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ABSTRACT 

 
A UNIFIED ANALYSIS OF STIFFENER REINFORCED 

COMPOSITE BEAMS WITH ARBITRARY 

CROSS-SECTION 

 

Gianfranco Rios, PhD 

 

The University of Texas at Arlington, 2009 

 

Supervising Professor:  Wen S. Chan  

A number of methods are available to analyze the laminated composite beams using 

smear property of laminate stiffness ignoring unsymmetrical behavior of laminates. Some include 

their effect of laminate but did not include the unsymmetrical effect of the cross-section of the 

beam. On the other hand, using finite element method to analyze the beam is dependent on the 

structural configurations including the laminate lay-up sequence.  

An analytical method was developed from lamination theory in order to study the 

structural response of composite laminated beams. The present method is capable of predicting 

the axial and bending stiffnesses, the centroid location, and the stresses in each ply of the whole 

structure. The results were compared with finite element methods.  
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 Laminated beams studied in this research include the beams with a rectangular 

cross-section bonded with a stiffener. The stiffener placed in both aligned and non-aligned 

position with respect to the centerline of the beam is considered.  

 Thin-walled beams with circular and airfoil sections are also studied. A parametrization 

method to define the median of the cross-section is developed. Then the stress analysis is 

conducted.  

 For two laminates aligned bonded together top and bottom, the present method results 

agree very well with the finite element results for all the cases less the unsymmetrical case. For 

the non-aligned case, all the results agree. On the other hand, the results also are close to each 

other for the laminates bonded side by side less the un-balanced case. Finally, for the circular 

and airfoil cross-sections the results agree with the finite element results.    
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CHAPTER 1  

INTRODUCTION 

1.1 Composite Materials Overview 

1.1.1 Definition 

A structural composite is a material system consisting of two or more phases on a 

macroscopic scale, whose mechanical performance and properties are designed to be superior to 

those of the constituent materials acting independently. One of the phases is usually stiffer and 

stronger used as the reinforcement, whereas the less stiff and weaker phase is used as the 

matrix. 

Some of the properties that can be improved by forming a composite material are: 

strength, stiffness, corrosion resistance, wear resistance, attractiveness, weight, fatigue life, 

temperature-dependent behavior, thermal insulation, thermal conductivity, and acoustical 

insulation.   

1.1.2 Ancient History 

Composite materials have been around humans since they first grabbed a stick of wood 

or a bone. Wood consists of strong and flexible cellulose fibers surrounded and held together by 

a stiffer material called lignin [1]. Also, bone is a composite of the strong yet soft protein collagen 

and the hard, brittle mineral apatite [1]. However, these are natural materials. The first time 

recorded in history when mankind started building composite materials was in the form of 

reinforced bricks made out of straw and mud in the ancient Egypt.  

In the nineteenth century, iron rods were used to reinforce masonry, leading to the 

development of steel-reinforced concrete. Phenolic resin reinforced with asbestos fibers was 

introduced in the beginning of the last century.  
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But it was not until 1937 that the history of modern composites began when salesmen 

from the Owens Corning Fiberglass Company began to sell fiberglass around the United States 

[2].  In 1930, fiberglass was born when an engineer became intrigued by a fiber that was formed 

during the process of applying lettering to a glass milk bottle [2]. 

The first fiberglass boat was made in 1942, accompanied by the use of reinforced 

plastics in aircraft and electrical components. By 1947, a fully composite body automobile had 

been made and tested. This car was reasonably successful and led to the development of the 

Corvette in 1953 which was made using fiberglass performs [2].   

In the submarine industry, as early as the 1960s, cylindrical models were being built and 

tested in an effort to build a pressure hull (that are subjected to massive compressive loads at 

extreme depths) with a strength-to-weight ratio superior to high-strength steel [3]. In 1954, the 

U.S. Navy developed a fiberglass replacement for the aluminum fairwaters (a hydrodynamic 

cowling that surrounds the submarine’s sail) that were fitted on submarines [3]. 

In 1962, the high-strength carbon fibers production began and laminated composites 

were introduced.  

In the aircraft industry, the transition from wood to aluminum began in the 1930s and was 

spurred to completion by World War II. Carbon and glass composites were gradually introduced 

in the 1970s and 1980s and continues even today [4]. Starting in the late 1970s, applications of 

composites expanded widely to the aircraft, marine, automotive, sporting goods, and biomedical 

industries. The 1980s marked a significant increase in high-modulus fiber utilization. The 1990s 

marked the further expansion to infrastructure. Recently, Glare, a specific type of fiber-metal 

laminate (FML) made from aluminum and fiberglass composite, is now poised to be only the third 

new material to be used in aircraft primary structures [5]. 

