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ABSTRACT 

 

 

ERROR CONCEALMENT TECHNIQUES IN H.264/AVC, 

FOR VIDEO TRANSMISSION OVER  

WIRELESS NETWORKS 

 

Vineeth Shetty Kolkeri, M.S. 

 

The University of Texas at Arlington, 2009 

 

Supervising Professor:  Dr. K. R. Rao 

 

 Several error concealment methods are applied to H.264/AVC (Advanced Video 

Coding) baseline profile such that the decoded video is error free. The error concealment 

techniques are implemented both in the spatial and temporal domains. The original and error 

concealment video sequences are compared in terms of MSE (Mean Square Error), PSNR 

(Peak-to-peak Signal to Noise Ratio) and SSIM (Structural Similarity Index Metric). This 

comparision has demonstrated that the error concealment methods are very effective in 

improving the visual quality. Implementation complexity also has been considered as the video 

transmission in baseline profile is meant for wireless networks 
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CHAPTER 1 

INTRODUCTION 

 

 Due to the rapid growth of wireless communications, video over wireless networks has 

gained a lot of attention. Cellular telephony has had the most important development. At the 

beginning, cellular telephony was conceived for voice communication [20]; however, nowadays 

it is able to provide a diversity of services, such as data, audio and video transmission thanks to 

the apparition of third and fourth generation (3G/4G) developments of cellular telephony [23]. 

 

 

Figure 1.1: Typical situation on 3G/4G cellular telephony 

 Figure 1.1 illustrates a 3G/4G [11] cellular telephony system where a user, with his 

mobile terminal, demands a video streaming service. The video stream comes from the 

application server over the network. Then it is transmitted over the wireless environment to the 

user. During the transmission, the video signal is error prone. This system, because of the 

bandwidth limitation, works with low resolution (QCIF 176 x 144) videos so the loss of one 

packet means a big loss of information [12]. Since this process is a real time application it is not 

possible to perform retransmissions. The only way to fix the errors produced by packet losses is 
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by using error concealment methods in the mobile terminal. The focus of this thesis is on spatial 

and temporal correlations of the video sequence to conceal the errors [20]. 

The main task of error concealment is to replace missing parts of video content by 

previously decoded parts of the video sequence in order to eliminate or reduce the visual effects 

of bit stream error. The error concealment exploits the spatial and temporal correlations 

between the neighboring image parts (macroblocks) within the same frame or the past and 

future frames [6]. Techniques using these two kinds of correlation are categorized as spatial 

domain error concealment and temporal domain error concealment. 

The spatial domain error concealment utilizes information from the spatial smoothness 

nature of the video image, and each missing pixel of the corrupted image part can be 

interpolated from the intact surroundings pixels [10]. The interpolation algorithm has been 

improved by the preservation of edge continuity using different edge detection methods. 

 The temporal domain error concealment utilizes from the temporal smoothness 

between the adjacent frames within the video sequence. The simplest implementation of this 

method is to replace the missing image part by spatially corresponding part within a previously 

decoded frame, which has the maximum correlation with the affected frame [9]. The copying 

algorithm has been improved by considering the dynamic nature of the video sequence. 

Different motion estimation algorithms have also been integrated to apply motion compensated 

copying [10]. 

 There are still no standardized means for the performance evaluation of error 

concealment methods. To evaluate the quality of reconstruction, typically peak signal to noise 

ratio (PSNR) and structural similarity index metric (SSIM) [24] are used. 

The focus of this thesis is the performance indicators for evaluating the error 

concealment methods. To test the performance evaluation methods, H.264 [3] video codec is 

used. H.264 [3] is the newest codec in video compression, which provides better quality with 

less bandwidth than the other video coding standards such as H.263 or MPEG-4 part-2 [7]. This 
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feature is very interesting for mobile networks due to the restricted bandwidth in these 

environments [20].  
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CHAPTER 2 

H.264/AVC DESCRIPTION 

 

H.264/MPEG-4 AVC [3] is the newest video compression standard, which promises a 

significant improvement over all previous video compression standards. In terms of coding 

efficiency, the new standard is expected to provide at least 2x compression improvement over 

the best previous standards and substantial perceptual quality improvements over both MPEG-

2 and MPEG-4 part-2 visual. 

Figure 2.1 shows the development of the video coding standards and the position of 

H.264 [3] standard which has highest compression gain among other standards. The ITU-T 

name for the standard is H.264 while the ISO/IEC [25, 30] name is MPEG-4 Advanced Video 

Coding (AVC), which is Part 10 of the MPEG-4 standard [3].  

 

Figure 2.1: Position of H.264/MPEG-4 AVC standard [26]
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The standard developed jointly by ITU-T and ISO/IEC supports video applications 

including low bit-rate wireless applications, standard-definition and high-definition broadcast 

television, video streaming over the internet, delivery of high-definition DVD content, and the 

highest quality video for digital cinema applications. Figure 2.2 shows the history of each video 

coding standard. 

 

Figure 2.2: History of video standards [25] 

Before becoming absorbed in deeper aspects of H.264/AVC like the encoding process or 

the new features that includes related to prior codecs, it will be better to explain some basics: 

• Block 

A block is an 8 x 8 array of pixels. 

• Macroblock 

A macroblock consists of a group of four blocks, forming a 16 x 16 array of pixels. 

• Luminance 

In video signal transmission, luminance is the component that codes the information of  

luminosity (brightness) of the image. 

• Chrominance 

Is the component that contains the information of color. 
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• YUV 

The YUV model defines a color space in terms of one luminance and two chrominance 

components. YUV models human perception of color more closely than the standard 

RGB model used in computer graphics hardware. Y stands for the luminance 

component (the brightness) and U and V are the chrominance (color) components. 

Concretely, U is blue-luminance difference and V is red-luminance difference. 

• Chroma pixel structure 

A macroblock can be represented in several different manners when referring to the 

YUV color space. Figure 2.3 shows 3 formats known as 4:4:4, 4:2:2 and 4:2:0 video. 

4:4:4 is full bandwidth YUV video, and each macroblock consists of 4 Y blocks, and 4 

U/V blocks. Being full bandwidth, this format contains as much as data would if it were 

in the RGB color space. 4:2:2 contains half as much chrominance information as 4:4:4 

and 4:2:0 contains one quarter of the chrominance information. The focus of this thesis 

is to use 4:2:0 format since it is the format typically used in video streaming 

applications. 

 

 

 



 

 
7

 

 

Figure 2.3: YUV different systems [17] 

 

 

2.1 H.264/AVC coding process 

The video coding layer (VCL) of H.264 consists of a hybrid of temporal and spatial 

predictions, in conjunction with transform coding [9]. Figures 2.4 and 2.5 shows the basic coding 

structure of H.264/AVC for a macroblock [3].  
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Figure 2.4: The basic coding structure of H.264/AVC for a macroblock [3, 18] 

 

Figure 2.5: Block diagram of H.264 Decoder [3] 

H.264 applies two types of slice coding, Intra-and Inter-slices. In case of Intra-slice, 

each sample of the macroblock within the slice is predicted using spatially neighboring samples 

of previously coded macroblocks. The coding process chooses which and how the neighboring 

samples are used for intra prediction, which is simultaneously conducted at the encoder and 

decoder using the transmitted Intra prediction side information [9]. In case of Inter slice the 
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encoder employs prediction (motion compensation) from other previously decoded pictures. The 

encoding process of Inter prediction consists of choosing motion data, comprising the reference 

picture, and a spatial displacement that is applied to all samples of the block. The motion data, 

which are transmitted as side information, are used by the encoder and decoder to 

simultaneously provide the Inter prediction signal. 

In a series of frames, video data can be reduced by methods such as difference coding, 

which is used by most video compression standards including H.264. In difference coding, a 

frame is compared with a reference frame and only pixels that have changed with respect to the 

reference frame are coded. In this way, the number of pixel values that are coded and sent is 

reduced. 

The residual of the prediction which is the difference of the original and the predicted 

blocks is transformed by the integer discrete cosine transform. The transform coefficients are 

scaled and quantized. The quantized transform coefficients are entropy coded by using CAVLC 

and transmitted together with the side information for either Inter frame or Intra frame prediction. 

The encoder contains decoder to conduct prediction for the next blocks or the next picture. 

Therefore, the quantized transform coefficients are inverse scaled and inverse transformed in 

the same way as at the decoder side, resulting in the decoded prediction residual. The decoded 

prediction residual is added to the prediction. The result of that addition is fed into a deblocking 

filter, which provides the decoded video as its output. 

The functions of different blocks of the H.264 encoder are as follows:  

Transform: A 4x4 multiplier-free integer transform is used and the transform coefficients 

are explicitly specified in AVC and allow it to be perfectly invertible. Its hierarchical structure is a 

4 x 4 Integer DCT and Hadamard transform. The Hadamard transform is applied only when 

(16x16) intra prediction mode is used with (4x4) integer DCT. MB size for chroma depends on 

4:2:0, 4:2:2 and 4:4:4 formats (see Figure 2.6). 
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Figure 2.6: Block diagram emphasizing transform [3]. 

 

Figure 2.7 shows the assignment of the DC indices to the 4 x 4 luma block. The 

numbers 0, 1, …15 are the coding order for (4x4) integer DCT and (0,0), (0,1), (0,2), …, (3,3) 

are the DC coefficients of each 4x4 block.   
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Figure 2.7: Assignment of indices of the DC (dark samples) to luma 4 x 4 blocks [3]. 

The 4x4 Integer DCT of X is given by: 

� � � ��� � � ���� �	 
 ����������������������������������������������������������������������������������������������������	 
 

 

 

where X are the input pixels, Y are the output coefficients,�
��represents element by element 

multiplication. 

The inverse 4x4 DCT can be represented by the following equation: 
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�� ����
�����
����	���������������������������������������������������������������������������������������������������	 

 

 
The 16 DC coefficients of the 16 (4x4) blocks are transformed using the Walsh Hadamard 

transform and is given by: 

 

(2.3) 
 
where // represents rounding to the nearest integer. 
 
The Walsh – Hadamard transform for 2x2 DC co-efficient for 4:2:0 chroma format can be 
represented as follows: 
 

                                 (2.4) 
����  is the dc coefficient of the (4 x 4), ��� �	���block. 



 

 
13

 
 

Figure 2.8: Chroma DC coefficients for 4x4 IntDCT for 4:2:2 and 4:4:4 chroma formats [3]. 

 

Scaling and Quantization: For the quantization of transform coefficients, H.264/AVC uses scalar 

quantization. One of 52 quantizers is selected for each macroblock by the Quantization 

Parameter (QP). The quantizers are arranged so that there is an increase of approximately 

12.5% in the quantization step size when incrementing the QP by one. The quantized transform 

coefficients of a block are generally scanned in a zigzag fashion and transmitted using entropy 

coding methods. For blocks that are part of a macroblock coded in field mode, an alternative 

scanning pattern is used. The 2×2 DC coefficients of the chroma component are scanned in 

raster-scan order. All transforms in H.264/AVC can be implemented using only additions to, and 

bit-shifting operations on, the 16-bit integer values. Figure 2.9 shows the transform, scaling and 

quantization blocks at the encoder part of H.264 / AVC. 

Quantization and scaling at the encoder can be represented by the following equation: 

                                                                               (2.5) 

where A is the quantizer input, B refers to the quantizer output, Qstep is the quantization 

parameter and SF is the scaling term. 
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Figure 2.9: Transform, scaling and quantization at H.264 encoder [3]. 

 

Entropy coding: The H.264 AVC includes two different entropy coding methods for 

coding quantized transform coefficients, namely, CAVLC (Context-based Adaptive Variable 

Length Coding) and CABAC (Context-based Adaptive Binary Arithmetic Coding).  

CAVLC handles the zero and +/- 1 coefficient based on the levels of the coefficients. 

The total numbers of zeros and +/-1 are coded. For the other coefficients, their levels are 

coded. Context adaptive VLC of residual coefficients make use of run-length encoding.  

CABAC on the other hand, uses arithmetic coding. Also, in order to achieve good 

compression, the probability model for each symbol element is updated. Both motion vector and 

residual transform coefficients are coded by CABAC. CABAC increases compression efficiency 

by 10% over CAVLC, but it is computationally more intensive. 

There are two types of scan orders used to read the residual data (quantized transform 

coefficients) namely, zig-zag and alternate scan (Figure 2.10). 
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Figure 2.10: H.264 scan orders to read residual data [3]. 

 

Deblocking filter: Coarse quantization of the block-based image transform produces 

disturbing blocking artifacts at the block boundaries of the image. Motion compensation of the 

macroblock by interpolation of data from previous reference frames might never give a perfect 

match and discontinuities appear at the edges of the copied blocks. When the P-frames 

(Predicted) reference these images having blocky edges, the blocking artifacts further 

propagate to the interiors of the current block worsening the situation further. 

The best way to deal with these artifacts is to filter the blocky edges to have a 

smoothed edge. This filtering process is known as the “deblock” filtering. The In-Loop deblock 

filter not only smoothens the blocky edges but also helps to increase the rate-distortion 

performance. After this, the frame decode process is carried out which ensures that all the 

top/left neighbors have been fully reconstructed and available as inputs for de-blocking the 

current macroblock. This is applied to all 4x4 blocks except at the boundaries of the picture. 

Filtering for block edges of any slice can be selectively disabled by means of flags [34]. Vertical 

edges are filtered first (left to right) followed by the horizontal edges (top to bottom) as shown in 

Figure. 2.11. 

This filter operates on a macro-block after motion compensation and residual coding, or 

on a macro-block after intra-prediction and residual coding, depending whether the macroblock 
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is inter-coded or intra-coded. The results of the loop filtering operation are stored as a reference 

picture. 

 

Figure 2.11: De-blocking filter process [34]. 

 

The decoder performs inverse quantization and pre-scaling as represented in the following 

equation: 

 

���
� ����� �� � ������ � � �!"���������������������������������������������������������������������������������������������������#	 

 

where B is the inverse quantizer input, A’ is the inverse quantizer output and Qstep is the 

quantization parameter and SF  is the scaling term. 

 

Figure: 2.12 shows the inverse transform, scaling and quantization blocks at the decoder part of 

H.264 / MPEG-4 Part 10. 
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Figure 2.12: Inverse transform, scaling and quantization at H.264 decoder [3]. 

 

2.2 Video stream structure 

The H.264/AVC video stream has a hierarchical structure shown in Figure 2.13. The 

different layers are explained next: 

 

Figure 2.13: Structure of H.264/AVC video stream 
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H.264 provides a clearly-defined format or syntax for representing compressed video and 

related information. At the top level, an H.264 sequence consists of a series of “packets” or 

Network Adaptation Layer Units (NAL Units or NALUs). These can include parameter sets 

(containing key parameters that are used by the decoder to correctly decode the video data) 

and slices (coded video frames or parts of video frames). At the next level, a slice represents all 

or part of a coded video frame and consists of a number of coded macroblocks, each containing 

compressed data corresponding to a 16x16 block of displayed pixels in a video frame. Detailed 

explanation of different layer header information is as follows: 

• Block layer: A block is an 8 x 8 array of pixels. 

• Macroblock layer: Contains single MB. A MB consists of a number of blocks that 

depend upon the chroma pixel structure. In this thesis work 4:2:0 profile is been used. 

• Slice layer: Slice is a sequence of MBs which are processed in the order of a raster 

scan when not using FMO. A picture may be split into one or several slices. Slices are 

self decodable, i.e. if an error occurs, it only propagates spatially within the slice. At the 

start of each slice the CAVLC is resynchronized. 

• Picture layer: Pictures are main coding units of a video sequence. There are three types 

of frames: 

- Intra coded frame: coded without any reference to any other frames. 

- Predictive coded frame: coded as the difference from a motion compensated 

prediction frame, generated from an earlier I or P frame in the GOP. 

