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ABSTRACT

A GRAPH-BASED APPROACH FOR MODELING AND INDEXING VIDEO DATA

Publication No.

JEONGKYU LEE, Ph.D.

The University of Texas at Arlington, 2006

Supervising Professor: JungHwan Oh

With the advances in electronic imaging, storage, networking and computing, the

amount of digital video has grown tremendously. The proliferation of video data has led

to significant amount of research on techniques and systems for efficient video database

management. In particular, extensive research has been done on video data modeling

to manage and organize the data that is semantically rich and complicated. However,

the enormous amount of data size and its complexity have restricted the progress on

video data modeling, indexing and retrieval. In order to get around the problems, we

turn to a graph theoretical approach for video database. Since a graph is a powerful

tool for pattern representation and classification in various applications, it can represent

complicated patterns and relationships of video objects easily.

In this dissertation, in order to capture the spatio-temporal characteristics of video

object, we first propose a new graph-based video data structure, called Spatio-Temporal

Region Graph (STRG), which represents spatio-temporal features and the correlations

among the video objects. A Region Adjacency Graph (RAG) is generated from each

v



frame, and an STRG is constructed by connecting RAGs. An STRG is segmented into

a number of pieces based on its content for efficient processing. Then, each segmented

STRG is decomposed into its subgraphs, called Object Graph (OG) and Background

Graph (BG) in which redundant BGs are eliminated to reduce index size and search time.

Next, we propose a new indexing of OGs by clustering them using unsupervised

learning algorithms for more accurate indexing. In order to perform the clustering, we

need a proper distance measure between two OGs. For the distance measure, we propose

a new measure, Extended Graph Edit Distance (EGED) because the existing measures

are not very suitable for OGs. The EGED is defined in non-metric space for clustering

OGs, and it is extended to metric space to compute the key values for indexing. Based

on the clusters of OGs and the EGED, we propose a new indexing structure STRG-Index

which provides efficient retrieval.

Based on the STRG data model and STRG-Index, we propose a graph-based query

language named STRG-QL, which is extended from object-oriented language by adding

several graph operations. To process the proposed STRG-QL queries, we introduce a

rule-based query optimization that considers the hierarchical relationships among video

segments. For more efficient query processing, we show how to use STRG-Index during

the query processing.
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CHAPTER 1

INTRODUCTION

With the recent advances in electronic imaging, video devices, computing power,

and network technologies, the use of multimedia data in many applications has increased

significantly. Some examples of these applications are distance learning, digital libraries,

video surveillance systems, medical videos, and video-on-demand. As a consequence,

there are increasing demands on modeling, indexing and retrieving these data. Particu-

lary, there is a strong demand for organization and management of video data. Video is

a medium of communication that delivers more information per second than any other

elements of multimedia, such as text, images, and audio. However, since the complexities

of video data and their sheer volume as well as the limitation of current video processing

techniques, have restricted progress on video data modeling, indexing and retrieval. In

order to address the challenging problems, including modeling and indexing unstructured

video data, our research exploits a graph that is a powerful tool for pattern representa-

tion and classification. The primary advantage of graph-based representation is that it

can represent patterns and relationships among data easily. To take this advantage into

video databases, we consider the characteristics of video data including spatio-temporal

features, huge size and contents of it.

In this chapter, we introduce background and some related work of video database

management, motivations and contributions of this dissertation.

1



2

1.1 Multimedia Data

We define multimedia data as the use of one or more different media, such as text,

audio, image, animation, and video, to convey information. As the name implies, the

multimedia is a combination of ‘multiple’ and ‘media’. The word ‘medium’ (the singular

of media) means a transmission channel. Therefore, the important thing in terms of

databases is ‘information’ that is transmitted through the media. In this section we first

describe the basic data types in multimedia. Then, we present the characteristics of video

data that we are focusing on in this dissertation.

1.1.1 Basic Data Types in Multimedia

There are a number of data types that can be characterized as multimedia data

types. These are typically the elements or building blocks of more generalized multimedia

data. The basic multimedia data types can be described as follows:

1. Text Although text is the conventional data type and has simple data format,

it still plays an important role in multimedia to represent semantics of data very

clearly. For example, in addition to ASCII-based text files, text is used in word

processor, databases, and annotations on multimedia objects. In multimedia, text

is used for the following purposes: titles, menus, annotations, and contents. The

basic format of text is ASCII code. However, it is getting complicated into binary

format, closed caption in video, and various fonts in Graphical User Interface. Text

is the least space intensive data type in terms of storage. For example, 8.5 by 11 inch

page (i.e., letter size) of text requires only 2 KB of storage without compression.

2. Audio Audio is one of the increasingly popular data types in multimedia. The

sound heard by the ear is analog that is a continuous waveform, such as sounds

produced by acoustic instruments, and human voices. The analog sound wave is

transferred into its digital representation consisting of discrete numbers, which is
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called digital audio. For example, one of the most popular is Microsoft’s wave file

format, i.e., WAV file. Audio is quite space incentive data type in terms of storage.

For example, one second of digitized sound can require several tens of kilobytes of

storage. 1 In order to reduce the size, many compression techniques can be used

after digitizing sound, such as MPEG, Adaptive Differential Pulse Code Modulation

(ADPCM) and Voc File Compression. However, the better quality of audio during

the compression you want, the more space is required.

3. Digital Image Digitized images are sequence of pixels that represent a region.

Pixels are numbers interpreted to allow the display of a particular ‘dot’ with dif-

ferent values for luminance, color, and contrast. Pixels can be as simple as 0 or 1

including white or black for black and white still images. On the other hand, higher

resolution color images can contain 8 bits, 16 bits, or 24 bits per pixel. They allow

the representation of millions of colors in high resolution. Based on the resolution,

size, complexity, and compression method, the space requirement of digital can

be various. For example, the size of 8.5 by 11 inch image can vary from 10 KB

for simple black and white image to megabytes for complex, high-resolution color

image.

4. Digital Video Video is a medium of communication that delivers more information

per second than any other elements of multimedia. The video objects are stored

as a sequence of still images, which is called as frames. The process of digitizing

analog video is called video capture. The digital video is one of the most space

intensive multimedia data types. Depending on its resolution and size, a single

frame can consume more than 1 MB of storage. In case that a video is digitized as

30 frames/second, the total size of 1 hour long video can consume over 100 GB of

storage. To reduce the size, an original video is compressed to the small size when

1Depending on the sample rate and sample size, its size can be various.
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it is digitized. The popular examples of video data format are AVI from Microsoft,

and Quicktime format from Apple.

5. Animation Animation is the art of creating an illusion of movement from a series

of still drawings. The basic idea of animation is that the human eye can detect

extremely small amounts of luminous energy, and have the persistence of vision.

Thus, they prevents the appearance of any flicker when a motion-picture film is

displayed on a screen at the rate of at least 16 screen illuminations per second.

Typically at the speed of 15 frames per second, the eye sees smooth motion.

Among these basic data types in multimedia, a video is the most important medium,

since it integrates or combines all other data types, such as text, images, audio, and

animation. For example, a video has text information as the format of caption. Caption

data usually helps people with hearing problems watch TV programs. Now it is broadly

used by the main TV channels and many educational audio and visual materials. There

are two types of captions, namely, open and closed captions. Open caption data is stored

and displayed as a part of video frames. Closed caption data is stored separately from

each video frame and displayed as an overlap on video frames. When video is generated,

audio data including sound, voice and speech, are synchronized with visual information.

Since video consists of a sequence of frames, its basic elements are a group of still images.

When they are displayed, they can make smooth motion picture like animation. In this

dissertation, we mainly focus on video data among other multimedia data types since it

can handle other media processing.

1.1.2 Characteristics of Video Data

Generally video can be defined as storage formats for moving pictures. Since it

combines all other basic data types in multimedia, there are some important character-
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istics comparing to the others, such as text, audio, and images. These characteristics of

video can be summarized as follows:

• Spatial and temporal data As described in the previous subsection, video con-

sists of sequence of still images, called frames in terms of video. Each frame has a

group of pixels that represent location of dot and its values for luminance, color,

and contrast. Therefore, the pixel information can be used for the spatial features

of blocks, regions, and objects. For example, when a frame is segmented into a

number of homogeneous color regions, we can compute a centroid of each region.

The computed centroid represents the spatial information of the region. Moreover,

the spatial information in the frame can span across multiple frames. For example,

a centroid of a region in the current frame may be changed in the next frame.

The differences over multiple frames are the temporal feature in video. The tem-

poral feature plays an important role in video processing, such as moving objects

segmentation, tracking, and shot boundary detection.

• Huge size of data The digital video is one of the most space intensive multimedia

data types. When it is digitized, it requires a lot of space at disk drive. Suppose

that we have one surveillance camera in operation 24 hours a day for 1 year. The

captured data is stored as different qualities; visual phone quality (64K bps), VCR

quality (1M bps), and broadcasting quality (4M bps). The total size of each video

using different qualities without compression is as follows:

– Visual phone quality: 365× 24× 60sec× 64Kbps = 2.5TB

– VCR quality: 365× 24× 60sec× 1Mbps = 38TB

– Broadcasting quality: 365× 24× 60sec× 4Mbps = 153TB

Such a huge amount of video prevents efficient processing and management. Al-

though compression techniques can reduce the size significantly, it still requires a

huge amount of space comparing to other media types.
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• Semantically rich data format Multimedia data contains more semantics than

conventional data type such as alpha-numeric data. Particularly, video has more

information than any other media. For example, Figure 1.1 shows a simple video

clip and semantics in it. We can get a lot of information from the video clip. From

the contents, we know the name of player, his number, uniform color, and so on.

Also, we can recognize more important information from the caption data on the

top-left corner of frames, such as current score, teams, and name of stadium.

. . . .

Name: Craig Biggio
Number: 7
Action: Batting
Uniform color: White

Game: Baseball
Team: CHC @ HOU
Score: 3 to 1
Where: Minute Maid Park

Figure 1.1. A simple video clip and the descriptions of contents.

Three characteristics of video mentioned above should be considered when it is

processed and managed.

1.2 Video Database Management

Just like multimedia databases can be defined as various things, video database

management systems (VDBMSs) mean different things to different people. The reason

is that video can imply so many different things. For example, those who are using

camcorder at home regard video databases as a storage for the video taken by the camera.

Another example of video database is video-on-demand where users can select a video
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from database and play it on their monitor. It employs high-speed parallel disk storage

as well as high-speed networking.

In this dissertation, we define video database as the efficient management system

for video that supports organization, data structure, and retrieving video objects. The

following is a brief definition of the video database functions that should be considered

in this dissertation.

• Video data modeling In a conventional database management system (DBMS),

accessing data is based on distinct attributes of well-defined data developed for a

specific application. For video data that has unstructured format, we can define

similar attributes, i.e., low-level features such as color, shape, and texture. Due

to the characteristics of video mentioned earlier, VDBMS should have different

model to organize these attributes values. We first extract feature values from

unstructured data. Next, the extracted data must be appropriately modeled by

considering spatial and temporal characteristics of video.

• Video data parsing Due to the huge size of video data, it should be segmented

into proper processing units, such as shots or scenes. In addition to video segmenta-

tion, a video needs to be decomposed into meaningful units for further processing.

The examples of video parsing include moving objects detection and background

modeling.

• Video data indexing In addition to data modeling and parsing, video data should

be organized for easy access. The large information in a video data makes manual

indexing or manual annotation labor intensive, time consuming and prone to er-

rors. To address these, indexing structure in VDBMS should support an automatic

building and fast accessing. Also, the indexing incorporates various levels of video

objects, such as block, region, moving object, shot, and scene levels.
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• Video data mining Whether dealing with video, video database applications

tend to involve referencing relationships between video objects. In order to provide

efficient access to the relationships of video objects, VDBMS should incorporate

video data mining techniques. Among the existing data mining techniques, we

can employ unsupervised learning algorithms, such as clustering, and conceptual

clustering, to find the complex relationships and meaningful information in video

objects.

• Video data querying Given the data and indexing structures mentioned above,

queries video objects must be optimized. The query optimization in VDBMS need

to consider the different levels of video objects and their relationships. Also, the

query processing supports various types of user requests such as query by example

and feature.

1.3 Motivation of Dissertation Work

Graph is a powerful tool for pattern representation and classification in various

fields [1, 2, 3], such as image processing, video analysis, and biomedical applications.

The primary advantage of graph-based representation is that it can represent patterns

and relationships among data easily. To take this advantage into video analysis, several

studies have proposed the graph-based techniques [4, 5, 6, 7]. In Region Adjacency Graph

(RAG) [4, 5], segmented regions and spatial relationships among them are expressed as

nodes and edges, respectively. However, RAG cannot represent the temporal characteris-

tic of video which is its representative feature. Also, various graph matching algorithms

such as bipartite matching [6] and error-correcting matching [7] have been used in video

data. However, the existing graph matching algorithms still require high computational

cost, and suffer from low accuracy since they consider only the spatial feature to match

video data.
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To address these, we propose a new graph-based data structure, called Spatio-

Temporal Region Graph (STRG) representing spatial and temporal relationships among

objects in a video sequence. The STRG is constructed by combining RAGs gener-

ated from each frame, and decomposed into its subgraphs, called Object Region Graphs

(ORGs) representing the same corresponding regions. ORGs representing the same ob-

ject over frames are merged into an Object Graph (OG) which represents each semantic

object in a video sequence. For unsupervised learning, we cluster similar OGs into a

group, in which we need to match two OGs. For this graph matching, we introduce a

new distance measure, called Extended Graph Edit Distance (EGED), which can handle

temporal characteristics of OGs. The EGED is defined in a non-metric space first for

the clustering of OGs, and it is extended to a metric space to compute the key values

for indexing. Based on the clusters of OGs and the EGED, we propose a new indexing

method STRG-Index.

1.4 Contributions

This dissertation makes the contribution to modeling and indexing video data us-

ing a graph. To do this, we design and develop the algorithms of a graph-based video

database management system (GVDBMS) focusing on representing spatial and temporal

characteristics of video objects. Figure 1.2 illustrates the proposed GVDBMS architec-

ture. GVDBMS consists of three primary components; Video Processing, Repository and

Query Processing component.

Video Processing Component

The main purpose of this component is to generate STRG data from input videos. Unlike

existing graph-based video processing techniques which consider only spatial information,
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Figure 1.2. An architecture of Graph-based Video Database Management System.

an STRG represents temporal information among video objects additionally. The com-

ponent includes several submodules to process input videos as follows:

1. STRG producing module generates Region Adjacency Graph (RAG) from each

frame, and connects RAGs temporally to construct an STRG for each video. To

do this, we first divide a frame into homogeneous color regions using region seg-

mentation technique. The segmented regions and spatial information among them

are expressed as nodes and edges in RAG, respectively. An STRG is constructed

by connecting RAGs temporally. In order to connect RAGs, we use a graph-based

tracking algorithm by graph matching.

2. STRG parsing module partitions an STRG into shots for more efficient processing.

In order to do this, we compute a temporal connectivity between two consecutive

RAGs (frames) by graph matching. If two RAGs are strongly connected to each

other, the two frames corresponding to the two RAGs are considered to be in a same

shot. Otherwise, the two frames are considered to be in two different shots. After

detecting shot boundaries of an STRG, we compute a key RAG (key frame) of each

shot to characterize it. Then, it extracts Object Graphs (OGs) and Background
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Graph (BG) which are subgraphs of an STRG. An OG represents an object which

appears over frames, and a BG represents a background of each shot.

3. STRG clustering module clusters similar OGs into a group to find the pattern of

moving objects. The results of cluster will be used for indexing for efficient access.

In order to find formal concepts of clusters, they are analyzed based on formal

concept analysis techniques.

4. STRG indexing module creates STRG-Index for better performance of a query,

which is a tree structure including shot nodes, cluster nodes and object nodes.

Each node is pointing the actual units of videos, i.e., clips, shots and frames, to

support various types of user queries.

Repository Component

The outputs of video processing component, such as STRG data, STRG-Index and ac-

tual units of videos are stored at the repository. Although we will not cover repository

component in detail in this dissertation, this component however includes very important

issues in practical systems.

Query Processing Component

The query processing is responsible for processing and responding user queries. A user

can request various types of queries using query processing component. The proposed

GVDBMS supports two types of queries: Query by Feature (QBF) and Query by Example

(QBE). In QBF, a user retrieves salient objects and shots from database that satisfy the

conditions given by feature values in a query statement. In QBE, a user retrieves those

using a sample video clip in a query statement. To process QBE, a temporary STRG

data model is generated from a query video by STRG producing module, which is the

same module in the video processing component. Then, an STRG-Index and a rule-
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based query optimization are used for an efficient execution of a query, which consider

the hierarchical characteristics, such as video, scene, shot, and frame appropriately.

The detailed contributions of this dissertation work are discussed in this section.

1.4.1 Spatio-Temporal Region Graph for Video Modeling

First, we propose a new video data structure, STRG, based on graph representation.

It can represent not only spatial features of video objects, but also temporal correlations

among them. In addition, the STRG can handle various types of videos since it supports

shot level as well as object level operations. Almost all produced videos, such as drama,

news, and documentary videos, consist of a number of shots that are the basic processing

units of video. On the other hand, non-produced videos, such as surveillance videos,

are taken continuously without shot changes. Our proposed video data structure, STRG

can support both types of videos: produced videos with shots, and non-produced videos

without shots. To achieve this, we model a video from the level of region that is homo-

geneous color region forming an object in a video. The generated STRG is segmented

into a number of shots to support produced videos.

In addition to shot boundary detection, the proposed STRG model is applied to

perform other video processing techniques. For example, moving objects in a sequence of

video frames are tracked by a graph matching. Since a graph-based tracking algorithm

considers the relationships of moving objects represented as a graph, it provides more

accurate and consistent results. Another example of video processing using STRG is

video summarization. A long video can be summarized into shorter version of video clips

or highlight. The last example of video processing is background modeling by overlapping

nodes and edges in a graph over frames.
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1.4.2 Extended Graph Edit Distance

In order to process video objects, we need to have proper similarity or dissimilarity

measure of them. Thus, we propose a new distance function of OGs, EGED which is

defined in both non-metric and metric spaces. Since non-metric EGED provides more

accurate results, it is used for matching video moving objects represented as a graph

(OG). On the other hand, metric EGED is used for indexing STRGs because of its

efficiency.

We also introduce a Graph Similarity Measure (GSM) to measure the similarity

while STRG is processed. For example, STRG is segmented into a number of smaller

pieces, i.e., shots, by using GSM. In addition, GSM can be used for matching BGs to

find similar one.

1.4.3 Graph-based Video Data Mining

For unsupervised learning, we cluster similar OGs into a group which represents a

moving pattern. To do this, we exploit a model-based clustering algorithm (EM) with

EGED.

Based on the results of a model-based clustering algorithm, we propose a model-

based conceptual clustering (MCC) of spatio-temporal data to find its formal concepts.

Unlike existing conceptual clustering algorithms that use a goodness measure for a clus-

tering criterion, the proposed MCC exploits formal concept analysis to generate the

concepts. Since formal concept analysis can find not only the formal concepts but also

the relations among them, our conceptual clustering is more effective than traditional

ones.
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1.4.4 Spatio-Temporal Region Graph Indexing

Based on the clusters of OGs and the EGED, we propose a new indexing structure,

STRG-Index. Since STRG-Index uses a metric version of EGED for the distance funtion,

tree structure and data clustering, it provides fast and accurate indexing. The STRG-

Index tree structure consists of three level of nodes; shot node, cluster node and object

node. Shot node contains the BGs of segmented STRGs. Each record in the node has its

identifier, an actual BG, and an associated pointer. Cluster nodes contain the centroid

OGs representing cluster centroids. A record in the cluster node contains its identifier,

a centroid OG of each cluster, and an associated pointer. Object nodes contain OGs

belonging to a cluster. A record in the node has the index key, an actual OG, and an

associated pointer.

1.4.5 STRG Query Language

Based on the STRG data model, we propose a new graph-based query language,

named STRG-QL which is extended from object-oriented query language by adding sev-

eral graph operation. To process the proposed STRG-QL queries, we propose a rule-based

query optimization considering the logical structure of video and hierarchical relation-

ships among video segments, which provides more efficient STRG-QL processing. In

addition, we present two main query types that STRG-QL supports; Query by Feature

(QBF) and Query by Example (QBE). While QBF is the basic query type which is

compatible to ODMG OQL, QBE supports a query with a sample video clip.

