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ABSTRACT

IMPROVING RECEIVER STATION-KEEPING IN AERIAL REFUELING BY

FORMULATING TANKER MOTION AS DISTURBANCE

Christopher Michael Elliott, M.S.

The University of Texas at Arlington, 2009

Supervising Professor: Atilla Dogan

During aerial refueling operations, the receiver aircraft should hold position within

a “refueling box” to maintain the boom-receptacle connection while the tanker aircraft

flies in a racetrack maneuver. Prior research work shows, especially in turns, significant

difficulty resides in meeting y-deviation requirements, i.e., to stay within the box in the

lateral direction. This observation indicates tanker motion as “the biggest disturbance”

in turn. The nonlinear equations of motion for the receiver aircraft used in this work are

developed in terms of position and orientation states relative to the tanker. Lineariza-

tion results in a set of equations with tanker motion clearly quantified as disturbance.

The linearized state-space equation has an additional term with a disturbance matrix

representing how tanker motion affects the relative motion. In this research work, a dis-

turbance rejection method, based on these linearized equations, is employed to develop

a new control law to reduce the effect of the tanker turning maneuver on the station-

keeping performance of the receiver. This would lead to proactive (feed-forward) control

action in addition to reactive (feedback) control. Practical implementation of this ap-

proach will require the communication of tanker states (velocity, attitude, angular rates,
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etc.) to the receiver controller. Research findings conclude the new control law offers

significant potential to improve the receiver station-keeping performance in the presence

of a disturbance where the improvement potential appears directly proportional to the

fidelity of the disturbance model.
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CHAPTER 1

INTRODUCTION

1.1 Background on Aerial Refueling Related Research

While the automation of AR (Aerial Refueling) is disputably a welcomed devel-

opment in manned air vehicle applications, there is little argument, if any, that this

capability is highly desirable for unmanned air vehicles (UAV). Man in the loop AR can

pose to be a heavy task workload for both the pilot and fuel boom operator, with a

number of variables weighting the complexity and uniqueness of the specific operation.

Handling qualities of the receiver airframe aside, the visual conditions, flight profile of

the tanker, fuel remaining onboard the receiver, and number of wingmen in queue may

constitute only a few stress factors on the pilot’s mind during operation. Many of these

stressors are potentially minimized, if not alleviated, with an AAR (Automated Aerial

Refueling) capability, while the advantage to the UAV application is an obvious increase

in endurance time, allowing for a vehicle to maintain theater presence for prolonged dura-

tions [1]. Additionally, in flight refueling offered by AAR allows an unmanned vehicle to

augment take-off gross weight and refuel once airborne after establishing flight either (i)

in a shorter runway distance or (ii) with a valuable payload and cargo weight substitution

for initial fuel [2].

Two types of aerial refueling technologies exist in service today. One, the probe

and drogue refueling (PDR) method, typically exercised by the US Navy and North

Atlantic Treaty Organization (NATO) nations, involves a flexible refueling hose with a

wind sock or cone serving as a stabilizing target for the receiver to plug [1, 2]. The hose

and drogue is deployed directly behind the tanker vehicle and basically drug down wake,
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with only the physics of the system serving as stabilization of the refuel point. When not

in refueling mode, the PDR hose and drogue is reeled into the body of the tanker and

out of sight [2]. The second refueling method is known as boom and receptacle refueling

(BRR) and is exercised by the US Air Force (USAF) [1, 2]. The BRR method utilizes a

rigid boom to transfer fuel from the tanker to the receiver vehicle. For stabilization and

active control by a boom operator mounted in the tanker vehicle, the tip of the boom is

actuated with control surfaces known as ruddevators [2]. When not in refueling mode,

the boom may either remain in flight aft of the tanker vehicle or rotate to a fixed storage

position external to the airframe in order to minimize induced drag [2]. A few of the

immediate advantages of the BRR method are: the boom operator can help the receiver

pilot plug the refueling port where in PDR the pilot is solely responsible for tracking the

refueling position at the drogue; maximum fuel transfer rates are significantly higher than

PDR transfer rates on the order of 6000 pounds of fuel per minute for BRR compared to

only 1500 pounds of fuel per minute with PDR; and the BRR refueling port is typically

aft of the critical forward plane of the aircraft (at times directly aft of the pilot station)

while the PDR refueling port resides in dangerous proximity to the receiver engine inlet

and nose of the vehicle body (which may harness critical pitot static and angle of attack

sensors) [2].

A number of research efforts have taken place within academia and the aerospace

industry on the automation of aerial refueling. Dr. Atilla Dogan, with the Aerospace

Engineering Department of the University of Texas at Arlington, has focused on the

development of AAR for the specific BRR refueling method, although many of the con-

cepts are expandable to the PDR method as well. Ref. [3] summarizes the findings in this

research to quantify the tanker acceleration in a disturbance model in order to enable

control law compensation. Ref. [4] performs a trade study on multiple conceptual vehi-

cles for the AAR task. Ref. [5–8] derives the receiver equations of motion with respect to
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a non-inertial frame. The non-inertial frame considered is the accelerating tanker body,

which facilitates an intuitive control approach to tracking relative position between the

receiver and the tanker. Interested readers are encouraged to reference these works as

the equations of motion derived also allow consideration of time varying mass in the

receiver vehicle as the fuel state changes during the AAR task. Ref. [1, 9, 10] establishes

the baseline inner loop linear quadratic regulator and outer loop tracker architecture for

controlling relative position in AAR while the tanker vehicle performs a racetrack iner-

tial profile consisting of straight legs and turning legs. Note the term baseline denotes

the existing control laws in place targeted for improvement by this thesis research effort.

Ref. [11–19] entails the substantial work accomplished on modeling the aerodynamic cou-

pling between two vehicles flying in close proximity and encapsulates the dynamic flow

field effects of the tanker down wash onto the receiver vehicle.

While this research work focuses on employing a disturbance rejection methodol-

ogy described in detail by B. Friedland in Ref. [20], the problem of designing this type

of control law has been studied in detail in multiple sources. Early progress in the topic

was pioneered by C. Johnson in Ref. [21] which investigated Disturbance Accommodation

Control (DAC) for linear time invariant systems by using descriptive waveform models

to predict and counteract external effects. Extending the analytical technique into the

frequency domain, the authors in Ref. [22] present a similar design method to Johnson’s

for a linear time invariant system with the use of a different specific waveform model

for estimating the disturbance dynamics. More recent work by Johnson in Ref. [23] ex-

pands the methodology into Adaptive (or Active) Disturbance Accommodation Control

(ADAC). Other modern day research efforts in Ref. [24,25] include nonlinear compensa-

tion and emphasize minimizing the control law error (as with classical control) with less

dependency on an accurate disturbance model.
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1.2 Contribution

The purpose of this research is to improve the AAR control law in place governing

the nature of the receiver lateral transient response with respect to the station-keeping

BRR refueling position due to tanker flight path heading deviations. Particularly, when

the tanker initiates and performs a turn by capturing a bank attitude and maintaining

altitude (steady-level turn), the refueling position accelerates away from the receiver.

The specific objective undertaken here is to modify the receiver control law sufficiently in

order to maintain adequate tracking performance on the refueling position (within half

of a meter on all axes), despite the motion of the tanker. With state availability on the

tanker flight path heading profile to be commanded, these changes in the target profile are

shown to be essentially disturbance inputs in the open loop receiver state-space equation

and are used as a feed-forward control law to minimize station-keeping position error.

1.3 Thesis Summary

Following a detailed problem description in Chapter 2, a disturbance rejection

technique [20] is referenced. Next, Chapter 3 presents the existing control scheme for the

tanker and receiver vehicle, which leads to the required steps taken to modify the baseline

receiver control algorithm in order to entertain the new disturbance rejection approach

in Chapter 4. Subsequently, simulation results are presented in Chapter 5 followed by a

final summary, conclusion, and future work recommendation in Chapter 6. Additionally,

supporting data, equations, and simulation results are included at the appendices of the

thesis.



CHAPTER 2

DETAILED PROBLEM DESCRIPTION

This chapter includes presentation of the matrix-form set of nonlinear, Six Degree of

Freedom (6-DOF), rigid body Equations Of Motion (EOM) developed in earlier research

[5–8], followed by a detailed reference of the disturbance rejection technique [20] to be

employed as a candidate improvement to the existing control law and simulation. In

order to realize the EOM for both the receiver and tanker air vehicles, the set of frames

used to describe the bodies requires definition. The inertial frame denotes a fixed, non-

accelerating reference set of coordinate axes conventionally used in EOM definition with

the application of Newtonian physics and the second law of motion. A body frame is

defined for each vehicle and remains rigidly fixed to a reference location and attitude on

the airframe. For example, the receiver body frame is fixed in orientation to the fuselage

and wing and may be used to describe the vehicle orientation and position with respect to

any other coordinate frame. Likewise, the tanker body frame is also fixed to a reference

point and orientation on the vehicle. Finally, a wind frame is defined for each vehicle, in

which orientation of the set of coordinate axes is fixed to the velocity vector with respect

to the surrounding air, rather than the vehicle body. For example, the wind frame of the

aircraft is typically used to define the orientation of the vehicle with respect to motion

through the air. In other words, the wind frame provides the means to describe the

orientation of the vehicle body frame with respect to the velocity vector by the angle of

attack and angle of sideslip coordinate rotations.

The tanker vehicle EOM are defined in the conventional sense, with respect to an

inertial frame and are provided below in order to allow direct comparison to the receiver

5
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EOM. The receiver EOM, on the other hand, are defined in a unique manner, with motion

often defined relative to an accelerating, non-inertial frame (e.g. tanker body). Refer

to Appendix A and Appendix B for the full scalar expansions of the provided matrix

equation set, without the wind terms (these components are not used in the control law

formulation), for both the receiver vehicle and tanker vehicle, respectively.

2.1 Translational Kinematics

2.1.1 Receiver

ξ̇ = RT
BRBT

RBRwR
Vw + RT

BRBT
WBR −RBTI ṙBT + S(ωBT

)ξ (2.1)

where ξ is the representation, in the tanker body frame, of the receiver relative position

vector with respect to the tanker vehicle body. The first term on the right side of

the equation denotes the velocity vector of the receiver vehicle (with respect to the

surrounding air) represented in the receiver wind frame, (Vw), transformed to the tanker

vehicle body frame by i) the rotation matrix from receiver wind frame to receiver body

frame, RBRwR
, and ii) the rotation matrix from receiver body frame to tanker body

frame, RT
BRBT

. Note that the vector Vw = [V 0 0]T where V is the true airspeed of the

receiver. The second term includes the atmospheric wind velocity vector with respect to

the inertial frame and represented in the receiver vehicle body frame, WBR (and includes

flow field effects of tanker downwash) or, in other words, the air fluidic velocity in the

neighborhood of the receiver position, represented in the receiver body. This wind term

is transformed to the tanker vehicle body frame by the rotation matrix, RT
BRBT

. The

latter two terms on the right hand side of Eq. (2.1) represent the influence of the tanker

motion on the receiver relative position to the tanker body. The component with ṙBT

is the velocity vector of the tanker with respect to the inertial frame, transformed from
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inertial frame to tanker body with the Euler angle rotation matrix, RBTI. Finally, the

remaining term on the right side of the equation describes the impact of tanker angular

velocity, ωBT , defined with respect to the inertial frame and represented in the tanker

body frame, on the receiver relative motion rate. In other words, the pitch, yaw, and roll

rates of the tanker directly contribute to the relative velocity between the two vehicles

and that contribution is proportional to the relative position between the two vehicles, ξ.

Additionally, due to describing the equations in matrix form, the notation S(·) represents

the skew symmetric operation as follows [1]:

S(x) =


0 x3 −x2

−x3 0 x1

x2 −x1 0

 , (2.2)

where x = [x1 x2 x3]
T is the representation of an arbitrary vector x.

2.1.2 Tanker

ṙBT = RT
BTIRBTwT

VwT +W (2.3)

In contrast, due to the conventional definition with respect to a fixed inertial frame, the

tanker translational kinematics matrix-form equation includes only the first two terms

describing the vehicle velocity, VwT , with respect to the surrounding air, and again the

wind velocity W (the air fluidic velocity now includes only the atmospheric prevailing

wind and inertial turbulence in the neighborhood of the tanker, represented and defined

with respect to the inertial frame). Reiterating, W is the representation of winds in the

inertial frame while WBR in Eq. (2.1) is the representation of winds in the receiver body

frame.
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2.2 Translational Dynamics

2.2.1 Receiver


V̇

β̇

α̇

 = E−1R

[
S(ωBRBT

) + RBRBT
S(ωBT

)RT
BRBT

](
RBRwR

Vw +WBR

)

−E−1R ẆBR +
1

mR

E−1R

(
RBRBT

RBTIMR + RBRwR
AR + PR

)
(2.4)

where

E−1R =


cosα cos β sin β cos β sinα

− 1
V

cosα sin β 1
V

cos β − 1
V

sinα sin β

− 1
V

sec β sinα 0 1
V

cosα sec β

 (2.5)

The translational dynamics equation is written in terms of the velocity vector of

the receiver aircraft relative to the surrounding air in the neighborhood of the vehicle.

Specifically, the true airspeed V , angle of sideslip β, and angle of attack α are used

for expressing this vector. Inspecting the right hand side of the equation, there are

three basic components contributing to the acceleration: (i) the angular velocity vectors

(ωBRBT and ωBT ) of the two vehicles coupled with both the receiver velocity Vw and

the wind velocity WBR , (ii) the wind acceleration, ẆBR , and (iii) the external forces on

the receiver (MR gravitational force represented in the inertial frame, AR aerodynamic

force represented in the receiver wind frame, and PR propulsive force represented in the

receiver body frame).
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2.2.2 Tanker


V̇T

β̇T

α̇T

 = E−1T S(ωBT
)

(
RBTwT

VwT + RBTIW

)
− E−1T RBTIẆ

+
1

mT

E−1T

(
RBTIMT + RBTwT

AT + PT

)
(2.6)

where

E−1T =


cosαT cos βT sin βT cos βT sinαT

− 1
VT

cosαT sin βT
1
VT

cos βT − 1
VT

sinαT sin βT

− 1
VT

sec βT sinαT 0 1
VT

cosαT sec βT

 (2.7)

Comparison of Eq. (2.6) to Eq. (2.4) reveals that the primary difference resides

in the first term on the right hand side of the equations. This difference is due to the

fact that the angular velocity of the receiver is defined relative to a non-inertial rotating

frame while the tanker angular velocity is written relative to the inertial frame. There

are also subtle differences in the components (ii) and (iii). Component (ii) now includes

the rotation matrix from inertial frame to tanker body frame, RBTI, due to the wind

vector representation in the inertial frame. Although the form of component (iii) in

Eq. (2.6) is slightly different, the term remains describing the external forces on the

tanker vehicle (MT gravitational force represented in the inertial frame, AT aerodynamic

force represented in the tanker wind frame, and PT propulsive force represented in the

tanker body frame).
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2.3 Rotational Kinematics

2.3.1 Receiver

RBRBT
ṘT

BRBT
= −S(ωBRBT

) (2.8)

Eq. (2.8) governs the attitude rate of the receiver vehicle, defined with respect to the

tanker vehicle body, where ωBRBT denotes the angular velocity of the receiver with respect

to the tanker body frame and expressed in the receiver body frame.

2.3.2 Tanker

RBTIṘ
T
BTI = −S(ωBT

) (2.9)

The rotational kinematics of the tanker vehicle are defined with respect to the inertial

frame in Eq. (2.9). This set of equations in conventional form is the closest resemblance

to the new unique set of equations of motion for the receiver, defined with respect to

the accelerating tanker vehicle body frame. The sole difference is the relative frame

definition.

2.4 Rotational Dynamics

2.4.1 Receiver

ω̇BRBT = I−1
R
MBR + I−1

R
S(ωBRBT

+ RBRBT
ωBT

)I
R

(ωBRBT + RBRBT
ωBT )

−S(ωBRBT
)RBRBT

ωBT −RBRBT
ω̇BT (2.10)

Eq. (2.10) governs the rotational dynamics of the receiver vehicle, where the rotational

velocity of the receiver is defined with respect to the tanker body frame and represented
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in the receiver body frame. Four acceleration components constitute the right hand side

of the equation. The first two terms are the (i) external moments on the receiver vehicle,

MBR , taken about the receiver body frame origin, and (ii) the receiver inertia component

on total angular velocity between the two rotating vehicles where I
R

denotes the receiver

aircraft inertia matrix. The last two terms, (iii) and (iv), are the effect of the tanker

angular velocity and acceleration on the angular acceleration of the receiver relative to

the tanker body, respectively.

2.4.2 Tanker

ω̇BT = I−1
T
MBT + I−1

T
S(ωBT

)I
T
ωBT (2.11)

The traditional definition of rotational acceleration with respect to an inertial frame is

used to define the tanker vehicle in Eq. (2.11). In contrast to Eq. (2.10), the primary

difference is the complete absence of the last two components (iii) and (iv) as described

in the receiver rotational dynamics. The remaining components are similar only now

MBT in (i) denotes external moments on the tanker vehicle about the tanker body frame

origin and the angular velocity term in (ii) is strictly the tanker. Finally, I
T

denotes the

tanker aircraft inertia matrix.

2.5 Linearization

Recapitulating, the unconventional terms in the receiver set of equations of motion

are due to derivation with respect to a non-inertial frame under the effect of wind expo-

sure. Interestingly, the terms resulting from this approach liquidate to define the motion

of the rotating non-inertial frame (tanker body) to the fixed, inertial frame. For example,

ṙBT defines the tanker inertial translational kinematics, while the ωBT and RBTI compo-



12

nents define the tanker angular velocity and inertial orientation, respectively. Linearizing,

the receiver equations are represented in the state-space form as

ẋ = Ax+ Bu+ H(t)w (2.12)

where A ∈ <12x12, B ∈ <12x6, and H(t) ∈ <12x12. Again, breaking from typical con-

vention for a linearized set of equations of motion with respect to an inertial frame,

the unique terms governing motion relative to an accelerating tanker body frame are

conglomerated into the disturbance or exogenous vector

w = [ẋT ẏT żT pT qT rT ṗT q̇T ṙT ψT θT φT ]
T

∈ <12x1 (2.13)

with the receiver state vector and input vector represented as x and u, respectively, as

x = [V β α p q r ψ θ φ x y z]
T

∈ <12x1

u = [δa δe δr ξ δy δz]
T

∈ <6x1

A key point requiring emphasis is that the inclusion of the time variant H(t)w term

in the open loop receiver state-space equation does not yet define a control scheme but

represents the governing physics between the two bodies of interest. Closing the loop

on this information however, as proposed in detail by Friedland [20], will construct the

unique control law in order to improve tracking performance. The existing LQR MIMO

[1,9,10] position tracker in place does not employ this technique to utilize a disturbance

measurement, and asserts that the approach is not an absolute requirement to achieve

a controllable closed loop system. However, the objective for this implementation is to

improve the controller transient response in station-keeping position error, primarily with

respect to lateral deviation from the target. As observed in previous simulations [1,5–7,9,

10], the most prominent lateral deviations encountered with the existing control law are

in response to a tanker flight path deviation (i.e. heading rate onset due to a level turn).

Although additional disturbance sources on the receiver closed loop response exist such
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as prevailing wind, wake-vortex induced wind, and freestream turbulence [16–19], this

research work focuses on improving the performance degradation caused by acceleration

and rotation of the tanker. Nevertheless, in the simulations for evaluating the closed loop

performance, other disturbances will also be included.

2.6 Friedland Disturbance Rejection Method

Consider the linear state-space representation of a system experiencing disturbance

as

ẋ = Ax+ Bu+ ExTA (2.14)

Friedland [20] proposes that if the disturbance vector of the system is described in a first

order differential equation of the form,

ẋTA = ATCL
xTA (2.15)

the exogenous dynamics may be combined with the open loop state-space representation

to formulate a set of equations or metastate-space system as

ẋo = Aoxo + Bou (2.16)

where

xo =

 x

xTA


represents the adjoined receiver state and disturbance vectors (in this case, the latter

as augmented tanker states, xTA). Metastate matrices Ao and Bo represent the original

state-space expressed in Eq. (2.14), as well as encapsulation of the exogenous components

into the open loop state and control matrices,

Ao =

 A E

0 ATCL

 and Bo =

 B

0

 ,
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respectively. Precluding further detailed discussion until Chapters 3 and 4, note the

appearance of the tanker closed loop dynamics matrix, ATCL
, in the receiver open loop

metastate matrix, which will be of particular value. This value, to be presented, will

enable a key step in the problem approach to utilize Eq. (2.14) as opposed to Eq. (2.12),

in order to realize the time invariant metastate-space system [20].

Friedland continues description of the solution to the exogenous problem with ex-

planation of two notable considerations for the LQR application. One, the exogenous

states are uncontrollable and therefore render zero weighting components in the metastate

penalty matrix, Q, within the quadratic performance integral. In other words, consider-

ing the cost minimization problem, there is no penalty for the behavior of the external

system. Secondly, considering the infinite horizon linear quadratic regulator problem

whose performance index takes the form,

V∞ =

∫ ∞
0

[xTo (t) Q xo(t) + uT (t) R u(t)]dt (2.17)

also poses the realization that an uncontrollable exogenous state within the xo vector may

cause the controllable receiver state, x, to be non-zero as time approaches infinite (e.g.

the tanker imposes a disturbance on the receiver which leads to a static error in the state

regulator control law). In turn, the cost (performance index) integral approaches infinite

due to a non-zero xTo (t) Q xo(t) term, and a steady state solution to the LQR problem

may fail to exist [20]. Friedland’s approach to this problem is to employ a control action,

u(t), to ensure a zero steady state error (i.e. drive x to zero regardless of disturbance).

Appropriately, per this proposition, the research work here utilizes an infrastructure with

an integral control outer loop structure (as presented ahead in Chapter 3) in conjunction

with a suboptimal linear quadratic regulator inner loop. Solving for the suboptimal

control law, using the procedure referenced in detail in Appendix C,

u(t) = −R−1Bo
TM̄ xo(t) (2.18)
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where M̄ represents the steady state solution to the well known Ricatti differential equa-

tion (or algebraic Ricatti equation due to the steady state form) typically encountered

in optimal control practice, given by

− ˙̂M = Ao
TM̂ + M̂Ao − M̂ BoR

−1Bo
TM̂ + Q = 0 (2.19)

Note the control law in Eq. (2.18) by definition formulates a compensatory action on

the receiver alone. In other words, the exogenous system (tanker) is not impacted by

the feedback of u(t). Therefore, the product of the metastate Bo input matrix and the

control action, u(t) is a contribution solely to the receiver state rate ẋ in Eq. (2.14) and

is a vector of compatible length ∈ <12x1. With this logic in regard, the Ricatti kernel, M̂

in Eq. (2.19) is partitioned in accordance with the metastate-space system construction.