- Bi directional coded frame: coded as the difference from a bi-directionally 

interpolated frame, generated from earlier and later I or P frames in the 

sequence. 

• Group of Pictures layer: Sequence of an I frame and temporally predicted frames until 

the next I frame. Allows random access to the sequence and provides refresh of the 
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picture after errors. If an error occurs, it will propagate only until the start of the next 

GOP.  

• Sequence layer: This layer starts with the sequence header and ends with an end of 

sequence code. The header carries information about picture size, aspect ratio, number 

of frames and bit rate of the images contained within the encoded sequence. 

 

2.3 Slice structure 

The macroblocks are organized into slices. A picture is a collection of one or more 

slices in the H.264/AVC standard [8]. Each picture may be split into one or several slices as 

shown in Figure 2.14. The transmission order of macroblocks in the bit stream depends on the 

so called Macroblock Allocation Map (MAM), and it is not necessarily in raster scan order. 

 

Figure 2.14: Subdivision of video frames [12]. 

Encoded video introduces slice units to make transmission packets smaller (compared 

to transmitting a whole frame as a packet). The probability of a bit error hitting a short packet is 

generally lower than for large packets [11], [12] and [15]. Moreover, short packets reduce the 

amount of lost information thereby limiting the error. Thus the error concealment methods can 

be applied in a more efficient way. Figure 2.15 illustrates the advantages of using slicing when 

an error occurs. Instead of concealing the whole frame, it just has to conceal the slice. 



 

 
20

 

Figure 2.15: Error detection without and with slicing [12]. 

H.264/AVC supports five different slice-coding types. The simplest one is the I slice. In I 

slice, all macroblocks are coded without referring to other pictures within the video sequence. 

On the other hand, prior-coded images can be used to form a prediction signal for macroblocks 

of the predictive-coded P slices. 

The transmission order of MBs in the bitstream depends on the so-called Macroblock 

Allocation Map and is not necessarily in raster-scan order if we use Flexible Macroblock 

Ordering (FMO). FMO modifies the way how pictures are partitioned into slices and MBs by 

utilizing the concept of slice group map, which is specified by the content of the picture 

parameter set and some information from slice headers. The macroblock to slice group map 

consists of a slice group identification number for each MB in the picture, specifying which slice 

group the associated MB belongs to. Each slice group can be partitioned into one or more 

slices, such that a slice is a sequence of MBs within the same slice group that is processed in 

the order of a raster scan within the set of MBs of a particular slice group. 

Using FMO (shown in Figure 2.16), a picture can be split into many MB scanning 

patterns. Figure 2.16 illustrates the advantages of using different slicing techniques. 
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• One slice per frame: Is the simplest method, but it misses the advantages of slicing. 

This method also leads to huge packets that have to be segmented at the IP layer. 

• Fixed number of MB per slice: The frame is divided into slices with the same number of 

MB. This results in packets with different lengths in bytes. 

• Fixed number of bytes per slice: The frame is divided in slices with the same byte 

length. This results in packets with different number of MBs. 

• Scattered slice: Every P MB (P is the number of different slices) belongs to one slice. 

The advantage is that a MB has always neighbors of different slice groups, so if one 

slice is lost, there are always possible interpolation errors with the neighbors. The 

disadvantages are loss of efficiency of spatial prediction, complexity and time delay. 

• Rectangular slice structure: It consists of one or more “foreground” slice groups and a 

“leftover” slice group. It allows for coding of a region of interest to improve coding loss. 

 

 

Figure 2.16: Slicing types in H.264/AVC [12]. 
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2.4 H.264/AVC profiles 

The H.264/AVC standard includes the following sets of capabilities, which are referred to as 

profiles. They target specific classes of applications [3]: 

• Constrained Baseline Profile (CBP): Primarily for low-cost applications this profile is 

used widely in videoconferencing and mobile applications. It corresponds to the subset 

of features that are common between the Baseline, Main, and High Profiles  

• Baseline Profile (BP): Primarily for low-cost applications that require additional error 

robustness, this profile is used rarely in videoconferencing and mobile applications, and 

it adds additional error resilience tools to the Constrained Baseline Profile. The 

importance of this profile is fading after the Constrained Baseline Profile has been 

defined.  

• Main Profile (MP): This was originally intended as the mainstream consumer profile for 

broadcast and storage applications. The importance of this profile faded when the High 

profile was developed for these applications.  

• Extended Profile (XP): This was intended as the streaming video profile. This profile 

has relatively high compression capability. It has some extra tricks for robustness to 

data losses and server stream switching.  

• High Profile (HiP): This is the primary profile for broadcast and disc storage 

applications, particularly for high-definition television applications. This is the profile 

adopted into HD DVD and Blu-ray Disc.  

• High 10 Profile (Hi10P): Going beyond today's mainstream consumer product 

capabilities, this profile builds on top of the High Profile, adding support for up to 10 bits 

per sample of decoded picture precision.  

• High 4:2:2 Profile (Hi422P): This profile primarily targets professional applications that 

use interlaced video. It builds on top of the High 10 Profile, adding support for the 4:2:2 

http://en.wikipedia.org/wiki/HD_DVD
http://en.wikipedia.org/wiki/Blu-ray_Disc
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chroma subsampling format while using up to 10 bits per sample of decoded picture 

precision.  

• High 4:4:4 Predictive Profile (Hi444PP): This profile builds on top of the High 4:2:2 

Profile, supporting up to 4:4:4 chroma sampling, up to 14 bits per sample, and 

additionally supporting efficient lossless region coding and the coding of each picture as 

three separate color planes.  

In addition, the standard contains four additional all-Intra profiles, which are defined as 

simple subsets of other corresponding profiles. These are mostly for professional (e.g., 

camera and editing system) applications: 

• High 10 Intra Profile: The High 10 Profile constrained to all-Intra use.  

• High 4:2:2 Intra Profile: The High 4:2:2 Profile constrained to all-Intra use.  

• High 4:4:4 Intra Profile: The High 4:4:4 Profile constrained to all-Intra use.  

• CAVLC 4:4:4 Intra Profile: The High 4:4:4 Profile constrained to all-Intra use and to 

CAVLC entropy coding (i.e., not supporting CABAC).  

 

The common coding parts for the profiles are listed below [3]:  

• I slice (Intra-coded slice): coded by using prediction only from decoded samples within 

the same slice. 

• P slice (Predictive-coded slice) : coded by using inter prediction from previously 

decoded reference pictures, using at most one motion vector and reference index to 

predict the sample values of each block. 

• CAVLC (Context-based Adaptive Variable Length Coding) for entropy coding. 

 

The common coding parts for the baseline profile are listed below:  

• Common parts: I slice, P slice, CAVLC. 

http://en.wikipedia.org/wiki/Chroma_subsampling
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• FMO Flexible macro block order: macro-blocks may not necessarily be in the raster 

scan order. The map assigns macro-blocks to a slice group. 

• ASO Arbitrary slice order: the macro-block address of the first macro-block of a slice of 

a picture may be smaller than the macro-block address of the first macro-block of some 

other preceding slice of the same coded picture. 

• RS Redundant slice: This slice belongs to the redundant coded data obtained by same 

or different coding rate, in comparison with previous coded data of same slice.  

 

The common coding parts for the main profile are listed below:  

• Common parts: I slice, P slice, CAVLC. 

• B slice (Bi-directionally predictive-coded slice) : the coded slice by using inter prediction 

from previously-decoded reference pictures, using at most two motion vectors and 

reference indices to predict the sample values of each block. 

• Weighted prediction: scaling operation by applying a weighting factor to the samples of 

motion-compensated prediction data in P or B slice. 

• CABAC (Context-based Adaptive Binary Arithmetic Coding) for entropy coding. 

 

The common coding parts for the extended profile are listed below:  

• Common parts : I slice, P slice, CAVLC. 

• SP slice : specially coded for efficient switching between video streams, similar to 

coding of a P slice. 

• SI slice: switched, similar to coding of an I slice. 

• Data partition: the coded data is placed in separate data partitions, each partition can 

be placed in different layer unit. 

• Flexible macro-block order (FMO), arbitrary slice order (ASO). 

• Redundant slices (RS), B slice. 
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• Weighted prediction.  

 

 

Table 2.1: H.264 / MPEG-4 Part 10 profile specifications [3]. 
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Figure 2.17: Specific coding parts for H.264 profiles [3]. 
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CHAPTER 3 

ENCAPSULATION OF VIDEO DATA THROUGH NETWORK LAYERS 

 

 The H.264/AVC standard consists of two layers, the video coding layer (VCL) and the 

network abstraction layer (NAL) as shown in Figure 3.1. The VCL specifies an efficient 

representation for the coded video data. It is designed to be as network independent as 

possible. The coded video data is organized into NAL units, each of which is a packet that 

contains an integer number of bytes. The first byte of each NAL unit is a header byte that 

contains an indication of the type of data in the NAL unit, and the remaining bytes contain 

payload data of the type indicated by the header [5, 12]. The payload data in the NAL unit is 

interleaved if necessary with emulation prevention bytes, which are bytes with a specific value 

inserted to prevent a particular pattern of data called a start code prefix from being accidentally 

generated inside the payload. The NAL unit structure definition specifies a generic format for 

use in both packet oriented and bits stream oriented transport systems, and a series of NAL 

units generated by an encoder referred to as a NAL unit stream. The NAL adapts the bit strings 

generated by the VCL to various network and multiplex environments and covers all syntactical 

levels above the slice level. In particular, it includes mechanisms for:  

• The representation of the data that is required to decide individual slices. 

• The start code emulation prevention 

• The framing of the bit strings that represent coded slices for the use over byte oriented 

networks. 

As a result of this effort, it has been shown that NAL design specified in the 

recommendation is appropriated for the adaptation of H.264 over RTP/UDP/IP [12].
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Figure 3.1: Layer structure of H.264/AVC encoder [14] 

The number and the order of macroblocks, which can be sent in one NAL unit is defined 

by the slice mode parameter: It is possible to set all macroblocks in the frame to one slice, or to 

choose a constant number of macroblocks per slice or constant number of bytes per slice. 

A slice can also be divided according to its video content into three partitions: Data partition A 

(DPA), which includes header information, sub block format and Intra prediction modes in case 

of I-slices or motion vectors in case of P and B-slices. Data partition B (DPB), which includes 

the Intra residuals. Data partition C (DPC), which includes the Inter residuals. 

The H.264 specifications define several NAL unit types according to the type of information 

included as shown in Figure 3.2. 

 

Figure 3.2: Data partitioning types of slices [19] 
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In the video transmission, the order in which the NAL units have to be sent is fixed. The 

first NAL unit to be sent is the sequence parameter set (SPS) followed by the picture parameter 

set (PPS). Both SPS and PPS include some parameters which have been set in the encoder 

configuration for all pictures in the video sequence, for example: entropy coding mode flag, 

number of reference index, weighted prediction flag, picture width in MB, picture height in MB 

and number of reference frames. 

The next NAL unit is the Instantaneous Decoder Refresh (IDR). After receiving a NAL 

unit of this type all the buffers have to be deleted. An IDR frame may only contain I slice without 

data portioning. IDR frames are usually sent at the start of the video sequence. All NAL units 

following the IDR have NAL type slice or one of DPA/DPB/DPC. Figure 3.3 shows the NAL units 

when no data portioning is used. 

 

Figure 3.3: NAL units order. 

For the streaming video services over the mobile technologies, the IP packet switched 

communication is of major interest, which uses real time transport protocol (RTP). Each NAL 

unit regardless of its type is encapsulated in the RTP/UDP/IP packet by adding header 

information of each protocol to the NAL unit as shown in Figure 3.4. IP header is 20 or 40 bytes 

long, depending on the protocol version and contains the information about the source and 

destination IP address. The UDP header is 8 bytes long and contains the CRC and length of the 

encapsulated packet. RTP header is 12 bytes long and contains sequence number and time 

stamps. Figure 3.5 illustrates the encapsulation of the video data starting at Network Adaptation 

Layer (NAL) down to the Physical Layer [12]. 
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Figure 3.4: Encapsulation of NAL unit in RTP/UDP/IP. 

 

Figure 3.5: Encapsulation of video data through protocol stack.



 

 31

 

 

CHAPTER 4 

ERROR PROPAGATION 

 

 The visual artifact caused by the bit stream error has different shapes and ranges 

depending on which part of video data stream is affected by the transmission error. Therefore 

these artifacts can be described in 2 levels: Slice level and GOP level  

4.1 Slice level 

In the slice level these artifacts are caused by either desynchronization of the variable 

length code or the loss of the reference in a spatial prediction.  

4.1.1 Variable length code 

The quantized transform coefficients are entropy coded using a variable length code 

(VLC) which means that the codewords have variable lengths [16]. The advantages of this kind 

of code consist in the fact that they are more efficient in the sense of representing the same 

information using fewer bits on average, reducing therefore the bit rate. That is possible if some 

symbols are more probable than others. The most frequent symbols will correspond to the 

shorter codewords, and the rare symbols will correspond to the longer codewords. However, 

variable length codes between the codewords may be determined in a wrong way, and the 

decoding process may desynchronize. Figure 4.1 describes how just one erroneous bit shown 

in red can desynchronize the whole sequence. 

 

Figure 4.1: Example of a VLC desynchronization 
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    4.1.2 Spatial prediction 

 The H.264/AVC performs intra prediction in the spatial domain. Even for an 

intra picture, every block of data is predicted from its neighbors before being transformed and 

coefficients generated for inclusion in the bit stream. As a first step in coding of a macroblock in 

intra mode, spatial prediction is performed on either 4x4 or 16x16 luminance blocks. Although, 

in principle, 4x4 block prediction will offer more efficient prediction compared to a 16x16 block, 

in reality, taking into account the mode decision overhead, sometimes the 16x16 block based 

prediction may offer overall better coding efficiency. Figure 4.2 shows two types of luminance 

intra coding. 

 

Figure 4.2: Left: Intra 4x4 predictions are conducted for samples a-p of a block by 9 different 
modes. Right: 8 prediction directions for Intra 4 x 4 prediction. [17]. 

 

Figure 4.3: Intra 16x16 prediction modes. [17] 

There are two 8x8 blocks of chroma in a macroblock one corresponding to each of the 

components, Cb and Cr. Each 8x8 block of chroma is subdivided into 4, 4x4 blocks such that 
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each 4x4 block depending on its location uses a pre-fixed prediction using decoded pixels of 

corresponding chroma component.  Figure 4.4 illustrate variable size of macroblocks.  

 

Figure 4.4: Frame divided into multiple macroblocks of 16 x 16, 8 x 8, 8 x 4, 4 x 8 and 4 x 4 
variable sizes to represent different coding profiles. 

 

Inter prediction: The inter prediction block includes both motion estimation (ME) and 

motion compensation (MC). It generates a predicted version of a rectangular array of pixels, by 

choosing similarly sized rectangular arrays of pixels from previously decoded reference pictures 

and translating the reference arrays to the positions of the current rectangular array. Figure. 4.5 

depicts inter-prediction. 
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Figure 4.5: Inter prediction in H.264 [3]. 

 

In Figure 4.5, a half-pel is interpolated from neighboring integer-pel samples using a 6-

tap Finite Impulse Response filter with weights (1, -5, 20, 20, -5, 1) / 32, quarter-pel is produced 

using bilinear interpolation between neighboring half- or integer-pel samples.  

