
ERROR CONCEALMENT TECHNIQUES IN H.264/AVC,

FOR VIDEO TRANSMISSION OVER

WIRELESS NETWORKS

by

VINEETH SHETTY KOLKERI

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN ELETRICAL ENGINEERING

THE UNIVERSITY OF TEXAS AT ARLINGTON

December 2009

ii

ACKNOWLEDGEMENTS

 Firstly, I would thank my advisor Prof. K.R.Rao for his invaluable guidance and support,

and his tireless guidance, dedication to his students and maintaining new trend in the research

areas has inspired me a lot without which this thesis would not have been possible.

I also like to thank the other members of my advisory committee Prof. W. Alan Davis

and Prof. Kambiz Alavi for reviewing the thesis document and offering insightful comments.

 I appreciate all members of Multimedia Processing Lab for their support during my

research work. This includes Prof. Jung Ho Lee for introducing this topic and helped me in video

simulation. I would also like to thank my friends Prasanna Alva, Shreyas Shashidhar, Archana,

Thrishala Shetty, Rushikesh, Vinoj, Sanjeev and Siddu Wali and for their comments and

suggestions at various stages of my research.

Finally, I am grateful to my family; my mother Ms. Jyothi. C. Shetty, my sister Ms. Vidya

Shetty, my brother-in-law Santhosh. M. Shetty and my sweet little niece Snigdha Shetty for their

support, patience, and encouragement during my graduate journey.

September 18, 2009

iii

ABSTRACT

ERROR CONCEALMENT TECHNIQUES IN H.264/AVC,

FOR VIDEO TRANSMISSION OVER

WIRELESS NETWORKS

Vineeth Shetty Kolkeri, M.S.

The University of Texas at Arlington, 2009

Supervising Professor: Dr. K. R. Rao

 Several error concealment methods are applied to H.264/AVC (Advanced Video

Coding) baseline profile such that the decoded video is error free. The error concealment

techniques are implemented both in the spatial and temporal domains. The original and error

concealment video sequences are compared in terms of MSE (Mean Square Error), PSNR

(Peak-to-peak Signal to Noise Ratio) and SSIM (Structural Similarity Index Metric). This

comparision has demonstrated that the error concealment methods are very effective in

improving the visual quality. Implementation complexity also has been considered as the video

transmission in baseline profile is meant for wireless networks

iv

TABLE OF CONTENTS

ACKNOWLEDGEMENTS……………………………...…………………………………………..ii

ABSTRACT……………………………………………...…………………………………………..iii

LIST OF ILLUSTRATIONS………………………………………………………………………...vi

LIST OF TABLES…………………………….…………………………………………………..... .x

LIST OF ACRONYMS……………..………………………..………………………………………xi

Chapter

 1. INTRODUCTION…………..………………………………………..……………………1

2. H.264/AVC DESCRIPTION………………………………….……………………........4

 2.1 H.264/AVC coding process……………………………………………………7

 2.2 Video stream structure………………..………………………..……….…….17

 2.3 Slice structure ………………………………………………………………….19

 2.4 H.264/AVC profiles………………….…………………………………………21

 3. ENCAPSULATION OF VIDEO DATA THROUGH

 NETWORK LAYERS……………………………………………………………...……..27

 4. ERROR PROPAGATION………….…………………………………………………….31

 4.1 Slice level……………………………….…………………………………... …31

 4.1.1 Variable length code…………………………………….…………31

 4.1.2 Spatial prediction……………………………………..………….…32

 4.2 GOP level…………………..………….………………………………………..37

 5. QUALITY METRICES………………………….…………………………………………38

 5.1 Peak signal to noise ratio (PSNR)………..…………………………………..39

5.2 Structural similarity (SSIM)…………..………………………………………..40

v

6. ERROR CONCEALMENT……………………….………………………………………43
 6.1 Joint Model (JM) Reference Software……………………………….……….44

 6.2 Error concealment in spatial domain……………………………..…………..44

6.2.1 Weighted averaging………………. ……………………...……….44

 6.3 Error concealment in temporal domain…….………………………………...49

 6.3.1 Copy-Paste algorithm…………….………………………………...49

 6.3.2 Recovery of inter prediction side

 Information…………………………………….………………….….50

6.3.3 Motion Estimation: Motion vectors
 interpolation………………………………………………………….52

7. COMPUTATIONAL COMPLEXITY……………………….……………………………..71

 7.1 Decoding Time…………………………………….…………………………….71

 7.2 Number of operations………………………….……………………………….71

 7.2.1 Weighted averaging…………………………………………………72

 7.2.2 Inverse Transform……………….....……………………………….73

8. H.264/AVC VIDEO CODEC IMPLEMENTATION….…………………………………..77

8.1 Assumptions……………………………………….……………………….……77

8.2 Changes to the Joint Model Source Code……………...……………………78

8.3 Generation of Errors in the coded
 Bit stream………………………………………………………………………..78

8.4 Simulation steps, commands and output results...……………….…………79

9. CONCLUSIONS……………………………………………………………….…..………81

APPENDIX

A. CONFIGURATION SETTING OF THE REFERENCE………...……………………84

B. ENCODER CONFIGURATION FILE………………………………….………………93

C. DECODER CONFGURATION FILE………….……………………………..………115

REFERENCES………………………………………………………………………………….……..117

BIOGRAPHICAL INFORMATION………………………………………………………………......122

vi

LIST OF ILLUSTRATIONS
Figure Page

 1.1 Typical situation on 3G/4G cellular telephony……………………………………..1

 2.1 Position of H.264/MPEG-4 AVC standard …………………………………………4

 2.2 History of video standards …………………………………………………………..5

 2.3 YUV different systems ……………………………………………………………….7

 2.4 The basic coding structure of H.264/AVC for a

macroblock ………………………………………………………….…………………8

 2.5 Block diagram of H.264 Decoder …………………………………………………...8

 2.6 Block diagram emphasizing transform………………………………………..…...10

 2.7 Assignment of indices of the DC (dark samples)

 to luma 4 x 4 blocks………………………………………………………….……...11

 2.8 Chroma DC coefficients for 4x4 IntDCT for 4:2:2

and 4:4:4 chroma formats …………………………...……………………………..13

 2.9 Transform, scaling and quantization at H.264

encoder.………………………………………………………………………………14

 2.10 H.264 scan orders to read residual data……………………………………….…15

 2.11 De-blocking filter process…………………………………………………………..16

2.12 Inverse Transform, scaling and quantization at
H.264 decoder……………………………………………………………………….17

2.13 Structure of H.264/AVC video stream ……………………………………...…….17

2.14 Subdivision of video frames ……………………………………………………….19

2.15 Error detection without and with slicing ……………………………………..……20

2.16 Slicing types in H.264/AVC ………………………………………………….….…21

2.17 Specific coding parts for H.264 profiles…………………………….…………….26

3.1 Layer structure of H.264/AVC encoder ………………..……………….………..28

3.2 Data partitioning types of slices ………………….……………………………….28

vii

3.3 NAL units order ……………………………………..………………………………29

3.4 Encapsulation of NAL unit in RTP/UDP/IP………………………………….…….30

3.5 Encapsulation of video data through protocol stack ……………………………30

4.1 Example of VLC desynchronization ….…………….………………………….....32

4.2 Left: Intra 4x4 predictions are conducted

for samples a-p of a block by 9 different modes.
Right: 8 prediction directionsfor Intra 4 x 4
prediction ……………………………………………..…….……………….….……32

4.3 Intra 16x16 prediction modes ……..…………………………………………..…...33

4.4 Frame divided into multiple macroblocks of

 16 x 16, 8 x 8, 8 x 4, 4 x 8 and 4 x 4 variable
 sizes to represent different coding profiles …….......….…………………………33

4.5 Inter prediction in H.264…………..…………………….…………………..………34

4.6 Segmentations of the macro-block for motion

 compensation……………….………………………………………………………..35

4.7 Block diagram emphasizing sub-pel motion

 compensation……..…………………………………….…………..………….…….35

4.8 Multi-frame motion compensation in H.264……….………………………………36

5.1 Diagram of the structural similarity (SSIM)
 measurement system ……………………………….…………………………..…..40

6.1 Weighted Averaging: a) block based,

 b) macroblock based …………………………..…………………………………....46

6.2 Recovery of the damaged macroblock in Akiyo video

sequence (a) distorted image lying within a smooth area
b) macroblock based weighted averaging applied on a
blue smooth area; c) block based weighted averaging
applied on a blue smooth area…..…………………………………………………47

6.3 Recovery of the damaged macroblock in Akiyo video

sequence (a) distorted image lying between black and
blue smooth area b) macroblock based weighted averaging
applied on a missing macroblock lying between black and
blue smooth area; c) block based weighted averaging applied
on a missing block lying between black and blue smooth area………………...47

6.4 Recovery of the damaged macroblock in Foreman video

sequence (a) distorted image lying within a smooth area;
b) macroblock based weighted averaging applied on a

viii

white smooth area; c) block based weighted averaging
applied on a white smooth area …………………………………………….……..48

6.5 Recovery of the damaged macroblock in Foreman video

sequence (a) distorted image lying between white and
black smooth area b) macroblock based weighted averaging
applied on a missing macroblock lying between black and
white smooth area; c) block based weighted averaging
applied on a missing block lying between black and
white smooth area……………………………………………..…………………… 48

6.6 Frames# 5, 6 and 7 are the output of H.264 encoded

frames after it is transmitted in the error prone wireless
medium ………………………………………………………….……………………50

6.7 Frame# 5 is the decoded frame. Here Frame# 6

successfully copied lost information from Frame 5
by Copy algorithm, Frame #7 is degraded
(Because Frame#7 is reconstructed by collecting the
 information from previous reference frames) ……………………………………50

6.8 Motion vector recovery by a) Using the motion vectors
from the surrounding macroblocks after frame decoding
b) Using the motion vectors from the surrounding macroblocks
during macroblock decoding ……………………………………………………....53

6.9 Frame#1 to frame#20 of original encoded output from

H.264 encoder………………………………………………………………..…..….57

6.10 Frame#1 to frame#20 of distorted video sequence due

to the packet loss during transmission of bit stream in an
error prone wireless medium………………………………………………….……58

6.11 Frame#1 to frame#20 of motion estimation algorithm

(motion vector interpolation) output ...……………………………………………..60

6.12 Graph shows the size (number of bits) of the different
I and P frames obtained after encoding 20 frames of
the Football QCIF video sequence. Green line shows
the average values of the bits lost when it is passed
through the lossy wireless medium …………………………………..…………...60

6.13 Representation of images from the SSIM metric

where it gives the visual differentiation between
original and concealed video sequence (Completely
black image in the above figure represent both the
images are having same pixel representation)..………………………………….63

6.14 Comparison of the recovered frame with original

sequence by motion estimation using SSIM index..……………………………..63

ix

6.15 Comparison between original and recovered frames
by motion estimation using PSNR metric...……………………………………….65

6.16 Recovery of the damaged macroblock in Foreman
video sequence (a) original sequence b) Distorted
Sequence c) Concealed Output using Motion Estimation……………………….65

6.17 SSIM average values using frame copy algorithm

(Foreman Video Sequence)………..……………………………………………….66

6.18 SSIM average values using motion estimation algorithm
(Foreman Video Sequence) ………………………………………………..………66

6.19 PSNR average values using frame copy algorithm

(Foreman Video Sequence)…………………..…………………………………….67

6.20 PSNR average values using motion estimation algorithm
(Foreman Video Sequence)………………………………..……………………….67

6.21 Size of I (red color bar) and P (blue color bar) frames

obtained after encoding 19 frames of the foreman
QCIF (176 x 144) video sequence. Green line shows
the average values of the bit lost when it is passed
through the lossy wireless medium (Foreman Video
Sequence)…………………………………………………………………………….68

6.22 Representation of different macroblock sizes used for

decoding in the motion estimation algorithm …..……………………………..….68

7.1 Fast implementation of the H.264/AVC inverse transform.

No multiplications are needed, only additions and shifts.…………...….……….75

x

LIST OF TABLES

Table Page

 2.1 H.264 / MPEG-4 Part 10 profile specifications…………………..……………….25

6.1 Representation of coded video sequence………………….…….……..…… …..60

6.2 Representation of SSIM output (1->two images are
alike, 0->two images have completely
different pixel values)……………….………………………….............................62

6.3 Performance comparison between concealed and original

video sequence using PSNR representation……………………….……...........64

6.4 Simulation results of different error concealment algorithms
for Foreman QCIF 176x144 video sequence………….………………………….69

6.5 Simulation results of different error concealment algorithms

for Stefan CIF 352x288 video sequence………………………………………….70

 7.1 Decoding time values (ms) under windows vista platform………………………76

xi

LIST OF ACRONYMS

3G/4G Third or Fourth Generation

3GPP 3rd Generation Partnership Project

AVC Advanced Video Coding

AVI Audio Video Interleave

CABAC Context Adaptive Binary Coding

CAVLC Context Adaptive Variable Length Coding

DCT Discrete Cosine Transform

DP Data Partition

DVD Digital Versatile Disk

FMO Flexible Macroblock Ordering

GOP Group of Pictures

HVS Human Visual System

IDR Instantaneous Decoder Refresh

I-frame Intra frame

IEC International Electrotechnical Commission

IP Internet Protocol

ISO International Organization for Standardization

ITU International Telecommunication Union

ITU-R ITU – Radio communication Standardization Sector

ITU-T ITU – Telecommunication Standardization Sector

JM Joint Model

JVT Joint Video Team

xii

MAM Macroblock Allocation Map

MB Macroblock

MPEG Moving Picture Experts Group

MSE Mean Square Error

NAL Network Abstraction Layer

POC Picture Order Count

PPS Picture Parameter Set

PSNR Peak-to-peak Signal to Noise Ratio

QCIF Quarter Common Intermediate Format

QoS Quality of Service

RGB Red Green and Blue Components

RTP Real-time Transfer Protocol

SPS Sequence Parameter Set

SSIM Structural Similarity Index Metric

TCP Transmission Control Protocol

UDP User Datagram Protocol

VCL Video Coding Layer

VLC Variable Length Code

YUV Luminance and Chroma components

1

CHAPTER 1

INTRODUCTION

 Due to the rapid growth of wireless communications, video over wireless networks has

gained a lot of attention. Cellular telephony has had the most important development. At the

beginning, cellular telephony was conceived for voice communication [20]; however, nowadays

it is able to provide a diversity of services, such as data, audio and video transmission thanks to

the apparition of third and fourth generation (3G/4G) developments of cellular telephony [23].

Figure 1.1: Typical situation on 3G/4G cellular telephony

 Figure 1.1 illustrates a 3G/4G [11] cellular telephony system where a user, with his

mobile terminal, demands a video streaming service. The video stream comes from the

application server over the network. Then it is transmitted over the wireless environment to the

user. During the transmission, the video signal is error prone. This system, because of the

bandwidth limitation, works with low resolution (QCIF 176 x 144) videos so the loss of one

packet means a big loss of information [12]. Since this process is a real time application it is not

possible to perform retransmissions. The only way to fix the errors produced by packet losses is

2

by using error concealment methods in the mobile terminal. The focus of this thesis is on spatial

and temporal correlations of the video sequence to conceal the errors [20].

The main task of error concealment is to replace missing parts of video content by

previously decoded parts of the video sequence in order to eliminate or reduce the visual effects

of bit stream error. The error concealment exploits the spatial and temporal correlations

between the neighboring image parts (macroblocks) within the same frame or the past and

future frames [6]. Techniques using these two kinds of correlation are categorized as spatial

domain error concealment and temporal domain error concealment.

The spatial domain error concealment utilizes information from the spatial smoothness

nature of the video image, and each missing pixel of the corrupted image part can be

interpolated from the intact surroundings pixels [10]. The interpolation algorithm has been

improved by the preservation of edge continuity using different edge detection methods.

 The temporal domain error concealment utilizes from the temporal smoothness

between the adjacent frames within the video sequence. The simplest implementation of this

method is to replace the missing image part by spatially corresponding part within a previously

decoded frame, which has the maximum correlation with the affected frame [9]. The copying

algorithm has been improved by considering the dynamic nature of the video sequence.

Different motion estimation algorithms have also been integrated to apply motion compensated

copying [10].

 There are still no standardized means for the performance evaluation of error

concealment methods. To evaluate the quality of reconstruction, typically peak signal to noise

ratio (PSNR) and structural similarity index metric (SSIM) [24] are used.

The focus of this thesis is the performance indicators for evaluating the error

concealment methods. To test the performance evaluation methods, H.264 [3] video codec is

used. H.264 [3] is the newest codec in video compression, which provides better quality with

less bandwidth than the other video coding standards such as H.263 or MPEG-4 part-2 [7]. This

3

feature is very interesting for mobile networks due to the restricted bandwidth in these

environments [20].

4

CHAPTER 2

H.264/AVC DESCRIPTION

H.264/MPEG-4 AVC [3] is the newest video compression standard, which promises a

significant improvement over all previous video compression standards. In terms of coding

efficiency, the new standard is expected to provide at least 2x compression improvement over

the best previous standards and substantial perceptual quality improvements over both MPEG-

2 and MPEG-4 part-2 visual.

Figure 2.1 shows the development of the video coding standards and the position of

H.264 [3] standard which has highest compression gain among other standards. The ITU-T

name for the standard is H.264 while the ISO/IEC [25, 30] name is MPEG-4 Advanced Video

Coding (AVC), which is Part 10 of the MPEG-4 standard [3].

