
 

 

UNSUPERVISED DATA MINING METHODS FOR FUNCTIONAL DATA 

ANALYSIS AND FEATURE SELECTION 

 

 

by 

 

PANAYA RATTAKORN 

 

Presented to the Faculty of the Graduate School of 

The University of Texas at Arlington in Partial Fulfillment 

of the Requirements 

for the Degree of 

 

DOCTOR OF PHILOSOPHY 

 

THE UNIVERSITY OF TEXAS AT ARLINGTON 

December 2009 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

Copyright © by PANAYA RATTAKORN 2009 

All Rights Reserved 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

I delicate this dissertation to my father, Decha, mother, Dr. Amara,  

and everyone in my family. 



 

iv 
 

   
 
 
 

ACKNOWLEDGEMENTS 

 
I would like to sincerely express my deepest gratitude to my supervising 

professor Dr. Seoung Bum Kim for his guidance, understanding, and most importantly, 

his patience during my doctoral study. I have been remarkably fortunate to have an 

advisor who gave me invaluable advice and knowledge to reach my goal. Without him, 

this dissertation would not been complete.  

I am extremely grateful to my supervising committee members, Dr. Victoria C. 

P. Chen, Dr. Jay Rosenberger, and Dr. Yuan Bo Peng, for their guidance over the years 

and generously given their time and efforts on this dissertation. I would like to thank 

Dr. Kwok-Leung Tsui (from Georgia Institute of Technology) for his precious advice 

during our meeting at INFORMS and Arlington. I would also like to extend a sincere 

thanks to Dr. J. C. Chao for his insightful advices on neurostimulation data. 

I would like to thank all COSMOS colleagues, especially Drs. Chivalai 

Temiyasathit, Thuntee Sukchorat, Prattana Punnakitikashem, Siriwat Visoldilokpun, 

Durai Sundaramoorthi, Huiyuan Fan, Prashant Tarun, Passakorn Phananiramai, 

Chatabush Roongrat, Ching-feng Lin, Poovich Phaladiganon, Panitarn 

Chongfuangprinya and Weerawat Jitpitaklert, for helpful discussions and friendships. 

My special thanks go to my friends: Sarinya and Jason Eberle, Apinan Kanyalak, 

Krirkkrit Sripaipan, Orn Sangtherapitikul, and many people from Meditation Center of 



 

v 
 

Texas, who always supports me during my hardships. I also would like to thank 

Luminant Power for funding my PhD study. 

Most importantly, I wish to extend my warmest thanks to my parents who has 

encouraged me throughout this long journey. I deeply appreciate all of their love and 

support they have given me along the way. I could not have done it without them. 

Lastly, I am extremely indebted to my grandparents, aunts, uncles, brother, and cousins 

for their love and supports. 

July 23, 2009 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

vi 
 

 

ABSTRACT 

 
UNSUPERVISED DATA MINING METHODS FOR FUNCTIONAL DATA 

ANALYSIS AND FEATURE SELECTION 

 

PANAYA RATTAKORN, PhD 

 

The University of Texas at Arlington, 2009 

 

Supervising Professor:  Seoung Bum Kim 

The objective of this dissertation is to develop new unsupervised data mining 

methods for functional data analysis and feature selection. Unsupervised learning is a 

modeling process that facilitates the extraction of implicit patterns and elicits the natural 

groupings within the dataset without using any information from the output (response) 

variable.  This dissertation consists of two main parts: (1) unsupervised clustering 

approaches for functional data analysis and (2) unsupervised feature selection.   

Functional data analysis has gained significant attention from a variety of 

disciplines. In this dissertation we propose an effective clustering procedure to 

categorize a number of profiles that are formed with nonlinear functions.  The proposed 

clustering procedure first smoothes the data and then transforms the smoothed data to 

obtain their functional form.  The coefficients of the function obtained from the 
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preceding transformation step are used for clustering.   Simulation studies under various 

scenarios indicated that our proposed clustering procedure correctly identified the true 

clusters and yielded better clustering results than a latent class cluster analysis, one of 

the existing clustering methods.   Furthermore, the effectiveness of the proposed 

clustering procedure was demonstrated using real pain data in which the main objective 

is to characterize the responses of 144 spinal cord dorsal horn neurons with graded 

thermal stimuli that range from 37° C to 51° C in 2-degree C increments. The results 

showed that the proposed clustering strategy can successfully elicit natural grouping of 

the neurons with similar response patterns to graded thermal stimuli.  

Feature selection has received considerable attention in various areas to select 

informative features and simplify the statistical model by achieving dimensional 

reduction.  One of the widely used methods for dimensional reduction includes 

principal component analysis (PCA). Nevertheless, PCA suffers from the lack of 

interpretability with respect to the original feature because the reduced dimensions are 

linear combinations of a large number of original features. Traditionally, two or three 

dimensional loading plots provide information to identify important original features in 

the first few principal component dimensions. However, the interpretation of a loading 

plot is frequently subjective, particularly when the number of features is large.  In this 

study, we proposed an unsupervised feature selection method that combines weighted 

principal components (PCs) with thresholding algorithm. The weighted PCs are 

obtained by weighted sum of first k PC of interest. Each of the k loading values in the 

weighted PC reflects the contribution of each individual feature. We also proposed the 
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thresholding algorithm that identifies the significant features. Our experimental results 

with both the simulated and real datasets demonstrated the effectiveness of the proposed 

unsupervised feature selection method.  
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CHAPTER 1 

INTRODUCTION 

 

  

As computer and database technology grows rapidly, vast amount of data are 

being generated with high complexity. The problems arise when the traditional data 

analysis methods are unable to handle these types of data. The data mining approach is 

employed to overcome these problems and can be viewed as a multidisciplinary joint 

effort from machine learning, information technology, and statistics. Recently, data 

mining has gained a great deal of attention from various disciplines including 

manufacturing, telecommunications, economic, gene expression studies, and biomedical 

studies and etc. Among those disciplines, functional data are commonly found because 

usually data are collected over long periods of time. In bioinformatics, the data often 

involve a large number of genes e.g. several thousands. These types of data often 

challenge analytical capabilities because their high dimensionality and their complexity. 

The major purpose of this dissertation is to present unsupervised data mining algorithms 

as a tool for functional data analysis and feature selection. 
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1.1 Functional Data Analysis 

 Functional data analysis is an analysis of curves or functions of data. The basic 

concept of functional data analysis is to consider the observed functions as a single 

objects rather than a sequence of individual observations (Ramsay and Silverman, 

2005). Longitudinal data can be considered as functional data because the observations 

are collected as a function of time or other continuous variables. Functional data 

analysis differs from the traditional analysis because it uses the rates of change or 

derivatives of the curves to analyze and visualize data.  Figure 1.1 illustrates example of 

functional data. The y-axis represents the observations that corresponding to the 

function of x. 

 
Figure 1.1 Illustration of functional data.   
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 According to Ramsay and Silverman (2005), the objectives of functional data 

analysis are as follows: (i) to discover pattern or variation among data; (ii) to assist 

further analysis; (iii) to visualize data and highlight characteristics of data. 