Since late 1990s, composite materials has widely been used in new aircraft structures 

including Bell Helicopter V22, Lockheed F22 and F35, Airbus A380, and Boeing 777 and 787 

models. 
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1.1.3 Classification 

Based on types of fiber reinforcements, composite material is classified as, 

i) Continuously fiber-reinforced composites 

a) Unidirectional fiber-reinforced composites 

b) Fabric composites 

ii) Discontinuously fiber-reinforced composites  

a) Short fiber-reinforced composites (chopped fiber-reinforced composites) 

- Aligned short fiber-reinforced composites 

- Randomly short fiber-reinforced composites 

b) Particulate fibrous reinforced composites 

iii) Hybrid composites (multiple types of fibers) 

In this dissertation, all the investigation will be done with unidirectional fiber-reinforced 

composites. This type of composite has the highest efficiency and potential for different structural 

components. They are called high-performance structural composites, where the normally 

continuous fiber reinforcement is the backbone of the material, which determines its stiffness and 

strength in the fiber direction and the matrix provides protection for the sensitive fibers, bonding, 

support, and local stress transfer from one fiber to another.  

1.1.4 Advantages and Disadvantages 

The main advantages of composite materials are: low density, high specific stiffness 

(modulus to density ratio), and high specific strength (strength to density ratio). The higher 

specific stiffness and strength are the main reason of selecting composites for aircraft structures. 

However, there are many other advantages that should be taken into consideration: corrosion 

resistance, long fatigue life, wear resistance, favorable life cycle cost, low thermal expansion, 

thermal insulation and conductivity, acoustic insulation, and design flexibility.  
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Some disadvantages of laminated composites are: relative low toughness, low impact 

resistance, intolerant to out-of-the-plane loads, sensitive to temperature and moisture conditions, 

requirement of sophisticated nondestructive techniques for detection and monitoring of damage 

growth, multiple failure modes, and more complex analysis to study them.  

1.2 Literature Review on Composite Beams 

Numerous researches have been done and books published in the area of composite 

beams. In review of composite beam study, discussions are divided into three areas: analytical 

studies, experiment studies, and finite element analyses. 

1.2.1 Analytical Studies 

In composite materials structures, the designer has the capability to achieve new types of 

elastic coupling because of their directionality property. These coupling can be generated through 

the proper selection of the lamination configuration (i.e. ply orientation and stacking sequence) [6-

8]. In this sense, for thin-walled beams there are two basic lamination scheme configurations: one 

of them, referred to as the circumferentially uniform stiffness (CUS) configuration that results in 

bending-twist and extension-shear elastic couplings, and the other one, referred to as 

circumferentially asymmetric stiffness (CAS) configuration that features the extension-twist and 

bending-shear elastic coupling. Song et al. [9] presented analytical solutions of the static 

response of composite I-beams loaded at their free-end cross-section, and analyzed within the 

CUS and CAS ply-angle configurations. The analysis highlighted the influence of a number of 

non-classical effects such as transverse shear, warping inhibition and, directionality property of 

constituent material systems. They separated their experiment results for CAS and CUS beam 

configurations. For CAS beam configuration, the transverse shear effect is more prominent in 

flapping than in lagging degree of freedom. In addition, compared to the case of the free warping, 

the warping inhibition diminishes the twist angle. For CUS beam configuration, the lagging 

displacement increases with the increase of the ply-angle, or in another words, with the increase 

of the lagging-transverse shear stiffness coupling. In addition, the flapping deflection decreases 

with the increase of the ply-angle, i.e., with the increase of the flapping stiffness. Finally, in the 
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CAS case, the warping restraint plays a much stronger effect than in the CUS case. In addition, in 

the CUS case, for the warping restraint twist model the ply-angles have a more distinct effect on 

twist distribution as compared to the CAS case. As we can see, this analysis provides for the first 

time a wide presentation, highlighting the importance of a number of essential non-classical 

effects in composite I-beams.  

Razaqpur [10] highlighted the major differences between the methods of analysis for 

isotropic and anisotropic laminate structures. He identified the various coupling effects.  In 

addition, he suggested in how frame analysis and finite element programs for structures 

composed of isotropic materials can be modified to make them suitable for the analysis of 

anisotropic advanced composite structures.  

Parnas and Katirci [11] focused their studies in composite pressure vessels. They 

developed an analytical procedure to design and predict the behavior of fiber reinforced 

composite pressure vessels. The classical lamination theory and generalized plane strain model 

are used in the formulation of the elastic problem.  The effective elastic properties were 

formulated neglecting the effect of curvature.  

