} wafers are first cleaned in an ultrasonic bath of 

acetone to dissolve out any organic impurities from the wafer surface typically for 5 minutes. 

The wafers are then blown dry in a stream of nitrogen gas. Oxidation is performed in a Minibrute 

oxidation furnace maintained at 1000°C. Initially the tube is purged with flowing nitrogen gas at 

3 liters/minute. The silicon wafers are then slowly loaded in the furnace so as to avoid thermal 

shock. Wet oxidation of the wafers is then initiated by passing oxygen gas at 3 liters/minute 

through a bubbler containing DI water (resistivity > 18.2 MΩ.cm) maintained at 90°C. Desired 

thickness of oxide is reached after 3 hours of oxidation following which the oxygen gas supply is 

cut off and nitrogen gas reintroduced to anneal the wafer and purge the furnace before 

unloading the wafers. The wafers are unloaded once the temperature of the furnace drops 

below 200°C. The oxide thickness formed is measured using Gaertner Ellipsometer. 
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4.3 Deposition of the source electrodes 

 Optical lithography is used to pattern the source electrodes on the substrates using 

photomask 1. Each oxidized wafer is cleaved diametrically into 4 quadrants prior to optical 

lithography. The samples are first rinsed in acetone followed by ashing in an UV-O3 substrate 

cleaner (Novascan Inc.) for 30 minutes. This cleaning step is necessary to remove any organic 

contaminants that might have accumulated during the handling of the wafer pieces. Negative 

photoresist NR9-1000PY (Futurrex Inc.) is spun onto the substrates at 3000 rpm for 30 

seconds. Pre exposure bake is carried out on the samples on a hot plate maintained at 150°C 

for 1 minute. Optical lithography is performed on an OAI (Model 806) contact mask aligner 

which uses a primary wavelength of 365 nm from a mercury short-arc lamp. The exposure time 

for the samples under UV light is 23 seconds. Immediately after exposure, the samples are 

baked on a hot plate at 100°C for 1 minute. The samples are then developed in resist developer 

RD-6 (Futurrex Inc.) typically for 12 seconds followed by rinsing in copious amounts of DI water 

(resistivity > 18.2 MΩ.cm). Wafers are then blown dry under a stream of nitrogen gas and 

loaded in an e-beam evaporator (CHA Industries). Chrome, which is used as the source 

electrode metal, is evaporated onto the substrates once the vacuum level inside the e-beam 

evaporator reaches ~ 1 × 10-7 Torr. 2000 Ǻ of chrome is deposited at a rate of 3-4 Ǻ/sec with an 

acceleration voltage of 10 KV for the electron beam. The samples are then unloaded and metal 

lift-off is done by ultrasonic agitation in an acetone bath typically for 15 minutes. Once the lift-off 

is complete, the wafers are blown dry under a stream of nitrogen and treated in the UV-O3 

cleaner for 30 minutes to remove any residual photoresist that might have been left behind after 

the lift-off process. Figure 4.1 (a) to 4.1 (e) schematically illustrates processes involving the 

patterning of the source electrodes. Figure 4.1 (f) is a 3-dimensional schematic showing the 

profile of the source electrode. An optical microscope image of the top view of the source 

electrode is shown in Figure 4.1 (g). Only one device unit is shown for clarity. 
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Figure 4.1 Deposition of the source electrodes. (a) Negative photoresist is spun onto the 
substrate and baked. (b) The wafers are exposed to UV light through photomask followed by a 
post-exposure bake. (c) Unexposed resist is removed by the developer. (d) Chrome is 
evaporated onto the samples. (e) Lift-off is done in acetone. (f) 3-dimensional schematic 
showing the profile of the source electrode. (g) Top view of a source electrode taken with an 
optical microscope. Scale bar = 100 μm. 
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4.4 Deposition of the silicon dioxide dielectric film 

 Silicon dioxide (SiO2) deposited by plasma enhanced chemical vapor deposition 

(PECVD) is the dielectric layer which will create the nanometer scale gap between the source 

and the drain electrodes. Before deposition of SiO2, chamber preconditioning is required to 

ensure that the quality of the deposited film is within specifications. All components inside the 

PECVD reactor chamber are cleaned with isopropyl alcohol to physically remove particles that 

might have accumulated due to usage. The reactor chamber is then pumped down so that the 

vacuum level inside remains steady at ≤  1 mTorr. The wafers which already have the source 

electrodes defined are then loaded and the deposition of PECVD SiO2 is carried out using the 

following conditions: 

(1) Silane (SiH4) flow rate – 7 sccm. 

(2) Nitrous Oxide (N2O) flow rate – 179 sccm 

(3) Nitrogen (N2) flow rate – 250 sccm 

(4) Reactor pressure – 1000 mTorr 

(5) Reactor temperature – 350°C  

(6) Power – 500 Watts 

It must be mentioned that Argon is used as the carrier gas for SiH4 and the percentage of SiH4 

in the SiH4/Ar gas mixture is 15%. A film thickness of 110 Ǻ is obtained with this recipe when 

the deposition is carried out for 19 seconds. 

4.5 Deposition of the drain electrodes 

 Optical lithography is used to define the drain electrodes using a second photomask. 

After the deposition of the SiO2 dielectric film, negative photoresist (NR9-1000PY) is spun onto 

the wafers at 3000 rpm for 30 seconds. Wafers are then baked at 150°C for 1 minute. Drain 

electrode patterns are aligned with the source electrodes and optical lithography is performed 

using the OAI mask aligner where the samples are exposed to UV light for 23 seconds. Post 

exposure bake is done at 100°C for 1 minute. Unexposed areas are developed using resist 
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developer RD-6 for 12 seconds. This is followed by rinsing the wafers thoroughly in DI water 

and drying under a stream of nitrogen gas. The samples are again loaded in the e-beam 

evaporator and 2000 Ǻ of chrome is evaporated onto the structure as described in section 4.3. 

Lift-off is done by ultrasonic agitation in a bath of acetone for 15 minutes. Figure 4.2 (a) shows 

the schematic arrangement of the drain on top of the source electrode. The drain and the 

source electrodes are now separated by the SiO2 layer which was deposited using PECVD as 

described in section 4.4. 

4.5.1 Etching of the PECVD SiO2 film 

 After lift-off, the wafers are treated in the UV-O3 cleaner to remove residual photoresist. 

To obtain the exposed side-wall of the SiO2 film between the electrodes, the PECVD SiO2 is 

etched in a reactive ion plasma etcher (Trion Inc.) using the drain electrode as the hard mask. 

CF4 is used as the etching gas. In the etcher chamber, two electrodes are used during the 

etching process. The top electrode creates the plasma required to carry out the etching process 

and the bottom electrode gives directionality to the plasma so that a vertical profile of the etched 

wall can be obtained. Following were the conditions used to etch the film: 

(1) CF4 flow rate – 50 sccm 

(2) Process pressure – 20 mTorr 

(3) Top electrode power – 3000 W 

(4) Bottom electrode power – 50 W 

(5) Process time – 180 seconds 

The SiO2 film is intentionally overetched so as to remove all of the exposed PECVD SiO2 and a 

small portion from the top of the source electrode of 10-20 nm in depth. Figure 4.2 (b) shows 

the schematic and Figure 4.2 (c) the SEM image of the single-electron device structure obtained 

after this etch process. The exposed side-wall of the PECVD SiO2 (indicated by the yellow 

arrow) can be clearly seen from the SEM image. This film creates a uniform and nanometer 

scale insulating gap between the source and the drain electrodes. 
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Figure 4.2 Deposition of the drain electrodes. (a) Schematic arrangement of the drain on top of 
the source electrode. The source and the drain electrodes are separated by the dielectric film of 
SiO2 deposited by PECVD process. (b) The intervening layer of SiO2 film between the 
electrodes is etched away using the drain electrode as the hard mask. The SiO2 film that 
remains underneath the drain electrodes defines the gap between the source and the drain 
electrodes in the single-electron device structure. (c) SEM image of the device side-wall after 
the SiO2 film has been etched. The yellow arrow indicates the remaining portion of the SiO2 film 
which creates a uniform and nanometer scale gap between the source and the drain electrodes. 
Scalebar = 100 nm. (d) Optical microscope image (top view) of the single-electron device 
structure showing the arrangement of the drain electrode on top of the source electrode. 
Scalebar = 100 μm. 
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4.6 Attachment of Au nanoparticles 

 For the single-electron devices, Au nanoparticles of diameters ~ 10 nm and ~ 20 nm 

are used as Coulomb islands. The positioning of the Au nanoparticles on the exposed side-wall 

of the PECVD SiO2 so that they sit in the gap between the source and the drain electrodes is 

done using self-assembled monolayers (SAMs). After the SiO2 film has been etched, the wafers 

are cleaned in the UV-O3 cleaner for 30 minutes. A 1 mM solution of (3-

aminopropyl)triethoxysilane (APTES; (C2H5O)3-Si-(CH2)3-NH2) is prepared in chloroform. The 

wafers are then immersed in the solution for 30 minutes at room temperature followed by rinsing 

in chloroform and 2-propanol and drying under a stream on nitrogen gas. This forms a self-

assembled monolayer (SAM) of APTES on the surfaces of chromium native oxide and the 

exposed side-wall of the PECVD SiO2. In an aqueous solution, the APTES SAMs provide a net 

positive charge on the surfaces over which they form [4.2, 4.3]. The Au nanoparticles are 

passivated by citrate ions and are negatively charged in the colloid. The APTES functionalized 

substrates are immersed in colloidal solutions of Au for 8-24 hours and 4-5 hours for ~ 10 nm 

and ~ 20 nm Au nanoparticles, respectively. The opposite charge polarities of the APTES SAMs 

and the Au nanoparticles attract resulting in their attachment of nanoparticles to the device 

surfaces. The wafers are treated in the UV-O3 cleaner for 30 minutes to burn off the APTES 

monolayer, which (or their disintegrated components) could potentially act as charge-trapping 

sources. Figure 4.3 (a) shows the schematic of one single-electron device after the attachment 

of Au nanoparticles. Since the APTES monolayers forms on the exposed surface of chrome 

native oxide as well as the side-wall of PECVD SiO2, the attachment of the Au nanoparticles on 

the devices are random. So there is a probability that a nanoparticle will be positioned on the 

exposed side-wall of the PECVD oxide such that it is in correct tunneling range from both the 

source and the drain electrodes and participate in single-electron transport. Figure 4.3 (b) is a 

SEM image which shows one such Au nanoparticle in the dotted box. The magnified view of this 

Au nanoparticle sitting on the exposed side-wall of the PECVD SiO2 is shown in Figure 4.3 (c).  
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Figure 4.3 Attachment of Coulomb islands on the single-electron device. (a) Schematic of a 
single-electron device after the attachment of Coulomb islands (Au nanoparticles). The 
attachment of the Au nanoparticles on the device is random. (b) SEM image of a single-electron 
device side-wall after the attachment of 20 nm Au nanoparticles (bright dots). The exposed 
side-wall of the PECVD oxide is the dark line separating the source and the drain electrodes. 
The dotted box shows a ~ 20 nm Au nanoparticle which is good candidate for single-electron 
transport. (c) A magnified view of the dotted box in (b). The sample stage is tilted at an angle of 
30° from the vertical during imaging. So the thickness of the PECVD SiO2 appears two times 
(1/sin30°) smaller than actual. 

 

 

 

 

(a) 

(b) (c) 



 126

4.7 Deposition of the gate electrodes 

 Immediately after the attachment of the Au nanoparticles and removing the monolayer 

of APTES in a UV-O3 atmosphere, the samples are passivated with a layer of SiO2 of ~ 250 nm 

thickness.  This passivation is done either using sputtered SiO2 or thermally evaporated SiO2.    

             For passivation using sputtered SiO2, the wafers are loaded in a sputtering chamber 

which is pumped down till the base pressure reaches ~ 1 × 10-6 Torr. Argon gas is flowed into 

the chamber at 37.5 sccm. A RF power of 80 Watts and a process pressure of 10 mTorr are 

used for the sputtering process. A thickness of ~ 250 nm is obtained after 90 minutes of 

sputtering. 

 For passivation of the devices using e-beam evaporation, 99.99% pure SiO2 pieces 

(Kurt. J. Lesker) are put in a graphite crucible and loaded in the e-beam evaporator (CHA Inc.) 

The chamber is evacuated till the pressure reaches ~ 1 × 10-7 Torr. 250 nm of SiO2 is 

evaporated at a rate of 3-4 Ǻ/sec with an acceleration voltage of 10 KV for the electron beam. 

 Optical lithography is used to define the gate electrodes. After passivation of the 

devices, negative resist (NR9-1000PY) is spun onto the wafers at 3000 rpm for 30 seconds. 