Figure 2.1: Position of H.264/MPEG-4 AVC standard [26]

5

The standard developed jointly by ITU-T and ISO/IEC supports video applications

including low bit-rate wireless applications, standard-definition and high-definition broadcast

television, video streaming over the internet, delivery of high-definition DVD content, and the

highest quality video for digital cinema applications. Figure 2.2 shows the history of each video

coding standard.

Figure 2.2: History of video standards [25]

Before becoming absorbed in deeper aspects of H.264/AVC like the encoding process or

the new features that includes related to prior codecs, it will be better to explain some basics:

• Block

A block is an 8 x 8 array of pixels.

• Macroblock

A macroblock consists of a group of four blocks, forming a 16 x 16 array of pixels.

• Luminance

In video signal transmission, luminance is the component that codes the information of

luminosity (brightness) of the image.

• Chrominance

Is the component that contains the information of color.

6

• YUV

The YUV model defines a color space in terms of one luminance and two chrominance

components. YUV models human perception of color more closely than the standard

RGB model used in computer graphics hardware. Y stands for the luminance

component (the brightness) and U and V are the chrominance (color) components.

Concretely, U is blue-luminance difference and V is red-luminance difference.

• Chroma pixel structure

A macroblock can be represented in several different manners when referring to the

YUV color space. Figure 2.3 shows 3 formats known as 4:4:4, 4:2:2 and 4:2:0 video.

4:4:4 is full bandwidth YUV video, and each macroblock consists of 4 Y blocks, and 4

U/V blocks. Being full bandwidth, this format contains as much as data would if it were

in the RGB color space. 4:2:2 contains half as much chrominance information as 4:4:4

and 4:2:0 contains one quarter of the chrominance information. The focus of this thesis

is to use 4:2:0 format since it is the format typically used in video streaming

applications.

7

Figure 2.3: YUV different systems [17]

2.1 H.264/AVC coding process

The video coding layer (VCL) of H.264 consists of a hybrid of temporal and spatial

predictions, in conjunction with transform coding [9]. Figures 2.4 and 2.5 shows the basic coding

structure of H.264/AVC for a macroblock [3].

8

Figure 2.4: The basic coding structure of H.264/AVC for a macroblock [3, 18]

Figure 2.5: Block diagram of H.264 Decoder [3]

H.264 applies two types of slice coding, Intra-and Inter-slices. In case of Intra-slice,

each sample of the macroblock within the slice is predicted using spatially neighboring samples

of previously coded macroblocks. The coding process chooses which and how the neighboring

samples are used for intra prediction, which is simultaneously conducted at the encoder and

decoder using the transmitted Intra prediction side information [9]. In case of Inter slice the

Motion
Compensation

Entropy
Decoding

Intra
Prediction

Intra/Inter Mode
Selection

Inverse Quantization
& Inverse Transform

Deblocking
Filter +

+
Bitstream
Input Video

Output

Picture
Buffering

9

encoder employs prediction (motion compensation) from other previously decoded pictures. The

encoding process of Inter prediction consists of choosing motion data, comprising the reference

picture, and a spatial displacement that is applied to all samples of the block. The motion data,

which are transmitted as side information, are used by the encoder and decoder to

simultaneously provide the Inter prediction signal.

In a series of frames, video data can be reduced by methods such as difference coding,

which is used by most video compression standards including H.264. In difference coding, a

frame is compared with a reference frame and only pixels that have changed with respect to the

reference frame are coded. In this way, the number of pixel values that are coded and sent is

reduced.

The residual of the prediction which is the difference of the original and the predicted

blocks is transformed by the integer discrete cosine transform. The transform coefficients are

scaled and quantized. The quantized transform coefficients are entropy coded by using CAVLC

and transmitted together with the side information for either Inter frame or Intra frame prediction.

The encoder contains decoder to conduct prediction for the next blocks or the next picture.

Therefore, the quantized transform coefficients are inverse scaled and inverse transformed in

the same way as at the decoder side, resulting in the decoded prediction residual. The decoded

prediction residual is added to the prediction. The result of that addition is fed into a deblocking

filter, which provides the decoded video as its output.

The functions of different blocks of the H.264 encoder are as follows:

Transform: A 4x4 multiplier-free integer transform is used and the transform coefficients

are explicitly specified in AVC and allow it to be perfectly invertible. Its hierarchical structure is a

4 x 4 Integer DCT and Hadamard transform. The Hadamard transform is applied only when

(16x16) intra prediction mode is used with (4x4) integer DCT. MB size for chroma depends on

4:2:0, 4:2:2 and 4:4:4 formats (see Figure 2.6).

10

Figure 2.6: Block diagram emphasizing transform [3].

Figure 2.7 shows the assignment of the DC indices to the 4 x 4 luma block. The

numbers 0, 1, …15 are the coding order for (4x4) integer DCT and (0,0), (0,1), (0,2), …, (3,3)

are the DC coefficients of each 4x4 block.

11

Figure 2.7: Assignment of indices of the DC (dark samples) to luma 4 x 4 blocks [3].

The 4x4 Integer DCT of X is given by:

� � � ��� � � ���� �	
 ��	

where X are the input pixels, Y are the output coefficients,�
��represents element by element

multiplication.

The inverse 4x4 DCT can be represented by the following equation:

12

�� ����
�����
����	���	

The 16 DC coefficients of the 16 (4x4) blocks are transformed using the Walsh Hadamard

transform and is given by:

(2.3)

where // represents rounding to the nearest integer.

The Walsh – Hadamard transform for 2x2 DC co-efficient for 4:2:0 chroma format can be
represented as follows:

 (2.4)
���� is the dc coefficient of the (4 x 4), ��� �	���block.

13

Figure 2.8: Chroma DC coefficients for 4x4 IntDCT for 4:2:2 and 4:4:4 chroma formats [3].

Scaling and Quantization: For the quantization of transform coefficients, H.264/AVC uses scalar

quantization. One of 52 quantizers is selected for each macroblock by the Quantization

Parameter (QP). The quantizers are arranged so that there is an increase of approximately

12.5% in the quantization step size when incrementing the QP by one. The quantized transform

coefficients of a block are generally scanned in a zigzag fashion and transmitted using entropy

coding methods. For blocks that are part of a macroblock coded in field mode, an alternative

scanning pattern is used. The 2×2 DC coefficients of the chroma component are scanned in

raster-scan order. All transforms in H.264/AVC can be implemented using only additions to, and

bit-shifting operations on, the 16-bit integer values. Figure 2.9 shows the transform, scaling and

quantization blocks at the encoder part of H.264 / AVC.

Quantization and scaling at the encoder can be represented by the following equation:

 (2.5)

where A is the quantizer input, B refers to the quantizer output, Qstep is the quantization

parameter and SF is the scaling term.

14

Figure 2.9: Transform, scaling and quantization at H.264 encoder [3].

Entropy coding: The H.264 AVC includes two different entropy coding methods for

coding quantized transform coefficients, namely, CAVLC (Context-based Adaptive Variable

Length Coding) and CABAC (Context-based Adaptive Binary Arithmetic Coding).

CAVLC handles the zero and +/- 1 coefficient based on the levels of the coefficients.

The total numbers of zeros and +/-1 are coded. For the other coefficients, their levels are

coded. Context adaptive VLC of residual coefficients make use of run-length encoding.

CABAC on the other hand, uses arithmetic coding. Also, in order to achieve good

compression, the probability model for each symbol element is updated. Both motion vector and

residual transform coefficients are coded by CABAC. CABAC increases compression efficiency

by 10% over CAVLC, but it is computationally more intensive.

There are two types of scan orders used to read the residual data (quantized transform

coefficients) namely, zig-zag and alternate scan (Figure 2.10).

15

Figure 2.10: H.264 scan orders to read residual data [3].

Deblocking filter: Coarse quantization of the block-based image transform produces

disturbing blocking artifacts at the block boundaries of the image. Motion compensation of the

macroblock by interpolation of data from previous reference frames might never give a perfect

match and discontinuities appear at the edges of the copied blocks. When the P-frames

(Predicted) reference these images having blocky edges, the blocking artifacts further

propagate to the interiors of the current block worsening the situation further.

The best way to deal with these artifacts is to filter the blocky edges to have a

smoothed edge. This filtering process is known as the “deblock” filtering. The In-Loop deblock

filter not only smoothens the blocky edges but also helps to increase the rate-distortion

performance. After this, the frame decode process is carried out which ensures that all the

top/left neighbors have been fully reconstructed and available as inputs for de-blocking the

current macroblock. This is applied to all 4x4 blocks except at the boundaries of the picture.

Filtering for block edges of any slice can be selectively disabled by means of flags [34]. Vertical

edges are filtered first (left to right) followed by the horizontal edges (top to bottom) as shown in

Figure. 2.11.

This filter operates on a macro-block after motion compensation and residual coding, or

on a macro-block after intra-prediction and residual coding, depending whether the macroblock

16

is inter-coded or intra-coded. The results of the loop filtering operation are stored as a reference

picture.

Figure 2.11: De-blocking filter process [34].

The decoder performs inverse quantization and pre-scaling as represented in the following

equation:

���
� ����� �� � ������ � � �!"���#	

where B is the inverse quantizer input, A’ is the inverse quantizer output and Qstep is the

quantization parameter and SF is the scaling term.

Figure: 2.12 shows the inverse transform, scaling and quantization blocks at the decoder part of

H.264 / MPEG-4 Part 10.

17

Figure 2.12: Inverse transform, scaling and quantization at H.264 decoder [3].

2.2 Video stream structure

The H.264/AVC video stream has a hierarchical structure shown in Figure 2.13. The

different layers are explained next:

Figure 2.13: Structure of H.264/AVC video stream

18

H.264 provides a clearly-defined format or syntax for representing compressed video and

related information. At the top level, an H.264 sequence consists of a series of “packets” or

Network Adaptation Layer Units (NAL Units or NALUs). These can include parameter sets

(containing key parameters that are used by the decoder to correctly decode the video data)

and slices (coded video frames or parts of video frames). At the next level, a slice represents all

or part of a coded video frame and consists of a number of coded macroblocks, each containing

compressed data corresponding to a 16x16 block of displayed pixels in a video frame. Detailed

explanation of different layer header information is as follows:

• Block layer: A block is an 8 x 8 array of pixels.

• Macroblock layer: Contains single MB. A MB consists of a number of blocks that

depend upon the chroma pixel structure. In this thesis work 4:2:0 profile is been used.

• Slice layer: Slice is a sequence of MBs which are processed in the order of a raster

scan when not using FMO. A picture may be split into one or several slices. Slices are

self decodable, i.e. if an error occurs, it only propagates spatially within the slice. At the

start of each slice the CAVLC is resynchronized.

• Picture layer: Pictures are main coding units of a video sequence. There are three types

of frames:

- Intra coded frame: coded without any reference to any other frames.

- Predictive coded frame: coded as the difference from a motion compensated

prediction frame, generated from an earlier I or P frame in the GOP.

- Bi directional coded frame: coded as the difference from a bi-directionally

interpolated frame, generated from earlier and later I or P frames in the

sequence.

• Group of Pictures layer: Sequence of an I frame and temporally predicted frames until

the next I frame. Allows random access to the sequence and provides refresh of the

19

picture after errors. If an error occurs, it will propagate only until the start of the next

GOP.

• Sequence layer: This layer starts with the sequence header and ends with an end of

sequence code. The header carries information about picture size, aspect ratio, number

of frames and bit rate of the images contained within the encoded sequence.

2.3 Slice structure

The macroblocks are organized into slices. A picture is a collection of one or more

slices in the H.264/AVC standard [8]. Each picture may be split into one or several slices as

shown in Figure 2.14. The transmission order of macroblocks in the bit stream depends on the

so called Macroblock Allocation Map (MAM), and it is not necessarily in raster scan order.

Figure 2.14: Subdivision of video frames [12].

Encoded video introduces slice units to make transmission packets smaller (compared

to transmitting a whole frame as a packet). The probability of a bit error hitting a short packet is

generally lower than for large packets [11], [12] and [15]. Moreover, short packets reduce the

amount of lost information thereby limiting the error. Thus the error concealment methods can

be applied in a more efficient way. Figure 2.15 illustrates the advantages of using slicing when

an error occurs. Instead of concealing the whole frame, it just has to conceal the slice.

20

Figure 2.15: Error detection without and with slicing [12].

H.264/AVC supports five different slice-coding types. The simplest one is the I slice. In I

slice, all macroblocks are coded without referring to other pictures within the video sequence.

On the other hand, prior-coded images can be used to form a prediction signal for macroblocks

of the predictive-coded P slices.

The transmission order of MBs in the bitstream depends on the so-called Macroblock

Allocation Map and is not necessarily in raster-scan order if we use Flexible Macroblock

Ordering (FMO). FMO modifies the way how pictures are partitioned into slices and MBs by

utilizing the concept of slice group map, which is specified by the content of the picture

parameter set and some information from slice headers. The macroblock to slice group map

consists of a slice group identification number for each MB in the picture, specifying which slice

group the associated MB belongs to. Each slice group can be partitioned into one or more

slices, such that a slice is a sequence of MBs within the same slice group that is processed in

the order of a raster scan within the set of MBs of a particular slice group.

Using FMO (shown in Figure 2.16), a picture can be split into many MB scanning

patterns. Figure 2.16 illustrates the advantages of using different slicing techniques.

21

• One slice per frame: Is the simplest method, but it misses the advantages of slicing.

This method also leads to huge packets that have to be segmented at the IP layer.

• Fixed number of MB per slice: The frame is divided into slices with the same number of

MB. This results in packets with different lengths in bytes.

• Fixed number of bytes per slice: The frame is divided in slices with the same byte

length. This results in packets with different number of MBs.

• Scattered slice: Every P MB (P is the number of different slices) belongs to one slice.

The advantage is that a MB has always neighbors of different slice groups, so if one

slice is lost, there are always possible interpolation errors with the neighbors. The

disadvantages are loss of efficiency of spatial prediction, complexity and time delay.

• Rectangular slice structure: It consists of one or more “foreground” slice groups and a

“leftover” slice group. It allows for coding of a region of interest to improve coding loss.

Figure 2.16: Slicing types in H.264/AVC [12].

22

2.4 H.264/AVC profiles

The H.264/AVC standard includes the following sets of capabilities, which are referred to as

profiles. They target specific classes of applications [3]:

• Constrained Baseline Profile (CBP): Primarily for low-cost applications this profile is

used widely in videoconferencing and mobile applications. It corresponds to the subset

of features that are common between the Baseline, Main, and High Profiles

• Baseline Profile (BP): Primarily for low-cost applications that require additional error

robustness, this profile is used rarely in videoconferencing and mobile applications, and

it adds additional error resilience tools to the Constrained Baseline Profile. The

importance of this profile is fading after the Constrained Baseline Profile has been

defined.

• Main Profile (MP): This was originally intended as the mainstream consumer profile for

broadcast and storage applications. The importance of this profile faded when the High

profile was developed for these applications.

• Extended Profile (XP): This was intended as the streaming video profile. This profile

has relatively high compression capability. It has some extra tricks for robustness to

data losses and server stream switching.

• High Profile (HiP): This is the primary profile for broadcast and disc storage

applications, particularly for high-definition television applications. This is the profile

adopted into HD DVD and Blu-ray Disc.

• High 10 Profile (Hi10P): Going beyond today's mainstream consumer product

capabilities, this profile builds on top of the High Profile, adding support for up to 10 bits

per sample of decoded picture precision.

• High 4:2:2 Profile (Hi422P): This profile primarily targets professional applications that

use interlaced video. It builds on top of the High 10 Profile, adding support for the 4:2:2

http://en.wikipedia.org/wiki/HD_DVD
http://en.wikipedia.org/wiki/Blu-ray_Disc

23

chroma subsampling format while using up to 10 bits per sample of decoded picture

precision.

• High 4:4:4 Predictive Profile (Hi444PP): This profile builds on top of the High 4:2:2

Profile, supporting up to 4:4:4 chroma sampling, up to 14 bits per sample, and

additionally supporting efficient lossless region coding and the coding of each picture as

three separate color planes.

In addition, the standard contains four additional all-Intra profiles, which are defined as

simple subsets of other corresponding profiles. These are mostly for professional (e.g.,

camera and editing system) applications:

• High 10 Intra Profile: The High 10 Profile constrained to all-Intra use.

• High 4:2:2 Intra Profile: The High 4:2:2 Profile constrained to all-Intra use.

• High 4:4:4 Intra Profile: The High 4:4:4 Profile constrained to all-Intra use.

• CAVLC 4:4:4 Intra Profile: The High 4:4:4 Profile constrained to all-Intra use and to

CAVLC entropy coding (i.e., not supporting CABAC).

The common coding parts for the profiles are listed below [3]:

• I slice (Intra-coded slice): coded by using prediction only from decoded samples within

the same slice.

• P slice (Predictive-coded slice) : coded by using inter prediction from previously

decoded reference pictures, using at most one motion vector and reference index to

predict the sample values of each block.

• CAVLC (Context-based Adaptive Variable Length Coding) for entropy coding.

The common coding parts for the baseline profile are listed below:

• Common parts: I slice, P slice, CAVLC.

http://en.wikipedia.org/wiki/Chroma_subsampling

24

• FMO Flexible macro block order: macro-blocks may not necessarily be in the raster

scan order. The map assigns macro-blocks to a slice group.