            In the AVC, the rectangular arrays of pixels that are predicted using MC can have the 

following sizes: 4x4, 4x8, 8x4, 8x8, 16x8, 8x16, and 16x16pixels. The translation from other 

positions of the array in the reference picture is specified with quarter pixel precision. In case of 

4:2:0 format, the chroma MVs have a resolution of 1/8 of a pixel. They are derived from 

transmitted luma MVs of 1/4 pixel resolution, and simpler filters are used for chroma as 

compared to luma. Figure. 4.6 illustrates the partitioning of the macroblock for motion 

compensation and Figure 4.7 depicts sub-pel motion compensation block of the H.264/AVC 

encoder. 
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Figure 4.6: Segmentations of the macro-block for motion compensation [3]. 

 

 

Figure 4.7: Block diagram emphasizing sub-pel motion compensation [3]. 
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             H.264/AVC standard supports multi-picture motion-compensated prediction. That is, 

more than one prior-coded picture can be used as a reference for motion-compensated 

prediction as shown in Figure 4.8. In addition to the motion vector, the picture reference 

parameters (∆) are also transmitted. Both the encoder and decoder have to store the reference 

pictures used for Inter-picture prediction in a multi-picture buffer. The decoder replicates the 

multi-picture buffer of the encoder, according to the reference picture buffering type and any 

memory management control operations that are specified in the bit stream [35]. 

 

 

Figure 4.8: Multi-frame motion compensation in H.264 [35]. 

 

           The H.264/AVC decoder takes in the encoded bit stream as input and gives raw YUV (Y-

Luminance, (U, V)-Chrominance) video frames as output. The header or syntax information and 

slice data with motion vectors is extracted by the entropy decoder block through which the bit 

stream is passed. Next the residual block data is extracted by means of inverse scan and 

inverse quantizer. An inverse transform is carried out on all the blocks in order to map them 
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from the transform domain to the pixel domain. A predicted block is formed using motion 

vectors, and previously decoded reference frames if the block is found to be inter coded. Then 

the predicted block and residual block are combined to reconstruct the complete frame. This 

decoded frame is then presented to the user after it is passed through a de-blocking filter.  

 

4.2 GOP level 

 Due to the temporal and spatial predictions of the images, the image distortion caused 

by a erroneous MB is not restricted to that MB. Since MBs are spatially and/or temporally 

dependent on neighboring MBs, the errors can also propagate in time (in following frames) and 

in space (the same frame). Error propagation represents a problem for error concealment 

because if the error concealed picture differs from the original picture, the error will propagate 

until the next I frame occurs or until the beginning of the next GOP. If more frames per GOP are 

used to improve compression, there will be degradation in video quality since the error can 

propagate over more frames.
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CHAPTER 5 

QUALTIY METRICES 

 

Digital videos are subject to a wide variety of distortions during transmission, 

compression, processing and reproduction, any of which may result in a degradation of visual 

quality. For applications in which videos are ultimately to be viewed by human beings, the only 

correct method of quantifying visual video quality is through subjective evaluation. However, 

subjective evaluation is usually too inconvenient, time-consuming and expensive. That explains 

why there is a increasing popularity to develop objective quality measurement techniques that 

can predict perceived image and video quality automatically. 

An objective image quality metric can play a variety of roles in image processing 

applications. First, it can be used to dynamically monitor and adjust image quality. For example, 

a network digital video server can examine the quality of video being transmitted in order to 

control and allocate streaming resources. Second, it can be used to optimize algorithms and 

parameter settings of image processing systems. For instance, in a visual communication 

system, a quality metric can assist in the optimal design of pre-filtering and bit assignment 

algorithms at the encoder and of optimal reconstruction, error concealment, and post-filtering 

algorithms at the decoder. Third, it can be used to benchmark image processing systems and 

algorithms. 

Most widely used quality metric is the mean squared error (MSE), computed by 

averaging the squared intensity differences of distorted and reference image pixels, along with 

the related quantity of peak signal to noise ratio (PSNR). MSE and PSNR are widely used 

because they are simple to calculate and have clear physical meanings, and are mathematically 

easy to deal with for optimization purposes. However they have been widely criticized as well 
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for not correlating well with perceived quality measurement. Therefore, a distortion measure that 

is based on human perception is more appropriate for picture quality estimation. A great deal of 

effort has gone into the development of quality assessment methods that take advantage of 

known characteristics of the human visual system (HVS) like blockiness and blurriness or a 

measure of structural similarity (SSIM) [21]. 

 

5.1 Peak signal to noise ratio (PSNR)                   

In scientific literature it is common to evaluate the quality of reconstruction of a frame 

by analyzing its peak signal to noise ratio (PSNR). There are different ways of representing 

PSNR, One of the effective way of calculating PSNR is by dividing the frame in a graph with 

luminance and the two chrominance. The unambiguous way is to take only the luminance 

component of the YUV color space (Y-PSNR) Y-PSNR is the PSNR based on luminance only. 

This is also sufficient for the error concealment methods that handle chrominance in the same 

way as luminance, since chrominance is smoother and thus, in general easier to conceal. 

Joint Model 13.2 (JM 13.2) [27] Reference Software outputs PSNR for every 

component of the YUV color space (Y-PSNR, U-PSNR and V-PSNR, corresponding to the 

luminance, chrominance B, chrominance R respectively) for every frame k 
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Where MxN is the size of the frame, "+��� �	 is the reconstructed frame and "���� �	 is the 

original frame (uncompressed and without losses) of the color component (c). 
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5.2 Structural similarity (SSIM)  

The main function of the human visual system (HVS) is to extract structural information 

from the viewing field, for which it is highly adapted for this purpose. Therefore, a measurement 

of structural information loss can provide a good approximation to perceived image distortion. 

SSIM compares local patterns of pixel intensities that have been normalized for luminance and 

contrast. The luminance of the surface of an object being observed is the product of the 

illumination and the reflectance, but the structures of the objects in the scene are independent 

of the illumination. Consequently, the structural information in an image can be determined by 

separating the influence of the illumination. The structural information in an image can be 

defined as those attributes that represent the structure of objects in the scene, independent of 

the average luminance and contrast. The system diagram of the proposed quality assessment 

system is shown in Figure 5.1 

 

Figure 5.1: Diagram of the structural similarity (SSIM) measurement system [24]. 

 

Let x and y be two non-negative signals that have been aligned with each other (e.g., 

two image patches extracted from the same spatial location from two images being compared, 

respectively), and let  45� �46� 75
� 76�890��756��be the mean of x, the mean of y, the variance of 
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x, the variance of y and the variance of x and y respectively. Approximately, 45and 75can be 

viewed as estimates of the luminance and contrast of x and �756 measures the tendency of x 

and y to vary together (An indication of structural similarity). The luminance, contrast and 

structure comparison measures are given as follows: 
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where��>, �? and �B are small constants given by�CD � �ED�F	G,CG � �EG�F	G and CH �

CG
GI  

respectively. L is the dynamic range of the pixel values (L = 255 for 8 bits/pixel gray scale 

images), and ED <<1 and EG <<1 are two scalar constants. The general form of the SSIM index 

between signals x and y is defined as: 
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where M� N�OPQ�R�are parameters to define the relative importance of the three components. 

Specifically, setting�S � �T � ��U � �, the resulting SSIM index is given by: 
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which satisfies the following conditions: 

1. Symmetry: !!:.��5� 6	=�!!:.��6� 5	 
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2.�!!:.��5�6	 Y �� 

3. !!:.��5� 6	 � ��  If and only if 5 � 6 
 

Here one of the image signals being compared to have perfect quality, then the SSIM index 

provides a quantitative measurement of the quality of the other image signal. 
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CHAPTER 6 

ERROR CONCEALMENT 

 

The loss of transmitted data packets influences the quality of the received video. This 

problem is caused by the band limited channel used by the mobile communication networks. 

Since the real time transmission of video stream limits the channel delay, it is not possible to 

retransmit all erroneous or lost packets. Therefore there is a need for post processing methods, 

which try to reduce the visual artifacts caused by bit stream error after locating the missing or 

defective parts of video data [11]. Error concealment methods which will be implemented on the 

receiver side restore the missing and corrupt video content by using the previously decoded 

video data. The error concealment benefits from the spatial and temporal correlations between 

the video blocks within one frame or more than one frame within the video sequence. Therefore 

the error concealment methods are implemented both in the spatial domain and time domain. 

The spatial domain based error concealment uses the video information from the neighboring 

blocks to restore the missing pixels within a specified area. The time domain based error 

concealment uses the video information from the blocks lying in the previous and next frames to 

restore the missing pixels within a specified area [15] and [16]. 

There are some assumptions adopted in this thesis to concentrate and limit the efforts on the 

presentation of the error concealment methods: 

• The missing part of a video content is limited to one macroblock 

• The location of the missing macroblocks is known 

• Features like data partitioning belonging to one macroblock such as motion vectors, 

prediction mode and residuals are lost. 
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6.1 Joint Model (JM) Reference Software 

There was a compilation error that was been encountered while using error concealment 

methods built in JM 13.2 [27] reference software. It was giving us the following assertion error: 

Assertion failed: numofPredblocks !=0 

The problem of encoding the frames was fixed as follows: 

By working on this routine by changing the input profile into baseline method by making these 

changes in the configuration file present in the encoder, change the subroutine. 

Some of the error concealment algorithms implemented in the decoder of the JM 13.2 [27] are 

explained briefly: 

 

6.2 Error concealment in spatial domain 

The spatial redundancy in image and video signals is always present. Here the interpixel 

difference between adjacent pixels for an image is determined. The interpixel difference is 

defined as the average of the absolute difference between a pixel and its four surrounding 

pixels. This property has been exploited to perform error concealment. All error concealment 

methods in the spatial domain are based on the same idea which says that the pixel values 

within the damaged macroblocks can be recovered by a specified combination of the pixels 

surrounding the damaged macroblocks. 

 

6.2.1 Weighted averaging  

The first step done to implement spatial based error concealment was to interpolate the pixel 

values within the damaged macroblock from the four next pixels in its four 1-pixel wide 

boundaries. This method is known as ‘weighted averaging’ [28], because the missing pixel 

values can be recovered by calculating the average pixel values from the four pixels in the four 

1-pixel wide boundaries of the damaged macroblock weighted by the distance between the 
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missing pixel and the four macroblocks boundaries (upper, down, left and right boundaries) as 

shown in Figure 6.1. 

 

Figure 6.1: Weighted Averaging 

Using a macroblocks with NxN pixel size, the weighted averaging (macroblock based) 

can be described as follows:  

Z[��� '	 � �
�

0\ = 0] = 0� = 0^
/0]Z[\��� %	 =�0\Z[]��� *	 =�0^Z[��%� '	

=�0�Z[^�*� '	�����������������������������������������������������������������������������������#��	 

where �� ' � �� � @� _______%� 
 
0\ : distance between the interpolated pixel and the nearest pixel Z[\ � �Z[��� )	 in the left 

boundary. 

0] : distance between the interpolated pixel and the nearest pixel Z[] � �Z[��� % = �	 in right 

boundary. 

0� : distance between the interpolated pixel and the nearest pixel Z[� � �Z[�)� �	 in top 

boundary. 

0^ : distance between the interpolated pixel and the nearest pixel Z[^ � �Z[�% = �� �	 in bottom 

boundary. 

N: Size of the block. 
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Z[ : macroblock 

Used symbols are seen in Figure 6.1.  

Another way to implement weighted averaging is called block based weighted 

averaging [28]. The damaged macroblock is split into four independent blocks; each pixel within 

a block is interpolated from two pixels in its two nearest boundaries. When using a macroblock 

with 2Nx2N pixels the weighted averaging (block based) can be described as follows:  

[���� '	 ��
0�[`���%	=�0`[�@��%� '	

0` = 0�
�������������������������������������������������������#�	 

 
 

[��� '	 ��
0�[&���� �	=�0&[�A��%� '	

0& = 0�
�����������������������������������������������������#�@	 

 
 

[@��� '	 ��
0�[`A���%	=�0`[������ '	

0` = 0�
�����������������������������������������������������#�A	 

 
 

[A��� '	 ��
0�[&@��� �	=�0&[����� '	

0& = 0�
�����������������������������������������������������#�-	 

 
 
Where �� ' � �� � @� _______%� 

 

                                 (a)                                                                            (b)   

Figure 6.2: Weighted Averaging: a) block based, b) macroblock based 
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The weighted averaging method - based on macroblock approach showed good results 

in cases where the missing macroblock lies within a smooth area. An example is when a picture 

with a sky view or plain background is considered (see Figs. 6.2 and 6.4). On the other hand the 

block based weighted averaging method does not guarantee the smoothness of the recovered 

macroblock and shows a slight blocking effect (see figure 6.3 and 6.5). 

Otherwise this method is more efficient than the macroblock based method if the missing 

macroblock consists of two or more parts, where each part belongs to a different smooth area. 

Figure 6.2 shows an example of this case, where the missing macroblock lies between the 

black smooth area and blue smooth area. Using macroblock based weighted averaging does 

not guarantee the smoothness property of video signal along the boundaries of the missing 

macroblock.  

 

a      b         c 

Figure 6.3: Recovery of the damaged macroblock in Akiyo video sequence (a) distorted image 
lying within a smooth area b) macroblock based weighted averaging applied on a blue smooth 

area; c) block based weighted averaging applied on a blue smooth area. 

 

  a      b         c  

Figure 6.4: Recovery of the damaged macroblock in Akiyo video sequence (a) distorted image 
lying between black and blue smooth area b) macroblock based weighted averaging applied on 
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a missing macroblock lying between black and blue smooth areas; c) block based weighted 
averaging applied on a missing block lying between black and blue smooth areas. 

 

a      b         c  

Figure 6.5: Recovery of the damaged macroblock in Foreman video sequence (a) distorted 
image lying within a smooth area; b) macroblock based weighted averaging applied on a white 

smooth area; c) block based weighted averaging applied on a white smooth area. 
 

 

a      b         c  

Figure 6.6: Recovery of the damaged macroblock in Foreman video sequence (a) distorted 
image lying between white and black smooth area b) macroblock based weighted averaging 

applied on a missing macroblock lying between black and white smooth areas; c) block based 
weighted averaging applied on a missing block lying between black and white smooth areas. 

 

 

6.3 Error concealment in temporal domain 

Among the error concealment methods in the spatial domain the weighted averaging 

methods exploit the spatial smoothness property of natural video signal. In addition to the 

spatial correlation within each video frame in the spatial domain a video signal has also a 
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significant nature which is represented by the existence of correlation between the adjacent 

video frames in the time domain. This redundancy can also be exploited in the error 

concealment. In this section two different error concealment techniques based on the 

temporal domain are presented. 

• Movement characteristics  

It is easier to conceal linear movements in one direction because pictures can be 

predicted from previous frames (the scene is almost the same). If there is movements in 

many directions or scene cuts, finding a part of previous frame that is similar is going to 

be more difficult, or even impossible. 

• Speed characteristic  

Slower camera movement makes it easier to conceal an error.  

 

This kind of error concealment seizes on temporal correlation of the video sequence to conceal 

the error. Motion estimation using previous frames is performed to reconstruct the missing data. 

 

6.3.1 Copy-Paste algorithm 

Copy-Paste is the simplest temporal error concealment method. Here the missing blocks of one 

frame, "9���are replaced by the spatially corresponding blocks of the previous frame�"93�.  

 

"9��� �	 � �"93���� �	��������������������������������������������������������������������������#�#	 
 

 

This method only performs well for a low motion sequence, but the advantages lie in its low 

complexity (see figure 6.6). Better performance is provided by the motion compensated 

interpolation methods (see figure 6.7). 
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Figure 6.7: Frames# 5, 6 and 7 are the output of H.264 encoded frames after it is transmitted in 
the error prone wireless medium. 

 

 

Figure 6.8: Frame# 5 is the decoded frame. Here Frame# 6 successfully copied lost information 
from Frame 5 by copy algorithm; Frame #7 is degraded (Because Frame#7 is reconstructed by 

collecting the information from previous reference frames). 
 