This is followed by baking the wafers on a hot plate at 150°C for 1 minute. A third photomask is 

used to define the gate electrodes. The gate electrode patterns are aligned to the underlying 

source and drain electrodes so that they form a continuous band around the drain electrodes as 

illustrated schematically in Figure 4.4 (a). Exposure to UV light is done in the mask aligner (OAI) 

for 23 seconds followed by a post exposure bake at 100°C for 1 minute. Unexposed photoresist 

is removed by developing in resist developer RD-6 for 12 seconds followed by rinsing the 

wafers thoroughly in DI water and drying under nitrogen gas. The wafers are again loaded in the 

e-beam evaporator and ~ 3500 Ǻ of chrome is evaporated using the same parameters as 

described in section 4.3. Lift-off is done by ultrasonic agitation in an acetone bath for 15 

minutes. Figure 4.4 (b) is an optical microscope image showing the top view of the single-

electron device after the gate electrodes have been defined. 
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Figure 4.4 Deposition of the gate electrodes for a single-electron transistor (a) Schematic 
illustration of the position of the gate electrode with respect to the source electrode, the drain 
electrode and the Coulomb island (Au nanoaprticle) in a single-electron transistor. Schematic 
not to scale. (b) Top view of device structure after the definition of the gate electrode. Scale bar 
= 100 μm. 
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4.8 Deposition of bond pads for the single-electron devices 

 After the deposition of the gate electrodes, any residual photoresist that might have 

been left behind after lift-off is removed by UV-O3 treatment for 30 minutes. The wafers are then 

passivated with another layer of e-beam evaporated SiO2 of thickness ~ 750 nm using the 

parameters as described in section 4.7. 

4.8.1 Formation of vias 

 A combination of photolithography and reactive ion etching is used to create vias in the 

single-electron device structure. After the devices have been passivated with e-beam 

evaporated SiO2 for the second time, negative photoresist (NR9-1000PY) is spun onto the 

wafers at 2000 rpm for 30 seconds. Pre exposure bake is done on a hot plate maintained at 

150°C for 1 minute. A fourth photomask defines the patterns of the vias which were aligned to 

underlying source, drain and gate electrodes. The samples were exposed to UV light for 26 

seconds followed by a post exposure bake at 100°C for 1 minute. Unexposed resist was 

removed by immersing the samples in resist developer (RD-6) for 12 seconds followed by 

rinsing in DI water and drying under a stream of nitrogen. This photolithography step creates 

small wells devoid of photoresist each of which is directly above a source, drain or gate 

electrode. 

 Wafers are then loaded in the reactive ion etching chamber (Trion Inc.) and the 

exposed part of the passivated SiO2 layer is etched using the following conditions: 

(1) CF4 flow rate – 50 sccm 

(2) Process pressure – 20 mTorr 

(3) Top electrode power – 3000 W 

(4) Bottom electrode power – 50 W 

(5) Process time – 240 seconds 

The photoresist is also consumed during the plasma etching of SiO2 using CF4 chemistry. So, 

this photolithography step used to define the via patterns and the etching of the SiO2 
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passivation layer have to be repeated till the vias reach the underlying chrome electrodes which 

also act as the etch stop layer. 

4.8.2 Deposition of the bond pads 

 Photolithography and a fifth photomask is used to pattern the bond pads of the single-

electron devices. After the vias have been etched, a layer of negative photoresist (NR9-

1000PY) is spun onto the wafers at 2000 rpm for 30 seconds followed by baking on a hot plate 

at 150°C for 1 minute. Wafers are then aligned in the OAI mask aligner and the samples are 

exposed to UV light through the fifth photomask for 23 seconds. A post exposure bake at 100°C 

is carried out followed by developing in resist developer (RD-6) for 12 seconds. DI water is used 

to thoroughly rinse the wafers which are then dried under a stream of nitrogen. The wafers are 

then loaded in the e-beam evaporator (CHA Inc.) and the chamber is evacuated till the pressure 

reaches 1 × 10-7 Torr. 400 Å of chrome and 4500 Å of gold are evaporated at the rate of 3-4 

Å/sec. Lift-off of is done by first immersing the wafers in acetone for 1 hour followed by 

ultrasonic agitation in an acetone bath for 15 minutes. Figure 4.5 (b) shows the optical 

microscope image of a completed single-electron transistor. The three bond pads of the single-

electron transistor are the yellow areas of the device. The chrome and gold which was 

evaporated after the bond pads were patterned fill up the vias to make electrical contact with the 

source, drain and gate electrodes which are buried underneath the passivation layer of SiO2.  
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Figure 4.5 Etching of vias and deposition of bond pads of a single-electron transistor. (a) 
Schematic illustration of vias and bond pads in a single-electron transistor. (b) Optical 
microscope image showing the top view of a completed single-electron transistor. Scale bar = 
100 μm.  
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4.9 Mounting individual dies on a chip carrier 

 For electrical characterization of the single-electron devices at cryogenic temperatures, 

it is a requirement that they be mounted on suitable chip carriers. After the bond pads have 

been defined, the wafer is diced into individual dies of dimensions 0.8 cm × 0.8 cm. This is done 

by marking out the periphery of an individual die using a diamond scriber. Care should be taken 

to avoid touching any of the features on the die during the scribing process. The die is then 

carefully cleaved from the parent wafer along the scribed lines using Teflon tweezers so that 

none of the device features are touched with the tweezers. The individual dies are treated in 

UV-O3 atmosphere for 30 minutes to ensure clean surfaces. This step is especially necessary at 

this stage so that the device pond pads are free of any organic contaminants which will ensure 

good wire bonding of the device in the next step.  

Ceramic chip carriers (CCF06404; Kyocera) were used for mounting the dies containing 

the single-electron devices. These chip carriers were chosen for the application because of the 

high thermal conductivity and good electrical insulation properties of the ceramic. Conducting 

silver paste (SPI supplies brand) was used to adhere the individual dies on the chip carrier. A 

drop of silver paste was put in the chip carrier cavity immediately followed by picking up the die 

with a Teflon tweezers by the edges and carefully placing it in the middle of the chip carrier 

cavity so that the die is not in contact with the edges of the cavity. The chip carrier with the die 

mounted in it is allowed to dry for 3-4 hours under ambient conditions. Figure 4.6 shows a 

photograph of an individual die that has been mounted on a chip carrier. The die contains an 

array of 60 single-electron transistors. The devices are now ready to be wire bonded for 

electrical measurements.  
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Figure 4.6 An individual die containing an array of 60 single-electron transistors that has been 
mounted on a chip carrier.  
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4.10 Device wire bonding  

 After the die has been securely adhered onto the chip carrier, the bond pads of the 

device have to be bonded to pre-designated legs of the chip carrier. If not done properly, the 

wire bonding process can potentially short circuit the single-electron devices through 

electrostatic discharge ultimately leading to their failure. Certain precautions need to be followed 

in order to successfully wire bond the devices as are explained below.  

 Figure 4.7 (a) shows a view of the Wedge Bonder (West Bond Model 7476E) used to 

bond the single-electron devices. After turning the system on, the electrically conducting parts of 

the wire bonder with which the chip carrier will be in physical contact during the bonding 

process (i.e., the chuck and the stylus) has to be connected to an electrical ground to remove 

any static charge that might have built up. This is done in the following manner: the operator 

first wears an anti-static wrist strap (Radioshack Corp.) (not pictured) and connects the free end 

of the strap to an earth ground. Another length of multi-strand copper wire as shown in the 

image is taken with one end connected to the same earth ground as the wrist strap. The free 

end of the copper wire is now touched one by one to the chuck and the stylus to remove any 

static electricity from the wire bonder.  

 After this is completed, the chip carrier containing the array of devices is mounted on 

the chuck with the wrist strap still securely fastened to the operator’s hand. Figure 4.7 (b) shows 

the image of the wire bonder with a chip carrier mounted on the chuck. The copper wire which is 

connected to the earth ground is now touched individually to all the legs of the chip carrier to 

remove any static charge built up in the carrier itself. Extreme precaution should be exercised 

so that the grounding wire does not touch the die or any of the devices on it.  

 With the static charge eliminated from the wire bonder and the chip carrier, it is now 

safe to wire bond the device bond pads to the legs of the chip carrier.  
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Figure 4.7 Removal of static charge before wire bonding. (a) Static charge built up is removed 
from the wire-bonder body by connecting its electrically conducting surfaces to an earth ground. 
(b) Static charge is removed from the chip carrier (with a die mounted on it) by touching the legs 
of the carrier to an earth ground.  
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 Figure 4.8 shows the schematic layout of the chip carrier. For clarity, only one 

completed single-electron transistor is shown in the chip carrier cavity. Initially, the carrier has 

64 legs in total (16 on each side of the square periphery). For the sake of mounting 

convenience, the legs from the top and the bottom edge of the carrier are cut off. A spool of 

gold wire (99.99%) of diameter 25 μm is used to connect the bond pads of the single-electron 

transistors to the legs of the chip carrier.  

 A successful bond is a combination of two bonding steps; the first one on the bond pad 

of the device and the second one on the leg of the chip carrier. Also, the stage holding the chip 

carrier should be moved only in directions parallel to the direction of the wire feed to avoid wire 

entanglement. Following these procedures, the source bond pad is connected to legs R1 and 

R5, the drain bond pad to legs L1 and L5, and the gate bond pads to legs L11 and L15, 

respectively of the chip carrier as shown in the schematic. This convention of bonding particular 

bond pads to pre-designated legs should always be maintained to match the sequence in which 

the electrical connections have been soldered inside the cryostat (details of which are given in 

Chapter 5). 

The following conditions were used for the wire bonding process: 

(1) Ultrasonic power for bond 1 = 400 mW 

(2) Ultrasonic power for bond 2 = 450 mW 

(3) Bond time for bond 1 = 40 ms 

(4) Bond time for bond 2 = 40 ms 

(5) Loop height = 150 μm 

(6) Wire pull = 50 μm 

(7) Wire tail = 36 μm 

(8) Temperature used during bonding = 75 °C. 
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Figure 4.8 Schematic layout of a chip carrier with a single-electron transistor wire bonded to 
predesignated legs of the chip carrier. Only one completed single-electron transistor is shown in 
the carrier cavity for clarity. The source bond pads are bonded to legs R1 and R5, the drain 
bond pads to L1 and L5 and the gate bond pads to L11 and L15, respectively.  
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CHAPTER 5 

ELECTRICAL CHARACTERIZATION OF SINGLE-ELECTRON DEVICES 

5.1 Introduction 

 This chapter will focus exclusively on the electrical characterization of the single-

electron devices at temperatures ranging from 10 K to 315 K. The room temperature electrical 

characterization of the single-electron devices was done using an Agilent 4155 C 

semiconductor parameter analyzer and the variable temperature measurements were done 

using an Agilent 4157 B semiconductor parameter analyzer. For measuring the electrical 

characteristics of our single-electron devices, Kelvin (4-wire) connections [5.1] were used to 

eliminate the residual resistance effects of the test leads and contacts. Figure 5.1 shows the 

schematic of the Kelvin connection used for the single-electron devices. In this configuration, 

the current is forced through the device under test (DUT) through the Force leads while the 

voltage across the DUT is measured through a second set of leads known as the Sense leads. 

Although some small current may flow through the sense leads, it is usually negligible and can 

be ignored for all practical purposes. To cancel the effects of the residual resistance, the test 

leads are connected as close to the DUT as possible.  

 For the electrical measurements, a sweep measurement mode [5.1] was used as 

shown in Figure 5.2. In this, the voltage was the stimulant and the current in the device was the 

measurand. The following parameters were used for the sweep mode:  

(1) Hold Time = 30 seconds 

(2) Delay Time = 10 seconds 

(3) Step Delay Time = 10 seconds 

(4) Integration Time = High for Agilent 4155 C; 1000 for Agilent 4157 B. 
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Figure 5.1 Schematic of Kelvin (4-wire) resistance measurement used for the electrical 
characterization of single-electron devices.  
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Figure 5.2 Schematic of the sweep measurement mode used for the electrical characterization 
of single-electron devices. 
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5.1.1 Room temperature measurement set-up 

Figure 5.3 shows the schematic diagram of the measurement setup for the room-

temperature electrical characterization of single-electron devices using Agilent 4155 C 

semiconductor parameter analyzer. For the room-temperature measurements, it is not required 

to wire bond the devices. The bond pads of the device are connected to the parameter analyzer 

using probe tips as shown in the figure. The probe tips are connected to the SMUs of the 

parameter analyzer using central conductor of low noise triaxial cables. The outer shield of 

these triaxial cables are connected to the chassis of the acoustic box. For best results, the 

parameter analyzer is switched on allowed to warm up for 30 minutes. The chuck and the 

acoustic box are connected to the same earth ground as the parameter analyzer. Before placing 

the wafer containing the single-electron devices on the chuck, it is freed from any static by 

touching one end of a multistrand copper wire on it and the end to an earth ground.  

The computer controlled data acquisition system allows the measurement of the 

source-drain current as a function of the applied source-drain bias voltage and the gate voltage. 

The source-drain bias and the gate voltage are controlled by the computer using a GPIB 

protocol. Before the measurements are carried out on the actual devices, it is important to 

measure the noise in the set-up which is done in the following manner: In the absence of a 

device, the source-drain bias is held constant at 400 mV and the current monitored. In the best 

case scenario, the noise level for the set-up is <1 pA. 

The wafer is then placed on the chuck and the source probe tip, drain probe tip, and the 

gate probe tip is touched to the source, drain, and gate bond pads, respectively in that order. 