• ASO Arbitrary slice order: the macro-block address of the first macro-block of a slice of

a picture may be smaller than the macro-block address of the first macro-block of some

other preceding slice of the same coded picture.

• RS Redundant slice: This slice belongs to the redundant coded data obtained by same

or different coding rate, in comparison with previous coded data of same slice.

The common coding parts for the main profile are listed below:

• Common parts: I slice, P slice, CAVLC.

• B slice (Bi-directionally predictive-coded slice) : the coded slice by using inter prediction

from previously-decoded reference pictures, using at most two motion vectors and

reference indices to predict the sample values of each block.

• Weighted prediction: scaling operation by applying a weighting factor to the samples of

motion-compensated prediction data in P or B slice.

• CABAC (Context-based Adaptive Binary Arithmetic Coding) for entropy coding.

The common coding parts for the extended profile are listed below:

• Common parts : I slice, P slice, CAVLC.

• SP slice : specially coded for efficient switching between video streams, similar to

coding of a P slice.

• SI slice: switched, similar to coding of an I slice.

• Data partition: the coded data is placed in separate data partitions, each partition can

be placed in different layer unit.

• Flexible macro-block order (FMO), arbitrary slice order (ASO).

• Redundant slices (RS), B slice.

25

• Weighted prediction.

Table 2.1: H.264 / MPEG-4 Part 10 profile specifications [3].

26

Figure 2.17: Specific coding parts for H.264 profiles [3].

 27

CHAPTER 3

ENCAPSULATION OF VIDEO DATA THROUGH NETWORK LAYERS

 The H.264/AVC standard consists of two layers, the video coding layer (VCL) and the

network abstraction layer (NAL) as shown in Figure 3.1. The VCL specifies an efficient

representation for the coded video data. It is designed to be as network independent as

possible. The coded video data is organized into NAL units, each of which is a packet that

contains an integer number of bytes. The first byte of each NAL unit is a header byte that

contains an indication of the type of data in the NAL unit, and the remaining bytes contain

payload data of the type indicated by the header [5, 12]. The payload data in the NAL unit is

interleaved if necessary with emulation prevention bytes, which are bytes with a specific value

inserted to prevent a particular pattern of data called a start code prefix from being accidentally

generated inside the payload. The NAL unit structure definition specifies a generic format for

use in both packet oriented and bits stream oriented transport systems, and a series of NAL

units generated by an encoder referred to as a NAL unit stream. The NAL adapts the bit strings

generated by the VCL to various network and multiplex environments and covers all syntactical

levels above the slice level. In particular, it includes mechanisms for:

• The representation of the data that is required to decide individual slices.

• The start code emulation prevention

• The framing of the bit strings that represent coded slices for the use over byte oriented

networks.

As a result of this effort, it has been shown that NAL design specified in the

recommendation is appropriated for the adaptation of H.264 over RTP/UDP/IP [12].

 28

Figure 3.1: Layer structure of H.264/AVC encoder [14]

The number and the order of macroblocks, which can be sent in one NAL unit is defined

by the slice mode parameter: It is possible to set all macroblocks in the frame to one slice, or to

choose a constant number of macroblocks per slice or constant number of bytes per slice.

A slice can also be divided according to its video content into three partitions: Data partition A

(DPA), which includes header information, sub block format and Intra prediction modes in case

of I-slices or motion vectors in case of P and B-slices. Data partition B (DPB), which includes

the Intra residuals. Data partition C (DPC), which includes the Inter residuals.

The H.264 specifications define several NAL unit types according to the type of information

included as shown in Figure 3.2.

Figure 3.2: Data partitioning types of slices [19]

 29

In the video transmission, the order in which the NAL units have to be sent is fixed. The

first NAL unit to be sent is the sequence parameter set (SPS) followed by the picture parameter

set (PPS). Both SPS and PPS include some parameters which have been set in the encoder

configuration for all pictures in the video sequence, for example: entropy coding mode flag,

number of reference index, weighted prediction flag, picture width in MB, picture height in MB

and number of reference frames.

The next NAL unit is the Instantaneous Decoder Refresh (IDR). After receiving a NAL

unit of this type all the buffers have to be deleted. An IDR frame may only contain I slice without

data portioning. IDR frames are usually sent at the start of the video sequence. All NAL units

following the IDR have NAL type slice or one of DPA/DPB/DPC. Figure 3.3 shows the NAL units

when no data portioning is used.

Figure 3.3: NAL units order.

For the streaming video services over the mobile technologies, the IP packet switched

communication is of major interest, which uses real time transport protocol (RTP). Each NAL

unit regardless of its type is encapsulated in the RTP/UDP/IP packet by adding header

information of each protocol to the NAL unit as shown in Figure 3.4. IP header is 20 or 40 bytes

long, depending on the protocol version and contains the information about the source and

destination IP address. The UDP header is 8 bytes long and contains the CRC and length of the

encapsulated packet. RTP header is 12 bytes long and contains sequence number and time

stamps. Figure 3.5 illustrates the encapsulation of the video data starting at Network Adaptation

Layer (NAL) down to the Physical Layer [12].

 30

Figure 3.4: Encapsulation of NAL unit in RTP/UDP/IP.

Figure 3.5: Encapsulation of video data through protocol stack.

 31

CHAPTER 4

ERROR PROPAGATION

 The visual artifact caused by the bit stream error has different shapes and ranges

depending on which part of video data stream is affected by the transmission error. Therefore

these artifacts can be described in 2 levels: Slice level and GOP level

4.1 Slice level

In the slice level these artifacts are caused by either desynchronization of the variable

length code or the loss of the reference in a spatial prediction.

4.1.1 Variable length code

The quantized transform coefficients are entropy coded using a variable length code

(VLC) which means that the codewords have variable lengths [16]. The advantages of this kind

of code consist in the fact that they are more efficient in the sense of representing the same

information using fewer bits on average, reducing therefore the bit rate. That is possible if some

symbols are more probable than others. The most frequent symbols will correspond to the

shorter codewords, and the rare symbols will correspond to the longer codewords. However,

variable length codes between the codewords may be determined in a wrong way, and the

decoding process may desynchronize. Figure 4.1 describes how just one erroneous bit shown

in red can desynchronize the whole sequence.

Figure 4.1: Example of a VLC desynchronization

 32

 4.1.2 Spatial prediction

 The H.264/AVC performs intra prediction in the spatial domain. Even for an

intra picture, every block of data is predicted from its neighbors before being transformed and

coefficients generated for inclusion in the bit stream. As a first step in coding of a macroblock in

intra mode, spatial prediction is performed on either 4x4 or 16x16 luminance blocks. Although,

in principle, 4x4 block prediction will offer more efficient prediction compared to a 16x16 block,

in reality, taking into account the mode decision overhead, sometimes the 16x16 block based

prediction may offer overall better coding efficiency. Figure 4.2 shows two types of luminance

intra coding.

Figure 4.2: Left: Intra 4x4 predictions are conducted for samples a-p of a block by 9 different
modes. Right: 8 prediction directions for Intra 4 x 4 prediction. [17].

Figure 4.3: Intra 16x16 prediction modes. [17]

There are two 8x8 blocks of chroma in a macroblock one corresponding to each of the

components, Cb and Cr. Each 8x8 block of chroma is subdivided into 4, 4x4 blocks such that

 33

each 4x4 block depending on its location uses a pre-fixed prediction using decoded pixels of

corresponding chroma component. Figure 4.4 illustrate variable size of macroblocks.

Figure 4.4: Frame divided into multiple macroblocks of 16 x 16, 8 x 8, 8 x 4, 4 x 8 and 4 x 4
variable sizes to represent different coding profiles.

Inter prediction: The inter prediction block includes both motion estimation (ME) and

motion compensation (MC). It generates a predicted version of a rectangular array of pixels, by

choosing similarly sized rectangular arrays of pixels from previously decoded reference pictures

and translating the reference arrays to the positions of the current rectangular array. Figure. 4.5

depicts inter-prediction.

 34

Figure 4.5: Inter prediction in H.264 [3].

In Figure 4.5, a half-pel is interpolated from neighboring integer-pel samples using a 6-

tap Finite Impulse Response filter with weights (1, -5, 20, 20, -5, 1) / 32, quarter-pel is produced

using bilinear interpolation between neighboring half- or integer-pel samples.

 In the AVC, the rectangular arrays of pixels that are predicted using MC can have the

following sizes: 4x4, 4x8, 8x4, 8x8, 16x8, 8x16, and 16x16pixels. The translation from other

positions of the array in the reference picture is specified with quarter pixel precision. In case of

4:2:0 format, the chroma MVs have a resolution of 1/8 of a pixel. They are derived from

transmitted luma MVs of 1/4 pixel resolution, and simpler filters are used for chroma as

compared to luma. Figure. 4.6 illustrates the partitioning of the macroblock for motion

compensation and Figure 4.7 depicts sub-pel motion compensation block of the H.264/AVC

encoder.

 35

Figure 4.6: Segmentations of the macro-block for motion compensation [3].

Figure 4.7: Block diagram emphasizing sub-pel motion compensation [3].

 36

 H.264/AVC standard supports multi-picture motion-compensated prediction. That is,

more than one prior-coded picture can be used as a reference for motion-compensated

prediction as shown in Figure 4.8. In addition to the motion vector, the picture reference

parameters (∆) are also transmitted. Both the encoder and decoder have to store the reference

pictures used for Inter-picture prediction in a multi-picture buffer. The decoder replicates the

multi-picture buffer of the encoder, according to the reference picture buffering type and any

memory management control operations that are specified in the bit stream [35].

Figure 4.8: Multi-frame motion compensation in H.264 [35].

 The H.264/AVC decoder takes in the encoded bit stream as input and gives raw YUV (Y-

Luminance, (U, V)-Chrominance) video frames as output. The header or syntax information and

slice data with motion vectors is extracted by the entropy decoder block through which the bit

stream is passed. Next the residual block data is extracted by means of inverse scan and

inverse quantizer. An inverse transform is carried out on all the blocks in order to map them

 37

from the transform domain to the pixel domain. A predicted block is formed using motion

vectors, and previously decoded reference frames if the block is found to be inter coded. Then

the predicted block and residual block are combined to reconstruct the complete frame. This

decoded frame is then presented to the user after it is passed through a de-blocking filter.

4.2 GOP level

 Due to the temporal and spatial predictions of the images, the image distortion caused

by a erroneous MB is not restricted to that MB. Since MBs are spatially and/or temporally

dependent on neighboring MBs, the errors can also propagate in time (in following frames) and

in space (the same frame). Error propagation represents a problem for error concealment

because if the error concealed picture differs from the original picture, the error will propagate

until the next I frame occurs or until the beginning of the next GOP. If more frames per GOP are

used to improve compression, there will be degradation in video quality since the error can

propagate over more frames.

38

CHAPTER 5

QUALTIY METRICES

Digital videos are subject to a wide variety of distortions during transmission,

compression, processing and reproduction, any of which may result in a degradation of visual

quality. For applications in which videos are ultimately to be viewed by human beings, the only

correct method of quantifying visual video quality is through subjective evaluation. However,

subjective evaluation is usually too inconvenient, time-consuming and expensive. That explains

why there is a increasing popularity to develop objective quality measurement techniques that

can predict perceived image and video quality automatically.

An objective image quality metric can play a variety of roles in image processing

applications. First, it can be used to dynamically monitor and adjust image quality. For example,

a network digital video server can examine the quality of video being transmitted in order to

control and allocate streaming resources. Second, it can be used to optimize algorithms and

parameter settings of image processing systems. For instance, in a visual communication

system, a quality metric can assist in the optimal design of pre-filtering and bit assignment

algorithms at the encoder and of optimal reconstruction, error concealment, and post-filtering

algorithms at the decoder. Third, it can be used to benchmark image processing systems and

algorithms.

Most widely used quality metric is the mean squared error (MSE), computed by

averaging the squared intensity differences of distorted and reference image pixels, along with

the related quantity of peak signal to noise ratio (PSNR). MSE and PSNR are widely used

because they are simple to calculate and have clear physical meanings, and are mathematically

easy to deal with for optimization purposes. However they have been widely criticized as well

39

for not correlating well with perceived quality measurement. Therefore, a distortion measure that

is based on human perception is more appropriate for picture quality estimation. A great deal of

effort has gone into the development of quality assessment methods that take advantage of

known characteristics of the human visual system (HVS) like blockiness and blurriness or a

measure of structural similarity (SSIM) [21].

5.1 Peak signal to noise ratio (PSNR)

In scientific literature it is common to evaluate the quality of reconstruction of a frame

by analyzing its peak signal to noise ratio (PSNR). There are different ways of representing

PSNR, One of the effective way of calculating PSNR is by dividing the frame in a graph with

luminance and the two chrominance. The unambiguous way is to take only the luminance

component of the YUV color space (Y-PSNR) Y-PSNR is the PSNR based on luminance only.

This is also sufficient for the error concealment methods that handle chrominance in the same

way as luminance, since chrominance is smoother and thus, in general easier to conceal.

Joint Model 13.2 (JM 13.2) [27] Reference Software outputs PSNR for every

component of the YUV color space (Y-PSNR, U-PSNR and V-PSNR, corresponding to the

luminance, chrominance B, chrominance R respectively) for every frame k

�$!%&'
�(� �)� *+,�)

--

.!�'
�(/0�1���-��	

MSE is the mean square error for the component for which PSNR is calculated. It is defined as

.!�'
�(� �

.��%
2 2 /"���� �	3�"+��� �	1

.
���

%
��� ��-�	

Where MxN is the size of the frame, "+��� �	 is the reconstructed frame and "���� �	 is the

original frame (uncompressed and without losses) of the color component (c).

40

5.2 Structural similarity (SSIM)

The main function of the human visual system (HVS) is to extract structural information

from the viewing field, for which it is highly adapted for this purpose. Therefore, a measurement

of structural information loss can provide a good approximation to perceived image distortion.

SSIM compares local patterns of pixel intensities that have been normalized for luminance and

contrast. The luminance of the surface of an object being observed is the product of the

illumination and the reflectance, but the structures of the objects in the scene are independent

of the illumination. Consequently, the structural information in an image can be determined by

separating the influence of the illumination. The structural information in an image can be

defined as those attributes that represent the structure of objects in the scene, independent of

the average luminance and contrast. The system diagram of the proposed quality assessment

system is shown in Figure 5.1

Figure 5.1: Diagram of the structural similarity (SSIM) measurement system [24].

Let x and y be two non-negative signals that have been aligned with each other (e.g.,

two image patches extracted from the same spatial location from two images being compared,

respectively), and let 45� �46� 75
� 76�890��756��be the mean of x, the mean of y, the variance of

41

x, the variance of y and the variance of x and y respectively. Approximately, 45and 75can be

viewed as estimates of the luminance and contrast of x and �756 measures the tendency of x

and y to vary together (An indication of structural similarity). The luminance, contrast and

structure comparison measures are given as follows:

:�5� 6	 � �
4;4< = �>
4;? = 4<? = �>

��-�@	

(�5� 6	 � �
7;7< = �?
7;? = 7<? = �?

��-�A	

��5� 6	 � �
7;< = �B
7;7< = �B

��-�-	

where��>, �? and �B are small constants given by�CD � �ED�F	G,CG � �EG�F	G and CH �

CG
GI

respectively. L is the dynamic range of the pixel values (L = 255 for 8 bits/pixel gray scale

images), and ED <<1 and EG <<1 are two scalar constants. The general form of the SSIM index

between signals x and y is defined as:

!!:.��5� 6	 � /:�5� 6	1J�� /(�5� 6	1K�� /��5� 6	1L���������������������������������-�#	

where M� N�OPQ�R�are parameters to define the relative importance of the three components.

Specifically, setting�S � �T � ��U � �, the resulting SSIM index is given by:

!!:.��5� 6	 � �
V4;4< = �>W�7;< = �?	

V4;? = 4<? = �>W�7;? = 7<? = �?	
�������������������������������-�X	

which satisfies the following conditions:

1. Symmetry: !!:.��5� 6	=�!!:.��6� 5	

42

2.�!!:.��5�6	 Y ��

3. !!:.��5� 6	 � �� If and only if 5 � 6

Here one of the image signals being compared to have perfect quality, then the SSIM index

provides a quantitative measurement of the quality of the other image signal.

43

CHAPTER 6

ERROR CONCEALMENT

The loss of transmitted data packets influences the quality of the received video. This

problem is caused by the band limited channel used by the mobile communication networks.

Since the real time transmission of video stream limits the channel delay, it is not possible to

retransmit all erroneous or lost packets. Therefore there is a need for post processing methods,

which try to reduce the visual artifacts caused by bit stream error after locating the missing or

defective parts of video data [11]. Error concealment methods which will be implemented on the

receiver side restore the missing and corrupt video content by using the previously decoded

video data. The error concealment benefits from the spatial and temporal correlations between

the video blocks within one frame or more than one frame within the video sequence. Therefore

the error concealment methods are implemented both in the spatial domain and time domain.

The spatial domain based error concealment uses the video information from the neighboring

blocks to restore the missing pixels within a specified area. The time domain based error

concealment uses the video information from the blocks lying in the previous and next frames to

restore the missing pixels within a specified area [15] and [16].