6.3.2 Recovery of inter prediction side information 

The H.264/AVC decoder needs the inter prediction side information and the DCT coefficients of 

the residuals. The Inter prediction side information includes the motion vectors and the 

corresponding reference frame number. The loss of motion vectors degrades the decoded 

image. This degradation propagates to the subsequent inter frames until an intra frame is 

decoded. The decoding of the n-th inter frame is given by: 

59���� �	 ��593��V� = a5�� � = a6W=�b9���� �	�	������������������������������������#�X	 
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Where Va;�� a<W� represent the x and y-component of the motion vector for the ��� �	�� �pixel and 

bc���� �	�denotes the residual value. Note that in opposition to luma and chroma values of a 

pixel, a motion vector is assigned to block at least 4x4=16 pixels. Therefore all pixels belonging 

to the same 4x4 block have the same motion vector. 

As mentioned before the H.264/AVC encoder applies the compression to the motion 

vectors information by taking the difference between the current motion vector and the motion 

vector of an already encoded neighboring macroblock. The information, to which the 

neighboring macroblock this differential value is related to, is added to the other inter prediction 

side information. Therefore, the loss of a macroblock motion vector propagates the following 

macroblocks in the frame or in the slice, which depend on the motion vector prediction from the 

affected macroblock. 

By dealing with a video sequence containing the slow motion scenes, then motion 

vectors of the macroblock are near to zero. Considering this scenario, when a video bitstream is 

been received in the decoder after it is traversed in the error prone wireless medium. During the 

reconstruction of video frames a misinterpreted motion vector, which may have a different 

displacement in motion from the original position within the frame in all the following inter 

frames. This displacement distorts the smoothness around the affected macroblock, which 

degrades the perceptual video quality. The simplest way to recover the lost motion vectors of a 

damaged macroblock is to set its value to zero. The visual artifacts that might be produced by 

this method depend on the maximal detected motion. For a maximal value of 1 pixel per frame 

those artifacts can be held in small ranges and cannot be recognized. 

In some video scenes a homogenous movement of all objects within the video frame 

can be recognized, such a scene is created by a moving camera shot. The difference between 

the motion vectors of adjacent macroblocks is near zero. This difference value is extracted by 

the video compressor; a misinterpretation of this value on the receiver side means automatically 

a misinterpretation of the actual motion vector and leads to a global displacement of a group of 
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macroblocks within the actual frame. Similar behavior can be recognized in case of 

homogenous movement of a group of macroblocks within a moving object in the video scene; 

all macroblocks belonging to this object have the same motion vector, a transmission failure of 

the motion vector belonging to the first decoded macroblock of this group could cause a local 

displacement of the object. In these two cases the simplest way to recover motion vectors is to 

use the motion vector, to which the corrupted motion vector is related to. This can be 

implemented by setting the differential motion vector value which has been affected by the bit 

stream error to zero. With that the resulting motion vector value is the same as the reference 

motion vector value. This method can also be applied to the video frames of low motion video 

scenes. 

 

6.3.3 Motion Estimation: Motion vectors interpolation 

The efficiency of the two methods presented in the previous section is still limited by 

special types of the video scene. Generally a video sequence is a mixture of slow motion and 

fast motion. Also a video scene could include objects with different dynamic behaviors. For this 

reason there is a need of motion estimation methods which use the smoothness in the space 

and time domains. A motion vector of a 4x4 block can be estimated by interpolating this value 

from the motion vectors in the surrounding macroblocks. Distance between the 4x4-block and 

the surrounding 4x4-block can be used as a weighting factor (See Figure 6.8) 
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Figure 6.9: Motion vector recovery by a) Using the motion vectors from the surrounding 
macroblocks after frame decoding b) Using the motion vectors from the surrounding 

macroblocks during macroblock decoding [28]. 
 

By using a macroblock of size 4Nx4N pixels, the macroblock includes NxN 4x4-blocks, the x- 

and y-components of the corrupted motion vector are estimated by: 

 

a;�Z[��� '		 � �
�

0\ = 0] = 0� = 0^
/0]a;VZ[\�%�� �	W =�0\a;VZ[]���� �	W

=�0^a;VZ[���� %	W =�0�a;VZ[^���� �	W�������������������������������������������#�d	 

 

a<�Z[��� '		 � �
�

0\ = 0] = 0� = 0^
/0]a<�Z[\�%�� �		 =�0\a<�Z[]���� �		

=�0^a<�Z[e���� %		 =�0�a<�Z[^���� �		������������������������������������������#�f	 

 

Where �� ' � �� � @� _______%� 
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0\ : distance between the interpolated pixel and the nearest pixel Z[\ � �Z[��� )	 in left 

boundary. 

0] : distance between the interpolated pixel and the nearest pixel Z[] � �Z[��� % = �	 in right 

boundary. 

0� : distance between the interpolated pixel and the nearest pixel Z[� � �Z[�)� �	 in top 

boundary. 

0^ : distance between the interpolated pixel and the nearest pixel Z[^ � �Z[�% = �� �	 in bottom 

boundary. 

N: Size of the block 

ghi�motion vector in x-direction. 

gj: motion vector in y-direction. 

mb: macroblock 

 

The use of motion vectors from the macroblocks on the right and the bottom of the affected 

macroblocks is only possible if the corresponding macroblocks are already decoded and if the 

differential motion vector of these macroblocks is not related to the motion vector of the affected 

macroblock. In many cases these two requirements cannot be fulfilled, and therefore, an 

estimation process has to be performed during the decoding of the affected macroblocks using 

motion vectors of the previously decoded macroblocks (left and upper macroblocks in figure 5.3 

b). The x- and y-components of the corrupted motion vector are estimated by: 

 

a;�Z[���� �		 � �
�

0\ = 0�
/�0\a;�Z[����� %		 =�0�a;�Z[\�%�� �		��������������������������������#��)	 

 
 

a<�Z[���� �		 � �
�

0\ = 0�
/�0\a<�Z[����� %		 =�0�a<�Z[\�%�� �		�������������������������������#���	 
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By using the motion vector in the upper right and upper left corner. The x- and y-components of 

the corrupted motion vector are estimated by: 

 

a;�Z[���� �		 � �
�

0\ = 0�
/�0\a�����;�Z[���� �		 =�0�a;�Z[\�%�� �		������������������������������#��	 

 
 

a��5�Z[��� �	 �
�
% /�%3 �	a5VZ[�`�%�%	W=%�a5VZ[����%	W= �a5VZ[���%	W1 

                      �#��@	 
 

a<�Z[���� �		 � �
�

0\ = 0�
/�0\a�����<�Z[���� �		 =�0�a<�Z[�%�� �		��������������������������������#��A	 

 
 

a��6��Z[��� �	 ��
�
% /�%3 �	a6VZ[�`�%�%	W= �%�a6VZ[����%	W= ��a6VZ[�&����%	W1 

                      �#��-	 

where �� ' � �� � @� _______%� 
 

0\ : distance between the interpolated pixel and the nearest pixel Z[\ � �Z[��� )	 in left 

boundary. 

0] : distance between the interpolated pixel and the nearest pixel Z[] � �Z[��� % = �	 in right 

boundary. 

0� : distance between the interpolated pixel and the nearest pixel Z[� � �Z[�)� �	 in top 

boundary. 

0^ : distance between the interpolated pixel and the nearest pixel Z[^ � �Z[�% = �� �	 in bottom 

boundary. 

N: Size of the block 

ghi�motion vector component in x-direction. 

gj: motion vector component in y-direction. 

mb: macroblock 
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As mentioned before a misinterpreted motion vector leads to a displacement of the 

macroblock. The smoothness at the boundary of the affected macroblock is not fulfilled any 

more. The smoothness can be recovered by searching the best macroblock position within the 

reference frame, where the difference of the pixels values between the outer boundary of the 

affected macroblock and the boundary of the concealed macroblock is minimal. The difference 

between the concealed position and the raster position of the affected macroblock is the 

missing motion vector; this method is called boundary matching.  

Another significant inter prediction side information is the reference frame number. The 

loss of this information can degrade the quality of decoded image by replacing the original block 

by a different one which does not fit in the actual frame. If the motion vector has been received 

correctly, the lost reference frame number can be recovered by scanning all available reference 

frame at the position indicated by the motion vector till it finds the block which match in the 

actual frame. This method can be complicated if a big reference frame buffer is used. The 

recovery process can be made easier by using the most used reference frame number in the 

neighboring blocks. Figure 6.9, 6.10 and 6.11 illustrate the encoding; decoding and how lost 

information is recovered with an I-frame using a motion estimation algorithm. Figure 6.12 

illustrates the size of each frames that is being encoded. 
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Figure 6.10: Frame#1 to frame#20 of original encoded output from H.264 encoder. 
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Figure 6.11: Frame#1 to frame#20 of distorted video sequence due to the packet loss during 
transmission of bit stream in an error prone wireless medium. 
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Figure 6.12: Frame#1 to frame#20 of motion estimation algorithm (motion vector interpolation) 
output. 
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Figure 6.13: Graph shows the size (number of bits) of the different I and P frames obtained after 
encoding 20 frames of the Football QCIF video sequence. Green line shows the average values 

of the bits lost when it is passed through the lossy wireless medium. 
 

Table 6.1 represents the number of frames encoded, with type of frame, offset value which is 

the distance between successive frames and time required for coding the bitstream and number 

of bits the particular frame represents. Figures 6.13 and 6.14 show the SSIM image output and 

graph of original and concealed video sequences. 

Table 6.1: Representation of coded video sequence. 

num type offset Time 
(Sec) Size(bits) 

0 I 0x0000000000000000 00:00.0 6442 
1 P 0x000000000000192a 00:00.0 1244 
2 P 0x0000000000001e06 00:00.1 3074 
3 P 0x0000000000002a08 00:00.1 3460 
4 P 0x000000000000378c 00:00.1 3765 
5 P 0x0000000000004641 00:00.2 3931 
6 P 0x000000000000559c 00:00.2 3964 
7 P 0x0000000000006518 00:00.2 4078 
8 P 0x0000000000007506 00:00.3 4393 
9 P 0x000000000000862f 00:00.3 4482 

10 P 0x00000000000097b1 00:00.3 4144 
11 P 0x000000000000a7e1 00:00.4 4067 
12 P 0x000000000000b7c4 00:00.4 4145 
13 P 0x000000000000c7f5 00:00.4 4306 
14 P 0x000000000000d8c7 00:00.5 3902 
15 I 0x000000000000e805 00:00.5 5357 
16 P 0x000000000000fcf2 00:00.5 3940 
17 P 0x0000000000010c56 00:00.6 4019 
18 P 0x0000000000011c09 00:00.6 4060 
19 P 0x0000000000012be5 00:00.6 4015 
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Figure 6.14: Representation of images from the SSIM metric where it gives the visual 
differentiation between original and concealed video sequence (Completely black image in this 

figure represents that both the images are having same pixel representation). 
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Table 6.2 shows the value of SSIM output between original and concealed video sequences. 

 

Table 6.2: Representation of SSIM output (1->two images are alike, 0->two images have 
completely different pixel values). 

 

num type SSIM 
0 I 1 
1 P 0.87019 
2 P 0.89112 
3 P 0.91215 
4 P 0.92346 
5 P 0.93983 
6 P 0.95667 
7 P 0.96764 
8 P 0.97571 
9 P 0.9813 

10 P 0.98323 
11 P 0.98439 
12 P 0.98775 
13 P 0.98858 
14 P 0.99051 
15 I 1 
16 P 1 
17 P 1 
18 P 1 
19 P 1 
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Figure 6.15: Comparison of the recovered frame with original sequence by motion estimation 
using SSIM index. 

 

Table 6.3 shows PSNR values between encoded and concealed video sequences for Y, U and 

V separately. 
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Table 6.3: Performance comparison between concealed and original video sequences using 
PSNR representation. 

 

Frame SNR_Y 
(dB) 

SNR_U 
(dB) 

SNR_V 
(dB) 

1 100 100 100 
2 24.6474 35.3199 41.4868 
3 25.6231 36.6582 42.7562 
4 26.7219 38.7013 44.6911 
5 27.6355 38.9417 45.2911 
6 28.9347 40.5029 46.9383 
7 30.9396 42.9496 48.9062 
8 32.9711 46.4796 51.8757 
9 34.3972 48.2814 53.3843 

10 35.9502 49.8022 55.7311 
11 37.2341 51.7953 57.9142 
12 37.4774 52.0513 57.8239 
13 39.2709 54.0244 59.3005 
14 39.7164 54.6568 59.4931 
15 40.1675 55.6336 60.0851 
16 100 100 100 
17 100 100 100 
18 100 100 100 
19 100 100 100 

 

 

Figure 6.15 and 6.16 illustrates the concealed results for motion estimation algorithm. Figures 

6.17 and 6.18 illustrate the SSIM graph. Figure 6.19 and 6.20 show PSNR graph for concealed 

video sequence for Foreman video sequence. 
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Figure 6.16: Comparison between original and recovered frames by motion estimation using 
PSNR metric. 

 

 

a      b         c  

Figure 6.17: Recovery of the damaged macroblock in Foreman video sequence (a) original 
sequence b) Distorted Sequence c) Concealed output using motion estimation. 
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Figure 6.18: SSIM average values using frame copy algorithm (Foreman video sequence). 

 

Figure 6.19: SSIM average values using motion estimation algorithm (Foreman video 
sequence). 
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Figure 6.20: PSNR average values using frame copy algorithm (Foreman video sequence. 

 

 
 

Figure 6.21: PSNR average values using motion estimation algorithm (Foreman video 
sequence). 
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Figure 6.22: Size of I (red color bar) and P (blue color bar) frames obtained after encoding 19 

frames of the foreman QCIF (176 x 144) video sequence. Green line shows the average values 
of the bit lost when it is passed through the lossy wireless medium (Foreman Video Sequence) 

 
 

 
 

Figure 6.23: Representation of different block sizes used for decoding in the motion estimation 
algorithm 
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Algorithmic analysis based on GOP (Group of Pictures), QP (Quantization Parameters) 

for QCIF and CIF video sequences is shown in Tables 6.4 and 6.5. 

Table 6.4: Simulation results of different error concealment algorithms for Foreman QCIF 20 
frame video sequence, (frame rate =30fps). 

 
Video 

Sequence 
QP Bitrate (kbps) Original 

PSNR 
(dB) 

(No Errors) 

Error  
Concealment 
method 

PSNR of error 
concealment 
methods (dB) 

 
 
 
 
 
 

Foreman 
(GOP=15, No. 
of Frames 

Encoded=20) 

 
 
28 

 
 

271.52 

 
 

36.84 

Weighted 
Averaging 

33.02 

Copy Paste 32.43 
Motion Vector 
Interpolation 

 
33.46 

 
 
24 

 
 

430.36 

 
 

39.65 

Weighted 
Averaging 

34.60 

Copy Paste 33.21 
Motion Vector 
Interpolation 

 
35.42 

 
 
20 

 
 

692.38 

 
 

42.88 

Weighted 
Averaging 

36.43 

Copy Paste 35.80 
Motion Vector 
Interpolation 

 
37.20 

 
 
 
 
 
 

Foreman 
(GOP=20, No. 
of Frames 

Encoded=20) 

 
 
28 

 
 

231.73 

 
 

36.79 

Weighted 
Averaging 

33.98 

Copy Paste 32.23 
Motion Vector 
Interpolation 

34.09 

 
 
24 

 
 

379.34 

 
 

39.62 

Weighted 
Averaging 

33.01 

Copy Paste 32.92 
Motion Vector 
Interpolation 

34.76 

 
 
20 

 
 

625.21 

 
 

42.87 

Weighted 
Averaging 

34.21 

Copy Paste 33.57 
MV 

Interpolation 
 

35.05 
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Table 6.5: Simulation results of different error concealment algorithms for Stefan CIF 20 frame 
video sequence (frame rate = 30fps). 