1.5 Organization

The rest of the dissertation is organized as follows. Chapter 2 describes detailed

background and related works of video database management systems including video

data modeling, distance measure, video data mining, video indexing techniques, and
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query processing. Chapter 3 discusses our proposed video data model: Region Adjacency

Graph (RAG) and Spatio-Temporal Region Graph (STRG). Chapter 4 presents several

video parsing techniques based on a graph theory, such as a graph-based shot boundary

detection, STRG decomposition for Object Region Graph (ORG), Object Graph (OG),

and Background Graph (BG). We also present a graph similarity measure that is used

for the video parsing. In Chapter 5, we propose a distance measure for OGs by extending

Edit Distance to a graph, which is called Extended Graph Edit Distance (EGED). Using

the distance measure of OGs, we then proposed two data mining techniques for video to

find concepts of video contents: EM clustering with EGED, and model-based conceptual

clustering algorithms. Chapter 6 present a new indexing structure of video objects, named

Spatio-Temporal Region Graph Indexing (STRG-Index). It begins with a description of

indexing that is a tree structure consisting of shot, cluster, and object nodes. Then, we

introduce how to construct and split the node. Chapter 7 describes our proposed video

query processing techniques including STRG Query Language (STRG-QL) and rule-

based query optimizations. Finally, Chapter 8 concludes this dissertation with future

research directions.
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RELATED WORK

With the advances in electronic imaging, storage, networking and computing power,

the amount of digital videos has grown tremendously. The proliferation of video data

has led to significant amount of research on techniques and systems for efficient video

database management. These research for video database management fall into five

categories: video data modeling, similarity/dissimilarity function, video data mining,

video data indexing, and video query processing. Unlike traditional data type, such as

alpha-numeric data that can be modeled by relational model or object-oriented model,

a video data cannot be organized easily since it is unstructured data format and has

a huge amount of semantic contents. To address this issue, there have been a lot of

research efforts of modeling video data [8, 9, 10, 11, 12, 13, 14, 15, 16, 17]. Video

data requires a pre-processing step before it is managed: for example, shot boundary

detection, and region segmentation. For these video processing, we need appropriate

distance measures for video data. Since video data has temporal characteristics, the

similarity or dissimilarity measure of video data should handle time characteristics [18,

19, 20, 21]. Another important issue in video database management is video data mining

to find the knowledge in it. Specifically, finding concepts from video data can solve the

problem of unstructured data format, such as conceptual clustering algorithm [22, 23,

24, 25, 26, 27]. The final goal of video database management is how to retrieve video

data efficiently and effectively. To do this, there have been many research work for video

indexing [28, 29, 30, 31, 32] and query processing [33, 34, 35, 36, 37, 38, 39, 40].

16
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The rest of this chapter is organized as follows. In Section 2.1, we presented the

existing video data models. Section 2.2 shows the distance measure for video data in

detail. Video data mining techniques are discussed in Section 2.3. Section 2.4 and 2.5

introduce the existing video indexing and query processing techniques, respectively.

2.1 Video Data Modeling

Extensive research has been done on video data modeling to manage and organize

the data which is semantically rich and complicated. The approaches to video data

modeling can be divided into three categories as follows:

1. Annotation based data models [8, 9, 10] use manually extracted text descrip-

tions to represent the content of video segments. The extracted content descriptions

(annotations) attached to video streams are capable of conveying the semantic con-

tent. However, they have been criticized as computation demanding and inaccurate

since manual annotations are needed.

2. Segmentation based data models [11, 12, 13] use visual features (i.e., color,

shape, texture, etc.) to segment a video into a set of processing units, such as shots

and/or scenes. Key frames are used to index the units. This model can support

visual content-based video access, and its video processing can be fully automated.

However, the visual features are limited to represent semantic content of video

segment, consequently the visual feature-based retrieval cannot provide desirable

results.

3. Object based based data models [14, 15, 16, 17] use spatio-temporal features

extracted from video objects to address the limitation in representing their se-

mantic content. The video objects are typically generated from video sequence by

object tracking. Instead of indexing physical or logical units of video (shots and

scenes), this approach attempts to use spatio-temporal correlations among video
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objects to index the content. However, this method needs an efficient video object

representation to extract spatio-temporal features, which is non-trivial.

Since the video data is semantically rich and complicated, an efficient video object

representation for spatio-temporal features is essential for bridging the gap between the

visual features and the semantic content.

In order to address this issue, several efforts have been made to model video data

using graph representation [10, 13, 14]. Graph is a powerful tool for data representation

and classification in various fields, such as image processing, video analysis, and biomed-

ical applications. The primary advantage of graph-based representation is that it can

represent patterns and correlations among data effectively. To take this advantage in

video analysis, Kokkoras et. al. [10] propose Smart VideoText which is an annotation-

based video data model using graph. Smart VideoText uses the conceptual graph to

capture the semantic associations among the concepts in text annotations. It is capable

of effective query, retrieval, and browsing based on the annotations. However, the con-

ceptual graph cannot capture the visual content of video data. Moreover, it is difficult to

implement an automated system since it requires manual annotation. The other example

is a video summarization and scene detection technique using graph matching by Ngo

et. al. [13]. A video is represented as a weighted undirected graph where the nodes and

edges indicate the features extracted from shots and the similarity between two shots,

respectively. Even though this method uses a graph representation, it is still limited

to represent the semantic content of video since it is shot-based and does not consider

its objects explicitly. Another example is the Video Semantic Directed Graph (VSDG)

by Day et. al. [14], which represents a semantically unbiased abstraction for video ob-

jects using a directed-graph model. In order to construct user-independent view and

semantic heterogeneity of the video data, a VSDG is created to model spatio-temporal
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interactions among video objects. The spatio-temporal semantics are represented by

conceptual spatial/temporal objects. However, it has difficulty in capturing the spatio-

temporal characteristics (i.e., trajectories) of moving objects, and may contain redundant

information as mentioned in [41]

2.2 Distance Measures

The next important topic in video database systems is how to compute the similar-

ity or dissimilarity between two units according to the feature values extracted from each

unit. Many similarity or dissimilarity measures have been proposed based on the fea-

ture values. The distance functions considering time which is a primary factor of videos,

include the traditional distance functions (i.e., Lp-norms) [18], Dynamic Time Warping

(DTW) [19], Longest Common Subsequence (LCS) [20], and Edit Distance (ED) [21].

Although the traditional distance functions are easy to compute, they cannot measure

very well the difference between the units with multiple and complex features. The oth-

ers are perceptually better than the traditional distance functions. However, they are

non-metric, so they are not applicable to the standard indexing algorithms.

2.3 Video Data Mining

In the conceptual clustering, a goodness measure is usually defined for overall par-

titioning of objects, while the other clustering methods use distance metrics for the (dis)

similarities of pairs of objects, such as Euclidean and Mahalanobis distances. COB-

WEB [22] is an incremental clustering algorithm based on probabilistic categorization

trees. The search for a good clustering is guided by a goodness measure for partitions

of data, i.e., category utility (CU ). However, pure COBWEB only supports nominal at-

tributes. In other words, it cannot be used for abstracting numeric data. In order to
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incorporate numeric values, some extensions of the COBWEB system are proposed, such

as COBWEB/3 [23], ECOBWEB [24], AUTOCLASS [25], Generality-based conceptual

clustering (GCC) [26], and Error-based conceptual clustering (ECC) [27]. COBWEB/3

[23] combines the original COBWEB algorithm with the probabilities expressed in terms

of the probability density function (pdf) to handle numeric attributes in the CU measure.

In ECOBWEB [24], the probability distribution for numeric features is approximated by

the probability distribution about the mean for the features. Both COBWEB/3 and

ECOBWEB use modifications of the CU measure to handle numeric features. AUTO-

CLASS [25] uses a classical finite mixture distribution model on the data, and derives

groupings of objects that locally maximize the posterior probability of individual clusters

given by the feature distribution functions. GCC [26] method proposes a parameterized

measure that allows a user to specify both the number of levels and the degree of gen-

erality of each level to build a symbolic hierarchical clustering model. ECC [27] method

partitions the data set of one or more features into clusters that minimize a relaxation

error as the goodness measure.

However, since all of the methods mentioned above use a goodness measure to find

good clusters, they cannot represent the relations among the clusters. Recently, in order

to address this, a few methods [42, 43] employ formal concept analysis (FCA) technique to

conceptual clustering. FCA is a formal technique for knowledge representation and data

analysis that was introduced by Wille [44, 45]. FCA uses formal context consisting of data

objects, attributes, and their binary relations. For example, Hotho et al. [42] propose

a conceptual clustering of text documents using FCA to describe the description of the

resulting clusters. In their approach, the frequency of keywords in a document replaces a

binary relation of formal context. Fuzzy conceptual clustering in FOGA (Fuzzy Ontology

Generation frAmework) [43] combines fuzzy logics and FCA to generate concepts and

relations of citation database. FOGA uses fuzzy membership values between data objects
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and features in a formal context. The two major drawbacks of using FCA for conceptual

clustering are as follows: (1) scaling : at the beginning of FCA, each attribute should

be scaled to handle numeric data. However, there is no general solution to determine

ideal scaling of spatio-temporal data, since they are not only high dimensional numeric

features, but also a sequence of data in time, and (2) large volume of structure: the

growing sets of objects and features bring exponential growth of the resultant concepts

and relations, which may cause a decreasing of the performance on FCA. Moreover, such

a high number of concepts and relations make their interpretations difficult.

2.4 Video Indexing Techniques

There has been relatively little effort on indexing and retrieving the segmented

video units [28]. A major difficulty is how to handle spatio-temporal correlations among

video objects. To address this, an indexing structure called 3DR-tree [29] has been

proposed. It indexes salient objects by treating the time as another dimension in R-tree.

Simply treating the time as another dimension is not optimal since spatial and temporal

features should be considered differently. Several index structures, such as RT-tree [31],

B+-tree [30], and M-tree [32], have been proposed to handle spatio-temporal features.

However, they are inefficient for various queries on moving objects since they cannot

capture the characteristics of moving objects properly.

2.5 Video Query Processing

In recent years, many video query languages have been proposed for video database

management systems. In this subsection, we review and compare various query languages

which can be classified into three categories: entirely new query language, SQL-based

query language, and OQL-based query language.
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First category is the entirely new query languages [33, 34] which are brand new sys-

tems without using any existing one. CVQL (Content-based logic Video Query Language)

is proposed in [34], where users can specify query predicates by the spatial and temporal

relationships of the content objects. Since CVQL is defined based on video frames, a user

needs to have some prior knowledge about the video content. TVQL (Temporal Visual

Query Language) [33] is developed for querying multidimensional range queries via visual

interface. In these two languages, it may take some time for users to learn and use them

since they are little flexible and domain specific.

Second category is the query languages which are extension of SQL [35, 36, 37, 38].

SQL-like query languages are the majority of existing video query languages since they

are easy to implement and use. VideoSQL [35] is an SQL-like query language developed

to retrieve video objects. It uses an inheritance mechanism which provides the sharing of

common descriptive data among videos. However, the language does not include spatial

or temporal information of videos. STQL (Spatio-Temporal Query Language) [36] tries

to address this by integrating spatio-temporal data into existing data models as abstract

data type. Recently, a rule-based spatio-temporal query language is proposed in BilVideo

[38] which is a web-based VDBMS. BilVideo focuses on the task of spatio-temporal query

processing and SQL-like query language. Since STQL and BilVideo focus on only moving

objects in a video, there may be some difficulties to handle other logical structure of a

video such as frame, shot and scene.

The last category is the query languages which are extensions of OQL [39, 40].

GOQL (Graph Object Query Language) [40] and MOQL (Multimedia Object Query

Language) [39] are the extensions of OQL to handle multimedia data. GOQL queries

are translated using an operator-based language, O-Algebra which is an object alge-

bra designed for processing object-oriented database (OODB) queries. MOQL supports

content-based spatial and temporal queries as well as query presentation.
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Table 2.1 shows the summary of various query languages mentioned above. As seen

in the table, most works are designed for the particular data models and applications.

In addition, only limited number of query types are supported in each system.

Table 2.1. Summary of various query languages for video

Name Year Basis DBMS Algebra Target Data Data Structure Query Type Visualizaton

TVQL

1999 OQL Vstore O-Algebra Multimedia Graph Sequence query XGOQL

1996 new MMVIS X Video Event X Visual query O

CVQL 1999 new VDBMS X Video Frame Content Object Content query X

STQL 2002 SQL MDBMS Extend Relational Moving Object Extend Relational Temporal query O

VQP 2003 SQL VDBMS X Stream Video Streaming Data Temporal join X

Rule-based 2004 SQL BilVideo Extend Relational Video Segment X Knowledge query X

MOQL 1997 OQL ObjectStore Object Algebra Video Object X Content query X

VideoSQL 1993 SQL OVID X Video Frame Video Object Content query X



CHAPTER 3

STRG PRODUCING

Graph is a powerful tool for pattern representation and classification in various

fields, such as image processing, video analysis, and biomedical application. The pri-

mary advantage of graph-based representation is that it can represent patterns and re-

lationships among data effectively. In order to take this advantage into video modeling,

we propose a new graph-based data structure, called Spatio-Temporal Region Graph

(STRG), which represents the spatio-temporal features and relationships among the ob-

jects extracted from video sequences. Region Adjacency Graph (RAG) [4] is generated

from each frame, in which segmented regions and their spatial relationships are expressed

as nodes and edges, respectively. By connecting the corresponding nodes along the RAGs,

we construct an STRG for a video. The STRG is a new data structure for video data

based on a graph. It can represent not only spatial features of video objects, but also

temporal relationships among them.

The rest of this chapter is organized as follows. In Section 3.1, we explain how to

segment each frame into a number of region, and how to generate a RAG for a frame from

segmented regions. In Section 3.2, we construct an STRG from the constructed RAGs and

corresponding nodes. Section 3.3 describes the experimental results of building STRG

for real video sequences in detail. Section 3.4 provides the summary of the chapter.

3.1 Region Adjacency Graph

The first step in image and video processing is to decide the basic unit of processing

such as pixel, block or region. Then, the features are computed from each unit for further

24
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processing. Recently, some studies focused on a graph-based approach to process image

and video data [4, 46], since a graph can represent not only these units but also their

relationships. We first describe Region Adjacency Graph (RAG) which is the basic data

structure for video indexing.

3.1.1 Region Segmentation

Assume that a video segment (S) has N frames. To divide a frame into homoge-

neous color regions, we use region segmentation algorithm called EDISON (Edge Detec-

tion and Image Segmentation System) [47]. There have been many research for region

segmentation algorithm such as EDISON [47], JSEG [48], and ImageJ [49]. The reason

we choose EDISON among other algorithms is that it is less sensitive to small changes

over the frames, which occurs frequently in video sequence. Figure 3.1 shows the results

of region segmentation using EDISON. In order to show the consistency, we run the

EDISON on various video domains. The first row is the sample frames of colonoscopy

video in a medical domain. The second row is the sample of traffic video, and the third

is taken by surveillance camera. Figure 3.1 (a) is two consecutive frames for each video.

As shown in Figure 3.1 (b), the results of region segmentation using EDISON are very

consistent regardless of the types of videos.

3.1.2 Region Adjacency Graph

Using region segmentation algorithm, we have a number of homogeneous color

regions from each frame. The segmented regions of a frame have several important

characteristics as follows:

• Each region has its own spatial information represented by a position.

• Each region has its own characteristics, such as a representative color and a size of

region.
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(a) (b)

Colonoscopy Video

Traffic Video

Surveillance Video

Figure 3.1. (a) Original two consecutive frames, and (b) Results of region segmentation
for (a).

• Two adjacent regions may form either a same object or two different objects.

In order to represent the relationships and characteristics mentioned above, we em-

ploy a concept of Region Adjacent Graph (RAG) in image processing, which is defined

as follows:

Definition 1. Given the nth frame fn in a video, a Region Adjacency Graph of fn,

Gr(fn), is a four-tuple Gr(fn) = {V,ES, ν, ξ}, where

• V is a finite set of nodes for the segmented regions in fn,
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• ES ⊆ V × V is a finite set of spatial edges between two adjacent nodes in fn,

• ν : V → AV is a set of functions generating node attributes, and

• ξ : ES → AES
is a set of functions generating spatial edge attributes.

A node (v ∈ V ) corresponds to a region (r), and a spatial edge (eS ∈ ES) represents

a spatial relationship between two adjacent nodes (regions). The node attributes (AV )

are location (x, y: centroid of a region), size (s: number of pixels in a region) and color

(λ: mean of colors in a region) of the corresponding region. The spatial edge attributes

(AES
) indicate relationships between two adjacent nodes such as spatial distance (d:

spatial distance between centroids of two regions) and orientation (φ: angle between a

line formed by two centroids and horizontal line). The attribute vectors of node (AV )

and spatial edge (AES
) can be defined as:

AV = (x, y, s, λ)T

AES
= (d, φ)T

As illustrated in Figure 3.2, a RAG provides a spatial view of regions in a frame.

Figure 3.2 (a) and (b) show a real frame and its segmented regions respectively. A RAG

in Figure 3.2 (c), Gr(f14) is constructed according to Definition 1. Each circle indicates

a segmented region. And, the radius, the color, and the center of circle correspond to

the node attributes; size (s), color (λ) and location (x, y), respectively. In addition, the

length and angle of the edges represent the spatial edge attributes; spatial distance (d)

and orientation (φ) between two adjacent nodes. In Figure 3.2 (d) and (e), we enlarge

two parts in Figure 3.2 (b) and (c) respectively to show more details on how to construct

a RAG from segmented regions. For example, a region r58 in Figure 3.2 (d) forms a

node v58 in Figure 3.2 (e) preserving the attributes. Since a region r58 is adjacent to two

regions (r39 and r45), two spatial edges (eS(v58, v39) and eS(v58, v45)) are created.
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Unlike existing techniques using RAG, the RAG defined in Definition 1 is an at-

tribute graph which represents not only spatial relationships among segmented regions,

but also its properties using nodes and edges. A node attribute (AV ) and an edge at-

tribute (AE) provide more precise information.

(a) (b) (c)

(d) (e)
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Figure 3.2. (a) Real frame #14, (b) Region segmentation for (a), (c) Gr(f14) for (b), (d)
Enlarging a part of (b), and (e) Enlarging a part of (c).

3.2 Spatio-Temporal Region Graph

While a RAG generated from each frame represents the spatial relationships among

the nodes (regions), it cannot represent the temporal characteristics of video data, such

as speed and direction of moving objects, and moving patterns. A node representing a

region can span across multiple frames. Therefore, if the corresponding nodes in the con-

secutive frames are connected, its temporal characteristics can be represented. In order
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to model this, we propose a new graph-based data structure of video, Spatio-Temporal

Region Graph (STRG) that is temporally connected RAGs. The STRG can handle both

temporal and spatial characteristics of video data. It is defined as follows:

Definition 2. Given a video segment S, a Spatio-Temporal Region Graph, Gst(S), is a

six-tuple Gst(S) = {V, ES, ET , ν, ξ, τ}, where

• V is a finite set of nodes for segmented regions from S,

• ES ⊆ V × V is a finite set of spatial edges between adjacent nodes in S,

• ET ⊆ V × V is a finite set of temporal edges between temporally consecutive nodes

in S,

• ν : V → AV is a set of functions generating node attributes,

• ξ : ES → AES
is a set of functions generating spatial edge attributes, and

• τ : ET → AET
is a set of functions generating temporal edge attributes.

In an STRG, a temporal edge (eT ∈ ET ) represents a relationship between two

corresponding nodes in two consecutive frames such as velocity (ω: how much their

centroids are changed) and moving direction (π: angle between a line formed by two

centroids of the corresponding nodes and horizontal line). Figure 3.3 shows a part of

STRG for frames #14 − #16 in a sample video generated by Definition 2. Figure 3.3 (a)

is the region segmentation results by EDISON for frames #14 − #16, and Figure 3.3 (b)

shows the constructed STRG by adding temporal edges between two consecutive RAGs

(i.e., Gr(f14) − Gr(f15), and Gr(f15) − Gr(f16)). In Figure 3.3 (c), we enlarge parts of

Figure 3.3 (b) to show more details about the STRG construction. For example, two

corresponding nodes v14−44 and v15−39 are connected by a temporal edge eT14−17 between

RAG Gr(f14) and Gr(f15), and v15−39 and v16−42 are connected by eT15−15 between RAG

Gr(f15) and Gr(f16).
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An STRG becomes an extension of RAGs by adding a set of temporal edges (ET )

to them. ET represents the temporal relationships between corresponding nodes in two

consecutive RAGs. For example, ET shows the tracked regions over time, and their

properties, such as moving direction and speed. The main procedure of building an

STRG is therefore, how to construct ET , which is similar to object tracking in a video

sequence. Although there have been numerous efforts [50, 51] on object tracking, it is

still an open problem, since existing tracking algorithms usually use low-level features,

but complicated patterns of moving objects cannot be interpreted easily by the low-level

features. In order to overcome this problem, we propose a new graph-based tracking

method, which considers not only low-level features but also relationships among the

object regions. We use the graph isomorphism and the maximal common subgraph [3] to

find the corresponding nodes in two consecutive RAGs.