There are some assumptions adopted in this thesis to concentrate and limit the efforts on the

presentation of the error concealment methods:

• The missing part of a video content is limited to one macroblock

• The location of the missing macroblocks is known

• Features like data partitioning belonging to one macroblock such as motion vectors,

prediction mode and residuals are lost.

44

6.1 Joint Model (JM) Reference Software

There was a compilation error that was been encountered while using error concealment

methods built in JM 13.2 [27] reference software. It was giving us the following assertion error:

Assertion failed: numofPredblocks !=0

The problem of encoding the frames was fixed as follows:

By working on this routine by changing the input profile into baseline method by making these

changes in the configuration file present in the encoder, change the subroutine.

Some of the error concealment algorithms implemented in the decoder of the JM 13.2 [27] are

explained briefly:

6.2 Error concealment in spatial domain

The spatial redundancy in image and video signals is always present. Here the interpixel

difference between adjacent pixels for an image is determined. The interpixel difference is

defined as the average of the absolute difference between a pixel and its four surrounding

pixels. This property has been exploited to perform error concealment. All error concealment

methods in the spatial domain are based on the same idea which says that the pixel values

within the damaged macroblocks can be recovered by a specified combination of the pixels

surrounding the damaged macroblocks.

6.2.1 Weighted averaging

The first step done to implement spatial based error concealment was to interpolate the pixel

values within the damaged macroblock from the four next pixels in its four 1-pixel wide

boundaries. This method is known as ‘weighted averaging’ [28], because the missing pixel

values can be recovered by calculating the average pixel values from the four pixels in the four

1-pixel wide boundaries of the damaged macroblock weighted by the distance between the

45

missing pixel and the four macroblocks boundaries (upper, down, left and right boundaries) as

shown in Figure 6.1.

Figure 6.1: Weighted Averaging

Using a macroblocks with NxN pixel size, the weighted averaging (macroblock based)

can be described as follows:

Z[��� '	 � �
�

0\ = 0] = 0� = 0^
/0]Z[\��� %	 =�0\Z[]��� *	 =�0^Z[��%� '	

=�0�Z[^�*� '	���#��	

where �� ' � �� � @� _______%�

0\ : distance between the interpolated pixel and the nearest pixel Z[\ � �Z[���)	 in the left

boundary.

0] : distance between the interpolated pixel and the nearest pixel Z[] � �Z[��� % = �	 in right

boundary.

0� : distance between the interpolated pixel and the nearest pixel Z[� � �Z[�)� �	 in top

boundary.

0^ : distance between the interpolated pixel and the nearest pixel Z[^ � �Z[�% = �� �	 in bottom

boundary.

N: Size of the block.

46

Z[: macroblock

Used symbols are seen in Figure 6.1.

Another way to implement weighted averaging is called block based weighted

averaging [28]. The damaged macroblock is split into four independent blocks; each pixel within

a block is interpolated from two pixels in its two nearest boundaries. When using a macroblock

with 2Nx2N pixels the weighted averaging (block based) can be described as follows:

[���� '	 ��
0�[`���%	=�0`[�@��%� '	

0` = 0�
���#�	

[��� '	 ��
0�[&���� �	=�0&[�A��%� '	

0& = 0�
���#�@	

[@��� '	 ��
0�[`A���%	=�0`[������ '	

0` = 0�
���#�A	

[A��� '	 ��
0�[&@��� �	=�0&[����� '	

0& = 0�
���#�-	

Where �� ' � �� � @� _______%�

 (a) (b)

Figure 6.2: Weighted Averaging: a) block based, b) macroblock based

47

The weighted averaging method - based on macroblock approach showed good results

in cases where the missing macroblock lies within a smooth area. An example is when a picture

with a sky view or plain background is considered (see Figs. 6.2 and 6.4). On the other hand the

block based weighted averaging method does not guarantee the smoothness of the recovered

macroblock and shows a slight blocking effect (see figure 6.3 and 6.5).

Otherwise this method is more efficient than the macroblock based method if the missing

macroblock consists of two or more parts, where each part belongs to a different smooth area.

Figure 6.2 shows an example of this case, where the missing macroblock lies between the

black smooth area and blue smooth area. Using macroblock based weighted averaging does

not guarantee the smoothness property of video signal along the boundaries of the missing

macroblock.

a b c

Figure 6.3: Recovery of the damaged macroblock in Akiyo video sequence (a) distorted image
lying within a smooth area b) macroblock based weighted averaging applied on a blue smooth

area; c) block based weighted averaging applied on a blue smooth area.

 a b c

Figure 6.4: Recovery of the damaged macroblock in Akiyo video sequence (a) distorted image
lying between black and blue smooth area b) macroblock based weighted averaging applied on

48

a missing macroblock lying between black and blue smooth areas; c) block based weighted
averaging applied on a missing block lying between black and blue smooth areas.

a b c

Figure 6.5: Recovery of the damaged macroblock in Foreman video sequence (a) distorted
image lying within a smooth area; b) macroblock based weighted averaging applied on a white

smooth area; c) block based weighted averaging applied on a white smooth area.

a b c

Figure 6.6: Recovery of the damaged macroblock in Foreman video sequence (a) distorted
image lying between white and black smooth area b) macroblock based weighted averaging

applied on a missing macroblock lying between black and white smooth areas; c) block based
weighted averaging applied on a missing block lying between black and white smooth areas.

6.3 Error concealment in temporal domain

Among the error concealment methods in the spatial domain the weighted averaging

methods exploit the spatial smoothness property of natural video signal. In addition to the

spatial correlation within each video frame in the spatial domain a video signal has also a

49

significant nature which is represented by the existence of correlation between the adjacent

video frames in the time domain. This redundancy can also be exploited in the error

concealment. In this section two different error concealment techniques based on the

temporal domain are presented.

• Movement characteristics

It is easier to conceal linear movements in one direction because pictures can be

predicted from previous frames (the scene is almost the same). If there is movements in

many directions or scene cuts, finding a part of previous frame that is similar is going to

be more difficult, or even impossible.

• Speed characteristic

Slower camera movement makes it easier to conceal an error.

This kind of error concealment seizes on temporal correlation of the video sequence to conceal

the error. Motion estimation using previous frames is performed to reconstruct the missing data.

6.3.1 Copy-Paste algorithm

Copy-Paste is the simplest temporal error concealment method. Here the missing blocks of one

frame, "9���are replaced by the spatially corresponding blocks of the previous frame�"93�.

"9��� �	 � �"93���� �	��#�#	

This method only performs well for a low motion sequence, but the advantages lie in its low

complexity (see figure 6.6). Better performance is provided by the motion compensated

interpolation methods (see figure 6.7).

50

Figure 6.7: Frames# 5, 6 and 7 are the output of H.264 encoded frames after it is transmitted in
the error prone wireless medium.

Figure 6.8: Frame# 5 is the decoded frame. Here Frame# 6 successfully copied lost information
from Frame 5 by copy algorithm; Frame #7 is degraded (Because Frame#7 is reconstructed by

collecting the information from previous reference frames).

6.3.2 Recovery of inter prediction side information

The H.264/AVC decoder needs the inter prediction side information and the DCT coefficients of

the residuals. The Inter prediction side information includes the motion vectors and the

corresponding reference frame number. The loss of motion vectors degrades the decoded

image. This degradation propagates to the subsequent inter frames until an intra frame is

decoded. The decoding of the n-th inter frame is given by:

59���� �	 ��593��V� = a5�� � = a6W=�b9���� �	�	������������������������������������#�X	

51

Where Va;�� a<W� represent the x and y-component of the motion vector for the ��� �	�� �pixel and

bc���� �	�denotes the residual value. Note that in opposition to luma and chroma values of a

pixel, a motion vector is assigned to block at least 4x4=16 pixels. Therefore all pixels belonging

to the same 4x4 block have the same motion vector.

As mentioned before the H.264/AVC encoder applies the compression to the motion

vectors information by taking the difference between the current motion vector and the motion

vector of an already encoded neighboring macroblock. The information, to which the

neighboring macroblock this differential value is related to, is added to the other inter prediction

side information. Therefore, the loss of a macroblock motion vector propagates the following

macroblocks in the frame or in the slice, which depend on the motion vector prediction from the

affected macroblock.

By dealing with a video sequence containing the slow motion scenes, then motion

vectors of the macroblock are near to zero. Considering this scenario, when a video bitstream is

been received in the decoder after it is traversed in the error prone wireless medium. During the

reconstruction of video frames a misinterpreted motion vector, which may have a different

displacement in motion from the original position within the frame in all the following inter

frames. This displacement distorts the smoothness around the affected macroblock, which

degrades the perceptual video quality. The simplest way to recover the lost motion vectors of a

damaged macroblock is to set its value to zero. The visual artifacts that might be produced by

this method depend on the maximal detected motion. For a maximal value of 1 pixel per frame

those artifacts can be held in small ranges and cannot be recognized.

In some video scenes a homogenous movement of all objects within the video frame

can be recognized, such a scene is created by a moving camera shot. The difference between

the motion vectors of adjacent macroblocks is near zero. This difference value is extracted by

the video compressor; a misinterpretation of this value on the receiver side means automatically

a misinterpretation of the actual motion vector and leads to a global displacement of a group of

52

macroblocks within the actual frame. Similar behavior can be recognized in case of

homogenous movement of a group of macroblocks within a moving object in the video scene;

all macroblocks belonging to this object have the same motion vector, a transmission failure of

the motion vector belonging to the first decoded macroblock of this group could cause a local

displacement of the object. In these two cases the simplest way to recover motion vectors is to

use the motion vector, to which the corrupted motion vector is related to. This can be

implemented by setting the differential motion vector value which has been affected by the bit

stream error to zero. With that the resulting motion vector value is the same as the reference

motion vector value. This method can also be applied to the video frames of low motion video

scenes.

6.3.3 Motion Estimation: Motion vectors interpolation

The efficiency of the two methods presented in the previous section is still limited by

special types of the video scene. Generally a video sequence is a mixture of slow motion and

fast motion. Also a video scene could include objects with different dynamic behaviors. For this

reason there is a need of motion estimation methods which use the smoothness in the space

and time domains. A motion vector of a 4x4 block can be estimated by interpolating this value

from the motion vectors in the surrounding macroblocks. Distance between the 4x4-block and

the surrounding 4x4-block can be used as a weighting factor (See Figure 6.8)

53

Figure 6.9: Motion vector recovery by a) Using the motion vectors from the surrounding
macroblocks after frame decoding b) Using the motion vectors from the surrounding

macroblocks during macroblock decoding [28].

By using a macroblock of size 4Nx4N pixels, the macroblock includes NxN 4x4-blocks, the x-

and y-components of the corrupted motion vector are estimated by:

a;�Z[��� '		 � �
�

0\ = 0] = 0� = 0^
/0]a;VZ[\�%�� �	W =�0\a;VZ[]���� �	W

=�0^a;VZ[���� %	W =�0�a;VZ[^���� �	W���#�d	

a<�Z[��� '		 � �
�

0\ = 0] = 0� = 0^
/0]a<�Z[\�%�� �		 =�0\a<�Z[]���� �		

=�0^a<�Z[e���� %		 =�0�a<�Z[^���� �		��#�f	

Where �� ' � �� � @� _______%�

54

0\ : distance between the interpolated pixel and the nearest pixel Z[\ � �Z[���)	 in left

boundary.

0] : distance between the interpolated pixel and the nearest pixel Z[] � �Z[��� % = �	 in right

boundary.

0� : distance between the interpolated pixel and the nearest pixel Z[� � �Z[�)� �	 in top

boundary.

0^ : distance between the interpolated pixel and the nearest pixel Z[^ � �Z[�% = �� �	 in bottom

boundary.

N: Size of the block

ghi�motion vector in x-direction.

gj: motion vector in y-direction.

mb: macroblock

The use of motion vectors from the macroblocks on the right and the bottom of the affected

macroblocks is only possible if the corresponding macroblocks are already decoded and if the

differential motion vector of these macroblocks is not related to the motion vector of the affected

macroblock. In many cases these two requirements cannot be fulfilled, and therefore, an

estimation process has to be performed during the decoding of the affected macroblocks using

motion vectors of the previously decoded macroblocks (left and upper macroblocks in figure 5.3

b). The x- and y-components of the corrupted motion vector are estimated by:

a;�Z[���� �		 � �
�

0\ = 0�
/�0\a;�Z[����� %		 =�0�a;�Z[\�%�� �		��������������������������������#��)	

a<�Z[���� �		 � �
�

0\ = 0�
/�0\a<�Z[����� %		 =�0�a<�Z[\�%�� �		�������������������������������#���	

55

By using the motion vector in the upper right and upper left corner. The x- and y-components of

the corrupted motion vector are estimated by:

a;�Z[���� �		 � �
�

0\ = 0�
/�0\a�����;�Z[���� �		 =�0�a;�Z[\�%�� �		������������������������������#��	

a��5�Z[��� �	 �
�
% /�%3 �	a5VZ[�`�%�%	W=%�a5VZ[����%	W= �a5VZ[���%	W1

 �#��@	

a<�Z[���� �		 � �
�

0\ = 0�
/�0\a�����<�Z[���� �		 =�0�a<�Z[�%�� �		��������������������������������#��A	

a��6��Z[��� �	 ��
�
% /�%3 �	a6VZ[�`�%�%	W= �%�a6VZ[����%	W= ��a6VZ[�&����%	W1

 �#��-	

where �� ' � �� � @� _______%�

0\ : distance between the interpolated pixel and the nearest pixel Z[\ � �Z[���)	 in left

boundary.

0] : distance between the interpolated pixel and the nearest pixel Z[] � �Z[��� % = �	 in right

boundary.

0� : distance between the interpolated pixel and the nearest pixel Z[� � �Z[�)� �	 in top

boundary.

0^ : distance between the interpolated pixel and the nearest pixel Z[^ � �Z[�% = �� �	 in bottom

boundary.

N: Size of the block

ghi�motion vector component in x-direction.

gj: motion vector component in y-direction.

mb: macroblock

56

As mentioned before a misinterpreted motion vector leads to a displacement of the

macroblock. The smoothness at the boundary of the affected macroblock is not fulfilled any

more. The smoothness can be recovered by searching the best macroblock position within the

reference frame, where the difference of the pixels values between the outer boundary of the

affected macroblock and the boundary of the concealed macroblock is minimal. The difference

between the concealed position and the raster position of the affected macroblock is the

missing motion vector; this method is called boundary matching.

Another significant inter prediction side information is the reference frame number. The

loss of this information can degrade the quality of decoded image by replacing the original block

by a different one which does not fit in the actual frame. If the motion vector has been received

correctly, the lost reference frame number can be recovered by scanning all available reference

frame at the position indicated by the motion vector till it finds the block which match in the

actual frame. This method can be complicated if a big reference frame buffer is used. The

recovery process can be made easier by using the most used reference frame number in the

neighboring blocks. Figure 6.9, 6.10 and 6.11 illustrate the encoding; decoding and how lost

information is recovered with an I-frame using a motion estimation algorithm. Figure 6.12

illustrates the size of each frames that is being encoded.

57

Figure 6.10: Frame#1 to frame#20 of original encoded output from H.264 encoder.

58

Figure 6.11: Frame#1 to frame#20 of distorted video sequence due to the packet loss during
transmission of bit stream in an error prone wireless medium.

59

Figure 6.12: Frame#1 to frame#20 of motion estimation algorithm (motion vector interpolation)
output.

60

Figure 6.13: Graph shows the size (number of bits) of the different I and P frames obtained after
encoding 20 frames of the Football QCIF video sequence. Green line shows the average values

of the bits lost when it is passed through the lossy wireless medium.

Table 6.1 represents the number of frames encoded, with type of frame, offset value which is

the distance between successive frames and time required for coding the bitstream and number

of bits the particular frame represents. Figures 6.13 and 6.14 show the SSIM image output and

graph of original and concealed video sequences.

Table 6.1: Representation of coded video sequence.

num type offset Time
(Sec) Size(bits)

0 I 0x0000000000000000 00:00.0 6442
1 P 0x000000000000192a 00:00.0 1244
2 P 0x0000000000001e06 00:00.1 3074
3 P 0x0000000000002a08 00:00.1 3460
4 P 0x000000000000378c 00:00.1 3765
5 P 0x0000000000004641 00:00.2 3931
6 P 0x000000000000559c 00:00.2 3964
7 P 0x0000000000006518 00:00.2 4078
8 P 0x0000000000007506 00:00.3 4393
9 P 0x000000000000862f 00:00.3 4482

10 P 0x00000000000097b1 00:00.3 4144
11 P 0x000000000000a7e1 00:00.4 4067
12 P 0x000000000000b7c4 00:00.4 4145
13 P 0x000000000000c7f5 00:00.4 4306
14 P 0x000000000000d8c7 00:00.5 3902
15 I 0x000000000000e805 00:00.5 5357
16 P 0x000000000000fcf2 00:00.5 3940
17 P 0x0000000000010c56 00:00.6 4019
18 P 0x0000000000011c09 00:00.6 4060
19 P 0x0000000000012be5 00:00.6 4015

61

Figure 6.14: Representation of images from the SSIM metric where it gives the visual
differentiation between original and concealed video sequence (Completely black image in this

figure represents that both the images are having same pixel representation).

62

Table 6.2 shows the value of SSIM output between original and concealed video sequences.