 

1.2 Data Mining 

According to Wegman and Solka (2005), the definition of data mining can be 

defined as an extension process of exploratory data analysis to discover the unknown 

and unanticipated structure in the data. Data mining tools are commonly separated into 

two categories: supervised learning and unsupervised learning. Supervised approaches 

require both the input (predictors) variable and the output (response) variable, while 

unsupervised approaches rely solely upon the input (explanatory) variables. 

1.2.1 Supervised Learning 

 Supervised learning is a data mining technique to obtain a model from a pair of 

input data and desired outputs. The characteristics of output variables are used to 

categorize supervised learning into either classification or regression problems. For 

classification problems, the output variable is a categorical variable. The task of 

classification is to assign existing class labels to the unknown observation. In the 

regression problems, the response is continuous variable so that the task is to predict the 

value of function for any valid predictors.   

Linear regression models have been the most widely used approach for 

regression problems because of their simplicity and the models often provide an 

adequate and interpretable description of relationship between response and predictors. 
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The variable selection algorithms are used to obtain the model with the good sets of 

predictors. There has been several variable selection approaches developed for linear 

regression models. These methods are (1) forward selection, (2) backward elimination, 

(3) stepwise selection, and (4) best subsets selection (Larose, 2006).  

1.2.2 Unsupervised Learning 

Unsupervised approaches attempt to extract the information without using any 

response variables. Although visualization techniques elicit the natural groupings of the 

observations, the interpretation of graphical results is not necessarily straightforward. 

Clustering analysis is an unsupervised approach that systematically partitions the 

observations by minimizing within-group variations and maximizing between-group 

variations, then assigning a cluster label to each observation. Clustering analysis 

includes hierarchical and nonhierarchical methods. 

Nonhierarchical clustering algorithms aim to group observations into k clusters. 

The number of k can be determined as a part of clustering procedure or can be specified 

in advance. The k-means clustering algorithm is one of the most popular of non 

hierarchical clustering methods (Kim et al., 2002). A brief summary of the k-means 

clustering algorithm is as follows. Starting with k seed points, each observation is 

assigned to one of the k seed points close to the observation, which creates k clusters. 

Then, seed points are replaced with the mean of the currently assigned clusters. This 

procedure is repeated with updated seed points until the assignments do not change. The 

k-means clustering algorithm depends on distance metrics and the number of clusters 
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(k). A variety of distance metrics are available. Generally, the Euclidean distance is a 

widely used distance metric to analyze the multivariate data.  

Principal component analysis (PCA) is one of the most widely used methods for 

unsupervised learning. The principal component analysis has two major proposes. The 

first objective is to reduce the data dimension and the second objective is to illustrate 

interpretation for the high dimensional data (Johnson and Wichern, 2001). The principal 

component is the linear combination of the original variables which transform into 

uncorrelated new variables. The transformed variables, called principal components 

(PCs) are uncorrelated, and generally, the first few PCs are sufficient to account for 

most of variability of the entire data. Thus, plotting the observations using these first 

few PCs facilitates the visualization of high-dimensional data.  

A brief summary of the algorithm of PCA is as follows: Let [ ]pXXXX ,,, 21 L=′  

have covariance matrix Σ, with eigenvector ie′  (i = 1,…, p) corresponding to the 

eigenvalue λi , where λ1 ≥ λ2 ≥…≥ λp (Johnson and Wichern, 2001). The principal 

component is the linear combination of the original variables which transform into 

uncorrelated new variables Y1, Y2, Y3,…, Yp as follows. 
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                         (1.1) 

In order to reduce the dimensionality of data, let [ ]TdyyyY ,,, 21 K= , and d < p, we 

able to obtain the new variables yj (i = 1,…, d). 
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1.3 Applications 

As previous mentioned, data mining has wide range of applications, including 

manufacturing, finance, telecommunications, bioinformatics, and neuronal studies. In 

manufacturing, data mining methods are widely implemented to predict the outcome of 

manufacturing process such as defective parts. In finance, credit analysis and prediction 

of loan payments are always critical to the business of financial firms. Data mining 

methods assist the firms to evaluate risk of their customers and also identify the 

important factors and eliminate irrelevant factors.   In telecommunications, data mining 

aids providers to facilitate their churn detection activities and analyze fraudulent 

patterns and any unusual activities. In past decades, there has been an explosive growth 

in bioinformatics. Data mining methods support researchers to better understand the 

biological process e.g. molecular patterns, DNA and protein sequences. Combined with 

microarray technology, data mining methods have been applied to discover gene 

expression patterns and identify complex disease genes and biomarkers for disease 

diagnostic. In this dissertation, we explicitly focus on neurostimulation data and 

microarray gene expression data. 

Microarray gene expression data contain thousands of genes reflecting the state 

of cell with different protein and mRNA compositions (Ding, 2002). Of the thousands 

of genes, there are only a small number of significant features. Thus, selecting of most 

important and relevant genes is an important task. Figure 1.2 illustrates example of 

microarray gene expression data. The unsupervised feature selection is applied in order 

to select a set of relevant genes. 
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Figure 1.2 Illustration of microarray gene expression data.   
 

1.4 Organize of this Dissertation 

This dissertation begins with a brief introduction of data mining and biomedical 

signals in Chapter 1. Chapter 2 proposes a clustering strategy procedure for neuronal 

response profiles in graded thermal stimuli. Chapter 3 presents an unsupervised feature 

selection approach by using weighted principal component combines with thresholding 

algorithms.   Finally, Chapter 4 discusses the future research directions.    
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CHAPTER 2 

AN EFFECTIVE CLUSTERING PROCEDURE OF NEURONAL RESPONSE 
PROFILES IN GRADED THERMAL STIMULATION 

 

2.1 Introduction 

In recent years, functional data analysis has received considerable attention in a 

variety of fields of applied science in which collected data are formed with functions 

(Ramsay and Silverman, 2005). In the present study we apply functional data analysis 

to study how the dorsal horn neurons of a rat respond to graded heat stimuli. Pain is one 

of the most extensively studied neural systems. Pain can be evoked in the periphery by 

mechanical, thermal, and chemical stimuli. In the spinal cord, dorsal horn neurons play 

a critical role in receiving not only excitatory input from peripheral tissues (e.g., skin), 

but also descending inhibitory input from supraspinal structures (e.g., the brain stem). 

Thus, the response properties of these spinal dorsal horn neurons determine the final 

output of neural signals to the higher center. It is expected that the outcome of this 

analysis will help better classification of spinal dorsal horn neurons, which will be used 

to correlate the efficacy of the descending inhibition by electrical neurostimulation. 

Neurostimulation has been efficiently used to reduce or block pain signals 

(Burchiel et al., 1996). A neurostimulation device over the surface of the spinal cord or 

over the primary motor cortex, for example, could deliver low levels of electrical 

current or heat directly to nerve fibers or neurons. Therapeutic studies have shown that 
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when used on carefully selected chronic-pain patients, neurostimulation could 

significantly improved pain relief and reduce the need for narcotic medications 

(Burchiel et al., 1996). Neurostimulation has several significant advantages. First, it can 

be very effective, with few side effects, for certain conditions. Second, the implanted 

device can be controlled by patients or doctors with little risk of addiction or overdose. 

Third, the implant can be removed if it does not achieve the desired level of pain or 

symptomatic relief.  