 
 

Video 
Sequence 

QP Bitrate (kbps) Original 
PSNR 
(dB) 

(No Errors) 

Error 
Concealment 
methods 

PSNR of 
different error 
concealment 
methods (dB) 

 
 
 
 
 
 

Stefan 
(GOP=15, No. 
of Frames 

Encoded=20) 

 
 
28 

 
 

1903.90 

 
 

36.88 

Weighted 
Averaging 

33.46 

Copy Paste 30.49 
Motion Vector 
Interpolation 

 
33.02 

 
 
24 

 
 

3074.17 

 
 

40.13 

Weighted 
Averaging 

34.01 

Copy Paste 31.25 
Motion Vector 
Interpolation 

 
33.46 

 
 
20 

 
 

4777.70 

 
 

43.51 

Weighted 
Averaging 

35.61 

Copy Paste 32.59 
Motion Vector 
Interpolation 

 
36.02 

 
 
 
 
 
 

Stefan 
(GOP=20, No. 
of Frames 

Encoded=20) 

 
 
28 

 
 

1725.25 

 
 

36.86 

Weighted 
Averaging 

33.03 

Copy Paste 30.08 
Motion Vector 
Interpolation 

32.46 

 
 
24 

 
 

2868.44 

 
 

40.10 

Weighted 
Averaging 

33.52 

Copy Paste 31.10 
Motion Vector 
Interpolation 

33.21 

 
 
20 

 
 

4563.82 

 
 

43.46 

Weighted 
Averaging 

33.99 

Copy Paste 32.01 
Motion Vector 
Interpolation 

 
33.24 
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CHAPTER 7 

COMPUTATIONAL COMPLEXITY 

 
 

The computational complexity is crucial especially for the wireless video due to the size 

and power limited terminals. At present there is no standard criteria used to compare the 

complexity of error concealment methods. The obtained result is based on the amount of data 

access for each method. 

7.1 Decoding time 

One way of calculating complexity is analyzing decoding time. JM 13.2 Reference Software [27] 

outputs time needed for decoding every frame of the video sequence and the time for entire 

sequence. With this measurement it is difficult to realize the grade of complexity of the different 

concealment methods. It would be a better option to know decoding time per macroblock (MB) 

concealed. The problem is that this time is very short to be calculated in C code with functions 

like time or ftime (file time) in Windows. 

7.2 Number of operations 

By the error concealment algorithm analyzed in section 6.1, here spatial domain method has 

low complexity due to the fact that it is implemented by gathering the information from the 

neighboring macroblock of a current frame there by reducing the computational complexity in 

which it can be implemented in a small handheld devices there by limiting battery power for 

processing in mobile terminals [36, 37]. Here complexity is measured by counting the number of 

operations. 
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7.2.1 Weighted averaging 

Weighted averaging is given by: 

Z[��� '	 � �
�

0\ = 0] = 0� = 0^
/0]Z[\��� %	 =�0\Z[]��� �	 =�0^Z[��%� '	

=�0�Z[^��� '	��������������������������������������������������������������������������������������X��	 
 
 
where �� ' � �� � @� _______%� 
 

0\ : distance between the interpolated pixel and the nearest pixel Z[\ � �Z[��� )	 in left 

boundary. 

0] : distance between the interpolated pixel and the nearest pixel Z[] � �Z[��� % = �	 in right 

boundary. 

0� : distance between the interpolated pixel and the nearest pixel Z[� � �Z[�)� �	 in top 

boundary. 

0^ : distance between the interpolated pixel and the nearest pixel Z[^ � �Z[�% = �� �	 in bottom 

boundary. 

N: Size of the block 

ghi�motion vector in x-direction. 

gj: motion vector in y-direction. 

mb: macroblock 

By looking at the equation (7.1) it is very simple to find out the number of operations: 

Number of additions = �% 3 �	� ��? = �	��������������������������������������������������������������������������X�	 
 
Number of multiplications = �% = �	��?�������������������������������������������������������������������������������X�@	 
 
 
where: 

Q: block size. 

N: Whole frame size NxN. 
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7.2.2 Inverse Transform 

To be able to compare the number of operations of the different error concealment methods 

there must be a reference. By choosing reference as the number of operations of the inverse 

transforms for the luma component, neglecting other operations as i.e. dequantization or run-

length calculation.  

All major prior video coding standards [26] used a transform block size of 8×8, while the 

new H.264/AVC design is based primarily on a 4×4 transform block size. This allows the 

encoder to represent signals in a more locally adaptive fashion, which reduces artifacts known 

colloquially as “ringing”. All the examples of the way the transform is calculated are given for the 

case of a 4×4 transform. However, here the number of operations considered is both 4×4 and 

8×8 block size.  

The integer transform is based in the discrete cosine transform (DCT). It works in this 

way: maps a length-N vector x into a new vector X of transform coefficients by a linear 

transformation X = H x. The DCT is not used because the matrix H that defines the 

transformation has irrational numbers. Thus, by computing the forward and inverse transforms 

in cascade, the resultant may not be exactly the same as the original data. It is desirable to 

replace H by an orthogonal matrix with integer entries [29]. It is represented as: 

              (7.4) 

The rows of H in equation 7.4 are orthogonal, but they do not have the same norm (Sum of 

absolute values in any row of H). However, that can be easily compensated by the quantization 

process [29]. The decoder uses just the transpose of H with appropriate scaling and 

reconstructed transform co-efficients.  
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The inverse transform matrix is defined by 

            (7.5) 

where `Hinv in equation 7.5, is a scaled inverse of H. The multiplications by 1/2 can be 

implemented by 1-bit right shifts, so that all decoders produce identical results. To count the 

number of operations there must be a reference on how it is mathematically programmed in 

H.264/AVC [30]. The transform process shall convert the block of scaled transform coefficients 

w 

            (7.6) 

 

to a block of output samples in a manner mathematically equivalent to the following process: 

1. First, each (vertical) column of scaled transform coefficients is transformed using a one-

dimensional inverse transform, and 

2. Then, each (horizontal) row of the resulting matrix is transformed using the same one-

dimensional inverse transform. 

The one-dimensional inverse transform is specified as follows for four input samples kl ,k>,k?, 

kB� where the subscript indicates the one-dimensional frequency index.  

 

 



 

 

 

75

1. A set of intermediate values is computed: 

 

m) ��k) =�k��������������������������������������������������������������������������X�X	 
 

m� ��k) 3�k�������������������������������������������������������������������������X�d	 
 

m ���k� n �	 3�k@����������������������������������������������������������X�f	 
 

m@ ��k� = ��k@ n �	����������������������������������������������������������X��)	 
 
 
 

2. The transformed result is computed from these intermediate values: 

 

5) ��o) =�o@��������������������������������������������������������������������������X���	 
 

5� ��o� =�o������������������������������������������������������������������������X��	 
 

5 ��o� 3�o��������������������������������������������������������������������������X��@	 
 

5@ ��o) 3�o@��������������������������������������������������������������������������X��A	 
 

 

Figure 7.1 shows a flow graph of the inverse transform, which is applied to rows and columns in 

the case of 4×4 transform block size. 

 

Figure 7.1 Fast implementation of the H.264/AVC inverse transform. No multiplications are 

needed, only additions and shifts. 
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The number of operations of the inverse transform for 4×4 block size (B) is: 

Number of additions = 32 · 16 = 512, 

Number of shifts = 4 · 16 = 64, 

 

The transform used in H.264/AVC is always 4×4. By assuming that the 8×8 transform is 

calculated as 4 transforms of a 4×4 block and the 16×16 transform as 16 transforms of a 4×4 

block, the number of operations can be calculated. 

 

7.3 Decoding time 

Here in this section mainly concentrating on time that an error concealment method 

spends concealing. The value is calculated by considering 2 cases one decoding 

without error concealment algorithm and other with decoding with error concealment 

algorithm. Below are the test results: 

Table 7.1: Decoding time values (ms) under windows vista platform 

 

Sequence Decode without error 

concealment algorithm 

Decode with error 

concealment algorithm 

Foreman 5.023 5.145 

Akiyo 4.002 4.171 

Football 5.372 5.620 

Videoclip 10.261 10.533 
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CHAPTER 8 

H.264/AVC VIDEO CODEC IMPLEMENTATION 

 
8.1        Assumptions 
 

To evaluate the performance of the different error concealment methods, representative 

video sequences under different error rates are selected. These images are called 

Akiyo, Foreman and Football. 

To perform the simulations in real-time, the video content must be sent over the 

UMTS (Universal Mobile Telecommunications System) network to be reproduced in a 

mobile telephone display. For this there is a limitation of the display screen size; the 

usual format used for the mobile terminals is QCIF (Quarter Common Intermediate 

Format) resolution (176x144 pixels). The H.264/AVC standard is well known for its very 

good compression rate thereby reducing the number of bits needed for videos. 30fps 

used for lab testing purpose. For streaming in wireless networks like UMTS, the frame 

rate is reduced to 7.5fps. For implementation of frames, only I-frame (intra) and P-frame 

(predicted) are used with following format IPPPP...PIPP... structure. This is to reflect the 

baseline profile of the H.264/AVC standard [7], which does not necessarily support B-

frame (Bi-directinal).  
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8.2        Changes to the Joint Model Source Code 

For implementation of the proposed algorithm, the Joint Model H.264/AVC 

version 13.2 is used. [27]. This software is free to the user without any license fee or 

royalty. Generated by the JVT this software consists of both video encoder and 

decoder. All the source code is included in the package. This source code is written in 

C programming language, and Microsoft Visual Studio is used as the tool for working 

with it. In the implementation encoder code is not modified but some changes in the 

configuration files is introduced since it is required in the decoder for efficient 

reconstruction of lost frames during the transmission of bitstreams in the wireless 

medium. Appendix A, describes the parameters of the configuration file of the encoder 

(”encoder.cfg”) which is changed in order for fruitful recovery of a degraded video 

sequence. 

The decoder has another configuration file (”decoder.cfg”), but it is less 

complex than the encoder. In this file there is a need to indicate which video stream is 

used for decoding and error concealment. This is explained in detail in Appendix A. 

Both configuration files, encoder and decoder, are shown in the Appendicies B and C. 

 

8.3       Generation of Errors in the coded Bit stream 

The main aim is to identify the performance of the different error concealment 

methods. First the algorithm is written and implemented in the decoder and then carried 

out in different real time applications. There must be a test bench to execute this 

algorithm in a practical implementation that includes random addition of errors to the 

encoded bitstream. An error concealment algorithm is applied to an artificially 

developed wireless medium which will introduce errors in an abrupt manner. A new 

source code is written which defines the different characteristics of a wireless medium. 

Here the actual process of introducing the errors is a slight tricky method. Once a video 
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sequence is encoded, a continuous stream of bits is developed. Then the bits are 

multiplexed with the overhead information such as motion vectors, control bits and NAL 

bits and are transmitted. 

In real-time applications the multiplexed bits are transmitted in the wireless 

medium and are received in the decoder. The same scenario was created in the form of 

a block where the multiplexed bit stream is passed to an artificial wireless medium. 

Errors are randomly introduced into a single frame in this medium. Then this error 

propagates until the end of GOP (Group of Pictures) i.e., before the start of another I 

frame.   

In the decoder the degraded video is received and the error concealment 

algorithm is applied to conceal the lost frames. Finally the PSNR of the decoded video 

sequence is calculated and is compared with that of the original sequence. 

 

8.4       Simulation steps, commands and output results 

The following steps give a brief description of how encoding, error introduction 

and decoding are to be implemented using the JM 13.2 standard [27]. 

Steps for compilation of the codec: 

• Open the project in Microsoft Visual Studio compiler. 

• Build encoder (lencod) file and compile it for errors. 

• Open Command Prompt and point to the path where the encoder configuration file is 

present. 

• Type in command: - “lencod.exe -f encoder.cfg” and it will get the output stream file in 

the form of a .264 file. 

• The .264 file is copied to a routine where a lossy error block is created. The file is then 

built and compiled. The output of this block will be a combination of error and original 

bitstream information. 
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• Copy the output of lossy block into the decoder block and modify the configuration file 

to select which error concealment technique is to be used, what name the output and 

input file for calculating the PSNR. Here type in the command along with the input file 

name: -“ldecod.exe decoder.cfg”. 

 

The changes which were made in the encoder and decoder block with the output are shown 

in the Appendix A. 
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       CHAPTER 9 

CONCLUSIONS 

 
In this thesis different error concealment methods in the spatial and the temporal 

domains have   been implemented as functions written in the C language. These functions have 

been added to the decoder C source code provided in [27]. Each method is more or less 

efficient than the other according to the structure of the video image and the dynamic character 

of the video sequence. 

The first implementation started with the spatial domain error concealment. The first 

step done in this field is based on the interpolation of the pixel values within the damaged 

macroblock from the pixels within the surrounding area, the distance between the concealed 

pixel and its neighboring pixels is used as the weighting factor. Spatial error concealment works 

in a video sequence where the motion between frames is negligible        (Eg: Akiyo video 

sequence) and where the background is constant. Here one advantage of the spatial domain 

error concealment is the low complexity compared with enhanced error concealment in the 

temporal domain. 

            The error concealment in the temporal domain is based on the copying algorithm. In this 

error concealment technique the frames stored in the decoded frame buffer are used to conceal 

the missing part within the affected frame. This algorithm just replaces damaged macroblock by 

the spatially corresponding macroblock in this frame. For this purpose copy-paste function has 

been integrated to get the index of the frame within the decoded picture buffer, which has the 

maximal correlation with the affected frame. The basic copying algorithm can only be used for
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error concealment in a slow motion video sequence which is characterized by high correlation in 

the temporal domain between the adjacent frames. The efficiency of the basic copying algorithm 

is limited by the dynamics of the video material. In the presence of gross motion it can produce 

adverse visual artifacts. For this reason motion vector interpolation is implemented to conceal 

the damaged image area. By using information of motion vectors for applying motion 

compensation to the copied macroblock, smoothness along the boundary of concealed 

macroblock is guaranteed. 

For performing the comparison of the original and concealed video sequence PSNR, 

MSE and SSIM metric are used. Although PSNR has been criticized precisely for not correlating 

well with perceived quality measurement (i.e. [30], [31], [32], [33]). It is the one which obtains 

the higher correlation. The PSNR can be derived easily. Minimizing MSE is very well 

understood from the mathematical point of view and it can be concluded that for low resolution 

videos (QCIF) the most suitable metric for analyzing visual quality is PSNR. 

With regard to implementation complexity, a method is proposed by analyzing the 

number of operations for every error concealment method. The number of operations gives 

useful information for deciding which error concealment method is appropriate in terms of 

complexity. Most of the discussed methods can also be implemented in another way, depending 

on the required ratio between memory and computational power.  

Finally how exactly error concealment is implemented is described. Some of the 

commands required for running encoder and decoder configuration files, are explained.  

The psuedo code structure describing the error concealment method decision tree for 

low resolution videos ( 0: Off, 1: Frame-Copy, 2: weighted-averaging, 3: motion-vector) is listed 

below. 
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if (motion vectors ==0) 

method = Weigted Averaging() 

else 

if scene cuts and fast movements 

method = Motion Vector() 

else 

method = copy-paste() 

 

By applying the error concealment techniques mentioned in my thesis, there is a 10dB 

improvement in the PSNR over the scheme which does not have error concealment. 
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APPENDIX A 
 

CONFIGURATION SETTING OF THE REFERENCE 
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Parameters changed in the encoder configuration file of the encoder: 

While encoding a video sequence in the encoder configuration file input file is specified along 

with the number of frames that is to be encoded, frame rate and the video resolution of the input 

file. The details of the configuration input parameters is as follows: 

########################################################## 

# Files 

########################################################## 

InputFile             = "FOOTBALL_176x144_15_orig_01.yuv"       

InputHeaderLength     = 0       

StartFrame            = 0      # Start frame for encoding.  