In thin-walled composite beams, Kollar and Springer [12] studied deeply open and 

closed-sections subjected to axial load and bending. They found closed-form solutions for axial, 

bending, and torsional stiffnesses as well as the centroids locations for different cross-sections. In 

addition, they studied transversely loaded thin-walled beams and shear stiffness and compliances 

of thin-walled open and closed-sections beams.  Vasiliev [13] studied open and closed-sections 

under bending and torsion. In addition, he included the calculation of the cross-section shear 

center. Hodges [14] worked with open and closed-sections of anisotropic thin-walled beams. 

Barbero [15] developed a method to study thin-walled beams and to calculate axial, bending, and 

torsional stiffnesses. In addition, he also included the transverse shear stress in his theory. 

Altenbach et al. [16] modeled and analyzed thin-walled folded composite structures. Turtle [17] 

developed a method to calculate the effective axial and bending rigidities of composite beams 

with solid and thin-walled sections.  
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Barbero [18] performed stress analysis on pultruded composite I-beams and several 

failure criteria are used to predict first-ply failure of the member and the failure mode. In addition, 

Barbero et al. [19] investigated the bending behavior of glass fiber reinforced composite beams. 

They showed that the bending stiffness is low compared to that of steel sections of the same 

shape. They concluded that shear deformation effects are important for composite beams. This is 

due to relatively low elastic modulus of glass fibers when compared to steel and the low shear 

modulus of matrix resin. The mindlin plate theory takes into account the effect of transverse shear 

deformation which makes it valid for thick plate situation. Performance of this mindlin theory for 

thick and moderately thin plates is good, but it faces some deficiencies when applied to thin 

plates. This is due to numerical over stiffness effect or locking caused by shear terms as the 

thickness of the plate is reduced. Therefore, Suresh and Malhotra [20] presented a finite element 

method for the determination of transverse displacement and layer-wise stress distribution of thin-

walled plate structures assembled from flat plates. The finite element formulation is based on 

mindlin plate theory which takes shear deformation of the beam into consideration. Finally, effect 

of material and lay-up sequence on the structural behavior of rectangular cross-section thin-

walled composite box beam under uniformly distributed load on the top face with end supports 

was studied. Some parameters were defined as the shear correction factors, introduced to 

account for the fact that through the thickness, shear strain distribution is not uniform [21]. The 

finite element formulation is used to study the effect of fiber orientation and boundary condition on 

the deflection and layer wise stresses of the box beam made of glass-epoxy, Kevlar-epoxy, 

boron-epoxy and graphite-epoxy composites. The FEM aspect ratios of the element in the mesh 

were also defined. Finally, basically they made four main experiments. They simulated a square 

isotropic plate, a square laminated composited plate, an isotropic box beam, and a laminated 

composite box beam. All of them were compared with data available and the results agreed.  

Mamalis et al. [22] focus their work on theoretical analysis of the failure mechanism of the 

stable mode of collapse of thin-walled fiberglass composite tubes under static axial compression.  
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A simple analytical beam theory can still be quite beneficial for several reasons. First, 

having more variables in the analysis than necessary can obscure a clear understanding of 

phenomena being studied.  In addition, there have been lot researches in the area of composite 

thin-walled beam theory.  However, shell bending strain measures were neglected in all those 

papers. For all those two reasons, Volovoi and Hodges [23] built a simple composite beam theory 

that contains only the four classical beam variables (extensional, torsional, and two bending 

variables corresponding to transverse deflections in two orthogonal directions) from a general 

variational-asymptotic framework that takes the shell bending strain measures effect into account. 

In addition, they developed closed form expressions for the stiffness matrices of single- and 

double-celled composite thin-walled beams. For most layups, all of the previous theories render 

practically identical results, which might explain why the deficiency of those theories was not 

realized earlier. However, for certain material properties the deviation of all those results from the 

asymptotically correct results might be significant. The results correlation with a finite element 

based solution is excellent, which show that local shell bending strain measures can be important 

for such beams.   

Wu et al. [24] presented a new method for analyzing the shear lag and shear deformation 

effects on symmetrically laminated thin-walled composite box beams under bending load. The 

method is based on the theory of composite laminated plates and is deduced by means of the 

principle of minimum potential energy.  