Table 6.2: Representation of SSIM output (1->two images are alike, 0->two images have
completely different pixel values).

num type SSIM
0 I 1
1 P 0.87019
2 P 0.89112
3 P 0.91215
4 P 0.92346
5 P 0.93983
6 P 0.95667
7 P 0.96764
8 P 0.97571
9 P 0.9813

10 P 0.98323
11 P 0.98439
12 P 0.98775
13 P 0.98858
14 P 0.99051
15 I 1
16 P 1
17 P 1
18 P 1
19 P 1

63

Figure 6.15: Comparison of the recovered frame with original sequence by motion estimation
using SSIM index.

Table 6.3 shows PSNR values between encoded and concealed video sequences for Y, U and

V separately.

64

Table 6.3: Performance comparison between concealed and original video sequences using
PSNR representation.

Frame SNR_Y
(dB)

SNR_U
(dB)

SNR_V
(dB)

1 100 100 100
2 24.6474 35.3199 41.4868
3 25.6231 36.6582 42.7562
4 26.7219 38.7013 44.6911
5 27.6355 38.9417 45.2911
6 28.9347 40.5029 46.9383
7 30.9396 42.9496 48.9062
8 32.9711 46.4796 51.8757
9 34.3972 48.2814 53.3843

10 35.9502 49.8022 55.7311
11 37.2341 51.7953 57.9142
12 37.4774 52.0513 57.8239
13 39.2709 54.0244 59.3005
14 39.7164 54.6568 59.4931
15 40.1675 55.6336 60.0851
16 100 100 100
17 100 100 100
18 100 100 100
19 100 100 100

Figure 6.15 and 6.16 illustrates the concealed results for motion estimation algorithm. Figures

6.17 and 6.18 illustrate the SSIM graph. Figure 6.19 and 6.20 show PSNR graph for concealed

video sequence for Foreman video sequence.

65

Figure 6.16: Comparison between original and recovered frames by motion estimation using
PSNR metric.

a b c

Figure 6.17: Recovery of the damaged macroblock in Foreman video sequence (a) original
sequence b) Distorted Sequence c) Concealed output using motion estimation.

66

Figure 6.18: SSIM average values using frame copy algorithm (Foreman video sequence).

Figure 6.19: SSIM average values using motion estimation algorithm (Foreman video
sequence).

67

Figure 6.20: PSNR average values using frame copy algorithm (Foreman video sequence.

Figure 6.21: PSNR average values using motion estimation algorithm (Foreman video
sequence).

68

Figure 6.22: Size of I (red color bar) and P (blue color bar) frames obtained after encoding 19

frames of the foreman QCIF (176 x 144) video sequence. Green line shows the average values
of the bit lost when it is passed through the lossy wireless medium (Foreman Video Sequence)

Figure 6.23: Representation of different block sizes used for decoding in the motion estimation
algorithm

69

Algorithmic analysis based on GOP (Group of Pictures), QP (Quantization Parameters)

for QCIF and CIF video sequences is shown in Tables 6.4 and 6.5.

Table 6.4: Simulation results of different error concealment algorithms for Foreman QCIF 20
frame video sequence, (frame rate =30fps).

Video

Sequence
QP Bitrate (kbps) Original

PSNR
(dB)

(No Errors)

Error
Concealment
method

PSNR of error
concealment
methods (dB)

Foreman
(GOP=15, No.
of Frames

Encoded=20)

28

271.52

36.84

Weighted
Averaging

33.02

Copy Paste 32.43
Motion Vector
Interpolation

33.46

24

430.36

39.65

Weighted
Averaging

34.60

Copy Paste 33.21
Motion Vector
Interpolation

35.42

20

692.38

42.88

Weighted
Averaging

36.43

Copy Paste 35.80
Motion Vector
Interpolation

37.20

Foreman
(GOP=20, No.
of Frames

Encoded=20)

28

231.73

36.79

Weighted
Averaging

33.98

Copy Paste 32.23
Motion Vector
Interpolation

34.09

24

379.34

39.62

Weighted
Averaging

33.01

Copy Paste 32.92
Motion Vector
Interpolation

34.76

20

625.21

42.87

Weighted
Averaging

34.21

Copy Paste 33.57
MV

Interpolation

35.05

70

Table 6.5: Simulation results of different error concealment algorithms for Stefan CIF 20 frame
video sequence (frame rate = 30fps).

Video
Sequence

QP Bitrate (kbps) Original
PSNR
(dB)

(No Errors)

Error
Concealment
methods

PSNR of
different error
concealment
methods (dB)

Stefan
(GOP=15, No.
of Frames

Encoded=20)

28

1903.90

36.88

Weighted
Averaging

33.46

Copy Paste 30.49
Motion Vector
Interpolation

33.02

24

3074.17

40.13

Weighted
Averaging

34.01

Copy Paste 31.25
Motion Vector
Interpolation

33.46

20

4777.70

43.51

Weighted
Averaging

35.61

Copy Paste 32.59
Motion Vector
Interpolation

36.02

Stefan
(GOP=20, No.
of Frames

Encoded=20)

28

1725.25

36.86

Weighted
Averaging

33.03

Copy Paste 30.08
Motion Vector
Interpolation

32.46

24

2868.44

40.10

Weighted
Averaging

33.52

Copy Paste 31.10
Motion Vector
Interpolation

33.21

20

4563.82

43.46

Weighted
Averaging

33.99

Copy Paste 32.01
Motion Vector
Interpolation

33.24

71

CHAPTER 7

COMPUTATIONAL COMPLEXITY

The computational complexity is crucial especially for the wireless video due to the size

and power limited terminals. At present there is no standard criteria used to compare the

complexity of error concealment methods. The obtained result is based on the amount of data

access for each method.

7.1 Decoding time

One way of calculating complexity is analyzing decoding time. JM 13.2 Reference Software [27]

outputs time needed for decoding every frame of the video sequence and the time for entire

sequence. With this measurement it is difficult to realize the grade of complexity of the different

concealment methods. It would be a better option to know decoding time per macroblock (MB)

concealed. The problem is that this time is very short to be calculated in C code with functions

like time or ftime (file time) in Windows.

7.2 Number of operations

By the error concealment algorithm analyzed in section 6.1, here spatial domain method has

low complexity due to the fact that it is implemented by gathering the information from the

neighboring macroblock of a current frame there by reducing the computational complexity in

which it can be implemented in a small handheld devices there by limiting battery power for

processing in mobile terminals [36, 37]. Here complexity is measured by counting the number of

operations.

72

7.2.1 Weighted averaging

Weighted averaging is given by:

Z[��� '	 � �
�

0\ = 0] = 0� = 0^
/0]Z[\��� %	 =�0\Z[]��� �	 =�0^Z[��%� '	

=�0�Z[^��� '	��X��	

where �� ' � �� � @� _______%�

0\ : distance between the interpolated pixel and the nearest pixel Z[\ � �Z[���)	 in left

boundary.

0] : distance between the interpolated pixel and the nearest pixel Z[] � �Z[��� % = �	 in right

boundary.

0� : distance between the interpolated pixel and the nearest pixel Z[� � �Z[�)� �	 in top

boundary.

0^ : distance between the interpolated pixel and the nearest pixel Z[^ � �Z[�% = �� �	 in bottom

boundary.

N: Size of the block

ghi�motion vector in x-direction.

gj: motion vector in y-direction.

mb: macroblock

By looking at the equation (7.1) it is very simple to find out the number of operations:

Number of additions = �% 3 �	� ��? = �	��X�	

Number of multiplications = �% = �	��?���X�@	

where:

Q: block size.

N: Whole frame size NxN.

73

7.2.2 Inverse Transform

To be able to compare the number of operations of the different error concealment methods

there must be a reference. By choosing reference as the number of operations of the inverse

transforms for the luma component, neglecting other operations as i.e. dequantization or run-

length calculation.

All major prior video coding standards [26] used a transform block size of 8×8, while the

new H.264/AVC design is based primarily on a 4×4 transform block size. This allows the

encoder to represent signals in a more locally adaptive fashion, which reduces artifacts known

colloquially as “ringing”. All the examples of the way the transform is calculated are given for the

case of a 4×4 transform. However, here the number of operations considered is both 4×4 and

8×8 block size.

The integer transform is based in the discrete cosine transform (DCT). It works in this

way: maps a length-N vector x into a new vector X of transform coefficients by a linear

transformation X = H x. The DCT is not used because the matrix H that defines the

transformation has irrational numbers. Thus, by computing the forward and inverse transforms

in cascade, the resultant may not be exactly the same as the original data. It is desirable to

replace H by an orthogonal matrix with integer entries [29]. It is represented as:

 (7.4)

The rows of H in equation 7.4 are orthogonal, but they do not have the same norm (Sum of

absolute values in any row of H). However, that can be easily compensated by the quantization

process [29]. The decoder uses just the transpose of H with appropriate scaling and

reconstructed transform co-efficients.

74

The inverse transform matrix is defined by

 (7.5)

where `Hinv in equation 7.5, is a scaled inverse of H. The multiplications by 1/2 can be

implemented by 1-bit right shifts, so that all decoders produce identical results. To count the

number of operations there must be a reference on how it is mathematically programmed in

H.264/AVC [30]. The transform process shall convert the block of scaled transform coefficients

w

 (7.6)

to a block of output samples in a manner mathematically equivalent to the following process:

1. First, each (vertical) column of scaled transform coefficients is transformed using a one-

dimensional inverse transform, and

2. Then, each (horizontal) row of the resulting matrix is transformed using the same one-

dimensional inverse transform.

The one-dimensional inverse transform is specified as follows for four input samples kl ,k>,k?,

kB� where the subscript indicates the one-dimensional frequency index.

75

1. A set of intermediate values is computed:

m) ��k) =�k��X�X	

m� ��k) 3�k���X�d	

m ���k� n �	 3�k@��X�f	

m@ ��k� = ��k@ n �	��X��)	

2. The transformed result is computed from these intermediate values:

5) ��o) =�o@��X���	

5� ��o� =�o��X��	

5 ��o� 3�o��X��@	

5@ ��o) 3�o@��X��A	

Figure 7.1 shows a flow graph of the inverse transform, which is applied to rows and columns in

the case of 4×4 transform block size.

Figure 7.1 Fast implementation of the H.264/AVC inverse transform. No multiplications are

needed, only additions and shifts.

76

The number of operations of the inverse transform for 4×4 block size (B) is:

Number of additions = 32 · 16 = 512,

Number of shifts = 4 · 16 = 64,

The transform used in H.264/AVC is always 4×4. By assuming that the 8×8 transform is

calculated as 4 transforms of a 4×4 block and the 16×16 transform as 16 transforms of a 4×4

block, the number of operations can be calculated.

7.3 Decoding time

Here in this section mainly concentrating on time that an error concealment method

spends concealing. The value is calculated by considering 2 cases one decoding

without error concealment algorithm and other with decoding with error concealment

algorithm. Below are the test results:

Table 7.1: Decoding time values (ms) under windows vista platform

Sequence Decode without error

concealment algorithm

Decode with error

concealment algorithm

Foreman 5.023 5.145

Akiyo 4.002 4.171

Football 5.372 5.620

Videoclip 10.261 10.533

77

CHAPTER 8

H.264/AVC VIDEO CODEC IMPLEMENTATION

8.1 Assumptions

To evaluate the performance of the different error concealment methods, representative

video sequences under different error rates are selected. These images are called

Akiyo, Foreman and Football.

To perform the simulations in real-time, the video content must be sent over the

UMTS (Universal Mobile Telecommunications System) network to be reproduced in a

mobile telephone display. For this there is a limitation of the display screen size; the

usual format used for the mobile terminals is QCIF (Quarter Common Intermediate

Format) resolution (176x144 pixels). The H.264/AVC standard is well known for its very

good compression rate thereby reducing the number of bits needed for videos. 30fps

used for lab testing purpose. For streaming in wireless networks like UMTS, the frame

rate is reduced to 7.5fps. For implementation of frames, only I-frame (intra) and P-frame

(predicted) are used with following format IPPPP...PIPP... structure. This is to reflect the

baseline profile of the H.264/AVC standard [7], which does not necessarily support B-

frame (Bi-directinal).

78

8.2 Changes to the Joint Model Source Code

For implementation of the proposed algorithm, the Joint Model H.264/AVC

version 13.2 is used. [27]. This software is free to the user without any license fee or

royalty. Generated by the JVT this software consists of both video encoder and

decoder. All the source code is included in the package. This source code is written in

C programming language, and Microsoft Visual Studio is used as the tool for working

with it. In the implementation encoder code is not modified but some changes in the

configuration files is introduced since it is required in the decoder for efficient

reconstruction of lost frames during the transmission of bitstreams in the wireless

medium. Appendix A, describes the parameters of the configuration file of the encoder

(”encoder.cfg”) which is changed in order for fruitful recovery of a degraded video

sequence.

The decoder has another configuration file (”decoder.cfg”), but it is less

complex than the encoder. In this file there is a need to indicate which video stream is

used for decoding and error concealment. This is explained in detail in Appendix A.

Both configuration files, encoder and decoder, are shown in the Appendicies B and C.

8.3 Generation of Errors in the coded Bit stream

The main aim is to identify the performance of the different error concealment

methods. First the algorithm is written and implemented in the decoder and then carried

out in different real time applications. There must be a test bench to execute this

algorithm in a practical implementation that includes random addition of errors to the

encoded bitstream. An error concealment algorithm is applied to an artificially

developed wireless medium which will introduce errors in an abrupt manner. A new

source code is written which defines the different characteristics of a wireless medium.

Here the actual process of introducing the errors is a slight tricky method. Once a video

79

sequence is encoded, a continuous stream of bits is developed. Then the bits are

multiplexed with the overhead information such as motion vectors, control bits and NAL

bits and are transmitted.

In real-time applications the multiplexed bits are transmitted in the wireless

medium and are received in the decoder. The same scenario was created in the form of

a block where the multiplexed bit stream is passed to an artificial wireless medium.

Errors are randomly introduced into a single frame in this medium. Then this error

propagates until the end of GOP (Group of Pictures) i.e., before the start of another I

frame.

In the decoder the degraded video is received and the error concealment

algorithm is applied to conceal the lost frames. Finally the PSNR of the decoded video

sequence is calculated and is compared with that of the original sequence.

8.4 Simulation steps, commands and output results

The following steps give a brief description of how encoding, error introduction

and decoding are to be implemented using the JM 13.2 standard [27].

Steps for compilation of the codec:

• Open the project in Microsoft Visual Studio compiler.

• Build encoder (lencod) file and compile it for errors.

• Open Command Prompt and point to the path where the encoder configuration file is

present.

• Type in command: - “lencod.exe -f encoder.cfg” and it will get the output stream file in

the form of a .264 file.

• The .264 file is copied to a routine where a lossy error block is created. The file is then

built and compiled. The output of this block will be a combination of error and original

bitstream information.

80

• Copy the output of lossy block into the decoder block and modify the configuration file

to select which error concealment technique is to be used, what name the output and

input file for calculating the PSNR. Here type in the command along with the input file

name: -“ldecod.exe decoder.cfg”.

The changes which were made in the encoder and decoder block with the output are shown

in the Appendix A.

81

 CHAPTER 9

CONCLUSIONS

In this thesis different error concealment methods in the spatial and the temporal

domains have been implemented as functions written in the C language. These functions have

been added to the decoder C source code provided in [27]. Each method is more or less

efficient than the other according to the structure of the video image and the dynamic character

of the video sequence.

The first implementation started with the spatial domain error concealment. The first

step done in this field is based on the interpolation of the pixel values within the damaged

macroblock from the pixels within the surrounding area, the distance between the concealed

pixel and its neighboring pixels is used as the weighting factor. Spatial error concealment works

in a video sequence where the motion between frames is negligible (Eg: Akiyo video

sequence) and where the background is constant. Here one advantage of the spatial domain

error concealment is the low complexity compared with enhanced error concealment in the

temporal domain.

 The error concealment in the temporal domain is based on the copying algorithm. In this

error concealment technique the frames stored in the decoded frame buffer are used to conceal

the missing part within the affected frame. This algorithm just replaces damaged macroblock by

the spatially corresponding macroblock in this frame. For this purpose copy-paste function has

been integrated to get the index of the frame within the decoded picture buffer, which has the

maximal correlation with the affected frame. The basic copying algorithm can only be used for

82

error concealment in a slow motion video sequence which is characterized by high correlation in

the temporal domain between the adjacent frames. The efficiency of the basic copying algorithm

is limited by the dynamics of the video material. In the presence of gross motion it can produce

adverse visual artifacts. For this reason motion vector interpolation is implemented to conceal

the damaged image area. By using information of motion vectors for applying motion

compensation to the copied macroblock, smoothness along the boundary of concealed

macroblock is guaranteed.

For performing the comparison of the original and concealed video sequence PSNR,

MSE and SSIM metric are used. Although PSNR has been criticized precisely for not correlating

well with perceived quality measurement (i.e. [30], [31], [32], [33]). It is the one which obtains

the higher correlation. The PSNR can be derived easily. Minimizing MSE is very well

understood from the mathematical point of view and it can be concluded that for low resolution

videos (QCIF) the most suitable metric for analyzing visual quality is PSNR.

With regard to implementation complexity, a method is proposed by analyzing the

number of operations for every error concealment method. The number of operations gives

useful information for deciding which error concealment method is appropriate in terms of

complexity. Most of the discussed methods can also be implemented in another way, depending

on the required ratio between memory and computational power.