FramesToBeEncoded     = 20     # Number of frames to be coded 

FrameRate             = 30.0   # Frame Rate per second (0.1-100.0) 

SourceWidth           = 176    # Frame width 

SourceHeight          = 144    # Frame height 

TraceFile             = "trace_enc.txt"  # Trace file  

ReconFile             = "test_rec.yuv"   # Recontruction YUV file 

OutputFile            = "test1.264"      # Bitstream 

ProfileIDC            = 66 # Profile IDC 66=Baseline 

IntraProfile          = 0    

IntraPeriod           = 15   # Period of I-pictures   (0=only first) 

QPISlice              = 28  # Quant. param for I Slices (0-51) 

QPPSlice              = 28  # Quant. param for P Slices (0-51) 

NumberReferenceFrames = 1   # Number of previous frames used for inter motion 

NumberBFrames          = 0  # Number of B coded frames inserted (0=not used) 

SymbolMode             =  0  # Symbol mode (Entropy coding method: 0=UVLC, 

1=CABAC) 
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OutFileMode            =  0  # Output file mode, 0:Annex B, 1:RTP 

PartitionMode          =  0  # Partition Mode, 0: no DP, 1: 3 Partitions per Slice 

UseWeightedReferenceME   = 1     # Use weighted reference for ME (0=off, 1=on) 

 

Parameters changed in the decoder configuration file of the decoder: 

########################################################## 

# Files 

########################################################## 

E:\Thesis\software\jm13.2_\JM\bin\ggtest1.264                 

E:\Thesis\software\jm13.2_\JM\bin\test_dec.yuv             

E:\Thesis\software\jm13.2_\JM\bin\FOOTBALL_176x144_15_orig_01.yuv           

1 ........Write 4:2:0 chroma components for monochrome streams                         

2   ........Poc Scale (1 or 2) 

leakybucketparam.cfg     ........LeakyBucket Params 

1........Err-Concealment (0: Off, 1: Frame-Copy, 2: weighted-averaging, 3: motion-

vector) 

2 ........Reference POC gap (2: IPP (Default), 4: IbP / IpP) 

2 ........POC gap (2: IPP /IbP/IpP (Default), 4: IPP with frame skip = 1 etc.) 
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Encoder Output: 

------------------------------- JM 13.2 (FRExt) ------------------------------- 

 Input YUV file                    : FOOTBALL_176x144_15_orig_01.yuv 

 Output H.264 bitstream            : test1.264 

 Output YUV file                   : test_rec.yuv 

 YUV Format                        : YUV 4:2:0 

 Frames to be encoded I-P/B        : 20/0 

 Freq. for encoded bitstream       : 30 

 PicInterlace / MbInterlace        : 0/0 

 Transform8x8Mode                  : 0 

 ME Metric for Refinement Level 0  : SAD 

 ME Metric for Refinement Level 1  : Hadamard SAD 

 ME Metric for Refinement Level 2  : Hadamard SAD 

 Mode Decision Metric              : Hadamard SAD 

 Motion Estimation for components  : Y 

 Image format                      : 176x144 

 Error robustness                  : Off 

 Search range                      : 32 

 Total number of references        : 1 

 References for P slices           : 1 

 Sequence type                     : IPPP (QP: I 28, P 28) 

 Entropy coding method             : CAVLC 

 Profile/Level IDC                 : (66,20) 

 Motion Estimation Scheme          : Fast Full Search 

 Search range restrictions         : none 

 RD-optimized mode decision        : used 
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 Data Partitioning Mode            : 1 partition 

 Output File Format                : H.264 Bit Stream File Format 

----------------------------------------------------------------------------------------------------------- 

  Frame    Bit/pic    QP   SnrY    SnrU    SnrV            Time(ms)MET(ms) Frm/Fld Ref 

------------------------------------------------------------------------------------------------------------ 

0000(NVB)   160 

0000(IDR)   51376   28  35.012  38.336  39.637       307       0    FRM    1 

0001(P)     19232   28  34.092  37.600  39.017      1779    1337    FRM    1 

0002(P)     24592   28  34.197  37.293  38.945      1773    1307    FRM    1 

0003(P)     27680   28  34.343  37.151  38.701      1818    1344    FRM    1 

0004(P)     30120   28  34.504  37.131  38.867      1822    1329    FRM    1 

0005(P)     31448   28  34.657  37.297  38.841      1783    1303    FRM    1 

0006(P)     31712   28  34.656  37.100  38.997      1839    1350    FRM    1 

0007(P)     32624   28  34.922  37.306  38.801      1821    1323    FRM    1 

0008(P)     35144   28  35.296  37.503  39.156      1828    1328    FRM    1 

0009(P)     35856   28  34.867  37.366  39.333      1851    1345    FRM    1 

0010(P)     33152   28  34.978  37.386  39.382      1826    1332    FRM    1 

0011(P)     32536   28  35.324  37.385  39.803      1808    1330    FRM    1 

0012(P)     33160   28  35.336  37.444  39.523      1837    1347    FRM    1 

0013(P)     34448   28  35.689  37.258  38.996      1801    1317    FRM    1 

0014(P)     31216   28  35.961  37.232  39.256      1847    1339    FRM    1 

0015(I)     42856   28  36.255  38.623  39.597       269       0    FRM    1 

0016(P)     31520   28  35.859  37.524  39.456      1866    1352    FRM    1 

0017(P)     32152   28  36.049  37.400  38.954      1834    1356    FRM    1 

0018(P)     32480   28  36.247  37.450  38.993      1865    1395    FRM    1 

0019(P)     32120   28  36.255  37.361  38.993      1843    1360    FRM    1 
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------------------------------------------------------------------------------- 

 Total Frames:  20 (20) 

 Leaky BucketRateFile does not have valid entries. 

 Using rate calculated from avg. rate 

 Number Leaky Buckets: 8 

     Rmin     Bmin     Fmin 

   983130    51376    51376 

  1228890    51376    51376 

  1474650    51376    51376 

  1720410    51376    51376 

  1966170    51376    51376 

  2211930    51376    51376 

  2457690    51376    51376 

  2703450    51376    51376 

------------------ Average data all frames  ----------------------------------- 

 Total encoding time for the seq.  : 33.417 sec (0.60 fps) 

 Total ME time for sequence        : 24.094 sec 

 

 PSNR Y(dB)                        : 35.22 

 PSNR U(dB)                        : 37.46 

 PSNR V(dB)                        : 39.16 

 cSNR Y(dB)                        : 35.17 (19.77) 

 cSNR U(dB)                        : 37.44 (11.72) 

 cSNR V(dB)                        : 39.15 ( 7.91) 

 

 Total bits                        : 655584 (I 94232, P 561192, NVB 160) 
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 Bit rate (kbit/s)  @ 30.00 Hz     : 983.38 

 Bits to avoid Startcode Emulation : 8 

 Bits for parameter sets           : 160 

------------------------------------------------------------------------------- 

Exit JM 13 (FRExt) encoder ver 13.2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

91

Decoder Output: 

----------------------------- JM 13.2 (FRExt) ----------------------------- 

 Decoder config file                    : decoder.cfg 

-------------------------------------------------------------------------- 

 Input H.264 bitstream      : E:\Thesis\software\jm13.2_\JM\bin\ggtest1.264 

 Output decoded YUV       : E:\Thesis\software\jm13.2_\JM\bin\test_dec.yuv 

 Output status file              : log.dec 

 Input reference file          : E:\Thesis\software\jm13.2_\JM\bin\FOOT 

BALL_176x144_15_orig_01.yuv 

-------------------------------------------------------------------------- 

POC must = frame# or field# for SNRs to be correct 

-------------------------------------------------------------------------- 

  Frame          POC  Pic#   QP    SnrY     SnrU     SnrV   Y:U:V Time(ms) 

-------------------------------------------------------------------------- 

00000(IDR)        0     0    28  35.0122  38.3359  39.6369  4:2:0     127 

00001( P )        2     1    28  23.8236  33.4617  37.0038  4:2:0     117 

00002( P )        4     2    28  24.6357  34.4494  37.7906  4:2:0     121 

00003( P )        6     3    28  25.8626  35.1454  38.0278  4:2:0     125 

00004( P )        8     4    28  26.9735  35.9484  38.3886  4:2:0     127 

00005( P )       10     5    28  28.1940  36.4707  38.6069  4:2:0     123 

00006( P )       12     6    28  28.9430  36.6224  38.9282  4:2:0     137 

00007( P )       14     7    28  29.6336  37.0487  38.7475  4:2:0     127 

00008( P )       16     8    28  31.1590  37.4340  39.1586  4:2:0     131 

00009( P )       18     9    28  32.0543  37.3335  39.3018  4:2:0     129 

00010( P )       20    10    28  32.6137  37.3043  39.3878  4:2:0     132 

00011( P )       22    11    28  32.8080  37.3469  39.7984  4:2:0     135 
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00012( P )       24    12    28  33.7489  37.4025  39.5302  4:2:0     132 

00013( P )       26    13    28  34.0266  37.2344  39.0095  4:2:0     133 

00014( P )       28    14    28  34.1013  37.1822  39.2788  4:2:0     134 

00015( I )       30    15    28  36.2548  38.6228  39.5968  4:2:0     128 

00016( P )       32     0    28  35.8589  37.5237  39.4560  4:2:0     130 

00017( P )       34     1    28  36.0492  37.4003  38.9537  4:2:0     130 

00018( P )       36     2    28  36.2468  37.4496  38.9930  4:2:0     127 

00019( P )       38     3    28  36.2547  37.3613  38.9934  4:2:0     137 

-------------------- Average SNR all frames ------------------------------ 

 SNR Y(dB)           : 31.71 

 SNR U(dB)           : 36.85 

 SNR V(dB)           : 38.93 

 Total decoding time : 2.582 sec (7.746 fps) 

-------------------------------------------------------------------------- 

 Exit JM 13 (FRExt) decoder, ver 13.2 
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APPENDIX B 
 

 ENCODER CONFIGURATION FILE 
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Encoder Configuration file : encoder.cfg : 
 
# New Input File Format is as follows 

# <ParameterName> = <ParameterValue> # Comment 

# See configfile.h for a list of supported ParameterNames 

# For bug reporting and known issues see: 

# https://ipbt.hhi.de 

#######################################################################  

#Files 

####################################################################### 

InputFile             = "FOOTBALL_176x144_15_orig_01.yuv"       # Input sequence 

InputHeaderLength     = 0      # If the inputfile has a header, state it's length in byte here 

StartFrame            = 0      # Start frame for encoding. (0-N) 

FramesToBeEncoded     = 20      # Number of frames to be coded 

FrameRate             = 30.0   # Frame Rate per second (0.1-100.0) 

SourceWidth           = 176    # Frame width 

SourceHeight          = 144    # Frame height 

TraceFile             = "trace_enc.txt"      # Trace file  

ReconFile             = "test_rec.yuv"       # Recontruction YUV file 

OutputFile            = "test1.264"           # Bitstream 

####################################################################### 

# Encoder Control 

####################################################################### 

ProfileIDC   = 66 # Profile IDC (66=baseline, 77=main, 88=extended; FREXT #Profiles: 

100=High, 110=High 10, 122=High 4:2:2, 244=High 4:4:4, 44=CAVLC 4:4:4 Intra) 

IntraProfile          = 0   # Activate Intra Profile for FRExt (0: false, 1: true)                            # (e.g. 

ProfileIDC=110, IntraProfile=1  =>  High 10 Intra Profile) 
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LevelIDC              = 20  # Level IDC   (e.g. 20 = level 2.0) 

IntraPeriod           = 15   # Period of I-pictures   (0=only first) 

IDRPeriod             = 0   # Period of IDR pictures (0=only first) 

AdaptiveIntraPeriod   = 0   # Adaptive intra period 

AdaptiveIDRPeriod     = 0   # Adaptive IDR period 

IntraDelay            = 0   # Intra (IDR) picture delay (i.e. coding structure of PPIPPP... ) 

EnableIDRGOP          = 0   # Support for IDR closed GOPs (0: disabled, 1: enabled) 

EnableOpenGOP         = 0   # Support for open GOPs (0: disabled, 1: enabled) 

QPISlice              = 28  # Quant. param for I Slices (0-51) 

QPPSlice              = 28  # Quant. param for P Slices (0-51) 

FrameSkip             = 0   # Number of frames to be skipped in input (e.g 2 will code every #third 

frame) 

ChromaQPOffset        = 0   # Chroma QP offset (-51..51) 

DisableSubpelME       = 0   # Disable Subpixel Motion Estimation (0=off/default, 1=on) 

SearchRange           = 32  # Max search range 

MEDistortionFPel      = 0   # Select error metric for Full-Pel ME    (0: SAD, 1: SSE, 2: 

#Hadamard SAD) 

MEDistortionHPel      = 2   # Select error metric for Half-Pel ME    (0: SAD, 1: SSE, 2: 

#Hadamard SAD) 

MEDistortionQPel      = 2   # Select error metric for Quarter-Pel ME (0: SAD, 1: SSE, 2: 

#Hadamard SAD) 

MDDistortion          = 2   # Select error metric for Mode Decision  (0: SAD, 1: SSE, 2: 

#Hadamard SAD) 

ChromaMCBuffer        = 1   # Calculate Color component interpolated values in advance #and 

store them. Provides a trade-off between memory and computational complexity 

# (0: disabled/default, 1: enabled) 
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ChromaMEEnable      = 0   # Take into account Color component information during ME 

                            # (0: only first component/default, 1: All Color components) 

 

NumberReferenceFrames = 1   # Number of previous frames used for inter motion #search (0-

16) 

PList0References      = 0   # P slice List 0 reference override (0 disable, N <= 

#NumberReferenceFrames) 

Log2MaxFNumMinus4     = 0   # Sets log2_max_frame_num_minus4 (-1 : based on 

#FramesToBeEncoded/Auto, >=0 : Log2MaxFNumMinus4) 

Log2MaxPOCLsbMinus4   = -1  # Sets log2_max_pic_order_cnt_lsb_minus4 (-1 : Auto, #>=0 : 

Log2MaxPOCLsbMinus4) 

GenerateMultiplePPS   = 0  # Transmit multiple parameter sets. Currently parameters #basically 

enable all WP modes (0: diabled, 1: enabled) 

ResendPPS             = 0  # Resend PPS (with pic_parameter_set_id 0) for every coded 

#Frame/Field pair (0: disabled, 1: enabled) 

MbLineIntraUpdate     = 0   # Error robustness(extra intra macroblock updates)(0=off, #N: One 

GOB every N frames are intra coded) 

RandomIntraMBRefresh  = 0   # Forced intra MBs per picture 

PSliceSkip            = 1   # P-Slice Skip mode consideration  (0=disable, 1=enable) 

PSliceSearch16x16     = 1   # P-Slice Inter block search 16x16 (0=disable, 1=enable) 

PSliceSearch16x8      = 1   # P-Slice Inter block search 16x8  (0=disable, 1=enable) 

PSliceSearch8x16      = 1   # P-Slice Inter block search  8x16 (0=disable, 1=enable) 

PSliceSearch8x8       = 1   # P-Slice Inter block search  8x8  (0=disable, 1=enable) 

PSliceSearch8x4       = 1   # P-Slice Inter block search  8x4  (0=disable, 1=enable) 

PSliceSearch4x8       = 1   # P-Slice Inter block search  4x8  (0=disable, 1=enable) 

PSliceSearch4x4       = 1   # P-Slice Inter block search  4x4  (0=disable, 1=enable) 
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BSliceSkip            = 1   # B-Slice Skip mode consideration  (0=disable, 1=enable) 