3.2.1 Subgraph Isomorphism

To describe our graph-based tracking algorithm, we define subgraph isomorphism

(See Definition 5) . The subgraph isomorphism is based on the definitions of subgraph

(See Definition 3) and graph isomorphism (See Definition 4). We first define subgraph

between two graphs, Gr and Gr′ as follows:

Definition 3. Given a graph Gr = {V, ES, ν, ξ}, a subgraph of Gr is a graph Gr′ =

{V ′, E ′
S, ν ′, ξ′} such that

• V ′ ⊆ V and E ′
S = ES ∩ (V ′ × V ′),

• ν ′ and ξ′ are the restrictions of ν and ξ to V and ES, respectively, i.e.

ν ′(v) =





ν(v) if v ∈ V ′,

undefined otherwise.
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ξ′(eS) =





ξ(eS) if eS ∈ E ′
S,

undefined otherwise.

The notation Gr′ ⊆ Gr is used to indicate that Gr′ is a subgraph of Gr. If two

graphs are identical, we called them as isomorphic graphs, which is defined as follows:

Definition 4. Two graphs Gr = {V,ES, ν, ξ} and Gr′′ = {V ′′, E ′′
S, ν ′′, ξ′′} are isomorphic

if there is a bijective function f : V → V ′′ such that,

• ν(v) = ν ′′(f(v)) ∀v ∈ V ,

• For any edge eS = (v1, v2) ∈ ES there exists an edge e′′S = (f(v1), f(v2)) ∈ E ′′
S such

that ξ(e′′S) = ξ(eS), and

for any edge e′′S = (v′′1 , v
′′
2) ∈ E ′′

S there exists an edge eS = (f−1(v′′1), f
−1(v′′2)) ∈ ES

such that ξ(e′′S) = ξ(eS).

The notation Gr ∼= Gr′′ is used to indicate that Gr and Gr′′ are isomorphic. By

Definitions 3 and 4, subgraph isomorphism between two graphs is defined as follows:

Definition 5. A graph Gr is subgraph isomorphic to a graph Gr′′, if there exist an

injective function f : V → V ′′ and a subgraph G′ ⊆ G′′ such that Gr and Gr′ are

isomorphic (i.e., Gr ∼= Gr′ ⊆ Gr′′).

3.2.2 Neighborhood Graph

We are using graph isomorphism and the maximal common subgraph [3] to find the

corresponding nodes in two consecutive RAGs. In other words, we track the correspond-

ing regions based on graph processing. These algorithms are conceptually simple, but

have a high computational complexity. In order to address this, we decompose a RAG
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into its neighborhood graphs (GN(v)) which are subgraphs of RAG as follows:

Definition 6. GN(v) is a neighborhood graph of a given node v in a RAG, if for any

nodes u ∈ GN(v), u is an adjacent node of v, and has one edge such that eS = (v, u).

According to Definition 6, a neighborhood graph of a node consists of the node itself

and its adjacent nodes. Figure 3.4 shows some examples of the neighborhood graphs of

Gr(f14) in Figure 3.3 (c). GN(v14−44) and GN(v14−52) are the neighborhood graphs for

nodes v14−44 and v14−52, respectively. As seen in the figure, each neighborhood graph

consists of the node itself and its adjacent nodes. Although the neighborhood graph is a

very simple graph where the depth is equal to 1, it can still represent the relationships

among the nodes.

3.2.3 Graph-based Tracking

Let Gm
N and Gm+1

N be sets of the neighborhood graphs in mth and (m + 1)th frames

respectively. For each node v in mth frame, the goal is to find the corresponding node v′

in (m + 1)th frame. In order to decide whether two nodes are corresponding, we use the

neighborhood graphs in Definition 6. Therefore, finding the corresponding two nodes, v

and v′, is converted to find the corresponding two neighborhood graphs, GN(v) in Gm
N ,

and GN(v′) in Gm+1
N , in which GN(v′) is isomorphic or most similar to GN(v).

First, we find the neighborhood graph in Gm+1
N , which is isomorphic to GN(v).

Second, if we cannot find any isomorphic graph in Gm+1
N , we find the most similar neigh-

borhood graph to GN(v) using the following equation which computes the similarity

between two neighborhood graphs (i.e., GN(v) and GN(v′)).

δ(GN(v), GN(v′)) =
|GC |

min(|GN(v)|, |GN(v′)|) (3.1)



33

Frame #14 Frame #15 Frame #16

v14-51

v14-42

v14-43

(a)

(b)

(c)

v14-52

v14-44

v14-53

v15-39

v15-40

v15-49

v16-42

v15-51v15-50
v15-52

v16-44

v16-51

eT14-17

v16-54v16-52 v16-53

eT14-18

eT14-19

eT14-20 eT14-21

eT15-15

eT15-16

eT15-17

eT15-19 eT15-20eT15-18

Figure 3.3. Visualization of STRG for frame #14 − #16: (a) Region segmentation
results, (b) STRG, and (c) Enlarging a part of STRG in (b).

GN(v14-52)GN(v14-44)

v14-44

v14-51

v14-42

v14-43

v14-52
v14-53

v14-51

v14-44

v14-53v14-52

Figure 3.4. Two examples of neighborhood graphs for nodes v14−44 and v14−52.
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where | • | denotes the number of nodes of a graph, and GC is the maximal common

subgraph between GN(v) and GN(v′). The well-known algorithms computing GC are

based on the maximal clique detection [52] or the backtracking [53]. We exploit the

idea of maximal clique detection to compute |GC | since the neighborhood graph can be

easily transformed into a maximal clique. For maximal clique and other graph matching

operations, we need to compare two nodes or two edges using their attribute affinities.

For these comparisons, we use Mahalanobis metric to consider the weights of attributes.

The node affinity (WV ) between AV i and AV j , spatial edge affinity (WES
) between AEi

S

and AEj
S
, and temporal edge affinity (WET

) between AEi
T

and AEj
T

are as follows:

WV (i, j) = (AV i − AV j)T Σ−1(AV i − AV j) (3.2)

WES
(i, j) = (AEi

S
− AEj

S
)T Σ−1(AEi

S
− AEj

S
)

WET
(i, j) = (AEi

T
− AEj

T
)T Σ−1(AEi

T
− AEj

T
)

Σ−1 gives the weights of attributes whose values are predetermined depending on

the content of video. Since we do not consider correlations among features, Σ−1 is a

diagonal matrix.

In order to find GC between GN(v) and GN(v′), we first construct an association

graph which is formed by creating nodes from each compatible pair of two nodes in GN(v)

and GN(v′), and inserting edges between nodes if they have equivalent relationships with

the nodes v and v′. Then, GC is obtained by finding the maximal clique in the association

graph. Figure 3.5 illustrates the pseudo code of finding the maximal common subgraph

from two given neighborhood graphs (Algorithm 1).

The higher the value of δ in Equation (3.1), the more similarity between GN(v)

and GN(v′). For GN(v) in Gm
N , GN(v′) is the corresponding neighborhood graph in

Gm+1
N , whose δ with GN(v) is the largest among the neighborhood graphs in Gm+1

N , and

greater than a certain threshold value (Tsim); i.e. argGN (v′)∈Gm+1
N

max δ(GN(v), GN(v′)).
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Algorithm 1: Maximal Common Subgraph

Input:  two neighborhood graphs: GN(v) and GN(v′)
Output: the set of nodes VC

1: VA = a set of nodes of the association graph between GN(v) and GN(v′);
2:  k = min( | GN(v) | , | GN(v′) | ) + 1;
3: do
4:     k = k – 1, VC = ∅ ;

5:     MCS (VC , VA);

6: until (| VC | = k);

7: return VC ;

8: Procedure MCS (X, Y )

9: begin
10:  Y1 = {v ∈ VA : v is connected to all nodes in Y };

11:  Y2 = {v ∈ Y – X : v is connected to all nodes in X };

12:  if Y1 = ∅ or Y2 = ∅ then
13:      return X;

14:  else
15:      select a node vy which is connected to all nodes in X ; VC = VC

�
{vy}; 

16:      MCS (X
�

{vy}, Y ) 
�

MCS (X, Y – {vy});

17:  end if
18:end Procedure

Figure 3.5. Algorithm 1: Maximal Common Subgraph.

In this way, we find all possible pairs of corresponding neighborhood graphs (eventually

corresponding nodes) from Gm
N to Gm+1

N . Figure 3.6 provides the pseudo code of graph-

based tracking (Algorithm 2).

The complexity of the graph-based tracking algorithm can be analyzed as follows.

First, to analyze Algorithm 1, let K1 and K2 be the number of nodes of two neighborhood

graphs, GN(v) and GN(v′), respectively. According to [54], the worst case (in number of

states) to compute Algorithm 1 is:

S = (K2 + 1)(K2) . . . (K2 −K1 + 2) =
(K2 + 1)!

(K2 −K1 + 1)!
(3.3)

When K1 = K2, the complexity of Equation (3.3) is reduced to O(K ·K!) where

K is the number of nodes in a neighborhood graph. Therefore, when I and J are the
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Algorithm 2: Graph-Based Tracking

Input:  two Region Adjacent Graphs: Gr(fm) and Gr(fm+1)

Output: temporal edge set: ET

1: let ET = ∅ ;
2: for each v ∈ Gr(fm) do
3:     let g = GN(v),  maxSim = 0, Sim = 0, maxNode = null;

4:          for each v′ ∈ Gr(fm+1) do
5:               let g′ = GN(v′ ); 
6:               if g and g′ are isomorphic then
7:                    ET = ET ∪ {eT (v, v′ ) }; break;
8:               else Sim = δ (g, g′) by Equation (3.1);
9: end if
10:             if Sim > maxSim then
11:                  maxNode = v′ ;  maxSim = Sim;
12:        done
13:        if no isomorphic graph of v and maxSim>Tsim then ET = ET ∪ {eT (v, maxNode)};
14: done
15: return ET ;

Figure 3.6. Algorithm 2: Graph-based Tracking.

number of nodes of two RAGs, Gr(fm) and Gr(fm+1), the total complexity to compute

Algorithm 2 is O(I · J · K · K!). However, since two consecutive frames are not much

different in a same shot, the search area in Gr(fm+1) for each node in Gr(fm) is very

limited. In other words, for each node v in Gr(fm) we do not have to travel all nodes in

Gr(fm+1) to find its corresponding node. Consequently, the complexity can be reduced

to O(I · K · K!). In addition, in a real situation the neighborhood graph has a small

number of nodes (i.e., K is 4 to 8), and is much simpler than general graphs. Therefore,

the overall complexity of the graph-based tracking algorithm can be reduced significantly.

3.3 Experimental Setup of This Dissertation

In order to assess the proposed techniques in this dissertation, we performed a set

of experiments. For the experiments, we prepared two different data sets; the real data
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set and the synthesized data set. The real data set has various video clips having different

contents. The data set will be used for the evaluations of the proposed techniques in this

dissertation. On the other hand, the synthesized data set is generated to evaluate the

performance of the proposed algorithms. Java 2 SDK 1.4.2 and JMF 2.1e are used for the

experiments on an Intel Pentium IV 2.6 GHz CPU computer for the rest of experiments

in this dissertation.

3.3.1 Real Video Data Set

To perform a set of experiments in this dissertation, we prepare a real video data set

that is used for verifying the proposed video data model (see Section 3.4), shot boundary

detection (see Section 4.3.2), video data mining (see Section 5.4.1), and query processing

(see Section 7.6).

The real video data set consists of two groups. The first group has the produced

videos with various contents, and the second has the surveillance videos captured by a

video camera without any pre-defined moving patterns. Table 3.1 shows the description of

the real data set used for the experiments in this dissertation. For the produced videos,

we choose eight video clips from [55], which have various types of contents including

drama, animation, talk show, movie, sport, and news. Each video clip has different types

of shot changes, such as abrupt and gradual changes. The surveillance videos are taken

from inside of building (Surv 1 and 2) and outside for traffic scenes (Traffic 1 and 2).

As seen in Table 3.1, while the produced videos have various types of shot changes with

simple object motions, the surveillance videos have complex patterns of object motions

without any shot change. Our video data set lasts about 47 hours that is long enough to

evaluate the proposed algorithms in this dissertation.
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Table 3.1. Description of real data set

Type Name
Duration

(hh:mm:ss)
Abrupt

Changes

Drama Silk Stalking 00:10:24 91

Cartoon Scooby Dog Show 00:11:38

Sitcom Friends 00:10:22

Talk Show Divorce  Court 00:11:11

Si-Fi Star Trek 00:12:27

Soap Opera All My Children 00:05:44

Sport Tennis 00:03:53

Group

Produced
Video

Indoor

Indoor

Outdoor

Outdoor

Surveillance
Video

Surv 1

Surv 2

Traffic 1

Traffic 2

40:38:02

04:12:24

00:15:08

00:12:48

Gradual
Changes

4

Total
Changes

95

101 5 106

113 3 116

154 6 160

109 2 111

48 2 50

114 5 119

0 0 0

0 0 0

0 0 0

0 0 0

Complexity of
Object Motion

Very Low

Low

Low

Very Low

Low

Very Low

Very High

High

High

Very High

Very High

Total 46:54:55 906 37 943

No.

1

2

3

4

5

6

7

9

10

11

12

News Local (ABC) 00:03:53 176 10 186 Low8

3.3.2 Synthesized Data Set

In order to demonstrate the performance of the proposed video data mining tech-

niques (see Section 5.4.1), indexing (see Section 6.5), and query processing (see Section

7.6), the synthesized data are generated and used for the experiments. Since a moving

object extracted from a video is a type of time-series data, we generate a set of new data

by combining the Pelleg data set [56] which is widely used to test clustering algorithms,

with the Vlachos data set [57] which is 2-D time-series data with noise. Our synthesized

data is generated as follows.

1. We design 48 moving patterns: vertical (12), horizontal (12), diagonal (8) and

U-turn (16). Each pattern has different sizes of objects and various time lengths.

2. We generate the time-series data using the approach described in [56], which is

normally distributed with σ = 5.
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3. We add noise to each data point based on the method presented in [57]. We add

six different noise levels ranging from 5% to 30%.

4. The generated data is converted to a temporal subgraph format using the nodes,

temporal edges, and their attributes that will be explained in Section 4.2.1 (see

Definition 7).

Figure 3.7 shows the example of generated data set when the noise level is 5%. The

data set has 48 moving patterns including 12 vertical, 12 horizontal, 8 diagonal, and 16

U-turn directions. Each moving pattern has different sizes of objects and various time

lengths.

3.4 Experimental Results of STRG Generation

According to the definitions of STRG generation mentioned in this chapter, we

developed the application for STRG generation using Java. The input can be either a

real video stream from video camera or saved video files. Figure 3.8 shows the screenshot

of developed STRG generation. The application can generate STRG for the input video.

It has several display panels for real video frame, region segmentation, RAG, and STRG

for three consecutive frames. The output is saved as the format of STRG for further

processing.

In order to evaluate the performance of STRG generation, we generate STRGs for

videos in Table 3.1. We investigate the size of STRG, and the average processed frames

during STRG generation. Table 3.2 shows the performance of STRG generation for real

video data set. As seen in table, the size of generated STRG is reduced significantly

comparing to the size of video. Concerning to the efficiency of STRG generation, the last

column of Table 3.2 clearly shows that the proposed STRG generation can process over

12 frames per second (FPS) regardless of the types of videos.
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(a)

(b)

(c)

(d)

Figure 3.7. Visualization of synthesized data set when noise level is 5%: (a) Vertical
(12), (b) Horizontal (12), (c) Diagonal (8), and (d) U-turn (16).



41

RAG

STRG

Control
Panel

Figure 3.8. Screenshot of STRG generation.

Table 3.2. Performance of STRG generation

Video No.
Duration

(hh:mm:ss)

1 00:10:24

2 00:11:38

3 00:10:22

4 00:11:11

5 00:12:27

6 00:05:44

7 00:14:20

9

10

11

12

40:38:02

04:12:24

00:15:08

00:12:48

STRG Size

1.1 MB

1.3 MB

2.1 MB

1.0 MB

1.7 MB

0.9 MB

2.7 MB

72.2 MB

6.4 MB

1.4 MB

1.2 MB

Avg. Processed
FPS

13.4 FPS

12.5 FPS

12.3 FPS

13.1 FPS

12.3 FPS

13.5 FPS

12.0 FPS

14.1 FPS

13.8 FPS

13.1 FPS

12.9 FPS

8 00:30:27 4.3 MB 13.1 FPS
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3.5 Summary

In this chapter, we proposed a new graph-based data structure to model video

data. Several researches have shown that a graph can be a better candidate for mod-

eling semantically rich and complicated video data. However, there are few methods

that consider the temporal feature of video data, which is a distinguishable and repre-

sentative characteristic when compared with other multimedia. In order to consider the

temporal feature effectively and efficiently, we proposed a new graph-based data struc-

ture called Spatio-Temporal Region Graph (STRG). Unlike existing graph-based data

structures which provide only spatial features, the proposed STRG further provides tem-

poral features, which represent temporal relationships among spatial objects. First, we

segment each frame into a number of homogeneous color regions using region segmen-

tation algorithm. From the segmented region, we build a Region Adjacency Graph for

each frame, where a set of nodes indicate the segmented region and a set of spatial edges

represent the spatial relationships among the nodes, i.e., adjacency. After we have RAGs

for the entire video, we construct an STRG of the video by adding a set of temporal

edges that represent temporal characteristic. To add a set of temporal edges, we find

the corresponding nodes between two consecutive RAGs. However, the graph-based ap-

proach requires a high computational complexity. In order to address this, we introduce

a neighborhood graph of a node that is subgraph of RAG. Since a neighborhood graph

is a simple graph, the computations for generating STRG are reduced significantly.



CHAPTER 4

STRG PARSING

In this chapter, we introduce several graph-based video parsing techniques such as

shot boundary detection, object detection, and background modeling. These techniques

of video parsing based on a graph provide more efficient and accurate video processing.

An STRG is segmented into a number of smaller pieces corresponding to shots, which

is the very first step in video processing. The segmented STRGs are used for the basic

processing units such as shots or scenes. An STRG needs to be segmented into smaller

units since it is a huge graph that requires heavy computation for further processing.

Then, the small pieces of STRG are decomposed into Object Region Graphs (ORGs)

and Background Graphs (BGs). In order to find ORGs from STRG, we extract all liner

graphs whose nodes are connected by only temporal edges. Due to the limitation of

region segmentation algorithm, a single moving object can be divided into several ORGs.

To address this, the ORGs belonging to a single object are merged into Object Graph

(OG). In addition, we model a background of STRG, called BG, since there are lots of

redundant information in the background. The redundant BGs are eliminated to reduce

the index size and search time.

The rest of this chapter is organized as follows. In Section 4.1, we describe the

graph-based shot boundary detection technique. For the detection, we introduce a Graph

Similarity Measure. Section 4.2 shows the way that STRG is decomposed into a number

of OGs and BG. The performance study on real video data set is reported in Section 4.3.

Section 4.4 presents the summary of the chapter.
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4.1 Graph-based Shot Boundary Detection

An STRG needs to be segmented into smaller units since it is a huge graph that

requires very high computation for further processing. A shot, defined as a collection

of interrelated consecutive frames taken continuously by a single camera operation, is

meaningful to serve as an elementary unit. Shot boundaries can be detected by employing

a metric to measure the similarity or difference between two consecutive frames. This is

based on the fact that the content remains nearly the same in a shot. If the similarity

is more than a certain threshold, two frames are considered to be in a same shot. In

our case, we exploit graph matching to measure the similarity between two consecutive

frames (RAGs). Typically shot transitions can be classified into two groups: abrupt

change (i.e., hard-cut) and gradual changes (i.e., dissolve, fade-in or fade-out). Our

proposed shot boundary detection using graph matching can detect not only abrupt

change, but also gradual changes in video.

4.1.1 Graph Similarity Measure

Shot boundaries in an STRG can be revealed as the temporal graph similarity

between two consecutive RAGs by using the similarity between two neighborhood graph

δ in Equation (3.1). In other words, if two RAGs are similar to each other, almost all of the

nodes in one RAG are connected to the other RAG by ET . The two frames corresponding

to the two RAGs belong to the same shot. Otherwise, two frame corresponding the RAGs

become a shot boundary.

Now, we measure the similarity between two RAGs using δ in Equation (3.1). Let

Gr(n− 1) and Gr(n) be RAGs of (n− 1)th and nth frame, respectively. Graph Similarity

Measure, GSM between Gr(n− 1) and Gr(n) can be defined as:

GSM(Gr(n− 1), Gr(n)) =
1

max(I, J)

I∑
i=1

J∑
j=1

δ(GN(vi), GN(vj)) (4.1)
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where I and J are the number of nodes of Gr(n− 1) and Gr(n), respectively. However,

GSM still requires expensive computation since it computes all pairs of neighborhood

graphs between Gr(n − 1) and Gr(n). In order to reduce the computation time, we

consider the neighborhood graphs within a certain range in Gr(n). Since two consecutive

RAGs in a shot are not much different, for each neighborhood graph in Gr(n− 1) we do

not have to compute the similarities (δ) with all neighborhood graphs in Gr(n). Instead,

we consider only neighborhood graphs within a certain range in Gr(n), which can reduce

the computation time of GSM . A simplified version of GSM in Equation (4.1), which

is referred to GSMsim, can be defined as:

GSMsim(Gr(n− 1), Gr(n)) =
1

I

I∑
i=1

J ′∑

j′=1

δ(GN(vi), GN(vj′)) (4.2)

where vj′ (j′ = 1, . . . , J ′) is the node in Gr(n) such that the spatial distance between

(x, y) of vi and (x′,y′) of vj′ is less than a given value. We will show the efficiency of

GSMsim in Section 4.3.