Electrical measurement of the device is carried out using the sweep measurement mode 

described previously. After the measurement of a device is over, the gate, drain, and source 

probe tips are lifted up from the bond pads in that order. The chuck is moved so that the next 

device to be characterized moves into position. The probe tips are lowered down on their 

respective bond pads and the measurement is repeated.  
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Figure 5.3 Schematic diagram of the room-temperature measurement set-up of single-electron 
devices.  
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5.1.2 Low temperature measurement set-up 

 Figure 5.4 shows the schematic front view of the cryostat used to cool the single-

electron devices for electrical characterization at low temperatures. The cryostat stage is 

machined out of a block of oxygen free high conductivity copper. The machined stage is then 

gold plated so as to prevent the exposed copper surfaces from being oxidized under ambient 

conditions.  

A multi-pin chip carrier socket is securely attached to the cryostat stage using low-

temperature epoxy as shown in Figure 5.4. This multi-pin socket accommodates the single-

electron devices which have been mounted on a chip carrier and wire bonded to the designated 

legs as was described previously in section 4.10. The legs of the multi-pin chip carrier socket 

are connected to one of the 10-pin electrical feedthroughs of the cryostat using cryogenic wire. 

The schematic of the connection from the chip carrier socket to the 10-pin electrical feedthrough 

is shown in Figure 5.5. The 10-pin electrical feedthrough has connections labeled A, B, C, D, E, 

F, G, H, and J for soldering convenience. Looking from the front-on position at the multi-pin chip 

carrier socket so that its legs are facing away from the observer, the legs are numbered from L1 

to L16 and from R1 to R16 as shown in Figure 5.5. The following connections are now made 

between the legs of the chip carrier socket and the 10-pin electrical feedthough of the cryostat 

using the cryogenic wire.  

(a) Leg L1 of the chip carrier socket is connected to connection A of the feedthrough. 

(b) Leg L5 of the chip carrier socket is connected to connection B of the feedthrough. 

(c) Leg L11 of the chip carrier socket is connected to connection F of the feedthrough. 

 (d) Leg L15 of the chip carrier socket is connected to connection G of the feedthrough. 

 (e) Leg R1 of the chip carrier socket is connected to connection D of the feedthrough. 

(f) Leg R5 of the chip carrier socket is connected to connection C of the feedthrough. 
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Figure 5.4 Schematic front view of the cryostat used for the electrical characterization of single-
electron devices at low temperatures.  
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Figure 5.5 Schematic of the connections between the legs of the multi-pin chip carrier socket of 
the cryostat and a 10-pin electrical feedthrough attached to the cryostat body. 
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 The cryogenic wire can be a significant source of electrical noise if it not properly heat 

sinked. The goal of heat sinking is to cool the wire to a temperature as close to the DUT as 

possible. This can be accomplished by wrapping a significant length of the wire around the cold 

finger. By doing this, the wire will be in thermal contact with the cooled surface thereby reducing 

the noise during measurement. In our cryostat, the wires are adhered to the cold finger of the 

cryostat by winding it around the cold finger first and then holding them in contact using 

cryogenic tape.  

 The connections between the 10-pin electrical feedthrough attached to the cryostat 

body and the SMUs of the Agilent 4157 B semiconductor parameter analyzer is made using 

male triaxial connectors (CS-631; Keithley Instruments Inc.), low-noise triaxial cables (SC-22; 

Keithley Instruments Inc.), and a 10-slot adapter for the electrical feedthrough (AEI 851-

06EC12-10S50; Souriau Connection Technology). The 10-slot adapter also has connections 

labeled A, B, C, D, E, F, G, H, and J which correspond to the same connections as on the 10-

pin electrical feedthrough on the cryostat body. Figure 5.6 shows the wiring diagram between 

the 4157 B parameter analyzer and the 10-slot adapter. The following connections are made 

between the parameter analyzer and the 10-slot adapter. 

(a) The first triaxial connector is connected to Sense lead of the HRSMU of 4157 B. 

The central conductor of the free end of the triaxial cable is soldered to the 

connection A of the 10-slot adapter. 

(b) The second triaxial connector is connected to the Force lead of the HRSMU of 4157 

B. The central conductor of the free end of the triaxial cable is soldered to the 

connection B of the 10-slot adapter. 

(c) The third triaxial connector is connected to the Force lead of the MPSMU of 4157 B. 

The central conductor of the free end of the triaxial cable is soldered to the 

connection G of the 10-slot adapter. 
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Figure 5.6 Wiring diagram between the 4157 B semiconductor parameter analyzer and the 10-
slot adapter.  
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(d) The fourth triaxial connector is connected to the Sense lead of the MPSMU of 4157 

B. The central conductor of the free end of the triaxial cable is soldered to the 

connection F of the 10-slot adapter. 

(e) The fifth triaxial connector is connected to the Force/Sense lead of the GNDU of 

4157 B. The central conductor of the free end of the triaxial cable is soldered to the 

connection C of the 10-slot adapter and the middle conductor of the free end of the 

triaxial cable is soldered to the connection D of the 10-slot adapter. 

During soldering of the free end of the triaxial cables to the 10-slot adapter, extreme 

care should be exercised so that all three conductors of a triaxial cable come as close to the 10-

slot adapter as possible but only the conductors described in (a) – (e) above are soldered to the 

10-slot adapter. In our configuration, the outer shield and the middle guard of the triaxial cables 

come to ~ 5 mm of the soldering connections for the 10-slot adapter. This ensures good noise 

shielding during the electrical measurement of the single-electron devices. If the shield and the 

guard lines are separated, for example, by ~ 10 mm from the soldering connections of the 10-

slot adapter, the peak-to-peak noise level during the measurement reaches values of ~ 1nA. 

For the measurement of our devices, a peak-to-peak noise level of < 1pA is desirable.  

Underneath the cryostat stage, a heater is attached so that the electrical 

characterization of the single-electron devices can be done at various temperatures. There is 

also a silicon diode sensor attached to the cryostat stage which is used to monitor the 

temperature at which the electrical characterization of the device is being carried out. The 

heater and the sensor are connected to a Lake Shore Model 331 Temperature Controller. 

Connections are first made between the heater and the silicon diode to the other 10-pin 

electrical feedthrough of the cryostat body and then between the electrical feedthrough and the 

temperature controller. Figure 5.7 shows the wiring diagram from the heater and the silicon 

diode sensor to the 10-pin electrical feedthrough.  
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Figure 5.7 Wiring diagram from the heater and the silicon diode sensor to the 10-pin electrical 
feedthrough on the cryostat body. 
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The silicon diode sensor is a 4 – lead sensor. Each lead is color coded and should go to 

a predesignated pin on the temperature controller. The connections between the silicon diode 

and the 10-pin electrical feedthrough are made as follows: 

(a) The Red lead from the silicon diode corresponding to −I  is soldered to connection 

G of the 10-pin electrical feedthrough. 

(b) The Green lead from the silicon diode corresponding to −V  is soldered to the 

connection K of the 10-pin electrical feedthrough. 

(c) The Black lead from the silicon diode corresponding to +V  is soldered to the 

connection J of the 10-pin electrical feedthrough. 

(d) The Clear lead from the silicon diode corresponding to +I  is soldered to the 

connection C of the 10-pin electrical feedthrough.  

The heater has two leads coming out of it. One of the leads is soldered to connection A and the 

other one to connection B of the 10-pin electrical feedthrough.  

 The sensor leads of the silicon diode can also be a significant source error if they are 

not properly heat sinked. Therefore, the leads of the silicon diode are also wrapped around the 

cold finger as described previously in this section in order to minimize the error.  

 Figure 5.8 is the schematic of the back panel of the temperature controller. It has two 

Sensor Input Connector and Pinouts as shown. Each input connector has 6 slots as shown 

alongside which the letters +I , +V , −V , and −I  are marked as shown in Figure 5.8. Any 

one of the Sensor Input Connectors could be connected to the silicon diode sensor. A 10-slot 

adapter (AEI 851-06EC12-10S50; Souriau Connection Technology) and a 6-pin DIN 45322 

socket are used to connect the temperature controller to the heater and the silicon diode sensor 

via the electrical feedthrough. Figure 5.8 shows the wiring diagram between the temperature 

controller and the 10-slot adapter. The 6-pin DIN 45322 socket mates with the Sensor Input 

Connector and the following connections are soldered to the 10-slot adapter: 
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Figure 5.8 Wiring diagram between the temperature controller and the 10-slot adapter. 
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(a) +I  from the Sensor Input Connector is soldered to connector C of the 10-slot 

adapter. 

(b) +V  from the Sensor Input Connector is soldered to connector J of the 10-slot 

adapter. 

(c) −I  from the Sensor Input Connector is soldered to connector G of the 10-slot 

adapter. 

(d) −V  from the Sensor Input Connector is soldered to connector K of the 10-slot 

adapter. 

Using a separate set of wires, the heater output HIGH is soldered to connector A of the 

10-slot adapter and the heater output LO is soldered to connector B of the 10-slot adapter.  

 Figure 5.9 is the overall schematic of all the components used in the low temperature 

electrical characterization of single-electron devices. The entire cryostat is place on top of an 

electrically isolated vibration isolation table housed in an acoustic box. The vibration isolation 

table eliminates noise due to floor and support structure vibration. The triaxial cables connect 

the parameter analyzer to the single-electron device via one of the 10-pin electrical 

feedthroughs. Since the guard and the shield lines of the triaxial cable come only to ~ 5 mm of 

the cryostat, the device has a floating ground during the measurement. The heater and the 

silicon diode sensor inside the cryostat are connected to the temperature controller via the other 

10-pin feedthrough. 

The noise in the set-up is checked in a manner similar to the one described for the 

room-temperature measurement. Ground loops are a prominent source of noise in the low 

temperature measurement set-up and are caused by the presence of two grounds in the circuit. 

The best way to check for them is by looking over the circuit and ensuring that the outer shield 

of the triaxial cables connecting the device to the parameter analyzer is separate from the cryo 

compressor’s ground connection and support structure. Typically the noise level for the low 

temperature measurement set-up is ~ 0.5 pA.  
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Figure 5.9 Schematic diagram of the overall set-up for the electrical characterization of single-
electron device at low temperatures. 
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Electrostatic discharge (ESD) is the major cause of device failure during the low 

temperature measurement and it happens during mounting the sample onto the cryostat. To 

avoid device failure due to ESD, the following procedure should be followed: The user should 

first wear an anti-static wrist strap and connect its free end to an earth ground. The parameter 

analyzer is turned on and allowed to warm up for 30 minutes. At this point, none of the wires 

between the parameter analyzer and the cryostat/device or between the temperature controller 

and the cryostat are connected. A multistrand copper wire is taken and one of its free ends is 

connected to the same earth ground as the wrist strap. With the other end, all the legs of the 

chip carrier socket on the cryostat are touched to remove static electricity as shown in Figure 

5.10 (a).  

The chip carrier is now inserted into the socket as shown in Figure 5.10 (b). The legs of 

the socket are again touched with the grounded multistrand copper wire to remove static 

electricity. The radiation shield of the cryostat is then moved into place slowly taking care so 

that it does not touch the legs of the chip carrier during its decent. This is shown in Figure 5.10 

(c). This is followed by placing the vacuum shroud into position (Figure 5.10 (d)). The chamber 

is then pumped down to ~ 50 mTorr using a mechanical pump. Once the pressure falls, the 

electrical lines from the compressor are connected to cryostat but the connections from the 

parameter analyzer and the temperature controller to the cryostat are not. The cooling water 

supply to the compressor is turned on and the water flow rate should be checked so that it is not 

below 1 gallon/minute. The compressor is then turned on. A temperature of ~ 10 K is reached in  

~ 3 hours.  

The compressor is then turned off and the electrical lines from it to the cryostat are 

disconnected. The triaxial cables from the parameter analyzer to the cryostat/device are 

connected next. The measurement can now be started using the sweep measurement mode as 

described previously.  
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Figure 5.10 Mounting of the chip carrier on the cryostat stage. (a) Removal of static from the 
chip carrier socket which is attached to the cryostat stage. (b) Mounting of the chip carrier into 
the multi-pin chip carrier socket. (c) Lowering of the radiation shield into position. (d) Placing the 
vacuum shroud in position. 
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5.2 Coulomb staircase in a double junction single-electron device using 10 nm Au nanoparticles 

 A double junction single-electron device with 10 nm diameter Au nanoparticles as 

Coulomb islands was characterized at room-temperature using the Agilent 1455 C 

semiconductor parameter analyzer. The voltage was swept from -200 mV to 200 mV in 

increments of 4 mV using the sweep measurement mode and the device current recorded. 

Figure 5.11 shows the current-voltage characteristics of the device.  

 As can be seen from the I-V characteristics in Figure 5.11, the device exhibited clear 

Coulomb blockade and Coulomb staircase at room temperature which are decisive indications 

of single-electron transport in the device [5.2-5.4]. Each abrupt change in the device current at a 

given voltage is marked with arrows numbered 1 to 8 in the figure. Between the arrows 4 and 5 

is the region of suppressed electrical conductance at low applied biases. This corresponds to 

the Coulomb blockade region of the double junction single-electron device.  

In addition to the Coulomb blockade, the Coulomb staircase was also observed for this 

single-electron device. The observation of Coulomb staircase in the I-V characteristics of this 

device implies that the two tunnel junctions are highly asymmetric, that is, the rate of tunneling 

of an electron into the island is very different when compared to the rate of tunneling on an 

electron out of it.  