M̂ =

 M̂1 M̂2

M̂T
2 M̂3

 (2.20)

Continuing expansion of the receiver control law in Eq. (2.18) in accordance with the

partitioned Ricatti kernels in Eq. (2.20),

u(t) = −R−1
[

BT 0

] M̂1 M̂2

M̂T
2 M̂3


 x

xTA


= −

[
R−1BTM̂1 R−1BTM̂2

] x

xTA

 (2.21)

Therefore, the suboptimal linear control law is

u = −R−1BTM̄1 x−R−1BTM̄2 xTA (2.22)

offering “effective control for a class of exogenous inputs” [20]. Stated alternatively,

the control action counteracts the tanker induced disturbances by the factor R−1BTM̄2

where M̄1 and M̄2 are constant matrices and represent the partitioned kernels in the
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steady state solution to the Ricatti algebraic equation presented above in Eq. (2.19).

Therefore, the control law in Eq. (2.22) only requires solving the gain submatrices M̄1

and M̄2 in Eq. (2.20), provided by expanding the partitions in Eq. (2.19). Eq. (2.23)

below presents the expanded equation governing M̄1 and retains the general Ricatti

algebraic form. (Note Qx represents the state weight matrix components on x alone and

does not include the zero penalty terms on the exogenous vector, xTA).

− ˙̄M1 = M̄1A + ATM̄1 − M̄1BR−1BTM̄1 + Qx = 0 (2.23)

M̄2 however, requires consideration of a new differential equation (again now in the

steady state algebraic form), unique to the exogenous metastate-space system.

− ˙̄M2 = M̄1E + M̄2ATCL
+ (AT − M̄1BR−1BT)M̄2 = 0 (2.24)

The key matrices in Eq. (2.24) that must be known in order to employ the Friedland

disturbance rejection method [20] are E and ATCL
, also observed in Eq. (2.14) and

Eq. (2.15), respectively. In other words, (i) the transformation matrix of the exogenous

state vector into the receiver state-space system (E) and (ii) the matrix governing the

first order differential equation, ATCL
, describing the exogenous dynamics both require

quantification for this control law.



CHAPTER 3

CONTROL SCHEME

The purpose of this chapter is to serve as a brief reference to the existing con-

trol methodology developed in prior work [1, 9, 10]. The linearized equations for the

open loop and closed loop vehicle dynamics are provided herein for both the tanker and

receiver. Additionally, full state availability for both vehicles is assumed, and all condi-

tions necessary for the convergence of the linear quadratic solution are met. Namely, (i)

the state-space matrices (A, B) are controllable; and (ii) the positive semidefinite state

penalty matrix, Q, results in the observability of (
√

Q, A) in both applications below [26].

3.1 Tanker

The open loop linearized state-space system is described per nominal condition i

by the following:

∆ẋT = AT,i ∆xT + BT,i ∆uT (3.1)

with state vector,

∆xT = [∆VT ∆βT ∆αT ∆pT ∆qT ∆rT ∆θT ∆φT ∆zT ∆ψT ]
T

∈ <10x1 (3.2)

and control input vector,

∆uT = [∆δaT ∆δeT ∆δrT ∆ξtT ]T (3.3)

where index i refers to the ith nominal condition and conventional effectors of aileron,

elevator, rudder, and throttle are denoted with δaT , δeT , δrT , and ξtT , respectively. For

outer loop control, the output vector is chosen as velocity, altitude, and bank attitude.

y
T

= [∆VT ∆zT ∆φT ]T (3.4)

17
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The control error rate (to be utilized for integral control) is defined as the difference

between output vector and the desired reference or commanded value as

ėT = y
T
− y

T,c
= CT,i ∆xT − yT,c (3.5)

or in scalar form,

ėVT = ∆VT −∆VT,c

ėzT = ∆zT −∆zT,c (3.6)

ėφT = ∆φT −∆φT,c

Next, the open loop system state vector is augmented with the errors as follows: ∆ẋT

ėT

 =

 AT,i 010×3

CT,i 03×3


 ∆xT

eT

+

 BT,i

03×4

∆uT −

 010×3

I3×3

 y
T,c

(3.7)

The feedback control gain matrix is computed as the solution to the algebraic Ricatti

equation (in a similar procedure as discussed in Chapter 2.

∆uT,i = −KT,i

 ∆xT

eT

 = −KxT,i
∆xT −KeT,i eT (3.8)

The gain, KT,i is then decomposed to allow for inner loop state feedback in conjunction

with outer loop integral control on the output vector. Finally, the control law is substi-

tuted into the open loop augmented system, yielding the closed loop augmented system

as  ∆ẋT

ėT

 =

 (AT,i −BT,iKxT,i
) −BT,iKeT,i

CT,i 03×3


 ∆xT

eT

−
 010×3

I3×3

 y
T,c

(3.9)

Or equivalently, written as

∆ẋTA = ATCL,i
∆xTA −

 010×3

I3×3

 y
T,c

(3.10)
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where ∆xTA =
[
∆xTT eTT

]T
now represents the full augmented state vector and ATCL,i

represents the closed loop dynamics matrix of the tanker.

Employment of the linear control law in Eq. (3.8) into the full order nonlinear

system requires realization that the feedback gain computes deviations of the control

variables from their nominal values, based on state deviations, ∆xTA , multiplied by the

Kalman gain. The actual state and control vectors are written as the sum of the nominal

values and the perturbations from the nominal values as

xTA = xTAo,i
+ ∆xTA

uT,i = uTo,i + ∆uT,i (3.11)

where xTAo,i
and uTo,i denote nominal state and control action values, respectively. In

other words, the total control action is found by adding the computed control deviations

to their nominal values. Solving for the deviations, the state perturbations are calculated

in real time as

∆xTA = xTA − xTAo,i (3.12)

and the control action perturbations are calculated as

∆uT,i = uT,i − uTo,i (3.13)

Substitution of Eq. (3.12) and Eq. (3.13) into the linear control law in Eq. (3.8) yields

the final implementable form

uT,i = uTo,i −KT,i(xTA − xTAo,i ) (3.14)

to be scheduled between nominal conditions for real time execution. For this task,

Eq. (3.14) is computed for the ith nominal condition and the scheduled control action is
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calculated by interpolating among all the nominal conditions using a Lagrange interpo-

lation scheme mechanized as [1]

uT =

[
(φT,C − φT,2) (φT,C − φT,3)
(φT,1 − φT,2) (φT,1 − φT,3)

] [
(VT,C − VT,2)
(VT,1 − VT,2)

uT,1 +
(VT,C − VT,1)
(VT,2 − VT,1)

uT,2

]
[

(φT,C − φT,1) (φT,C − φT,3)
(φT,2 − φT,1) (φT,2 − φT,3)

] [
(VT,C − VT,2)
(VT,1 − VT,2)

uT,3 +
(VT,C − VT,1)
(VT,2 − VT,1)

uT,4

]
[

(φT,C − φT,1) (φT,C − φT,2)
(φT,3 − φT,1) (φT,3 − φT,2)

] [
(VT,C − VT,2)
(VT,1 − VT,2)

uT,5 +
(VT,C − VT,1)
(VT,2 − VT,1)

uT,6

]
(3.15)

VT,C and φT,C are the total velocity and bank attitude commands, respectively, used as

the scheduling independent variables. uT,i denotes the total control action required at

each specific nominal condition given by Eq. (3.14), and finally VT,i and φT,i are the

nominal values of the scheduling variables at each nominal condition.

3.2 Receiver

The receiver vehicle open loop linearized state-space system including disturbance

is described per nominal condition i by the following:

∆ẋ = Ai ∆x+ Bi ∆u+ Hi(t) ∆w (3.16)

with state vector,

∆x = [∆V ∆β ∆α ∆p ∆q ∆r ∆ψ ∆θ ∆φ ∆x ∆y ∆z]T (3.17)

and control input vector,

∆u = [∆δa ∆δe ∆δr ∆ξ ∆δy ∆δz]
T (3.18)

where index i refers to the ith nominal condition and in addition to the conventional

effectors (aileron, elevator, rudder, throttle), δy and δz define thrust vectoring control

inputs. The disturbance vector due to the motion of the tanker is given by

∆w = [∆ẋT ∆ẏT ∆żT ∆pT ∆qT ∆rT ∆ṗT ∆q̇T ∆ṙT ∆ψT ∆θT ∆φT ]T (3.19)
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Here, a proposition is introduced that there exists a matrix Υ(t) ∈ <12x13 which can be

used as a linear transformation from the tanker state vector to the disturbance vector of

the receiver as

∆w = Υ(t) ∆xTA (3.20)

Substituting this equation into Eq. (3.16) yields

∆ẋ = Ai ∆x+ Bi ∆u+ Ei ∆xTA (3.21)

where

Ei = Hi(t) Υi(t) ∈ <12x13 (3.22)

Note that the product of these two time-varying matrices yields a constant matrix. This

proposition will be proven in Chapter 4. Matrix Ei can be decomposed as

Ei =
[
ExT,i

EeT,i

]
(3.23)

where ExT,i
∈ <12x10 and EeT,i ∈ <12x3.

The outer loop output vector for the receiver is chosen as relative position from the

tanker vehicle,

y = [∆x ∆y ∆z]T (3.24)

and the error control variable is defined as the difference between the output vector and

a desired relative position.

ė = y − yc (3.25)

Expanding to scalar form for reference,

ėx = ∆x−∆xc

ėy = ∆y −∆yc (3.26)

ėz = ∆z −∆zc
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Repeating the equivalent procedure utilized to augment the tanker open loop equation,

the receiver error vector is adjoined with the receiver states to formulate an augmented

open loop state-space equation as follows: ∆ẋ

ė

 =

 Ai 012×3

C,i 03×3


 ∆x

e

+

 Bi

03×6

∆u+

 Ei

03×6

∆xTA −

 012×3

I3×3

 yc
(3.27)

Next, as shown in Eq. (2.16) per the Friedland procedure to reduce a known exogenous

quantity into the state-space equation [20], the receiver open loop equation is augmented

once more with the tanker state vector xT and the tanker error vector eT to formulate

the two vehicle metastate-space open loop system as follows:

∆ẋ

ė

∆ẋT

ėT


=



Ai 012×3 ExT,i
EeT,i

C,i 03×3 03×10 03×3

010×12 010×3 (AT,i −BT,iKxT,i
) −BT,iKeT,i

03×12 03×3 CT,i 03×3





∆x

e

∆xT

eT



+



Bi

03×6

010×6

03×6


∆u−



012×3

I3×3

010×3

03×3


yc −



012×3

03×3

010×3

I3×3


y
T,c

(3.28)

Finally, the metastate matrices Ao and Bo (presented in expanded form in Eq. (3.28))

are used in the LQR procedure, referenced in Chapter 2, to compute the feedback gain

matrix utilized in the linear control law of the form

∆ui = −Ko,i



∆x

e

∆xT

eT


= −Kxi

∆x−Kei e−KoxTi
∆xT −KoeTi

eT

= −Kxi
∆x−Kei e−KoTi

∆xTA (3.29)
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The receiver linear control law in Eq. (3.29) is employed into the full order nonlinear

model in an equivalent manner as the tanker controller. Defining the complete state

vector of the two vehicle metastate-space system as ∆xA =
[
∆xT eT ∆xTT eTT

]T ∈ <28x1

and rewriting the receiver linear control in Eq. (3.29) as

∆u = −Ko,i ∆xA (3.30)

the total control action is found by considering deviations for both the state xA and

receiver control variables, u, about each nominal condition, i. The actual vectors are

written as the sum of the nominal values plus a perturbation as

xA = xAo,i + ∆xA

u,i = uo,i + ∆u,i (3.31)

where xAo,i and uo,i denote receiver nominal state and control action values, respectively.

Solving for perturbations,

∆xA = xA − xAo,i

∆u,i = u,i − uo,i (3.32)

Substitution of Eq. (3.32) into the linear control law in Eq. (3.30) yields the form suitable

for a gain schedule in real time execution.

u,i = uo,i −Ko,i(xA − xAo,i) (3.33)

Reiterating an equivalent procedure as used in the tanker controller, the gain scheduling

task for the receiver computes u,i in Eq. (3.33) for the ith nominal condition in real time
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with the state vector, xA. Next, the total receiver control action required, u, is computed

using the following Lagrange interpolation scheme: [1]

u =

[
(φT,C − φT,2) (φT,C − φT,3)
(φT,1 − φT,2) (φT,1 − φT,3)

] [
(VT,C − VT,2)
(VT,1 − VT,2)

u,1 +
(VT,C − VT,1)
(VT,2 − VT,1)

u,2

]
[

(φT,C − φT,1) (φT,C − φT,3)
(φT,2 − φT,1) (φT,2 − φT,3)

] [
(VT,C − VT,2)
(VT,1 − VT,2)

u,3 +
(VT,C − VT,1)
(VT,2 − VT,1)

u,4

]
[

(φT,C − φT,1) (φT,C − φT,2)
(φT,3 − φT,1) (φT,3 − φT,2)

] [
(VT,C − VT,2)
(VT,1 − VT,2)

u,5 +
(VT,C − VT,1)
(VT,2 − VT,1)

u,6

]
(3.34)

The coefficients of VT,C , φT,C , VT,i, and φT,i are the equivalent total velocity and bank

attitude commands and nominal values of these scheduling variables as employed in the

tanker gain scheduler. The sole difference for the receiver Lagrange interpolation scheme

is the u,i total control action required for the receiver at each specific nominal condition,

given by Eq. (3.33).



CHAPTER 4

TRANSFORMATION FROM TANKER STATE VECTOR TO RECEIVER
DISTURBANCE VECTOR

Implementation of the disturbance rejection approach [20] in the receiver station-

keeping control law requires transformation to the disturbance vector in the receiver

linearized equation of motion in Eq. (2.12) from the augmented state vector for the tanker

as defined in Eq. (3.7). Recalling Eq. (3.2) and adjoining error states, the augmented

tanker state vector is

xTA = [VT βT αT pT qT rT θT φT zT ψT eVT ezT eφT ]
T

∈ <13x1 (4.1)

where the final three components represent error elements for the tanker autopilot type

one control action (i.e. total velocity, altitude, and bank attitude integral errors where

the error is defined as the respective state minus the reference command). Comparing

the existing tanker state vector, xTA in Eq. (4.1) to the receiver disturbance vector, w

(reference recalled Eq. (2.13) below), a direct substitution of the tanker states into the

exogenous vector for the disturbance rejection approach is not readily possible.

w = [ẋT ẏT żT pT qT rT ṗT q̇T ṙT ψT θT φT ]
T

∈ <12x1

In order to utilize the existing tanker state vector as the exogenous term (note the

expressions of exogenous and disturbance vector are used interchangeably) in the receiver

state-space, an inspection is performed on the disturbance vector and the tanker state

vector on an element by element basis. Comparing the first three elements in the state

vector to the disturbance vector, observe that both arrays describe the equivalent tanker

translational kinematics in the absence of wind, although the former is expressed in the

wind frame as opposed to the inertial frame. Therefore, a relation to map velocities from

25
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one representation to the other is identified by resorting to the matrix form of the tanker

translational kinematics relative to the inertial frame (and represented in the inertial

frame), given by

ṙBT = RT
BTIRBTwT

VwT (4.2)

Note, Eq. (4.2) is obtained from the Eq. (2.3) in the absence of winds (i.e. W = 0). (This

approximation is consistent throughout the formulation of the linear model and controller

design as an established step in prior research. The inclusion of an approximation for

winds in these steps is a recommended investigation, discussed further in Chapter 6).

Expanding the nonlinear scalar equations, the transformation mapping for the first

three elements in the inertial-represented state vector to the wind-represented disturbance

begins to emerge clearly (reference Eqs. (4.3) - (4.5)).

ẋT = VT
[

cos βT cosαT cos θT cosψT + sin βT (− cosφT sinψT + sinφT sin θT cosψT )

+ cos βT sinαT (sinφT sinψT + cosφT sin θT cosψT )
]

(4.3)

ẏT = VT
[

cos βT cosαT cos θT sinψT + sin βT (cosφT cosψT + sinφT sin θT sinψT )

+ cos βT sinαT (− sinφT cosψT + cosφT sin θT sinψT )
]

(4.4)

żT = VT
[
− cos βT cosαT sin θT + sin βT sinφT cos θT

+ cos βT sinαT cosφT cos θT
]

(4.5)

Finally, linearizing the translational kinematics equations about a given tanker

nominal condition yields a transformation mapping in a suitable form for implementation

into the LQR MIMO [1,9, 10] position tracking controller,

∆ẋT = XVTo
∆VT + XβTo

∆βT + XαTo
∆αT + XθTo

∆θT + XφTo
∆φT + XψTo

∆ψT(4.6)

∆ẏT = YVTo
∆VT + YβTo

∆βT + YαTo
∆αT + YθTo

∆θT + YφTo
∆φT + YψTo

∆ψT(4.7)

∆żT = ZVTo∆VT + ZβTo∆βT + ZαTo∆αT + ZθTo∆θT + ZφTo∆φT (4.8)
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where ∆ represents deviation from the nominal condition, and new coefficient notations

on the right hand side of the equations represent partial derivative components with

respect to each tanker state (again evaluated at the nominal condition). For example,

the first element in Eq. (4.6) denotes

XVTo
≡ ∂ẋT

∂VT

∣∣
o

and similarly for the remaining coefficients as well as the terms in Eq. (4.7) and Eq. (4.8).

Also of note at this point in the approach is the time variance introduced in the mapping

due to dependency on tanker heading, ψT , in the coefficient terms within the ẋT and ẏT

linearized translational equations, which presents a hurdle as the LQR MIMO [1, 9, 10]

position tracking controller requires a time invariant state-space system. Ideally, the

most convenient implementation of the Friedland disturbance rejection methodology [20]

in the application will preserve time invariance in the receiver control law, allowing an

equivalent architecture to remain in place. Unfortunately, accounting for the receiver

disturbance [20] induced by a tanker heading deviation in this particular case with the

tanker translational kinematics appears to offer no convenient path forward. Optimism

is maintained however with the benefit of hindsight. In short, a simple re-facilitation

of the current time invariant control law is not viable with this new disturbance due

to operating conditions where the tanker is in a steady-level turn, which constitutes a

changing ψT as a function of time, i.e., if in a steady turn, ψ̇T is presumably a constant,

C, then

ψTo =

∫
ψ̇Todτ =

∫
Cdτ = C t+ C1 = f(t) (4.9)

Therefore, the mapping transformation defining the first three elements from tanker

state to receiver disturbance array is a time varying function describing inertial xT and

yT position due to these ψTo components. Note, zT position is not a function of tanker

heading as one would expect and yields a time invariant map (i.e. altitude is not a
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function of heading). In summary, with the given findings at this point regarding the

translational kinematics mapping from wind frame (tanker state xTA) to inertial frame

(receiver disturbance w), the worst case foreseen is that the receiver control architecture

will require revision to execute as a time varying controller.

Moving forward with the definition of the mapping transformation, the next three

elements (four through six) in the receiver disturbance vector w are the tanker body axis

angular velocity components (pT , qT , and rT ), and are all common to the tanker state

vector, xTA . Therefore, the mapping in this case is simply unity. No transformation

is required to be defined here assuming the tanker states are available to the receiver

vehicle.

Elements seven through nine in the receiver disturbance vector define the tanker

body axis angular acceleration components (ṗT , q̇T , and ṙT ) and are not immediately

available in the existing tanker state vector. However, as aforementioned in elements four

through six, the integrals of these components are tanker states as the angular velocities.

Given that the LQR MIMO [1, 9, 10] position tracking controller gains are computed

offline (i.e. before real time operation), the closed loop matrix ATCL
directly provides

the transformation required. The closed loop state-space equation offers a direct mapping

from tanker state to receiver disturbance (in this case, components of ẋTA). Therefore,

rows four through six are extracted out of the closed loop equation below

ẋTA = ATCL
xTA (4.10)
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to define the transformation from tanker states to the tanker angular acceleration for the

receiver disturbance. In scalar form,

ṗT = ATCL4,1
VT + ATCL4,2

βT + ATCL4,3
αT + ATCL4,4

pT + ATCL4,5
qT + ATCL4,6

rT

+ATCL4,7
θT + ATCL4,8

φT + ATCL4,9
zT + ATCL4,10

ψT + ATCL4,11
eVT + ATCL4,12

ezT

+ATCL4,13
eφT (4.11)

q̇T = ATCL5,1
VT + ATCL5,2

βT + ATCL5,3
αT + ATCL5,4

pT + ATCL5,5
qT + ATCL5,6

rT

+ATCL5,7
θT + ATCL5,8

φT + ATCL5,9
zT + ATCL5,10

ψT + ATCL5,11
eVT + ATCL5,12

ezT

+ATCL5,13
eφT (4.12)

ṙT = ATCL6,1
VT + ATCL6,2

βT + ATCL6,3
αT + ATCL6,4

pT + ATCL6,5
qT + ATCL6,6

rT

+ATCL6,7
θT + ATCL6,8

φT + ATCL6,9
zT + ATCL6,10

ψT + ATCL6,11
eVT + ATCL6,12

ezT

+ATCL6,13
eφT (4.13)

where ATCLi,j denotes the ith row and jth column element from the ATCL
tanker closed

loop matrix in Eq. (4.10).

Finally, the remaining three components in the receiver disturbance array (ψT , θT ,

and φT ) are also already common to the tanker state vector, xTA . Therefore again, as

with elements four through six, the mapping is unity and allows direct implementation

into the receiver disturbance vector, w.

Combining Eqs. (4.6) - (4.8) and Eqs. (4.11) - (4.13), compatibility between the

receiver state-space equation and the tanker state-space equation as the disturbance

model is established with the transformation matrix Υ to map augmented tanker state

vector, xTA ∈ <
13x1 to the receiver disturbance vector w ∈ <12x1. Recalling Eq. (3.20),

∆w = Υ(t) ∆xTA (4.14)

where transformation matrix Υ(t) ∈ <12x13 contains the resultant mappings discussed

in detail above. Note in the interest of presenting Υ(t) in the limited space below,
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the parenthetical dual numbered elements indicate the corresponding row and column

component of the tanker closed loop state matrix. For example, (4,1) denotes the fourth

row, first column component of ATCL
as observed in Eq. (4.11) for the VT coefficient.