Dechao et al. [25] developed a series of hierarchical warping functions to analyze the 

static and dynamic problems of thin walled composite laminated helicopter rotors composed of 

several layers with single closed cell. In addition, since the composite laminate is usually 

composed of many layers of different layout orientation, the warping distribution along the 

thickness is not uniform. Hence, an improved technology based upon the successive corrective 

warping functions and varying warping distribution along the thickness is developed. He 

concluded that, the thinner the skin, the larger the ratio of width to height of the beam, and the 

higher the ratio of Young’s modulus to shear modulus, the higher the effects of warping will be.  
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Mitra et al. [26] developed a new composite thin wall beam element of arbitrary cross-

section with open or closed contour. The formulation incorporated the effect of elastic coupling, 

restrained warping, transverse shear deformation associated with thin walled composite 

structures.  In thin walled composite beam, the end restrains causes non uniform out-of-plane 

torsional warping as opposed to Saint Venant’s assumptions. This effect is predominant in open 

section beam and in such cases Vlasov theory is normally adopted to incorporate restrained 

warping effect, which causes considerable change in the effective torsional stiffness.  

1.2.2 Experiment Studies 

Armanios et al. [27] presented analytical and experimental studies on laminated 

composite strips exhibiting extension-twist coupling. They obtained the closed-form expressions 

relating applied extension to twisting rotation; and the contribution of axial force to the twisting 

moment were isolated. The results were compare with finite element and experimental results. A 

set of pretwisted laminated composite strips made of a graphite/cyanate material system was 

used for the testing. An especially design equipment was designed to allow the laminate to twist 

freely under axial loading and measure the twist angle associated with applied axial force. Test 

results agreed with the analytical model.  

Bank and Mosallam [28] described a pilot experimental study of concrete slabs 

constructed of normal weight portland cement concrete and reinforced with fiber-reinforced-

plastic grating. They compared the flexural stiffness to each other and to theoretical predictions.  

Drummond and Chan [29] analytically and experimentally studied the bending stiffness of 

composites I-beam. Different configurations were tested for pre-buckled stiffness, buckling 

moment, and ultimate moment. The results were compared with FEM model and test specimens; 

where all the results agree very well.  

Previous investigations showed that it is important to include the non-classical effect, 

such a section warping and transverse shear effects, in the modeling of thin-walled composite 

beams. In addition, in those previous works, it is assumed that the tangential stress is negligible 
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when compared to the axial stress. However, it has been shown that this assumption results in 

overestimated stiffnesses [30-34].  In Salim and Davalos [35] work, the tangential stresses are 

not assumed to be zero. The classical Vlasov theory of isotropic thin-walled sections [36] is 

extended to sections made of composite laminates. The shear deformation of the cross section is 

accounted for in the formulation of the theory by including the shear properties of the walls in the 

warping function. All possible elastic couplings such as extension-torsion, bending-extension, and 

bending-torsion are included in the present model. The torsional response of open and single- 

and multicell closed sections is considered in this paper. The analytical modeling for a general 

open-closed composite cross section is presented first, followed by application to wide-flange and 

box beams. To validate the presented model, single- and double-cell FRP-pultruded composite 

box beam were tested under tip torsional loads, and their structural response in terms of angle of 

twist were recorded. Two different laminated box sections were tested, and the analytical model 

agreed well with the experimental results.  

1.2.3 Finite Element Analyses 

Thin-walled composite structures are present in many applications, especially in the 

aircraft and civil industries.  The thin-walled beams of open cross-sections are used extensively in 

space systems as space erectable booms installed on spacecraft; in aeronautical industry both as 

direct load-carrying members and as stiffener members. In addition, they are used as well in 

marine and civil engineering, whereas the I-beams, in the fabrication of flexbeams of bearingless 

helicopter rotor [37]. 

Thin- walled structures are integral part of an aircraft [26]. That is the reason why many 

researchers consider it in their studies and published it in scholarly articles. 

Chan and his students focused on thin-walled beams with different cross-sections. 

Among their studies, Chan and Dermirhan [38] considered first a circular cross section thin-walled 

composite beam. They developed a new and simple closed-form method to calculate its bending 

stiffness. Then, Lin and Chan [39] continued the work with an elliptical cross section thin-walled 

composite beam.  Later, Syed and Chan [40] included hat-sectioned composite beams. And most 



 

10 
 

recently, Rao and Chan [41] expanded the work to consider laminated tapered tubes. They 

developed a closed-form analytical model to study for axial deformation and angle twist of thin-

walled composite tubes with a tapered cross section subjected to axial and torsion loading.  

Several non-classical behaviors are exhibited by thin-walled composite structures which 

includes the effect of elastic coupling, transverse shear deformation and restrained torsional 

warping [26]. 