 To get a better picture of the periodicity of the changes in the current of the device, the 

voltage at which a sharp change in the current occurred was tabulated in Table 5.1. From Table 

5.1, it can be seen that the average step width (the average distance between the adjacent 

arrow positions) is very periodic with a periodicity DSVΔ of 46 ± 3 mV which suggests that only a 

single 10 nm Au nanoparticle takes part in the single-electron transport in the device [5.5, 5.6]. 

The average voltage interval DSVΔ  for this device is ~ 46 meV and is about two times greater 

than the room temperature thermal energy of 25 meV permitting the observation of single-

electron phenomena at room temperature.  
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Figure 5.11 Plot of the I-V characteristics of a double junction single-electron device using 10 
nm diameter Au nanoparticles as the Coulomb islands. The current-voltage characteristics of 
the device show a clear Coulomb blockade and Coulomb staircase at room-temperature. Each 
arrow in the plot indicates source-drain voltage at which there is a sharp change in the current 
of the device.  
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Table 5.1 Voltage data points corresponding to arrow positions from Figure 5.11 

Arrow Index (Ai) Voltage corresponding to Ai (Vi) mV Abs (Vi – Vi-1) mV 

1 -150 — 

2 -104 46 

3 -54 50 

4 -12 42 

5 36 48 

6 82 46 

7 130 48 

8 174 44 

 

 

Also, the step periodicity DSVΔ  of the Coulomb staircase is inversely proportional to the larger 

of the capacitances SC  and DC  of the tunnel junctions and is given by: 

                                                 ),max( DS
DS CC

eV =Δ                                                        (5.1) 

This gives max( DS CC , ) as 3.5 ± 0.2 aF which is a reasonable value considering that the self-

capacitance selfC  for a 10 nm Au nanoparticle ( 5=r  nm) embedded in silicon oxide ( 4=rε ) 

is 2.2 aF.   

 The self capacitance, selfC , of a spherical particle is given by:  

                                                           rC rself επε 04=                                                           (5.2)   

where 0ε , rε  and r are vacuum permittivity, dielectric constant of the surrounding medium, and 

particle radius, respectively. Figure 5.12 shows the high degree of periodicity of the Coulomb 

staircase from the data obtained from Table 5.1. 
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Figure 5.12 Plot of the voltage data points corresponding to the arrow positions at which a sharp 
change in current is observed for the single-electron device with 10 nm diameter Au 
nanoparticles as Coulomb islands. The values for the voltages are obtained from the I-V plot of 
the device shown in Figure 5.11 and tabulated in Table 5.1. The average step width DSVΔ  (the 
average distance between adjacent arrow positions) is 46 ± 3 mV. This highly periodic step size 
confirms that the single-electron tunneling is taking place only through a single nanoparticle that 
is positioned in the right tunneling range from the source and the drain electrodes. 
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5.3 Coulomb staircase in a double junction single-electron device using 20 nm Au nanoparticles 

 The fact that the observed single-electron phenomena for the single-electron device 

using 10 nm Au nanoparticles originated from the nanoparticles and not from any contamination 

that might have been introduced during the fabrication process was verified in the following way. 

Another batch of single-electron devices was fabricated to be used in conjunction with 20 nm 

diameter Au nanoparticles as the Coulomb islands. For this, a thicker layer of PECVD oxide (21 

nm) was deposited to create a wider insulating gap between the source and drain electrodes. 

The completed devices were characterized using the Agilent 4157 B semiconductor parameter 

analyzer at a temperature of 10 K.  

 Figure 5.13 shows the current-voltage characteristics of a single-electron device with 20 

nm Au nanoparticles as the Coulomb islands. For this device, the voltage was swept from -100 

mV to 100 mV in increments of 2 mV. Similar to the single-electron device described previously 

in section 5.3, this device too exhibited clear Coulomb blockade and Coulomb staircase which 

verified that single-electron transport was taking place through the 20 nm diameter Au 

nanoparticle in this device as well. Each voltage data point in Figure 5.13 where a sharp change 

in the current was observed and marked with arrows numbered 1 to 5. The table below lists the 

voltage data points corresponding to the arrow markers where the abrupt change in the current 

for the device occurs. 

 

Table 5.2 Voltage data points corresponding to arrow positions from Figure 5.13 

Arrow Index (Ai) Voltage corresponding to Ai (Vi) mV Abs (Vi – Vi-1) mV 

1 -30 — 

2 -10 20 

3 8 18 

4 30 22 

5 50 20 
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Figure 5.13 Plot of the I-V characteristics of a double junction single-electron device using 20 
nm diameter Au nanoparticles as the Coulomb islands. The current-voltage characteristics of 
the device show a clear Coulomb blockade and Coulomb staircase at a temperature of 10 K. 
Each arrow marker in the plot indicates the source-drain voltage at which there is a sharp 
change in the current of the device. 
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For this device, over a voltage range of 200 mV, the steps of the Coulomb staircase were very 

periodic with a periodicity of 20 ± 2 mV as measured from the distance between neighboring 

arrows markers from Figure 5.13 which are listed in Table 5.2. Figure 5.14 shows the high 

degree of periodicity for the steps of the Coulomb staircase in this single-electron device. 

It is known that the width of the Coulomb blockade and Coulomb staircase depends on 

the size of the Coulomb island. This is exactly what was observed when the I-Vs from the 

single-electron devices with 10 nm and 20 nm Au nanoparticles were compared. For the device 

with 20 nm Au nanoparticles, the average step width of the Coulomb staircase was found to be 

20 ± 2 mV which is about half of the width of the single-electron device processed with 10 nm 

Au nanoparticles as the Coulomb islands, 46 ± 3 mV. From equation (5.1), max( DS CC , ) for the 

device processed with 20 nm Au nanoparticle is 8.0 ± 0.7 aF. This value is about twice that of 

the device with 10 nm Au nanoparticles, 3.5 ± 0.2 aF. These values are in close proximity 

considering that the proportionality of the self-capacitance with particles of different diameters 

are given by equation (5.2). This dependence of the width of the step periodicity of the Coulomb 

staircase with differing sizes of Coulomb islands proves the single-electron behavior of the 

devices originated from a single Au nanoparticle positioned between the source and the drain 

electrodes. 

 Simulation of the I-V data for the single-electron device with 20 nm Au nanoparticles 

was also done. The equations governing the current in a single-electron device as a function of 

the applied voltage between the electrodes were described previously in Chapter 2. Figure 5.15 

shows the simulated I-V for this device (red line) in comparison with the measured I-V data 

(blue dots). The simulation parameters were DC = 7.30 aF, SC = 0.88 aF, DR = 2.05 GΩ, and 

SR = 0.40 GΩ. A background charge of 0Q = 0.05e had to be incorporated in the simulation 

parameters. As can be seen from Figure 5.15, the simulated data and the experimental data are 

in excellent agreement. 
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Figure 5.14 Plot of the voltage data points corresponding to the arrow positions at which a sharp 
change in current is observed for the single-electron device with 20 nm diameter Au 
nanoparticles as Coulomb islands. The values for the voltages are obtained from the I-V plot of 
the device shown in Figure 5.13 and tabulated in Table 5.2. The average step width DSVΔ  (the 
average distance between adjacent arrow positions) is 20 ± 2 mV. This highly periodic step size 
confirms that the single-electron tunneling is taking place only through a single nanoparticle that 
is positioned in the right tunneling range from the source and the drain electrodes. 
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Figure 5.15 Comparison between the measured I-V characteristics (blue dots) and simulated I-V 
characteristics based on the orthodox theory (red line) of the double junction single-electron 
device using 20 nm diameter Au nanoparticles as Coulomb islands. The simulation parameters 
were DC = 7.30 aF, SC = 0.88 aF, DR = 2.05 GΩ, and SR = 0.40 GΩ, and background charge 

of 0Q = 0.05e. The simulated I-V data is offset vertically by 5 pA for clarity. 
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5.4 Coulomb blockade in a double junction single-electron device using 10 nm Au nanoparticles 

 If the Coulomb island is positioned between the source and the drain electrodes such 

that the tunneling junctions are asymmetrical (i.e., DDSS RCRC >>  or SSDD RCRC >> ), then 

Coulomb staircase will be observed in the single-electron devices in addition to Coulomb 

blockade [5.2, 5.4, 5.7]. Since our nanoparticles are positioned randomly in between the 

electrodes, the formation of an asymmetric tunneling junction is favored. However, symmetric 

junctions can be formed ( SSDD CRCR ≈ ) if the nanoparticle is positioned in between the two 

electrodes such that it is at the same tunneling distance from both the electrodes. In this case 

only a clear Coulomb blockade will be present without a Coulomb staircase. Symmetrical 

tunneling junctions imply that the number of electrons jumping into the Coulomb island per unit 

time is identical or almost identical to the number of electrons jumping out of the Coulomb island 

per unit time. This is manifested in the current-voltage characteristics of the device where a 

linear increase in the device current with increasing applied source-drain voltage will be 

observed beyond the region of Coulomb blockade. 

Figure 5.16 is the measured I-V characteristics of one such device measured at various 

temperatures starting from 10 K to 315 K. As can be seen from the plot, the Coulomb blockade 

is most pronounced at the lowest temperature and smears out gradually with increasing 

temperature. This happens because as the device temperature is raised, some electrons are 

thermally activated so that they have enough energy to tunnel through the barrier.  

I-V for this device was also simulated based on the orthodox theory. Figure 5.17 shows 

the simulated I-V for this device (red line) in comparison with the measured I-V data obtained at 

a temperature of 10 K (blue dots). The simulation parameters were DC = 3.5 aF, SC = 3.4 aF, 

DR = 1.8 GΩ, and SR = 2.1 GΩ. A background charge of 0Q = 0.07e had to be incorporated in 

the simulation parameters. It can be seen from Figure 5.17 that the simulated and measured 

current-voltage characteristics for the device are an almost identical match. 
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Figure 5.16 Plot of I-V characteristics of a double junction single-electron device using 10 nm 
diameter Au nanoparticles as Coulomb islands that has symmetrical tunneling junctions, 
measured at five different temperatures. Since the tunnel junctions are symmetrical, only a clear 
Coulomb blockade without the evidence of Coulomb staircase is observed. With increasing 
temperature, the blockade region gradually smears out due to thermally activated tunneling of 
electrons. Some remnant blockade can still be observed at 315 K. 
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Figure 5.17 Comparison between the measured I-V characteristics (blue dots) and simulated I-V 
characteristics based on the orthodox theory (red line) of the double junction single-electron 
device using 10 nm diameter Au nanoparticles as Coulomb islands. The simulation parameters 
were DC = 3.5 aF, SC = 3.4 aF, DR = 1.8 GΩ, and SR = 2.1 GΩ, and background charge of 

0Q = 0.07e. The simulated I-V data is offset vertically by 10 pA for clarity. 
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5.5 Coulomb blockade/staircase statistics for double junction  
single-electron devices with 10 nm Au nanoparticles 

 
 To get a statistical overview of the exhibition of Coulomb blockade/staircase for single-

electron devices, the Coulomb blockade/staircase data from eight different devices were 

considered. Each of these eight devices used 10 nm diameter Au nanoparticles as Coulomb 

islands. Since the step width of a single-electron device solely depends on the charging energy 

of the island, which in turn depends upon the size of the island, the average widths of the 

Coulomb blockade/ staircase from these devices were compared.  

 Figure 5.18 shows the average width DSVΔ  of the Coulomb blockade/staircase for all 

eight single-electron devices. Overall, the devices had an average Coulomb blockade/staircase 

width of 42.2 ± 12.7 mV. As can be seen from the plot, all except device 2 had an average 

Coulomb blockade/staircase step width of ~ 50 mV. Since the deviation in the size of the Au 

nanoparticles during synthesis is about 10% [5.8], such variations in the Coulomb 

blockade/staircase widths can be expected. The variations in the widths of the Coulomb 

blockade/staircase can also be attributed the presence of background charge ( 0Q ) in the 

device during measurements. These background charges usually get trapped during the device 

fabrication stage and are very difficult to eliminate. Since all of the devices, except for device 

number 2, show similar widths of Coulomb blockade/staircase, it can safely be concluded that 

the observed single-electron phenomena in the tested devices originate from the 10 nm Au 

nanoparticles and not from any impurities or contamination that might have been introduced 

during the fabrication steps. 

 The reason as to why device 2 exhibits a much smaller Coulomb blockade/staircase 

width can be attributed to the fact that it is probably two nanoparticles that are joined together 

which in combination act as one nanoparticle whose size is much larger than 10 nm. Since the 

width of the Coulomb blockade/staircase step is inversely related to the size of the Coulomb 

island, it could explain the anomaly in characteristics of device 2.  
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Figure 5.18 The step widths DSVΔ  of Coulomb blockade/staircase for eight different double 
junction single-electron devices. Each of the eight devices had 10 nm diameter Au 
nanoparticles as Coulomb islands. Overall, the eight devices had an average DSVΔ  of 42.2 ± 

12.7 mV. With the exception of device 2, all other devices had DSVΔ  ~ 50 mV.  
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5.6 Single-electron transistors using 10 nm Au nanoparticles 

 After successful demonstration of single-electron tunneling through metal nanoparticles 

with our proposed single-electron device structure, single-electron transistors were fabricated 

using all the steps outlined in Chapter 4. After wire bonding a device to the respective legs of 

the chip carrier the chip was mounted on the cryostat and the device cooled to a temperature of 

10 K.  

 Once the device was cooled down to this temperature, current-voltage characteristics 

were measured using the Agilent 4157 B semiconductor parameter analyzer. With the source-

drain bias kept constant at 10 mV, the gate bias was swept from -350 mV to 350 mV with 

increments of 7 mV.  