Υ(t) =



XVTo
(t) XβTo

(t) XαTo
(t) 0 0 0 XθTo

(t) XφTo
(t) 0 XψTo

(t) 0 0 0

YVTo
(t) YβTo

(t) YαTo
(t) 0 0 0 YθTo

(t) YφTo
(t) 0 YψTo

(t) 0 0 0

ZVTo
ZβTo

ZαTo
0 0 0 ZθTo

ZφTo
0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0

(4, 1) (4, 2) (4, 3) (4, 4) (4, 5) (4, 6) (4, 7) (4, 8) (4, 9) (4, 10) (4, 11) (4, 12) (4, 13)

(5, 1) (5, 2) (5, 3) (5, 4) (5, 5) (5, 6) (5, 7) (5, 8) (5, 9) (5, 10) (5, 11) (5, 12) (5, 13)

(6, 1) (6, 2) (6, 3) (6, 4) (6, 5) (6, 6) (6, 7) (6, 8) (6, 9) (6, 10) (6, 11) (6, 12) (6, 13)

0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0


In summary, unity elements in Υ indicate a direct mapping from the modified

tanker state vector xTA to receiver disturbance w. The first three rows of the trans-

formation matrix constitute the linearized tanker translational kinematics transformed

from wind frame [VT βT αT ]T to inertial frame [ẋT ẏT żT ]T where individual el-

ements represent the partial derivative coefficients evaluated at the nominal condition

as shown in Eqs. (4.6) - (4.8). Note coefficients include time variant components due

to inertial heading ψTo(t) dependency as previously discussed. And finally, rows seven

through nine are plumbed directly from the closed loop dynamics equation governing the

tanker angular acceleration.

As discussed in Chapter 3, substitution of Eq. (4.14) into Eq. (2.12) yields

ẋ = Ax+ Bu+ H(t)Υ(t)xTA (4.15)

delivering the necessary form to apply the Friedland disturbance rejection approach with

the existing definition of the tanker state vector and known closed loop dynamics equation

(Eq. (4.10)). However, the current control methodology calls for a time invariant system,

and despite augmentation into a open loop metasystem (Eq. (2.16)), Ao will remain a

function of time due to H(t) and Υ(t).
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Previously, time variance was investigated in the newly defined transformation Υ.

Repeating this investigation for H(t) at the nominal condition of a steady-level tanker

turn, time variance is based on two terms: (i) the inertial heading ψTo(t), and (ii) the

inertial groundtrack velocities ẋTo(t), and ẏTo(t) which are implicitly time variant due

to item (i) dependency. Inspection reveals that the tanker inertial heading and inertial

groundtrack velocities are components described in RBTI and ṙBT , respectively, and

appear only as exogenous terms governing motion between the two relative bodies in the

receiver translational kinematics (Eq. (2.1)) and in the receiver translational dynamics

(Eq. (2.4)). In the latter, only the rotational matrix RBTI appears as a gravitational

term (RBTIMR). Upon expansion of the receiver translational dynamics scalar equations,

there is no dependency on the tanker heading, ψT . This result is intuitive as the receiver’s

acceleration due to gravity is not a function of whether the tanker vehicle is flying due

North or South. Therefore, the time variance within H(t) is posed by the receiver

translational kinematics equations alone. Reference H(t) below noting the appearance

of time variant terms denoted with (t).

H(t) =



0 0 0 VpTo
VqTo

VrTo
0 0 0 0 VθTo

VφTo

0 0 0 βpTo
βqTo

βrTo
0 0 0 0 βθTo

βφTo

0 0 0 αpTo
αqTo

αrTo
0 0 0 0 αθTo

αφTo

0 0 0 PpTo
PqTo

PrTo
PṗTo

Pq̇To
PṙTo

0 0 0

0 0 0 QpTo
QqTo

QrTo
QṗTo

Qq̇To
QṙTo

0 0 0

0 0 0 RpTo
RqTo

RrTo
RṗTo

Rq̇To
RṙTo

0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

XẋTo
(t) XẏTo

(t) XżTo
0 XqTo

XrTo
0 0 0 XψTo

(t) XθTo
(t) XφTo

YẋTo
(t) YẏTo

(t) YżTo
YpTo

0 YrTo
0 0 0 YψTo

(t) YθTo
(t) YφTo

(t)

ZẋTo
(t) ZẏTo

(t) ZżTo
ZpTo

ZqTo
0 0 0 0 ZψTo

(t) ZθTo
(t) ZφTo

(t)


Additionally, the element notation above is abbreviated to preserve space, and again,

coefficients denote partial derivatives of receiver states with respect to the disturbance

vector, w. For example, the element in row ten, column one in H(t) represents the time

variant coefficient of the partial derivative of receiver relative ẋ velocity with respect to

tanker inertial velocity ẋT , evaluated at the nominal condition, as
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XẋTo
(t) ≡ ∂ẋ

∂ẋT

∣∣
o

Computing the product H(t)Υ(t) reveals the time variant components of Υ(t) are

multiplied by either i) zero elements or ii) additional time variant components in H(t).

For clarity, the product H(t)Υ(t) is presented below with a substitution of C and f(t)

for constant time invariant terms and time variant terms, respectively.

0 0 0 C C C 0 0 0 0 C C

0 0 0 C C C 0 0 0 0 C C

0 0 0 C C C 0 0 0 0 C C

0 0 0 C C C C C C 0 0 0

0 0 0 C C C C C C 0 0 0

0 0 0 C C C C C C 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

f(t) f(t) C 0 C C 0 0 0 f(t) f(t) C

f(t) f(t) C C 0 C 0 0 0 f(t) f(t) f(t)

f(t) f(t) C C C 0 0 0 0 f(t) f(t) f(t)





f(t) f(t) f(t) 0 0 0 f(t) f(t) 0 f(t) 0 0 0

f(t) f(t) f(t) 0 0 0 f(t) f(t) 0 f(t) 0 0 0

C C C 0 0 0 C C 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0

C C C C C C C C C C C C C

C C C C C C C C C C C C C

C C C C C C C C C C C C C

0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0


In the case of (i), the resultant elements in the product, E as previously defined in

Eq. (3.22), are zero and there is no time dependency. Eq. (4.16) depicts the location

of these zero components due to the product operation. Again for brevity in display, C

denotes constant time invariant terms, and f(t?) now represents potential time variant

components resulting from the multiplication described in case (ii) above. The nature of

these time variant terms in question will be addressed ahead.

H(t)Υ(t) = E =



0 0 0 C C C C C 0 0 0 0 0

0 0 0 C C C C C 0 0 0 0 0

0 0 0 C C C C C 0 0 0 0 0

C C C C C C C C C C C C C

C C C C C C C C C C C C C

C C C C C C C C C C C C C

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

f(t?) f(t?) f(t?) 0 C C f(t?) f(t?) 0 f(t?) 0 0 0

f(t?) f(t?) f(t?) C 0 C f(t?) f(t?) 0 f(t?) 0 0 0

f(t?) f(t?) f(t?) C C 0 f(t?) f(t?) 0 f(t?) 0 0 0


(4.16)
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Close investigation of the potential time variant components posed in the product,

H(t)Υ(t), rewards a welcomed insight. For example, consider the multiplicative element

formed in row ten, column one of the matrix above as

E(10,1) = C + XẋTo
(t)XVTo

(t) + XẏTo
(t)YVTo

(t) (4.17)

Using the coefficient expansions provided in Appendix D for XẋTo
(t) and XẏTo

(t) substi-

tutions, Eq. (4.17) becomes

E(10,1) = C − cos θTo cosψTo(t)XVTo
(t)− cos θTo sinψTo(t)YVTo

(t) (4.18)

Again, from Appendix D, the coefficients XVTo
(t) and YVTo

(t) are written as

XVTo
(t) = K1 cosψTo(t) +K2 sinψTo(t)

YVTo
(t) = L1 cosψTo(t) + L2 sinψTo(t) (4.19)

where K1, K2, L1, and L2 represent time invariant constants gathered to a common term.

Substituting Eq. (4.19) into Eq. (4.18),

E(10,1) = C − cos θTo [K1 cos2 ψTo(t) +K2 sinψTo(t) cosψTo(t)

+ L1 sinψTo(t) cosψTo(t) + L2 sin2 ψTo(t)] (4.20)

Rearranging the trigonometric terms,

E(10,1) = C − cos θTo [K1 cos2 ψTo(t) + L2 sin2 ψTo(t)

+ (K2 + L1) sinψTo(t) cosψTo(t)] (4.21)

Inspection of Eq. (4.21) reveals the time variance posed by the ψTo(t) term will cancel if

the following conditions hold:

K1 = L2

K2 = −L1 (4.22)
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which, if true would render Eq. (4.21) as

E(10,1) = C − cos θTo{K1 [cos2 ψTo(t) + sin2 ψTo(t)]} (4.23)

With the Pythagorean trigonometric identity of

cos2 ψTo(t) + sin2 ψTo(t) = 1 (4.24)

and the assumption that Eq. (4.22) holds, E(10,1) in Eq. (4.23) becomes a time invariant

constant as

E(10,1) = C −K1 cos θTo (4.25)

Therefore, to prove time invariance in the element, Eq. (4.22) must hold true. Comparing

the constants gathered in the formulation of Eq. (4.19) from Appendix D,

K1 = cos βT sinαT cosφT sin θT + sin βT sinφT sin θT + cosαT cos βT cos θT |o

L2 = sin βT sinφT sin θT + cos βT sinαT cosφT sin θT + cosαT cos βT cos θT |o (4.26)

exhibits K1 = L2 and

K2 = cos βT sinαT sinφT − sin βT cosφT |o

L1 = sin βT cosφT − cos βT sinαT sinφT |o (4.27)

exhibits K2 = −L1 satisfying Eq. (4.22) which proves E(10,1) is not a function of ψTo(t)

and simplifies to a time invariant constant.

The remaining elements in E of Eq. (4.16) are proven to be independent of time

with an equivalent procedure described above in the row ten, column one analysis. Un-

derstanding the source or reason for this result requires a broader matrix-level view of the

EOM presented in Chapter 2. In hindsight, the direct substitution of the nonlinear tanker

translational kinematics in Eq. (2.3) into the nonlinear receiver translational kinematics
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in Eq. (2.1) prior to linearization, and without the wind terms, results in a time invariant

receiver disturbance matrix, H. However, this step will modify the receiver disturbance

vector, w, (to include the tanker translational velocity components with respect to the

tanker wind frame rather than the inertial frame) which was initially assumed fixed as a

given problem description in the original research objective. Future work should consider

this simplification as recommended in Chapter 6.

In summary, the time variance in the H(t) and Υ(t) matrices conveniently dissipate

in the product, and the constant resultant matrix allows the problem to be formulated in

a manner suitable for application of (i) the Friedland disturbance rejection control law,

(ii) the existing linear time invariant LQR MIMO [1,9,10] structure, and (iii) utilization

of the existing definition for the tanker state vector, xTA . Reposing the receiver open

loop state-space system now as time invariant as previously described in Eq. (2.14),

ẋ = A x+ B u+ E xTA (4.28)

where E represents the time invariant product, H(t)Υ(t). Refer to Fig. (4.1) for the block

diagram depiction of Eq. (4.28) as well as the tanker closed loop system in Eq. (2.15).

Note the asterisk on the C receiver output is used to indicate a sparse matrix with only

the final three columns populated as a 3×3 identity square, i.e., relative position between

the two vehicles for the integral control law.
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CHAPTER 5

SIMULATION RESULTS

This chapter presents results from two simulation environments, a linear model

and a nonlinear model. The first section describes the linear model which is used in a

Single Input Single Output (SISO) classical analysis of the receiver vehicle for observing

both step responses in the time domain and Bode plots in the frequency domain. A

trade study is conducted on multiple performance indices, which are later employed

into the nonlinear model (by incorporation of the Kalman gain sets generated with each

performance index in evaluation). The second simulation environment, discussed in the

subsequent section of this chapter, presents results for the high fidelity nonlinear model.

This simulation employs the full Linear Quadratic Regulator Multiple Input Multiple

Output (LQR MIMO) control architecture on both the receiver and tanker vehicle and

includes dynamic modeling of the aerodynamic coupling between the two vehicles, as well

as the inertial winds of the atmosphere.

5.1 Linear Model

A linear model construction allows for rapid preliminary result generation and

expedited comparison between control law architectures. Refer to Fig. (5.1) which depicts

the closed loop system for both the LQR MIMO [1, 9, 10] controller and the Friedland

control law. Due to the distinct form of Eq. (3.29), the absence of the KoT
path yields the

existing control law methodology in place. The Friedland improvement is enabled solely

via this feed-forward path from the tanker state equation alone, where, per Eq. (2.22),

37
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KoT
= −R−1BTM̄2 represents the new gain to be summed into the existing LQR MIMO

[1,9, 10] controller.
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Figure 5.1. Receiver Closed Loop LTI State-Space System.

The solution to the infinite horizon linear quadratic regulator problem is generated

from the augmented metastate-space system as depicted in the block diagram Fig. (5.2)

and represents Eq. (3.28). Next, the Kalman steady state gains are extracted for use in

the expanded architecture shown previously in the expanded block diagram in Fig. (5.1),

which is consistent with the control law presented in Eq. (3.29), and allows formulation of

a SISO linear analysis from the tanker bank attitude command path as the input and the

receiver lateral y-deviation from the refueling position as the output. For the purpose of

figure brevity, the single input tanker attitude command path is not explicitly depicted
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as a result of containment within the closed loop tanker system. Actual linear model

results are generated with the fully expanded model. Additionally, the output pick off

point of receiver lateral y-deviation stems from the second C metastate-space system

output.

+

+
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RECEIVER CONTROL

INPUT MATRIX

B

A

∫

AUGMENTED METASYSTEM

LQR KALMAN GAIN

RECEIVER STATE FEEDBACK

Ko

AUGMENTED METASYSTEM

RECEIVER OPEN LOOP

STATE MATRIX

-1
o

o

Figure 5.2. Augmented Receiver Closed Loop LTI Metastate-Space System.

The employment of the LQR MIMO [1, 9, 10] control law into the nonlinear sim-

ulation utilizes a Lagrange interpolation scheme between six tanker nominal conditions

as described in Table 5.1 [1]. Therefore, the SISO linear analysis is repeated for each

nominal condition.

Table 5.1. Nominal Conditions by Turn Rate and Airspeed of the Tanker

Nominal Condition Turn Rate (deg/s) Airspeed (m/s)

1 ψ̇T,1 = 0 VT,1 = 190

2 ψ̇T,1 = 0 VT,2 = 210

3 ψ̇T,2 = 1.7 VT,1 = 190

4 ψ̇T,2 = 1.7 VT,2 = 210

5 ψ̇T,3 = −1.7 VT,1 = 190

6 ψ̇T,3 = −1.7 VT,2 = 210
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To begin the comparison of the existing LQR MIMO [1, 9, 10] performance with

the addition of the Friedland disturbance rejection control law, the Kalman gains are

generated for the augmented metastate-space system (Fig. (5.1)) at the six nominal

conditions with unity weights in the performance index. Both state and control action

penalty matrices, Qx and R, respectively, are set to identity matrices. Recall the state

penalty matrix Qx corresponds to the receiver states alone. The metastate penalty

matrix, Q, appends the receiver state penalty matrix, Qx, with zeroes as discussed in

Chapter 2 due to the fact that the uncontrollable tanker states are not penalized in the

cost minimization. The other weights, set to one, reflect an even distribution of penalty

across both receiver states and control actions. The following Eq. (5.1) presents the unity

performance index and is evaluated for all six nominal conditions where diag denotes the

diagonal components of the square cost matrices, Q ∈ <28x28 and R ∈ <6x6

Q = diag [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0]

R = diag [1 1 1 1 1 1] (5.1)

Two SISO figures are generated with a subfigure per nominal condition. The first is a time

history of the receiver relative positional y-lateral deviation from the refueling station

due to a tanker bank attitude command step response. The blue time history with

circle markers represent the existing LQR MIMO [1, 9, 10] structure in place (although

with newly generated Kalman gains as aforementioned) and the green square marked

lines represent the equivalent structure with the addition of the Friedland disturbance

rejection path. The second figure type presented below are frequency response Bode plots,

depicting both magnitude (dB) and phase angle (deg) of the equivalent SISO relationship

used in the time history. Reiterating, the output is the receiver y-lateral deviation now

due to a sinusoidal frequency sweep via the tanker bank attitude command path input

to the metastate-space system.
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Fig. (5.3) clearly exhibits a marketable improvement with the Friedland control law

active where all six nominal conditions show significant increase in damping. Peak lateral

errors from the refueling position are reduced 750% from 8e-3 meters (0.026 ft) to less

than 1e-3 meters (0.003 ft). However, as will be shown in the nonlinear model simulation

results in the following section, the price is expensive for this performance in terms of the

control action and therefore unrealistic. This initial result simply exhibits the potential

improvement to the existing LQR MIMO [1,9, 10] with the Friedland feed-forward com-

pensation in an ideal circumstance with excess control power available (unity R provides

evenly distributed penalty for all effectors). Despite the generous circumstance which

assumes control power margin, two additional attributes are noted within these time his-

tories. One, the existing LQR MIMO [1,9, 10] control law exhibits a subtle steady state

error due to a tanker bank in nominal conditions three through six despite being a type

one system. Second, the transient response settling time with the Friedland compensa-

tion enabled appears to reside from approximately 50 to 70 seconds. Therefore, as the

control action is further penalized in the forthcoming analysis (with performance indices

utilizing increased weight in R to account for actual control power available), one would

not expect a reduction in this settling time transitory period. However, upon further

linear analysis, the minimum settling time of 50 to 70 seconds for the ideal performance

index with the Friedland compensation active may be improved by modifying the feed-

forward command dynamics in the tanker bank attitude controller. Two first order .10

rps lags in place for preventing tanker effector saturation, in response to a step bank

attitude command, appear to dominate the maximum bandwidth achievable for receiver

station-keeping control. This topic is also referenced as a potential future investigative

effort in Chapter 6.

Fig. (5.4) depicts the Bode frequency response of the system with equivalent control

law gains generated by unity Q and R performance index weights. Readily apparent is
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Figure 5.3. Receiver Lateral (y) Deviation Response Due to Tanker Bank Attitude Com-
mand Unit Step [m/deg] per Nominal Condition (Unity Weight Q, R).
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the 20-30 dB reduction in magnitude response offered by the Friedland control law over

the baseline from steady state to approximately 4 rps. Above these frequencies, the

differences between the controllers converge due to operating frequencies beyond the

rigid body bandwidth of the total metasystem. Regarding the phase response presented

in Fig. (5.4), all nominal conditions indicate a significant increase in phase angle across

the frequency spectrum with the Friedland control law enabled. This result is indicative of

more lead in the system in that the Friedland control law increases the receiver proactive

(feed-forward) response due to the accelerating tanker.

Moving beyond the assumption of perfect control power, the Kalman gains are now

recomputed at each nominal condition using the current performance index definitions

(Q, R) in place for the existing LQR MIMO [1, 9, 10] controller. These results are

expected to be more representative of actual performance improvements in the nonlinear

system as the performance index weights were derived in previous work to prevent control

saturation while optimizing the station-keeping task. Two baseline performance indices

are used in order to schedule between the nominal conditions involving level and turning

flight conditions for the tanker. The level flight baseline performance index (nominal

conditions one and two) is

Q = diag[.1 .1 .1 1 .7 1 .1 7 50 .1 .001 .05 .005 .0001 .005

0 0 0 0 0 0 0 0 0 0 0 0 0]

R = diag [25 10 15 1200 5000000 5000000] (5.2)
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and the turning flight baseline performance index (nominal conditions three through six)

is

Q = diag[.01 100 .01 10 .5 100 100 1 10 7e−6 1e−6 7e−6 5e−8 5e−8 5e−8

0 0 0 0 0 0 0 0 0 0 0 0 0]

R = diag [5 .1 2 1200 5000000 5000000] (5.3)

Given that many of the effectors and states possess different units, a simple sort operation

on the weighted components does not instantly reveal the ultimate control law priority

provided by the performance index. However, for the purpose of a quick insight in

presenting each performance index in evaluation, the sort output is listed and includes

variable units. Consideration is required on the type of units on the variable at question in

order to determine priority relative to another variable. Apparently, the baseline control

law prioritizes the use of the receiver elevators (deg) as the primary effectors for all

nominal conditions (level and turning flight). Thereafter, the selected control effectors of

the receiver are weighted in the following order from highest to lowest utilization priority:

rudder (deg), aileron (deg), thrust (N), thrust vectoring about the y body axis (deg),

and thrust vectoring about the z body axis (deg). (Note in this specific application

with a Learjet as the receiver vehicle, thrust vectoring does not exist. Rather than

re-tailoring the input vector in the controller formulation, the thrust vectoring actions

are weighted significantly higher than the other effectors to prevent use). The control

law does not prioritize receiver state deviation in an equivalent manner for level and

turning flight however. Sorting the weights of the Q matrix reveals the receiver control

law will attempt to prioritize state deviations (from the nominal operating condition) in

the following order for level flight from the most allowed deviation to the most penalized

deviation: integral error of lateral deviation ey (-), ∆y lateral deviation (m), integral error

of axial deviation ex (-), integral error of height deviation ez (-), ∆z deviation (m), ∆V
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velocity deviation (m/s), ∆β sideslip deviation (deg), ∆α angle of attack deviation (deg),

∆ψ relative heading deviation (deg), ∆x axial deviation (m), ∆q pitch rate deviation

(deg/s), ∆p roll rate deviation (deg/s), ∆r yaw rate deviation (deg/s), ∆θ relative pitch

deviation (deg), and finally the ∆φ relative roll deviation (deg). For turning flight, the

receiver control law prioritizes the state deviations as follows (again from lowest to highest

penalty): integral error of axial deviation ex (-), integral error of lateral deviation ey (-

), integral error of height deviation ez (-), ∆y lateral deviation (m), ∆x axial deviation

(m), ∆z height deviation (m), ∆V velocity deviation (m/s), ∆α angle of attack deviation

(deg), ∆q pitch rate deviation (deg/s), ∆θ relative pitch deviation (deg), ∆p roll rate

deviation (deg/s), ∆φ relative roll deviation (deg), ∆β sideslip deviation (deg), ∆r yaw

rate deviation (deg/s), and finally the ∆ψ relative heading deviation (deg).