4.1.2 Shot Boundary Detection

We use GSMsim in Equation (4.2) to detect shot boundaries, since each frame is

represented as a graph (RAG) and it considers the spatial relationships of a RAG unlike

existing similarity measures such as pair-wise pixel comparison [58] or color histogram

[59]. Shot transitions can be classified into two groups: abrupt change (i.e. hard-cut)

and gradual change (i.e. dissolve, fade-in and fade-out).

4.1.2.1 Abrupt Changes

Detecting abrupt change is relatively easier. If GSMsim is more than a certain

threshold value (Tcut), the two frames corresponding to the two RAGs are considered to

be in a same shot. Otherwise, the two frames are considered to be in two different shots.
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The main problem is how to select the threshold value (Tcut). We used several threshold

values in our technique. However, these values are not based on a pre-selected training

set or previously collected statistics. As seen in Figure 4.1 which has 14 actual cuts, the

number of detected cuts is not sensitive to the threshold value. For example, 14 cuts are

detected when Tcut = (0.1, 0.2, 0.3), and 17 cuts are detected when Tcut = 0.4. Therefore,

we can easily select an appropriate Tcut without doing any additional processing.
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Figure 4.1. Shot detection results for abrupt changes.

4.1.2.2 Gradual Changes

As the name implies, a gradual change occurs throughout a number of frames.

During a gradual change, GSMsim generates lower similarity values regardless of the

types of transitions since the similarity is based on matched nodes and edges which are

rarely found in gradually changed frames. Therefore, the proposed method can detect

starting and ending frames of gradual changes. Figure 4.2 shows some examples of shot
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boundaries having gradual changes. An optimal threshold value (Tcut) for gradual change

can be selected indubitably. As seen in the figure, 0.2, 0.3, 0.4 or 0.5 generates same

boundaries.
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Figure 4.2. Shot detection results for gradual changes.

Unlike existing SBD techniques [55, 60] which use only feature values to discrim-

inate the difference between two frames, the proposed SBD considers the relationships

among segmented regions as well. Therefore, a gradual change is detected without any

complicated additional processing, and the optimal threshold value (Tcut) can be selected

reasonably.

4.2 STRG Decomposition

In this section, each segmented STRG (strg , in the following discussion), which

corresponds to a shot, is decomposed into Object Region Graphs (ORGs) and Background

Graphs (BGs). The ORGs belonging to a single object are merged into an Object Graph
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(OG), and the redundant BGs are eliminated to reduce the searching area and the size

of index.

4.2.1 Object Region Graph

One of the key characteristics of video data is that each spatial feature needs to

be represented as a temporal feature, since it may change over time. In order to capture

the temporal feature from an STRG, we define a temporal subgraph which is a set of

sequential nodes connected to each other by a set of temporal edges (ET ) as follows:

Definition 7. Given a graph Gst = {V,ES, ET , ν, ξ, τ}, a temporal subgraph of Gst is a

graph Gst′ = {V ′, E ′
S, E ′

T , ν ′, ξ′, τ ′} such that

• V ′ ⊆ V , E ′
S = ES ∩ (V ′ × V ′) and E ′

T = ET ∩ (V ′ × V ′)

• ν ′, ξ′ and τ ′ are the restrictions of ν, ξ and τ to V, ES and ET , respectively, i.e.

ν ′(v) =





ν(v) if v ∈ V ′,

undefined otherwise,

ξ′(eS) =





ξ(eS) if eS ∈ E ′
S,

undefined otherwise,

τ ′(eT ) =





τ(eT ) if eT ∈ E ′
T ,

undefined otherwise.

The notation Gst′ ⊆T Gst is used to indicate that Gst′ is a temporal subgraph of

Gst. In Definition 8, when the spatial edge set ES is empty, the temporal subgraph Gst′

can represent a trajectory of tracked regions. We refer to this trajectory as an Object
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Region Graph (ORG). An ORG is a special case of temporal subgraph. An ORG has

several characteristics as follows:

• It is a type of time-varying data since the temporal edges are constructed based

on time. This is an important feature of an ORG that distinguishes it from other

graphs.

• Unlike existing video indexing techniques [61] which consider only detected objects,

an ORG considers spatial and temporal relationships between nodes.

• It is a linear graph in which each node has only temporal edges, ET .

Thus, it is more efficient to process matching and indexing.

4.2.2 Object Graph

Due to the limitations of existing region segmentation algorithms, different colors

of regions belonging to a single object cannot be detected as one region. Moreover,

even a same color region may be segmented into two different regions because of small

amount of illumination changes. This can be addressed by region merging. For instance,

a body of a person may consist of several regions such as head, upper body and lower

body. Figure 4.3 (a) shows an object (a person) that is segmented into four regions over

three frames. For each corresponding pair of regions (nodes), we build four ORGs, i.e.

(v1, v5, v9), (v2, v6, v10), (v3, v7, v11), and (v4, v8, v12) seen in Figure 4.3 (b). Since these

belong to a single object, it is better to merge them to one. For convenience, we refer to

the merged ORGs as an Object Graph (OG).

In order to merge ORGs into OG, we first show how to merge two subgraphs in

Theorem 1.
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Figure 4.3. (a) Sample object segmented several parts, (b) Example of ORGs for (a), (c)
Merged OG, and (d) Results of temporal edges.

Theorem 1. For given subgraphs G1, G2, G
′′
1 and G′′

2, if G1 is subgraph isomorphic to G′′
1,

and G2 is subgraph isomorphic to G′′
2, then G1 ∪G2 is subgraph isomorphic to G′′

1 ∪G′′
2.

Proof. By the Definition 5,

∃ subgraph G′
1 ⊆ G′′

1 3 f1 is a graph isomorphism from G1 to G′
1,

∃ subgraph G′
2 ⊆ G′′

2 3 f2 is a graph isomorphism from G2 to G′
2, and

G′
1 ∪G′

2 ⊆ G′′
1 ∪G′′

2.

f1 ◦ f2 is a graph isomorphism from G1 ∪G2 to G′
1 ∪G′

2, because
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(1) ν1(ν2(v)) = ν ′1(ν
′
2(f1(f2(v)))) ∀v ∈ G1 ∪G2 ⇒

ν1 ◦ ν2(v) = ν ′1 ◦ ν ′2(f1 ◦ f2(v)) ∀v ∈ G1 ∪G2.

(2) For any edge eS = (v1, v2) in G1 ∪G2

∃ an edge e′S = (f1 ◦ f2(v1), f1 ◦ f2(v2)) in G′
1 ∪G′

2 such that ξ(e′S) = ξ(eS), and

for any edge e′S = (v′1, v
′
2) in G′

1 ∪G′
2,

∃ an edge eS = (f−1
2 ◦ f−1

1 (v′1), f
−1
2 ◦ f−1

1 (v′2)) in G1 ∪G2 such that ξ(e′S) = ξ(eS).

(1) and (2) satisfy the conditions of Definition 4 for a graph isomorphism between G1∪G2

to G′
1 ∪G′

2.

Since f1 and f2 are injective functions, f1◦f2 is an injective function too. Therefore,

G1 ∪G2 is subgraph isomorphic to G′′
1 ∪G′′

2.

Theorem 1 states that two pairs of isomorphic subgraphs can be merged into one

pair of isomorphic subgraphs. Suppose that ORGs and ORGt are two object region

graphs which have isomorphic subgraphs with respect to the neighborhood graph of each

node. Let vs and vt be nodes in ORGs and ORGt, respectively. Then, two neighborhood

graphs GN(vs) and GN(vt) are obtained according to Definition 7. GN(vs) and GN(vt)

have an isomorphic subgraph G′
N(vs) and G′

N(vt), respectively, because a temporal edge

in an ORG is constructed by an isomorphic subgraph. By Theorem 1, G′
N(vs) ∪G′

N(vt)

is an isomorphic subgraph of GN(vs) ∪ GN(vt). After repeating this operation to all

corresponding nodes in ORGs and ORGt, ORGs ∪ ORGt which is an OG is obtained

eventually.

Since there are many types of video objects, which cannot be handled by a single

algorithm, we assume in this paper that a target object has the following two conditions:

• An object consists of one or more ORGs that have the same moving direction and

speed.
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• Each ORG in a single object is adjacent to at least one other ORG (except an

object having a single ORG).

For example, an object that moves and stops for a while can be detected as a

moving object, while an object that does not move at all cannot be detected. The still

object becomes a part of the background. We can also detect multiple objects that move

together as long as they are not adjacent to each other. In order to merge two ORGs that

belong to a single object, we consider the attributes (i.e. velocity and moving direction)

of a temporal edge set (ET ). If two ORGs have the same values of velocity and moving

direction, these can be merged into one. For example, in Figure 4.3 (d) the four temporal

edges, i.e., eT1 , eT2 , eT3 and eT4 , have almost the same values for velocity (ω) and moving

direction (π). The temporal edges and the corresponding nodes are merged into one

temporal edge (eT3) and two nodes (v2 and v6). In Figure 4.3 (c), four more ORGs are

merged into a single OG eventually, i.e. (v2, v6, v10).

4.2.3 Background Graph

A video frame usually consists of two areas: foreground and background. The fore-

ground is the main target on which a camera focuses, and the background is a supporting

area that does not change significantly over time. Foreground/background separation is

a fundamental research area in a content-based video processing [62, 63]. Moreover, from

a prospect of graph-based video indexing, the separation is important because the size of

index can be drastically reduced by eliminating the redundant backgrounds. Generally

speaking, it is sufficient to maintain only one Background Graph (BG) for each segmented

shot (strg) where there is little difference in the background over the frames.

We subtract all OGs from an strg , then the remaining graphs are considered as

background graphs. In order to obtain a single BG for each shot, we overlap all remaining
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graphs using temporal edges (ET ). The main idea of building a BG is inspired by adaptive

background modeling and mosaic techniques [63].

The benefits of the strg decomposition can be summarized as follows:

1. It can reduce index size by eliminating BGs.

2. It can reduce searching time because the searching area is reduced to only OGs.

For convenience, we show Figure 3.3 (c) in Figure 4.4 (a) again. Figure 4.4 (b)

shows the example of constructed BG from Figure 4.4 (a). The connected nodes by

temporal edges become a single node, and their corresponding spatial edges are added

to the BG.

(a)

eT14-17

eT14-18

eT14-19

eT14-21

eT15-15

eT15-16

eT15-17

eT15-19 eT15-20eT15-18

(b)

Figure 4.4. (a) A part of STRG in Figure 3.3 (c), and (b) BG from (a).

4.3 Experimental Results

To access the proposed methods, we have performed the experiments with real

videos as shown in Table 3.1. All videos are encoded to AVI format with 15 frames per

second and 160 × 120 pixel resolution. As seen in Table 3.1, the data set consists of

various types of contents taken from TV programs. The sixth and seventh columns of

Table 3.1 are the number of abrupt and gradual changes in videos, respectively.

We evaluate the performance of our proposed approaches by demonstrating that:
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• The performance of GSMsim in terms of processing speed is enough for a real time

system.

• Our shot boundary detection technique using graph matching can detect and clas-

sify accurately both abrupt and gradual shot changes in video sequences.

• The proposed STRG decomposition technique can detect moving objects as a for-

mat of object graph (OG).

4.3.1 Efficiency of Graph Similarity Measure

The efficiencies of GSM and GSMsim affect the performance of real time system

since general graph matching algorithms are known as NP-complete [54]. In order to

verify the efficiencies of GSM and GSMsim, we check their processing capacity, i.e., the

number of processed frames per second, when they run on the test videos with different

frame rates (Frame Per Second, FPS). First, we digitize videos with 5 FPS, 10 FPS

and 15 FPS. Then, the SBD mentioned in Section 2.3 is performed for each digitized

sequence of frames using GSM and GSMsim for similarity measures. Table 4.1 shows

the results where each value is the average number of frames per second processed during

the SBD. If the value is greater than corresponding FPS, it is able to process video data

in real time. Otherwise, the processing will be delayed. As seen in Table 4.1, GSMsim is

applicable to video sequences with 5 FPS and 10 FPS, while GSM is only for 5 FPS. This

is because GSMsim is simplified by reducing searching area. Therefore, we use GSMsim

as similarity measure, and set up the system to process 10 frames for every second in our

experiments.

4.3.2 Performance of Shot Boundary Detection

The performance of SBD is important for video abstractions since the proposed

video abstraction algorithms are based on the shots. In order to evaluate the effective-
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Table 4.1. The average number of processed frames per second for the SBD using GSM
and GSMsim with different frame rates: 5, 10, and 15 FPS

Avg

No.
GSM GSM

sim

5 FPS 10 FPS 15 FPS

7.75 8.01 8.21 10.97 11.96

5 FPS 15 FPS

11.41

10 FPS

1 7.8 8.1 8.1 10.8 12.211.0

2 7.5 7.9 8.0 10.5 10.810.8

3 8.0 8.3 8.5 11.0 12.511.8

4 7.0 7.2 7.3 10.2 10.910.5

5 8.2 8.5 9.0 11.3 12.912.0

6 7.8 8.0 8.1 12.1 12.912.4

7 7.5 7.8 7.9 10.6 10.810.7

8 8.2 8.3 8.8 11.3 12.712.1

ness of the proposed SBD using graph matching (GM-SBD), we compare it with the

SBD proposed by FXPAL Lab (FXPAL) [60], which has one of the best methods in

TRECVID 2004. FXPAL combines pairwise similarities between images in the locality

and supervised classification. All experiments of GM-SBD are performed with Tcut = 0.2,

while FXPAL uses T = 4 for a threshold value and L = 5 for the number of neighbor-

hood frames without random projection. We use ‘Recall’ and ‘Precision’ to verify the

performance of those techniques. The recall and precision are defined as:

• Recall (Hr) is the ratio of the number of shots detected correctly over the actual

number of shots in a given data set.

• Precision (Hp) is the ratio of the number of shots detected correctly over the total

number of shots detected correctly or incorrectly.

The values of recall and precision are in the range of [0, 1]. The higher recalls

indicate a higher capacity of detecting correct shots, while the higher precisions indicate

a higher capacity of avoiding false matches.

The results are given in Table 4.2. As seen in Table 4.2, the results of GM-SBD

are almost the same as those of FXPAL. We observe that the recalls and precisions
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of the proposed SBD reach up to 94% and 90%, respectively, which indicate that it is

competitive with existing techniques, and even consistent for different types of videos.

In case of gradual changes, GM-SBD is more accurate than FXPAL.

Table 4.2. Experimental results of SBD

Avg

No.

GM-SBD FXPAL

Abrupt change

Hr Hp

Gradual change

Hr Hp

Abrupt change

Hr Hp

Gradual change

Hr Hp

0.94 0.90 0.78 0.64 0.96 0.92 0.76 0.55

1
2
3

4
5
6

0.96 0.89 1.00 0.80 0.97 0.92 0.75 0.38
0.92 0.95 0.80 0.67 0.94 0.91 0.60 0.50
0.94 0.90 0.67 0.67 0.94 0.91 0.67 0.50

0.95 0.98 1.00 0.67 0.95 0.95 1.00 0.50
0.94 0.87 1.00 0.67 0.94 0.85 1.00 0.67

0.94 0.92 0.67 0.57 0.96 0.91 0.67 0.50

7

8

0.95 0.83 0.80 0.67 0.96 0.91 0.80 0.57

0.92 0.85 0.70 0.58 0.97 0.93 0.80 0.73

4.3.3 Performance of Object Graph Detection

To access the proposed method for STRG decomposition technique, we performed

the experiments with the real video streams captured by surveillance camera as shown

in Table 3.1. Table 4.3 shows the results of OG detection. The third and the fourth

columns of Table 1 are the number of actual video objects and the number of correctly

detected OGs, respectively. As seen in the last column, the accuracy of graph-based

moving object detection, i.e., OG detection, reaches up to 94.7% on average.

4.4 Summary

In this chapter, we described several graph-based video parsing techniques such

as shot boundary detection, object detection, and background modeling. The video
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Table 4.3. Experimental results of Object Graph (OG) detection

No.

9

10

11

12

Total

OG performance

Actual OGs Found OGs Accuracy

438 411 93.8%

159 147 92.5%

202 195 96.5%

210 203 96.7%

1009 956 94.7%

Duration
(hh:mm:ss)

40:38:02

04:12:24

00:15:08

00:12:48

45:18:22

parsing techniques are basis on a graph, which provide more efficient and accurate video

processing. First, an STRG is segmented into a number of smaller pieces corresponding

to shots. Then, each segmented STRG is decomposed into Object Region Graphs (ORGs)

and Background Graphs (BGs). Due to the limitation of region segmentation algorithm,

a single moving object can be divided into several ORGs. To address this, we merge

ORGs belonging to a single object into Object Graph (OG). In addition, we model a

background of STRG, called BG, since there are a lot of redundant information in the

background. The redundant BGs are eliminated to reduce the index size and search

time.



CHAPTER 5

STRG CLUSTERING

In the previous chapters, we proposed a new graph-based data structure, STRG

that can represent the content of video sequence. After an STRG is constructed from a

given video sequence, it is decomposed into its subgraphs called OGs, which represent the

temporal characteristics of video objects. In this chapter, we introduce graph-based video

data mining techniques, specifically unsupervised learning to find knowledge, i.e., moving

patterns of objects. For the unsupervised learning, we cluster similar OGs into a group, in

which we need to match two OGs. For this graph matching, we introduce a new distance

measure, called Extended Graph Edit Distance (EGED), which can handle the temporal

characteristics of OGs. For actual clustering, we exploit Expectation Maximization (EM)

with EGED. In addition, we propose a model-based conceptual clustering (MCC) of

spatio-temporal data based on a formal concept analysis, which provides a user formal

concepts of clusters. The proposed MCC can be applied to any types of spatio-temporal

data, such as OGs, hurricane track data, and time-series data.

The remainder of this chapter is organized as follows. In Section 5.1, we introduce

the EGED for graph matching. Section 5.2 shows EM clustering algorithm to group

similar OGs. In Section 5.3, we propose a model-based conceptual clustering algorithm.

The performance study is reported in Section 5.4. Finally, Section 5.5 presents the

summary of the chapter.

58
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5.1 Extended Graph Edit Distance

There are many graph matching algorithms. The simplest one is to use an inexact

subgraph isomorphism [64]. In spite of its elegance and intuitiveness, this approach

has an exponential complexity, therefore this is not suitable for our system that needs

a significant amount of graph operations. Messmer and Bunke [65] proposed a new

algorithm for subgraph isomorphism, which uses prior knowledge about the database

model to reduce the computational complexity. One limitation of their algorithm is

that it uses a traditional edit distance which has been used for string matching. It is

not appropriate to handle complex graphs (i.e., STRG) which have various node and

edge attributes. In order to address this, Shearer et al. [64] developed an algorithm

to find the largest common subgraph (LCSG) by extending Messmer and Bunke’s work

with the decomposition network algorithm. Since the LCSG is not suitable for graphs

with temporal characteristics, we extend it by combining Chen’s edit distance with real

penalty (ERP) [66], which allows to obey metric space with local time shifting. We call

this new algorithm as Extended Graph Edit Distance (EGED) for convenience.

The purpose of the edit distance for graphs is to compute the minimum cost of graph

edit operations such as adding, and changing nodes, which are necessary to transform

one graph to another. However, a typical graph edit distance in [64] uses a simple edit

cost function, in which all of the edit operations have equal cost. This simple edit cost

function is not suitable for computing the distance between OGs because we need to

consider time and various attributes of nodes and edges differently. In order to address

this, we consider temporal characteristics and the node attributes of OG together to

compute the distance (dissimilarity) between two OGs. Therefore, the main difference

between the standard edit distance and EGED is that (1) EGED can handle a local time

shifting using dynamic programming, which provides more accurate measure in time
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sequence data, and (2) EGED has more realistic cost function for adding and changing

nodes than that of edit distance.

Since the main operations to edit graphs deal with nodes and their attributes

rather than edges, we consider only the nodes and their attributes. Let OGs
m and OGt

n

be sth and tth OGs with m and n number of nodes; i.e., OGs
m = {vs

1, v
s
2, . . . , v

s
m, νs}, and

OGt
n = {vt

1, v
t
2, . . . , v

t
n, ν

t}, respectively. The distance function EGED between OGs
m

and OGt
n can be defined as follows.