 Figure 5.19 shows the plot of the source-drain current DSI  as a function of the applied 

gate voltage GV . From the curve it can be seen that the device exhibits clear Coulomb 

oscillation peaks which are very periodically spaced. These periodically spaced Coulomb 

oscillations peaks are a definitive indication of single-electron transistor characteristics. The 

spacing between successive peaks GVΔ  was measured to be ≈ 205 mV.  

As was seen from the Coulomb blockade and Coulomb staircase data for double 

junction single-electron devices using 10 nm Au nanoparticles as Coulomb islands, the width of 

the Coulomb blockade is ~ 50 mV. The application of a source-drain bias of 10 mV initially and 

no gate bias means that the single-electron transistor will be under Coulomb blockade regime. 

Now, with the application of a positive gate bias, a stage is reached when a single electron can 

tunnel into the Coulomb island from the source electrode which is manifested as a spike in the 

source-drain current DSI  of the device known as a conductance peak. As the gate voltage is 

further increased, the island becomes stable with the extra electron and the device goes in to 

the Coulomb blockade regime again which is manifested as the valley between two successive 

Coulomb oscillation peaks.  
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Figure 5.19 Demonstration of Coulomb oscillations in a single-electron transistor using 10 nm 
diameter Au nanoparticles as Coulomb islands at a temperature of 10 K. The source-drain bias 
was kept constant at 10 mV and the gate bias was swept from -350 mV to 350 mV. The 
average gap between two successive Coulomb oscillation peaks GVΔ  was ≈ 205 mV. 
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 The current-voltage characteristics for this device were also measured at room 

temperature. As previously, the gate voltage was swept from -350 mV to 350 mV in steps of 7 

mV keeping the source-drain bias fixed at 10 mV. Figure 5.20 shows the plot of the source-drain 

current of the device as a function of the applied gate bias. As can be seen from the plot, the 

Coulomb oscillation peaks were distinctly visible even at room-temperature. The average gap 

between two successive Coulomb oscillation peaks GVΔ  for the room temperature 

measurement was also ≈ 205 mV. It must be noted that the peaks have broadened and the 

baseline current has increased considerably as compared to the measurement done at 10 K. 

This is because at room temperature, electrons can be thermally excited to take part in 

tunneling which results in an earlier onset and a delayed end to the Coulomb oscillation peak. 

The higher value of the baseline current can also be attributed to thermally activated electron 

tunneling which results in the Coulomb blockade region being smeared out (instead of being 

absolutely flat) as described previously for the case of a double junction single-electron device 

in section 5.4. 

 For this single-electron transistor, the effect of a constant gate voltage on the source-

drain current as a function of the source-drain voltage was also examined. With the device 

cooled to 10 K and in the absence of an applied gate bias, the source-drain voltage of the 

device was swept from -100 mV to 100 mV in increments of 2 mV. Next, the gate bias was fixed 

at 250 mV and the same source-drain voltage sweep for the device was carried out. Figure 5.21 

shows the effect of the gate biasing on the source-drain current/voltage characteristics of the 

single-electron transistor. The blue dots are the measured I-V at GV  = 0 V and the red 

diamonds are the measured I-V at GV  = 250 mV, respectively. In both the cases, the device 

exhibits a clear Coulomb blockade and Coulomb staircases, but most importantly, a shift in the 

position of the Coulomb blockade due to gate biasing is clearly visible. Hence, at a certain value  
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Figure 5.20 Demonstration of Coulomb oscillations in a single-electron transistor using 10 nm 
diameter Au nanoparticles as Coulomb islands at a temperature of 295 K. The source-drain bias 
was kept constant at 10 mV and the gate bias was swept from -350 mV to 350 mV. The 
average gap between two successive Coulomb oscillation peaks GVΔ  was ≈ 205 mV. 
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of source-drain bias, the device can either be conducting or show suppressed conductance for 

a specific gate voltage which is analogous to the operation of a transistor. 

Simulations based on the orthodox theory were also done for the single-electron 

transistor. From the spacing between the Coulomb oscillation peaks, the gate capacitance GC  

of the device was calculated to be = 
GV

e
Δ ~ 0.78 aF. Figures 5.22 and 5.23 are the 

comparisons between the experimentally observed I-Vs and simulated I-Vs without and with the 

application of gate bias, respectively. As can be seen, the experimental results are in excellent 

agreement with the theory. The simulation parameters for Figure 5.22 ( GV  = 0 V) were DC  = 

3.4 aF, SC  = 0.24 aF, GC  = 0.78 aF, DR  = 0.79 GΩ, SR  = 0.19 GΩ, and 0Q  = 0.05e.  

The simulation parameters for Figure 5.23 ( GV  = 250 mV) were DC  = 3.4 aF, SC  = 0.24 aF, 

GC  = 0.78 aF, DR  = 0.79 GΩ, SR  = 0.19 GΩ, and 0Q  = 0.05e.  
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Figure 5.21 Coulomb blockade and Coulomb staircase characteristics of a single-electron 
transistor when the applied gate bias, GV  = 0 V (blue dots) and when GV  = 250 mV (red 
diamonds). The Coulomb island size for this device was 10 nm and the electrical 
characterization was done at 10 K. A shift in the Coulomb blockade/staircase of the device is 
clearly observed demonstrating the effect of gate biasing on single-electron transistors.  
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Figure 5.22 Comparison between the measured I-V with GV  = 0 V in Figure 5.21 (blue dots) 

with the simulated I-V using the orthodox theory (red line). The simulation parameters are DC  = 

3.4 aF, SC  = 0.24 aF, GC  = 0.78 aF, DR  = 0.79 GΩ, SR  = 0.19 GΩ, and 0Q  = 0.05e. The 
simulated curve is shifted by 15 pA vertically for clarity. 
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Figure 5.23 Comparison between the measured I-V with GV  = 250 mV in Figure 5.21 (red 
diamonds) with the simulated I-V using the orthodox theory (red line). The simulation 
parameters are DC  = 3.4 aF, SC  = 0.24 aF, GC  = 0.78 aF, DR  = 0.79 GΩ, SR  = 0.19 GΩ, 

and 0Q  = 0.05e. The simulated curve is shifted by 15 pA vertically for clarity. 
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5.7 Statistics of Coulomb oscillations in single-electron transistors 

 To get a statistical overview of the Coulomb oscillations in single-electron transistors, 

ten different devices each using 10 nm diameter Au nanoparticles as Coulomb islands were 

electrically characterized at room temperature using the Agilent 4155 C semiconductor 

parameter analyzer. The source-drain biases DSV  for these devices were kept at a constant 

value of 10 mV and the gate voltage GV  was swept from -350 mV to 350 mV. The source-drain 

current DSI  was recorded against GV . The distance between the Coulomb oscillation peaks for 

each of the single-electron transistors was averaged and the results were plotted as shown in 

Figure 5.24. The measured interval between the Coulomb oscillation peaks for the ten devices 

had an average value GVΔ  of 183 mV (red line) with a standard deviation of ± 17 mV. The ~ 

10% standard deviation in the average values of GVΔ  most probably arises from the difference 

in the size of the Au nanoparticles during their synthesis [5.8]. If the particle size is larger, then 

the average GVΔ  will decrease due to the decrease in the charging energy of the island and 

GVΔ  will increase with the decrease in the size of the Coulomb island. 
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Figure 5.24 Average interval of Coulomb oscillation peaks GVΔ  for 10 different single-electron 
transistors measured at room temperature. All the 10 devices used 10 nm diameter Au 
nanoparticles as Coulomb islands. The red broken line is the average GVΔ  of 183 mV.  
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CHAPTER 6 

ELECTROSTATIC FUNNELING FOR PRECISE NANOPARTICLE PLACEMENT 

6.1 Introduction 

 In the preceding chapters the fabrication and the electrical characterization of single-

electron devices were presented. A step in the fabrication of the devices involved the formation 

of self-assembled monolayers (SAMs) of APTES on the surfaces of the exposed side-wall of the 

PECVD oxide and the native oxide of chrome. The formation of this SAMs layer was necessary 

to provide an attractive force on the negatively charged Au nanoparticles in the colloidal solution 

with which they could be positioned in the gap between the source and the drain electrodes. 

While the use of only one kind of SAMs layer considerably simplifies the process of device 

fabrication, the attachment of the nanoparticles on the device is completely random. The 

formation of APTES SAMs on both SiO2 and native oxide of chrome leads to the attraction of 

the nanoparticles from both surfaces as shown schematically in Figure 6.1 (a). This random 

attachment of nanoparticles on the device surface leads to most of the fabricated devices being 

open circuited. Statistically, more than 70% of the single-electron devices fabricated by using 

just one kind of SAMs had no nanoparticle positioned in the right tunneling range from the 

source and the drain electrodes resulting in no observation of Coulomb blockade, staircase, or 

oscillations in these devices. This non-ideal placement of the nanoparticles meant that the yield 

of the single-electron devices was close to 1%.  

 For practical applications of single-electron devices, a much higher device yield has to 

be attained. One method of achieving a larger yield could be to selectively attach the 

nanoparticles only on the exposed side-wall of the PECVD oxide and rather than randomly. This 

could be realized if the nanoparticles experienced a force of attraction from the exposed side-

wall of the PECVD oxide only and repulsive forces from the rest of the areas. In other words, if 
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Figure 6.1 Schematic illustration of random and selective attachment of nanoparticles on a 
single-electron device. (a) The random attachment of nanoparticles on the exposed side-wall of 
the PECVD oxide of a single-electron device. The random attachment leads to low device yield. 
(b) Controlled positioning of nanoparticles on a single-electron device. This could be a method 
of achieving higher yields for single-electron devices with the new device structure.  
 

 

 

(a) 

(b) 
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the single-electron device structure could be functionalized with two different kinds of SAMs 

layers such that the SAMs on the exposed side-wall of the PECVD oxide provided only 

attractive force on the nanparticles and the SAMs on the rest of the device area provided only 

forces of repulsion to the nanoparticles, then a selective placement of nanoparticles could be 

obtained as shown schematically in Figure 6.1 (b). With such controlled positioning of the 

nanoparticles, it could be ensured that most devices had more number of nanoparticles 

positioned between the electrodes in the current tunneling range thereby improving the yield.  

 In the characterization of single-electron transistors, it was seen that if each device unit 

had exactly one single nanoparticle, then the plot of the source-drain current DSI  as a function 

of the applied gate voltage GV  will show characteristic Coulomb oscillation peaks which are 

evenly spaced (please refer to Figures 5.19 and 5.20). If the number of nanoparticles in the 

device that contribute to single-electron transport is now two, then there will be two different 

sets of Coulomb oscillation peaks, each coming from a different particle. With several Coulomb 

islands attached to the device side-wall such that all of them are in the correct tunneling range 

between the electrodes, the I-V characteristics of the single-electron transistor would therefore 

comprise of as many sets of Coulomb oscillation peaks as the number of particles. If however, 

the Coulomb oscillations arising from each island are relatively in phase, then they would be 

superimposed on each other and an DSI  vs GV  characteristics as shown schematically in 

Figure 6.2 could be expected. In the figure, the Coulomb oscillation peaks arising from one 

nanoparticle is depicted in one kind of color. If the oscillation peaks from all the other particles 

are relatively closely spaced, then they could add up to give a broadened Coulomb oscillation 

peak (black line). The existence of several single-electron devices on a single piece of wafer 

could therefore open up the possibility of connecting them together to create integrated circuits.  
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Figure 6.2 Schematic of the DSI  vs GV  characteristics of a single-electron transistor that has 
several nanoparticles exhibiting Coulomb oscillations simultaneously. If the oscillations arising 
from each nanoparticle are relatively in phase, then the DSI  vs GV  characteristic would be the 
superimposition of the oscillations from the individual nanoparticles.  
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6.2 Concept of Electrostatic Funneling 

 In the recent past, several approaches have been investigated to place nanoscale 

building blocks such as nanoparticles, nanowires, carbon nanotubes, DNA, proteins, etc. on 

specified substrate locations. These include the use of microfluids [6.1, 6.2], electric fields [6.3, 

6.4], magnetic field [6.5], surface functionalization [6.6-6.10], capillary forces [6.11-6.13], 

biological templates [6.14-6.19], and scanning probe microscopy [6.20]. Although these 

methods and many others have had significant success is demonstrating precise positioning of 

nanostructures, large-scale placement using these methods have yet to be demonstrated.  

In the earlier chapters, the fabrication of single-electron devices with the new device 

structure was shown to be a large-scale process. To improve device yield, the process of 

assembling nanoparticles on targeted substrate locations must meet three very important 

requirements: 

• Large-scale assembly: The new scheme of assembling nanostructures must 

be scalable so that it can be applied to processes preferably over a wafer-

scale. This will enable the fabrication of millions of devices which require 

precise positioning of nanocomponents to be done simultaneously (parallel 

processing). 