Refer to Fig. (5.5) for a direct comparison between the existing LQR MIMO [1,9,10]

controller and one with Friedland compensation enabled. Again, consistent with the ideal

linear analysis (unity performance index), the Friedland compensation offers considerable

improvement for receiver station-keeping amidst a tanker bank maneuver. Peak lateral

errors observed in the step response time histories are reduced approximately 215% from

the worst case profile (nominal condition six) at 14 m (45.9 ft) to nearly 6.5 m (21.3

ft) deviation. The steady state error with the existing LQR MIMO [1,9, 10] structure is

now grossly apparent for nominal conditions three through six with these optimized gains

and is corrected with the Friedland compensation. Unfortunately, due to the less invasive

control power scheme with the performance index, the time duration of the plots are now

extended to 500 seconds to allow for extremely slow settling times. Although significant

improvement is observed for both the steady state error and the transient response with

the Friedland compensation, a settling time of 300 seconds with a 6.5 m (21.3 ft) lateral

refueling deviation is clearly unacceptable. This response is addressed in the final linear

analysis results with a revised performance index.
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Figure 5.5. Receiver Lateral (y) Deviation Response Due to Tanker Bank Attitude Com-
mand Unit Step [m/deg] per Nominal Condition (Currently Employed Q, R).



48

Fig. (5.6) repeats the Bode frequency response plots for the receiver lateral y-

deviation in response to a tanker bank attitude command input path for the current

performance index in place. Consistent with the time histories, the disturbance magni-

tude attenuation is significantly improved with the new control law for nominal conditions

one and two with nearly a 25 dB gain reduction from steady state to approximately 2

rps. In the remaining nominal conditions, the impact of the Friedland compensation is

lessened considerably with only a 5 to 10 dB reduction for frequencies below 20−2 rps.

Above this frequency, disturbance attenuation is minimal. Note below 15−1 rps, the cur-

rent performance index generates two controllers that effectively amplify the disturbance.

This result is in agreement with the time history observation that a 1 degree bank step

unacceptably results in a 14 m (45.9 ft) deviation. The phase lead offered by the Fried-

land compensation in Fig. (5.6) with the baseline performance index is not as dramatic as

observed with the unity performance index. In fact, the first nominal condition indicates

a greater phase angle with the Friedland compensation disabled for frequencies up to 40

rps with this gain set.

Finally, the performance index is revised to correct the poor linear responses (set-

tling time and disturbance attenuation, or lack thereof) encountered above with the

existing Q and R weights. The refined performance index for level flight (nominal con-

ditions one and two) is

Q = diag[10 10 10 100 70 100 10 700 5000 10 20 5 2.5 .2 25

0 0 0 0 0 0 0 0 0 0 0 0 0]

R = diag [25 10 15 1200 5000000 5000000] (5.4)
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Figure 5.6. Receiver Lateral (y) Deviation to Tanker Bank Attitude Command Metasys-
tem Frequency Response per Nominal Condition (Currently Employed Q, R).
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and the turning flight refined performance index (nominal conditions three through six)

is

Q = diag[1 10000 1 1000 50 10000 10000 100 1000 7e−4 .02 7e−4 2.5e−5 1e−4

2.5e−4 0 0 0 0 0 0 0 0 0 0 0 0 0]

R = diag [5 .1 2 1200 5000000 5000000] (5.5)

Inspection of the refined performance indices reveals the receiver effector apparent prior-

ities remain equivalent to the baseline control law with the elevators (deg) as the primary

effectors followed by the rudder (deg), aileron (deg), thrust (N), thrust vectoring about

the y body axis (deg), and thrust vectoring about the z body axis (deg) for all nominal

conditions (level and turning flight). (Again the specific Learjet receiver vehicle studied

in this application does not employ thrust vectoring and is disabled by utilizing signifi-

cantly higher weights in the control action penalty matrix, R). The refined performance

index does prioritize the receiver state deviations differently from the baseline control

law however. In the refined controller, the apparent priority sort is as follows from the

least penalized to greatest penalized deviation for level flight: integral error of lateral

deviation ey (-), integral error of axial deviation ex (-), ∆z height deviation (m), ∆V ve-

locity deviation (m/s), ∆β sideslip deviation (deg), ∆α angle of attack deviation (deg),

∆ψ relative heading deviation (deg), ∆x axial deviation (m), ∆y lateral deviation (m),

integral error of height deviation ez (-), ∆q pitch rate deviation (deg/s), ∆p roll rate

deviation (deg/s), ∆r yaw rate deviation (deg/s), ∆θ relative pitch deviation (deg), and

finally the ∆φ relative roll deviation (deg). For turning flight, the receiver control law

apparent priority sort for state deviations from lowest to highest penalty is as follows:

integral error of axial deviation ex (-), integral error of lateral deviation ey (-), integral

error of height deviation ez (-), ∆x axial deviation (m), ∆z height deviation (m), ∆y

lateral deviation (m), ∆V velocity deviation (m/s), ∆α angle of attack deviation (deg),
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∆q pitch rate deviation (deg/s), ∆θ relative pitch deviation (deg), ∆p roll rate devia-

tion (deg/s), ∆φ relative roll deviation (deg), ∆β sideslip deviation (deg), ∆r yaw rate

deviation (deg/s), and finally the ∆ψ relative heading deviation (deg).

Reference Fig. (5.7) for the time history receiver y-deviation responses due to a

tanker bank step command with the newly generated Kalman gains (using the revised

performance index). All six nominal conditions demonstrate superior performance with

the Friedland compensation. Also, the responses do not amplify the input as previously

discussed and settle within acceptable durations.

Fig. (5.8) asserts these results with the newly revised performance index in the fre-

quency domain. Similarly to the baseline performance index, nominal conditions one and

two dominate in disturbance magnitude attenuation at approximately 25 dB in differ-

ence over the metasystem rigid body bandwidth, also consistent with the time histories

for this gain set. Again, the remaining nominal conditions exhibit lessened impact of

the Friedland compensation, but the distinguishing point from the prior (currently em-

ployed) performance index resides at a frequency of 10−1 rps. Below this frequency, the

benefits of the new control law begin to show as the Friedland compensation magnitude

response monotonically decreases to approximately 25 dB of attenuation at steady state.

Interestingly, the revision of the performance index alone optimized the Friedland control

law benefits on the low frequency decade observed in Fig. (5.8) between 10−2 rps and

10−1 rps. Additionally, as observed in time history form, the performance index revision

improves the existing LQR MIMO [1,9,10] controller and now exhibits unity gain at these

low frequencies rather than amplification. Finally, the refined performance index depicts

an increase in phase angle response with the Friedland control law enabled as previously

observed in the unity performance index results. Consistent with the magnitude differ-

ences between the two controllers for the remaining nominal conditions (turning flight),

the phase angle lead offered by the Friedland control law is lessened compared to the
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level flight nominal conditions. This result is considered directly attributable to the fact

that two performance indices are being evaluated across all six nominal conditions (level

and turning).
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Figure 5.7. Receiver Lateral (y) Deviation Response Due to Tanker Bank Attitude Com-
mand Unit Step [m/deg] per Nominal Condition (Revised Weight Q, R).



54

10
−2

10
−1

10
0

10
1

10
2

−300

−200

−100

0

w [rps]

M
ag

 [d
B

]

Nominal 1: Receiver Y−Deviation/Tanker Bank Attitude Command Metasystem

 

 
LQR MIMO
LQR MIMO + Friedland

10
−2

10
−1

10
0

10
1

10
2

−500

0

500

1000

w [rps]

φ 
[d

eg
]

10
−2

10
−1

10
0

10
1

10
2

−300

−200

−100

0

w [rps]

M
ag

 [d
B

]

Nominal 2: Receiver Y−Deviation/Tanker Bank Attitude Command Metasystem

 

 
LQR MIMO
LQR MIMO + Friedland

10
−2

10
−1

10
0

10
1

10
2

−500

0

500

1000

w [rps]

φ 
[d

eg
]

10
−2

10
−1

10
0

10
1

10
2

−300

−200

−100

0

100

w [rps]

M
ag

 [d
B

]

Nominal 3: Receiver Y−Deviation/Tanker Bank Attitude Command Metasystem

 

 
LQR MIMO
LQR MIMO + Friedland

10
−2

10
−1

10
0

10
1

10
2

−500

0

500

w [rps]

φ 
[d

eg
]

10
−2

10
−1

10
0

10
1

10
2

−300

−200

−100

0

100

w [rps]

M
ag

 [d
B

]

Nominal 4: Receiver Y−Deviation/Tanker Bank Attitude Command Metasystem

 

 
LQR MIMO
LQR MIMO + Friedland

10
−2

10
−1

10
0

10
1

10
2

−500

0

500

w [rps]

φ 
[d

eg
]

10
−2

10
−1

10
0

10
1

10
2

−300

−200

−100

0

100

w [rps]

M
ag

 [d
B

]

Nominal 5: Receiver Y−Deviation/Tanker Bank Attitude Command Metasystem

 

 
LQR MIMO
LQR MIMO + Friedland

10
−2

10
−1

10
0

10
1

10
2

−500

0

500

w [rps]

φ 
[d

eg
]

10
−2

10
−1

10
0

10
1

10
2

−300

−200

−100

0

100

w [rps]

M
ag

 [d
B

]

Nominal 6: Receiver Y−Deviation/Tanker Bank Attitude Command Metasystem

 

 
LQR MIMO
LQR MIMO + Friedland

10
−2

10
−1

10
0

10
1

10
2

−500

0

500

w [rps]

φ 
[d

eg
]

Figure 5.8. Receiver Lateral (y) Deviation to Tanker Bank Attitude Command Metasys-
tem Frequency Response per Nominal Condition (Revised Weight Q, R).
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5.2 Nonlinear Model

The control law feedback and feed-forward gains, computed using the linear model

as previously discussed, are extracted for direct use in the nonlinear model, referenced in

Fig. (5.9). Note the state-space matrices are no longer used in the high fidelity simulation,

and the nonlinear blocks pertain to the EOM presented in detail in Chapter 2. Therefore,

in order for good correlation between the linear and nonlinear results regarding stability

and performance, an accurate representation in the initial linearized state-space matrices

is imperative. However, depending on the robustness of the controller, some deviation

between the two (linear and nonlinear) may be tolerated. Note in this section, additional

disturbances (wind) will be discussed and included in the simulation results. These

effects were not included in the linear control law formulation in this research and are

recommended to be considered in future work in Chapter 6.

KoT

LQR KALMAN GAIN

TANKER STATE

FEED-FORWARD TO RECEIVER

(NEW FRIEDLAND PATH)

+

– u_

y_

TANKER

NONLINEAR

MODEL

RECEIVER

NONLINEAR

MODEL

DISTURBANCE

TO RECEIVER

+

–

LQR KALMAN GAIN

RECEIVER STATE

FEEDBACK

Kx

∫
+

–

LQR KALMAN GAIN

RECEIVER OUTPUT

INTEGRAL FEEDBACK

Ke

RELATIVE POSITION

COMMAND

RECEIVER

INNER LOOP

STATE REGULATOR

RECEIVER

OUTER LOOP OUTPUT

INTEGRAL CONTROL

Figure 5.9. Receiver Closed Loop Nonlinear System.
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5.2.1 Control Law Analysis in the Presence of Tanker Flow Field

Employment of the controllers into the full order nonlinear simulation confirms

both performance results observed in the linear analysis as well as expectations of con-

trol power saturation for ideal Q, R weights set as unity in the performance index.

Additionally, the full simulation now includes the effect of the tanker wake-vortex in-

duced wind [16–19] on the receiver while behind the tanker. However, the prevailing

wind and turbulence are disabled at this point in the analysis. The subsequent portion

of this chapter will enable all known external disturbances on the receiver including these

inertial atmospheric effects. For the initial analysis of the controllers employed into the

nonlinear simulation, the station-keeping task is to maintain refueling contact position

while the tanker performs a 30 degree bank maneuver as depicted in Fig. (5.10).
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Figure 5.10. Nonlinear Simulation Tanker Performing a 30 Degree Bank.
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The simulation is initialized at a trim equilibrium point in the absence of the tanker

wake-vortex induced wind disturbance on the receiver. Upon execution, the effects are

brought into the simulation over a small time duration (all wind components are gradually

turned on through a first order filter with a time constant of 1 second starting at 1

second in the simulation execution time). The activation of these disturbances yields an

obvious transient response on the simulated receiver dynamics and is regarded unrealistic.

Therefore, the simulation is allowed sufficient execution time in order for the transients

to subside before the tanker begins the turning maneuver.

Simulation results of the existing LQR MIMO [1, 9, 10] controller derived with a

unity performance index are observed in Fig. (5.11) and Fig. (5.12). As anticipated,

the receiver system is divergent and cannot hold the refueling position at the onset

of the run, considered partly due to thrust, elevator, aileron, and rudder limitations.

However, the divergence is encountered early in the time history, well before the tanker

maneuver begins at 100 seconds. Therefore, the receiver response is triggered by the

initial transient encountered by the tanker wake-vortex induced wind activation. Also,

note that thrust vectoring is disabled for the specific receiver vehicle utilized in this

study, and therefore, figures do not include δy and δz effectors. (Regardless, control

saturation is still encountered when including thrust vectoring as allowed in a unity

weighted performance index. For the other two performance indices to be analyzed

in the nonlinear model, the R control action penalty matrix is set to minimize use of

thrust vectoring in the Kalman gain solution). The Friedland compensation also quickly

saturates control power with an ideal performance index as observed in Fig. (5.13) and

Fig. (5.14), leading to a divergent station-keeping response.

Beyond the failed tracking task, both closed loop systems (baseline and new Fried-

land compensation) lead to the loss of controlled flight indicated by the erratic responses

in airspeed (V ), angle of attack (α), and angle of sideslip (β) with a unity performance
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index. Additionally, Euler angles (not depicted) oscillate throughout the time histories

indicating the receiver tumbles in attitude after the instability is encountered. Clearly,

a unity weighted performance index solution for either linear quadratic regulator control

law is not a viable option. However, the remaining question is whether (i) the control ac-

tion required exceeds the available position and rate limits of the effectors due to weights

that are too low in the penalty matrix, R, or (ii) the controller simply failed to stabilize

the system which eventually results in effector saturation. The latter item (ii) may be

caused if the linear model used to generate the controller is invalid and poorly represents

the nonlinear system, or if the nominal conditions utilized in the gain scheduling fail to

encompass the operating regime. This question is further discussed in Chapter 6 and

recommended as a future work investigation.
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Figure 5.11. Unity Weight Q, R: Station-Keeping and Effectors for Nonlinear Simulation
(Interactive Flow Field Only) LQR MIMO Control while Tanker Performs a 30 Degree
Bank.
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Figure 5.12. Unity Weight Q, R: V , β, α, and Winds for Nonlinear Simulation (Inter-
active Flow Field Only) LQR MIMO Control while Tanker Performs a 30 Degree Bank.
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Figure 5.13. Unity Weight Q, R: Station-Keeping and Effectors for Nonlinear Simulation
(Interactive Flow Field Only) LQR MIMO + Friedland Control Disturbance Rejection
while Tanker Performs a 30 Degree Bank.
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Figure 5.14. Unity Weight Q, R: V , β, α, and Winds for Nonlinear Simulation (Inter-
active Flow Field Only) LQR MIMO + Friedland Control Disturbance Rejection while
Tanker Performs a 30 Degree Bank.
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Fig. (5.15) and Fig. (5.16) repeats the simulation with the existing LQR MIMO

[1, 9, 10] controller and performance index. Poor tracking performance is observed with

nearly a 25 m (82 ft) lateral deviation and a transient duration of 50 seconds. Interest-

ingly, the controller eventually recovers and the steady state error observed in the linear

analysis (nominal conditions three through six in Fig. (5.5)) is not apparent. (Note the

wind components presented in Fig. (5.16) describe the tanker flow field resolved into

receiver body axis components as effective wash and vorticity freestream disturbance

components). Fig. (5.17) and Fig. (5.18) on the other hand, demonstrate improvement

by solely enabling the Friedland compensation without modifying the existing perfor-

mance index. Lateral deviation is reduced from 25 m (82 ft) to approximately 7 m (23

ft), although there is a 1 m (3.28 ft) overshoot upon controller recovery. Additionally, the

transitory response duration appears roughly equivalent to the baseline controller at 50

seconds with the baseline performance index gain set driving the new Friedland control

laws. Fig. (5.19) presents a direct comparison of the two controllers with phase plane

plots for the time segment of interest from 95 seconds to 200 seconds (for evaluation of

the receiver station-keeping response when the tanker initiates the turn at 100 seconds).

In each phase plane, the desired station-keeping performance is indicated with a tracking

box centered about the relative position command. The size of the tracking box allows

for a half of meter of deviation from the contact position on all axes and therefore rep-

resents a three dimensional cubic meter box in space relative to the tanker. The x-z

phase plane indicates there is a 2 m (6.5 ft) degradation in the axial x direction with

the new Friedland controller and baseline performance index, although the 18 m (60 ft)

improvement in the lateral y axis is considered to outweigh this aspect. Clearly, neither

controller meets the desired tracking performance of maintaining position within a half

a meter of contact position and is addressed ahead with a performance index revision.
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Figure 5.15. Currently Employed Q, R: Station-Keeping and Effectors for Nonlinear
Simulation (Interactive Flow Field Only) LQR MIMO Control while Tanker Performs a
30 Degree Bank.
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Figure 5.16. Currently Employed Q, R: V , β, α, and Winds for Nonlinear Simulation
(Interactive Flow Field Only) LQR MIMO Control while Tanker Performs a 30 Degree
Bank.
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Figure 5.17. Currently Employed Q, R: Station-Keeping and Effectors for Nonlinear
Simulation (Interactive Flow Field Only) LQR MIMO + Friedland Control Disturbance
Rejection while Tanker Performs a 30 Degree Bank.
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Figure 5.18. Currently Employed Q, R: V , β, α, and Winds for Nonlinear Simulation
(Interactive Flow Field Only) LQR MIMO + Friedland Control Disturbance Rejection
while Tanker Performs a 30 Degree Bank.
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Figure 5.19. Currently Employed Q, R: Phase Plane Controller Comparison for Nonlin-
ear Simulation (Interactive Flow Field Only) while Tanker Performs a 30 Degree Bank.
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Refer to Fig. (5.20) and Fig. (5.21) for the existing LQR MIMO [1,9,10] controller

with the new revised performance index. Although the linear analysis in Fig. (5.7) indi-

cated improved performance with the baseline controller, employment into the nonlinear

model yields too costly of a control action. Effector saturation is encountered at ap-

proximately 125 seconds in the run leading to a failed task of receiver station-keeping,

demonstrating the current performance index in place has been optimized to near maxi-

mum potential with the existing LQR MIMO [1,9,10] infrastructure. Note the saturation

appears to coincide with the tanker disturbance (right turn at 100 seconds) in this case,

and the system remains stable throughout the initial simulation transient response. Nev-

ertheless, as with the unity performance index, the receiver fails to maintain stable flight

with this control law. Fig. (5.22) and Fig. (5.23), on the other hand, emphasize greater

potential in performance index refinement. Enabling the Friedland disturbance rejection

with the revised performance index exhibits solid tracking characteristics as the tanker

flies into a 30 deg bank attitude. The new feed-forward control law, combined with Q

and R revision, maintains refueling position deviation to approximately a half a meter

(1.31 ft) on all axes. The settling time appears to remain approximately 60 seconds for

lateral response subsidence. However, the rudder and elevator time histories in Fig. (5.23)

exhibit a bifurcated response in the final 40 seconds of the run and are recommended

for future investigation as a potential stability issue in Chapter 6. Regardless, the time

history segment in Fig. (5.24) demonstrates the improvement potential offered by the

Friedland disturbance rejection method in that desired tracking performance is main-

tained throughout the tanker bank maneuver [20]. Note the phase plane plots for the

new revised performance index include only the new Friedland controller results as, again,

the existing LQR MIMO [1, 9, 10] controller did not successfully track contact position

with the new gain set.
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Figure 5.20. Revised Weight Q, R: Station-Keeping and Effectors for Nonlinear Sim-
ulation (Interactive Flow Field Only) LQR MIMO Control while Tanker Performs a 30
Degree Bank.
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Figure 5.21. Revised Weight Q, R: V , β, α, and Winds for Nonlinear Simulation
(Interactive Flow Field Only) LQR MIMO Control while Tanker Performs a 30 Degree
Bank.
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Figure 5.22. Revised Weight Q, R: Station-Keeping and Effectors for Nonlinear Sim-
ulation (Interactive Flow Field Only) LQR MIMO + Friedland Control Disturbance
Rejection while Tanker Performs a 30 Degree Bank.



73

0 50 100 150 200
189.4

189.6

189.8

190

190.2

190.4

V
 [m

/s
]

t [sec]
0 50 100 150 200

0

0.05

0.1

0.15

0.2

0.25

W
x 

[m
/s

]

t [sec]
0 50 100 150 200

−8

−6

−4

−2

0

W
p 

[d
eg

/s
]

t [sec]

0 50 100 150 200
−1

0

1

2

3

4

β 
[d

eg
]

t [sec]
0 50 100 150 200

0

0.5

1

1.5

W
y 

[m
/s

]

t [sec]
0 50 100 150 200

−15

−10

−5

0

W
q 

[d
eg

/s
]

t [sec]

0 50 100 150 200
−2

0

2

4

6

α 
[d

eg
]

t [sec]
0 50 100 150 200

0

1

2

3

4

W
z 

[m
/s

]

t [sec]
0 50 100 150 200

0

1

2

3

W
r 

[d
eg

/s
]

t [sec]

Figure 5.23. Revised Weight Q, R: V , β, α, and Winds for Nonlinear Simulation
(Interactive Flow Field Only) LQR MIMO + Friedland Control Disturbance Rejection
while Tanker Performs a 30 Degree Bank.
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Figure 5.24. Revised Weight Q, R: Phase Plane LQR MIMO + Friedland Control
Only for Nonlinear Simulation (Interactive Flow Field Only) while Tanker Performs a 30
Degree Bank.
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5.2.2 Control Law Analysis in the Presence of Tanker Flow Field and Non-Steady Pre-

vailing Wind

The full order nonlinear simulation utilized in this study is a result of considerable

efforts from prior research by Dogan et al to recreate a 2004 flight test relative position

station-keeping event of a Learjet receiver tracking a KC-135 tanker [4]. The model

successfully approximates the impact of the non-uniform vortex-induced tanker wind

field, as presented in the time histories in the previous section [1]. The model is also

able to recreate the non-steady inertial atmospheric conditions of the 2004 flight test

event, denoted as prevailing winds and turbulence. With all three of these disturbances

enabled, the simulation is considered to mimic actual refueling conditions, and provides

the means to interrogate the robustness of the newly designed controller.