Several studies have been conducted to characterize the spinal cord dorsal horn 

neurons in a rat. Chung et al. (1986) and Owens et al. (1992) studied the response of 

spinal cord dorsal horn neurons to mechanical stimuli.  Senapati et al. (2005) conducted 

electrical stimulation to induce inhibition of the responses of spinal cord dorsal horn 

neurons to noxious mechanical stimuli. Furthermore, a number of studies of spinal cord 

dorsal horn neurons were conducted to determine their response to graded heat stimuli 

(Kanui, 1985; Craig et al., 2001; Hayes and Rustioni 1981). The main conclusion from 

these studies has been that the responses of dorsal horn neurons increase as heat stimuli 

increase. Despite the number of studies conducted in this direction, few efforts have 

been made to characterize the response pattern of spinal cord dorsal horn neurons in 

deeper laminae to heat stimuli (Borzan et al., 2005). Borzan et al., (2005) used a latent 

class cluster analysis (LCCA) to categorize the dorsal horn neurons in the deep laminae 

of the rat in response to graded heat stimulation. They found five distinct response 

patterns in these neurons. LCCA is one of the model-based clustering methods that have 

been used to elicit the natural groupings of multivariate data.  However, the responses 
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of the dorsal horn neurons are functional observations in that the responses can be 

represented as a function of the temperature. Thus, the direct use of a clustering method 

for this functional dataset may lead to inefficient and unsatisfactory conclusions.      

Indeed, the data often involve a number of complex nonlinear profiles that 

challenge analytical capabilities. To address this problem, we propose an effective 

clustering procedure to group a number of nonlinear profiles.   In general bioinformatics 

research, a number of studies have used clustering methods, especially when gene 

expression data were the target, to discover patterns in functional data. Wakefield et al. 

(2002) proposed a model-based clustering method to efficiently cluster gene expression 

data.  Schliep et al. (2003) suggested clustering genes based on hidden Markov models 

(HMM). They claim that HMM is robust to the noisy and frequently missing data and 

has an ability to handle cyclic and noncyclic biological time series. Luan and Li (2003) 

proposed a mixed-effects model with B-splines for clustering time-course gene 

expression data. Each of the aforementioned methods has its own advantages and 

disadvantages, and choosing among them depends on the purpose of the application. 

Recently, Serban and Wasserman (2005) developed CATS (clustering after 

transformation and smoothing) as a method to cluster a number of profiles and applied 

it to time-course gene expression data. The CATS method involves three required 

preprocessing steps before clustering analysis. These are transformation, smoothing, 

and screening, in that specific order. The purpose of the screening step in CATS is to 

filter out any constant profiles that may adversely affect the clustering. However, testing 

the constant profiles involves a statistical threshold that can be determined subjectively. 
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Further, although the authors claimed that the screening step in CATS is important, 

their simulation study found that the screening step brought no significant clustering 

improvement. In the present study we propose a modified version of CATS that does 

not require a screening step and efficiently clusters a number of nonlinear profiles 

collected for the heat stimulation study.  

The remainder of this chapter is organized as follows. Section 2.2 describes a set 

of analytical methods, including smoothing, transformation, clustering, and clustering 

validity measures, used in the proposed clustering procedure. Section 2.3 presents 

simulation studies to investigate the performance of the proposed procedure and to 

compare it with one of the existing clustering methods.  Section 2.4 presents a real 

application study to examine the response patterns of deep dorsal horn neurons to heat 

stimuli. Section 2.5 contains our concluding remarks.   

 

2.2 Analytical Methods 

The basic idea of our proposed clustering procedure is to conduct the clustering 

analysis after the data are smoothed and transformed, in that specific order. It should be 

noted that the order of smoothing and transformation is different from CATS. Detailed 

descriptions of our choices for smoothing and transformation methods are presented in 

the following subsections.    
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2.2.1 Smoothing 

Generally, smoothing algorithms were used to remove noises and are presented 

in the data so as to highlight the real signals. A robust locally weighted regression 

(LOESS) method was used for smoothing a set of data points (xi, yi) for i = 1, 2, …, n in 

which the fitted value is the polynomial fit to the data (Cleveland, 1979).  LOESS starts 

with a local polynomial fitting of a subset of data and then applies a robust fitting 

method to obtain the final fit. One of the parameters of LOESS is a smoothing factor 

that controls the degree of smoothness of the regression function. The larger the 

smoothing parameter is, the less sensitive it is to fluctuations in the data. The smoothing 

parameter can be determined by a cross-validation technique (Cleveland and Devlin, 

1988). Another parameter in LOESS is the order of the polynomial function.  Using a 

zero degree is the simplest computation that converts LOESS into a weighted moving 

average. Typically, smoothing parameter of one is sufficient to smooth the data 

(Cleveland, 1979).  

2.2.2 Transformation 

Having smoothed the data, we converted them into a functional form.  In other 

words, we fitted the profiles of the smoothed data based on a set of basis functions that 

can be represented as follows:  

( ) ( )∑
=

=
K

k
kk tctx

1

φ ,        (2.1) 

where K is the number of basis functions, ck are the coefficients, φk are polynomials, and 

t is the parameter (e.g., time). 
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Spline functions are commonly used for approximation of nonperiodic 

functional data (Ramsay and Silverman, 2005; Levitin et al., 2007).  The B-spline basis 

is formed by joining polynomial functions of order K at fixed points, called knots. Let L 

be subintervals separated by the value of τi, where l = 1,…, L-1. For each interval, m is 

the order of a polynomial. The spline function S(t) can be represented as follows:  

( ) ( ),,
1

1
∑

−+

=

=
Lm

k
kk tBctS τ      (2.2) 

where ( )τ,tkB  is the value at t of the B-spline basis function as defined by the knot 

sequence τ,  and ck is the corresponding coefficient (Ramsay and Silverman, 2005).  

Serban and Wasserman (2005) used the Fourier transform in their CATS 

method. The Fourier transform is efficient for the periodic data. However, the 

stimulation data from neuroscience often exhibit a nonperiodic pattern as shown in the 

latter part of this paper (please see Figure 2.3). Consequently, we propose here to use 

the B-spline function to transform the data. 

2.2.3 Clustering Analysis 

We performed clustering analysis to group the response profiles based on the 

coefficients of the B-spline functions. Clustering analysis systematically partitions the 

dataset by minimizing within-group variation and maximizing between-group variation 

and then assigning a cluster label to each observation (Xu and Wunsch II, 2005). The 

present study applied a k-means clustering algorithm to a set of the coefficients from the 

B-spline transform. A brief summary of the k-means clustering algorithm is as follows: 

Given k seed points, each observation is assigned to one of the k seed points close to the 
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observation, a step that creates k clusters. Then, the seed points are replaced with the 

mean of the currently assigned clusters. This procedure is repeated with updated seed 

points until the assignments no longer change (Xu and Wunsch II, 2005).  The k-means 

clustering algorithm depends on distance metrics and the number of clusters (k). A 

variety of distance metrics are available. Generally, the correlation distance is an 

appropriate choice to analyze the functional profile data because the correlation distance 

focuses on measuring the similarity in shapes between the two response profiles.  As for 

determining the number of clusters, a number of methods are available. However, no 

consensus exists about which one is most satisfactory (Hastie et al., 2001). In the 

current study, we determined the appropriate number of k based on the opinions of 

domain experts.    