Ascione et al. [42] presented a method that formulates a one-dimensional kinematical 

model that is able to study the static behavior of fiber-reinforced polymer thin-walled beams. It’s 

well known that the statics of composite beam is strongly influenced by shear deformability 

because of the low values of the elastic shear moduli. Such a feature cannot be analyzed by 

Vlasov’s theory, which assumes that the shear strains are negligible along the middle line of the 

cross-section. Many authors [43-47] had tried to modify Vlasov’s theory and other theories in 

order to take into account this effect. However, they assumed non-zero mid-plane shear strain. In 

their work, they took into account the effects of shear deformability within the context of a 

simplified one-dimensional model, only depending on the coordinate along the beam axis. In 

addition, a one-dimensional FE approach is also proposed in order to overcome the difficulties 

related to a 3D analysis of these deformations. As expected, the presence of shear deformation 

results in higher deflection than predicted by Vlasov’s theory.  

Ferrero et al. [48] proposed that the stress field in thin-walled composite beams due to a 

twisting moment is not correctly modeled by classical analytical theories, so numerical modeling 

is essential. Therefore, they developed a method with a simple way of determining stress and 

stiffness in this type of structures where the constrained warping effect can be taken into account. 

They worked with both open and closed cross sections. Also, to check the validity of the method 

for structures made of composite materials, a beam with thin, composite walls were studied. This 

beam was free to warp. The results were validated by 4 different methods: this method 

presented, classical method on uniform twisting in which is assumed to be constant in the wall 

thickness, NASTRAN FEA, and CPAO which is a software they developed as well.   
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Wu et al. [49] presented a procedure for analyzing the mechanical behavior of laminated 

thin-walled composite box beam under torsional load without external restraint. Some analyses 

have been formulated to analyzed composite box beam with varying levels of assumptions [50-

53]. However, none of them dealt with the ply stress of composite box beams, or the free 

torsional characteristics of composites box beam with consideration of shear-extension coupling 

effects. In fact, because a composite box beam consist of four composite panels and ply stresses 

along the thickness of each panel distribute unequally and vary with the ply angle, the analysis of 

ply stress is of particular importance for the strength design of composite box beams; on the other 

hand, for composite box beams the mechanical characteristics of free torsion (without external 

restraint) are distinctly different from those of restraint torsion and should be given enough 

attention. Therefore, their present research investigates those matters. Numerical results 

correlate very well with the results of model tests and FEA. However, the analysis results indicate 

that during the process of torsion, although without external restraint, the internal restraint 

between plies caused by the coupling effect may induce the longitudinal displacement of fibers, 

which means for composite box beams, in general, the free torsion may not exist definitely, and 

may be replaced by a concept of torsion without external restraint.  

Lee and Lee [37] developed a general analytical model applicable to the flexural, 

torsional, and flexural-torsional behavior of an I-section composite beam subjected to vertical and 

torsional load. This model is based on the classical lamination theory, and accounts for the 

coupling of flexural and torsional responses for arbitrary laminate stacking sequence 

configuration. Governing equations are derived from the principle of the stationary value of total 

potential energy. Numerical results are obtained for thin-walled composites under vertical and 

torsional loading, addressing the effects of fiber angle, and laminate stacking sequence. It was 

found that the beam with fiber angle change in the flanges is more sensitive to angle of twist than 

that of fiber angle change in the web. For both cases, the minimum angle of twist occurs near 

45°, that is, because the torsional rigidity become s maximum value at that value. The last 

experiment presented was a cantilever beam under point load. This case is that both flanges are 

anti-symmetric angle-ply stacking sequence and the web is assumed to be unidirectional. The 
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results showed that it exhibits flexural-torsional coupling. In addition, they showed that the load 

eccentricity does not affect the vertical displacements.  

Chattopadhyay et al. [54] presented a new theory based on a refined higher order 

displacement field of a plate with eccentricity, that is a three-dimensional model which 

approximates the elasticity solution so that the box beam cross-sectional properties are not 

reduced to one-dimensional beam parameters. Both in-plane and out-of-plane warping were 

included automatically in the formulation. The results showed that piezoelectric actuation 

significantly reduces the deflection along the box beam span and therefore can be used to control 

the magnitude of rotor blade vibrations.  

1.3 Objective of this Research 

In practical engineering analysis, structural members are often idealized as a beam. As it 

is well known, these beams are one-dimensional structures; however, two-dimensional properties 

are inherent in composite materials. Furthermore, analyses of beams are often done using 

smeared property in computing their sectional properties. In doing so, the effect of un-symmetry 

of the structure is not included. 

In analyzing composite structures, one often divides the structure into several laminates. 