• Nanoscale precision in placement: The placement precision of the 

nanostructures with this scheme must be such that it is at least comparable to 

the physical dimensions of the nanostructure being assembled.  

• CMOS compatibility: Most electronic/optical devices and chemical/biological 

sensors made using nanostructures are fabricated over a CMOS based chip. 

The compatibility of the new scheme with CMOS based processes might 

ensure a practical method of fabricating integrated systems of nanoscale 

devices and sensors.  
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Figure 6.3 schematically demonstrates the concept of “Electrostatic Funneling”. In this, 

a substrate having alternating lines of two different materials are functionalized such that one 

material has a positive charge and the other material has a negative charge in an aqueous 

solution. When such a substrate is immersed in an aqueous solution containing negatively 

charges nanoparticles, the substrate and the nanoparticles interact in the liquid medium via 

double layer interaction [6.21]. The interaction energy between a negatively charged particle 

and the alternating lines of positively and negatively charged regions of the substrate will have a 

maxima and minima as illustrated in Figure 6.3 (a). When a nanoparticle is being attracted by 

the positively charged region of the substrate, it will start to move in the direction of the 

attractive forces. At the same time, it experiences a repulsive force from the negatively charged 

regions of the substrate. This concurrent attractive and repulsive force on the nanoparticle 

produces a gradient in the interaction energy in a direction parallel to the substrate ( X  direction 

in Figure 6.3). As a result of this the nanoparticle will experience a lateral force in additional to 

the vertical force of attraction which will push it towards the center of the positively charged 

region. Once a nanoparticle occupies a position on the substrate, it will repel other 

nanoparticles (since they are charged with the same polarity) such that the approach of other 

nanoparticles to the same substrate site is prohibited.   

 The forces of attraction and repulsion on a nanoparticle will also be a function of its 

separation from the substrate surface. This means that a nanoparticle nearer to the substrate 

surface will experience greater forces than a nanoparticle that is far away from it. Hence a 

virtual funnel is created near the substrate surface which only allows directed movement of the 

nanoparticles.  

 Another important aspect of electrostatic funneling is that it is possible to functionalize 

an entire wafer at the same time allowing large-scale placement of nanoparticles in parallel 

processing.  
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Figure 6.3 Schematic of the electrostatic funneling scheme for precise nanoparticle positioning. 
(a) A schematic of the electrostatic interaction energy in an aqueous solution for a negatively 
charged nanoparticle near a substrate functionalized with positively and negatively charged 
molecules. (b) The nanoparticles (red dots) are guided towards the centers of the positively 
charged regions of the substrate where the interaction energy is minimum. 
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6.3 Experimental procedures for electrostatic funneling 

 Figure 6.4 outlines the experimental procedures followed to demonstrate electrostatic 

funneling. A wafer comprising of alternating lines of copper and silicon oxide was used as the 

starting substrate. The copper and silicon oxide lines were defined using damascene 

technology [6.22] on a 200 mm silicon wafer. The widths of the copper and silicon oxide lines 

were 120 nm and 80 nm, and the height of the copper lines were ~ 5 nm lower than the silicon 

oxide lines as measured with an AFM. The wafer was cut into small pieces of size about 2 cm × 

2 cm and rinsed in acetone followed by cleaning in a UV-O3 chamber for 30 minutes to remove 

residual organic impurities. Immediately following this step, the wafer was immersed in a 1% 

citric acid solution in DI water for 15 minutes to remove any copper oxide from the surfaces of 

the copper lines. The wafer was then rinsed thoroughly in DI water and dried under a stream of 

compressed nitrogen. The copper regions of the wafer were then selectively electroless plated 

with gold of thickness ~ 15 nm (the reason for plating the copper surfaces only with gold will 

become obvious later). This was done by immersing the wafers into an electroless plating 

solution (Alfa Aesar; major components of the plating solution are KAu(CN)2, NH4OH, and 

water) maintained at 65 °C for 45 seconds followed by rinsing in pure ethanol (200 proof) and 

then with copious amounts of DI water. The plating resulted in the Au-coated copper lines now 

being ~ 10 nm higher than the silicon oxide lines as measured with AFM.  

 Positive and negative charges were imparted to the silicon oxide and gold regions, 

respectively, using self-assembled monolayers (SAMs) [6.23-6.24]. To obtain a positive charge 

exclusively on the surfaces of the silicon oxide regions, the wafer was immersed into a 1 mM 

solution of (3-aminopropyl)triethoxysilane (APTES, (C2H5O)3-Si-(CH2)3-NH2, 99%; Sigma-

Aldrich) in chloroform for 30 minutes at room temperature followed by rinsing with 2-propanol 

and drying under a stream of nitrogen gas. This was followed by providing a negative charge 

only to the gold coated copper areas by immersing the wafer in a 5 mM solution of 16-

mercaptohexadecanoic acid (MHA, HS-(CH2)15-COOH, 99%; ProChimia, Poland), in ethanol for 
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Figure 6.4 Experimental procedures followed to demonstrate electrostatic funneling. (a) Starting 
structure in which copper lines (brown) are embedded in silicon oxide dielectric (green) 
fabricated on a 200 mm wafer. (b) Electroless plating of the exposed copper lines with gold (c) 
Selective formation of self-assembled monolayers (SAMs) of APTES (–NH2; –NH3

+) on silicon 
oxide regions and MHA (–COOH; –COO–) on gold regions, respectively. These SAMs provide 
the silicon oxide surfaces with a positive charge and the gold surfaces with a negative charge, 
repectively, in an aqueous medium. (d) Immersion of the wafer into a colloidal solution 
containing negatively charged Au nanoparticles. 
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3 hours at room temperature, followed by rinsing in a 1% solution of HCl in ethanol and drying 

under compressed nitrogen gas.  

 The wafer was then immersed into a colloidal solution of negatively charged gold 

nanoparticles of mean diameter ~ 20 nm (3.5 × 1011 particles/ml; Ted Pella Inc.) for 30 minutes 

at 4 °C. After removing the wafer from the gold colloid, the sample was rinsed with methanol 

and dried under nitrogen gas. The samples were then imaged under a field emission scanning 

electron microscope (FE-SEM). 

 

6.4 Effectiveness of electrostatic funneling 

 Figure 6.5 is the representative FE-SEM image of the wafer after the attachment of Au 

nanoparticles from the previous step. As can be seen from the image, the electrostatic funneling 

method is a very effective in positioning several nanoparticles simultaneously along the centers 

of the silicon oxide lines.  

 To get a statistical idea as to how good this alignment was, the deviation of each 

nanoparticle from the centers of the silicon oxide line was measured. From all the 217 particles 

that are present in the image the standard deviation was found to be 6.2 nm which is about 3 

times smaller than the size of the nanoparticle itself.  

 From the figure, it can also be seen that the nanoparticles are very regularly spaced 

with a mean separation of ~ 50 nm from the center of one particle to another. This is because 

the nanoparticles share the same charge polarity and are almost of the same physical 

dimensions (<10% variation) [6.25]. These facts combined create a similar effective repelling 

force between pairs of nanoparticles. It will be shown later in this chapter that the particle to 

particle separation matches very well with the theoretical calculations.   
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Figure 6.5 FE-SEM image showing the effectiveness of the electrostatic funneling method for 
precise positioning of nanoparticles. The 20 nm Au nanoparticles (bright dots) are placed along 
the centers of the silicon oxide lines (dark bands). The bright bands running parallel to and 
alternating the silicon oxide lines are gold lines. Scale bars = 100 nm. 
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The effectiveness of the electrostatic funneling scheme is not only applicable to the 

alternating lines of gold and silicon oxide as shown in Figure 6.5 but can be applied to a variety 

of geometries as long as the proper electrostatic funnel is created. Figure 6.6 shows the FE-

SEM image in which the substrate pattern has been changed from a line to a dot of diameter ~ 

100 nm. This pattern was formed using electron beam lithography on a silicon substrate, metal 

evaporation, and lift-off processes. After cleaning the samples, SAMs of APTES and MHA were 

formed on the silicon oxide and the gold surfaces, respectively, and the samples were 

immersed in a colloidal solution of 20 nm Au nanoparticles for 24 hours. Immediately 

afterwards, samples were rinsed in methanol and dried under nitrogen gas as before. From the 

FE-SEM image of the sample, it can be seen that almost all the circular patterns are occupied 

by exactly one nanoparticle. Once a nanoparticle occupies a site, it prohibits the approach of 

other nanoparticles due to the same polarity of their surface charges.  

 This method of precisely positioning nanoparticles can also be applied to a 3-

dimensional step structures similar to the new single-electron device structure shown 

schematically in Figure 3.3. Figure 6.7 shows three such step structures comprising of a layer of 

silicon oxide (black band) which is sandwiched between two gold layers (bright areas). These 

structures were fabricated using a combination of optical lithography, metal evaporation, 

dielectric sputtering, and lift-off process. The thickness of the metal and dielectric layers is 

different in the three structures shown in the figure to create proper electrostatic funnels for 

different sizes of Au nanoparticles to be aligned. After cleaning the wafers, SAMs of APTES and 

MHA were formed on the silicon oxide and the gold surfaces, respectively. The samples were 

then immersed into Au colloids of diameters ~ 200, ~ 80, ~ 50 nm (all negatively charged in 

their colloidal solution; Ted Pella Inc) for 30, 20, and 10 minutes respectively. After sample 

rinsing and drying described previously, they were imaged under the SEM. The effectiveness of 

the guidance structure is clearly seen in this case too which results in the different sizes of Au 

nanoparticles all being aligned along the centers of the positively charged silicon oxide regions.  
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Figure 6.6 FE-SEM of a sample demonstrating the effectiveness of electrostatic funneling for 
single particle placement. The bright dots are ~20 nm Au nanoparticles and the dark circular 
patterns are silicon oxide surfaces functionalized with SAMs of APTES. The bright area is Au 
surface functionalized with SAMs of MHA. For most of the circular features, only one 
nanoparticle occupies a site.  
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Figure 6.7 FE-SEM of samples in which the electrostatic funneling scheme was used to 
precisely align nanoparticles on a 3-dimensional step structure similar to the new single-electron 
device structure. (a) Alignment of ~ 200 nm Au nanoparticles. (b) Alignment of ~ 80 nm Au 
nanoparticles. (c) Alignment of ~ 50 nm Au nanoparticles. Scale bars = 400 nm. 
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6.5 Interaction between charged surfaces and nanoparticles in an aqueous medium 

 To get a more quantitative picture of the interaction between the nanoparticle and 

substrate, the interaction energies were calculated based on the DLVO theory [6.21, 6.26]. The 

interaction energies between an Au nanoparticle and an infinite surface functionalized with 

either APTES or MHA was first calculated. The total interaction energy, )(zV j , is the sum of the 

double layer interaction energy, )(zjΦ and the van der Waals interaction energy, )(zW j , 

where j represents the surface type (functionalized with MHA or APTES) and z is the separation 

between the nanoparticle surface and the functionalized substrate.  

                                              )()()( zWzzV MHAMHAMHA +Φ=   

                                                                     and 

                                              )()()( zWzzV APTESAPTESAPTES +Φ=                                        (6.1) 

6.5.1 The electric double layer  

 To understand the electric double layer interaction between charged surfaces in a liquid 

medium, the nature of events that take place when a charged surface is immersed in an 

aqueous medium must be understood. If a charged surface is immersed in a solution containing 

ions as show in Figure 6.8, then near the surface there is an accumulation of counterions (ions 

of the opposite charge to the surface charge) and a depletions of co-ions (ions of the same 

charge to the surface charge). The charge on the surface is balanced by the counterions which 

accumulate near the surface forming a region known as the Stern layer or Helmholtz layer 

[6.21].  Beyond this Stern or Helmholtz layer, the rest of the ions form an atmosphere around 

the charged surface known as the diffuse electric double layer. Since the double layer forms to 

neutralize the charged surface, it causes a rearrangement of ions near the charged surface 

which extends into the bulk liquid. The rearrangement of ions causes an electrokinetic potential 

difference to develop between the charged surface and any point in the mass of the electrolyte 

in which it is immersed. This voltage difference that is set up is known as the electrostatic 
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surface potential (ψ ).The magnitude of the electrostatic surface potential is related to the 

surface charge density (σ ) of the charged surface and the thickness of the double layer. As 

one moves away from the charged surface, the potential drops linearly in the Stern layer and 

then exponentially through the double layer. In order to calculate the strengths of the forces 

between charged surfaces, it is therefore essential to know the surface potentials of the charged 

surfaces in a given electrolyte. The surface potential is known to depend on the level of ions 

present in the electrolyte and can be calculated by solving the non-linear Poisson-Boltzmann 

equation [6.21]: 

                              )/)(exp()( 0
0

2 kTrezzer i
i

ii
r

rr ψρ
εε

ψ −−=∇ ∑                                      (6.2) 

where e is the unit charge of an electron, rε is the dielectric constant of water, 0ε is the 

permittivity of free space, iz  is the valency of ion species i , i0ρ  is the ion concentration of ion 

species i  in the bulk, k is the Boltzmann constant, andT  is the absolute temperature. 