An earlier study by Borzan et al. (2005) used a LCCA algorithm to cluster the 

same heat stimulation data used in the present study.   LCCA is a model-based 

clustering approach based on finite mixture probability distributions.  LCCA provides 

an estimate of the number of clusters in multivariate data with statistical confidence 

(Borzan et al., 2005).  A brief explanation of LCCA is as follows: Let c be the number 

of clusters, n be the number of observations, and let  πi be the fraction of observations 

that belongs to cluster i (for i = 1,…, c). The probability density function can be denoted 

by ( )Σ,, ixf μ  where μi is the mean vector and Σ is the covariance matrix. The likelihood 

function can be computed as follows: 

  ( ) ( ) ,,;,,
1 1

1 ∏ ∑
= = ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

Σ=
n

j
iij

c

i
ic xfL μπθθ K     (2.3) 
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where ( )iiii Σ= ,, μπθ . 

Likelihood ratio testing methodology was applied to acquire a good latent class 

model.  We fit models starting with a one-cluster model and then added another cluster 

for each successive model.  The difference between the log-likelihood with the c-1 

clusters and with the c clusters model represents the amount of fit improvement 

associated with the c clusters model in comparison with the c-1 clusters model.  In 

general, the difference in maximized log-likelihood can be tested with the standard chi-

square distribution method for a nested model. However, if the model is not nested, a 

bootstrapping method can be used to obtain the test statistic (Borzan et al., 2005). 

2.2.4. Clustering Validity Measures 

To demonstrate the effectiveness of the clustering approach, the following 

misclustering rate ϕ  can be defined for N profiles:    

( ) ,ˆ,1

1
∑
=

=
N

j
jj CCI

N
ϕ

       (2.4)
 

where iC  and iĈ  represent, respectively, the true clustering label and the estimated 

clustering label of  j th profile. I is an indicator function defined as follows: 

( )
⎪⎩

⎪
⎨
⎧

≠

=
=

jj

jj
jj CCif

CCif
CCI ˆ,1

ˆ,0ˆ,
       (2.5)

 

Thus, ϕ represents the fraction of the profiles that are incorrectly clustered among N 

profiles.  

Another way to measure the quality of clustering is the silhouette width 

(Rousseeuw, 1987). The silhouette width for the jth observation is defined as follows: 
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S

−
= ,     (2.6) 

where ai is the average dissimilarity to all other points in its own cluster and bi is the 

average distance between the ith observation and the other observations that are in the 

closest neighboring cluster. The silhouette value ranges from -1 to 1. The silhouette 

value closer to 1 indicates that its corresponding observation is well clustered, and the 

value closer to -1 indicates that its corresponding observation is not well clustered.  The 

overall quality of clustering can then be determined from the average silhouette width 

by averaging Si over all observations. A large average silhouette width indicates better 

clustering performance (Kaufman and Rousseeuw, 1990). 

 

2.3 Simulation Study 

A simulation study was conducted to examine the properties of the proposed 

clustering procedure and determine its effectiveness.  Let Yit be the tth observation on 

the ith profile (curve) at time tij, for i = 1, …, n,  j = 1, …, m where n is the number of 

observations, m is the number of time points, and tij = j/m.  The simulated profiles were 

generated from the following models: 

( ) ,ijijit tfY σε+=      (2.7) 

where εij is normal distributed noise. The functions we considered are 

( ) ⎟
⎠
⎞

⎜
⎝
⎛ −

=
2

52
1

ttf , 

( ) ( )tftf 12 −= , 
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( ) ( )ttf π2cos3 = , 

( ) ( )tftf 34 −= , 

( ) 05 =tf . 

We generated 100 profiles from each of five functions. It should be noted that 

the last function, f5(t), generates constant profiles. To examine the effect, if any, of the 

amount of noise, we considered two sets of noise, low (σ = 0.5) and high (σ = 1).  

Figure 2.1 shows five true clusters of the simulated data. 

 

  
f1 f2 f3 

    
f4 f5 

 
Figure 2.1 Five true clusters of simulated data.   
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At this point, we compared our proposed clustering procedure with the 

following scenarios:   

1. Original dataset (without smoothing and transformation). 

2. Dataset with smoothing but without transformation. 

3. Dataset with transformation but without smoothing. 

4. Dataset with both smoothing and transformation. 

The resultant validity measures of k-means clustering and LCCA for different scenarios 

(under a low noise level) are given in Table 2.1 and 2.2.  In a comparison of the k-

means clustering method with LCCA, the former performed significantly better than the 

latter across all scenarios. Among the different scenarios of smoothing and 

transformation, clustering analysis after both smoothing and transformation yielded 

better results than in the other cases, demonstrating the efficacy of the smoothing and 

transformation steps.  

 

Table 2.1 Clustering validity measures of low-noise simulated data 
 

Method Measurement Actual Smoothing Transformation Smoothed 
and 

Transformed

k-means Misclustering Rate 0.132 0.150 0.004 0.002 

 Silhouette Value 0.701 0.754 0.797 0.826 

LCC Misclustering Rate 0.400 0. 228 0.400 0.400 

Silhouette Value 0.289 0.283 0.438 0.465 
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Details of the clustering results from the proposed approach (i.e., clustering after 

smoothing and transformation) are displayed in Figure 2.2. These results show that the 

patterns of each of the five clusters are very similar to the patterns of the true clusters 

shown in Figure 2.1; this further demonstrates the usefulness of smoothing and 

transformation procedures to cluster the functional data.  It should be noted that the 

proposed clustering procedure can properly isolate constant curves as a separate group.  

We conducted the same experiment with the simulated data and a high noise 

level. The results also indicated that the k-means clustering analysis with smoothing and 

transformation produced the lowest misclustering rate and the highest silhouette values. 

Further, the results of the silhouette value showed that the k-means clustering method 

outperformed LCCA across all scenarios.  

 

Table 2.2 Clustering validity measures of the high-noise simulated data 
 

Method Measurement Actual Smoothing Transformation Smoothed 
and 

Transformed

k-means Misclustering Rate 0.282 0.296 0.386 0.116 

 Silhouette Value 0.190 0.315 0.247 0.263 

LCCA Misclustering Rate 0.274 0.306 0.296 0.296 

Silhouette Value 0.012 -0.014 -0.067 -0.052 
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Cluster 1 Cluster 2 Cluster 3 

  
Cluster 4 Cluster 5 

(a) 

   

 
 

(b) 
 

Figure 2.2 Graphical representation of (a) k-means clustering results  
on simulated data after smoothing and transformation and  

(b) mean response profiles of each of five clusters. 
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2.4 Spinal Cord Dorsal Horn Responses to Graded Heat Stimuli 

2.4.1 Data Description 

We applied the proposed clustering approach to our previous set of data (Borzan 

et al. 2005), which contained the responses from 12 male rates to thermal stimuli 

applied to their deep spinal cord dorsal horn neurons. The response to thermal stimuli 

was measured by the number of action potentials per second minus background activity.  