Finally how exactly error concealment is implemented is described. Some of the

commands required for running encoder and decoder configuration files, are explained.

The psuedo code structure describing the error concealment method decision tree for

low resolution videos (0: Off, 1: Frame-Copy, 2: weighted-averaging, 3: motion-vector) is listed

below.

83

if (motion vectors ==0)

method = Weigted Averaging()

else

if scene cuts and fast movements

method = Motion Vector()

else

method = copy-paste()

By applying the error concealment techniques mentioned in my thesis, there is a 10dB

improvement in the PSNR over the scheme which does not have error concealment.

84

APPENDIX A

CONFIGURATION SETTING OF THE REFERENCE

85

Parameters changed in the encoder configuration file of the encoder:

While encoding a video sequence in the encoder configuration file input file is specified along

with the number of frames that is to be encoded, frame rate and the video resolution of the input

file. The details of the configuration input parameters is as follows:

Files

InputFile = "FOOTBALL_176x144_15_orig_01.yuv"

InputHeaderLength = 0

StartFrame = 0 # Start frame for encoding.

FramesToBeEncoded = 20 # Number of frames to be coded

FrameRate = 30.0 # Frame Rate per second (0.1-100.0)

SourceWidth = 176 # Frame width

SourceHeight = 144 # Frame height

TraceFile = "trace_enc.txt" # Trace file

ReconFile = "test_rec.yuv" # Recontruction YUV file

OutputFile = "test1.264" # Bitstream

ProfileIDC = 66 # Profile IDC 66=Baseline

IntraProfile = 0

IntraPeriod = 15 # Period of I-pictures (0=only first)

QPISlice = 28 # Quant. param for I Slices (0-51)

QPPSlice = 28 # Quant. param for P Slices (0-51)

NumberReferenceFrames = 1 # Number of previous frames used for inter motion

NumberBFrames = 0 # Number of B coded frames inserted (0=not used)

SymbolMode = 0 # Symbol mode (Entropy coding method: 0=UVLC,

1=CABAC)

86

OutFileMode = 0 # Output file mode, 0:Annex B, 1:RTP

PartitionMode = 0 # Partition Mode, 0: no DP, 1: 3 Partitions per Slice

UseWeightedReferenceME = 1 # Use weighted reference for ME (0=off, 1=on)

Parameters changed in the decoder configuration file of the decoder:

Files

E:\Thesis\software\jm13.2_\JM\bin\ggtest1.264

E:\Thesis\software\jm13.2_\JM\bin\test_dec.yuv

E:\Thesis\software\jm13.2_\JM\bin\FOOTBALL_176x144_15_orig_01.yuv

1Write 4:2:0 chroma components for monochrome streams

2 Poc Scale (1 or 2)

leakybucketparam.cfg LeakyBucket Params

1........Err-Concealment (0: Off, 1: Frame-Copy, 2: weighted-averaging, 3: motion-

vector)

2Reference POC gap (2: IPP (Default), 4: IbP / IpP)

2POC gap (2: IPP /IbP/IpP (Default), 4: IPP with frame skip = 1 etc.)

87

Encoder Output:

------------------------------- JM 13.2 (FRExt) -------------------------------

 Input YUV file : FOOTBALL_176x144_15_orig_01.yuv

 Output H.264 bitstream : test1.264

 Output YUV file : test_rec.yuv

 YUV Format : YUV 4:2:0

 Frames to be encoded I-P/B : 20/0

 Freq. for encoded bitstream : 30

 PicInterlace / MbInterlace : 0/0

 Transform8x8Mode : 0

 ME Metric for Refinement Level 0 : SAD

 ME Metric for Refinement Level 1 : Hadamard SAD

 ME Metric for Refinement Level 2 : Hadamard SAD

 Mode Decision Metric : Hadamard SAD

 Motion Estimation for components : Y

 Image format : 176x144

 Error robustness : Off

 Search range : 32

 Total number of references : 1

 References for P slices : 1

 Sequence type : IPPP (QP: I 28, P 28)

 Entropy coding method : CAVLC

 Profile/Level IDC : (66,20)

 Motion Estimation Scheme : Fast Full Search

 Search range restrictions : none

 RD-optimized mode decision : used

88

 Data Partitioning Mode : 1 partition

 Output File Format : H.264 Bit Stream File Format

 Frame Bit/pic QP SnrY SnrU SnrV Time(ms)MET(ms) Frm/Fld Ref

--

0000(NVB) 160

0000(IDR) 51376 28 35.012 38.336 39.637 307 0 FRM 1

0001(P) 19232 28 34.092 37.600 39.017 1779 1337 FRM 1

0002(P) 24592 28 34.197 37.293 38.945 1773 1307 FRM 1

0003(P) 27680 28 34.343 37.151 38.701 1818 1344 FRM 1

0004(P) 30120 28 34.504 37.131 38.867 1822 1329 FRM 1

0005(P) 31448 28 34.657 37.297 38.841 1783 1303 FRM 1

0006(P) 31712 28 34.656 37.100 38.997 1839 1350 FRM 1

0007(P) 32624 28 34.922 37.306 38.801 1821 1323 FRM 1

0008(P) 35144 28 35.296 37.503 39.156 1828 1328 FRM 1

0009(P) 35856 28 34.867 37.366 39.333 1851 1345 FRM 1

0010(P) 33152 28 34.978 37.386 39.382 1826 1332 FRM 1

0011(P) 32536 28 35.324 37.385 39.803 1808 1330 FRM 1

0012(P) 33160 28 35.336 37.444 39.523 1837 1347 FRM 1

0013(P) 34448 28 35.689 37.258 38.996 1801 1317 FRM 1

0014(P) 31216 28 35.961 37.232 39.256 1847 1339 FRM 1

0015(I) 42856 28 36.255 38.623 39.597 269 0 FRM 1

0016(P) 31520 28 35.859 37.524 39.456 1866 1352 FRM 1

0017(P) 32152 28 36.049 37.400 38.954 1834 1356 FRM 1

0018(P) 32480 28 36.247 37.450 38.993 1865 1395 FRM 1

0019(P) 32120 28 36.255 37.361 38.993 1843 1360 FRM 1

89

 Total Frames: 20 (20)

 Leaky BucketRateFile does not have valid entries.

 Using rate calculated from avg. rate

 Number Leaky Buckets: 8

 Rmin Bmin Fmin

 983130 51376 51376

 1228890 51376 51376

 1474650 51376 51376

 1720410 51376 51376

 1966170 51376 51376

 2211930 51376 51376

 2457690 51376 51376

 2703450 51376 51376

------------------ Average data all frames -----------------------------------

 Total encoding time for the seq. : 33.417 sec (0.60 fps)

 Total ME time for sequence : 24.094 sec

 PSNR Y(dB) : 35.22

 PSNR U(dB) : 37.46

 PSNR V(dB) : 39.16

 cSNR Y(dB) : 35.17 (19.77)

 cSNR U(dB) : 37.44 (11.72)

 cSNR V(dB) : 39.15 (7.91)

 Total bits : 655584 (I 94232, P 561192, NVB 160)

90

 Bit rate (kbit/s) @ 30.00 Hz : 983.38

 Bits to avoid Startcode Emulation : 8

 Bits for parameter sets : 160

Exit JM 13 (FRExt) encoder ver 13.2

91

Decoder Output:

----------------------------- JM 13.2 (FRExt) -----------------------------

 Decoder config file : decoder.cfg

--

 Input H.264 bitstream : E:\Thesis\software\jm13.2_\JM\bin\ggtest1.264

 Output decoded YUV : E:\Thesis\software\jm13.2_\JM\bin\test_dec.yuv

 Output status file : log.dec

 Input reference file : E:\Thesis\software\jm13.2_\JM\bin\FOOT

BALL_176x144_15_orig_01.yuv

--

POC must = frame# or field# for SNRs to be correct

--

 Frame POC Pic# QP SnrY SnrU SnrV Y:U:V Time(ms)

--

00000(IDR) 0 0 28 35.0122 38.3359 39.6369 4:2:0 127

00001(P) 2 1 28 23.8236 33.4617 37.0038 4:2:0 117

00002(P) 4 2 28 24.6357 34.4494 37.7906 4:2:0 121

00003(P) 6 3 28 25.8626 35.1454 38.0278 4:2:0 125

00004(P) 8 4 28 26.9735 35.9484 38.3886 4:2:0 127

00005(P) 10 5 28 28.1940 36.4707 38.6069 4:2:0 123

00006(P) 12 6 28 28.9430 36.6224 38.9282 4:2:0 137

00007(P) 14 7 28 29.6336 37.0487 38.7475 4:2:0 127

00008(P) 16 8 28 31.1590 37.4340 39.1586 4:2:0 131

00009(P) 18 9 28 32.0543 37.3335 39.3018 4:2:0 129

00010(P) 20 10 28 32.6137 37.3043 39.3878 4:2:0 132

00011(P) 22 11 28 32.8080 37.3469 39.7984 4:2:0 135

92

00012(P) 24 12 28 33.7489 37.4025 39.5302 4:2:0 132

00013(P) 26 13 28 34.0266 37.2344 39.0095 4:2:0 133

00014(P) 28 14 28 34.1013 37.1822 39.2788 4:2:0 134

00015(I) 30 15 28 36.2548 38.6228 39.5968 4:2:0 128

00016(P) 32 0 28 35.8589 37.5237 39.4560 4:2:0 130

00017(P) 34 1 28 36.0492 37.4003 38.9537 4:2:0 130

00018(P) 36 2 28 36.2468 37.4496 38.9930 4:2:0 127

00019(P) 38 3 28 36.2547 37.3613 38.9934 4:2:0 137

-------------------- Average SNR all frames ------------------------------

 SNR Y(dB) : 31.71

 SNR U(dB) : 36.85

 SNR V(dB) : 38.93

 Total decoding time : 2.582 sec (7.746 fps)

--

 Exit JM 13 (FRExt) decoder, ver 13.2

93

APPENDIX B

 ENCODER CONFIGURATION FILE

94

Encoder Configuration file : encoder.cfg :

New Input File Format is as follows

<ParameterName> = <ParameterValue> # Comment

See configfile.h for a list of supported ParameterNames

For bug reporting and known issues see:

https://ipbt.hhi.de

#Files

InputFile = "FOOTBALL_176x144_15_orig_01.yuv" # Input sequence

InputHeaderLength = 0 # If the inputfile has a header, state it's length in byte here

StartFrame = 0 # Start frame for encoding. (0-N)

FramesToBeEncoded = 20 # Number of frames to be coded

FrameRate = 30.0 # Frame Rate per second (0.1-100.0)

SourceWidth = 176 # Frame width

SourceHeight = 144 # Frame height

TraceFile = "trace_enc.txt" # Trace file

ReconFile = "test_rec.yuv" # Recontruction YUV file

OutputFile = "test1.264" # Bitstream

Encoder Control

ProfileIDC = 66 # Profile IDC (66=baseline, 77=main, 88=extended; FREXT #Profiles:

100=High, 110=High 10, 122=High 4:2:2, 244=High 4:4:4, 44=CAVLC 4:4:4 Intra)

IntraProfile = 0 # Activate Intra Profile for FRExt (0: false, 1: true) # (e.g.

ProfileIDC=110, IntraProfile=1 => High 10 Intra Profile)

95

LevelIDC = 20 # Level IDC (e.g. 20 = level 2.0)

IntraPeriod = 15 # Period of I-pictures (0=only first)

IDRPeriod = 0 # Period of IDR pictures (0=only first)

AdaptiveIntraPeriod = 0 # Adaptive intra period

AdaptiveIDRPeriod = 0 # Adaptive IDR period

IntraDelay = 0 # Intra (IDR) picture delay (i.e. coding structure of PPIPPP...)

EnableIDRGOP = 0 # Support for IDR closed GOPs (0: disabled, 1: enabled)

EnableOpenGOP = 0 # Support for open GOPs (0: disabled, 1: enabled)

QPISlice = 28 # Quant. param for I Slices (0-51)

QPPSlice = 28 # Quant. param for P Slices (0-51)

FrameSkip = 0 # Number of frames to be skipped in input (e.g 2 will code every #third

frame)

ChromaQPOffset = 0 # Chroma QP offset (-51..51)

DisableSubpelME = 0 # Disable Subpixel Motion Estimation (0=off/default, 1=on)

SearchRange = 32 # Max search range

MEDistortionFPel = 0 # Select error metric for Full-Pel ME (0: SAD, 1: SSE, 2:

#Hadamard SAD)

MEDistortionHPel = 2 # Select error metric for Half-Pel ME (0: SAD, 1: SSE, 2:

#Hadamard SAD)

MEDistortionQPel = 2 # Select error metric for Quarter-Pel ME (0: SAD, 1: SSE, 2:

#Hadamard SAD)

MDDistortion = 2 # Select error metric for Mode Decision (0: SAD, 1: SSE, 2:

#Hadamard SAD)

ChromaMCBuffer = 1 # Calculate Color component interpolated values in advance #and

store them. Provides a trade-off between memory and computational complexity

(0: disabled/default, 1: enabled)

96

ChromaMEEnable = 0 # Take into account Color component information during ME

 # (0: only first component/default, 1: All Color components)

NumberReferenceFrames = 1 # Number of previous frames used for inter motion #search (0-

16)

PList0References = 0 # P slice List 0 reference override (0 disable, N <=

#NumberReferenceFrames)

Log2MaxFNumMinus4 = 0 # Sets log2_max_frame_num_minus4 (-1 : based on

#FramesToBeEncoded/Auto, >=0 : Log2MaxFNumMinus4)

Log2MaxPOCLsbMinus4 = -1 # Sets log2_max_pic_order_cnt_lsb_minus4 (-1 : Auto, #>=0 :

Log2MaxPOCLsbMinus4)

GenerateMultiplePPS = 0 # Transmit multiple parameter sets. Currently parameters #basically

enable all WP modes (0: diabled, 1: enabled)

ResendPPS = 0 # Resend PPS (with pic_parameter_set_id 0) for every coded

#Frame/Field pair (0: disabled, 1: enabled)

MbLineIntraUpdate = 0 # Error robustness(extra intra macroblock updates)(0=off, #N: One

GOB every N frames are intra coded)

RandomIntraMBRefresh = 0 # Forced intra MBs per picture

PSliceSkip = 1 # P-Slice Skip mode consideration (0=disable, 1=enable)

PSliceSearch16x16 = 1 # P-Slice Inter block search 16x16 (0=disable, 1=enable)

PSliceSearch16x8 = 1 # P-Slice Inter block search 16x8 (0=disable, 1=enable)

PSliceSearch8x16 = 1 # P-Slice Inter block search 8x16 (0=disable, 1=enable)

PSliceSearch8x8 = 1 # P-Slice Inter block search 8x8 (0=disable, 1=enable)

PSliceSearch8x4 = 1 # P-Slice Inter block search 8x4 (0=disable, 1=enable)

PSliceSearch4x8 = 1 # P-Slice Inter block search 4x8 (0=disable, 1=enable)

PSliceSearch4x4 = 1 # P-Slice Inter block search 4x4 (0=disable, 1=enable)

97

BSliceSkip = 1 # B-Slice Skip mode consideration (0=disable, 1=enable)

BSliceSearch16x16 = 1 # B-Slice Inter block search 16x16 (0=disable, 1=enable)

BSliceSearch16x8 = 1 # B-Slice Inter block search 16x8 (0=disable, 1=enable)

BSliceSearch8x16 = 1 # B-Slice Inter block search 8x16 (0=disable, 1=enable)

BSliceSearch8x8 = 1 # B-Slice Inter block search 8x8 (0=disable, 1=enable)

BSliceSearch8x4 = 1 # B-Slice Inter block search 8x4 (0=disable, 1=enable)

BSliceSearch4x8 = 1 # B-Slice Inter block search 4x8 (0=disable, 1=enable)

BSliceSearch4x4 = 1 # B-Slice Inter block search 4x4 (0=disable, 1=enable)

DisableIntraInInter = 0 # Disable Intra modes for inter slices

IntraDisableInterOnly = 0 # Apply Disabling Intra conditions only to Inter Slices

#(0:disable/default,1: enable)

Intra4x4ParDisable = 0 # Disable Vertical & Horizontal 4x4

Intra4x4DiagDisable = 0 # Disable Diagonal 45degree 4x4

Intra4x4DirDisable = 0 # Disable Other Diagonal 4x4

Intra16x16ParDisable = 0 # Disable Vertical & Horizontal 16x16

Intra16x16PlaneDisable = 0 # Disable Planar 16x16

ChromaIntraDisable = 0 # Disable Intra Chroma modes other than DC

EnableIPCM = 0 # Enable IPCM macroblock mode

DisposableP = 0 # Enable Disposable P slices in the primary layer (0: #disable/default,

1: enable)

DispPQPOffset = 0 # Quantizer offset for disposable P slices (0: default)

B Slices

98

NumberBFrames = 0 # Number of B coded frames inserted (0=not used)

QPBSlice = 30 # Quant. param for B slices (0-51)

BRefPicQPOffset = -1 # Quantization offset for reference B coded pictures (-51..51)

DirectModeType = 1 # Direct Mode Type (0:Temporal 1:Spatial)

DirectInferenceFlag = 1 # Direct Inference Flag (0: Disable 1: Enable)

BList0References = 0 # B slice List 0 reference override (0 disable, N <=

#NumberReferenceFrames)

BList1References = 1 # B slice List 1 reference override (0 disable, N <=

#NumberReferenceFrames) # 1 List1 reference is usually recommended for normal GOP

Structures. # A larger value is usually more appropriate if a more flexible

 # structure is used (i.e. using HierarchicalCoding)

BReferencePictures = 0 # Referenced B coded pictures (0=off, 1=B references for

#secondary layer, 2=B references for primary layer)

HierarchicalCoding = 0 # B hierarchical coding (0= off, 1= 2 layers, 2= 2 full #hierarchy, 3 =

explicit)

HierarchyLevelQPEnable = 1 # Adjust QP based on hierarchy level (in increments of #1).