Again, similar to the evaluation procedure described in the previous section, the

simulation is initialized at a trim equilibrium point in the absence of these three wind

sources. Upon execution, the effects are brought into the simulation over a small time

duration (all wind components are gradually turned on through a first order filter with a

time constant of 1 second starting at 1 second in the simulation execution time). Finally,

the tanker begins the turning maneuver at a sufficient execution time after the initial wind

transient subsides on the receiver. Refer to Fig. (5.25) and Fig. (5.26) which represent the

two tanker maneuvers (right and left 15 degree banked turns, respectively, at execution

time 100 seconds) used for the control law analysis. (Note the tanker turn magnitude

has been reduced from 30 deg to 15 deg in this section due to stabilization problems

encountered with all wind active. Additionally, the refined performance index did not

yield stable tracking for either controller in the presence of the additional disturbance

and, therefore, all results in this section are for the baseline performance index only).

The non-steady inertial turbulence is evident in the tracking response with tanker bank

attitude deviations ranging within a degree of the bank attitude command.



76

0 50 100 150 200 250 300
−2

0

2

4

6

8

10

12

14

16

φ 
T

an
ke

r 
[d

eg
]

t [sec]

 

 

cmd
actual

Figure 5.25. Nonlinear Simulation Tanker Performing a 15 Degree Right Bank in Non-
Steady Atmosphere.

Fig. (5.27) and Fig. (5.28) depict the response of the existing LQR MIMO [1,9,10]

controller when the tanker performs a 15 degree banked turn to the right in a realistic at-

mosphere with the baseline performance index gain set. Undoubtedly, the station-keeping

task has become significantly more difficult with the addition of atmospheric disturbance

with frequent relative position deviations from the commanded refueling box on the or-

der of 4.5 to 5 meters (14.7 to 16.4 ft). Again, the initial response observed is partly

considered unrealistic due to the initialization of the simulation without disturbance.

However, the character (magnitude and frequency) of the deviations appear to be con-

sistent throughout the entire time history. Also of note, the stabilizer in Fig. (5.27) does

not correlate to the turbulence and maintains a steady position of approximately -1.75

deg. This control surface is selected as fixed to match the flight test event and is not

an effector in the closed loop system. Future work should consider improving the linear
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Figure 5.26. Nonlinear Simulation Tanker Performing a -15 Degree Left Bank in Non-
Steady Atmosphere.

model to incorporate the impact of this non-zero position and is referenced in Chapter

6.

Moving the tanker bank maneuver to the execution time at 100 seconds facili-

tates analysis of the effect of the accelerating target on the receiver. In other words, in

Fig. (5.27), the y-lateral deviation obviously peaks as the tanker initiates the maneuver.

The receiver response to maintain position on the accelerating contact position is recog-

nizably an increase in thrust and aileron. The total velocity of the receiver is essentially

constant throughout the turn as portrayed in Fig. (5.28). However, the angle of sideslip,

β, increases as the receiver tracks the tanker in turn. In a manned application, pilots may

consider this response as unfavorable in a conventional sense and denote the behavior as

a non-coordinated level turn. Improvement of maintaining zero sideslip on the receiver

is also recommended in future work Chapter 6. Also, the angle of attack, α, response
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should be investigated as the operating range appears to increase throughout the ma-

neuver and may be deemed unacceptable. Initial transient aside in the wind components

as previously aforementioned, Fig. (5.28) time histories yield a few notable insights re-

garding atmospheric disturbances on the receiver. Wind components now include both

inertial and tanker flow field disturbances resolved into components in the receiver body

axis. At 100 seconds, the rolling and yawing vortices and the downwash on the receiver

exhibit a transient response as the tanker accelerates. The forward and side washes, how-

ever, exhibit a lower frequency change considered dominated by the change in heading

of the receiver exposed to prevailing winds [4]. In other words, as the receiver follows

the tanker in the level turn, the body axis rotates on the inertial x− y phase plane and

the prevailing winds transition over time from head winds to tail winds. Likewise, the

cross winds change signs throughout the turning maneuver. Finally, the pitch vortex on

the receiver remains fairly constant throughout the station-keeping event and therefore

is dominated by the interactive tanker flow field.

Fig. (5.29) and Fig.(5.30) present the results for repeating the case of the tanker

performing a 15 degree banked turn to the right, now with the Friedland disturbance

rejection [20] enabled. Immediately discernible is the absence of the peak lateral deviation

near simulation time 100 seconds as encountered with the baseline controller.

Refer to Fig. (5.31) which compares the tracking errors between the two controllers

in a Gaussian Probability Density Function (PDF) for the time history segment when

the tanker executes the turning maneuver. Each subplot is titled with the mean (µ) and

standard deviation (σ) of the relative position error from the respective command. The

PDF provides a powerful method for presenting the overall trend in the time history

where the peak of the curve is centered at the mean and width of the curve is a function

of the standard deviation. For instance, in Fig. (5.31), the green stripes, centered at zero

deviation, indicate the goal of the desired station-keeping tracking performance (within a
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half of meter or 1.31 ft of the command). The yellow stripes indicate a tolerable threshold

of deviation (relaxed to within 1.5 m or 5 ft of the command), based on performance

requirements. The area under the PDF curve outside the yellow stripe equates the

probability of deviation for exceeding the threshold.

Immediately noticeable in Fig. (5.31) is the significant improvement in lateral track-

ing with the new Friedland compensation where peak y-deviation due to the tanker turn

is reduced from 12 m to 6 m (39.3 ft to 19.7 ft). Also, the lateral deviation mean and stan-

dard deviation are reduced significantly with the new controller. Axial deviation for both

controllers exhibits an approximate zero mean, although there is a subtle degradation ap-

parent in x-deviation with the new control law (slightly higher standard deviation). The

difference in tracking for the z-axis between the two controllers is also subtle, although

the new controller offers slight improvement (decreased mean and standard deviation).

Clearly, the most prominent feature in the plot resides in the lateral deviation PDF which

reflects the probability of maintaining the threshold is considerably higher with the new

Friedland control law.

While the new controller offers a welcomed improvement for the receiver simulation

in the presence of a realistic atmosphere, the response still does not meet the desired

tracking criteria established to maintain the refueling position within a half of a meter on

all axes. However, this result is considered to be a limitation of the fidelity of disturbance

model employed. In other words, the new disturbance rejection technique [20] successfully

attenuates the exogenous system currently modeled (tanker acceleration) significantly, as

proven in the previous section. In order to meet adequate tracking performance in the

presence of additional disturbances (winds), the receiver linear model and controller gain

set formulation should be revisited to capture these effects as recommended in Chapter

6. (Note as discussed at the conclusion of Chapter 2, refinement of the disturbance

technique, with the objective of improving wind attenuation, will require two items to
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be modeled: (i) the wind impact on the transformation matrix of the exogenous state

vector into the receiver state-space system (E) and (ii) the matrix governing the first

order differential equation describing the wind dynamics).

An additional note regarding Fig.(5.30) is the absence of the transients observed

in the vorticity rolling and yawing components with the baseline controller at the tanker

maneuver time of 100 seconds. This difference is considered due to the fact the Friedland

controller maintains a closer relative position to the tanker throughout the maneuver.

In other words, as the receiver with the baseline controller deviates from the refueling

box as the target accelerates away, the vehicle transitions to a new position within the

non-uniform vortex-induced wind field aft of the tanker, effectively changing the exposure

to aerodynamic coupling. On the other hand, the Friedland controller experiences less

transient behavior in the non-uniform wind field due to less spatial deviation relative to

the tanker.
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Figure 5.27. Currently Employed Q, R: Station-Keeping and Effectors for Nonlinear
Simulation LQR MIMO Control while Tanker Performs a 15 Degree Right Bank in Non-
Steady Atmosphere.
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Figure 5.28. Currently Employed Q, R: V , β, α, and Winds for Nonlinear Simulation
LQR MIMO Control while Tanker Performs a 15 Degree Right Bank in Non-Steady
Atmosphere.
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Figure 5.29. Currently Employed Q, R: Station-Keeping and Effectors for Nonlinear
Simulation LQR MIMO + Friedland Control while Tanker Performs a 15 Degree Right
Bank in Non-Steady Atmosphere.
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Figure 5.30. Currently Employed Q, R: V , β, α, and Winds for Nonlinear Simulation
LQR MIMO + Friedland Control while Tanker Performs a 15 Degree Right Bank in
Non-Steady Atmosphere.
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Figure 5.31. Currently Employed Q, R: Gaussian Probability Density Function Con-
troller Comparison for Nonlinear Simulation while Tanker Performs a 15 Degree Right
Bank in Non-Steady Atmosphere.
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With a non-steady prevailing wind active, a unidirectional tanker maneuver does

not suffice for an exhaustive evaluation of the control laws as, most likely, the response

characteristics will be asymmetric as a function of turn direction. Therefore, the previous

analysis is repeated for a tanker -15 degree turn to the left. Fig. (5.32) and Fig.(5.33)

proves this anticipation in that the baseline controller fails in the tracking task (and fails

in receiver flight stabilization) with effector saturation occurring as the tanker performs

the left turn (as opposed to a successful tracking operation when the tanker turns right).

The Friedland controller on the other hand, presented in Fig. (5.34) and Fig.(5.35), suc-

ceeds and manages to maintain lateral deviation within 5.5 m (18 ft) of the commanded

refueling position. Finally, the PDF for the Friedland controller is presented in Fig.(5.36),

which is considered to demonstrate robustness in that the system maintains deviation

from the refueling command box to within 7.5 m (24.6 ft) across all axes despite the

unaccounted wind disturbances. Again, this response may be further improved by in-

cluding an approximation for winds in the inception of the control law. (Alternatively,

the weighting matrices in the performance index may be refined in an attempt to reduce

the sensitivity of the closed loop system to inertial wind and turbulence).
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Figure 5.32. Currently Employed Q, R: Station-Keeping and Effectors for Nonlinear
Simulation LQR MIMO Control while Tanker Performs a -15 Degree Left Bank in Non-
Steady Atmosphere.
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Figure 5.33. Currently Employed Q, R: V , β, α, and Winds for Nonlinear Simulation
LQR MIMO Control while Tanker Performs a -15 Degree Left Bank in Non-Steady
Atmosphere.
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Figure 5.34. Currently Employed Q, R: Station-Keeping and Effectors for Nonlinear
Simulation LQR MIMO + Friedland Control while Tanker Performs a -15 Degree Left
Bank in Non-Steady Atmosphere.
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Figure 5.35. Currently Employed Q, R: V , β, α, and Winds for Nonlinear Simulation
LQR MIMO + Friedland Control while Tanker Performs a -15 Degree Left Bank in
Non-Steady Atmosphere.
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CHAPTER 6

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS FOR FUTURE WORK

6.1 Summary

Table 6.1 presents a summary of the nonlinear simulation results generated in

Chapter 5 and allows rapid comparison between both controllers and their ability to

maintain contact position in the refueling zone. While in some cases, slight degradation

is observed in x and z tracking, the new Friedland disturbance rejection consistently

offers significant potential in improving lateral deviation due to an accelerating tanker.

Also, in cases where the baseline architecture fails, the new controllers appears to offer

an increase in robustness in that stability is preserved. Note these simulation evaluations

are repeated for the receiver at the observation relative position in Appendix E.

Table 6.1. Summary of Results for Nonlinear Simulation with Receiver at Contact Posi-
tion

Winds Maneuver Control Gain Set Stable? Max |ex| Max |ey| Max |ez|
Vortex Induced 30 deg Base Unity No - - -
Vortex Induced 30 deg Friedland Unity No - - -
Vortex Induced 30 deg Base Base Yes 3 m 25 m 2 m
Vortex Induced 30 deg Friedland Base Yes 4.5 m 7 m 1.5 m
Vortex Induced 30 deg Base Revised No - - -
Vortex Induced 30 deg Friedland Revised Yes 0.5 m 0.4 m 0.5 m

All 15 deg Base Base Yes 3.5 m 12 m 4 m
All 15 deg Friedland Base Yes 4 m 6 m 4 m
All -15 deg Base Base No - - -
All -15 deg Friedland Base Yes 5 m 6 m 7 m

92
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6.2 Conclusions

Using the equations of motion defined for a receiver vehicle with respect to an

accelerating and rotating reference frame (tanker vehicle), developed in prior work [1,

9, 10], the tanker motion is characterized as disturbance in a two-vehicle metastate-

space open loop dynamics time variant system. Utilizing the existing LQR MIMO [1,

9, 10] infrastructure in place for the receiver, a matrix transformation is developed to

map the existing tanker states to receiver disturbance by using the tanker closed loop

dynamics equation in conjunction with a rotation matrix (from inertial frame to tanker

body frame). The metastate-space open loop system is proved to be time invariant due to

the second property of a special orthogonal rotation matrix and allows the formulation

of an augmented metastate-space system whose state matrix contains the disturbance

quantification aforementioned. The Kalman gain solution of the steady state Algebraic

Ricatti Equation is utilized for integration into a suboptimal controller, as proposed

by Friedland, and multiple performance indices are analyzed for the loop closure, both

linearly and nonlinearly (with aerodynamic coupling between the two bodies and with

and without realistic atmospheric conditions). Simulation results exhibit the potential for

significant improvement in y-lateral deviation from the refueling box with the Friedland

control law enabled. With an optimized performance index to prevent effector saturation

of the receiver, both transient and steady state responses are superior with the new feed-

forward control law, where improved disturbance attenuation on the station-keeping task

is clearly visualized in the frequency domain linear analysis.

6.3 Future Work

The greatest disturbances on the receiver system, in the context of the station-

keeping aerial refueling task, are (i) accelerations of the target tanker and (ii) the exter-
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nal wind environment in the neighborhood of the receiver spatial position. This research

effort has shown that if the item (i) disturbance is modeled linearly for the control law

formulation procedure, the Friedland disturbance rejection technique [20] offers signifi-

cant improvement potential in attenuating the impact of the disturbance on the tracking

system. Therefore, a future investigative effort is recommended to expand the Friedland

disturbance rejection control for item (ii). As previously aforementioned, this expansion

will require approximation of the wind on the receiver state-space system via the (E)

disturbance matrix. One possible approach recommended is to estimate the maximum

bounds of the wind disturbance and essentially employ a robust control theory by quan-

tifying these approximations. Additionally, the bounded wind estimations will require

approximation of the wind rates and state matrix governing the wind dynamics, in order

to formulate the metastate-space system with the encapsulated exogenous system.

The procedure for developing the linear transformation matrix from the tanker

state vector to receiver disturbance vector can be simplified by revisiting the receiver

Equations Of Motion (EOM) for Translational Kinematics (TK). If the tanker TK EOM

is substituted directly into the receiver TK EOM, time variance in the rotation matrix,

posed by time variation of heading, is canceled by multiplying the transpose of the same

rotation matrix. Note this procedure will modify the definition of the receiver disturbance

vector, w, and will modify the tanker translational velocity components to be represented

in the tanker wind frame, rather than the inertial frame.

In the linear analysis results, the unity performance index time domain step re-

sponses appear to be limited in bandwidth by the feed-forward command dynamics em-

ployed in the tanker bank attitude controller. In other words, despite an evenly penalized

control action (and without actuator dynamics), the minimum achievable lateral devia-

tion settling time is considered partly tied to the first order lag filters used as command
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conditioning in the tanker bank controller. An alternative feed-forward path in the tanker

could be investigated for improving receiver station-keeping transient response.

Nonlinear simulation results were presented with failed station-keeping tasks in

which control effectors were recognizably saturated. Future investigation is required to

understand the nature of this saturation and whether the saturation causes divergent

station-keeping or vice versa (the unstable divergent station-keeping leads to a resultant

effector saturation). One, the control action penalty matrix may require refinement in

order to lessen the tendency to encounter rate and position limits on the actuators.

However, a second consideration to investigate is the validity of the linear model. If the

linear model poorly represents the nonlinear model, the controller may fail to stabilize

the system. A candidate procedure for validation that should be considered is a time

domain comparison to a small perturbation for both systems. In other words, monitor

the state and output response of both the linear model and the nonlinear model at

an equivalent nominal condition for an equivalent input, usually an impulse of small

magnitude. If the nonlinear system remains near the nominal condition sufficiently,

good correlation should exist between the time histories if the linear model is a valid

approximation. (Note this validity test obviously requires analysis about a stable nominal

condition. Otherwise, stimulus by an impulse should drive both system models away from

the nominal condition, effectively eliminating the capability to perform a time history

comparison).

While the current nonlinear model does not include actuator dynamics, also rec-

ommended for potential future work, other items that should be investigated for in-

corporation into the linear model are winds (as aforementioned, this disturbance may

significantly alter the nominal conditions and should also be considered in the trim al-

gorithm or computation of the nominal condition); the effects of a non-zero stabilizer

(this control surface position should be proved negligible if not incorporated into the
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control formulation); and the dynamics of the engine (clearly the controller relies on an

accurate depiction of the thrust magnitude and frequency response in optimizing the lin-

ear quadratic regulator solution. Note the nonlinear simulation uses a first order engine

dynamics model and is not captured in the linear model). Additionally, the current gain

scheduling for the controllers in the nonlinear simulation includes only six nominal con-

ditions. Considering additional nominal conditions and independent variables may offer

an increase to the envelope of operation for the controllers or an increase in robustness

to the presence of model uncertainties.

Nonlinear simulation results were presented with the receiver angle of sideslip no-

ticeably increasing throughout the turning maneuver. As previously mentioned, sig-

nificant values of sideslip angle in banked flight may be considered as unfavorable for

coordinated turning. This response is recommended as a potential tuning effort to be

conducted in future performance indices. Furthermore, the oscillations of angle of attack,

as well as questionable bifurcations in the responses of control surfaces observed in the

time histories, should also be understood and investigated as potential stability issues.

Regarding stability, a number of classical Single Input Single Output (SISO) linear

analysis results were presented. In a conventional study, future work could be to ex-

tract stability margins per effector for each control law and nominal condition. However,

modern optimal control demands the investigation of Multiple Input Multiple Output

(MIMO) stability. Future work is recommended to investigate quantifying stability mar-

gins for a MIMO system, with singular value theory and multi-variable frequency domain

analysis.

Multiple performance indices were presented and used to define the cost function in

the linear quadratic regulator minimization problem. The unity performance index aside,

other weight factors were established after innumerable trial simulation executions, where

the process involved time history analysis followed by a reiteration to the performance
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index. Obviously, this process can be burdensome for establishing an optimal gain set.

Future work is recommended to investigate methods of automation for refinement of

the performance index. Consideration should include an attempt to grasp the effective

impact on the controller with a weight modification. In other words, future work may

identify and correlate classical design techniques to the performance index refinement.

For example, if one increases the weight on the receiver state deviation, y, without

modifying the weight factor for error state deviation of the same variable, ey, ascertain

if this performance index refinement essentially modifies the proportional to integral

ratio in the controller architecture (by determining if a similar response is achieved by

utilizing the classical technique of modifying this ratio in a P + I control law). Finally,

regarding control law architecture, other methodologies should be investigated in future

work (feedback linearization, sliding mode control, adaptive control, robust control, etc.)

as well as reconsideration of the assumption that all states are available for feedback

in the current controller (i.e. incorporation of observers with linear-quadratic Gaussian

control, etc.). Furthermore, investigations could also be extended to nonlinear theory

in order to determine whether Jacobian linearization is a sufficient tool for analyzing

the stability of the aerial refueling problem. Alternatives may include examination of

potential Lyapunov function candidates and their application to guaranteed stability

theory.
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This appendix lists the receiver expanded scalar equations of motion presented in

matrix-form in Chapter 2 without the wind terms. The wind terms are excluded in order

to provide a reference to the form of nonlinear equations utilized in the linearization

procedure for the receiver control law formulation.