Then, lamination theory is used to perform the laminate analysis. On the other hand, finite 

element method is used to conduct the structural analysis. Analysis by FEM is still for some 

cases time consuming, expensive, complex, structural dependent, and probably not the most 

favorable method for optimal design. Therefore, there is the need to develop a simple method 

that can accurately analyze axial and bending stiffnesses of these composite beams. 

For a thin-walled beam with arbitrary tubular cross-section, a parametric method is used 

to determine the contour of the cross-section. The stiffness model developed by Chan and his 

students was modified to determine the axial and bending stiffnesses of the tubular structure with 

airfoil cross-section.    
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  A new analytical method was developed based on lamination theory in order to study 

the behavior of these bonded composite laminates.  This method is capable of predicting the axial 

and bending stiffnesses, the centroid location, and the stresses in each ply of the whole structure. 

The results were compared with finite element method.  

1.4 Outline of the Dissertation 

Chapter 2 presents a brief review of lamination theory, axial and bending stiffnesses of 

laminated beam with narrow and wide cross-sections.  

Chapter 3 presents a new analytical method to calculate the centroid, axial and bending 

stiffnesses, as well as ply stresses of a beam with and without a stiffener bonded together. A 

stiffener bonded on the top of the parent laminate is analyzed. Both stiffener aligned and 

unaligned with the centerline of laminate width is considered. In addition the axial and bending 

stiffnesses of a z-stiffener were included.  

A new method to calculate the axial and bending stiffnesses as well as the ply stresses of 

two laminates bonded side by side is included in Chapter 4. 

Chapter 5 presents a method to calculate the axial and bending stiffnesses and the ply 

stresses of a composite beam with arbitrary cross-section. The circular cross-section beam and 

an airfoil composite beam cases were studied. 

Concluding remarks and future work are included in Chapter 6.  
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CHAPTER 2  

BASIC PROPERTIES OF COMPOSITE LAMINATED BEAMS 

In most structural applications, composite materials are used in the form of thin laminates 

which are constructed by stacking multiple laminas together. Instead of analyzing layer by layer, 

the mid-plane of the laminate is selected as a reference plane. Then, the in-plane structural 

properties of each ply are translated into this plane. This analysis method is termed as 

“Lamination Theory”. Since composite layer is very thin in thickness comparing to its in-plane 

dimensions, a plane stress condition (σ3=τ13=τ23=0) is enforced. With this assumption, the 

properties of the composite laminate reduces from 3-D to 2-D. On the other hand, fiber 

composites are often used in the form of beam structures, because beams are common in 

applications [55]. A beam is one dimensional structure. Hence, the two-dimensional properties of 

laminate can not be directly applied to a one-dimensional beam. This chapter will cover the 

development of constitutive equation for a laminated beam.    

In structural beam analysis, equivalent axial and bending stiffnesses as well as centroid 

of the beam cross-section is often used. Expressions of these properties in terms of composite 

properties will be also included in this chapter. 

2.1 Brief Review of Lamination Theory 

In this section, a brief description of lamina and laminate constitutive relationships are 

described. Two coordinate systems, 1-2-3 coordinates and x-y-z coordinates are often used to 

designate the lamina and the laminate levels, respectively. The 1-coordinate is the direction along 

the fibers of the composite ply; the 2-coordinate is the transversal direction to the fibers but in the 

plane of the ply; and the 3-coordinate is perpendicular to the ply plane. The x-y-z coordinates is 

often selected at the mid-plane of the laminates.  
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Laminates are usually very thin structures; thus, the main assumption of lamination 

theory is that composite laminates can be considered to be under plane stress, with all of the out-

of-the-plane stress components being equal to zero. That is,  

03 =σ   , 0423 ==ττ  , and 0513 ==ττ                                   (2.1) 

As a result, the orthotropic stress-strain relation reduced to a 3 by 3 matrix in a composite 

lamina. The reduced compliance matrix [S]1-2 can be written as,   

212121 ][][][ −−− = σε S                                                      (2.2) 

The inverse of the reduced compliance matrix [S1-2] is the reduced stiffness matrix [Q1-2], 

1
2121 ][][ −

−− = SQ                                                           (2.3) 

These reduced compliance [S] and stiffness matrices [Q] are in the general form; that is, 

it does not matter in which coordinate system they are, they could be in the 1-2 or x-y coordinate 

systems. However, when there is an angle ply (this angle will be denoted by the Greek letter θ) 

different than 0°, the reduced compliance 21][ −S and stiffness 21][ −Q  will be changed by the 

transformation matrices to the x-y coordinate system yxS −][  and yxQ −][ , respectively (Eqs. 2.4 

and 2.5). 