Definition 8. The Extended Graph Edit Distance (EGED) between two object graphs

OGs
m and OGt

n is defined as:

EGED(OGs
m, OGt

n) =





∑m
i=1 |vs

i − gi| if n = 1,

∑n
i=1 |vt

i − gi| if m = 1,

min[EGED(OGs
m−1, OGt

n−1) + distged(v
s
m, vt

n),

EGED(OGs
m−1, OGt

n) + distged(v
s
m, gap),

EGED(OGs
m, OGt

n−1) + distged(gap, vt
n)] otherwise.

where gap is an added or changed node, and gi is a gap for ith node. And,

distged(v
s
i , v

t
j) =





|vs
i − vt

j| if vs
i ,v

t
j are not a gap

|vs
i − gj| if vt

j is a gap

|vt
j − gi| if vs

i is a gap.

Let v indicate all attribute values of a node for convenience. distged is the cost

function for editing nodes. Depending on how to select a gap (gi), various distance

functions are possible. For example, when gi = vi−1, the cost function is the same as one

in Dynamic Time Warping (DTW), which does not consider local time shifting.

In our case, gi = vi−1+vi

2
is used for distged. EGED can handle a local time shifting

properly, since it is based on dynamic programming which is a suitable for time-varying
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data [66], which can handle local time shifting properly. Figure 5.1 illustrates the com-

putation of EGED between two OGs, OGs and OGt. In Figure 5.1 (a), according to

Definition 5, there is no gap between vs
3 and vt

3 since EGED(OGs
3, OGt

3) has a minimum

value when distged(v
s
3, v

t
3) = |vs

3 − vt
3|. Figure 5.1 (b) is the case that there is a gap in

OGs because EGED(OGs
5, OGt

5) has a minimum value when distged(gap, vt
5) = |vt

5− g5|.

v1
s

v2
s

v3
s

v4
s

v5
s

v1
t

v2
t

v3
t

v4
t v5

t

v6
t

gap (g5)
OGs

OGt

(a) (b)

Figure 5.1. Example of EGED between two Object Graphs: (a) No gap, and (b) A gap
for insertion in OGs.

However, as long as the cost function (distged) replicates the previous nodes, the

EGED is no longer in a metric space since distged does not satisfy the triangle inequality.

For example, given three simplified OGs; OGr = {0}, OGs = {1, 1}, and OGt = {2, 2, 3}.
Then, EGED(OGr, OGt) > EGED(OGr, OGs)+EGED(OGs, OGt) because 7 > 2+4,

which does not satisfy the triangle inequality. In order to satisfy the triangle inequality,

an EGED is restraint to be a metric distance function (see Theorem 2) by comparing a

current value with a fixed constant.

Theorem 2. If gi is a fixed constant, then EGED is a metric.

Proof. Suppose that R, S and T are OGs. It is obvious that EGED satisfies non-negative,

symmetry and reflexivity. However, the non-trivial case is the triangle inequality, i.e.

EGED(Rl, Tn) ≤ EGED(Rl, Sm) + EGED(Sm, Tn)
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We prove the above triangle inequality by induction. By Definition 5, EGED(Rl, Tn)

can be written as

EGED(Rl, Tn) = min[EGED(Rl−1, Tn−1) + |vr
l − vt

n|, (5.1)

EGED(Rl−1, Tn) + |vr
l − g|,

EGED(Rl, Tn−1) + |vt
n − g|]

where g is a fixed constant. To compute the cost to transform vr
l to vt

m, consider the

three terms in the right hand side of Equation (5.1), which correspond to the following

cases:

1. Use EGED(Rl−1, Tn−1) + |vr
l − vt

n| to edit vr
l−1 into vt

n−1 by replacing vr
l with vt

n.

2. Use EGED(Rl−1, Tn) + |vr
l − g| to edit vr

l−1 into vt
n by deleting vr

l .

3. Use EGED(Rl, Tn−1) + |vt
n − g| to edit vr

l into vt
n−1 by adding vt

n.

Since Equation (5.1) uses a fixed constant g, the three terms in the right hand side are

optimal, which means that the term on the left is also optimal. For the last step of graph

editing, one cannot do better than making a single change or not making any change

at all. Therefore, EGED also satisfies the triangle inequality since EGED(Rl, Tn) is

optimal.

EGEDM is used to indicate the metric version of EGED. The difference between

EGEDM and EGED is that the cases of n = 0 and/or m = 0 should be considered in

EGEDM (see Definition 5). It means that each data item (OG) should be measured from

a fixed point in metric space. Let us repeat the previous example (OGr = {0}, OGs

= {1, 1}, and OGt = {2, 2, 3}) with EGEDM and g = 0. EGEDM(OGr, OGt) = 7.

Similarly, EGEDM (OGr, OGs) = 2 and EGEDM(OGs, OGt) = 5. Thus, 7 ≤ 2 + 5,

which satisfies the triangle inequality.
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5.2 Clustering OGs Using EGED

The proposed graph-based video indexing needs clusters of OGs for more effective

indexing. For this clustering, we will employ a probabilistic clustering algorithm called

Expectation Maximization (EM) to group similar OGs. For the distance measure used

in clustering, EGED in Definition 8 is applied for EM clustering algorithm. The results

of clustering will be used for a model-based conceptual clustering in Section 5.3, and

indexing in Section 6.

5.2.1 EM Clustering with EGED

First, OGs are selected randomly from the M number of data items (OGs). Let Yj

be the jth OG with a dimension d. Each OG is assigned to a cluster k with a probability

of wk such that
∑K

k=1 wk = 1, which is the sum of the membership probabilities of all the

measurements for Yj to a cluster. A finite Gaussian mixture model is chosen to cluster

OGs since it is widely used and easy to implement [67]. The density function (pk(Yj|θk))

of Yj, which is an observed data for individual j, is formulated as

p(Yj|Θ) =
K∑

k=1

wkpk(Yj|θk)

where Θ (= {θ1, . . . , θK}) is a set of parameters for the mixture model with K component

densities.

Each θk is parameterized by its mean µk and covariance matrix Σk. The d-

dimensional Gaussian mixture density is given by

p(Yj|Θ) =
K∑

k=1

wk

2πd/2|Σk|1/2
e−

1
2
(Yj−µk)T Σ−1

k (Yj−µk) (5.2)

In Equation (5.2), the covariance matrix Σk determines the geometric features of the

clusters. Common cases use a restricted covariance, Σk(= λI), where λ is a scalar value,

and I is an identity matrix in which the number of parameters per component grows as
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a square of the dimension of the data. However, if the dimension of the data is highly

relative to the number of data, the covariance estimates will often be singular, which

causes the EM algorithm to break down [68]. Specifically, the data (i.e., OGs) in the time-

dependant domain have different dimensions since their time lengths vary. Therefore, the

covariance matrix Σk cannot have an inverse matrix, consequently we cannot compute

Equation (5.2). Chris Fraley et al. [68] point out this problem, and suggest using different

distance metrics between data points. Thus, we replace the Mahalonobis distance defined

by the covariance and the mean of each component in Equation (5.2) with the EGED in

Definition 9 with gi = vi−1+vi

2
. Since the covariance matrix is not needed in the EGED,

the dimension of the Gaussian mixture density is reduced to one. Therefore, the Equation

(5.2) can be rewritten as follows.

p(Yj|Θ) =
K∑

k=1

wk

2π1/2|σk|e
− 1

2σ2 EGED(Yj ,µk)2 (5.3)

Equation (5.3) is a new one-dimensional Gaussian mixture density function with

the EGED for OGs. This mixture model provides some benefits to handling OGs as

follows. It can reduce the dimension, deal with various time lengths of OGs, and give an

appropriate distance function for OGs in each cluster. Suppose that Y ’s are mutually

independent, the log-likelihood (L) of the parameters (Θ) for a given data set Y can be

defined from Equation (5.3) as follows.

L(Θ|Y ) = log

M∏
j=1

p(Yj|Θ) =
M∑

j=1

log
K∑

k=1

wkpk(Yj|θk) (5.4)

To find appropriate clusters we estimate the optimal values of the parameters (θk)

and the weights (wk) in Equation (5.4) using the EM algorithm, since it is a common

procedure used to find the Maximum Likelihood Estimates (MLE) of the parameters

iteratively.
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The EM algorithm produces the MLE of the unknown parameters iteratively. Each

iteration consists of two steps: E-step and M-step.

E-step: It evaluates the posterior probability of Yj, belonging to each cluster k. Let hjk

be the probability of jth OG for a cluster k, then it can be defined as follows:

hjk = P (k|Yj, θk) =
wk

pk(Yj|θk)
(5.5)

M-step: It computes the new parameter value that maximizes the probability using hjk

in E-step as follows:

wk =
1

M

M∑
j=1

hjk (5.6)

µk =

∑M
j=1 hjkYj∑M

j=1 hjk

σk =

∑M
j=1 hjkEGED(Yj, µk)

2

∑M
j=1 hjk

The iteration of E and M steps is stopped when wk is converged for all k. After

the maximum likelihood model parameters (Θ̂) in Equation (5.4) are decided, each OG

is assigned to a cluster, k̂ in terms of the maximum posterior probability by the following

equation.

k̂ = arg max
1≤k≤K

wkpk(Yj|θk)∑K
k=1 wkpk(Yj|θk)

(5.7)

The complexity of the proposed algorithm using the EM with the EGED can be

analyzed as follows. The complexity of each iteration (one E-step and one M-step) in the

EM using Equation (5.2) with M data sets of K clusters in d-dimension is O(d2KM) [67].

We are using Equation (5.3) instead of Equation (5.2). Therefore, the complexity of each

iteration can be reduced to O(KM) since EGED reduces the complexity of covariance

(d2) to 1.
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5.2.2 Optimal Number of Clusters

The EM algorithm described above uses a pre-determined number of Gaussian

densities (i.e., the number of clusters K). However, it is very difficult to decide the

number reasonably at the beginning. Thus, estimating an optimal number of clusters

is a key issue to improve the quality of EM clustering. Many criteria are proposed in

the literatures [50, 56] to decide the optimal number of clusters with a known Gaussian

model. The well-known criteria in the statistics literature are Bayesian Information

Criterion (BIC), Akaike’s Information Criterion(AIC) and Mallow’s Cp. The basic idea

of those criteria is penalizing the model in some way by offsetting the increase in log-

likelihood with a corresponding increase in the number of parameters, and seeking to

minimize the combination of log-likelihood and its parameters. We employ the BIC to

select the number of clusters because it is convenient for model selection. Let M =

{MK : K = 1, . . . , N} be the candidate models. MK is the finite Gaussian mixture

model with K clusters. The BIC for MK is defined as

BIC(MK) = l̂K(Y )− ηMK log(M) (5.8)

where l̂K(Y ) is the log-likelihood of the data Y by the Kth model, ηMK is the number of

independent parameters for model MK , and M is the total number of data items. From

Equation (5.4), the log-likelihood of the data Y is defined as follows:

l̂K(Y ) = log
M∏

j=1

p(Yj|Θ)

And, for a finite Gaussian mixture model of K component densities, the number

of independent parameters is

ηMK = (K − 1) +
Kd(d + 3)

2
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where d is a data dimension; i.e., d = 1 in our model because the dimension is reduced

to 1 using the EGED. For a given data set Y , we can decide the number of clusters for

the model MK whose BIC value is maximized in Equation (5.8).

5.3 Conceptual Clustering

Most of the previous clustering algorithm focus on finding a goodness measure of

overall partitioning for data objects. However, these approaches are not very optimal for

spatio-temporal data including moving objects in a video and time-series data that has

high-dimensional attributes and very complicated relationships. As the spatio-temporal

data is unlabelled and large volume of structure, clustering and concept analysis of the

data remain challenging problems. In this section, we propose a model-based conceptual

clustering (MCC) of spatio-temporal data based on a formal concept analysis. Our

proposed MCC consists of three steps: ‘model formation’, ‘model-based concept analysis ’,

and ‘concept graph generation’. We then generate the concepts for spatio-temporal data

using the concept graph obtained from the third step.

5.3.1 Model Formation

The use of spatio-temporal data in many applications such as financial data anal-

ysis, video surveillance systems, personal life storages, hurricane tracks, and medical

videos, has increased enormously with the recent advances in sensor device, video cap-

ture device, storage, network technology and computing power. As a consequence, there

are increasing demands on modeling, indexing, and retrieval of these data. A spatio-

temporal data is typically defined as a sequence of observations of an object in time.

Therefore, a d-dimensional spatio-temporal data STN , or simply ST , is a sequence:

STN = < (~v1, t1), . . . , (~vN , tN) > (5.9)
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where ~vi is a feature vector of dimension d, and ti is a time instant with 1 ≤ i ≤ N [69].

Each pair (~vi, ti) has the observed values of an object at time ti. For example, if only

one feature value is observed at each time (i.e., d = 1), ST is called a time-series. In

case of a trajectory, ~vi can be two dimensional position, i.e., (xi, yi). We can find many

examples of high-dimensional ST s in real life data. One example of high-dimensional

ST s can be found in hurricane track data [70, 71]. In addition to a spatial location of

a hurricane track, i.e., longitude and latitude, there are more features to be considered

for the hurricane data analysis, such as wind speed, pressure, and temperature. Another

example is moving objects in video surveillance system [72, 73, 74] where a set of features

includes not only a location of a moving object, but also size, color, and speed of an object.

In this paper, we focus on high-dimensional spatio-temporal data where d > 1.

The process of ST model formation is the same as a model-based clustering of

them mentioned in the previous section (Section 5.2), since the clustering conducts un-

supervised learning to find models of ST s that are characterized by a set of parameters.

Recall that the results of EM clustering algorithm are a number of clusters for ST . Each

cluster indicate a model for the data. The benefits of model formation in the proposed

conceptual clustering are as follows:

• It simplifies the computation of a conceptual clustering algorithm since the number

of objects is reduced to the number of models that represent their specific patterns.

• Byproducts of the EM algorithm, i.e., the extracted model parameters (Θ) and

the expectation (hjk), play an important role in conceptual clustering since they

provide the relationships between models and features.

5.3.2 Model-based Formal Concept Analysis

The second step of the proposed MCC is a model-based concept analysis to find

formal concepts of modeled spatio-temporal data. Although the model formation using
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EM clustering in Section 5.3.1 provides a set of models where similar ST s are grouped,

it does not consider interpreting the obtained models. In other words, it is hard for a

user to understand what the meaning of each model is, and how the models are formed.

In order to address these, we employ the concept of formal concept analysis (FCA) that

was introduced by Wille [44, 45]. FCA has been used for data analysis and knowledge

representation. We propose a model-based concept analysis (MFCA), which incorporates

a model-based statistical data analysis with FCA to represent the meanings of spatio-

temporal data. The MFCA starts with a model-based formal context that is defined as:

Definition 9. A model-based formal context is a triple K = (G, F, I), where

• G is a set of models characterized by Θ,

• F is a set of features, and

• I is a set of relations between G and F (i.e. I ⊆ G× F ). Each relation (g, f) ∈ I

has a significance value λ(g, f).

In the model-based formal context, G consists of the models determined in the

previous subsection instead of all data objects. Each model is characterized by a set of

parameters (Θ). The set of features (F ) consists of d number of observed features in

ST . The set of relations I indicates how much each feature is relevant to each model.

The relevance between the kth model gk and the lth feature fl is represented as the

significance value λ(gk, fl), which is computed by exploiting a feature selection technique

in data mining [75].

Let yF and yF−{fl} be the full feature vector, and the feature vector without the

lth feature, respectively. Consider two posterior probabilities (Pi,k,F , Pi,k,F−{fl}) of the
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kth model based on the full feature vector (yF ), and the feature vector without fl feature

(yF−{fl}) as follows.

Pi,k,F = P (yi,F |θk,F ),

Pi,k,F−{fl} = P (yi,F−{fl}|θk,F−{fl})

where
∑m

i=1 Pi,k,F = 1 and
∑m

i=1 Pi,k,F−{fl} = 1 with m number of objects in the kth

model. If fl is a completely insignificant feature in the kth model, then Pi,k,F is equal

to Pi,k,F−{fl}. Otherwise, the difference between two probabilities provides a significance

value of fl in the model. In order to measure a difference between two probabilities, we

use the Kullback-Leibler divergence (KLD) [76]. The significance value of the lth feature

(fl) in the kth cluster is defined as:

λ(gk, fl) =
m∑

i=1

∣∣∣∣Pi,k,F log
Pi,k,F

Pi,k,F−{fl}

∣∣∣∣ (5.10)

The higher the value of λ, the more significance of the feature in a model. Then,

we determine all relations between a set of models G and a set of features F .

A model-based formal context K can be represented as a cross-table as shown in

Table 5.1. The context in Table 5.1 has four models (i.e. g1, g2, g3 and g4 ∈ G), and

three features (i.e. f1, f2 and f3 ∈ F ). The relation (I) between a model and a feature is

measured by λ in Equation (5.10).

To remove relations that have very low significance values, we set a predetermined

threshold ε. Table 5.2 shows the cross-table of the model-based formal context with

ε = 0.01.

According to a formal concept analysis, we can consider the features of a formal

context as the description of the concept [44, 45]. Therefore, we can derive a model-based

formal concept from a model-based formal context as follows (Definitions 10 and 11).
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Table 5.1. Example of model-based formal context without threshold

f1 f2 f3

g1 0.583 0.004 0.431

g2

0.002 0.454 0.623g3

0.840 0.002 0.003

g4 0.000 0.517 0.833

Table 5.2. Example of model-based formal context with threshold (ε = 0.01)

f1 f2 f3

g1 0.583 - 0.431

g2

- 0.454 0.623g3

0.840 - -

g4 - 0.517 0.833

Definition 10. For a set of models A ⊆ G, we define A′ = {f ∈ F |λ(g, f) > ε for all

g ∈ A}, and a set of features B ⊆ F , we define B′ = {g ∈ G|λ(g, f) > ε for all f ∈ B}

Definition 11. A model-based formal concept of the context K = (G, F, I) with a thresh-

old value ε is a pair (A, B) where A ⊆ G, B ⊆ F , A′ = B, and B′ = A. We call A the

extent, and B the intent of the formal concept (A, B).

The extent covers all models belonging to the formal concept, while the intent
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comprises all features valid for all those models. Table 5.3 shows the complete list of

concepts for the context in Table 5.2. For example, a concept C4 has the extent A =

{g3, g4}, and the intent B = {f2, f3} (see highlighted cells in Table 5.2). The extent A

and the intent B of the formal concept (A,B) are closely related by the relation I. In

other words, the concept (A,B) means the models determined by features f2 and f3.

Table 5.3. Formal concepts for context in Table 5.2

Concept Extent (A) Intent (B)

C0
C1
C2
C3
C4
C5

{g1, g2, g3, g4}
{g1, g2}

{g1, g3, g4}
{g1}

{g3, g4}

{f1}
{f3}

{f1, f3}
{f2, f3}

{f1, f2, f3}

It is natural to have a hierarchical order between the model-based formal concepts

of the context, i.e. subconcept or superconcept relation. In order to represent the relation,

we exploit lattice theory [45] since it offers a natural way to formalize the ordering of

objects. A model-based concept lattice is defined in Definition 12 and 13.

Definition 12. If (A1, B1) and (A2, B2) are formal concepts of a model-based formal

context, then (A1, B1) is the subconcept of (A2, B2) such that A1 ⊆ A2 (i.e., B2 ⊆ B1),

denoted as (A1, B1) ≤ (A2, B2). In this case, (A2, B2) is superconcept of (A1, B1).
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Definition 13. A model-based concept lattice of the model-based formal context K =

(G,F, I) is a set of all model-based formal concepts of K with the order ≤, denoted by

B(K,≤).

For the purpose of visualization of the lattice, we use a line diagram consisting of

circles and lines for all models and features, respectively. Each circle represents a formal

concept, and each line indicates a relation, i.e. subconcept (downward) or superconcept

(upward) in Definition 5. Figure 5.2 shows the line diagram of the model-based con-

cept lattice B(K,≤) generated from the model-based formal context K = (G,F, I) in

Table 5.2.

C0

C5

C2C1

C4C3

{g1,g2,g3,g4}

{g1,g2} {g1,g3,g4}

{g1} {g3,g4}

{f1,f2,f3}

{f2,f3}{f1,f3}

{f3}{f1}

Figure 5.2. A model-based concept lattice for the context K in Table 5.2.

5.3.3 Concept Graph Generation

In this subsection, we introduce a concept graph generation that is the last step of

the MCC. Although the generated formal concepts using MFCA provide formal descrip-

tions of models, MFCA typically produces a high number of formal concepts. Among
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them there exist some similar formal concepts that need to be merged into a single con-

cept. In order to compact the formal concepts, we first propose a similarity measure

ConSim between two formal concepts. Using the similarity measure, we compact the

formal concepts to generate a concept graph. Then, we describe the entire process of the

model-based conceptual clustering based on the concept graph.