A.1 Translational Kinematics

ẋ = rT y − qT z + żT sin θT − ẋT cosψT cos θT − ẏT cos θT sinψT − V cosφ sinβ sinψ

+ V cosβ sinα sinφ sinψ + V cosψ sinβ sinφ sin θ + V cosα cosβ cosψ cos θ

+ V cosβ cosφ cosψ sinα sin θ (A.1a)

ẏ = ẋT (cosφT sinψT − cosψT sinφT sin θT )− ẏT (cosφT cosψT + sinφT sinψT sin θT )

+ pT z − rT x+ V [sinβ (cosφ cosψ + sinφ sinψ sin θ)− cosβ sinα (cosψ sinφ

− cosφ sinψ sin θ) + cosα cosβ cos θ sinψ]− żT cos θT sinφT (A.1b)

ż = qT x− pT y − żT cosφT cos θT + ẏT cosψT sinφT − ẋT sinφT sinψT − V cosα cosβ sin θ

− ẋT cosφT cosψT sin θT + V sinβ cos θ sinφ− ẏT cosφT sinψT sin θT

+ V cosβ cosφ sinα cos θ (A.1c)

A.2 Translational Dynamics

V̇ = (Ty sinβ −D + Tx cosα cosβ + Tz cosβ sinα)/mR + g cosφ sinβ sinψ sin θT

+ g cosφT sinβ cos θT cos θ sinφ− g cosβ sinα sinφ sinψ sin θT

− g cosψ sinβ sinφ sin θT sin θ − g cosα cosβ cosφT cos θT sin θ

− g cosα cosβ cosψ cos θ sin θT + g cosφ cosψ sinβ cos θT sinφT

+ g sinβ cos θT sinφ sinφT sinψ sin θ + g cosβ cosφ cosφT sinα cos θT cos θ

+ g cosα cosβ cos θT cos θ sinφT sinψ − g cosβ cosψ sinα cos θT sinφ sinφT

− g cosβ cosφ cosψ sinα sin θT sin θ

+ g cosβ cosφ sinα cos θT sinφT sinψ sin θ (A.2a)

β̇ = p sinα− r cosα− S/(V mR)− rT sinα sin θ − rT cosα cosφ cos θ + qT cosα cosψ sinφ

+ pT cosψ sinα cos θ − pT cosα sinφ sinψ + qT sinα cos θ sinψ + (Ty cosβ)/(V mR)

− pT cosα cosφ cosψ sin θ − qT cosα cosφ sinψ sin θ − (Tx cosα sinβ)/(V mR)

− (Tz sinα sinβ)/(V mR) + (g cosβ cosφ sinψ sin θT )/V
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+ (g cosβ cosφ cosψ cos θT sinφT )/V + (g cosβ cosφT cos θT cos θ sinφ)/V

+ (g cosα cosφT sinβ cos θT sin θ)/V + (g cosα cosψ sinβ cos θ sin θT )/V

− (g cosβ cosψ sinφ sin θT sin θ)/V + (g sinα sinβ sinφ sinψ sin θT )/V

− (g cosφ cosφT sinα sinβ cos θT cos θ)/V − (g cosα sinβ cos θT cos θ sinφT sinψ)/V

+ (g cosψ sinα sinβ cos θT sinφ sinφT )/V + (g cosφ cosψ sinα sinβ sin θT sin θ)/V

+ (g cosβ cos θT sinφ sinφT sinψ sin θ)/V

− (g cosφ sinα sinβ cos θT sinφT sinψ sin θ)/V (A.2b)

α̇ = q − p cosα tanβ + qT cosφ cosψ − r sinα tanβ − pT cosφ sinψ + rT cos θ sinφ

− L/(V mR cosβ) + rT cosα tanβ sin θ + pT cosψ sinφ sin θ + qT sinφ sinψ sin θ

− pT cosα cosψ tanβ cos θ + (Tz cosα)/(V mR cosβ)− qT cosα tanβ cos θ sinψ

− rT cosφ sinα tanβ cos θ − (Tx sinα)/(V mR cosβ) + qT cosψ sinα tanβ sinφ

− pT sinα tanβ sinφ sinψ − pT cosφ cosψ sinα tanβ sin θ

− qT cosφ sinα tanβ sinψ sin θ + (g cosφT sinα cos θT sin θ)/(V cosβ)

+ (g cosψ sinα cos θ sin θT )/(V cosβ)− (g cosα sinφ sinψ sin θT )/(V cosβ)

+ (g cosα cosφ cosφT cos θT cos θ)/(V cosβ)− (g cosα cosψ cos θT sinφ sinφT )/(V cosβ)

− (g cosα cosφ cosψ sin θT sin θ)/(V cosβ)− (g sinα cos θT cos θ sinφT sinψ)/(V cosβ)

+ (g cosα cosφ cos θT sinφT sinψ sin θ)/(V cosβ) (A.2c)

A.3 Rotational Kinematics

φ̇ = p+ q sinφ tan θ + r cosφ tan θ (A.3a)

θ̇ = q cosφ− r sinφ (A.3b)

ψ̇ = (q sinφ+ r cosφ) sec θ (A.3c)

A.4 Rotational Dynamics

ṗ = ({I2xz [q − pT (cosφ sinψ − cosψ sinφ sin θ)

+ qT (cosφ cosψ + sinφ sinψ sin θ) + rT cos θ sinφ]}/(I2xz − Ixx Izz)

+ {I2zz [q − pT (cosφ sinψ − cosψ sinφ sin θ) + qT (cosφ cosψ

+ sinφ sinψ sin θ) + rT cos θ sinφ]}/(I2xz − Ixx Izz)) [r + pT (sinφ sinψ + cosφ cosψ sin θ)

− qT (cosψ sinφ− cosφ sinψ sin θ) + rT cosφ cos θ]

+ rT (q cosφ cos θ − r cos θ sinφ) + ṙT sin θ
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− ({Ixx Ixz [q − pT (cosφ sinψ − cosψ sinφ sin θ)

+ qT (cosφ cosψ + sinφ sinψ sin θ) + rT cos θ sinφ]}/(I2xz − Ixx Izz)

+ {Ixz Izz [q − pT (cosφ sinψ − cosψ sinφ sin θ) + qT (cosφ cosψ

+ sinφ sinψ sin θ) + rT cos θ sinφ]}/(I2xz − Ixx Izz)) (p− rT sin θ

+ pT cosψ cos θ + qT cos θ sinψ) + pT [q (sinφ sinψ

+ cosφ cosψ sin θ) + r (cosφ sinψ − cosψ sinφ sin θ)]

− qT [q (cosψ sinφ− cosφ sinψ sin θ) + r (cosφ cosψ

+ sinφ sinψ sin θ)]− (Izz L)/(I2xz − Ixx Izz)− (Ixz N )/(I2xz − Ixx Izz)

+ Iyy ([Ixz (p− rT sin θ + pT cosψ cos θ + qT cos θ sinψ)]/(I2xz − Ixx Izz)

− {Izz [r + pT (sinφ sinψ + cosφ cosψ sin θ)− qT (cosψ sinφ

− cosφ sinψ sin θ) + rT cosφ cos θ]}/(I2xz − Ixx Izz)) [q − pT (cosφ sinψ

− cosψ sinφ sin θ) + qT (cosφ cosψ + sinφ sinψ sin θ)

+ rT cos θ sinφ]− ṗT cosψ cos θ

− q̇T cos θ sinψ (A.4a)

q̇ = qT [p (cosψ sinφ− cosφ sinψ sin θ) + r cos θ sinψ] + ṗT (cosφ sinψ − cosψ sinφ sin θ)

− q̇T (cosφ cosψ + sinφ sinψ sin θ) +M/Iyy

− ({Ixx [r + pT (sinφ sinψ + cosφ cosψ sin θ)− qT (cosψ sinφ

− cosφ sinψ sin θ) + rT cosφ cos θ]}/Iyy + [Ixz (p− rT sin θ

+ pT cosψ cos θ + qT cos θ sinψ)]/Iyy) (p− rT sin θ + pT cosψ cos θ

+ qT cos θ sinψ)− rT (r sin θ + p cosφ cos θ)

+ ({Ixz [r + pT (sinφ sinψ + cosφ cosψ sin θ)− qT (cosψ sinφ

− cosφ sinψ sin θ) + rT cosφ cos θ]}/Iyy + [Izz (p− rT sin θ

+ pT cosψ cos θ + qT cos θ sinψ)]/Iyy) [r + pT (sinφ sinψ

+ cosφ cosψ sin θ)− qT (cosψ sinφ− cosφ sinψ sin θ)

+ rT cosφ cos θ]− pT [p (sinφ sinψ + cosφ cosψ sin θ)

− r cosψ cos θ]− ṙT cos θ sinφ (A.4b)

ṙ = qT [p (cosφ cosψ + sinφ sinψ sin θ)− q cos θ sinψ] + ({Ixx Ixz [q − pT (cosφ sinψ − cosψ sinφ sin θ)

+ qT (cosφ cosψ + sinφ sinψ sin θ) + rT cos θ sinφ]}/(I2xz − Ixx Izz)

+ {Ixz Izz [q − pT (cosφ sinψ − cosψ sinφ sin θ) + qT (cosφ cosψ

+ sinφ sinψ sin θ) + rT cos θ sinφ]}/(I2xz − Ixx Izz)) [r + pT (sinφ sinψ

+ cosφ cosψ sin θ)− qT (cosψ sinφ− cosφ sinψ sin θ)

+ rT cosφ cos θ]− ṗT (sinφ sinψ + cosφ cosψ sin θ)

+ q̇T (cosψ sinφ− cosφ sinψ sin θ) + rT (q sin θ + p cos θ sinφ)



102

− ({I2xx [q − pT (cosφ sinψ − cosψ sinφ sin θ) + qT (cosφ cosψ

+ sinφ sinψ sin θ) + rT cos θ sinφ]}/(I2xz − Ixx Izz) + {I2xz [q − pT (cosφ sinψ

− cosψ sinφ sin θ) + qT (cosφ cosψ + sinφ sinψ sin θ)

+ rT cos θ sinφ]}/(I2xz − Ixx Izz)) (p− rT sin θ + pT cosψ cos θ + qT cos θ sinψ)

− pT [p (cosφ sinψ − cosψ sinφ sin θ) + q cosψ cos θ]

− (Ixz L)/(I2xz − Ixx Izz)− (IxxN )/(I2xz − Ixx Izz) + Iyy ([Ixx (p− rT sin θ

+ pT cosψ cos θ + qT cos θ sinψ)]/(I2xz − Ixx Izz)− {Ixz [r + pT (sinφ sinψ

+ cosφ cosψ sin θ)− qT (cosψ sinφ− cosφ sinψ sin θ)

+ rT cosφ cos θ]}/(I2xz − Ixx Izz)) [q − pT (cosφ sinψ − cosψ sinφ sin θ)

+ qT (cosφ cosψ + sinφ sinψ sin θ) + rT cos θ sinφ]

− ṙT cosφ cos θ (A.4c)
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This appendix lists the tanker expanded scalar equations of motion presented in

matrix-form in Chapter 2 without the wind terms. Again, as presented in Appendix A

for the receiver, the wind terms are excluded in order to provide a reference to the form

of nonlinear equations utilized in the linearization procedure for the tanker control law

formulation.

B.1 Translational Kinematics

ẋT = VT cosβT sinαT (sinφT sinψT + cosφT cosψT sin θT )− VT sinβT (cosφT sinψT

− cosψT sinφT sin θT ) + VT cosαT cosβT cosψT cos θT (B.1a)

ẏT = VT sinβT (cosφT cosψT + sinφT sinψT sin θT )− VT cosβT sinαT (cosψT sinφT

− cosφT sinψT sin θT ) + VT cosαT cosβT cos θT sinψT (B.1b)

żT = VT sinβT cos θT sinφT − VT cosαT cosβT sin θT + VT cosβT cosφT sinαT cos θT (B.1c)

B.2 Translational Dynamics

V̇T = g sinβT cos θT sinφT − g cosαT cosβT sin θT − (DT − TT cosαT cosβT cos δT

+ TT cosβT sinαT sin δT )/mT + g cosβT cosφT sinαT cos θT (B.2a)

β̇T = −(ST + TT cosαT cos δT sinβT − TT sinαT sinβT sin δT + VT mT rT cosαT

− VT mT pT sinαT − gmT cosβT cos θT sinφT − gmT cosαT sinβT sin θT

+ gmT cosφT sinαT sinβT cos θT )/(VT mT ) (B.2b)

α̇T = −(LT + TT cosαT sin δT + TT cos δT sinαT − VT mT qT cosβT − gmT sinαT sin θT

− gmT cosαT cosφT cos θT + VT mT rT cosβT sinαT tanβT

+ VT mT pT cosαT cosβT tanβT )/(VT mT cosβT ) (B.2c)

B.3 Rotational Kinematics

φ̇T = pT + qT sinφT tan θT + rT cosφT tan θT (B.3a)

θ̇T = qT cosφT − rT sinφT (B.3b)

ψ̇T = (qT sinφT + rT cosφT ) sec θT (B.3c)
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B.4 Rotational Dynamics

ṗT = −(IzzT LT + IxzT NT − I
2
xzT

qT rT − I2zzT qT rT + IxxT IxzT pT qT − IxzT IyyT pT qT

+ IxzT IzzT pT qT + IyyT IzzT qT rT )/(I
2
xzT
− IxxT IzzT ) (B.4a)

q̇T = (MT − IxzT p
2
T + IxzT r

2
T − IxxT pT rT + IzzT pT rT )/IyyT (B.4b)

ṙT = −(IxzT LT + IxxT NT + I2xxT pT qT + I2xzT pT qT − IxxT IyyT pT qT − IxxT IxzT qT rT

+ IxzT IyyT qT rT − IxzT IzzT qT rT )/(I
2
xzT
− IxxT IzzT ) (B.4c)
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This appendix solves the Continuous Time Linear Quadratic Regulator (CT LQR),

with the Friedland disturbance rejection method, by employing the procedure described in

detail by Lewis and Syrmos [20] [27]. The choice of presenting the CT LQR complements

the simulation in this work which executes as a continuous time Simulink c© model with

a fixed step of 1
20

seconds using the ode3 Bogacki-Shampine solver algorithm.

Recalling the linear system presented in Chapter 2 in Eq.(2.16),

ẋo = Aoxo + Bou (C.1)

with state matrix Ao ∈ <28x28, state vector xo ∈ <28x1, control input matrix Bo ∈ <28x6,

and control vector u ∈ <6x1, a general performance index or cost, J , to be minimized is

given as

J = φ(xo(T ), T ) +

∫ T

t0

L(xo, u, τ)dτ (C.2)

where the function, φ, is defined as a quadratic function of values for both the final state

vector, xo(T ), and Ricatti kernel matrix, M̂.

φ(xo(T ), T ) =
1

2
xTo (T ) M̂(T ) xo(T ) (C.3)

The Lagrangian function L within the finite integral component of the performance index

in Eq. (C.2) shapes the desired transient response of the closed loop system and is defined

as

L(xo, u, τ) =
1

2
[xTo (τ) Q xo(τ) + uT (τ) R u(τ)] (C.4)

Recalling Eq. (2.16) as the linearized metastate-space system which encapsulates the

exogenous component into state vector, xo, [20]

f(xo, u, τ) = ẋo = Aoxo + Bou (C.5)

the Hamiltonian, H, is constructed as

H(xo, u, τ) = L(xo, u, τ) + λTf(xo, u, τ) (C.6)
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Substituting Eq. (C.4) and Eq. (C.5) into Eq. (C.6) yields the fully expanded Hamiltonian

formulation which describes the total minimization problem of performance index in

conjunction with the constraint [27],

H(xo, u, τ) =
1

2
[xTo (τ) Q xo(τ) + uT (τ) R u(τ)] + λT (Aoxo + Bou) (C.7)

where λ is the vector of Lagrange multipliers or the costate vector. The partial derivative

of the Hamiltonian with respect to the costate vector yields the original constraint of the

minimization problem in Eq. (C.5) [27].

∂H

∂λ
= Aoxo + Bou = ẋo = f(xo, u, τ) (C.8)

The partial derivative of the Hamiltonian with respect to the metastate vector, xo, yields

the meta-system costate equation as [27]

∂H

∂xo
=

∂L

∂xo
+
∂fT

∂xo
λ = Qxo + Ao

Tλ = −λ̇ (C.9)

Finally, the stationarity condition is found by considering the partial derivative of the

Hamiltonian with respect to the control action, [27]

∂H

∂u
= Ru+ Bo

Tλ = 0 (C.10)

Solving Eq. (C.10) for u, the optimizing control law is found to be [27]

u = −R−1Bo
Tλ (C.11)

where the costate λ develops backwards in time as dictated by the governing Eq. (C.9).

Substituting the optimal control law into the open loop metastate-space Eq. (C.5), the

closed loop metastate-space equation is found as [27]

ẋo = Aoxo −BoR
−1Bo

Tλ (C.12)
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and develops forward in time. Combining the forward time developing Eq. (C.12) with

the backward time developing Eq. (C.9), the Hamiltonian system is formulated [27] ẋo

λ̇

 =

 Ao −BoR
−1Bo

T

−Q −Ao
T


 xo

λ

 (C.13)

which is characterized by an interesting set of symmetric eigenvalues on the s-plane.

The metastate-system closed loop roots exist in the left half stable plane while the roots

corresponding to the costate vector offer a direct reflection in the unstable right half

plane.
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Figure C.1. Closed Loop State/Costate Eigenvalue Reflections for Hamiltonian Matrix
of Nominal Condition 6.
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As a “free-final-state” problem, the boundary condition equates the final costate,

λ(T ) to the partial derivative of the function φ with respect to the final state, xo(T ) [27].

∂φ

∂xo(T )
= λ(T ) (C.14)

Therefore, differentiating Eq. (C.3) with respect to xo(T ),

λ(T ) = M̂(T ) xo(T ) (C.15)

Using the “sweep method” from Bryson and Ho [28], Eq. (C.15) is assumed to hold for

the entire time interval (the duration in which the system moves from initial to final

state) [27]. Therefore,

λ(t) = M̂(t) xo(t) (C.16)

Differentiating with respect to time,

λ̇ = ˙̂M xo + M̂ ẋo (C.17)

Substituting the closed loop metastate-space Eq. (C.12) for ẋo as well as utilizing

Eq. (C.16), Eq. (C.17) is expanded as

λ̇ = ˙̂M xo + M̂(Aoxo −BoR
−1Bo

TM̂ xo) (C.18)

Recalling the meta-system costate equation in Eq. (C.9), Eq. (C.18) becomes [27]

−Qxo −Ao
TM̂ xo = ˙̂M xo + M̂(Aoxo −BoR

−1Bo
TM̂ xo) (C.19)

Rearranging ˙̂M to the left hand side and removing all common xo terms, the matrix

Ricatti equation is found as [27]

− ˙̂M = Ao
TM̂ + M̂Ao − M̂ BoR

−1Bo
TM̂ + Q (C.20)

Eq. (C.20) is the governing differential equation for the Ricatti kernel matrix, M̂, and

develops backwards in time from the final T to initial to. Substituting Eq. (C.16) into
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the control law Eq. (C.11), the time variant control law optimal solution as a function of

the Ricatti kernel matrix is found as [27].

u(t) = −R−1Bo
TM̂(t) xo(t) (C.21)

Therefore, in order to realize the optimal control law, Eq. (C.20) is integrated to find

the time variant Ricatti kernel matrix. A typical solution may be observed in Fig. (C.2).

Note the negative time axis which reflects the integration begins at the final time, T , and

solves to the initial to.
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Figure C.2. Ricatti Matrix Equation Backwards Integration for Nominal Condition 6.
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Clearly, the Ricatti kernel matrix approaches a steady state solution in Fig. (C.2)

(as t approaches −∞), which may be utilized in a suboptimal time invariant control law

of the form

u(t) = −R−1Bo
TM̄ xo(t) (C.22)

where M̄ denotes the steady state Ricatti kernel. Note the control law in Eq. (C.22) is

considered time invariant due to the constant Kalman gain, R−1Bo
TM̄. Rather than

integrating Eq. (C.20) for prolonged durations to recognize the steady state solution for

a suboptimal control law, a direct analytic computation is found using the eigenvalues

of the Hamiltonian matrix from Eq. (C.13). Formulating a new matrix, D, consisting of

the closed loop eigenvalues from the Hamiltonian matrix,

D =

 −Deig 0

0 Deig

 (C.23)

where Deig is a diagonal matrix containing the costate closed loop eigenvalues (i.e. right

half plane roots). The corresponding eigenvectors, arranged in order with respect to D,

are used to construct a new matrix [27]

W =

 W11 W12

W21 W22

 (C.24)

where
[
W11

T W21
T
]T

are the eigenvectors of the stable closed loop metastate poles.

From these matrices, the direct analytic steady state solution to Eq. (C.20) is realized

as [27]

M̄ = W21 W11
−1 (C.25)

Again, Eq. (C.25) provides the solution to the algebraic Ricatti equation when
˙̂
M equals

zero. Therefore, the suboptimal control law problem is governed by

0 = Ao
TM̂ + M̂Ao − M̂ BoR

−1Bo
TM̂ + Q (C.26)
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Next, this equation is partitioned in accordance with the metasystem formulation in order

to understand the Friedland control law utilized on the feedback states and feed-forward

exogenous components. Recalling the Friedland procedure provided in detail in Chapter

2 which encapsulates the exogenous components into the state-space matrices as

Ao =

 A E

0 ATCL

 and Bo =

 B

0

 ,
and the performance index matrix of

Q =

 Qx 0

0 0


Eq. (C.20) and Eq. (C.26) expand as the following − ˙̂M1 − ˙̂M2

− ˙̂M2

T

− ˙̂M3

 =

 AT 0

ET ATCL

T


 M̂1 M̂2

M̂T
2 M̂3

+

 M̂1 M̂2

M̂T
2 M̂3


 A E

0 ATCL


−

 M̂1 M̂2

M̂T
2 M̂3


 B

0

R−1
[

BT 0

] M̂1 M̂2

M̂T
2 M̂3


+

 Qx 0

0 0

 =

 0 0

0 0

 (C.27)

Recognizing that the suboptimal control law in Eq. (C.22) creates a closed loop action

impacting the receiver state rate alone, only the top row of Eq. (C.27) is solved for M̂1

and M̂2 (which are independent of M̂3). Extraction of these two equations yields

− ˙̂M1 = M̂1A + ATM̂1 − M̂1BR−1BTM̂1 + Qx = 0 (C.28)

− ˙̂M2 = M̂1E + M̂2ATCL
+ (AT − M̂1BR−1BT)M̂2 = 0 (C.29)

whose steady state solutions, M̄1 and M̄2, govern the receiver control law.

u = −R−1BTM̄1 x−R−1BTM̄2 xTA (C.30)
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This appendix provides the elements of the H(t) matrix which quantifies distur-

bance in the receiver linearized state-space system, as described in Chapter 2 in Eq. (2.12).

Also provided are the elements of Υ(t), which is used as the linear transformation from

the tanker state vector to the receiver disturbance vector, as presented in Chapter 4.