BSliceSearch16x16     = 1   # B-Slice Inter block search 16x16 (0=disable, 1=enable) 

BSliceSearch16x8      = 1   # B-Slice Inter block search 16x8  (0=disable, 1=enable) 

BSliceSearch8x16      = 1   # B-Slice Inter block search  8x16 (0=disable, 1=enable) 

BSliceSearch8x8       = 1   # B-Slice Inter block search  8x8  (0=disable, 1=enable) 

BSliceSearch8x4       = 1   # B-Slice Inter block search  8x4  (0=disable, 1=enable) 

BSliceSearch4x8       = 1   # B-Slice Inter block search  4x8  (0=disable, 1=enable) 

BSliceSearch4x4       = 1   # B-Slice Inter block search  4x4  (0=disable, 1=enable) 

DisableIntraInInter    = 0  # Disable Intra modes for inter slices 

IntraDisableInterOnly  = 0  # Apply Disabling Intra conditions only to Inter Slices 

#(0:disable/default,1: enable) 

Intra4x4ParDisable     = 0  # Disable Vertical & Horizontal 4x4 

Intra4x4DiagDisable    = 0  # Disable Diagonal 45degree 4x4 

Intra4x4DirDisable     = 0  # Disable Other Diagonal 4x4 

Intra16x16ParDisable   = 0  # Disable Vertical & Horizontal 16x16 

Intra16x16PlaneDisable = 0  # Disable Planar 16x16 

ChromaIntraDisable     = 0  # Disable Intra Chroma modes other than DC 

EnableIPCM             = 0  # Enable IPCM macroblock mode 

DisposableP            = 0  # Enable Disposable P slices in the primary layer (0: #disable/default, 

1: enable) 

DispPQPOffset          = 0  # Quantizer offset for disposable P slices (0: default) 

 

 

####################################################################### 

# B Slices 

####################################################################### 
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NumberBFrames          = 0  # Number of B coded frames inserted (0=not used) 

QPBSlice               = 30 # Quant. param for B slices (0-51) 

BRefPicQPOffset        = -1 # Quantization offset for reference B coded pictures (-51..51) 

DirectModeType         = 1  # Direct Mode Type (0:Temporal 1:Spatial) 

DirectInferenceFlag    = 1  # Direct Inference Flag (0: Disable 1: Enable) 

BList0References       = 0  # B slice List 0 reference override (0 disable, N <= 

#NumberReferenceFrames) 

BList1References       = 1  # B slice List 1 reference override (0 disable, N <= 

#NumberReferenceFrames) # 1 List1 reference is usually recommended for normal GOP 

Structures. # A larger value is usually more appropriate if a more flexible 

               # structure is used (i.e. using HierarchicalCoding) 

BReferencePictures    =  0  # Referenced B coded pictures (0=off, 1=B references for 

#secondary layer, 2=B references for primary layer) 

HierarchicalCoding      =  0  # B hierarchical coding (0= off, 1= 2 layers, 2= 2 full #hierarchy, 3 = 

explicit) 

HierarchyLevelQPEnable  =  1  # Adjust QP based on hierarchy level (in increments of #1). 

Overrides BRefPicQPOffset behavior.(0=off, 1=on) 

ExplicitHierarchyFormat = "b1r0b3r0b2e2b0e2b4r2" # Explicit Enhancement GOP. #Format is 

{FrameDisplay_orderReferenceQP}. # Valid values for reference type is r:reference, e:non 

reference. 

ReferenceReorder      =  1  # Reorder References according to Poc distance for 

#HierarchicalCoding (0=off, 1=enable) 

PocMemoryManagement   =  1  # Memory management based on Poc Distances for 

#HierarchicalCoding (0=off, 1=on) 

BiPredMotionEstimation = 1   # Enable Bipredictive based Motion Estimation #(0:disabled, 

1:enabled) 
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BiPredMERefinements    = 3   # Bipredictive ME extra refinements (0: single, N: N extra 

#refinements (1 default) 

BiPredMESearchRange    = 16  # Bipredictive ME Search range (8 default). Note that #range is 

halved for every extra refinement. 

BiPredMESubPel         = 2   # Bipredictive ME Subpixel Consideration (0: disabled, 1: #single 

level, 2: dual level) 

####################################################################### 

# SP Frames 

####################################################################### 

SPPicturePeriodicity  = 0                  # SP-Picture Periodicity (0=not used) 

QPSPSlice             = 36                 # Quant. param of SP-Slices for Prediction Error (0-51) 

QPSP2Slice            = 35                 # Quant. param of SP-Slices for Predicted Blocks (0-51) 

SI_FRAMES             = 0                  # SI frame encoding flag (0=not used, 1=used) 

SP_output             = 0                  # Controls whether coefficients will be output to #encode 

switching SP frames (0=no, 1=yes) 

SP_output_name        = "low_quality.dat"  # Filename for SP output coefficients 

SP2_FRAMES            = 0                  # switching SP frame encoding flag (0=not used, #1=used) 

SP2_input_name1       = "high_quality.dat" # Filename for the first swithed bitstream 

#coefficients 

SP2_input_name2       = "low_quality.dat"  # Filename for the second switched #bitstream 

coefficients 

####################################################################### 

# Output Control, NALs 

####################################################################### 

SymbolMode             =  0  # Symbol mode (Entropy coding method: 0=UVLC, 1=CABAC) 

OutFileMode            =  0  # Output file mode, 0:Annex B, 1:RTP 



 

 

 

100

PartitionMode          =  0  # Partition Mode, 0: no DP, 1: 3 Partitions per Slice 

####################################################################### 

# CABAC context initialization 

####################################################################### 

ContextInitMethod        =  0     # Context init (0: fixed, 1: adaptive) 

FixedModelNumber         =  0     # model number for fixed decision for inter slices ( 0, 1, #or 2 ) 

####################################################################### 

# Interlace Handling 

####################################################################### 

PicInterlace             =  0     # Picture AFF    (0: frame coding, 1: field coding, 2:adaptive 

#frame/field coding) 

MbInterlace              =  0     # Macroblock AFF (0: frame coding, 1: field coding, #2:adaptive 

frame/field coding, 3: frame MB-only AFF) 

IntraBottom              =  0     # Force Intra Bottom at GOP Period 

####################################################################### 

# Weighted Prediction 

####################################################################### 

WeightedPrediction       =  0     # P picture Weighted Prediction (0=off, 1=explicit mode) 

WeightedBiprediction     =  0     # B picture Weighted Prediciton (0=off, 1=explicit #mode,  

2=implicit mode) 

UseWeightedReferenceME   =  1     # Use weighted reference for ME (0=off, 1=on) 

####################################################################### 

# Picture based Multi-pass encoding 

###################################################################### 
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RDPictureDecision=0  # Perform RD optimal decision between different coded #picture 

versions. # If GenerateMultiplePPS is enabled then this will test different WP met          # 

Otherwise it will test QP +-1 (0: disabled, 1: enabled) 

RDPictureIntra           =  0     # Perform RD optimal decision also for intra coded pictures #(0: 

disabled (default), 1: enabled). 

RDPSliceWeightOnly       =  1     # Only consider Weighted Prediction for P slices in #Picture 

RD decision. (0: disabled, 1: enabled (default)) 

RDBSliceWeightOnly       =  0     # Only consider Weighted Prediction for B slices in #Picture 

RD decision. (0: disabled (default), 1: enabled ) 

####################################################################### 

# Loop filter parameters 

####################################################################### 

LoopFilterParametersFlag = 0      # Configure loop filter (0=parameter below ingored, 

#1=parameters sent) 

LoopFilterDisable        = 0      # Disable loop filter in slice header (0=Filter, 1=No Filter) 

LoopFilterAlphaC0Offset  = 0      # Alpha & C0 offset div. 2, {-6, -5, ... 0, +1, .. +6} 

LoopFilterBetaOffset     = 0      # Beta offset div. 2, {-6, -5, ... 0, +1, .. +6} 

####################################################################### 

# Error Resilience / Slices 

####################################################################### 

SliceMode             =  0   # Slice mode (0=off 1=fixed #mb in slice 2=fixed #bytes in slice #3=use 

callback) 

SliceArgument         = 50   # Slice argument (Arguments to modes 1 and 2 above) 

num_slice_groups_minus1 = 1  # Number of Slice Groups Minus 1, 0 == no FMO, 1 == #two 

slice groups, etc. 
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slice_group_map_type    = 1  # 0:  Interleave, 1: Dispersed,    2: Foreground with left-#over, # 3:  

Box-out,    4: Raster Scan   5: Wipe  6:  Explicit, slice_group_id read from 

#SliceGroupConfigFileName 

slice_group_change_direction_flag = 0    # 0: box-out clockwise, raster scan or wipe #right,   # 

1: box-out counter clockwise, reverse raster scan or wipe left 

slice_group_change_rate_minus1    = 85   # 

SliceGroupConfigFileName      = "sg0conf.cfg"   # Used for slice_group_map_type 0, 2, 6 

UseRedundantPicture   = 0    # 0: not used, 1: enabled 

NumRedundantHierarchy = 1    # 0-4 

PrimaryGOPLength      = 5   # GOP length for redundant allocation (1-16)                             # 

NumberReferenceFrames must be no less than PrimaryGOPLength when redundant #slice 

enabled 

NumRefPrimary       = 1    # Actually used number of references for primary slices (1-16) 

####################################################################### 

# Search Range Restriction / RD Optimization 

####################################################################### 

RestrictSearchRange    =  2  # restriction for (0: blocks and ref, 1: ref, 2: no restrictions) 

RDOptimization         =  1  # rd-optimized mode decision # 0: RD-off (Low complexity mode)   # 

1: RD-on (High complexity mode)  # 2: RD-on (Fast high complexity mode - not work in FREX 

Profiles)   # 3: with losses 

CtxAdptLagrangeMult    =  0  # Context Adaptive Lagrange Multiplier 

                             # 0: disabled (default) 

                             # 1: enabled (works best when RDOptimization=0) 

FastCrIntraDecision    =  1  # Fast Chroma intra mode decision (0:off, 1:on) 

DisableThresholding    =  0  # Disable Thresholding of Transform Coefficients (0:off, #1:on) 
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DisableBSkipRDO        =  0  # Disable B Skip Mode consideration from RDO Mode #decision 

(0:off, 1:on) 

SkipIntraInInterSlices =  0  # Skips Intra mode checking in inter slices if certain mode #decisions 

are satisfied (0: off, 1: on) 

WeightY                =  1  # Luma weight for RDO 

WeightCb               =  1  # Cb weight for RDO 

WeightCr               =  1  # Cr weight for RDO 

####################################################################### 

# Explicit Lambda Usage 

####################################################################### 

UseExplicitLambdaParams  =  0    # Use explicit lambda scaling parameters (0:disabled, 

#1:enable lambda weight, 2: use explicit lambda value) 

FixedLambdaIslice        =  0.1  # Fixed Lambda value for I slices 

FixedLambdaPslice        =  0.1  # Fixed Lambda value for P slices 

FixedLambdaBslice        =  0.1  # Fixed Lambda value for B slices 

FixedLambdaRefBslice     =  0.1  # Fixed Lambda value for Referenced B slices 

FixedLambdaSPslice       =  0.1  # Fixed Lambda value for SP slices 

FixedLambdaSIslice       =  0.1  # Fixed Lambda value for SI slices 

LambdaWeightIslice       =  0.65 # scaling param for I slices. This will be used as a #multiplier 

i.e. lambda=LambdaWeightISlice * 2^((QP-12)/3) 

LambdaWeightPslice       =  0.68 # scaling param for P slices. This will be used as a #multiplier 

i.e. lambda=LambdaWeightPSlice * 2^((QP-12)/3) 

LambdaWeightBslice       =  2.00 # scaling param for B slices. This will be used as a #multiplier 

i.e. lambda=LambdaWeightBSlice * 2^((QP-12)/3) 

LambdaWeightRefBslice    =  1.50 # scaling param for Referenced B slices. This will be #used 

as a multiplier i.e. lambda=LambdaWeightRefBSlice * 2^((QP-12)/3) 
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LambdaWeightSPslice      =  1.50 # scaling param for SP slices. This will be used as a 

#multiplier i.e. lambda=LambdaWeightSPSlice * 2^((QP-12)/3) 

LambdaWeightSIslice      =  0.65 # scaling param for SI slices. This will be used as a #multiplier 

i.e. lambda=LambdaWeightSISlice * 2^((QP-12)/3) 

LossRateA                =  5  # expected packet loss rate of the channel for the first #partition, only 

valid if RDOptimization = 3 

LossRateB                =  0  # expected packet loss rate of the channel for the second #partition, 

only valid if RDOptimization = 3 

LossRateC                =  0  # expected packet loss rate of the channel for the third #partition, 

only valid if RDOptimization = 3 

NumberOfDecoders         = 30  # Numbers of decoders used to simulate the channel, #only 

valid if RDOptimization = 3 

RestrictRefFrames        =  0  # Doesnt allow reference to areas that have been intra #updated in 

a later frame. 

####################################################################### 

# Additional Stuff 

####################################################################### 

UseConstrainedIntraPred  =  0  # If 1, Inter pixels are not used for Intra macroblock #prediction. 

LastFrameNumber          =  0  # Last frame number that have to be coded (0: no effect) 

ChangeQPI                = 16  # QP (I-slices)  for second part of sequence (0-51) 

ChangeQPP                = 16  # QP (P-slices)  for second part of sequence (0-51) 

ChangeQPB                = 18  # QP (B-slices)  for second part of sequence (0-51) 

ChangeQPBSRefOffset      =  2  # QP offset (stored B-slices)  for second part of sequence #(-

51..51) 

ChangeQPStart            =  0  # Frame no. for second part of sequence (0: no second part) 

NumberofLeakyBuckets     =  8                      # Number of Leaky Bucket values 
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LeakyBucketRateFile      =  "leakybucketrate.cfg"  # File from which encoder derives #rate 

values 

LeakyBucketParamFile     =  "leakybucketparam.cfg" # File where encoder stores 

#leakybucketparams 

NumberFramesInEnhancementLayerSubSequence  = 0  # number of frames in the #Enhanced 

Scalability Layer(0: no Enhanced Layer) 

SparePictureOption        =  0   # (0: no spare picture info, 1: spare picture available) 

SparePictureDetectionThr  =  6   # Threshold for spare reference pictures detection 

SparePicturePercentageThr = 92   # Threshold for the spare macroblock percentage 

PicOrderCntType           = 0    # (0: POC mode 0, 1: POC mode 1, 2: POC mode 2) 

####################################################################### 

#Rate control 

###################################################################### 

RateControlEnable       = 0     # 0 Disable, 1 Enable 

Bitrate                 = 45020 # Bitrate(bps) 

InitialQP               = 0     # Initial Quantization Parameter for the first I frame 

                                # InitialQp depends on two values: Bits Per Picture, 

                                # and the GOP length 

BasicUnit               = 11    # Number of MBs in the basic unit 

                                # should be a fractor of the total number 

                                # of MBs in a frame 

ChannelType             = 0     # type of channel( 1=time varying channel; 0=Constant #channel) 

RCUpdateMode            = 0     # Rate Control type. Modes supported : 

                                # 0 = original JM rate control                                            # 

1 = rate control that is applied to all frames regardless of the slice type,                                # 2 = 
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original plus intelligent QP selection for I and B slices (including Hierarchical),                                

# 3 = original + hybrid quadratic rate control for I and B slice using bit rate statistics 

RCISliceBitRatio        = 1.0   # target ratio of bits for I-coded pictures compared to P-#coded 

Pictures (for RCUpdateMode=3) 

RCBSliceBitRatio0       = 0.5   # target ratio of bits for B-coded pictures compared to P-#coded 