5.3.3.1 Concept Similarity

To measure a similarity between two concepts generated by MFCA, we exploit

the similarity of FOGA framework [43], then extend it to a model-based formal con-

cept. In FOGA, the similarity between two formal concepts C1 = (ϕ(A1), B1) and

C2 = (ϕ(A2), B2), where ϕ is a fuzzy membership function, is defined as E(C1, C2) =

|ϕ(A1)∩ϕ(A2)|
|ϕ(A1)∪ϕ(A2)| . However, this similarity measure is not enough for our model-based formal

concepts since it considers only a fuzzy membership for the similarity, i.e., ϕ(A1) and

ϕ(A2), but the proposed concept consists of the extent and the intent. We extend it to

handle both the extent and the intent of model-based formal concepts for the similarity.

Let C1 = (A1, B1) and C2 = (A2, B2) be two model-based formal concepts in B(K,≤).

The similarity measure ConSim between C1 and C2 is defined as follows.

Definition 14. Given two model-based formal concepts C1 and C2, a concept similarity

(ConSim) between C1 and C2 is defined as:

ConSim(C1, C2) = γ
|A1 ∩ A2|
|A1 ∪ A2| + (1− γ)

|B1 ∩B2|
|B1 ∪B2|

where |set| is the number of elements in set, and γ is a predefined weight of the extent

concept such that 0 ≤ γ ≤ 1.

The concept similarity ConSim in Definition 14 ranges 0 to 1. The higher the value
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of ConSim is, the more similar two concepts are. The predefined weight (γ) plays a role

to decide a priority between the extent and intent of the concept. For example, if a user

has more confidence to the extent of concept (i.e., a set of models) than the intent (i.e.

a set of features), γ is greater than 0.5. Otherwise, γ is set to less than 0.5. Throughout

this paper, we set γ = 0.5, which means the extent and intent have the same priority for

ConSim. Figure 5.3 shows the computed ConSim with γ = 0.5 of Figure 5.2.

C0

C5

C2C1

C4C3

0.25 0.38

0.25 0.42
0.58

0.34 0.34

{g1,g2,g3,g4}

{g1,g2} {g1,g3,g4}

{g1} {g3,g4}

{f1,f2,f3}

{f2,f3}{f1,f3}

{f3}{f1}

Figure 5.3. Concept similarities between two concepts in Figure 5.2.

5.3.3.2 Concept Graph Generation

We generate a set of models using EM, and perform the proposed MFCA on the

models to find their formal concepts. Since the MFCA uses a statistical approach for the

significance values between features and models, even a small difference of the significance

values may cause similar concepts to be separated into different concepts. Moreover, the

number of generated formal concepts is usually large since the MFCA allows a model

to belong to more than one concept. Such a large number of formal concepts prevent a

user from interpreting them easily. In order to address this, we introduce a technique of
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merging two similar formal concepts into a single formal concept, and a concept graph

where the merged concepts are represented.

Let C1 = (A1, B1) and C2 = (A2, B2) be two model-based formal concepts in

B(K,≤). The criteria of merging two concept (C1 and C2) are defined as follows:

Definition 15. Given two model-based formal concepts C1 and C2, C1 ∪M C2 = (A1 ∪
A2, B1 ∪B2) is a merged concept if C1 and C2 satisfy

• (A2, B2) ≤ (A1, B1) C1 is superconcept of C2, and

• ConSim(C1, C2) > Tsim.

where Tsim is a predefined threshold value for the concept similarity. For an example of

Figure 5.3, C2 and C4 can be merged into a single concept C2 ∪M C4 with Tsim = 0.5.

Since C4 ≤ C2 and ConSim(C2, C4) = 0.58 (> Tsim), they satisfy the merging criteria in

Definition 15.

However, if two formal concepts are merged into a single concept in B(K,≤), the

set of merged concepts is no longer model-based concept lattice, which is proven in the

following proposition (Proposition 1).

Proposition 1. For given model-based formal concepts (A1, B1), (A2, B2), and (A3, B3)

in B(K,≤) with K = (G, F, I), if (A2, B2) ≤ (A1, B1), and (A3, B3) ≤ (A1, B1), then

(1) (A1 ∪ A2, B1 ∪B2) is not a model-based formal concept of K, and

(2) (A3, B3) � (A1 ∪ A2, B1 ∪B2).

Proof. (1) Suppose that (A1∪A2, B1∪B2) is a concept. By Definition 3 and 4, (A1∪A2)
′ =

(B1 ∪B2), i.e. for all f ′ ∈ (A1 ∪A2)
′ satisfies λ(g, f ′) > ε for all g ∈ (A1 ∪A2). However,

if f ′ ∈ A′
1, but f ′ /∈ A′

2, then f ′ /∈ (B1 ∪ B2). Therefore, (A1 ∪ A2, B1 ∪ B2) is not
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model-based formal concept of K.

(2) Suppose that (A3, B3) is subconcept of (A1∪A2, B1∪B2). By Definition 5, (B1∪B2) ⊆
B3. However, if f ∈ B2, but f /∈ B1, then f /∈ B3 because B1 ⊆ (B2 ∩ B3). Therefore,

(A3, B3) � (A1 ∪ A2, B1 ∪B2).

Proposition 1 (1) and (2) show that a merged concept cannot preserve the proper-

ties of a model-based concept lattice. Therefore, we cannot use a model-based concept

lattice after merging concepts. In order to address this, we propose a concept graph to

maintain the merged concepts and their relations, which is defined as follows:

Definition 16. A concept graph, G, is a four-tuple G = {Vc, Ec, νc, ξc}, where

• Vc is a finite set of conceptual nodes,

• Ec ⊆ Vc × Vc is a finite set of relational edges between two concept nodes,

• νc : Vc → AVc is a function generating the conceptual node attributes, and

• ξc : Ec → AEc is a function generating the relational edge attributes.

A concept graph G is a directed graph whose edges are ordered pairs of node and

attribute. A conceptual node (vc ∈ Vc) corresponds to a (merged) concept where the

node attributes (AVc) are sets of models and features. A relational edge (ec(vc, v
′
c) ∈ Ec)

represents a relation between two concepts, i.e., superconcept or subconcept for the edge

attributes (AEc). For example, ec(vc, v
′
c) indicates that vc is a superconcept of v′c (i.e.

v′c is a subconcept of vc). The relational edge is weighted by the similarity between two

conceptual nodes using ConSim in Definition 14. The benefit of using the concept graph

is that it is more flexible to maintain the merged concepts and their relations without

loss of their semantics than a model-based concept lattice in Definition 13.



78

5.3.3.3 Model-based Conceptual Clustering

For a given model-based concept lattice B(K,≤), we generate a concept graph in

which similar formal concepts are merged into a single concept. Therefore, the main

procedure of our model-based conceptual clustering is the concept merging. Figure 5.4

is the outline of the model-based conceptual clustering algorithm for ST s. The input is

a set of spatio-temporal data STset, and a confidence threshold for a concept similarity

Tsim, while the output is a concept graph G.

First, we perform a model formation of STset to find a set of models M (see line 1).

For the modelsM, we build a model-based formal context K, and a model-based concept

lattice B(K,≤) (see line 2 - 3). Then, we select the supremum concept of B(K,≤) that

is a concept having only subconcepts (see line 4). The supremum concept is a starting

concept of the lattice traverse to find similar formal concepts. For each subconcept of

the starting concept, we call a function MCC to determine if two formal concepts are

similar using ConSim in Definition 14. If a concept similarity is greater than Tsim, the

corresponding subconcept is merged into its superconcept. Otherwise, leave it as it is (see

line 12 - 23). We repeat the function for each subconcept recursively until the subconcept

is the infimum concept of B(K,≤) that is a concept having only superconcepts (see line

12). For the output, i.e. a concept graph G, we maintain sets of models and features of

each conceptual node, which describe the conceptual meanings of spatio-temporal data.

On the other hand, each relational edge has the relationship between two corresponding

nodes, i.e., a superconcept or a subconcept, and their similarity.

Figure 5.5 (a) is the result of concept merging of Figure 5.3 with Tsim = 0.5. We

can observe that two formal concepts C2 and C4 can be merged into a single concept,

since ConSim(C2, C4) > 0.5. Figure 5.5 (b) shows the concept graph of Figure 5.5 (a) in
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Algorithm 3: Model-based Conceptual Clustering

Input: a set of spatio-temporal data STset, and a threshold Tsim
Output: a concept graph 
/*  is an empty set of models, K is an empty formal conctex, K, ) is an empty

    model-based concept lattice, and (V, E) is a pair of empty sets of node and edge */

1:  �perform model formation of STset in Section 5.3.1;
2:  K �build model-based formal context of  in Definition 9;
3:  K, ) �build model-based concept lattice of K in Definition 13;
4:  let Cstart = the supremum concept of (K, );
5:  (Vc, Ec) = MCC( (K, ), Cstart);
6:   = (Vc, Ec, � );
7:  return ;

8:  Function MCC(B, C)
/* B is a model-based concept lattice,  C is a starting concept, and
    (Vt, Et) is a pair of node and edge sets for return */

9: let (Vt, Et) be a pair of empty node and edge sets;
10: begin
11:    for each subconcept Csub of C in B do
12:        if Csub is infimum concept of B then
13:            Vt = Vt  { (C)};  Et = Et  { ((C, Csub))};
14:            return (Vt, Et);
15:        else
16:            (Vt, Et) = MCC(B, Csub);
17:            if ConSim(C, Csub)  > Tsim then
18:                Vt = Vt  { c(C M Csub) };
19:                Et = Et  { c(C Csub) };
20:            else
21:                Vt = Vt  { c(C)}; Et = Et  { c((C, Csub))};
22:            end if
23:        end if
24:    done
25:    return (Vt, Et);
26: end Function

Figure 5.4. Algorithm 3: A model-based conceptual clustering.
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which a set of nodes represents concepts of ST s, and a set of edges represents relations

between two corresponding concepts.

(a) (b)

{g1,g2,g3,g4}

{f1,f2,f3}

{g1,g3,g4}
{f2,f3}

{g1}
{f1,f3}

{g1,g2}
{f1}

0.25 0.38

0.25
0.42

0.34

0.34

C0

C5

C2C1

C4C3

0.25 0.38

0.25 0.42 0.58

0.34
0.34

Figure 5.5. Result of model-based conceptual clustering: (a) A result of concept merging
using ConSim with Tsim = 0.5, and (b) A concept graph of (a).

The characteristics of the proposed MCC can be summarized as follows: (1) Unlike

existing conceptual clustering algorithms that use a goodness measure for a clustering

criterion, the proposed MCC exploits FCA to generate formal concepts of ST s. This

approach is suitable for the analysis of high-dimensional data such as ST since it is hard

to find an appropriate goodness measure for such a high-dimensional data, (2) As in the

definitions of MFCA, it uses a set of models instead of data objects themselves. The

use of models in MFCA can reduce the computational cost, and provide more semantics

than FCA using data objects since the number of models is much less than that of data

objects, and each model has important information of the data objects such as patterns,

and (3) Since FCA is developed only for labelled data, a scaling in which the data is

divided into several intervals, is necessary for numeric data. However, this plain scaling

is not suitable for ST since a series of data cannot be scaled easily. To address this, our

MFCA uses a statistical model. Instead of using a binary relation of FCA, the MFCA
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uses the significance values between models and features. Therefore, we do not have to

scale the data since the significance values represent the relationships between features

and models.

5.4 Experimental Results

5.4.1 Results of Clustering OGs

We have performed the experiments with synthetic and real data (see Table 3.1)

to assess the performance of EM clustering OGs. First, we evaluate the performance of

the EM clustering algorithm with the non-metric EGED on the synthesized data. Then,

we apply the proposed EM clustering to real videos in Table 3.1.

5.4.1.1 Performance of EM clustering OGs

We evaluate the performance of the EM clustering algorithm with the non-metric

EGED (EM-EGED) on the synthesized data. As stated earlier, the quality of clustering

OGs is important in guaranteeing the performance of the STRG-Index. Our EM-EGED is

compared with two other clustering algorithms; K-Means (KM) and K-Harmonic means

(KHM). The detailed information about KM and KHM can be found in [77, 78]. Fur-

thermore, to evaluate the performance of distance functions, we compare the EGED with

Dynamic Time Warping (DTW) [19] and Longest Common Subsequence (LCS) [20]. We

compare the performance of EM-EGED with EM-LCS and EM-DTW (Figure 5.6 (a)),

KM-EGED with KM-LCS and KM-DTW (Figure 5.6 (b)), and KHM-EGED with KHM-

LCS and KHM-DTW (Figure 5.6 (c)). For the evaluation, we use the clustering error

rate defined as follows:

Clustering Error Rate (CER, %) = (5.11)

(1− Number of Correctly Clustered OGs

Total Number Of OGs
)× 100
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The EGED based algorithms perform much better than those based on the LCS

and the DTW as seen in Figure 5.6 (a), (b) and (c). Especially, EM-EGED outperforms

EM-DTW since EM tends to break down when the distance function cannot compute

the similarity properly (see Figure 5.6 (a)). The EGED measures the similarity between

OGs more accurately than the others do. Figure 5.6 also shows that the EGED is much

more robust to noise than either the LCS or the DTW is.

Figure 5.7 shows the performance of EM-EGED compared with those of KM-EGED

and KHM-EGED. The clustering error rate of EM-EGED is a little better than that of

KHM-EGED (see Figure 5.7 (a)). The reason why KHM-EGED has a similar clustering

performance with EM-EGED is because its soft membership of data points is similar

to hjk of the EM in Equation (5.5), and its weight is similar to wk in Equation (5.6).

As far as the computation time is concerned, EM-EGED performs much better than

KM-EGED or KHM-EGED. As shown in Figure 5.7 (b), EM-EGED runs much faster

(around 1.5 to 2 times) than the others do. This can reduce the time to build the STRG-

Index for a real-time system handling surveillance videos, for example. Figure 5.7 (c)

shows the distortion values of each algorithm under different noise levels. The distortion

is defined as the sum of the distances (i.e., in number of pixels) between the detected

centroids and the true centroids. In terms of the distortion, EM-EGED is similar to KM-

EGED, but much more accurate (about 2 times) than KHM-EGED. Overall, the quality

of the EM-EGED proposed in this paper is superior to that of the other alternatives,

such as KM-EGED, KHM-EGED, KM-LCS, KHM-LCS, KM-EDR, KHM-EDR as well

as KM-DTW and KHM-DTW.

5.4.1.2 Real Video Data Set

We apply the proposed EM clustering algorithm to surveillance videos in Table 3.1.

Figure 5.8 shows the example of clustering result for the first surveillance video (Surv
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Figure 5.6. CER: (a) EM-EGED vs. EM-LCS, EM-DTW, (b) KM-EGED vs. KM-LCS,
KM-DTW, and (c) KHM-EGED vs. KHM-LCS, KHM-DTW.
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Figure 5.7. EM-EGED performances against KM-EGED and KHM-EGED: (a) Cluster-
ing Error Rate, (b) Cluster building time, and (c) Distortion.
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1). As seen in this figure, OGs are grouped into 8 clusters. The first column indicates

the number of clustered OGs, and the second column is the visualization of each cluster

by plotting its members (OGs). Two sample OGs of each cluster are shown in the third

column by some selected frames. The different clusters have different characteristics: for

example, Cluster 2 has the objects moving bottom to top-right corner, and Cluster 3 has

a similar pattern but with an opposite direction to Cluster 2. The interesting results are

observed in Cluster 7 such that it has the noise data such as unexpected illumination

changes at night. The algorithm clusters even those noise data into separated groups

correctly.

Since the surveillance video are captured without any pre-defined moving patterns,

it is hard to decide the optimal number of clusters, and the cluster membership of OGs

to a certain cluster. We find the optimal number of clusters for each video stream using

the BIC measure. The EM algorithm is performed for k (the number of clusters) ranging

from 1 to 15. Then, the BIC values are computed using Equation (5.8). Figure 5.9 shows

the BIC value corresponding to various number of clusters for each video. Here, the

optimal number of clusters for a particular video is the peak value of the corresponding

curve.

5.4.2 Results of Conceptual Clustering

In order to assess the proposed schemes, we have conducted several experiments

with synthesized data sets in Section 3.3.2. Using the data sets, we evaluate the per-

formances of our proposed approaches, and demonstrate that the quality of generated

concepts based on MCC outperforms those of existing conceptual clustering algorithms.
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Examples of OGResult
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1

(51)
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(45)
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(33)
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7
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Descriptions

Objects moving 
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corner.
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at right, then go 

out through 

door.

Objects  

moving bottom 

to top-right 

corner.

Objects moving 

top to bottom 

right corner.

Objects moving 

at top-right 

corner.

Objects moving 

bottom to top, 

then returning.

Noises caused 

by PC and 

illumination 

changes.

Objects moving 

right to left, 

then returning.

Figure 5.8. Results of EM clustering with EGED for video (Surv 1).

5.4.2.1 Evaluation Metrics

For our evaluation, we employ two evaluation metrics: the relaxation error [27],

and F-measure [79]. The relaxation error (RE) measures the goodness of the generated

concepts, which is a popular criterion of evaluating conceptual clustering algorithm. On

the other hand, since the concept graph has a hierarchical tree structure, we need a

specific metric that can analyze the entire hierarchical tree. We use F-measure (Fm) for

this metric, which combines the precision and the recall from information retrieval.
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Figure 5.9. The BIC values for finding the optimal number of clusters.

Given a particular concept of d-dimensional feature ST s, i.e., Ck = {y1, . . . , ym},
the relaxation error (RECk

) for the concept Ck is defined as the average pair-wise distance

using STED in Definition 1 among ST s in Ck.

RECk
=

1

m2

m∑
i=1

m∑
j=1

P (yi)P (yj)EGED(yi, yj)

where P (yi) and P (yj) are the probabilities of yi and yj occurring in Ck, respectively.

RECk
implies the dissimilarities of data objects (ST s) in a concept Ck based on the

distance function EGED. Therefore, the relaxation error (RE(C)) for entire concepts

can be computed as follows:

RE(C) =
1

K

K∑

k=1

RECk
(5.12)

where K is the total number of concepts. A smaller value of RE(C) corresponds to a

higher quality of the concepts.
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In addition to the relaxation error, we use F-measure for the evaluation metric. In

F-measure, we consider each concept as if it were the result of a query, and each class as

if it were the desired set of ST s for the query. Given a particular concept Ck of size mk,

and a particular class Rj of size mj, the precision (p) and the recall (r) for each Ck and

Rj are

pkj =
mkj

mk

, rkj =
mkj

mj

where mkj is the number of data items that are correctly clustered from Rj in Ck. The

F-measure of concept Ck and class Rj is computed as follows:

F (Ck, Rj) =
2 · rkj · pkj

rkj + pkj

(5.13)

Consequently, the F-measure for an entire hierarchy of any concepts (Fm(C)) is

computed by taking the weighted average of all values for F (Ck, Rj) in Equation (5.13)

as follows:

Fm(C) =
c∑

j=1

mj

m
max

k
F (Ck, Rj) (5.14)

where c and m is the total number of classes and ST s, respectively. The values of Fm(C)

range from 0 to 1. The higher the F-measure is, the better the quality of concept is.

We use both RE(C) in Equation (5.12) and Fm(C) in Equation (5.14) to compare the

quality of generated concepts C with those of other conceptual clustering algorithms in

the following subsection.

5.4.2.2 Results

First, we evaluate the quality of concepts using the relaxation error (RE). The

REs computed by Equation (5.12) for the generated concepts are plotted in Figure 5.10.

As shown in the figure, the proposed MCC outperforms ECC and GCC methods in

terms of the goodness of clusters, i.e., our MCC is around 30% better than ECC. This
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demonstrates the advantage of using the significance value λ in the model-based concept

analysis in Section 3. Figure 5.10 also shows the robustness of MCC to noise.
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Figure 5.10. Quality of generated concepts using Relaxation Error.

However, RE metric is not enough to measure the hierarchical structures since

it considers only the overall goodness measure of concepts. In order to address this, we

evaluate the quality of concepts using F-measure that analyzes the entire hierarchical tree

[79]. Figure 5.11 gives the quality of each method using Fm in Equation (5.14). From

the figure, it is observed that the quality of ECC using Fm is decreasing significantly

as the variance of noise gets larger unlike using RE. However, MCC is still the most

robust conceptual clustering to the noise. Overall, the quality of the MCC proposed in

this paper is superior to ECC and GCC in terms of the quality measured by a relaxation

error and F-measure.
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Figure 5.11. Quality of generated concepts using F-measure.

5.5 Summary

In this chapter, we introduced graph-based video data mining techniques, specif-

ically unsupervised learning to find moving patterns of objects. For the unsupervised

learning, we cluster similar OGs into a group using EM algorithm. For the graph match-

ing, we introduce a new distance measure, called Extended Graph Edit Distance (EGED),

which can handle the temporal characteristics of OGs. For actual clustering, we exploit

Expectation Maximization (EM) with EGED. In addition, we proposed a model-based

conceptual clustering (MCC) of spatio-temporal data based on a formal concept analysis,

which provides a user formal concepts of clusters. The proposed MCC can be applied

to any types of spatio-temporal data, such as OGs, hurricane track data, and time-series

data.