H(t) =



0 0 0 VpTo
VqTo

VrTo
0 0 0 0 VθTo

VφTo

0 0 0 βpTo
βqTo

βrTo
0 0 0 0 βθTo

βφTo

0 0 0 αpTo
αqTo

αrTo
0 0 0 0 αθTo

αφTo

0 0 0 PpTo
PqTo

PrTo
PṗTo

Pq̇To
PṙTo

0 0 0

0 0 0 QpTo
QqTo

QrTo
QṗTo

Qq̇To
QṙTo

0 0 0

0 0 0 RpTo
RqTo

RrTo
RṗTo

Rq̇To
RṙTo

0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

XẋTo
(t) XẏTo

(t) XżTo
0 XqTo

XrTo
0 0 0 XψTo

(t) XθTo
(t) XφTo

YẋTo
(t) YẏTo

(t) YżTo
YpTo

0 YrTo
0 0 0 YψTo

(t) YθTo
(t) YφTo

(t)

ZẋTo
(t) ZẏTo

(t) ZżTo
ZpTo

ZqTo
0 0 0 0 ZψTo

(t) ZθTo
(t) ZφTo

(t)


VpTo = 0

VqTo = 0

VrTo = 0

VθTo = −gmR cos θT {[cosβ sinα (sinφ sinψ + cosφ cosψ sin θ)]/mR − [sinβ (cosφ sinψ − cosψ sinφ sin θ)]/mR

+ (cosα cosβ cosψ cos θ)/mR} − gmR cosφT sin θT [(sinβ cos θ sinφ)/mR − (cosα cosβ sin θ)/mR

+ (cosβ cosφ sinα cos θ)/mR]− gmR sinφT sin θT {[sinβ (cosφ cosψ + sinφ sinψ sin θ)]/mR

− [cosβ sinα (cosψ sinφ− cosφ sinψ sin θ)]/mR + (cosα cosβ cos θ sinψ)/mR}|o

VφTo = gmR cosφT cos θT {[sinβ (cosφ cosψ + sinφ sinψ sin θ)]/mR − [cosβ sinα (cosψ sinφ

− cosφ sinψ sin θ)]/mR + (cosα cosβ cos θ sinψ)/mR} − gmR cos θT sinφT [(sinβ cos θ sinφ)/mR

− (cosα cosβ sin θ)/mR + (cosβ cosφ sinα cos θ)/mR]|o

βpTo = cosψ sinα cos θ − cosα sinφ sinψ − cosα cosφ cosψ sin θ|o

βqTo = cosα cosψ sinφ+ sinα cos θ sinψ − cosα cosφ sinψ sin θ|o

βrTo = − sinα sin θ − cosα cosφ cos θ|o

βθTo = gmR cos θT {[cosβ (cosφ sinψ − cosψ sinφ sin θ)]/(V mR) + [sinα sinβ (sinφ sinψ

+ cosφ cosψ sin θ)]/(V mR) + (cosα cosψ sinβ cos θ)/(V mR)}

− gmR cosφT sin θT [(cosβ cos θ sinφ)/(V mR) + (cosα sinβ sin θ)/(V mR)

− (cosφ sinα sinβ cos θ)/(V mR)]− gmR sinφT sin θT {[cosβ (cosφ cosψ
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+ sinφ sinψ sin θ)]/(V mR) + [sinα sinβ (cosψ sinφ

− cosφ sinψ sin θ)]/(V mR)− (cosα sinβ cos θ sinψ)/(V mR)}|o

βφTo = gmR cosφT cos θT {[cosβ (cosφ cosψ + sinφ sinψ sin θ)]/(V mR) + [sinα sinβ (cosψ sinφ

− cosφ sinψ sin θ)]/(V mR)− (cosα sinβ cos θ sinψ)/(V mR)}

− gmR cos θT sinφT [(cosβ cos θ sinφ)/(V mR) + (cosα sinβ sin θ)/(V mR)

− (cosφ sinα sinβ cos θ)/(V mR)]|o

αpTo = cosψ sinφ sin θ − cosφ sinψ − cosα cosψ tanβ cos θ − sinα tanβ sinφ sinψ − cosφ cosψ sinα tanβ sin θ|o

αqTo = cosφ cosψ + sinφ sinψ sin θ − cosα tanβ cos θ sinψ + cosψ sinα tanβ sinφ− cosφ sinα tanβ sinψ sin θ|o

αrTo = cos θ sinφ+ cosα tanβ sin θ − cosφ sinα tanβ cos θ|o

αθTo = gmR sinφT sin θT {[cosα (cosψ sinφ− cosφ sinψ sin θ)]/(V mR cosβ) + (sinα cos θ sinψ)/(V mR cosβ)}

− gmR cos θT {[cosα (sinφ sinψ + cosφ cosψ sin θ)]/(V mR cosβ)− (cosψ sinα cos θ)/(V mR cosβ)}

− gmR cosφT sin θT [(sinα sin θ)/(V mR cosβ) + (cosα cosφ cos θ)/(V mR cosβ)]|o

αφTo = −[g cos θT (sinα sinφT sin θ + cosα cosφT cosψ sinφ+ cosα cosφ cos θ sinφT + cosφT sinα cos θ sinψ

− cosα cosφ cosφT sinψ sin θ)]/(V cosβ)|o

PpTo = q (sinφ sinψ + cosφ cosψ sin θ) + r (cosφ sinψ − cosψ sinφ sin θ)− {[I2xz (cosφ sinψ

− cosψ sinφ sin θ)]/(I2xz − Ixx Izz) + [I2zz (cosφ sinψ − cosψ sinφ sin θ)]/(I2xz − Ixx Izz)}

[r + pT (sinφ sinψ + cosφ cosψ sin θ)− qT (cosψ sinφ− cosφ sinψ sin θ) + rT cosφ cos θ]

+ (sinφ sinψ + cosφ cosψ sin θ) ({I2xz [q − pT (cosφ sinψ − cosψ sinφ sin θ) + qT (cosφ cosψ

+ sinφ sinψ sin θ) + rT cos θ sinφ]}/(I2xz − Ixx Izz) + {I2zz [q − pT (cosφ sinψ − cosψ sinφ sin θ)

+ qT (cosφ cosψ + sinφ sinψ sin θ) + rT cos θ sinφ]}/(I2xz − Ixx Izz)) + {[Ixx Ixz (cosφ sinψ

− cosψ sinφ sin θ)]/(I2xz − Ixx Izz) + [Ixz Izz (cosφ sinψ − cosψ sinφ sin θ)]/(I2xz − Ixx Izz)}

(p− rT sin θ + pT cosψ cos θ + qT cos θ sinψ)− Iyy {[Izz (sinφ sinψ

+ cosφ cosψ sin θ)]/(I2xz − Ixx Izz)− (Ixz cosψ cos θ)/(I2xz − Ixx Izz)}

[q − pT (cosφ sinψ − cosψ sinφ sin θ) + qT (cosφ cosψ + sinφ sinψ sin θ) + rT cos θ sinφ]

− cosψ cos θ ({Ixx Ixz [q − pT (cosφ sinψ − cosψ sinφ sin θ) + qT (cosφ cosψ

+ sinφ sinψ sin θ) + rT cos θ sinφ]}/(I2xz − Ixx Izz) + {Ixz Izz [q − pT (cosφ sinψ

− cosψ sinφ sin θ) + qT (cosφ cosψ + sinφ sinψ sin θ) + rT cos θ sinφ]}/(I2xz − Ixx Izz))

− Iyy (cosφ sinψ − cosψ sinφ sin θ)([Ixz (p− rT sin θ + pT cosψ cos θ + qT cos θ sinψ)]/(I2xz − Ixx Izz)

− {Izz [r + pT (sinφ sinψ + cosφ cosψ sin θ)− qT (cosψ sinφ− cosφ sinψ sin θ)

+ rT cosφ cos θ]}/(I2xz − Ixx Izz))|o

PqTo = {[I2xz (cosφ cosψ + sinφ sinψ sin θ)]/(I2xz − Ixx Izz) + [I2zz (cosφ cosψ

+ sinφ sinψ sin θ)]/(I2xz − Ixx Izz)} [r + pT (sinφ sinψ
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+ cosφ cosψ sin θ)− qT (cosψ sinφ− cosφ sinψ sin θ)

+ rT cosφ cos θ]− r (cosφ cosψ + sinφ sinψ sin θ)

− q (cosψ sinφ− cosφ sinψ sin θ)− (cosψ sinφ

− cosφ sinψ sin θ) ({I2xz [q − pT (cosφ sinψ − cosψ sinφ sin θ)

+ qT (cosφ cosψ + sinφ sinψ sin θ) + rT cos θ sinφ]}/(I2xz − Ixx Izz)

+ {I2zz [q − pT (cosφ sinψ − cosψ sinφ sin θ) + qT (cosφ cosψ

+ sinφ sinψ sin θ) + rT cos θ sinφ]}/(I2xz − Ixx Izz))− {[Ixx Ixz (cosφ cosψ

+ sinφ sinψ sin θ)]/(I2xz − Ixx Izz) + [Ixz Izz (cosφ cosψ

+ sinφ sinψ sin θ)]/(I2xz − Ixx Izz)} (p− rT sin θ + pT cosψ cos θ + qT cos θ sinψ)

+ Iyy {[Izz (cosψ sinφ− cosφ sinψ sin θ)]/(I2xz − Ixx Izz)

+ (Ixz cos θ sinψ)/(I2xz − Ixx Izz)} [q − pT (cosφ sinψ − cosψ sinφ sin θ)

+ qT (cosφ cosψ + sinφ sinψ sin θ) + rT cos θ sinφ]

− cos θ sinψ ({Ixx Ixz [q − pT (cosφ sinψ − cosψ sinφ sin θ)

+ qT (cosφ cosψ + sinφ sinψ sin θ) + rT cos θ sinφ]}/(I2xz − Ixx Izz)

+ {Ixz Izz [q − pT (cosφ sinψ − cosψ sinφ sin θ)

+ qT (cosφ cosψ + sinφ sinψ sin θ) + rT cos θ sinφ]}/(I2xz − Ixx Izz))

+ Iyy (cosφ cosψ + sinφ sinψ sin θ) ([Ixz (p− rT sin θ

+ pT cosψ cos θ + qT cos θ sinψ)]/(I2xz − Ixx Izz)− {Izz [r + pT (sinφ sinψ

+ cosφ cosψ sin θ)− qT (cosψ sinφ− cosφ sinψ sin θ)

+ rT cosφ cos θ]}/(I2xz − Ixx Izz))|o

PrTo = sin θ ({Ixx Ixz [q − pT (cosφ sinψ − cosψ sinφ sin θ) + qT (cosφ cosψ + sinφ sinψ sin θ)

+ rT cos θ sinφ]}/(I2xz − Ixx Izz) + {Ixz Izz [q − pT (cosφ sinψ − cosψ sinφ sin θ) + qT (cosφ cosψ

+ sinφ sinψ sin θ) + rT cos θ sinφ]}/(I2xz − Ixx Izz))− [(Ixx Ixz cos θ sinφ)/(I2xz − Ixx Izz)

+ (Ixz Izz cos θ sinφ)/(I2xz − Ixx Izz)] (p− rT sin θ + pT cosψ cos θ + qT cos θ sinψ)

+ [(I2xz cos θ sinφ)/(I2xz − Ixx Izz) + (I2zz cos θ sinφ)/(I2xz − Ixx Izz)] [r + pT (sinφ sinψ

+ cosφ cosψ sin θ)− qT (cosψ sinφ− cosφ sinψ sin θ) + rT cosφ cos θ]

+ cosφ cos θ ({I2xz [q − pT (cosφ sinψ − cosψ sinφ sin θ)

+ qT (cosφ cosψ + sinφ sinψ sin θ) + rT cos θ sinφ]}/(I2xz − Ixx Izz)

+ {I2zz [q − pT (cosφ sinψ − cosψ sinφ sin θ) + qT (cosφ cosψ

+ sinφ sinψ sin θ) + rT cos θ sinφ]}/(I2xz − Ixx Izz)) + q cosφ cos θ

− Iyy [(Ixz sin θ)/(I2xz − Ixx Izz) + (Izz cosφ cos θ)/(I2xz − Ixx Izz)] [q − pT (cosφ sinψ

− cosψ sinφ sin θ) + qT (cosφ cosψ + sinφ sinψ sin θ)

+ rT cos θ sinφ]− r cos θ sinφ+ Iyy cos θ sinφ ([Ixz
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(p− rT sin θ + pT cosψ cos θ + qT cos θ sinψ)]/(I2xz − Ixx Izz)

− {Izz [r + pT (sinφ sinψ + cosφ cosψ sin θ)

− qT (cosψ sinφ− cosφ sinψ sin θ) + rT cosφ cos θ]}/(I2xz − Ixx Izz))|o

PṗTo = − cosψ cos θ|o

Pq̇To = − cos θ sinψ|o

PṙTo = sin θ|o

QpTo
= ({Ixz [r + pT (sinφ sinψ + cosφ cosψ sin θ)− qT (cosψ sinφ− cosφ sinψ sin θ) + rT cosφ cos θ]}/Iyy

+ [Izz (p− rT sin θ + pT cosψ cos θ + qT cos θ sinψ)]/Iyy) (sinφ sinψ

+ cosφ cosψ sin θ)− {[Ixx (sinφ sinψ + cosφ cosψ sin θ)]/Iyy + (Ixz cosψ cos θ)/Iyy}

(p− rT sin θ + pT cosψ cos θ + qT cos θ sinψ)− p (sinφ sinψ

+ cosφ cosψ sin θ) + {[Ixz (sinφ sinψ + cosφ cosψ sin θ)]/Iyy + (Izz cosψ cos θ)/Iyy}

[r + pT (sinφ sinψ + cosφ cosψ sin θ)− qT (cosψ sinφ− cosφ sinψ sin θ)

+ rT cosφ cos θ]− cosψ cos θ ({Ixx [r + pT (sinφ sinψ + cosφ cosψ sin θ)

− qT (cosψ sinφ− cosφ sinψ sin θ) + rT cosφ cos θ]}/Iyy + [Ixz (p− rT sin θ

+ pT cosψ cos θ + qT cos θ sinψ)]/Iyy) + r cosψ cos θ|o

QqTo
= {[Ixx (cosψ sinφ− cosφ sinψ sin θ)]/Iyy − (Ixz cos θ sinψ)/Iyy} (p− rT sin θ

+ pT cosψ cos θ + qT cos θ sinψ)− ({Ixz [r + pT (sinφ sinψ + cosφ cosψ sin θ)

− qT (cosψ sinφ− cosφ sinψ sin θ) + rT cosφ cos θ]}/Iyy + [Izz (p− rT sin θ

+ pT cosψ cos θ + qT cos θ sinψ)]/Iyy) (cosψ sinφ− cosφ sinψ sin θ) + p (cosψ sinφ

− cosφ sinψ sin θ)− {[Ixz (cosψ sinφ− cosφ sinψ sin θ)]/Iyy − (Izz cos θ sinψ)/Iyy}

[r + pT (sinφ sinψ + cosφ cosψ sin θ)− qT (cosψ sinφ− cosφ sinψ sin θ)

+ rT cosφ cos θ]− cos θ sinψ ({Ixx [r + pT (sinφ sinψ + cosφ cosψ sin θ)

− qT (cosψ sinφ− cosφ sinψ sin θ) + rT cosφ cos θ]}/Iyy + [Ixz (p− rT sin θ

+ pT cosψ cos θ + qT cos θ sinψ)]/Iyy) + r cos θ sinψ|o

QrTo
= [(Ixz sin θ)/Iyy − (Ixx cosφ cos θ)/Iyy ] (p− rT sin θ + pT cosψ cos θ

+ qT cos θ sinψ) + sin θ ({Ixx [r + pT (sinφ sinψ + cosφ cosψ sin θ)

− qT (cosψ sinφ− cosφ sinψ sin θ) + rT cosφ cos θ]}/Iyy + [Ixz (p− rT sin θ

+ pT cosψ cos θ + qT cos θ sinψ)]/Iyy)− r sin θ − [(Izz sin θ)/Iyy

− (Ixz cosφ cos θ)/Iyy ] [r + pT (sinφ sinψ + cosφ cosψ sin θ)− qT (cosψ sinφ

− cosφ sinψ sin θ) + rT cosφ cos θ] + cosφ cos θ ({Ixz [r + pT (sinφ sinψ

+ cosφ cosψ sin θ)− qT (cosψ sinφ− cosφ sinψ sin θ) + rT cosφ cos θ]}/Iyy

+ [Izz (p− rT sin θ + pT cosψ cos θ + qT cos θ sinψ)]/Iyy)
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− p cosφ cos θ|o

QṗTo
= cosφ sinψ − cosψ sinφ sin θ|o

Qq̇To
= − cosφ cosψ − sinφ sinψ sin θ|o

QṙTo
= − cos θ sinφ|o

RpTo = {[I2xx (cosφ sinψ − cosψ sinφ sin θ)]/(I2xz − Ixx Izz)

+ [I2xz (cosφ sinψ − cosψ sinφ sin θ)]/(I2xz − Ixx Izz)}

(p− rT sin θ + pT cosψ cos θ + qT cos θ sinψ)− {[Ixx Ixz (cosφ sinψ

− cosψ sinφ sin θ)]/(I2xz − Ixx Izz) + [Ixz Izz (cosφ sinψ − cosψ sinφ sin θ)]/(I2xz − Ixx Izz)}

, [r + pT (sinφ sinψ + cosφ cosψ sin θ)− qT (cosψ sinφ− cosφ sinψ sin θ)

+ rT cosφ cos θ]− p (cosφ sinψ − cosψ sinφ sin θ) + (sinφ sinψ

+ cosφ cosψ sin θ) ({Ixx Ixz [q − pT (cosφ sinψ − cosψ sinφ sin θ)

+ qT (cosφ cosψ + sinφ sinψ sin θ) + rT cos θ sinφ]}/(I2xz − Ixx Izz) + {Ixz Izz [q − pT (cosφ sinψ

− cosψ sinφ sin θ) + qT (cosφ cosψ + sinφ sinψ sin θ) + rT cos θ sinφ]}/(I2xz − Ixx Izz))

− cosψ cos θ ({I2xx [q − pT (cosφ sinψ − cosψ sinφ sin θ) + qT (cosφ cosψ

+ sinφ sinψ sin θ) + rT cos θ sinφ]}/(I2xz − Ixx Izz) + {I2xz [q − pT (cosφ sinψ − cosψ sinφ sin θ)

+ qT (cosφ cosψ + sinφ sinψ sin θ) + rT cos θ sinφ]}/(I2xz − Ixx Izz))

− Iyy {[Ixz (sinφ sinψ + cosφ cosψ sin θ)]/(I2xz − Ixx Izz)− (Ixx cosψ cos θ)/(I2xz − Ixx Izz)}

[q − pT (cosφ sinψ − cosψ sinφ sin θ) + qT (cosφ cosψ + sinφ sinψ sin θ)

+ rT cos θ sinφ]− q cosψ cos θ − Iyy (cosφ sinψ − cosψ sinφ sin θ) ([Ixx (p− rT sin θ

+ pT cosψ cos θ + qT cos θ sinψ)]/(I2xz − Ixx Izz)− {Ixz [r + pT (sinφ sinψ + cosφ cosψ sin θ)

− qT (cosψ sinφ− cosφ sinψ sin θ) + rT cosφ cos θ]}/(I2xz − Ixx Izz))|o

RqTo = {[Ixx Ixz (cosφ cosψ + sinφ sinψ sin θ)]/(I2xz − Ixx Izz) + [Ixz Izz (cosφ cosψ

+ sinφ sinψ sin θ)]/(I2xz − Ixx Izz)} [r + pT (sinφ sinψ + cosφ cosψ sin θ)− qT (cosψ sinφ

− cosφ sinψ sin θ) + rT cosφ cos θ]− {[I2xx (cosφ cosψ + sinφ sinψ sin θ)]/(I2xz − Ixx Izz)

+ [I2xz (cosφ cosψ + sinφ sinψ sin θ)]/(I2xz − Ixx Izz)} (p− rT sin θ + pT cosψ cos θ

+ qT cos θ sinψ) + p (cosφ cosψ + sinφ sinψ sin θ)− (cosψ sinφ

− cosφ sinψ sin θ) ({Ixx Ixz [q − pT (cosφ sinψ − cosψ sinφ sin θ)

+ qT (cosφ cosψ + sinφ sinψ sin θ) + rT cos θ sinφ]}/(I2xz − Ixx Izz)

+ {Ixz Izz [q − pT (cosφ sinψ − cosψ sinφ sin θ) + qT (cosφ cosψ + sinφ sinψ sin θ)

+ rT cos θ sinφ]}/(I2xz − Ixx Izz))− cos θ sinψ ({I2xx [q − pT (cosφ sinψ − cosψ sinφ sin θ)

+ qT (cosφ cosψ + sinφ sinψ sin θ) + rT cos θ sinφ]}/(I2xz − Ixx Izz)

+ {I2xz [q − pT (cosφ sinψ − cosψ sinφ sin θ) + qT (cosφ cosψ + sinφ sinψ sin θ)



120

+ rT cos θ sinφ]}/(I2xz − Ixx Izz)) + Iyy {[Ixz (cosψ sinφ− cosφ sinψ sin θ)]/(I2xz − Ixx Izz)

+ (Ixx cos θ sinψ)/(I2xz − Ixx Izz)} [q − pT (cosφ sinψ − cosψ sinφ sin θ) + qT (cosφ cosψ

+ sinφ sinψ sin θ) + rT cos θ sinφ]− q cos θ sinψ + Iyy (cosφ cosψ

+ sinφ sinψ sin θ) ([Ixx (p− rT sin θ + pT cosψ cos θ + qT cos θ sinψ)]/(I2xz − Ixx Izz)

− {Ixz [r + pT (sinφ sinψ + cosφ cosψ sin θ)− qT (cosψ sinφ− cosφ sinψ sin θ)

+ rT cosφ cos θ]}/(I2xz − Ixx Izz))|o

RrTo = sin θ ({I2xx [q − pT (cosφ sinψ − cosψ sinφ sin θ) + qT (cosφ cosψ

+ sinφ sinψ sin θ) + rT cos θ sinφ]}/(I2xz − Ixx Izz) + {I2xz [q − pT (cosφ sinψ − cosψ sinφ sin θ)

+ qT (cosφ cosψ + sinφ sinψ sin θ) + rT cos θ sinφ]}/(I2xz − Ixx Izz))

− [(I2xx cos θ sinφ)/(I2xz − Ixx Izz) + (I2xz cos θ sinφ)/(I2xz − Ixx Izz)] (p− rT sin θ

+ pT cosψ cos θ + qT cos θ sinψ) + [(Ixx Ixz cos θ sinφ)/(I2xz − Ixx Izz)

+ (Ixz Izz cos θ sinφ)/(I2xz − Ixx Izz)] [r + pT (sinφ sinψ + cosφ cosψ sin θ)− qT (cosψ sinφ

− cosφ sinψ sin θ) + rT cosφ cos θ] + q sin θ + p cos θ sinφ

− Iyy [(Ixx sin θ)/(I2xz − Ixx Izz) + (Ixz cosφ cos θ)/(I2xz − Ixx Izz)] [q − pT (cosφ sinψ

− cosψ sinφ sin θ) + qT (cosφ cosψ + sinφ sinψ sin θ)

+ rT cos θ sinφ] + cosφ cos θ ({Ixx Ixz [q − pT (cosφ sinψ − cosψ sinφ sin θ)

+ qT (cosφ cosψ + sinφ sinψ sin θ) + rT cos θ sinφ]}/(I2xz − Ixx Izz)

+ {Ixz Izz [q − pT (cosφ sinψ − cosψ sinφ sin θ) + qT (cosφ cosψ

+ sinφ sinψ sin θ) + rT cos θ sinφ]}/(I2xz − Ixx Izz)) + Iyy cos θ sinφ ([Ixx (p− rT sin θ

+ pT cosψ cos θ + qT cos θ sinψ)]/(I2xz − Ixx Izz)− {Ixz [r + pT (sinφ sinψ + cosφ cosψ sin θ)