Overrides BRefPicQPOffset behavior.(0=off, 1=on)

ExplicitHierarchyFormat = "b1r0b3r0b2e2b0e2b4r2" # Explicit Enhancement GOP. #Format is

{FrameDisplay_orderReferenceQP}. # Valid values for reference type is r:reference, e:non

reference.

ReferenceReorder = 1 # Reorder References according to Poc distance for

#HierarchicalCoding (0=off, 1=enable)

PocMemoryManagement = 1 # Memory management based on Poc Distances for

#HierarchicalCoding (0=off, 1=on)

BiPredMotionEstimation = 1 # Enable Bipredictive based Motion Estimation #(0:disabled,

1:enabled)

99

BiPredMERefinements = 3 # Bipredictive ME extra refinements (0: single, N: N extra

#refinements (1 default)

BiPredMESearchRange = 16 # Bipredictive ME Search range (8 default). Note that #range is

halved for every extra refinement.

BiPredMESubPel = 2 # Bipredictive ME Subpixel Consideration (0: disabled, 1: #single

level, 2: dual level)

SP Frames

SPPicturePeriodicity = 0 # SP-Picture Periodicity (0=not used)

QPSPSlice = 36 # Quant. param of SP-Slices for Prediction Error (0-51)

QPSP2Slice = 35 # Quant. param of SP-Slices for Predicted Blocks (0-51)

SI_FRAMES = 0 # SI frame encoding flag (0=not used, 1=used)

SP_output = 0 # Controls whether coefficients will be output to #encode

switching SP frames (0=no, 1=yes)

SP_output_name = "low_quality.dat" # Filename for SP output coefficients

SP2_FRAMES = 0 # switching SP frame encoding flag (0=not used, #1=used)

SP2_input_name1 = "high_quality.dat" # Filename for the first swithed bitstream

#coefficients

SP2_input_name2 = "low_quality.dat" # Filename for the second switched #bitstream

coefficients

Output Control, NALs

SymbolMode = 0 # Symbol mode (Entropy coding method: 0=UVLC, 1=CABAC)

OutFileMode = 0 # Output file mode, 0:Annex B, 1:RTP

100

PartitionMode = 0 # Partition Mode, 0: no DP, 1: 3 Partitions per Slice

CABAC context initialization

ContextInitMethod = 0 # Context init (0: fixed, 1: adaptive)

FixedModelNumber = 0 # model number for fixed decision for inter slices (0, 1, #or 2)

Interlace Handling

PicInterlace = 0 # Picture AFF (0: frame coding, 1: field coding, 2:adaptive

#frame/field coding)

MbInterlace = 0 # Macroblock AFF (0: frame coding, 1: field coding, #2:adaptive

frame/field coding, 3: frame MB-only AFF)

IntraBottom = 0 # Force Intra Bottom at GOP Period

Weighted Prediction

WeightedPrediction = 0 # P picture Weighted Prediction (0=off, 1=explicit mode)

WeightedBiprediction = 0 # B picture Weighted Prediciton (0=off, 1=explicit #mode,

2=implicit mode)

UseWeightedReferenceME = 1 # Use weighted reference for ME (0=off, 1=on)

Picture based Multi-pass encoding

101

RDPictureDecision=0 # Perform RD optimal decision between different coded #picture

versions. # If GenerateMultiplePPS is enabled then this will test different WP met #

Otherwise it will test QP +-1 (0: disabled, 1: enabled)

RDPictureIntra = 0 # Perform RD optimal decision also for intra coded pictures #(0:

disabled (default), 1: enabled).

RDPSliceWeightOnly = 1 # Only consider Weighted Prediction for P slices in #Picture

RD decision. (0: disabled, 1: enabled (default))

RDBSliceWeightOnly = 0 # Only consider Weighted Prediction for B slices in #Picture

RD decision. (0: disabled (default), 1: enabled)

Loop filter parameters

LoopFilterParametersFlag = 0 # Configure loop filter (0=parameter below ingored,

#1=parameters sent)

LoopFilterDisable = 0 # Disable loop filter in slice header (0=Filter, 1=No Filter)

LoopFilterAlphaC0Offset = 0 # Alpha & C0 offset div. 2, {-6, -5, ... 0, +1, .. +6}

LoopFilterBetaOffset = 0 # Beta offset div. 2, {-6, -5, ... 0, +1, .. +6}

Error Resilience / Slices

SliceMode = 0 # Slice mode (0=off 1=fixed #mb in slice 2=fixed #bytes in slice #3=use

callback)

SliceArgument = 50 # Slice argument (Arguments to modes 1 and 2 above)

num_slice_groups_minus1 = 1 # Number of Slice Groups Minus 1, 0 == no FMO, 1 == #two

slice groups, etc.

102

slice_group_map_type = 1 # 0: Interleave, 1: Dispersed, 2: Foreground with left-#over, # 3:

Box-out, 4: Raster Scan 5: Wipe 6: Explicit, slice_group_id read from

#SliceGroupConfigFileName

slice_group_change_direction_flag = 0 # 0: box-out clockwise, raster scan or wipe #right, #

1: box-out counter clockwise, reverse raster scan or wipe left

slice_group_change_rate_minus1 = 85 #

SliceGroupConfigFileName = "sg0conf.cfg" # Used for slice_group_map_type 0, 2, 6

UseRedundantPicture = 0 # 0: not used, 1: enabled

NumRedundantHierarchy = 1 # 0-4

PrimaryGOPLength = 5 # GOP length for redundant allocation (1-16) #

NumberReferenceFrames must be no less than PrimaryGOPLength when redundant #slice

enabled

NumRefPrimary = 1 # Actually used number of references for primary slices (1-16)

Search Range Restriction / RD Optimization

RestrictSearchRange = 2 # restriction for (0: blocks and ref, 1: ref, 2: no restrictions)

RDOptimization = 1 # rd-optimized mode decision # 0: RD-off (Low complexity mode) #

1: RD-on (High complexity mode) # 2: RD-on (Fast high complexity mode - not work in FREX

Profiles) # 3: with losses

CtxAdptLagrangeMult = 0 # Context Adaptive Lagrange Multiplier

 # 0: disabled (default)

 # 1: enabled (works best when RDOptimization=0)

FastCrIntraDecision = 1 # Fast Chroma intra mode decision (0:off, 1:on)

DisableThresholding = 0 # Disable Thresholding of Transform Coefficients (0:off, #1:on)

103

DisableBSkipRDO = 0 # Disable B Skip Mode consideration from RDO Mode #decision

(0:off, 1:on)

SkipIntraInInterSlices = 0 # Skips Intra mode checking in inter slices if certain mode #decisions

are satisfied (0: off, 1: on)

WeightY = 1 # Luma weight for RDO

WeightCb = 1 # Cb weight for RDO

WeightCr = 1 # Cr weight for RDO

Explicit Lambda Usage

UseExplicitLambdaParams = 0 # Use explicit lambda scaling parameters (0:disabled,

#1:enable lambda weight, 2: use explicit lambda value)

FixedLambdaIslice = 0.1 # Fixed Lambda value for I slices

FixedLambdaPslice = 0.1 # Fixed Lambda value for P slices

FixedLambdaBslice = 0.1 # Fixed Lambda value for B slices

FixedLambdaRefBslice = 0.1 # Fixed Lambda value for Referenced B slices

FixedLambdaSPslice = 0.1 # Fixed Lambda value for SP slices

FixedLambdaSIslice = 0.1 # Fixed Lambda value for SI slices

LambdaWeightIslice = 0.65 # scaling param for I slices. This will be used as a #multiplier

i.e. lambda=LambdaWeightISlice * 2^((QP-12)/3)

LambdaWeightPslice = 0.68 # scaling param for P slices. This will be used as a #multiplier

i.e. lambda=LambdaWeightPSlice * 2^((QP-12)/3)

LambdaWeightBslice = 2.00 # scaling param for B slices. This will be used as a #multiplier

i.e. lambda=LambdaWeightBSlice * 2^((QP-12)/3)

LambdaWeightRefBslice = 1.50 # scaling param for Referenced B slices. This will be #used

as a multiplier i.e. lambda=LambdaWeightRefBSlice * 2^((QP-12)/3)

104

LambdaWeightSPslice = 1.50 # scaling param for SP slices. This will be used as a

#multiplier i.e. lambda=LambdaWeightSPSlice * 2^((QP-12)/3)

LambdaWeightSIslice = 0.65 # scaling param for SI slices. This will be used as a #multiplier

i.e. lambda=LambdaWeightSISlice * 2^((QP-12)/3)

LossRateA = 5 # expected packet loss rate of the channel for the first #partition, only

valid if RDOptimization = 3

LossRateB = 0 # expected packet loss rate of the channel for the second #partition,

only valid if RDOptimization = 3

LossRateC = 0 # expected packet loss rate of the channel for the third #partition,

only valid if RDOptimization = 3

NumberOfDecoders = 30 # Numbers of decoders used to simulate the channel, #only

valid if RDOptimization = 3

RestrictRefFrames = 0 # Doesnt allow reference to areas that have been intra #updated in

a later frame.

Additional Stuff

UseConstrainedIntraPred = 0 # If 1, Inter pixels are not used for Intra macroblock #prediction.

LastFrameNumber = 0 # Last frame number that have to be coded (0: no effect)

ChangeQPI = 16 # QP (I-slices) for second part of sequence (0-51)

ChangeQPP = 16 # QP (P-slices) for second part of sequence (0-51)

ChangeQPB = 18 # QP (B-slices) for second part of sequence (0-51)

ChangeQPBSRefOffset = 2 # QP offset (stored B-slices) for second part of sequence #(-

51..51)

ChangeQPStart = 0 # Frame no. for second part of sequence (0: no second part)

NumberofLeakyBuckets = 8 # Number of Leaky Bucket values

105

LeakyBucketRateFile = "leakybucketrate.cfg" # File from which encoder derives #rate

values

LeakyBucketParamFile = "leakybucketparam.cfg" # File where encoder stores

#leakybucketparams

NumberFramesInEnhancementLayerSubSequence = 0 # number of frames in the #Enhanced

Scalability Layer(0: no Enhanced Layer)

SparePictureOption = 0 # (0: no spare picture info, 1: spare picture available)

SparePictureDetectionThr = 6 # Threshold for spare reference pictures detection

SparePicturePercentageThr = 92 # Threshold for the spare macroblock percentage

PicOrderCntType = 0 # (0: POC mode 0, 1: POC mode 1, 2: POC mode 2)

#Rate control

RateControlEnable = 0 # 0 Disable, 1 Enable

Bitrate = 45020 # Bitrate(bps)

InitialQP = 0 # Initial Quantization Parameter for the first I frame

 # InitialQp depends on two values: Bits Per Picture,

 # and the GOP length

BasicUnit = 11 # Number of MBs in the basic unit

 # should be a fractor of the total number

 # of MBs in a frame

ChannelType = 0 # type of channel(1=time varying channel; 0=Constant #channel)

RCUpdateMode = 0 # Rate Control type. Modes supported :

 # 0 = original JM rate control #

1 = rate control that is applied to all frames regardless of the slice type, # 2 =

106

original plus intelligent QP selection for I and B slices (including Hierarchical),

3 = original + hybrid quadratic rate control for I and B slice using bit rate statistics

RCISliceBitRatio = 1.0 # target ratio of bits for I-coded pictures compared to P-#coded

Pictures (for RCUpdateMode=3)

RCBSliceBitRatio0 = 0.5 # target ratio of bits for B-coded pictures compared to P-#coded

Pictures - temporal level 0 (for RCUpdateMode=3)

RCBSliceBitRatio1 = 0.25 # target ratio of bits for B-coded pictures compared to P-#coded

Pictures - temporal level 1 (for RCUpdateMode=3)

RCBSliceBitRatio2 = 0.25 # target ratio of bits for B-coded pictures compared to P-#coded

Pictures - temporal level 2 (for RCUpdateMode=3)

RCBSliceBitRatio3 = 0.25 # target ratio of bits for B-coded pictures compared to P-#coded

Pictures - temporal level 3 (for RCUpdateMode=3)

RCBSliceBitRatio4 = 0.25 # target ratio of bits for B-coded pictures compared to P-#coded

Pictures - temporal level 4 (for RCUpdateMode=3)

RCBoverPRatio = 0.45 # ratio of bit rate usage of a B-coded picture over a P-#coded

picture for the SAME QP (for RCUpdateMode=3)

RCIoverPRatio = 3.80 # ratio of bit rate usage of an I-coded picture over a P-#coded

picture for the SAME QP (for RCUpdateMode=3)

RCMinQPPSlice = 8 # minimum P Slice QP value for rate control

RCMaxQPPSlice = 40 # maximum P Slice QP value for rate control

RCMinQPBSlice = 8 # minimum B Slice QP value for rate control

RCMaxQPBSlice = 46 # maximum B Slice QP value for rate control

RCMinQPISlice = 8 # minimum I Slice QP value for rate control

RCMaxQPISlice = 36 # maximum I Slice QP value for rate control

RCMinQPSPSlice = 8 # minimum SP Slice QP value for rate control

RCMaxQPSPSlice = 40 # maximum SP Slice QP value for rate control

107

RCMinQPSISlice = 8 # minimum SI Slice QP value for rate control

RCMaxQPSISlice = 36 # maximum SI Slice QP value for rate control

#Fast Mode Decision

EarlySkipEnable = 0 # Early skip detection (0: Disable 1: Enable)

SelectiveIntraEnable = 0 # Selective Intra mode decision (0: Disable 1: Enable)

#FREXT stuff

YUVFormat = 1 # YUV format (0=4:0:0, 1=4:2:0, 2=4:2:2, 3=4:4:4)

RGBInput = 0 # 1=RGB input, 0=GBR or YUV input

SeparateColourPlane = 0 # 4:4:4 coding: 0=Common mode, 1=Independent mode

BitDepthLuma = 8 # Bit Depth for Luminance (8...12 bits)

BitDepthChroma = 8 # Bit Depth for Chrominance (8...12 bits)

CbQPOffset = 0 # Chroma QP offset for Cb-part (-51..51)

CrQPOffset = 0 # Chroma QP offset for Cr-part (-51..51)

Transform8x8Mode = 0 # (0: only 4x4 transform, 1: allow using 8x8 transform

additionally, 2: only 8x8 transform)

ReportFrameStats = 0 # (0:Disable Frame Statistics 1: Enable)

DisplayEncParams = 0 # (0:Disable Display of Encoder Params 1: Enable)

Verbose = 1 # level of display verboseness (0:short, 1:normal, 2:detailed)

#Q-Matrix (FREXT)

QmatrixFile = "q_matrix.cfg"

108

ScalingMatrixPresentFlag = 0 # Enable Q_Matrix (0 Not present, 1 Present in SPS, 2 Present

in PPS, 3 Present in both SPS & PPS)

ScalingListPresentFlag0 = 3 # Intra4x4_Luma (0 Not present, 1 Present in SPS, 2 Present

in PPS, 3 Present in both SPS & PPS)

ScalingListPresentFlag1 = 3 # Intra4x4_ChromaU (0 Not present, 1 Present in SPS, 2

Present in PPS, 3 Present in both SPS & PPS)

ScalingListPresentFlag2 = 3 # Intra4x4_chromaV (0 Not present, 1 Present in SPS, 2

Present in PPS, 3 Present in both SPS & PPS)

ScalingListPresentFlag3 = 3 # Inter4x4_Luma (0 Not present, 1 Present in SPS, 2 Present

in PPS, 3 Present in both SPS & PPS)

ScalingListPresentFlag4 = 3 # Inter4x4_ChromaU (0 Not present, 1 Present in SPS, 2

Present in PPS, 3 Present in both SPS & PPS)

ScalingListPresentFlag5 = 3 # Inter4x4_ChromaV (0 Not present, 1 Present in SPS, 2

Present in PPS, 3 Present in both SPS & PPS)

ScalingListPresentFlag6 = 3 # Intra8x8_Luma (0 Not present, 1 Present in SPS, 2 Present

in PPS, 3 Present in both SPS & PPS)

ScalingListPresentFlag7 = 3 # Inter8x8_Luma (0 Not present, 1 Present in SPS, 2 Present

in PPS, 3 Present in both SPS & PPS)

ScalingListPresentFlag8 = 1 # Intra8x8_ChromaU for 4:4:4 (0 Not present, 1 Present in SPS,

2 Present in PPS, 3 Present in both SPS & PPS)

ScalingListPresentFlag9 = 3 # Inter8x8_ChromaU for 4:4:4 (0 Not present, 1 Present in SPS,

2 Present in PPS, 3 Present in both SPS & PPS)

ScalingListPresentFlag10 = 2 # Intra8x8_ChromaV for 4:4:4 (0 Not present, 1 Present in SPS,

2 Present in PPS, 3 Present in both SPS & PPS)

ScalingListPresentFlag11 = 3 # Inter8x8_ChromaV for 4:4:4 (0 Not present, 1 Present in SPS,

2 Present in PPS, 3 Present in both SPS & PPS

109

#Rounding Offset control

OffsetMatrixPresentFlag = 0 # Enable Explicit Offset Quantization Matrices (0: disable 1:

enable)

QOffsetMatrixFile = "q_offset.cfg" # Explicit Quantization Matrices file

AdaptiveRounding = 1 # Enable Adaptive Rounding based on JVT-N011 (0: disable, 1:

enable)

AdaptRoundingFixed = 1 # Enable Global Adaptive rounding for all qps (0: disable, 1:

enable - default/old)

AdaptRndPeriod = 1 # Period in terms of MBs for updating rounding offsets.