CHAPTER 6

STRG INDEXING

In this chapter, we propose a graph-based video indexing method, called Spatio-

Temporal Region Graph Index (STRG-Index), which uses the EGEDM as a distance mea-

sure in metric space, and clustered OGs. One of key issues in video database management

systems is how to index video object for fast access. Recall that three characteristics of

video data mentioned in Section 1.1.2 are (1) spatial and temporal data, (2) huge size of

data, and (3) semantically rich data format. To address these in indexing structure, we

uses clustered OGs and modeled BG, since they are decomposed from STRG by remov-

ing redundant information. In addition, the clustered OGs makes a query easy access

in terms of similarity. We use EGEDM , metric version of EGED, for construction of

STRG-Index because it makes a query fast.

The rest of this chapter is organized as follows. Section 6.1 presents STRG-Index

tree structure consisting of Shot, Cluster, and Object Nodes. Section 6.2 shows how to

construct STRG-Index. In Section 6.3, we discuss node split in STRG-Index that makes

the size of nodes balance. The performance study is reported in Section 6.4. Finally,

Section 6.5 presents the summary of the chapter.

6.1 STRG-Index Tree Structure

Now, we have a BG and clustered OGs for each strg based on the techniques

discussed in Chapter 4 and 5. To build an index for video data, we adapt the procedure

of tree construction proposed in M-tree [32] since it has a minimum number of distance

computations and a good I/O performance. In M-tree, a number of representative data

91
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items are selected for efficient indexing. There are several ways to select them such as

Sampling or Random selection. In the STRG-Index, we employ the clustering results

to determine the representative data items. The STRG-Index tree structure consists of

three levels of nodes; shot node, cluster node, and object node as seen in Figure 6.1.

1 BG1

2 BG2

3 BG3

. . . . . .

1 OGclus1

2 OGclus2

3 OGclus3

. . . . . .

1 OGclus1

2 OGclus2

3 OGclus3

. . . . . .

1 OGclus1

2 OGclus2

3 OGclus3

. . . . . .

OGmem1

OGmem2

OGmem3

. . .

OGmem1

OGmem2

OGmem3

. . .
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OGmem2

OGmem3

. . .

OGmem1

OGmem2

OGmem3

. . .

OGmem1

OGmem2

OGmem3

. . .

Shot Node

Cluster Node

Object Node

ShotID BGr ptr

ClusID OGc ptr

Key OGm

0.01
0.58
1.58
. . .

0.47
0.58
0.98
. . .

1.04
2.02
3.12
. . .

0.05
0.72
2.56
. . .

0.87
0.98
1.72
. . .

ptr

RAG1

RAG2

RAG3

. . .

4 BG4RAG4

Grkey

Figure 6.1. Example of STRG-Index tree structure.

The top-level has the shot node which contains the information of each shot in a

video. Each record in the shot node represents a segmented shot whose frames share a

background. The record has a shot identifier (ShotID), a key RAG (Grkey), an actual

BG (BGr), and an associated pointer (ptr) which references the top of corresponding

cluster node. The following figure shows an example of a record in the shot node.

1 BG1

ShotID BGr ptr

RAG1

Grkey
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A key RAG is defined as follows.

Definition 17. For given N number of RAGs in ith shot (strgi), a key RAG denoted

by Grkey(i) is the most representative RAG in strgi, which has the largest summation

of GSMs among all possible pairs of frames, such that

Grkey(i) = argGr∈strgi
max

N∑
n=1

GSM(Gr,Gr(fn))

The proposed key RAG selection is an extension of standard key frame selection

techniques [80] by considering the temporal relations among RAGs in a strg.

The mid-level has the cluster nodes which contain the centroid OGs that represent

cluster centroids. Each record indicates a representative OG among a group of similar

OGs. A record contains its identifier (ClusID), a centroid OG (OGc) of each cluster,

and an associated pointer (ptr) which references the top of corresponding object node.

The following figure shows an example of a record in a cluster node.

1 OGclus1

ClusID OGc ptr

The low-level has the object nodes which contain OGs belonging to a same cluster.

Each record in the object node represents an object in a video, and has the index key

(which is computed by EGEDM(OGm, OGc)), an actual OG (OGm), and an associated

pointer (ptr) which references the actual video clip in the disk. The following figure

shows an example of a record in the object node.
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0.01 OGmem1

Key (EGEDM) OGm ptr

6.2 STRG-Index Tree Construction

Based on the STRG decomposition in Section IV, an input video is partitioned into

shots. Each shot is divided into foreground and background. In other words, an strg is

decomposed into OGs and a BG as its subgraphs. The extracted BGs and key RAGs

are stored at a shot node. All the OGs sharing one BG are in a same cluster node. In

addition, if two strgs have a same BG, they have a same cluster node as a child node.

This can reduce the size of index significantly. For example, in a surveillance video, the

camera is often stationary, therefore its background is fixed. In this case, only one record

of a BG in a shot node is sufficient to index the background of the entire video.

The cluster nodes play an important role in the performance of search algorithm.

Most of the indexing algorithms for time-varying data use non-metric distance functions,

which are not applicable to traditional indexing structures such as M-tree [32], M+-tree

[81] or B+-tree [30]. Therefore, they prune the data using a lower bound to reduce the

search space. However, this still requires significant amount of computation, and results

in high numbers of false positives. Instead of pruning data by a lower bound, the STRG-

Index uses the EM clustering to group similar data. After the clustering is completed,

we synthesize a centroid OG (OGc) for each cluster which is a representative OG. This

centroid OG is inserted into its corresponding cluster node as a record. Also, the centroid

OG is updated when its member OGs are changed by insertion or deletion of OGs.

The object node has actual OGs in a cluster, which are indexed by the EGEDM .

To decide an index value for each OG, we compute EGEDM between the representative

OG (OGc) in the corresponding cluster and an OG (OGm) to be indexed. Since the

EGEDM is a metric distance by Theorem 1, the values from EGEDM can be the keys of
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OGs for indexing. Figure 6.2 shows a pseudo code for building the STRG-Index tree for

a given STRG, Gst (Algorithm 4).

Algorithm 4: Building STRG-Index

Input: Spation-Temporal Region Graph: Gst

Output: STRG-Index tree: TR

1: let TR = null, shotid = 0;
2: strg = segment shots from Gst by Section 4.1;
3: create shot node in TR;

4: for each strgr ∈ strg do
5:     OG = extracted OGs from strgr by Section 4.2;
6:     BGr = extracted BG from strgr by Section 4.2;
7:     Grkey = extracted key RAG from strgr by Section 6.1;
8:     CLUS = a cluster (of OGs ) by EM clustering by Section 5.2;
9:     insert tuple (shotid, Grkey, BGr, ptr(new cluster node)) into shot node in TR;
10:   shotid++;  clusid = 0;

11:   if there exists BG in shot node ∋ BG = BGr then
12:       use the cluster node which BG belongs to;
13:   else create new cluster node; end if
14:   for each OGc ∈ CLUS do
15:        create new object node;
16:        insert tuple (clusid, OGc, ptr(new object node)) into cluster node in TR;
17:        clusid++;
18:        OGtemp = sort(OGc, EGEDM(OGc, OGm));

19:        for each OGm ∈ OGtemp do
20:            insert tuple (EGEDM(OGc,OGm), OGm, prt(real clip)) into object node in TR;
21: done; done; done;: return TR;

Figure 6.2. Algorithm 4: Building STRG-Index.

6.3 STRG-Index Tree Node Split

As new data are inserted into the database, the leaf nodes in low-level grow up

arbitrary, which is inefficient for maintaining a balanced tree. In order to address this,

the leaf node is split into two nodes if the node satisfies the following condition. If a

leaf node has more OGs than a predefined value, we check whether splitting the node is
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necessary by using the EM algorithm with K = 2 and the BIC value. In other words, if

the BIC value when K = 2 is larger than the value when K = 1, the leaf node is split into

two nodes. After splitting, the corresponding records in the cluster node are updated.

Otherwise, the node remains unchanged. The split procedure enables the STRG-Index to

keep the optimal number of leaf nodes, and provides more accurate results for similarity-

based queries.

6.4 Size Analysis

In general, the performance of a database management system depends on the size

of index structure and the memory utilization. If the STRG-Index is stored in memory

with its actual data items (OGs), it can provide better performance in query processing.

Let M be the number of OGs, and N be the total number of frames in a shot. The size

of strg for a shot can be formulated as follows:

size(strg) =
M∑

m=1

size(OGm) + N × size(BG) (6.1)

On the other hand, the size of an STRG-Index tree for a shot is as follows:

size(STRG− Index) = (6.2)
M∑

m=1

size(OGm) +
K∑

k=1

size(CLUSk) + size(BG) + size(Grkey)

where K is the number of clusters, and CLUSk is kth cluster. As seen in Equations

(6.1) and (6.2), the difference between STRG and STRG-Index mainly depends on N ×
size(BG) and

∑K
k=1 size(CLUSk), since the size of a BG and a RAG (Grkey) are relatively

small. Because N is usually much larger than K, the former term is much larger than the

latter, i.e. N×size(BG) À ∑K
k=1 size(CLUSk). Hence, the size of STRG-Index is much

smaller than that of STRG. However, when the database size increases, the number

of shots, clusters, and objects will increase significantly. Consequently, it may not be
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possible to load a whole STRG-Index into a memory. To address this, we enhance the

STRG-Index to be scalable with respect to the number of clusters. An algorithm is said

to be scalable if its complexity remains linear for a given fixed amount of main memory,

when the number of data items increases arbitrarily large. Equation (6.2) is not scalable

with respect to the number of clusters, since the number of OGs increases significantly

as the number of clusters gets large. In order to make an STRG-Index scalable, we move

the actual OGs in a object node to a disk, since they are the most memory consuming

component in STRG-Index. For convenience, we refer to the STRG-Index where actual

OGs are removed as an scalable STRG-Index. After removing OGs from the index, the

complexity of Equation (6.2) becomes scalable with respect to the number of clusters,

since the size of all key values in the object nodes is very small. Consequently, the number

of disk I/O operations of the scalable STRG-Index is the same as the number of returned

data. Therefore, the scalability of STRG-Index can maximize the memory utilization.

6.5 Experimental Results

In this section, we validate the performance of the STRG-Index in processing k-NN

queries. Most experiments are based on the synthesized data sets for flexible comparisons.

6.5.1 STRG-Index with EGED vs. Graph Edit Distance

In order to evaluate the effectiveness of STRG-Index and EGEDM , we first compare

the performances of two versions of STRG-Index, which are using EGEDM and the

classical edit distance. For the classical edit distance, we use Bunke’s Graph Edit Distance

(GED) with the simple cost function used in [21], where all the costs of editing nodes

are set to one. Since the GED still obeys the triangular inequality [66], it is in a metric

space. Therefore, we cluster OGs, and build an STRG-Index by replacing EGEDM with

GED. We compare the k-NN query performance of STRG-Index using EGEDM with
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GED by considering the number of distance computations and the total processing time.

Since the number of distance computations performed during a query processing is the

dominant component [82], we consider it for evaluating the performance of k-NN query.

k neighbors range from 5 to 30 on the synthesized data set which contains 5×104 objects

in the 480 clusters. Figure 6.3 (a) shows that the number of distance computations for

EGEDM is much smaller (average 30%) than that for GED. However, when the database

size increases, the entire STRG-Index may not be fit to the memory. Therefore, we

perform 10-NN queries using the STRG-Index on the data sets with various sizes ranging

from 1 × 104 to 10 × 104 objects. Figure 6.3 (b) shows the total processing time which

includes the distance computations and the disk I/Os for 10-NN queries. It shows that

the total processing time for EGEDM is less than that for GED. Figure 6.3 (c) shows the

accuracy of each indexing for the 10-NN query on a data set with 5×104 objects. In order

to measure the accuracy, the precision and the recall of query results are computed and

plotted. The query data is composed of OGs that are not in the data sets, and the query

results are evaluated by the cluster memberships. From Figure 6.3 (c), it is obvious that

the STRG-Index using EGEDM outperforms the STRG-Index using GED, since GED

cannot handle the time characteristic of OGs appropriately. Overall, the STRG-Index is

more effective when it uses EGEDM .

6.5.2 STRG-Index vs. M-tree

Next, we compare STRG-Index with M-tree (MT) index based on cost and accu-

racy. In the MT indexing, there are several possibilities depending on the criteria used

to select the representative data items. RANDOM (MT-RA) and SAMPLING (MT-SA)

methods are chosen for comparison purpose since MT-RA is the fastest, and MT-SA is

the most accurate among the methods proposed in [32]. MT-RA selects the reference

object(s) randomly. Although this is not optimal, it is the fastest one and used as a ref-
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Figure 6.3. Query performances of STRG-Index with EGEDM vs. with GED: (a) Dis-
tance computation,(b) Total processing time, and (c) Accuracy.
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erence method. MT-SA also uses a random strategy, but the difference is that it iterates

over some sample objects. Although its processing is slow, it can select the representative

data objects properly. In STRG-Index, we use the EM clustering for selecting the rep-

resentative nodes (cluster nodes). Actually, we cannot use the EGED for the MT since

it needs a metric distance and does not use any explicit clustering. Therefore, we use

the EGEDM for the MT construction where RANDOM or SAMPLE is used for selecting

representative nodes. In STRG-Index, we use EGEDM for indexing, and EM clustering

for selecting the cluster nodes.

In order to validate the quality of the STRG-Index structure, we perform k-NN

queries on the same synthesized data set used in the above experiments. As seen in

Figure 6.4 (a), the number of distance computations to process k-NN queries using the

STRG-Index is much smaller (average 22%) than that using either the MT-RA or the

MT-SA. Figure 6.4 (b) shows the total processing time of 10-NN queries on the data sets

ranging from 1×104 to 10×104 objects. The total processing time for 10-NN query using

an STRG-Index is similar to that using MT-SA, and much less than that using MT-RA.

This means that the performance of k-NN query using the STRG-Index is better than

that using the MT index since both STRG-Index and MT use the same distance measure

EGEDM . Figure 6.4 (c) shows the accuracy of each indexing structure for the k-NN

query. As seen in the figure, the STRG-Index outperforms both MT-RA and MT-SA.

These results demonstrate that the STRG-Index outperforms the M-tree index in terms

of both cost and accuracy.

6.5.3 Efficiency and Scalability of STRG-Index

Figure 6.5 (a) shows the average time elapsed in building an index structure for

databases of different sizes. From this figure, the time to build a STRG-Index is much

less (15% to 50%) than that to build either MT-RA or MT-SA, even though both STRG-
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Index and MT have a similar tree structure. This is because the complexities of index

construction for STRG-Index and MT are different; the STRG-Index is O(KM) (Section

V.B) and the MT is O(RM logR M) by [82], where K is the number of cluster nodes, M

is the size of the data set, and R is the overflow size. The complexity of building the

STRG-Index is same as that of clustering because the index structure is built during the

clustering process. However, the MT uses a split procedure during the index construction,

which takes more time.

Concerning the scalability of STRG-Index with respect to the number of clusters,

we compare the size of scalable STRG-Index, where actual OGs are removed, with that

of the STRG-Index as the number of clusters increases from 48 to 480. Each cluster

has 1,000 objects, which means the total number of objects increases from 4.8 × 104

to 4.8 × 105. As seen in Figure 6.5 (b), the sizes of both scalable STRG-Index and

general STRG-Index scale linearly with respect to the number of clusters, but the size of

scalable STRG-Index is much smaller than that of general STRG-Index. This addresses

the problem when the database size increases arbitrarily large.

6.6 Summary

In this Chapter, we proposed a graph-based video indexing method, named as

Spatio-Temporal Region Graph Index (STRG-Index). The STRG-Index tree structure

consists of three level of nodes; shot node, cluster node and object node. Shot node con-

tains the BGs of segmented STRGs. Each record in the node has its identifier, an actual

BG, and an associated pointer. Cluster nodes contain the centroid OGs representing

cluster centroids. A record in the cluster node contains its identifier, a centroid OG of

each cluster, and an associated pointer. Object nodes contain OGs belonging to a cluster.

A record in the node has the index key, an actual OG, and an associated pointer. The
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experimental results demonstrate that the proposed STRG-Index performs remarkably

well in terms of cost and speed.
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CHAPTER 7

STRG QUERY PROCESSING

In this chapter, we define STRG data model which is based on the object-oriented

data model, and propose STRG Query Language (STRG-QL) from STRG data model.

Existing Video Database Management Systems (VDBMSs) that are based on relational,

object-relational, or object-oriented models, provide various types of query languages.

However, a content-based video retrieval is still open problem and challenging area since

the characteristics of video, i.e., spatio-temporal information of objects, are not consid-

ered properly. To address this, we first model video data using Spatio-Temporal Region

Graph (STRG), which represents spatial and temporal information of video objects us-

ing graphs. An STRG data model is generated from STRG by exploiting object-oriented

model where nodes and edges are used for the basic classes. Based on the STRG data

model, we propose a new graph-based query language named STRG-QL, which is ex-

tended from object-oriented language by adding several graph operations. To process

the proposed STRG-QL queries, we introduce a rule-based query optimization which

considers the characteristics of video data, i.e., the hierarchical relationships among video

segments. We illustrate the language features by examples.

The remainder of this chapter is organized as follows. Section 7.1, we present

STRG data model to map a graph model into Object-Oriented Database. Section 7.2

shows the example of basic query statement in STRG-QL. In Section 7.3, we introduce

four extended functions used in STRG-QL. Two supported query types, Query by Feature

and Example, are presented in Section 7.4. Section 7.5 presents STRG query processing,

105
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i.e., rule-based query optimization. Section 7.6 describes the experimental results of

STRG-QL in detail. Section 7.7 provides the summary of this chapter.

7.1 STRG Data Model

The proposed STRG data model facilitates a high level manipulation of video

content. We describe a mapping of STRG data model to Object-Oriented Database

(OODB) objects using an ODMG ODL schema [83]. Figure 7.1 defines four basic classes

in STRG data model; Node, Edge, RAG, and STRG. Each class represents both its

class name and a type of objects belonging to the class.

• Node type is an ordinary object type which represents a segmented region in a

video frame. It can have the attributes in which each value is a basic type, i.e., short.

Objects of Node types are the nodes of RAG and STRG. A Node represents a

single semantic object in a frame.

• Edge type is a sequence type, and its base type is a Node type. Objects of Edge

type must be sequences of two Nodes. It can have the additional attributes in

which each value is a basic type such as string and double. Objects of Edge types

are the edges of RAG and STRG. An Edge represent either spatial relationship

(adjacency) or temporal relationship (tracking) between two objects in a video.

• RAG type is a tuple type with two special attributes, Node and Edge which

contain a set of node and edge objects, respectively. A RAG represents spatial

information among objects in a frame.

• STRG type is a tuple type with three special attributes, Node and two types of

Edges. One Edge is for spatial edges, and the other is for temporal edges. In an

STRG object, its Node and Edge attributes contain a set of node and edge objects,

respectively. A STRG represents spatial and temporal relationships among objects

in a video segment.
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class Node (extent Nodes)
{ attribute Short location;
  attribute Short size;
  attribute Short color;
};

class Edge (extent Edges)
{ attribute String e_type;
  attribute set<Node> nodes;
  attribute Double velocity;
  attribute Double direction;
};

class RAG (extent RAGs)
{ attribute set<Node> nodes;
  attribute set<Edge> Sedges;
};

class STRG (extent STRGs
{ attribute set<Node> nodes;
  attribute set<Edge> sedges;
  attribute set<Edge> tedges;
};

Figure 7.1. Four basic classes in STRG data model.

We now define the ODL schema which describes a video database including videos,

shots, moving objects, and backgrounds. Figure 7.2 shows four classes of the schema:

Video, Shot, OG and BG. For every class we declare an extent, which refers to the

current collection of all objects in that class. Each raw video is modeled as Video object.

A Video provides some attributes describing the basic characteristics of a raw video data,

i.e., video name and a set of shots that a video contains. A Shot models each segmented

shot in a video. It provides some attributes describing a set of RAGs representing frames,

a key RAG (frame), and moving objects and background belonging to it. An OG and

a BG model individual object graph and background graph respectively, mentioned in

Section 4.2.