 There is no exact analytical solution to the non-linear Poisson-Boltzmann equation 

except for a planar geometry. However, numerical solutions [6.27] and approximate analytical 

expressions [6.28-6.31] to the non-linear Poisson-Boltzmann equation are available. Using 

these numerical solutions and approximations the interaction energies between charged 

surfaces and nanoparticles and between pairs of nanoparticles have been calculated.  
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Figure 6.8 Schematic of the rearrangement of ions in an electrolyte when a charged surface is 
immersed into it. Near the charged surface there is an accumulation of counterions and a 
depletion of co-ions. The ion concentrations decrease exponentially as one moves from the 
surface in to the bulk solution.  
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6.5.2 Calculation of double layer interaction energies 

 The double layer interaction energies between a nanoparticle and a MHA functionalized 

substrate, )(zMHAΦ , and that between a nanoparticle and an APTES functionalized 

substrate, )(zAPTESΦ , can be calculated using the linear superposition approximation [6.29, 

6.32, 6.33] (LSA) and is given by: 

                                    )exp()(4)( 2
0 zYYe

kTaz MHAAuMHA κπεε −=Φ  

                                                                           and 

                                    )exp()(4)( 2
0 zYYe

kTaz APTESAuAPTES κπεε −=Φ                             (6.3) 

where ε is the dielectric constant of water, 0ε is the permittivity of free space, a is the radius of 

a Au nanoparticle, k is the Boltzmann constant, T is the absolute temperature, e  is the 

electronic charge, and AuY , MHAY , and APTESY  are the effective reduced surface potentials 

[6.27-6.29] of an isolated Au nanoparticle, an isolated MHA functionalized substrate and an 

isolated APTES functionalized substrate, respectively. κ is the inverse Debye length defined by 

[6.21, 6.34]  
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where AN  is the Avogadro’s number, iz is the valency of the ion species i and iM  is the molar 

concentration of ion species i . The aqueous 20 nm gold colloid solution contains Na+, citrate 

ions (C6O7H7
–, C6O7H6

2–, C6O7H5
3–), Cl–, H3O+, and OH– ions. Their concentrations at a pH of 

6.6 are [Na+] = 7.8 × 10–6 M, [C6O7H7
–] = 1.5 × 10–8 M, [C6O7H6

2–] = 1.0 × 10–6 M, [C6O7H5
3–] = 

1.6 × 10–6 M, [Cl–] = 1.2 × 10–6 M, [H3O+] = 2.5 × 10–7 M, and [OH–] = 4.0 × 10–8 M. Substituting 

these values in equation 6.4 gives the Debye length, 1−κ , for the gold colloid as 81.5 nm.  
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6.5.3 Calculation of effective reduced surface potentials 

 The effective reduced surface potentials AuY , MHAY , and APTESY  are related to the 

asymptotic expression of the electrostatic potentials )(rAuψ , )(rMHAψ , and )(rAPTESψ for an 

isolated Au nanoparticle, and isolated MHA functionalized substrate and an isolated APTES 

functionalized substrate, respectively, by: [6.27-6.29, 6.32] 
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For a given electrolyte condition, the effective reduced surface potentials AuY , MHAY , and APTESY  

are functions of the actual surface potentials Aus,ψ , MHAs,ψ , and APTESs,ψ  of a Au nanoparticle, 

MHA, and APTES functionalized surfaces, respectively. The surface potentials Aus,ψ , MHAs,ψ , 

and APTESs,ψ  are functions of the surface charge densities Auσ , MHAσ , and APTESσ  of a Au 

nanoparticle, MHA and APTES functionalized substrates, respectively [6.21, 6.27, 6.30]. For the 

calculation of AuY , MHAY , and APTESY , the approximate analytical expression by Ohshima [6.28, 

6.30] were used.  
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6.5.4 Calculation of effective reduced surface potentials for planar geometry 

 For planar surfaces functionalized with either MHA or APTES, MHAY , and APTESY  are 

related to their surface potentials MHAs,ψ , and APTESs,ψ  by [6.28]. 
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where iz is the valency of the ion species i , and iM  is the molar concentration of ion species 

i . 

 For planar surfaces, the relationship between the surface potential sψ ( MHAs,ψ  or 

APTESs,ψ ) and the surface charge density σ  ( MHAσ  or APTESσ ) is given by the Grahame 

equation [6.21] 

                              ∑
⎭
⎬
⎫

⎩
⎨
⎧ −=

−

i

kT
ez

iA

si

eMkTN )1()2(1000 0
2

ψ
εεσ                                      (6.8) 

where AN  is the Avogadro’s number, ε is the dielectric constant of water, and 0ε is the 

permittivity of free space. Once MHAσ  and APTESσ  are known, MHAY  and APTESY  can be 

calculated using equations (6.6), (6.7), and (6.8). 
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The value of the surface charge density for a carboxyl terminated surface, MHAσ , was 

obtained from the detailed AFM measurements by Kane and Mulvaney, where the surface 

potential data at various pH values and ionic strengths were reported [6.35]. For each of their 

experimental conditions, the surface charge density was calculated using the Grahame 

equation (6.8). The results of the obtained surface charge densities are summarized in Table 

6.1. 

Table 6.1 The surface charge densities of carboxyl terminated surfaces in an aqueous solution 
of varying ionic strengths. 
 

Electrolyte condition a Surface Potential a 

(at pH ~ 6.5) 

Surface Charge Density b 

0.03 mM NaNO3 -87 (mV) – 0.0017 (C/m2) 

0.1 mM NaNO3 -57 (mV) – 0.0016 (C/m2) 

1 mM NaNO3 -23 (mV) – 0.0015 (C/m2) 

a Data from Kane and Mulvaney [6.35] 
b Calculated values using the Grahame equation (6.8) 
 
It should be noted from Table 6.1 that for the same pH, the surface charge density remains the 

same irrespective of the ionic strengths. This is because the deprotonation of H+ from the 

carboxyl group is governed by the pH value and not by the concentration of other ions unless 

they are strongly bound to the carboxyl group. A surface charge density of – 0.0017 (C/m2) was 

used for the MHA functionalized substrate in the calculation of the interaction energies.  

 For the surface charge density of APTES functionalized surface, APTESσ , a reported 

value of 0.0042 (C/m2) was used. This value was obtained with laser Dopper electrophoresis 

[6.36]. 

 With the known values of MHAσ  and APTESσ , the surface potentials MHAs,ψ  and 

APTESs,ψ , and the effective reduced surface potentials MHAY  and APTESY  were calculated using 

equations (6.6), (6.7), and (6.8). Table 6.2 summarizes the calculated results. 
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Table 6.2 Surface potentials is,ψ  and the effective reduced surface potentials iY  calculated 

from equations (6.6), (6.7) and (6.8) and known charge densities iσ  under the ionic strength 
used for the experiments. 
 

Surface 

Functionalization 

Surface charge 

density iσ  

Surface potential is,ψ Effective reduced 

surface potential iY  

MHA – 0.0017 (C/m2) –120 (mV) – 5.62 

APTES 0.0042 (C/m2) 69 (mV) 1.07 

 

    

6.5.5 Calculation of effective reduced surface potentials for spherical geometry 

 For a spherical Au nanoparticle, the effective reduced surface potential, AuY , is given 

by [6.28] 
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The relationship between the surface potential, Aus,ψ , and the surface charge density, Auσ , is 

obtained through [6.30] 
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From equations (6.9) to (6.12) the effective reduced surface potential, AuY , can be calculated 

once the surface charge density, Auσ , is known.  

 The surface charge density, Auσ , was obtained from the AFM experiment by Biggs et 

al., who deduced the surface potentials from measurements of forces between a Au surface 

and a Au coated cantilever in aqueous trisodium citrate solutions at different concentrations. 

From the surface potentials obtained for given trisodium citrate concentration, the surface 

charge densities were calculated using the Grahame equation (6.8). The results are 

summarized in Table 6.3. It should be noted that the surface charge densities remain almost the 

same even though trisodium citrate concentrations varied about two orders of magnitude. This 

can be easily understood, as in the case of carboxyl terminated surface discussed earlier, 

because the citrates strongly adsorb on the Au surfaces [6.37, 6.38] and their deprotonation 

remains the same for a given pH. The surface charge density value of – 0.0028 (C/m2) for used 

in the calculation of AuY since its corresponding trisodium citrate concentration is close to that 

of the Au colloid used in the experiments.  

 From equations (6.9) to (6.12) and with – 0.0028 (C/m2) for Auσ , the effective reduced 

surface potential for a Au nanoparticle of 10 nm radius, AuY , was obtained as – 1.59.  

 Table 6.4 summarizes the effective reduced surface potentials MHAY , APTESY , and AuY . 
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Table 6.3 The surface charge densities of Au surfaces in aqueous trisodium citrate solutions of 
varying concentrations. 
 

Trisodium citrate 

concentration a 

Surface Potential a 

(at pH 6.3) 

Surface Charge Density b 

6 × 10–6 M – 125 (mV) – 0.0028 (C/m2) 

1 × 10–4 M – 84 (mV) – 0.0050 (C/m2) 

3 × 10–4 M – 53 (mV) – 0.0045 (C/m2) 

a Data from Biggs et al.. [6.38] 
b Calculated values using the Grahame equation (6.8) 
 
 

Table 6.4 Summary of all the effective reduced surface potentials calculated for the ionic 
strength used in the experiments. 
 

MHAY  APTESY  AuY  

– 5.62 1.07 – 1.59 

 

 

 

 The van der Waals interaction energies )(zWMHA and )(zWAPTES are given by [6.21] 

                                                         
z

aAzW MHA
MHA 6

)( −=  

                                                                           and  

                                                         
z

aA
zW APTES

APTES 6
)( −=                                               (6.13) 

where MHAA  and APTESA  are the Hamaker constants for the system of Au/MHA/water/Au and 

SiO2/APTES/water/Au, [6.39, 6.40] the reported values of which are 2.5 × 10–19 and 5.7 × 10–19 

J, respectively [6.41, 6.42]. 
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6.5.6 Calculation of total interaction energies 

From equations (6.1), (6.3), (6.4), and (6.13), the total interaction energies )(zVMHA and 

)(zVAPTES are obtained and plotted as shown in Figure 6.9 and 6.10, respectively.  The 

calculation results shown in these plots reveal the nature of the guiding forces seen in the 

experiments. The total interaction energies )(zVMHA  and )(zVAPTES  are dominated by the 

electrostatic double layer interactions as long as the nanoparticle surface separation is more 

than 10 nm. For MHA functionalized substrates, the interaction with a Au nanoparticle is 

repulsive (positive interaction energies) and for APTES functionalized substrates, the 

interactions are attractive (negative interaction energies), as expected from the surface charge 

states of Au nanoparticles, MHA, and APTES.  

 Most importantly, the plots indicate that the interactions are of long range: for the 

interaction between a Au nanoparticle with MHA functionalized substrates, the interaction 

energy, )(zVMHA , reaches the room temperature thermal energy of ~ 25 meV at ~ 370 nm away 

from the substrate surface. For the interaction between a Au nanoparticle and an APTES 

functionalized surface, )(zVAPTES , reached room temperature thermal energy of ~ 25 meV at ~ 

270 nm from the substrate surface.  
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Figure 6.9 The total interaction energy )(zVMHA  between a 20 nm Au nanoparticle (a = 10 nm) 
and a MHA functionalized substrate (red line) as the sum of the double layer interaction energy 

)(zMHAΦ  (blue dashed line), and the van der Waals interaction energy )(zWMHA  (green dotted 
line). 
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Figure 6.10 The total interaction energy )(zVAPTES  between a 20 nm Au nanoparticle (a = 10 
nm) and an APTES functionalized substrate (red line) as the sum of the double layer interaction 
energy )(zAPTESΦ  (blue dashed line), and the van der Waals interaction energy )(zWAPTES  
(green dotted line). 
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6.6 Interaction between two identical nanoparticles in an aqueous medium 

 The electrical double layer interaction energy between two identical Au 

nanoparticles, )(zAuΦ , can be calculated by [6.28, 6.33] 
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where a is the nanoparticle radius ( a = 10 nm for my experiments) and z is the separation 

between the particle surfaces. 59.1−=AuY  (Table 6.4) and 
5.81

1
=κ nm–1, was used in 

equation (6.14) to give the double layer interaction energy between a pair of 20 nm Au 

nanoparticles.  

 The van der Waals interaction energy between a pair of nanoparticles, )(zWAu , is given 

by [6.21] 

                                                          z
aAzW Au

Au 12)( −=                                                  (6.15) 

where AuA is the Hamaker constant for Au-water-Au system, which is equal to 2.5 × 10–19 J 

[6.41]. Inserting these values into equation (6.15), the van der Waals forces of attraction 

between two similar Au nanoparticles in the colloid can be obtained.  