0 performs update at the picture level. Default is 16. 1 is as in JVT-N011.

AdaptRndChroma = 1 # Enables coefficient rounding adaptation for chroma

AdaptRndWFactorIRef = 4 # Adaptive Rounding Weight for I/SI slices in reference pictures

/4096

AdaptRndWFactorPRef = 4 # Adaptive Rounding Weight for P/SP slices in reference

pictures /4096

AdaptRndWFactorBRef = 4 # Adaptive Rounding Weight for B slices in reference pictures

/4096

AdaptRndWFactorINRef = 4 # Adaptive Rounding Weight for I/SI slices in non reference

pictures /4096

AdaptRndWFactorPNRef = 4 # Adaptive Rounding Weight for P/SP slices in non reference

pictures /4096

AdaptRndWFactorBNRef = 4 # Adaptive Rounding Weight for B slices in non reference

pictures /409

110

AdaptRndCrWFactorIRef = 4 # Chroma Adaptive Rounding Weight for I/SI slices in

reference pictures /4096

AdaptRndCrWFactorPRef = 4 # Chroma Adaptive Rounding Weight for P/SP slices in

reference pictures /4096

AdaptRndCrWFactorBRef = 4 # Chroma Adaptive Rounding Weight for B slices in reference

pictures /4096

AdaptRndCrWFactorINRef = 4 # Chroma Adaptive Rounding Weight for I/SI slices in non

reference pictures /4096

AdaptRndCrWFactorPNRef = 4 # Chroma Adaptive Rounding Weight for P/SP slices in non

reference pictures /4096

AdaptRndCrWFactorBNRef = 4 # Chroma Adaptive Rounding Weight for B slices in non

reference pictures /4096

#Lossless Coding (FREXT)

QPPrimeYZeroTransformBypassFlag = 0 # Enable lossless coding when qpprime_y is zero (0

Disabled, 1 Enabled)

#Fast Motion Estimation Control Parameters

SearchMode = 0 # Use fast motion estimation (0=disable/default, 1=UMHexagonS,

 # 2=Simplified UMHexagonS, 3=EPZS patterns)

UMHexDSR = 1 # Use Search Range Prediction. Only for UMHexagonS method

 # (0:disable, 1:enabled/default)

UMHexScale = 3 # Use Scale_factor for different image sizes. Only for UMHexagonS

method

111

 # (0:disable, 3:/default)

 # Increasing value can speed up Motion Search.

EPZSPattern = 2 # Select EPZS primary refinement pattern.

 # (0: small diamond, 1: square, 2: extended diamond/default,

 # 3: large diamond, 4: SBP Large Diamond,

 # 5: PMVFAST)

EPZSDualRefinement = 3 # Enables secondary refinement pattern.

 # (0:disabled, 1: small diamond, 2: square,

 # 3: extended diamond/default, 4: large diamond,

 # 5: SBP Large Diamond, 6: PMVFAST)

EPZSFixedPredictors = 2 # Enables Window based predictors

 # (0:disabled, 1: P only, 2: P and B/default)

EPZSTemporal = 1 # Enables temporal predictors

 # (0: disabled, 1: enabled/default)

EPZSSpatialMem = 1 # Enables spatial memory predictors

 # (0: disabled, 1: enabled/default)

EPZSMinThresScale = 0 # Scaler for EPZS minimum threshold (0 default).

 # Increasing value can speed up encoding.

EPZSMedThresScale = 1 # Scaler for EPZS median threshold (1 default).

 # Increasing value can speed up encoding.

EPZSMaxThresScale = 2 # Scaler for EPZS maximum threshold (1 default).

 # Increasing value can speed up encoding.

EPZSSubPelME = 1 # EPZS Subpel ME consideration

EPZSSubPelMEBiPred = 1 # EPZS Subpel ME consideration for BiPred partitions

EPZSSubPelThresScale = 2 # EPZS Subpel ME Threshold scaler

EPZSSubPelGrid = 0 # Perform EPZS using a subpixel grid

112

SEI Parameters

##ToneM

appingSEIPresentFlag = 0 # Enable Tone mapping SEI (0 Not present, 1 Present)

ToneMappingFile = "ToneMapping.cfg"

GenerateSEIMessage = 0 # Generate an SEI Text Message

SEIMessageText = "H.264/AVC Encoder" # Text SEI Message

VUI Parameters

the variables below do not affect encoding and decoding

(many are dummy variables but others can be useful when supported by the decoder)

EnableVUISupport = 0 # Enable VUI Parameters

VUI_aspect_ratio_info_present_flag = 0

VUI_aspect_ratio_idc = 1

VUI_sar_width = 0

VUI_sar_height = 0

VUI_overscan_info_present_flag = 0

VUI_overscan_appropriate_flag = 0

VUI_video_signal_type_present_flag = 0

VUI_video_format = 5

VUI_video_full_range_flag = 0

VUI_colour_description_present_flag = 0

VUI_colour_primaries = 2

VUI_transfer_characteristics = 2

VUI_matrix_coefficients = 2

113

VUI_chroma_location_info_present_flag = 0

VUI_chroma_sample_loc_type_top_field = 0

VUI_chroma_sample_loc_type_bottom_field = 0

VUI_timing_info_present_flag = 0

VUI_num_units_in_tick = 1000

VUI_time_scale = 60000

VUI_fixed_frame_rate_flag = 0

nal hrd parameters

VUI_nal_hrd_parameters_present_flag = 0

VUI_nal_cpb_cnt_minus1 = 0

VUI_nal_bit_rate_scale = 0

VUI_nal_cpb_size_scale = 0

VUI_nal_bit_rate_value_minus1 = 0

VUI_nal_cpb_size_value_minus1 = 0

VUI_nal_vbr_cbr_flag = 0

VUI_nal_initial_cpb_removal_delay_length_minus1 = 23

VUI_nal_cpb_removal_delay_length_minus1 = 23

VUI_nal_dpb_output_delay_length_minus1 = 23

VUI_nal_time_offset_length = 24

vlc hrd parameters

VUI_vcl_hrd_parameters_present_flag = 0

VUI_vcl_cpb_cnt_minus1 = 0

VUI_vcl_bit_rate_scale = 0

VUI_vcl_cpb_size_scale = 0

VUI_vcl_bit_rate_value_minus1 = 0

VUI_vcl_cpb_size_value_minus1 = 0

114

VUI_vcl_vbr_cbr_flag = 0

VUI_vcl_initial_cpb_removal_delay_length_minus1 = 23

VUI_vcl_cpb_removal_delay_length_minus1 = 23

VUI_vcl_dpb_output_delay_length_minus1 = 23

VUI_vcl_time_offset_length = 24

VUI_low_delay_hrd_flag = 0

other params (i.e. bitsream restrictions)

VUI_pic_struct_present_flag = 0

VUI_bitstream_restriction_flag = 0

VUI_motion_vectors_over_pic_boundaries_flag = 1

VUI_max_bytes_per_pic_denom = 0

VUI_max_bits_per_mb_denom = 0

VUI_log2_max_mv_length_vertical = 16

VUI_log2_max_mv_length_horizontal = 16

VUI_num_reorder_frames = 16

VUI_max_dec_frame_buffering = 16

115

APPENDIX C

DECODER CONFIGURATION FILE

116

Decoder Configuration file: decoder.cfg:

E:\Thesis\software\jm13.2_\JM\bin\ggtest1.264 H.264/AVC coded bitstream

E:\Thesis\software\jm13.2_\JM\bin\test_dec.yuv Output file, YUV/RGB

E:\Thesis\software\jm13.2_\JM\bin\FOOTBALL_176x144_15_orig_01.yuv #........Ref

sequence (for SNR)

1 Write 4:2:0 chroma components for monochrome streams

0 NAL mode (0=Annex B, 1: RTP packets)

0 SNR computation offset

2 Poc Scale (1 or 2)

500000 Rate_Decoder

104000 B_decoder

73000 F_decoder

leakybucketparam.cfg LeakyBucket Params

2Err Concealment (0:Off,1:Frame Copy,2:weighted averaging,3:motion vector

#interpolation)

2 Reference POC gap (2: IPP (Default), 4: IbP / IpP)

2 POC gap (2: IPP /IbP/IpP (Default), 4: IPP with frame skip = 1 etc.)

0 Silent decode

This is a file containing input parameters to the JVT H.264/AVC decoder.

117

REFERENCES

[1] T. Stockhammer, M. M. Hannuksela and T. Wiegand, “H.264/AVC in Wireless

Environments”, IEEE Trans. Circuits and Systems for Video Technology, Vol. 13, pp. 657- 673,

July 2003.

[2] S. K. Bandyopadhyay, et al, “An Error Concealment Scheme for Entire Frame Losses

for H.264/AVC”, Proc. IEEE Sarnoff Symposium, Mar. 2006.

[3] Soon-kak Kwon, A. Tamhankar and K.R. Rao, ”Overview of H.264 / MPEG-4 Part 10”,

J. Visual Communication and Image Representation, vol. 17, pp.186-216, April 2006.

[4] J. Konrad and E. Dubois, “Bayesian Estimation of Motion Vector Field”, IEEE Trans.

Pattern Analysis and Machine Intelligence, vol. 14, pp. 910-926, Sept. 1992.

[5] M. Ghanbari and V. Seferidis, “Cell-Loss Concealment in ATM Video Codecs”, IEEE

Trans. Circuits and Systems for Video Technology, vol. 3, pp. 238-247, June 1993.

[6] M. Wada, “Selective Recovery of Video Packet Loss using Error Concealment,” IEEE

Journal on Selected Areas in Communication, vol. 7, pp. 807-814, June 1989.

[7] Video Coding Standards 6. MPEG-1. ISO/IEC 11172-2 (’93).

118

[8] P.Salama, N. Shroff and E. J. Delp, “Error Concealment in Encoded Video Streams”,

Proc. IEEE ICIP, vol. 1, pp. 9-12, 1995.

[9] H. Ha, C. Yim and Y.Y.Kim, “Packet Loss Resilience using Unequal Forward

Error Correction Assignment for Video Transmission over Communication Networks,” ACM

digital library on Computer Communications, vol. 30, pp. 3676-3689, Dec. 2007.

[10] Y. Chen, et al, “An Error Concealment Algorithm for Entire Frame Loss in Video

Transmission”, Microsoft Research Asia, Picture Coding Symposium, Dec. 2004.

[11] L. Liu, S. Zhang, X. Ye and Y. Zhang, “Error Resilience Schemes of H.264/AVC for 3G

Conversational Video”, Proc. IEEE Conf. Computer and Information Technology, pp. 657- 661,

Sept. 2005.

[12] S. Wenger, “H.264/AVC over IP” IEEE Trans. Circuits and Systems for Video

Technology, vol. 13, pp. 645-656, July 2003.

[13] T. Aladrovic, M. Matic, and M. Kos, “An Error Resilience Scheme for Layered Video

Coding” IEEE Int. symposium of Industrial Electronics, vol. 3, pp. 1285-1290, June 2005.

[14] T. Wiegand, et al, “Overview of the H.264/AVC Video Coding Standard” IEEE Trans.

Circuits and Systems for Video Technology, vol. 13, pp. 560-576, June 2003.

[15] S.Kumar, et al,” Error resiliency schemes in H.264/AVC standard,” J. Visual

Communication and Image Representation, vol. 17, pp. 425-450, April 2006.

119

[16] T. Thaipanich, P.H. Wu, and C.C. J Kuo, “Low-Complexity Mobile Video Error

Concealment Using OBMA”, IEEE Int. Conf. on Consumer Electronics, pp. 753-761, Jan 2008.

[17] JVT”Draft ITU-T recommendation and final draft international standard of joint video

specification (ITU-T rec. H.264– ISO/IEC 14496-10 AVC),” March 2003, JVT-G050 available on

http://ip.hhi.de/imagecom_G1/assets/pdfs/JVT- G050.pdf.

[18] R. Schafer, T. Wiegand, and H. Schwarz,”The emerging H.264/AVC standard,” EBU

Technical Review, Special Issue on Best of 2003, Dec. 2003.

[19] M. M. Ghandi and M. Ghanbari, “Layered H.264 video transmission with hierarchical

QAM” Electronic Systems Engineering Department, University of Essex, UK available in:

http://privatewww.essex.ac.uk/.

[20] V. S. Kolkeri, J. H. Lee and K. R. Rao,” Error concealment techniques in H.264/AVC for

wireless video transmission in mobile networks” submitted to International Conf. in Sinhgad

Technical Education Society, Image Processing-2009.

[21] Z. Wang, L. Lu, and A.C. Bovik, ”Video quality assessment based on structural

distortion measurement,” Signal Processing: Image Communication, vol. 19, no. 2, pp. 121-132,

Feb. 2004.

[22] F. Chiaraluce, et al, "Performance Evaluation of Error Concealment Techniques in

H.264 Video Coding," Proc. PCS04 Picture Coding Symposium, Dec. 15--17 2004, Nob Hill

Masonic Center, San Francisco (CA), USA..

120

[23] K. R. Rao, Z. S. Bojkovic, and D. A. Milovanovic, Wireless Multimedia Communications.

Boca Raton, FL: CRC press, 2009.

[24] Z. Wang, et al, “Image Quality Assessment: From Error Visibility to Structural

Similarity”, IEEE Trans. Image Processing, vol. 13, pp.600-612, April 2004.

[25] LSI Logic Corporation: H.264/MPEG-4 AVC Video Compression Tutorial, available in:

http://www.cs.ucla.edu/classes/fall03/cs218/paper/H.264_MPEG4_Tutorial.pdf

[26] Panasonic Corporation: AVC-Intra (H.264 Intra) Compression Tutorial, available in:

ftp://ftp.panasonic.com/pub/Panasonic/Drivers/PBTS/papers/WP_AVC-Intra.pdf

[27] H.264/AVC Reference Software Download:

 http://iphome.hhi.de/suehring/tml/download/

[28] M.T. Sun, and A.R. Reibman, Compressed Video over Networks, Marcel Dekker, New

York, 2001.

[29] H.S. Malvar, et al, ”Low-complexity transform and quantization in H.264/AVC,” IEEE

Trans. on Circuits and Systems for Video Technology, vol. 13, no.7, pp. 598-603, July 2003.

[30] JVT ”Draft ITU-T recommendation and final draft international standard of joint video

specification (ITU-T rec. H.264– ISO/IEC 14496-10 AVC),” March 2003, JVT-G050 available on

http://ip.hhi.de/imagecom_ G1/assets/pdfs/JVT-G050.pdf.

http://ip.hhi.de/imagecom_%20G1/assets/pdfs/JVT-G050.pdf

121

[31] Z. Wang, L. Lu, and A.C. Bovik, ”Video quality assessment based on structural

distortion measurement,” Signal Processing: Image Communication, vol. 19, no. 2, pp. 121-132,

Feb. 2004.

[32] Z. Wang, E.P. Simoncelli, and A.C. Bovik, ”Multi-scale structural similarity for image

quality assessment, ” Proc. IEEE Asilomar Conf. on Signals, Systems and Computers,

(Asilomar), vol. 2, pp. 1398-1402, Nov. 2003.

[33] S. Winkler, A. Sharma, and D. McNally, ”Perceptual video quality and blockiness

metrics for multimedia streaming applications,” Proc. of the International Symposium on

Wireless Personal Multimedia Communications, pp. 547–552, Aalborg, Denmark, Sept. 2001.

[34] D. Kumar, P. Shastry and A. Basu, “Overview of the H.264 / AVC”, 8th Texas

Instruments Developer Conference India, 30 Nov – 1 Dec 2005, Bangalore.

[35] R. Schäfer, T. Wiegand and H. Schwarz, “The emerging H.264/AVC standard”, EBU

Technical Review, Jan. 2003.

[36] A. A. Moghrabi, ”Error concealment for video transmission over wireless networks”,

Diploma research.

[37] J. C. Ikuno, “Performance of an error detection mechanism for damaged H.264/AVC

sequences”, Master’s thesis, 2007.

122

BIOGRAPHICAL INFORMATION

Vineeth Shetty Kolkeri was born in Kundapur, India, in 1985. He received the Bachelor

of Engineering degree in Electronics and Communication Engineering from Vivesvaraya

Technological University, India, in June 2006. His current research interests include video

coding, embedded, digital signal processing and wireless telecommunications. He is currently

pursuing his Master’s degree in Electrical Engineering at The University of Texas at Arlington.

He is a member of the multimedia processing research group, guided by Dr. K. R. Rao. He

worked as an intern in Qualcomm Inc from Aug. 2008-May 2009.