Pictures - temporal level 0 (for RCUpdateMode=3) 

RCBSliceBitRatio1       = 0.25  # target ratio of bits for B-coded pictures compared to P-#coded 

Pictures - temporal level 1 (for RCUpdateMode=3) 

RCBSliceBitRatio2       = 0.25  # target ratio of bits for B-coded pictures compared to P-#coded 

Pictures - temporal level 2 (for RCUpdateMode=3) 

RCBSliceBitRatio3       = 0.25  # target ratio of bits for B-coded pictures compared to P-#coded 

Pictures - temporal level 3 (for RCUpdateMode=3) 

RCBSliceBitRatio4       = 0.25  # target ratio of bits for B-coded pictures compared to P-#coded 

Pictures - temporal level 4 (for RCUpdateMode=3) 

RCBoverPRatio           = 0.45  # ratio of bit rate usage of a B-coded picture over a P-#coded 

picture for the SAME QP (for RCUpdateMode=3) 

RCIoverPRatio           = 3.80  # ratio of bit rate usage of an I-coded picture over a P-#coded 

picture for the SAME QP (for RCUpdateMode=3) 

RCMinQPPSlice           =  8    # minimum P Slice QP value for rate control 

RCMaxQPPSlice           = 40    # maximum P Slice QP value for rate control 

RCMinQPBSlice           =  8    # minimum B Slice QP value for rate control 

RCMaxQPBSlice           = 46    # maximum B Slice QP value for rate control 

RCMinQPISlice           =  8    # minimum I Slice QP value for rate control 

RCMaxQPISlice           = 36    # maximum I Slice QP value for rate control 

RCMinQPSPSlice          =  8    # minimum SP Slice QP value for rate control 

RCMaxQPSPSlice          = 40    # maximum SP Slice QP value for rate control 



 

 

 

107

RCMinQPSISlice          =  8    # minimum SI Slice QP value for rate control 

RCMaxQPSISlice          = 36    # maximum SI Slice QP value for rate control 

####################################################################### 

#Fast Mode Decision 

####################################################################### 

EarlySkipEnable         = 0     # Early skip detection (0: Disable 1: Enable) 

SelectiveIntraEnable    = 0     # Selective Intra mode decision (0: Disable 1: Enable) 

####################################################################### 

#FREXT stuff 

####################################################################### 

YUVFormat               = 1     # YUV format (0=4:0:0, 1=4:2:0, 2=4:2:2, 3=4:4:4) 

RGBInput                = 0     # 1=RGB input, 0=GBR or YUV input 

SeparateColourPlane     = 0     # 4:4:4 coding: 0=Common mode, 1=Independent mode 

BitDepthLuma            = 8     # Bit Depth for Luminance (8...12 bits) 

BitDepthChroma          = 8     # Bit Depth for Chrominance (8...12 bits) 

CbQPOffset              = 0     # Chroma QP offset for Cb-part (-51..51) 

CrQPOffset              = 0     # Chroma QP offset for Cr-part (-51..51) 

Transform8x8Mode        = 0     # (0: only 4x4 transform, 1: allow using 8x8 transform 

additionally, 2: only 8x8 transform) 

ReportFrameStats        = 0     # (0:Disable Frame Statistics 1: Enable) 

DisplayEncParams        = 0     # (0:Disable Display of Encoder Params 1: Enable) 

Verbose                 = 1     # level of display verboseness (0:short, 1:normal, 2:detailed) 

####################################################################### 

#Q-Matrix (FREXT) 

####################################################################### 

QmatrixFile              = "q_matrix.cfg" 



 

 

 

108

ScalingMatrixPresentFlag = 0    # Enable Q_Matrix  (0 Not present, 1 Present in SPS, 2 Present 

in PPS, 3 Present in both SPS & PPS) 

ScalingListPresentFlag0  = 3    # Intra4x4_Luma    (0 Not present, 1 Present in SPS, 2 Present 

in PPS, 3 Present in both SPS & PPS) 

ScalingListPresentFlag1  = 3    # Intra4x4_ChromaU (0 Not present, 1 Present in SPS, 2 

Present in PPS, 3 Present in both SPS & PPS) 

ScalingListPresentFlag2  = 3    # Intra4x4_chromaV (0 Not present, 1 Present in SPS, 2 

Present in PPS, 3 Present in both SPS & PPS) 

ScalingListPresentFlag3  = 3    # Inter4x4_Luma    (0 Not present, 1 Present in SPS, 2 Present 

in PPS, 3 Present in both SPS & PPS) 

ScalingListPresentFlag4  = 3    # Inter4x4_ChromaU (0 Not present, 1 Present in SPS, 2 

Present in PPS, 3 Present in both SPS & PPS) 

ScalingListPresentFlag5  = 3    # Inter4x4_ChromaV (0 Not present, 1 Present in SPS, 2 

Present in PPS, 3 Present in both SPS & PPS) 

ScalingListPresentFlag6  = 3    # Intra8x8_Luma    (0 Not present, 1 Present in SPS, 2 Present 

in PPS, 3 Present in both SPS & PPS) 

ScalingListPresentFlag7  = 3    # Inter8x8_Luma    (0 Not present, 1 Present in SPS, 2 Present 

in PPS, 3 Present in both SPS & PPS) 

ScalingListPresentFlag8  = 1    # Intra8x8_ChromaU for 4:4:4 (0 Not present, 1 Present in SPS, 

2 Present in PPS, 3 Present in both SPS & PPS) 

ScalingListPresentFlag9  = 3    # Inter8x8_ChromaU for 4:4:4 (0 Not present, 1 Present in SPS, 

2 Present in PPS, 3 Present in both SPS & PPS) 

ScalingListPresentFlag10 = 2    # Intra8x8_ChromaV for 4:4:4 (0 Not present, 1 Present in SPS, 

2 Present in PPS, 3 Present in both SPS & PPS) 

ScalingListPresentFlag11 = 3    # Inter8x8_ChromaV for 4:4:4 (0 Not present, 1 Present in SPS, 

2 Present in PPS, 3 Present in both SPS & PPS 
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####################################################################### 

#Rounding Offset control 

####################################################################### 

OffsetMatrixPresentFlag  = 0    # Enable Explicit Offset Quantization Matrices  (0: disable 1: 

enable) 

QOffsetMatrixFile        = "q_offset.cfg" # Explicit Quantization Matrices file 

AdaptiveRounding         = 1   # Enable Adaptive Rounding based on JVT-N011 (0: disable, 1: 

enable) 

AdaptRoundingFixed       = 1    # Enable Global Adaptive rounding for all qps (0: disable, 1: 

enable - default/old) 

AdaptRndPeriod           = 1    # Period in terms of MBs for updating rounding offsets.                                

# 0 performs update at the picture level. Default is 16. 1 is as in JVT-N011. 

AdaptRndChroma           = 1    # Enables coefficient rounding adaptation for chroma 

AdaptRndWFactorIRef      = 4    # Adaptive Rounding Weight for I/SI slices in reference pictures 

/4096 

AdaptRndWFactorPRef      = 4    # Adaptive Rounding Weight for P/SP slices in reference 

pictures /4096 

AdaptRndWFactorBRef      = 4    # Adaptive Rounding Weight for B slices in reference pictures 

/4096 

AdaptRndWFactorINRef     = 4    # Adaptive Rounding Weight for I/SI slices in non reference 

pictures /4096 

AdaptRndWFactorPNRef     = 4    # Adaptive Rounding Weight for P/SP slices in non reference 

pictures /4096 

AdaptRndWFactorBNRef     = 4    # Adaptive Rounding Weight for B slices in non reference 

pictures /409 
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AdaptRndCrWFactorIRef    = 4    # Chroma Adaptive Rounding Weight for I/SI slices in 

reference pictures /4096 

AdaptRndCrWFactorPRef    = 4    # Chroma Adaptive Rounding Weight for P/SP slices in 

reference pictures /4096 

AdaptRndCrWFactorBRef    = 4    # Chroma Adaptive Rounding Weight for B slices in reference 

pictures /4096 

AdaptRndCrWFactorINRef   = 4    # Chroma Adaptive Rounding Weight for I/SI slices in non 

reference pictures /4096 

AdaptRndCrWFactorPNRef   = 4    # Chroma Adaptive Rounding Weight for P/SP slices in non 

reference pictures /4096 

AdaptRndCrWFactorBNRef   = 4    # Chroma Adaptive Rounding Weight for B slices in non 

reference pictures /4096 

####################################################################### 

#Lossless Coding (FREXT) 

####################################################################### 

QPPrimeYZeroTransformBypassFlag = 0    # Enable lossless coding when qpprime_y is zero (0 

Disabled, 1 Enabled) 

####################################################################### 

#Fast Motion Estimation Control Parameters 

####################################################################### 

SearchMode               = 0    # Use fast motion estimation (0=disable/default, 1=UMHexagonS, 

                                # 2=Simplified UMHexagonS, 3=EPZS patterns) 

UMHexDSR             = 1    # Use Search Range Prediction. Only for UMHexagonS method 

                             # (0:disable, 1:enabled/default) 

UMHexScale               = 3    # Use Scale_factor for different image sizes. Only for UMHexagonS 

method 
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                                # (0:disable, 3:/default) 

                                # Increasing value can speed up Motion Search. 

EPZSPattern              = 2    # Select EPZS primary refinement pattern. 

                                # (0: small diamond, 1: square, 2: extended diamond/default, 

                                # 3: large diamond, 4: SBP Large Diamond, 

                                # 5: PMVFAST ) 

EPZSDualRefinement       = 3    # Enables secondary refinement pattern. 

                                # (0:disabled, 1: small diamond, 2: square, 

                                # 3: extended diamond/default, 4: large diamond, 

                                # 5: SBP Large Diamond, 6: PMVFAST ) 

EPZSFixedPredictors      = 2    # Enables Window based predictors 

                                # (0:disabled, 1: P only, 2: P and B/default) 

EPZSTemporal             = 1    # Enables temporal predictors 

                                # (0: disabled, 1: enabled/default) 

EPZSSpatialMem           = 1    # Enables spatial memory predictors 

                                # (0: disabled, 1: enabled/default) 

EPZSMinThresScale        = 0    # Scaler for EPZS minimum threshold (0 default). 

                                # Increasing value can speed up encoding. 

EPZSMedThresScale        = 1    # Scaler for EPZS median threshold (1 default). 

                                # Increasing value can speed up encoding. 

EPZSMaxThresScale        = 2    # Scaler for EPZS maximum threshold (1 default). 

                                # Increasing value can speed up encoding. 

EPZSSubPelME             = 1    # EPZS Subpel ME consideration 

EPZSSubPelMEBiPred       = 1    # EPZS Subpel ME consideration for BiPred partitions 

EPZSSubPelThresScale     = 2    # EPZS Subpel ME Threshold scaler 

EPZSSubPelGrid           = 0    # Perform EPZS using a subpixel grid 
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####################################################################### 

# SEI Parameters 

######################################################################ToneM

appingSEIPresentFlag = 0    # Enable Tone mapping SEI  (0 Not present, 1 Present) 

ToneMappingFile           = "ToneMapping.cfg" 

GenerateSEIMessage        = 0                    # Generate an SEI Text Message 

SEIMessageText            = "H.264/AVC Encoder"  # Text SEI Message 

####################################################################### 

# VUI Parameters 

####################################################################### 

# the variables below do not affect encoding and decoding 

# (many are dummy variables but others can be useful when supported by the decoder) 

EnableVUISupport                                = 0      # Enable VUI Parameters 

VUI_aspect_ratio_info_present_flag              = 0 

VUI_aspect_ratio_idc                            = 1 

VUI_sar_width                                   = 0 

VUI_sar_height                                  = 0 

VUI_overscan_info_present_flag                  = 0 

VUI_overscan_appropriate_flag                   = 0 

VUI_video_signal_type_present_flag              = 0 

VUI_video_format                                = 5 

VUI_video_full_range_flag                       = 0 

VUI_colour_description_present_flag             = 0 

VUI_colour_primaries                            = 2 

VUI_transfer_characteristics                    = 2 

VUI_matrix_coefficients                         = 2 
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VUI_chroma_location_info_present_flag           = 0 

VUI_chroma_sample_loc_type_top_field            = 0 

VUI_chroma_sample_loc_type_bottom_field         = 0 

VUI_timing_info_present_flag                    = 0 

VUI_num_units_in_tick                           = 1000 

VUI_time_scale                                  = 60000 

VUI_fixed_frame_rate_flag                       = 0 

# nal hrd parameters 

VUI_nal_hrd_parameters_present_flag      = 0 

VUI_nal_cpb_cnt_minus1                   = 0 

VUI_nal_bit_rate_scale                   = 0 

VUI_nal_cpb_size_scale                   = 0 

VUI_nal_bit_rate_value_minus1            = 0 

VUI_nal_cpb_size_value_minus1            = 0 

VUI_nal_vbr_cbr_flag                     = 0 

VUI_nal_initial_cpb_removal_delay_length_minus1 = 23 

VUI_nal_cpb_removal_delay_length_minus1         = 23 

VUI_nal_dpb_output_delay_length_minus1          = 23 

VUI_nal_time_offset_length                      = 24 

# vlc hrd parameters 

VUI_vcl_hrd_parameters_present_flag      = 0 

VUI_vcl_cpb_cnt_minus1                   = 0 

VUI_vcl_bit_rate_scale                   = 0 

VUI_vcl_cpb_size_scale                   = 0 

VUI_vcl_bit_rate_value_minus1            = 0 

VUI_vcl_cpb_size_value_minus1            = 0 
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VUI_vcl_vbr_cbr_flag                     = 0 

VUI_vcl_initial_cpb_removal_delay_length_minus1 = 23 

VUI_vcl_cpb_removal_delay_length_minus1         = 23 

VUI_vcl_dpb_output_delay_length_minus1          = 23 

VUI_vcl_time_offset_length                      = 24 

VUI_low_delay_hrd_flag                      = 0 

# other params (i.e. bitsream restrictions) 

VUI_pic_struct_present_flag                 = 0 

VUI_bitstream_restriction_flag              = 0 

VUI_motion_vectors_over_pic_boundaries_flag = 1 

VUI_max_bytes_per_pic_denom                 = 0 

VUI_max_bits_per_mb_denom                   = 0 

VUI_log2_max_mv_length_vertical             = 16 

VUI_log2_max_mv_length_horizontal           = 16 

VUI_num_reorder_frames                      = 16 

VUI_max_dec_frame_buffering                 = 16 
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Decoder Configuration file: decoder.cfg: 
 

E:\Thesis\software\jm13.2_\JM\bin\ggtest1.264   ........H.264/AVC coded bitstream 

E:\Thesis\software\jm13.2_\JM\bin\test_dec.yuv  ........Output file, YUV/RGB 

E:\Thesis\software\jm13.2_\JM\bin\FOOTBALL_176x144_15_orig_01.yuv             #........Ref 

sequence (for SNR) 

1                        ........Write 4:2:0 chroma components for monochrome streams 

0                        ........NAL mode (0=Annex B, 1: RTP packets) 

0                        ........SNR computation offset 

2                        ........Poc Scale (1 or 2) 

500000                   ........Rate_Decoder 

104000                   ........B_decoder 

73000                    ........F_decoder 

leakybucketparam.cfg     ........LeakyBucket Params 

2 ........Err Concealment (0:Off,1:Frame Copy,2:weighted averaging,3:motion vector 

#interpolation) 

2                        ........Reference POC gap (2: IPP (Default), 4: IbP / IpP) 

2                        ........POC gap (2: IPP /IbP/IpP (Default), 4: IPP with frame skip = 1 etc.) 

0                        ........Silent decode 

This is a file containing input parameters to the JVT H.264/AVC decoder.
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