This experiment involved eight different thermal stimuli that varied from 37° to 51°C in 

increments of 2 degrees C (i.e., 37, 39, 41, 43, 45, 47, 49, 51). By using a single cell 

recording, the responses were characterized for 147 neurons. Among these 147 neurons, 

we detected three neurons that had zero response to all graded temperatures; therefore, 

we decided to remove these neurons. Figure 2.3 shows the response profiles of 144 

neurons to the gradients of eight thermal stimuli.  

 

 
 

Figure 2.3 144 Neuronal response profiles to gradient thermal stimulation. 
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2.4.2 Smoothing and Transformation 

We applied LOESS to our heat stimulation data.  To determine the LOESS 

smoothing parameters (span), we plotted mean response profiles with different 

smoothing parameters (Figure 2.4). It can be seen that a span of 0.5 is well represented 

the fluctuation of our experimental data. As a consequence, we used a span of 0.5 in 

LOESS. 

 

 
 

Figure 2.4 LOESS in a mean response profile with different smoothing parameters. 

 

The smoothed data obtained from LOESS were transformed into functional form 

based on the B-spline function. The B-spline basis functions for different orders are 

shown in Figure 2.5, demonstrating that an order of three will represent the data well. 

Note the smoothing results between order = 3 and order = 4 are almost the same. 
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(a) (b) 

 
(c) (d) 

 
Figure 2.5 B-spline basis function plots with (a) order = 1, (b) order = 2,  

(c) order = 3, and (d) order = 4. 
 

2.4.3 Functional Clustering Results 

First, k-means clustering analysis with a correlation distance was conducted on 

all the original 144 profiles. We used k=5 as was done in the previous study by Borzan 

et al. (2005).  Figure 2.6 shows the k-means clustering results of the original data and 

illustrates five distinct groups of neurons in which each group has a specific neuronal 

response profile of 34, 21, 29, 21, or 39. 
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(a) 

 

 
(b) 

 
Figure 2.6 Graphical representation of (a) k-means clustering results on the original 

dorsal horn neuron data and (b) mean response profiles of each of five clusters.   
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The mean response profiles of each of the five clusters show the clear patterns of 

neuronal response profiles to graded thermal stimuli (Figure 2.6 (b)). The response 

patterns in Clusters 1, 3, and 5 showed an upward pattern, indicating that the responses 

of the neurons in these clusters increase as the heat stimuli increase. However, subtle 

differences were observed in neuron patterns among Clusters 1, 3, and 5. The neurons 

in Cluster 1 drop at about 47° C, while the neurons in Cluster 5 drop at about 49° C. 

The neurons in Cluster 4 monotonically decrease as the heat stimuli increase. The 

neurons in Cluster 2 show a pattern that looks like a Mexican hat (resembles a 

sombrero).  The responses of the neurons gradually increase as the heat increases but 

decrease after their maximum responses at about 45° C.  As for the neurons in Cluster 4, 

their response pattern shows a downward trend, indicating that these neurons respond 

inversely to temperature gradients. It should be noted that the k-means clustering 

analysis with the original data cannot successfully identify a group that contains a 

number of constant profiles. Instead, these constant profiles were distributed across all 

five clusters. 

Next, the proposed clustering approach (clustering after smoothing and 

transformation) was applied to this dorsal horn neuron dataset.  Figure 2.7 shows the k-

means clustering results after smoothing and transformation. The number of neurons in 

Clusters 1, 2, 3, 4, and 5 is, respectively, 26, 8, 11, 6, and 93. The last group contains a 

set of constant profiles, although we can obviously see the one neuron that reacts only at 

a lower temperature.    
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(a) 

    

 
(b) 

Figure 2.7 Graphical representation of (a) k-means clustering results  
on the experimental data after smoothing and transformation  

and (b) mean response profiles for each of five clusters.   
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The neurons in Clusters 1, 2, and 3 show an upward trend in response to graded 

heat stimuli.  The pattern in Clusters 1 and 3 looks similar, but the overall intensity of 

the neurons that belong to Cluster 1 is less than that of Cluster 3. The neurons in Cluster 

2 react maximally to the heat stimuli at about 45° C and then decrease. The neurons in 

Cluster 4 inversely respond as heat stimuli increase. Note that the proposed clustering 

successfully separates the constant profiles. 

Table 2.3 shows the silhouette values from the k-means and LCCA over four 

different scenarios.  Here the misclustering rates were not reported because the 

information about the true clusters is unknown in real data.  The k-means clustering 

method yielded larger silhouette values compared with LCCA. This justifies the ranking 

of the k-means clustering method as more appropriate than LCCA in functional data in 

which it is difficult to specify the parametric distribution of the data. Overall, the k-

means clustering method after smoothing and transformation yielded the highest 

silhouette value, showing the usefulness and effectiveness of the proposed clustering 

procedure.   

 
Table 2.3 Clustering validity measures (Silhouette Value) for the spinal dorsal horn data 

from k-means clustering and LCCA. 
  

Silhouette Value Actual Smoothing  

Only 

Transformation 
Only 

Smoothed 
and 

Transformed 

k-means clustering 0.385 0.560 0.484 0.660 

LCCA  -0.170 -0.288 0.432 0.390 
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2.5 Conclusions 

 We have proposed an efficient clustering procedure to categorize a number of 

profiles that are formed with nonlinear functions. The basic idea of the proposed 

procedures is to cluster the profiles after smoothing and transformation.   We performed 

simulation studies to examine the properties of the proposed procedure and demonstrate 

its effectiveness. Based on clustering validity measures, clustering analysis after 

smoothing and transformation outperformed clustering analysis without smoothing and 

transformation. Furthermore, the proposed clustering procedure outperformed LCCA, a 

traditional model-based clustering method. We have applied the proposed clustering 

procedure to real data in which the main objective is to characterize the response 

patterns of deep dorsal horn neurons to thermal stimulation gradients.  Five distinct 

patterns for different dorsal neurons were found.  In a comparison of the proposed 

clustering procedure with LCCA, the proposed procedure produced better clustering 

performance than LCCA. 
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CHAPTER 3 
 

UNSUPERVISED FEATURE SELECTION USING 
WEIGHTED PRINCIPAL COMPONENTS 

 

3.1 Introduction 

One of the major challenges associated with high-dimensional data is to identify 

a subset of relevant features of interest. In recent years, feature selection/extraction has 

received considerable attention in various areas for which datasets with thousands of 

features are present. The main purpose of feature selection/extraction is to identify a 

subset of features that are most predictive or informative in a given a dataset. Successful 

implementation of feature selection/extraction simplifies the entire modeling process 

and thus reduces computational and analytical efforts. 

It is important to distinguish between feature selection and feature extraction, 

although much of the literature fails to clearly distinguish between them (Jain et al., 

2000). Feature selection is a process to select a subset of original features, and feature 

extraction creates new features through the transformation of the original features 

(Guyon and Elisseeff, 2003). Widely used feature extraction methods include principal 

component analysis (PCA) and partial least squares (PLS). PCA is an unsupervised 

feature extraction method in that the process depends solely upon the input variables, 

and does not take into account information from the output variable (Jolliffe, 2002). On 
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the other hand, PLS is a supervised feature extraction in that the process takes into 

account both the input and output variables (Kim, 2008). In general, the first few 

transformed features obtained from PCA and PLS suffice to provide useful information 

in the original data. However, because these reduced dimensions from PCA and PLS 

are linear combinations of a large number of original features, their interpretation 

cannot be readily made and the extraction of meaningful information is cumbersome.   