 

)]([][)]([][ 21 θθ εσ TQTQ yx ⋅⋅−= −−                                            (2.4) 

)]([][)]([][ 21 θθ σε TSTS yx ⋅⋅−= −−                                             (2.5) 

where the transformation matrices are defined as, 
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θ
θ
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=

=

n

m
 

)]([ θσT  and

 

)]([ θεT  are referred as the stress and strain transformation matrices, 

respectively. 

 

The results presented were valid for a single lamina. However, when all the plies or 

laminas are combined together, they are called laminate.  

In general for any kth layer, the strain can be in terms of the strain in the mid-plane 

laminate ),,( 000
xyyx γεε , and the curvature of that mid-plane ),,( xyyx κκκ , as shown,
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                                                   (2.7) 

The stresses in any kth layer can be found multiplying the mechanical strain by its 

stiffness. 
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][                                                       (2.8) 

The resultant forces and moments per unit width of the laminate can be obtained by 

integrating the stresses of each ply through the thickness as shown.  
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(2.10) 

The loads and moments directions are defined in Figure 2.1. 
 

 

Figure 2.1 Definition of moments and loads in lamination theory 

Substituting the expression of stress and strain of each ply, the constitutive equation of 

the laminate can be expressed as: 
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                                                               or  
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where 

1−
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 .                                                                                               (2.13) 

The stiffness matrices [A], [B], and [D] are defined as, 

∑
=

−− −=
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1)(][][

           

                                     (2.14)
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                                  (2.15)
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n
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1

3
1

3 )(][
3

1
][                                               (2.16) 

kh and 1−kh
 

are the coordinates of the upper and lower surface of the kth layer, 

respectively. It should be noted that [A], [B], and [D] matrices are symmetrical since 

kyxQ ][ − matrix is symmetrical.  

To better understand each term of the [ABD] matrix (Eq. 2.11), it is expanded below,  
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                          (2.17) 

[A] matrix is called in-plane extensional stiffness matrix because it directly relates in-

plane strains ),,( 000
xyyx γεε  to in-plane forces per unit width ),,( xyyx NNN . A11 and A22 are called 

the axial extension stiffness, A12 is the stiffness due to Poisson’s ratio effect, A16 and A26 are the 

stiffness due to shear coupling, and A66 is the shear stiffness. 
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On the other hand, [B] is called extensional-bending coupling stiffness matrix. This matrix 

relates in-plane strains to bending moments and curvatures to in-plane forces. This coupling 

effect does not exist for isotropic materials.  Thus, if Bij≠0, in-plane forces produce flexural and 

twisting deformation in addition to in-plane deformation; moments as well produce extensional 

and shear deformation of the middle surface in addition to flexural and twisting deformation. B11 

and B22 are the coupling stiffness due to direct curvature, B12 is the coupling stiffness due to 

Poisson’s ratio effect, B16 and B26 are the extension-twisting coupling stiffness or shear-bending 

coupling stiffness, and B66 is the shear-twisting coupling stiffness. 

[D] matrix is the bending stiffness matrix because it relates curvatures ),,( xyyx κκκ to 

bending moments per unit width ),,( xyyx MMM . D11 and D22 are the bending stiffness, D12 is 

the bending stiffness due to Poisson’s ratio effect, D16 and D26 are the bending-twisting coupling, 

and D66 is the twisting stiffness [15].  

Inverting the stiffness matrix [ABD], the compliance matrix is obtained, 
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                           (2.18) 

Equation 2.18 has been written in several composite books with the assumption that [b] is 

symmetric; however, this is incorrect, in general. Equations 2.12 and 2.18 emphasize this issue, 

showing that [b] and [bT] must be used simultaneous in order to build the compliance matrix which 

needs to be symmetric.  
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2.2 Special Cases of Laminates 

There are special cases of laminates in which some terms in the stiffness matrix (Eq. 

2.17) and the compliance matrix (Eq. 2.18) vanish. This makes them to have specific structural 

response only archived in certain laminate configurations.  

2.2.1 Balanced vs. Un-balanced Laminate 

A laminate is balanced if plies with identical material properties and thickness have equal 

number of +θ and -θ as angle ply in the laminate lay-up. In addition, 0° and 90° angle ply are self-

balanced. A balanced laminate could be symmetric or un-symmetric.  

The advantage of a balanced laminated is that there is no extension-shear coupling 

because A16 and A26 vanish (Eq. 2.19).   

02616 == AA
                             

                            (2.19) 

On the other hand, an un-balanced laminate exhibits an extension-shear coupling effect.  