7.2 Basic Query Statement

The query language STRG-QL is an OQL-like query enriched with the constructs to

create, manipulate and query graph types of video objects. An STRG-QL is a superset of

OQL. It recognizes the syntax of OQL but it also provides additional operators, functions

and predicates to manipulate STRG data model.
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class Video (extent Videos
             key v_id)
{ attribute Short v_id;
  attribute String name;
  relationship set<Shot> shots
       inverse Shot::video;
other attributes;

};

class Shot (extent Shots
            key s_id)
{ attribute Short s_id;
  attribute set<RAG> frames;
  attribute RAG keyframe;
  relationship Video video
       inverse Video::shots;
  relationship set<OG> ogs
       inverse OG::shot;
  relationship BG bg
       inverse BG::shot;
  other attributes;
};

class OG (extent OGs key
o_id)
{ attribute Short o_id;
  attribute set<Node> nodes;
  attribute set<Edge> tedges;
  relationship Shot shot
       inverse Shot::ogs;
other attributes;

};

class BG (extent BGs key b_id)
{ attribute Short b_id;
  attribute set<Node> nodes;
  attribute set<Edge> sedges;
  attribute set<Edge> tedges;
  relationship Shot shot
       inverse Shot::bg;
other attributes;

};

Figure 7.2. ODL schema using STRG data model.

As in OQL, STRG-QL uses the traditional “select ... from ... where ...” statements

for querying. However, each clause has an extended meaning in terms of graphs. An

STRG-QL query can be expressed by the following structure.

• SELECT: target of query

• FROM: range (or source) of query

• WHERE: condition (or predicate) of query

In SELECT clause, the target of a query is specified. The possible types are any

classes defined in Figure 7.2, i.e., videos (Video), shots (Shot), moving objects (OG),

backgrounds (BG), their constructors (i.e., key frames (Shot.keyframe), video identifier

(Video.v id)), etc. Also, video browsing functions can be used in SELECT clause, i.e.,

SUMMARY() or MAKECLIP(). The range (or source) of query is specified in FROM
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clause, which defines the search space of a query. It can be a set of any classes in

Figure 7.2. If the users have no idea about the possible sources where the target may

come from, the symbol “*” can be used to represent all objects in database. In addition,

a query video given by a user is specified in this clause, which makes STRG-QL support

Query by Example. The qualification of a query is specified in WHERE clause. Objects

in the FROM clause are evaluated by the specified predicates to get the results. Here is

a typical example of STRG-QL.

Q1: Find key frames of all shots which belong to
the video id = 1

select s.keyframe
from s in Shots
where s.vid = 1;

This simple query retrieves the key frame of each shot. Full descriptions of STRG-

QL syntax will be discussed in the following subsection.

7.3 Extended Functions

The proposed extended functions in STRG-QL are related to graph operations (i.e.,

graph matching and subgraph isomorphism), and video presentation (i.e., making a clip

or video summary). Unlike existing video query languages which proposed spatial or

temporal predicates, the proposed STRG-QL does not need to consider those predicates

since STRG data model implicitly includes spatial and temporal information. In the

following, new functions in STRG-QL are introduced.
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7.3.1 GDM()

In order to compute the distance (dissimilarity) between two RAGs or BGs, we

define a graph matching algorithm, called Graph Dissimilarity Measure (GDM), which

uses the maximal common subgraph [3]. The graph dissimilarity measure GDM between

two graphs G1 and G2 can be defined as follows.

Definition 18. The Graph Dissimilarity Measure (GDM) between G1 and G2 is defined

as:

GDM(G1, G2) = 1− |GC |
max(|G1|, |G2|)

where |G| denotes the number of nodes of G, and GC is the maximal common subgraph

of G1 and G2.

In Definition 18, GC can be computed based on maximal common subgraph men-

tioned in Algorithm 1 (see Figure 3.5). In GDM(), the possible operands are any types

of graphs (i.e., BG, RAG or STRG).

Q2: Find s_id of all shots of which background 
and key frame are same.

select  b.shot.s_id
from  b in BGs
where  GDM(b.nodes, b.shot.keyframe.node) < 

�
;

In this query, all shots are returned, of which its background and key frame are

same. Using GDM() to compare two RAGs or BGs, we allow a certain error margin to

find similar graphs, since it is rarely happened to find identical graphs in STRG data

model. In this case, we use a certain threshold value (δ) for the error margin.
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7.3.2 EGED()

Since GDM() is designed for general purpose of graph matching such as RAGs and

BGs, it is not suitable to compare two OGs which are time-varying data. In order to

address this, we use a proposed distance function, EGED() between two OGs in Section

5.1.

Q3 gives a list of OGs whose moving pattern is same as those of the shot (s id =

1) by EGED(). We allow a certain threshold value (ε) for the error margin like using δ

of GDM().

Q3: Find o_id of all moving objects which have
the same moving pattern to moving objects in the
shot id = 1

select  o.o_id
from  o in OGs,
            q in ( select a.ogs from a in Shots

where a.s_id = 1 )
where  EGED(o.nodes, q.nodes) < �;

7.3.3 SUMMARY()

Since consecutive frames in a segmented shot are little different, it is efficient to

summarize a long video without loss of main semantics when the frames are compared

or browsed. In order to summarize videos or shots, we exploit a scene tree construction

technique proposed in [55], and extend it to STRG data model. SUMMARY() requires

three parameters as input, i.e., source object (a set of frames, shots or videos), summary

level (L), and summary length (Tlen). It returns a set of frames which is a summary

without loss of original semantics. The detailed algorithm for the summarization can be

seen in [55].
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Q4: Summarize a video id = 1 with Level = 1 and
Tlen = 0.9

select SUMMARY(v.shots, 1, 0.9)
from v in Video
where v.v_id = 1;

Q4 returns the summary of a video. Moreover, it can be used in FROM and

WHERE clauses to reduce the processing time.

7.3.4 MAKECLIP()

MAKECLIP() is a browsing function to generate a video clip from input objects

such as RAGs, Shots, and Videos. Since STRG data model is expressed as types of graphs,

it is inconvenient to verify the retrieved data with nodes and edges. MAKECLIP() is

used in SELECT clause to help the visualization of query results. It has two parameters

as operands, i.e., source objects and a destination of generated clip. Q5 shows an example

of MAKECLIP() to generate a video clip from retrieved key frames.

Q5: Find key frames of all shots which belong to 
the video id = 1, then generate clip to C:\out.avi

select MAKECLIP( s.keyframe, C:\out.avi )
from s in Shots    
where s.vid = 1;

7.4 Supported Query Types

In this section, we present two main query types that STRG-QL supports; Query

by Feature (QBF) and Query by Example (QBE). While QBF is the basic query type
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which is compatible to ODMG OQL, QBE supports a query with a sample video clip.

We provide some examples of each query type.

7.4.1 Query By Feature

This type of query is used to retrieve salient objects from database that satisfy

the conditions given by feature values. Since the query uses feature values of objects in

database, it is fully compatible to a standard OQL. A typical example of QBF is given

below:

Q6: Find moving objects of all OGs of which node
has the following trajectory: ( [10,60], [30,60],
[50,60], [70,60], [90,60], [110,60] )

select  o.o_id
from  o in OGs
where EGED(o.nodes,

       set(struct Node{ [10,60], nil, nil },
                      struct Node{ [30,60], nil, nil },

  ………

struct Node{ [110,60], nill, nil } ))  <
�

;

In this query, a set of Nodes is constructed from given feature values by following the

locations of moving object. The constructed nodes are compared to each OGs.nodes to

find salient objects. However, as seen in Q6 it is inconvenient to make a query statement

using feature values. Sometimes it is not possible to make an appropriate query statement

from given conditions. In order to address this, we propose more convenient query type

using examples.



114

7.4.2 Query By Example

Query By Example (QBE) was developed originally by IBM in the 1970s to help

users in their retrieval of information from the database using query templets [84]. We

employ the idea of QBE to address the limitation of QBF. QBE in STRG-QL makes

users retrieve data using a sample video clip. In other words, a sample video clip instead

of feature values is given to a query. In order to support a query video, the FROM

expression in OQL grammar is extended as follows.

<from_clause> := <variable_name> IN <expression>
| <variable_name> IN <expression>, <from_clause>
| <variable_name> IN <expression> OF <videolist>

<videolist> := [<videolist> ‘,’] <name>

<name> :=  '[A-Za-z][A-Za-z0-9_#]*'

The query videos are assigned to OF clause. When a query has multiple videos, a

comma is used for the separator. If OF clause is recognized in a compile time, a query

processor creates temporary objects for a query video (i.e., tmpVideo, tmpShot, tm-

pOG and tmpBG) using STRG data model in memory. During the query execution

phase, each data object is extracted from the query videos before retrieval. The tempo-

rary objects are removed from the memory after the query is completed. The temporary

objects, tmpVideo, tmpShot, tmpOG and tmpBG, are inherited from Video, Shot,

OG and BG, respectively.

In Q7, all moving objects in a query video (i.e., ‘query.avi’) are first extracted by

STRG producing module, and will be stored at tmpOG as OG type. Then, the remain-

ing query is processed like a normal query. Other STRG objects, such as tmpVideo,

tmpShot, and tmpBG, can be created in memory if needed.
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Q7: Find moving objects of OGs in a video with
v_id = 1 whose moving patterns and background
are the same as moving objects and background
in a given video clip (query.avi)

select  o.o_id
from  v in Videos,  o in OGs,

 q in tmpOGs of ‘query.avi’

where v_id = 1 and
 o.shot in v.shots and
 EGED(o.nodes, q.nodes) < 

�and
 GDM(o.shot.bg, q.shot.bg) < 

�
;

7.5 STRG Query Processing

An STRG-QL query is processed in the query processor to retrieve data from a

database, which is called a STRG query processing. Figure 7.3 shows four main phases

of STRG query processing: query recognition, query decomposition, query optimization,

and query execution. Query recognition performs syntactic and semantic checks of input

query, and generates a parse tree. Query decomposition constructs a query tree from a

parse tree using algebra expressions. The query tree is optimized for an efficient execution

in query optimization phase. Finally, the query execution retrieves the data in database

according to the execution plan. A set of results is returned to a user who requests the

query. Among query processing phases, the most important one is query optimization

since it determines the overall performance of STRG query processing. In this section,

we focus on the query optimization strategy. First, we introduce a new index structure

for STRG data model, which is called STRG-Index. Then, a rule-based optimization

strategy of STRG-QL is discussed.



116

Query Decomposition

Query Optimization

Query Recognition

Query Execution Database

Query

Query Results

Algebra expression

Execution Plan

Parse Tree

Figure 7.3. STRG Query processing phases.

7.5.1 Rule-based Query Optimization

A query optimization is the activity of choosing an efficient execution strategy for

processing a given query. Since STRG data model deals with video data which have the

hierarchical characteristics, such as video, scene, shot, and frame, we need a different

strategy to process STRG-QL. For example, suppose that a query includes two join op-

erations such as video to video or frame to frame levels. A conventional query processing

uses a statistical information to reduce the cost of these operations. However, video

level operation can be processed in advance without investigating additional information

because video always has lower cardinality than frame does. Therefore, using logical and

hierarchical structure of a video not only saves a cost of a query optimization, but also

improves performance of a query execution. The rules of query optimization in STRG-QL

are as follows:
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Rule 1: Perform selection operation as early as possible. Like other query opti-

mization, selection can reduce the cardinality of object. Therefore, it makes sense

to move the selection operations as far down the tree as possible.

Rule 2: Perform the operations related to OGs after all operations related to

Video and Shot operation. Since OG is an object with high cardinality, OG

should be cascaded before it is processed. In order to do this, Rule 2 moves the

operations related to OG later than others.

Rule 3: Perform extended operations of STRG-QL as late as possible. In gen-

eral, the extended functions of STRG-QL (i.e., GDM(), EGED(), SUMMARY()

and MAKECLIP()) mentioned in Section 5.3 have a significant amount of pro-

cessing compared with conventional operations of OQL. Therefore, it is better to

perform them as late as possible to reduce the cost of extended functions.

Rule 4: Use STRG-Index for the operations related to Shot, BG and OG.

In order to avoid a sequential scanning in selection, and cartesian product in join

operation, we use an STRG-Index mentioned in previous subsection.

Using above rules, we build an execution plan for the example query in Q7. First,

Q7 query is decomposed into the following subqueries:

• Subquery 1: v id = 1 and o.shot in v.shots

• Subquery 2: EGED(o.nodes, q.nodes) < ε

• Subquery 3: GDM(o.shots.bg, q.shots.bg) < δ

By Rule 1 and 2, Subquery 1 is executed at first. Then, Subquery 3 performs a join

operation with GSM() between the output of Subquery 1 and q (tmpOGs) according to

Rule 3. Subquery 2 is carried out after Subquery 3 because of Rule 2. Figure 7.4 shows

the execution plan constructed by our rule-based query optimization. For the selection
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operations (σ) and the join operations (./), two STRG-Index for v and q can be used

for more efficient query processing.

�

v (Videos)

v_id=1 o (OGs)

o.shot in v.shots q (tmpOGs)

GDM(o.shot.bg, q.shot.bg) < 
�

EGED(o.nodes, q.nodes) < �

o_id

�

�

Figure 7.4. Execution plan of Q7 query.

7.6 Experimental Results

7.6.1 Performance of GDM() and EGED()

We first evaluate the performance of the proposed graph operational functions

(GDM() and EGED()) on the synthetic data set, which are the main features to decide

the performance of STRG-QL. Example query Q2 and Q3 are used for the evaluation

of GDM() and EGED(), respectively, since Q2 and Q3 have those functions. Figure 7.5

shows the precision-recall values for two queries. The precision of Q2 (GDM()) is over

60% over any values of recall. And, the precision of Q3 (EGED()) is over 80% over any

values of recall. These indicate that the proposed functions (GDM() and EGED()) are

nearly optimal to find the similar objects. The performance of GDM() is a little less than

that of EGED() since GDM() is designed for general purpose.
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(EGED)

Figure 7.5. Performance of GDM() and EGED().

7.6.2 Performance of Optimization

Figure 7.6 shows the number of disk accesses to validate the efficiency of a rule-

based query optimization. We use the same k-NN query in the previous subsection. We

count the number of disk accesses when a query is executed with and without query

optimization. As seen in the figure, a rule-based query optimization can reduce the

significant number of disk accesses, which makes the performance of STRG-QL better.

7.6.3 Accuracy of Retrieval

To demonstrate the overall accuracy of STRG-QL and its query processing, we

use the real videos in Table 3.1. First, all the videos are processed by the proposed

STRG processing techniques mentioned in Chapter 3 and 4. The outputs are stored

at the repository as the forms of STRG data model, i.e., Video, Shot, OG and BG.

Then, STRG-Index is constructed for all the videos (see Section 6.1). We use a k-NN
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query which is an extension of example query Q7. The k-NN query can be expressed by

STRG-QL as follows.

select  o.o_id
from  o in OGs,

 q in tmpOGs of ‘query.avi’

where  EGED(o.nodes, q.nodes) < 
�and

 GDM(o.shot.bg, q.shot.bg) < 
�

and
rownum < k

order by EGED(o.nodes, q.nodes) asce

where k is a number of returned data, ε = 0.1 and δ = 0.1. Two query videos

are selected from the database; the first query video is from surveillance group, and the

second is from produced group in Table 3.1. The results are verified with the ground

truth. As seen in Figure 7.7, we observe that the precision of the first query is over 80%,
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and that of the second query is over 70% at any values of recall. In other words, the

proposed STRG-QL provides consistent accuracy for various video types.
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Figure 7.7. Accuracy of STRG-QL.

Figure 7.8 shows a result of the first query when k = 2. The first row shows some

selected frames of the query video. Two matched videos are in the second and third rows.

As seen in Figure 7.8, STRG-QL is able to find the objects with similar moving pattern.

7.7 Summary

In this chapter, we introduce a graph-based query language STRG-QL and its query

processing for content-based video retrieval system. In order to develop a general-purpose

video query language, first we model video data using Spatio-Temporal Region Graph

(STRG). An STRG data model is generated from STRG using object-oriented model

where nodes and edges are used for the basic classes. Based on the STRG data model,

we propose a new graph-based query language named STRG-QL, which is an extension
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Figure 7.8. Result of k-NN query using STRG-QL (k=2).

of OQL by adding several graph operations. To process the proposed STRG-QL queries,

we introduce a rule-based query optimization which considers the characteristics of video

data. Some query examples are given to illustrate STRG-QL and its query processing.

Experimental results on both synthetic data and real video streams show the effectiveness

and accuracy of the proposed approaches.



CHAPTER 8

CONCLUSIONS AND FUTURE RESEARCH

The use of multimedia data in many applications has increased enormously with

the recent advances in video capture device, storage, network technology and computing

power. As a consequence, there are increasing demands on modeling, indexing, and

retrieving these data. However, since the huge amount of data size and its complexity

have restricted the progress on video data management systems. This dissertation address

the problems of video data management systems by using a graph, such as video data

modeling, indexing, and query processing. In this chapter, I summarize the contributions

of this dissertation, and provide future research directions based on my work.

8.1 Summary of Contributions

In this dissertation, we proposed a new graph-based video data structure, named

Spatio-Temporal Region Graph (STRG). STRG can represent spatio-temporal features

and the correlations among the video objects. A Region Adjacency Graph (RAG) is

generated from each frame, and an STRG is constructed by connecting RAGs. An STRG

is segmented into a number of pieces based on its content for efficient processing. Then,

each segmented STRG is decomposed into its subgraphs, called Object Graph (OG) and

Background Graph (BG) in which redundant BGs are eliminated to reduce index size

and search time.

In addition, we proposed a new indexing of OGs by clustering them using unsuper-

vised learning algorithms for more accurate indexing. In order to perform the clustering,

we need a distance measure between two OGs. For the distance measure, we propose a

123
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new measure, Extended Graph Edit Distance (EGED) because the existing measures are

not very suitable for OGs. The EGED is defined in non-metric space for clustering OGs,

and it is extended to metric space to compute the key values for indexing. Based on the

clusters of OGs and the EGED, we propose a new indexing structure STRG-Index which

provides efficient retrieval.

Finally, we proposed a graph-based query language named STRG-QL by extending

object-oriented language. To process the STRG-QL queries, we introduced a rule-based

query optimization that considers the hierarchical relationships among video segments.

For more efficient query processing, we present STRG-Index structure and show how to

use it during query processing.

8.2 Future Research Directions

In the future, I would like to move from modeling and indexing multimedia data to-

wards developing multimedia database system and its applications of various data types,

which support a high-level user request. I am also interested in studying knowledge dis-

covery to find hidden concepts within complex types of data, such as high-dimensional

spatio-temporal data. To achieve this, I would rather use sound mathematical approach

that emphasizes understanding and digs to the bottom, while still avoiding pure scholas-

ticism, keeping in mind practical applications. I anticipate that the applications of this

research will be numerous and diverse, for the simple reason that accurate modeling and

indexing of multimedia data have immediate relevance to any systems that involves spa-

tial, temporal, or spatio-temporal data. The remainder of this section briefly describes

some specific potential research projects.

• Developing GVDBMS: Graph-based Video Database Management Sys-

tem. Based on the algorithms and techniques developed in my research work, I

plan to develop a Graph-based Video Database Management System (GVDBMS)
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that integrates graph-based modeling, video data mining, ontology, STRG-Index,

and query processing. Developing GVDBMS, I am going to address the following

issues: (1) The system can handle not only low-level feature values of the data, but

also high-level human perceptions, i.e., concept of data. To support the high-level

human perceptions, we extent conceptual query to STRG-QL that integrates with

STRG-Index, (2) The system should be scalable to the size of data, since the huge

amount of multimedia data may restrict to improve performance of the system,

which is not acceptable for the practical systems, and (3) The system can be easily

extended to other applications whose data types can be represented as a graph

(STRG): e.g. hurricane tracks data, and mobile agent in sensor network.

• Investigating a broad set of applications of GVDBMS. The primary benefit

of using a graph is that it can represent spatial and temporal relationships among

semantically rich and complicated data. Thus, I extend GVDBMS to other ap-

plication domains where the data is represented by a graph-based modeling. The

first application domain is medical videos, specifically colonoscopy video and cap-

sule endoscopy video. Unlike produced videos that consist of a group of shots, the

medical videos are usually generated by a single camera operation without shot,

which makes it difficult to manage and analyze them. However, a graph-based

approach may model and index these types of videos since it is based on both low-

level features and relationships among the data. The second application domain is

high-dimensional spatio-temporal data, specifically hurricane track data and mobile

agent in sensor network. The application systems generate their own ontologies to

represent concepts and knowledge of the data. Using the generated ontology, the

system can support high-level user requests, i.e., conceptual queries.

• Investigating data mining techniques that discover Knowledge of data.

The formal concept used in the ontology and conceptual clustering is mathematical



126

representations of the concepts. In other words, it is still far from human perception

that is based on linguistic terms. To reduce the gap, I plan to continue research

on data mining techniques to discover and learn the knowledge of data, which

should be closer to human understating. Among many data mining algorithms,

I am interested in unsupervised learning algorithm, i.e., clustering, since almost

all multimedia data are unlabeled, and semantically rich. Moreover, I am also

interested in mathematical approaches for knowledge representation, i.e., formal

concept analysis, and lattice theory. Both mathematical approach and data mining

technique will be integrated into a knowledge discovery system.
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