Interpretation problems posed by the transformation process in PCA and PLS 

can be overcome by using feature selection methods that simply pick the subset of 

original features. Feature selection methods can also be divided into supervised and 

unsupervised. Supervised feature selection methods use the information of an output 

variable to identify the best subset of given features in a dataset. Genetic algorithms 

have been successfully used as an efficient method of supervised feature selection for a 

high-dimensional spectral dataset (Cho et al., 2008; Davis et al., 2003).  Moreover, 

supervised feature selection problems have been formulated by a multiple hypothesis 

testing procedure that controls the false discovery rate (Mei et al., 2009; Kim et al., 

2008).   

Despite extensive research in using the supervised/unsupervised feature 

extraction and supervised feature selection, relatively few attempts have been made to 

identify the important features by using unsupervised feature selection methods (Mao, 

2005). Unsupervised feature selection methods usually have been divided into three 

categories — wrapper, filter, and hybrid approaches (Kim and Gao, 2006). The filter 

approach employs the general characteristics of the data to select a subset of the original 
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data without using any clustering algorithms. In contrast, the wrapper approach 

necessitates the use of a predetermined clustering algorithm as evaluation criterion. The 

hybrid approach combines both the filter and wrapper approaches by using different 

evaluation criteria for each different state (Kim and Gao, 2006). 

Dy and Brodley (2000) introduced a wrapper approach that uses an expectation-

maximization (EM) clustering algorithm. Hastie et al. (2000) developed a gene-shaving 

method that used its first principal component to identify the best subsets of those 

features with large variations. Ding (2003) proposed a two-way ordering approach in 

which relevant genes were selected based on their similarity information.  

Mao (2005) proposed a filter approach that sought to select a subset of original 

features by using principal components combined with an evaluation based on least 

square estimation (LSE). Motivated by Mao’s idea, Kim and Gao (2006) developed a 

two-step hybrid approach. The first step is to subsets of features based on an LSE-based 

evaluation; the second is to apply a searching algorithm to obtain the best subsets that 

maximize clustering performance.  

Although all of the existing unsupervised feature selection methods performed 

reasonably well within the limits of the situations for which they were designed, no 

consensus exists about which of them best satisfies all conditions. Moreover, most of 

the methods require a high computational load because they involve an extensive search 

procedure such as the forward selection or the backward elimination. Consequently, the 

methods based on a search algorithm are not relevant for identifying important features 

in high-dimensional dataset, often encountered in various applications in these days. In 
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the present study, we propose a new unsupervised feature selection that combines the 

weighted principal components with a thresholding algorithm. To be specific, the 

contribution of each feature is represented by a loading value in a weighted principal 

component, and a thresholding algorithm based on a moving range-based control chart 

evaluates the significance of its contribution. The proposed method belongs to the filter 

category and is computationally efficient and easy to implement.    

The remainder of this chapter is organized as follows. Section 3.2 presents the 

proposed unsupervised feature selection method. Section 3.3 presents the simulation 

study that examined the performance of the proposed method under various scenarios. 

Section 3.4 describes a case study developed to demonstrate the feasibility and 

effectiveness of the proposed method in real situations. Finally, Section 3.5 presents our 

concluding remarks. 

 

3.2 The Proposed Unsupervised Feature Selection Approach 

3.2.1 Weighted Principal Components 

PCA is one of the most widely used multivariate data analysis techniques and is 

employed primarily for dimensional reduction and visualization (Jolliffe, 2002). PCA 

extracts a lower dimensional feature set that can explain most of the variability within 

the original data.  The extracted features, PCi’s (Yi) are each a linear combination of the 

original features with the loading values (αij, i, j=1,2,…,p).  The Yi’s can be represented 

as follows:  



 

 33

                                       pppppp

pp

pp

XXXY

XXXY

XXXY

ααα

ααα

ααα

+++=

+++=

+++=

K

M

K

K

2211

22221212

12121111

                     (3.1) 

The loading values represent the importance of each feature in the formation of 

a PC. For example, αij indicates the degree of importance of the jth feature in the ith PC.  

A two-dimensional loading plot (e.g., PC1 vs PC2 loading plot) may provide a 

graphical display for identification of important features in the first and second PC 

domains. However, the interpretation of a two-dimensional loading plot is frequently 

subjective, particularly in the presence of a large number of features. Moreover, in some 

situations, consideration of only the first few PCs may be insufficient to account for 

most of the variability in the data. Determination of the appropriate number of PCs (=k) 

to retain can be subjective.  One can use a scree plot that visualizes the proportion of 

variability of each PC to determine the appropriate number of PCs (Johnson and 

Wichern, 2002).   

If a PCA loading value for the jth original feature can be computed from the first 

k PCs, the importance of the jth feature can be represented as follows: 

                                         ∑
=

=
k

i
iijj

1

παω , j=1, 2, … , p,                                (3.2) 

where k is the total number of features of interest and iπ  represents the weight of ith 

PC. The typical way to determine iπ  is to compute the proportion of total variance 

explained by the ith PC.  jω  can be called a weighted PC loading for the feature j.  
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For illustration, Figure 3.1 displays a plot of jω s, computed from a simulated 

dataset that contains 1,000 features. A feature with a large value of jω  indicates a 

significant feature. In the next section, we will present a systematic way to obtain a 

threshold that determines the significance of each feature.  
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Figure 3.1 Weighted PC loading values of individual features. 

3.2.2 Moving Range-Based Thresholding Algorithm 

We propose a moving range-based thresholding algorithm as a way to identify 

the significant features from the weighted PC loadings discussed in the previous 

section. The main idea of a moving range-based thresholding algorithm comes from a 

moving average control chart that has been widely used in quality control (Vermaat et 
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al. 2003). A control chart provides a comprehensive graphical display for monitoring 

the performance of a process over time so as to keep the process within control limits 

(Woodall and Montgomery, 2001). A typical control chart comprises monitoring 

statistics and the control limit. When the monitoring statistics exceed (or fall below) the 

control limit, an alarm is generated so that proper remedial action can be taken. A 

moving range control chart is useful when the sample size used for process monitoring 

is one. Moreover, the average moving range control charts perform reasonably well 

when the observations deviate moderately from the normal distribution (Vermaat et al. 

2003). 

In our problem, we can consider the weighted PC loading values as the 

monitoring statistics. Thus, we plot these loading values on the moving range control 

chart and identify the significant features when the corresponding weighted PC loading 

exceeds the control limit (threshold). Given a set of the weighted PC loading values for 

individual features ),...,,( 21 pωωω , the threshold ( )γ can be calculated as follows (Vermaat 

et al. 2003):  

                                     ( ) σπαωγ *
2

11 −Φ+= − ,                                   (3.3) 

where ∑
=

=
p

i
ip 1

1 ωω , 1−Φ  is the inverse standard normal cumulative distribution 

function, and α is the Type I error rate that can be specified by the user. The range of α 

is between 0 and 1. In typical moving range control charts, σ can be estimated by RM , 

calculated by the average of the moving ranges of two successive observations.  
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However, in our feature selection problems, because the weighted PC loading values for 

individual features pωωω ,...,, 21 are not ordered, we cannot simply use (4). To address 

this issue, we propose a different way of computing the RM that can properly handle a 

set of unordered observations. Given the fact that there is no specific order of 

observations pωωω ,...,, 21 , they are randomly reshuffled, and sRM are recalculated. 