 The total free energy of interaction, )(zVAu , is the sum of the double layer interaction 

energy and the van der Waals interaction energy. Figure 6.11 shows the free energy of 

interaction between a pair of 20 nm diameter Au nanoparticles as a function of the distance 

between their surfaces. From the plot, it can be seen that )(zVAu reaches the room temperature 

thermal energy of 25 meV at z ~70 nm. This value agrees very well with the observed inter-

particle separations of ~ 50 nm in Figure 6.5.  
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Figure 6.11 The total interaction energy )(zVAu  between a pair of 20 nm Au nanoparticles (a = 

10 nm) as the sum of the double layer interaction energy )(zAuΦ  (blue dashed line), and the 

van der Waals interaction energy )(zWAu  (green dotted line). 
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6.7 Application of electrostatic funneling in the fabrication of single-electron devices 

 The electrostatic funneling method has been successful in aligning Au nanoparticles on 

the side-walls of a 3-dimersional step structure as shown in Figure 6.7. This step structure 

consisted of a layer of silicon oxide which was sandwiched between two gold electrodes similar 

to the new single-electron device structure. For single-electron transport to take place the 

dielectric between the source electrode and the island and between the island and the drain 

must be thin (~1 nm) so that electron tunneling can occur in the device. It can be seen from 

Figure 6.7 that the insulating gap between the Au nanoparticle and the top and bottom metal 

layers are much larger than what is desirable for single-electron tunneling. The reason as to 

why this happens is because the repelling forces on the nanoparticles exerted by the surfaces 

functionalized with MHA (Au surfaces) are very large thus pushing the nanoparticles to greater 

distances away from the surfaces.  

 To apply the electrostatic funneling scheme for single-electron devices, the thickness of 

the silicon oxide layer must be comparable to the size of the Au nanoparticle (ideally, the 

thickness of the silicon oxide layer must be ~1-2 nm more than the size of the Au nanoparticle) 

so that tunneling barriers of the desired thickness can form on either side of the island. Also, the 

nature of the guiding forces on the nanoparticles to be aligned must be such that it does not 

experience a very large repelling force but large enough so that they position themselves on the 

exposed silicon oxide side-wall between the two electrodes.  

Figure 6.12 is the schematic of how the electrostatic funneling scheme can be applied 

in the fabrication of single-electron devices. In the structure, the silicon oxide areas were 

functionalized with APTES SAMs (described earlier) but the negatively charged SAMs on the 

gold surface was replaced with nonpolar SAMs using n-octadecanethiol (ODT; HS-(CH2)17-CH3; 

98%; Sigma-Aldrich). The APTES SAMs was formed on the silicon oxide surfaces first followed 

by the formation of the ODT SAMs. The ODT SAMs were formed by immersing the sample in a 

5 mM solution of ODT in hexadecane for 42 hours at 40 °C, followed by rinsing the sample with       
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Figure 6.12 Schematic for the selective placement of nanoparticles exclusively on the side walls 
of silicon oxide. The oxide side walls and the source/drain electrodes are functionalized with 
SAMs having different polarities.  
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warm acetone (40 °C) and drying under a jet of compressed nitrogen gas.  

 Figure 6.13 shows an FE-SEM image of a single-electron device structure in which ~ 80 

nm Au nanoparticles were placed precisely in between two Au electrodes. The electrostatic 

funnel was created using a combination of APTES and ODT SAMs as described above. It can 

be seen from the image that not only are the nanoparticles perfectly positioned in between the 

two electrodes but there is a complete absence of the nanoparticles on the source and the drain 

electrodes. Also, it is evident that the ODT SAMs provides the ~ 80 nm Au nanoparticles with a 

much smaller repelling force as compared to the MHA SAMs (Figure 6.7 (b)) because the 

nanoparticles occupy positions that are not far away from the metal/dielectric interface. If the 

thickness of the silicon oxide layer is reduced down to ~10 nm and ~10 nm diameter Au 

nanoparticles are used as the Coulomb islands, single-electron devices may be able to be 

fabricated with a much higher yield as compared to the present study.  
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Figure 6.13 FE-SEM image showing the selective placement of ~ 80 nm Au nanoparticles 
exclusively on the side wall of silicon oxide (dark lines). The oxide side walls are functionalized 
with SAMs of 3-aminopropyltriethoxysilane (APTES; (C2H5O)3-Si-(CH2)3-NH2) while the surfaces 
of the source and drain electrodes are functionalized with SAMs of n-octadecanethiol (ODT; 
HS-(CH2)17-CH3). Scale bar = 200 nm 
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CHAPTER 7 

CONCLUSION 

Single-electron devices have many advantages over conventional electronic devices, 

including the fact that they consume very little power, can operate in the sub-nanometre regime 

(which means that many devices can be packed into an extremely small space), and have the 

ability to detect an extremely small amount of charge (even down to a fraction of the charge of a 

single electron). These advantages of single-electron devices could benefit a variety of 

applications including space, military, and commercial electronics. 

However, fabricating these devices on a large scale has not been possible mainly due 

to low throughputs, inability to accurately control the source-drain electrode gap for every device 

and/or because the processes are too slow for practical applications. Large-scale fabrication of 

single-electron devices is necessary to have multiple and individually addressable devices. 

 In Chapter 3, a new single electron device structure was proposed. The key merit of the 

new structure is to provide a way to fabricate single-electron devices on a large-scale, in parallel 

processing, and using existing CMOS fabrication technology. This was accomplished by 

employing a vertical electrode configuration in which the source and the drain electrodes were 

vertically stacked on top of each other and were separated by a thin layer of dielectric film as 

detailed in Chapter 4. Using this configuration, the gap between the electrodes was able to be 

controlled down to a sub-nanometer scale precision over an entire wafer thereby allowing the 

concurrent fabrication of many device units in parallel processing. Coulomb islands were 

positioned in the gap between the source and the drain electrodes using a combination of self-

assembled monolayers and colloidal chemistry. Individually addressable gate electrodes were 

then incorporated in these devices also in complete parallel processing. 
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 In Chapter 5, the I-V measurements of these devices were carried out at room 

temperature as well as at low temperatures. The devices have yielded clear Coulomb blockade, 

Coulomb staircase, and Coulomb oscillations which are decisive indications of single-electron 

transport phenomena in these devices. The nature of the I-V characteristics suggests that the 

single-electron transport takes place only through one nanoparticle. A detailed and systematic 

study of device characteristics depending upon the size of the Coulomb island, location of the 

Coulomb island on the device structure, and effect of temperature were also carried out. The I-V 

characteristics of these devices were also simulated based on the orthodox theory of single-

electron tunneling. It was found that the results of the simulations were in excellent agreement 

with the experimental data.  

 To improve the device yield of the single-electron devices, a new method named 

electrostatic funneling was proposed in Chapter 6. In this method, charged nanoparticles were 

guided by an electrostatic guiding structure and placed onto targeted substrate locations. The 

guiding structures were formed by self-assembled monolayers (SAMs) on silicon wafers which 

had alternating lines of silicon oxide and gold. With this method, a placement precision of ~ 6.2 

nm was demonstrated using 20 nm Au nanoparticles. Detailed calculations were also performed 

based on the DLVO theory to determine the nature of the guiding forces. These calculations 

were able to quantitatively explain the observed results very well.  

 This study demonstrated the chip level fabrication of single-electron devices that are 

operable at room temperature. The biggest advantage of this method is that it does not employ 

any sophisticated methods for the nanoscale pattern definition and has no limitations for large-

scale processing. The simplicity of this approach combined with the fact that it is compatible 

with existing CMOS technology means that the fabrication of chip-level integrated systems of 

single-electron devices may now be possible using current CMOS fabrication technology. 
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APPENDIX A 
 
 

SIMULATION OF SINGLE-ELECTRON DEVICES USING SIMON 
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 SIMON (Simulation of Nano Structures) is a multipurpose simulator for single-electron 

devices and circuits developed by Dr. Christoph Wasshuber. The simulation of the single-

electron devices reported in this thesis was carried out using SIMON. This software calculates 

the current in the single-electron devices as a function of the applied voltages. This Appendix is 

the detailed description of how to use SIMON to simulate single-electron devices. 

 Install the SIMON software onto a Windows based PC by double clicking the SIMON v 

2.0 application onto C:\Program Files\SIMON2.0. Once the installation is complete, run the 

application from the Windows Start Menu > All Programs > SIMON. The interactive screen 

looks like the one shown in Screenshot A.1. Additionally create a temporary folder on the C:\ 

drive. This folder will be used to store the temporary files used by this program. 

 

 
 

Screenshot A.1. 
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The basic building blocks required to create single-electron devices are labeled in 

Screenshot A.2. 

 

 

Screenshot A.2. 
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To create a double junction single-electron device 

 Move the mouse cursor over the voltage source icon. Left click on the voltage source 

icon and drag it onto the working area of the SIMON screen. Use the same procedure to include 

two ground icons, two nodes, two tunnel junctions, and an ammeter onto the working area as 

shown in Screenshot A.3. 

 

 

Screenshot A.3. 
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 Connect the components i.e., voltage sources, tunnel junctions, or ammeter to the 

nodes or the grounds by moving the mouse over the black square regions of the components 

and clicking and holding the left mouse button at the same time. Now move the mouse so as to 

drag a connection from the component to the node or ground as shown in Screenshot A.4. Save 

the device using File > Save As > “Device Name”. 

 

 

Screenshot A.4. 
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To create a single-electron transistor 

 To create a single-electron transistor, drag another voltage source, a ground, a node 

and a capacitor into the working area. Make the connections as shown in Screenshot A.5. Save 

the device using File > Save As > “Device Name”. 

 

 

Screenshot A.5. 

 To set the parameters of a tunnel junction (C  and R ), move the mouse over a tunnel 

junction and right click on it. Enter the parameters in the boxes provided (see Screenshot A.6.) 

 To set the parameters for the Coulomb island, move the mouse over the Coulomb 

island (center node) and right click. Set the parameters as required (see Screenshot A.7). For 

example, to give a background charge of 
4
e

 to the Coulomb island, enter 0.25 in the 

background charge area. You can also chose what type of Coulomb island to use in the 

simulation i.e., metal, semiconductor, or superconductor. 
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Screenshot A.6. 

 

Screenshot A.7. 
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 To set the voltage range, for the voltage sources, right click on the voltage source and 

chose either the constant voltage source or piece-wise-linear voltage source. If you chose 

piece-wise-linear voltage source, make sure that the start time is 0 and the end time is 1 on the 

left hand columns. On the right hand columns, enter the start voltage and the stop voltage that 

you want for the simulation. This is shown in Screenshot A.8. 

 

 

Screenshot A.8. 
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 To set the capacitance value of the capacitor, right click on the capacitor and enter the 

desired capacitance value as shown in Screenshot A.9. 

 

 

Screenshot A.9. 
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Once all the parameters of the various components of the single-electron device are 

set, go to the control tab on the top right corner of the screen. Click the control tab and select 

parameters. A screen resembling Screenshot A.10. will appear. 

 

 

Screenshot A.10. 

In this,  

(a) Set the desired temperature in K  

(b) Tunnel order = 1 

(c) Seed of random generator = −1 

(d) Simulation start time = 0 second 

(e) Simulation end time = 1 second 

(f) Simulation step time = 1.0 × 10-2 will give 100 data point for the simulation. A step time 

of 1.0 × 10-1 will give 10 data points and a step time of 1.0 × 10-3 will give 1000 data 
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points. Select the appropriate step time so as to obtain the desired number of data 

points 

(g) Event number = 100000. The more the event number, the more number of averages 

the simulator performs and hence the simulation output has lesser noise. Less number 

of points will give more noisy simulation data. In order to obtain smooth curves, typically 

an event number between 75000 and 100000 is used.  

(h) Minimum state probability = 1.0 × 10-10 

(i) Maximal state probability error = 1.0 × 10-3 

(j) Smallest considered tunnel rate = 1.0 × 101 

(k) Maximum iteration depth of event tree = 5. 

Once the parameters are set, go to the start tab on the top left corner of the screen. Click 

the Start tab and select the Stationary Simulation from the drop down menu. The simulator 

starts the simulation for the particular device (refer Screenshot A.11.) 

 

Screenshot A.11. 
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 Once the simulation in complete, press OK. To observe the I-V characteristics of the 

device, right click on the Ammeter of the single-electron device while holding down the Shift 

button on the keyboard at the same time. Screenshot A.12. shows the I-V characteristics of a 

double junction single-electron device showing the Coulomb staircase and Screenshot A.13. 

shows the Coulomb oscillations in a single-electron transistor. 

 

Screenshot A.12. 

 
 

Screenshot A.13. 
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 To import the simulated results to an Excel spreadsheet go to the Folder C:\Program 

Files\SIMON2.0. Look for a file name with “Device Name”.i1. Copy this particular file and paste 

it in a separate location (usually in the temporary folder that was created in the C: drive). Save 

this file in “Device Name”.txt format. Now open Microsoft Excel. Go to Data > Import External 

Data > Import Data. Select the location where the “Device Name”.txt is saved and open it. 

Under the original data type, select the Delimited tab and click Next. Under the delimiters tab, 

select Tab and Space. Click Next and in the following screen, click Finish. To end, click OK. The 

results of the simulation will be imported to a excel sheet.  

 The first column in the spreadsheet is the Voltage and the second is the Device 

Current. Note that the start voltage appears as 0 second and the end voltage as 1 second. This 

has to be replaced with Volts to plot the I-V characteristics of the single-electron device. 

Replace the start voltage (initially 0 second) with the start voltage entered as shown in 

Screenshot A.8. For example, if the simulation start voltage was entered as −0.05 Volts, replace 

the 0 in the first column by −0.05. Similarly replace all the numbers in column 1 so that the 

voltage intervals are equally spaced and the last number in column 1 is the simulation end 

voltage, for example 0.05 Volts.  

 Once this is complete, use the Microsoft Excel Chart Wizard to plot the I-V data. 
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