− qT (cosψ sinφ− cosφ sinψ sin θ) + rT cosφ cos θ]}/(I2xz − Ixx Izz))|o

RṗTo = − sinφ sinψ − cosφ cosψ sin θ|o

Rq̇To = cosψ sinφ− cosφ sinψ sin θ|o

RṙTo = − cosφ cos θ|o

XẋTo (t) = − cosψT cos θT |o

XẏTo (t) = − cos θT sinψT |o

XżTo = sin θT |o

XqTo = −z|o

XrTo = y|o

XψTo (t) = − cos θT (ẏT cosψT − ẋT sinψT )|o

XθTo (t) = żT cos θT + ẋT cosψT sin θT + ẏT sinψT sin θT |o

XφTo = 0
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YẋTo (t) = cosφT sinψT − cosψT sinφT sin θT |o

YẏTo (t) = − cosφT cosψT − sinφT sinψT sin θT |o

YżTo = − cos θT sinφT |o

YpTo = z|o

YrTo = −x|o

YψTo (t) = ẋT (cosφT cosψT + sinφT sinψT sin θT ) + ẏT (cosφT sinψT − cosψT sinφT sin θT )|o

YθTo (t) = − sinφT (ẋT cosψT cos θT − żT sin θT + ẏT cos θT sinψT )|o

YφTo (t) = ẏT (cosψT sinφT − cosφT sinψT sin θT )− ẋT (sinφT sinψT + cosφT cosψT sin θT )− żT cosφT cos θT |o

ZẋTo (t) = − sinφT sinψT − cosφT cosψT sin θT |o

ZẏTo (t) = cosψT sinφT − cosφT sinψT sin θT |o

ZżTo = − cosφT cos θT |o

ZpTo = −y|o

ZqTo = x|o

ZψTo (t) = −ẋT (cosψT sinφT − cosφT sinψT sin θT )− ẏT (sinφT sinψT + cosφT cosψT sin θT )|o

ZθTo (t) = − cosφT (ẋT cosψT cos θT − żT sin θT + ẏT cos θT sinψT )|o

ZφTo (t) = ẏT (cosφT cosψT + sinφT sinψT sin θT )− ẋT (cosφT sinψT − cosψT sinφT sin θT ) + żT cos θT sinφT |o

Υ(t) =



XVTo
(t) XβTo

(t) XαTo
(t) 0 0 0 XθTo

(t) XφTo
(t) 0 XψTo

(t) 0 0 0

YVTo
(t) YβTo

(t) YαTo
(t) 0 0 0 YθTo

(t) YφTo
(t) 0 YψTo

(t) 0 0 0

ZVTo
ZβTo

ZαTo
0 0 0 ZθTo

ZφTo
0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0

(4, 1) (4, 2) (4, 3) (4, 4) (4, 5) (4, 6) (4, 7) (4, 8) (4, 9) (4, 10) (4, 11) (4, 12) (4, 13)

(5, 1) (5, 2) (5, 3) (5, 4) (5, 5) (5, 6) (5, 7) (5, 8) (5, 9) (5, 10) (5, 11) (5, 12) (5, 13)

(6, 1) (6, 2) (6, 3) (6, 4) (6, 5) (6, 6) (6, 7) (6, 8) (6, 9) (6, 10) (6, 11) (6, 12) (6, 13)

0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0



XVTo (t) = cosβT sinαT (sinφT sinψT + cosφT cosψT sin θT )− sinβT (cosφT sinψT − cosψT sinφT sin θT )

+ cosαT cosβT cosψT cos θT |o
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XβTo (t) = −VT cosβT (cosφT sinψT − cosψT sinφT sin θT )− VT sinαT sinβT (sinφT sinψT

+ cosφT cosψT sin θT )− VT cosαT cosψT sinβT cos θT |o

XαTo (t) = VT cosαT cosβT (sinφT sinψT + cosφT cosψT sin θT )− VT cosβT cosψT sinαT cos θT |o

XθTo (t) = VT cosψT (sinβT cos θT sinφT − cosαT cosβT sin θT + cosβT cosφT sinαT cos θT )|o

XφTo (t) = VT sinβT (sinφT sinψT + cosφT cosψT sin θT ) + VT cosβT sinαT (cosφT sinψT

− cosψT sinφT sin θT )|o

XψTo (t) = VT cosβT sinαT (cosψT sinφT − cosφT sinψT sin θT )− VT sinβT (cosφT cosψT

+ sinφT sinψT sin θT )− VT cosαT cosβT cos θT sinψT |o

YVTo (t) = sinβT (cosφT cosψT + sinφT sinψT sin θT )− cosβT sinαT (cosψT sinφT

− cosφT sinψT sin θT ) + cosαT cosβT cos θT sinψT |o

YβTo (t) = VT cosβT (cosφT cosψT + sinφT sinψT sin θT ) + VT sinαT sinβT (cosψT sinφT

− cosφT sinψT sin θT )− VT cosαT sinβT cos θT sinψT |o

YαTo (t) = −VT cosαT cosβT (cosψT sinφT − cosφT sinψT sin θT )− VT cosβT sinαT cos θT sinψT |o

YθTo (t) = VT sinψT (sinβT cos θT sinφT − cosαT cosβT sin θT + cosβT cosφT sinαT cos θT )|o

YφTo (t) = −VT sinβT (cosψT sinφT − cosφT sinψT sin θT )− VT cosβT sinαT (cosφT cosψT

+ sinφT sinψT sin θT )|o

YψTo (t) = VT cosβT sinαT (sinφT sinψT + cosφT cosψT sin θT )− VT sinβT (cosφT sinψT

− cosψT sinφT sin θT ) + VT cosαT cosβT cosψT cos θT |o
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This appendix repeats the evaluation tests established in Chapter 5 at the obser-

vation relative position to the tanker, rather than the contact refueling relative position.

While the contact position is located directly aft of the tanker (-35.5 m aft in axial devi-

ation along the tanker fuselage reference line, 0 m lateral displacement from the fuselage

reference line along the tanker wing reference line, and 8.5 m elevation in vertical dis-

placement from the fuselage reference line), the observation position is further aft with a

significant lateral offset (-59.13 m aft, 56.33 m lateral displacement, 0 m elevation). This

difference in relative position raises two considerations. One, the observation position

effectively increases the moment arm when considering a fixed coordinate relative to the

tanker body, and motion of the tanker amplifies the spatial change of this position as the

arm is extended further from the center (tanker body frame origin). Consider the partial

derivatives that contain the coordinates of the relative position presented in Appendix

D, which describe the influence of tanker motion on the receiver in the H(t) matrix as

a function of the moment arm. The axial deviation rate, or rate of change in the x

direction, is contingent on the tanker angular velocity components of pitch rate and yaw

rate by the z and y moment arms, respectively, as given by

XqTo
= −z|o (E.1a)

XrTo
= y|o (E.1b)

The lateral deviation rate of the receiver with respect to the commanded relative position

is impacted by the tanker roll rate (with z as the moment arm) and yaw rate (with x as

the moment arm) given by,

YpTo
= z|o (E.2a)

YrTo
= −x|o (E.2b)
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Finally, the receiver elevation deviation rate is sensitive to the tanker roll rate (with y as

the moment arm) and pitch rate (with x as the moment arm) given by,

ZpTo = −y|o (E.3a)

ZqTo = x|o (E.3b)

Therefore, due to the fact that the observation position includes a zero elevation differ-

ence while the contact position is offset 8.5 m in z, one would expect a reduced sensitivity

in the axial and lateral deviation for changes in the tanker body pitch rate and roll rate,

respectively. However, the x and y coordinates are dramatically increased at the observa-

tion position, which according to the above partial derivatives, amplifies the impact on all

axes of the station-keeping task due to tanker motion (i.e. changes in angular velocity).

Refer to Fig. (E.1) which overlays station-keeping of contact position versus observation

position when the tanker performs a 30 degree bank to the right, with the refined perfor-

mance index and the absence of inertial wind. Note this comparison is conducted for the

new Friedland control law alone, as these results exhibited the best tracking performance.

The contact position time history is extracted from Fig. (5.24), previously presented in

Chapter 5. Note the phase plane plot is modified to represent errors from the commanded

position in order to allow correlation between the two responses at different relative posi-

tions. Performance is noticeably degraded and adequate tracking is not achieved in that

the previously established box is exceeded in all axes when at the observation position.

This result in degraded station-keeping performance at the observation relative position

is considered due to the increased moment arms as aforementioned in the analysis of the

partial derivative expansions. Recognizably, station-keeping at the observation position

will involve a different set of tracking requirements when compared to the refueling con-

tact position. The equivalent tracking criteria are used in this research solely to allow

comparison of performance at the two relative positions.
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Figure E.1. Revised Weight Q, R: Contact and Observation Position Phase Plane Errors
LQR MIMO + Friedland Control Only for Nonlinear Simulation (Interactive Flow Field
Only) while Tanker Performs a 30 Degree Bank.
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The second consideration regarding the impact of maintaining observation position

rather than contact position is the expectation of decreased aerodynamic coupling, due

to the receiver flying with a lateral and axial offset position. Obviously, the receiver

will be less susceptible to disturbance caused by the non-uniform vortex-induced tanker

wind field when further away from the tanker. In other words, with reduced exposure

to this turbulent flow field, receiver station-keeping at the observation position should

improve and require less control effort. Fig. (E.2) compares the wind environment on the

receiver between the two relative positions, for the time history data used in the phase

plane presentation previously discussed. (Note for the purpose of legibility, the legend on

Fig. (E.2) has been omitted. Refer to Fig. (E.1) in that the blue lines with circle markers

correspond to contact position while the green lines with square markers correspond to

the results for the receiver at the observation position). Clearly, the magnitude of wind

disturbance is significantly less at the observation position as anticipated. Therefore, with

other disturbances aside (prevailing winds and tanker acceleration), one would expect

station-keeping performance to be superior at the observation position for tracking a

tanker while in straight and level flight.
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Figure E.2. Revised Weight Q, R: V , β, α, and Winds Comparison (Contact Versus Ob-
servation Position) for Nonlinear Simulation (Interactive Flow Field Only) LQR MIMO
+ Friedland Control Disturbance Rejection while Tanker Performs a 30 Degree Bank.
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The following figures in this appendix are presented as raw data in that all eval-

uation techniques have been previously discussed in Chapter 5. Again, the linear and

nonlinear results included are regenerated for the receiver station-keeping task while at

the observation relative position to the tanker. Table E.1 provides a reference summary

of results for the nonlinear simulation.

Table E.1. Summary of Results for Nonlinear Simulation with Receiver at Observation
Position

Winds Maneuver Control Gain Set Stable? Max |ex| Max |ey| Max |ez|
Vortex Induced 30 deg Base Unity No - - -
Vortex Induced 30 deg Friedland Unity No - - -
Vortex Induced 30 deg Base Base Yes 5 m 20 m 2.5 m
Vortex Induced 30 deg Friedland Base Yes 4 m 6 m 6 m
Vortex Induced 30 deg Base Revised No - - -
Vortex Induced 30 deg Friedland Revised Yes 0.5 m 2 m 1 m

All 15 deg Base Base Yes 4 m 8 m 5 m
All 15 deg Friedland Base Yes 5 m 6 m 5 m
All -15 deg Base Base Yes 4 m 12 m 6 m
All -15 deg Friedland Base Yes 3 m 4 m 5 m

E.1 Linear Model Results for Observation Relative Position Station-Keeping
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Figure E.3. Receiver Lateral (y) Deviation Response Due to Tanker Bank Attitude
Command Unit Step [m/deg] per Nominal Condition (Unity Weight Q, R).
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Figure E.4. Receiver Lateral (y) Deviation to Tanker Bank Attitude Command Meta-
system Frequency Response per Nominal Condition (Unity Weight Q, R).



132

0 50 100 150 200 250 300 350 400 450 500
−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

   0

 0.1

t [sec]

Y
 [m

]

Nominal 1:  Lateral Y−Deviation Due to Tanker Bank Attitude 1 Degree Step

 

 

LQR MIMO
LQR MIMO + Friedland

0 50 100 150 200 250 300 350 400 450 500
−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

   0

 0.1

t [sec]

Y
 [m

]

Nominal 2:  Lateral Y−Deviation Due to Tanker Bank Attitude 1 Degree Step

 

 

LQR MIMO
LQR MIMO + Friedland

0 50 100 150 200 250 300 350 400 450 500
−2

 0

 2

 4

 6

 8

10

12

14

t [sec]

Y
 [m

]

Nominal 3:  Lateral Y−Deviation Due to Tanker Bank Attitude 1 Degree Step

 

 

LQR MIMO
LQR MIMO + Friedland

0 50 100 150 200 250 300 350 400 450 500
−2

 0

 2

 4

 6

 8

10

12

14

t [sec]

Y
 [m

]

Nominal 4:  Lateral Y−Deviation Due to Tanker Bank Attitude 1 Degree Step

 

 

LQR MIMO
LQR MIMO + Friedland

0 50 100 150 200 250 300 350 400 450 500
−2

 0

 2

 4

 6

 8

10

12

14

t [sec]

Y
 [m

]

Nominal 5:  Lateral Y−Deviation Due to Tanker Bank Attitude 1 Degree Step

 

 

LQR MIMO
LQR MIMO + Friedland

0 50 100 150 200 250 300 350 400 450 500
−2

 0

 2

 4

 6

 8

10

12

14

t [sec]

Y
 [m

]

Nominal 6:  Lateral Y−Deviation Due to Tanker Bank Attitude 1 Degree Step

 

 

LQR MIMO
LQR MIMO + Friedland

Figure E.5. Receiver Lateral (y) Deviation Response Due to Tanker Bank Attitude
Command Unit Step [m/deg] per Nominal Condition (Currently Employed Q, R).
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Figure E.6. Receiver Lateral (y) Deviation to Tanker Bank Attitude Command Meta-
system Frequency Response per Nominal Condition (Currently Employed Q, R).
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Figure E.7. Receiver Lateral (y) Deviation Response Due to Tanker Bank Attitude
Command Unit Step [m/deg] per Nominal Condition (Revised Weight Q, R).
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Figure E.8. Receiver Lateral (y) Deviation to Tanker Bank Attitude Command Meta-
system Frequency Response per Nominal Condition (Revised Weight Q, R).
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E.2 Nonlinear Model Results

E.2.1 Results for Observation Relative Position Station-Keeping in the Presence of

Tanker Flow Field
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Figure E.9. Nonlinear Simulation Tanker Performing a 30 Degree Bank.
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Figure E.10. Unity Weight Q, R: Station-Keeping and Effectors for Nonlinear Simulation
(Interactive Flow Field Only) LQR MIMO Control while Tanker Performs a 30 Degree
Bank.



138

0 50 100 150 200
50

100

150

200

V
 [m

/s
]

t [sec]
0 50 100 150 200

−0.2

−0.1

0

0.1

0.2

W
x 

[m
/s

]

t [sec]
0 50 100 150 200

−1

−0.5

0

0.5

1

1.5

W
p 

[d
eg

/s
]

t [sec]

0 50 100 150 200
−50

0

50

100

β 
[d

eg
]

t [sec]
0 50 100 150 200

−0.1

0

0.1

0.2

0.3

W
y 

[m
/s

]

t [sec]
0 50 100 150 200

−1

−0.5

0

0.5

1

W
q 

[d
eg

/s
]

t [sec]

0 50 100 150 200
−50

0

50

100

α 
[d

eg
]

t [sec]
0 50 100 150 200

−0.3

−0.2

−0.1

0

0.1

0.2

W
z 

[m
/s

]

t [sec]
0 50 100 150 200

−0.2

0

0.2

0.4

0.6

W
r 

[d
eg

/s
]

t [sec]

Figure E.11. Unity Weight Q, R: V , β, α, and Winds for Nonlinear Simulation (Inter-
active Flow Field Only) LQR MIMO Control while Tanker Performs a 30 Degree Bank.
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Figure E.12. Unity Weight Q, R: Station-Keeping and Effectors for Nonlinear Simulation
(Interactive Flow Field Only) LQR MIMO + Friedland Control Disturbance Rejection
while Tanker Performs a 30 Degree Bank.
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Figure E.13. Unity Weight Q, R: V , β, α, and Winds for Nonlinear Simulation (Inter-
active Flow Field Only) LQR MIMO + Friedland Control Disturbance Rejection while
Tanker Performs a 30 Degree Bank.
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Figure E.14. Currently Employed Q, R: Station-Keeping and Effectors for Nonlinear
Simulation (Interactive Flow Field Only) LQR MIMO Control while Tanker Performs a
30 Degree Bank.
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Figure E.15. Currently Employed Q, R: V , β, α, and Winds for Nonlinear Simulation
(Interactive Flow Field Only) LQR MIMO Control while Tanker Performs a 30 Degree
Bank.
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Figure E.16. Currently Employed Q, R: Station-Keeping and Effectors for Nonlinear
Simulation (Interactive Flow Field Only) LQR MIMO + Friedland Control Disturbance
Rejection while Tanker Performs a 30 Degree Bank.
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Figure E.17. Currently Employed Q, R: V , β, α, and Winds for Nonlinear Simulation
(Interactive Flow Field Only) LQR MIMO + Friedland Control Disturbance Rejection
while Tanker Performs a 30 Degree Bank.
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Figure E.18. Currently Employed Q, R: Phase Plane Controller Comparison for Nonlin-
ear Simulation (Interactive Flow Field Only) while Tanker Performs a 30 Degree Bank.
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Figure E.19. Revised Weight Q, R: Station-Keeping and Effectors for Nonlinear Sim-
ulation (Interactive Flow Field Only) LQR MIMO Control while Tanker Performs a 30
Degree Bank.
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Figure E.20. Revised Weight Q, R: V , β, α, and Winds for Nonlinear Simulation
(Interactive Flow Field Only) LQR MIMO Control while Tanker Performs a 30 Degree
Bank.
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Figure E.21. Revised Weight Q, R: Station-Keeping and Effectors for Nonlinear Sim-
ulation (Interactive Flow Field Only) LQR MIMO + Friedland Control Disturbance
Rejection while Tanker Performs a 30 Degree Bank.



149

0 50 100 150 200
187

188

189

190

191

V
 [m

/s
]

t [sec]
0 50 100 150 200

0

0.02

0.04

0.06

0.08

0.1

W
x 

[m
/s

]

t [sec]
0 50 100 150 200

0

0.5

1

1.5

2

W
p 

[d
eg

/s
]

t [sec]

0 50 100 150 200
−1

−0.5

0

0.5

1

1.5

β 
[d

eg
]

t [sec]
0 50 100 150 200

0

0.02

0.04

0.06

0.08

W
y 

[m
/s

]

t [sec]
0 50 100 150 200

0

0.5

1

1.5

W
q 

[d
eg

/s
]

t [sec]

0 50 100 150 200
−1

0

1

2

3

4

α 
[d

eg
]

t [sec]
0 50 100 150 200

−0.5

−0.4

−0.3

−0.2

−0.1

0

W
z 

[m
/s

]

t [sec]
0 50 100 150 200

0

0.1

0.2

0.3

0.4

W
r 

[d
eg

/s
]

t [sec]

Figure E.22. Revised Weight Q, R: V , β, α, and Winds for Nonlinear Simulation
(Interactive Flow Field Only) LQR MIMO + Friedland Control Disturbance Rejection
while Tanker Performs a 30 Degree Bank.



150

80 100 120 140 160 180 200
−2

−1.5

−1

−0.5

0

0.5

Y
 e

rr
or

 [m
]

t [sec]

Lateral Y−Deviation Time History Segment

 

 
LQR MIMO+Friedland

−60.5 −60 −59.5 −59 −58.5 −58 −57.5

−1.5

−1

−0.5

0

0.5

1

1.5

Z
 [m

]

X [m]

X−Z Phase Plane

−60.5 −60 −59.5 −59 −58.5 −58 −57.5
54.5

55

55.5

56

56.5

57

Y
 [m

]

X [m]

X−Y Phase Plane

54.5 55 55.5 56 56.5 57

−1.5

−1

−0.5

0

0.5

1

1.5

Z
 [m

]

Y [m]

Y−Z Phase Plane

Figure E.23. Revised Weight Q, R: Phase Plane LQR MIMO + Friedland Control
Only for Nonlinear Simulation (Interactive Flow Field Only) while Tanker Performs a 30
Degree Bank.
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E.2.2 Results for Observation Relative Position Station-Keeping in the Presence of

Tanker Flow Field and Non-Steady Prevailing Wind
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Figure E.24. Nonlinear Simulation Tanker Performing a 15 Degree Right Bank in Non-
Steady Atmosphere.
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Figure E.25. Nonlinear Simulation Tanker Performing a -15 Degree Left Bank in Non-
Steady Atmosphere.
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Figure E.26. Currently Employed Q, R: Station-Keeping and Effectors for Nonlinear
Simulation LQR MIMO Control while Tanker Performs a 15 Degree Right Bank in Non-
Steady Atmosphere.
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Figure E.27. Currently Employed Q, R: V , β, α, and Winds for Nonlinear Simulation
LQR MIMO Control while Tanker Performs a 15 Degree Right Bank in Non-Steady
Atmosphere.
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Figure E.28. Currently Employed Q, R: Station-Keeping and Effectors for Nonlinear
Simulation LQR MIMO + Friedland Control while Tanker Performs a 15 Degree Right
Bank in Non-Steady Atmosphere.
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Figure E.29. Currently Employed Q, R: V , β, α, and Winds for Nonlinear Simulation
LQR MIMO + Friedland Control while Tanker Performs a 15 Degree Right Bank in
Non-Steady Atmosphere.
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Figure E.30. Currently Employed Q, R: Gaussian Probability Density Function Con-
troller Comparison for Nonlinear Simulation while Tanker Performs a 15 Degree Right
Bank in Non-Steady Atmosphere.
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Figure E.31. Currently Employed Q, R: Station-Keeping and Effectors for Nonlinear
Simulation LQR MIMO Control while Tanker Performs a -15 Degree Left Bank in Non-
Steady Atmosphere.
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Figure E.32. Currently Employed Q, R: V , β, α, and Winds for Nonlinear Simulation
LQR MIMO Control while Tanker Performs a -15 Degree Left Bank in Non-Steady
Atmosphere.
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Figure E.33. Currently Employed Q, R: Station-Keeping and Effectors for Nonlinear
Simulation LQR MIMO + Friedland Control while Tanker Performs a -15 Degree Left
Bank in Non-Steady Atmosphere.
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Figure E.34. Currently Employed Q, R: V , β, α, and Winds for Nonlinear Simulation
LQR MIMO + Friedland Control while Tanker Performs a -15 Degree Left Bank in
Non-Steady Atmosphere.
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Figure E.35. Currently Employed Q, R: Gaussian Probability Density Function Con-
troller Comparison for Nonlinear Simulation while Tanker Performs a -15 Degree Left
Bank in Non-Steady Atmosphere.
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