Therefore, for B=1,000, we obtain a set of sRM )()2()1( ,...,, BRMRMRM . The RM for 

unordered observations is calculated by  

∑
=

=
B

j
jMR

B
RM

1
)(

1* ,                                                 (3.5) 

Finally, the threshold of the proposed feature selection method can be obtained by the 

following equation:  

                                           ( ) *
2

11 RMπαωγ −Φ+= − .                                     (3.6) 

 A feature is reported as significant if the corresponding weighted PC loading exceeds 

the threshold γ . 
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3.2.3 Feature Validity Measures 

We used the sensitivity and specificity as performance measures (Altman and 

Bland, 1994). Sensitivity and specificity can be expressed as follows:   

       Sensitivity FNTP
TP
+

= ,        (3.6) 

     Specificity
FPTN

TN
+

= ,     (3.7) 

where TP is the number of true positives (number of true significant features identified), 

TN is the number of true negatives (number of true insignificant features identified), FN 

is the number of false negatives, and FP is the number of false positives. In short, 

sensitivity is the proportion of true positives correctly identified by the procedure.  

Specificity is the proportion of true negatives correctly identified. The range of both 

sensitivity and specificity is between 0 and 1. The method that produces the largest 

sensitivity and specificity scores would be considered the better method.  

 

3.3 Simulation Study 

3.3.1 Simulated Data 

A simulation study evaluated the performance of the proposed method and 

compared it with other algorithms under various scenarios. Table 3.1 shows a summary 

of the simulated data used in this study.  
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Table 3.1 Summary of the simulated data 
 
Data Number 

of 
features 

Number of 
observations

Number 
of 

classes 

Number of true 
significant 

features 

Mean shift 

Scenario 1 500  200 2 10 5σ  

Scenario 2 100  200 2 10 3σ  

Scenario 3 1000  200 2 10  1σ  

Scenario 4 1000  400  4  100  1σ, 2σ, 3σ  

Scenario 5 1000  400  4  20  5σ, 10σ, 20σ 

Scenario 6 1000  400  4  20  0.5σ, 1σ, 2σ 

Scenario 7 3000  200  2  100  0.5σ  

Scenario 8 3000  200  2  20  2σ  

Scenario 9 3000  200 2 300  1σ, 2σ, 3σ  

Scenario 10 7000  200 2 300  1σ, 2σ, 3σ  

 
Each scenario contains the number of observations, the number classes, the 

number of true significant features, and different degrees of shifts in the mean.  

Specifically, the simulated data in Scenarios 1 ~ 3 contain two class datasets in which 

the covariance matrix of each class is the identity matrix (Σ1 = Σ2 = I). The mean of 

Class 1 equals zero, and the mean of Class 2 equals the mean of Class 1 plus the shift in 

mean as shown in the last column of Table 3.1. Other scenarios can be explained 

similarly.   

3.2 Simulation Results 

Table 3.2 presents the number of identified features, sensitivity, specificity, and 

computational time (CPU time) in the 10 simulation scenarios. The experiments were 

conducted on an Intel® Core™2 Duo @ 2.2 GHz computer with 2 GB memory. We 



 

 39

compared the proposed weighted PC loading method with the LSE method (Mao, 

2005), one of the existing unsupervised feature selection methods. In the LSE method, a 

subset of significant features was selected based on error reduction after adding 

additional features. The error reduction function was calculated based on PCs that were 

obtained from the PCA in the complete data. A sequential forward selection strategy 

was then used to determine a subset of significant features (Mao, 2005).  

The results showed that across all simulation scenarios, the sensitivities and 

specificities of the proposed method were all one, implying that our method 

successfully detected all the true significant features.  The LSE method also yielded 

sensitivity and specificity results comparable with the proposed method. However, the 

LSE method tended to identify more numbers of features than the number of true 

significant features. More important, the LSE method imposes a high computational 

load compared with the proposed method. In particular, faced with more than 3,000 

features, the LSE method takes a significant amount of time to identify the significant 

ones.  
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Table 3.2 Number of identified features, sensitivity (Se), specificity (Sp),  
and CPU time on 10 scenarios 

 

Scenario Method 
# of true 

significant 
features 

# of 
identified 
features 

Se Sp 
CPU 
Time 
(Sec.) 

 LSE  11 1.000 0.998 36.02 
1 WPC + MR (α = 0.01) 10 10 1.000 1.000 4.38 
 WPC + MR (α = 0.10)  10 1.000 1.000 4.38 
 LSE  11 1.000 0.998 7.62 
2 WPC + MR (α = 0.01) 10 10 1.000 1.000 1.49 
 WPC + MR (α = 0.10)  10 1.000 1.000 1.49 
 LSE  11 1.000 0.998 65.16 
3 WPC + MR (α = 0.01) 10 10 1.000 1.000 10.33 
 WPC + MR (α = 0.10)  19 1.000 0.991 10.33 
 LSE  94 0.940 1.000 1663 
4 WPC + MR (α = 0.01) 100 100 1.000 1.000 10.73 
 WPC + MR (α = 0.10)  100 1.000 1.000 10.73 
 LSE  21 1.000 0.998 185.35 
5 WPC + MR (α = 0.01) 20 20 1.000 1.000 10.91 
 WPC + MR (α = 0.10)  20 1.000 1.000 10.91 
 LSE  21 1.000 0.998 176.89 
6 WPC + MR (α = 0.01) 20 20 1.000 1.000 10.97 
 WPC + MR (α = 0.10)  20 1.000 1.000 10.97 
 LSE  94  0.940 1.000  3830 
7 WPC + MR (α = 0.01) 100 100  1.000 1.000  64.82 
 WPC + MR (α = 0.10)  100  1.000 1.000  64.82 
 LSE  20  1.000 1.000  391.23 
8 WPC + MR (α = 0.01) 20 20  1.000 1.000  59.59 
 WPC + MR (α = 0.10)  47  1.000 0.991  59.59 
 LSE  287  0.957 1.000  47882 
9 WPC + MR (α = 0.01) 300 300  1.000 1.000  60.85 
 WPC + MR (α = 0.10)  300  1.000 1.000  60.85 
 LSE  378 1.000 0.988 215810 

10 WPC + MR @ α = 0.01 300 300  1.000 1.000  275.42 
 WPC + MR @ α = 0.10  300  1.000 1.000  275.42 
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3.4 Experiments with Real Data 

In addition to the simulation study, we used three real datasets (Wisconsin 

diagnostic breast cancer, wine, and leukemia microarray) to demonstrate the 

effectiveness of the proposed weighted PC loading method.  These datasets are 

available on the UCI database (http://archive.ics.uci.edu/ml/), and their summary is 

shown in Table 3.3.  

Table 3.3 Summary of real datasets 

Data Number of 
features 

Number of 
observations 

Number of 
classes 

Wisconsin diagnostic breast cancer 30 569 2 

Wine 13 178 3 

Leukemia 7129 72 2 

 

We evaluated the performance of the proposed method and compared it with the 

Baseline Case and the LSE method. The Baseline Case represents the use of all features 

for comparison. Table 3.4 shows feature selection results, classification accuracy 

derived from a classification algorithm, and CPU time on the real datasets. 

Classification accuracy is defined as the number of observations correctly classified 

divided by the total number of observations. To compute classification accuracy, we 

used a support vector machines (SVM) algorithm, one of the most widely used 

classification methods (Shawe-Taylor and Cristianini, 2000). The SVM classification 

accuracy reported here is the average value ± standard deviation from 10-fold cross 

validation. Note that specificity and sensitivity were not reported here; their omission is 

because information about the true clusters is unknown in real data. Moreover, we did 
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not report CPU time for the Baseline Case because this case does not involve any 

feature selection process but instead uses all of the features.   

 
Table 3.4 Comparison of unsupervised feature selection methods on the Wisconsin 

diagnostic breast cancer, wine, and leukemia datasets 
 

Data Method 
No. of 

Identified 
Features 

SVM 
Classification 
Accuracy (%) 

CPU Time 
(Second) 

Wisconsin 
Diagnostic 

Breast Cancer 

Baseline 30 97.37 ± 2.89 - 

LSE 12 95.59 ± 3.39 2.226 

WPC + MR (α = 0.01) 2 92.27 ± 1.47 1.979 

WPC + MR (α = 0.05) 2 92.27 ± 1.47 1.979 

Wine 

Baseline 13 97.19 ± 4.72 - 

LSE 3 98.86 ± 2.41 1.363 

WPC + MR (α = 0.01) 1 93.79 ± 2.35 0.717 

WPC + MR (α = 0.05) 1 93.79 ± 2.35 0.717 

Leukemia 

Baseline 7129 88.68 ± 1.59 - 

LSE - - - 

WPC + MR (α = 0.01) 384 87.03 ± 1.34 274.830 

WPC + MR (α = 0.05) 457 90.29 ± 1.15 274.830 

 

In the Wisconsin breast cancer data, our proposed method identified the smallest 

number of significant features but produced classification accuracy comparable to the 

Baseline Case and the LSE method.  In order to explore more about this outcome, 

Figure 3.2 shows the dot plots of two features identified by our proposed method 

according to the status of patient (malignant, benign). These two features are the mean 

area of the cell nucleus and the mean of the three largest area values. These features 
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clearly distinguished between benign and malignant samples. Further, we also generated 

dot plots of two features that the LSE method identified but the proposed method did 

not (Figure 3.3). These features are the mean of texture and standard error of perimeter. 

It can be seen that these feature could not clearly differentiate between benign and 

malignant samples.  

In the wine data, the proposed weighted PC loading method algorithm identified 

only one significant (proline) feature out of 13. This one-feature result of SVM 

classification is not significantly worse in terms of accuracy than the three-feature 

performance of the LSE method (Table 3.4). Figure 3.4 displays the dot plot of the 

“proline” feature by the type of wine. A clear distinction can be observed between the 

first and the second and third types. However, this proline may not be a good feature for 

distinguishing between the second and third types of wine. Figure 3.5 shows a dot plot 

of the feature (alkalinity of ash) identified by the LSE method but not by the weighted 

PCA loading method. There is an overlapping among the samples, indicating that the 

feature, alkalinity of ash may not play a significant role in discriminating the type of 

wine.  
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(a) 

 

(b) 

Figure 3.2 Dot plots of two significant features for Wisconsin diagnostic breast cancer 
data. (a) mean area of cell nucleus, (b) mean of the three largest areas feature.  

The features were identified by both the proposed method and  
the LSE method according to patient types (malignant, benign). 
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(a) 

 

(b) 

Figure 3.3 Dot plots of two significant features for Wisconsin diagnostic breast cancer 
data. (a) mean of texture for cell nucleus, (b) standard error of perimeter feature. The 

features were identified by only the LSE method (not by the proposed method) 
according to patient types (malignant, benign). 
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Figure 3.4 A dot plot of the proline feature by the type of wine. The feature was 

identified by the proposed method. 
 

 
 
 

Figure 3.5 A dot plot of the significant feature (alkalinity of ash) identified by only the 
LSE method (not by the proposed method) according to wine types. 

 
In the microarray leukemia data, our proposed method with α = 0.05 identified 

457 features as significant out of 7,129 and produced an even better result than the 

Baseline Case (Table 3.4). The performance of the LSE method is not reported here 

because it requires a significant amount of time (more than 48 hours), which of itself is 

enough to disqualify it as a valid competitor with our proposed method.  

   Figure 3.6 presents dots plots of two features identified as significant from our 

proposed algorithm by the status of patients.  
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(a) 

 

(b) 

Figure 3.6 Dotplots for leukemia data of (a) gene #1779 and  
(b) gene #1674 by type of leukemia. 

 

3.5 Conclusions 

We have presented a new method of unsupervised feature selection for 

identification of important features in high-dimensional datasets. The proposed method 

combines PCA techniques and a moving range-based thresholding algorithm. We first 

obtained the weighted PC, which can be calculated by the weighted sum of the first k 

PCs of interest. Each of the k loading values in the weighted PC reflects the contribution 

of each individual feature. To identify the significant features, we proposed a moving-
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range thresholding algorithm. Features are considered to be significant if the 

corresponding weighted PC loadings exceed the threshold obtained by a moving-range 

thresholding algorithm. Our experimental results with both simulated and real datasets 

demonstrated that the proposed method could successfully detect the true significant 

features. Moreover, compared with LSE, which is one of the existing methods of 

unsupervised feature selection, the proposed method requires significantly lesser 

computational loads and thus can efficiently handle high-dimensional datasets.  

 Our study extends the application scope of both the PCA and control chart 

techniques. We hope that the procedure discussed here stimulates further investigation 

into development of better procedures for problems of unsupervised feature selection. 
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CHAPTER 4 
 

SUMMARY AND FUTURE WORKS 

 

In this dissertation, we presented unsupervised clustering approaches for 

functional data analysis. Simulation studies under various scenarios indicated that our 

proposed clustering procedure correctly identified the true clusters and yielded better 

clustering results than a latent class cluster analysis, one of the existing clustering 

methods. The proposed clustering strategy can successfully elicit natural grouping of 

the neurons with similar response patterns to graded thermal stimuli. In chapter 3, we 

proposed an unsupervised feature selection method that combines weighted principal 

components (PCs) with thresholding algorithm. Our experimental results with both the 

simulated and real datasets demonstrated that the proposed method could successfully 

detect the true significant features. 

To further demonstrate our clustering strategy for neurostimulation data, we 

would like to extend our research by including other datasets such as NMR/NIR spectra. 

The comparison study with other performance measures should be considered. 

Based on our previous work in Chapter 3 “Unsupervised Feature Selection using 

Weighted Principal Component”, the purpose of our study is to propose a procedure for 

identifying a set of significant features. In the present study, all variables in simulated 

data and real data are continuous variables. Although, performance of our model was 
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quite good, the result might not be hold when there is a mixture of categorical variables. 

To further the development of this proposed method, we would like to extend our 

research by using different data including categorical variables.  
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