2.2.2 Symmetric, Un-symmetric, and Anti-symmetric Laminate 

A laminate is symmetric if plies with identical material properties, thickness, and 

orientation are symmetrically located with respect to the reference plane of the laminate. For 

these laminates, it can be proved that [B] matrix, the coupling stiffness is zero. This implies there 

is no extension-bending coupling effect when the laminate is loaded. In other words, the in-plane 

load induces in-plane deformation and the bending load causes the curvature of the laminate. 

Furthermore, the symmetric laminates exhibit no distortion or warpage in hygrothermal 

environment or after fabrication. Hence, a symmetric laminate is the most desirable laminate 

configuration in design practice.  

On the other hand, an un-symmetric laminate is any other laminate that is not symmetric. 

For these laminates, [B] matrix does not vanish and as a result the laminate will experience 

extension-bending coupling as well as distortion and warpage in hygrothermal environment or 

after fabrication.  
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A symmetric laminate can eliminate the bending effect when it is loaded in tension. 

However, both symmetric and un-symmetric laminates will exhibit bending-twisting coupling 

under bending.  

An anti-symmetric laminate is a balanced laminate but its +θ and -θ layers are in an anti-

symmetric position with respect to its mid-plane. For this laminates, it is balanced but un-

symmetric. This laminates gives a non-zero [B] matrix but a zero value of the D16 and D26 terms. 

This implies that the laminate exhibits extension-bending coupling but no bending-twisting 

coupling effect.  

2.3 Evaluation of Stiffness of Composite Beams 

Evaluation of the axial, bending, and torsion stiffnesses is for predicting structural 

response of structural members under load. In aircraft industry, wing and fuselage structures 

consist of a collection of basic structural elements. Each component, as a whole, acts like a beam 

and a torsion member. As an example, the box beam consists of stringers (axial members) that 

are located at the maximum allowable distance from the neutral axis to achieve the most bending 

capability, and the thin skin (shear panel), which encloses a large area to provide a large torque 

capability. This dissertation focuses only in the axial and bending stiffnesses.   

2.3.1 Axial Stiffness 

The axial stiffness of the material can be seen as a resistance of the structure to deform 

along the loading direction. It is a proportional constant that relates the applied force and its strain 

response. In design practice, the axial stiffness of a structure is evaluated at a load that does not 

exceed the proportional limit of the material. 

2.3.1.1 Isotropic Material 

For a structure made of isotropic material, the force and strain relationship can be easily 

written as 

xx EAN ε)(=                                                            (2.20) 
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where xN
 
is the total applied force to the structure, and the term EA is known as the axial 

stiffness and it is simply
 
the modulus of the material times the structural cross-section (Eq. 2.21).

  

EAAstiffnessAxial x ==_                                               (2.21)
 

It is obvious that the axial stiffness of axial members cannot be increased or decreased 

by simply changing the shape of the cross section.  

2.3.1.2 Composite Laminate  

From the compliance matrix (Eq. 2.18), assuming all the loads are zero 

(Ny=Nxy=Mx=My=Mxy=0) and applying only Nx, the first equation of the system becomes,   

x
o
x N⋅= 11aε                                                           (2.22)
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11a

w
Ax =                                                             (2.23) 

 The width of the composite laminate is represented by the letter w.  Units of the width 

are inches and a11 is “in/lb”. As a result, the units of the total axial stiffness are “lb”, just the same 

as for isotropic material (Eq. 2.21).  

In composites, an equivalent Young’s Modulus is equal to the inverse of a11 multiplied by 

the total height of the laminate. From Equation 2.22, 

x
o
x N⋅= 11aε
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ho
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x

11a
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=

ε
σ

   
→

  ha
E x

11

1~
=

                             

(2.24) 

where h is the total thickness of the laminate and "~" xσ is the averaged stress acting on it.
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Therefore, the axial stiffness can be seen as this equivalent Young’s Modulus multiplied 

by the area of the cross-section of the beam. This gives exactly the same result as Equation 2.23. 

11

~
a

w
AEA xx ==                                                        (2.25)

 

Equations 2.23 and 2.25 reduce to Equation 2.21 when using isotropic material 

properties.

 

Substituting Equation 2.24 "~
1

" 11
hE

a
x

= into 2.23,

 

EAhwEA xx ==
~

 which is the 

same axial stiffness found for isotropic materials. 

 

2.3.2 Bending Stiffness 

The bending stiffness is defined as the resistance of the structure from bending. In other 

words, the bending stiffness is the proportional constant that relates the bending moment and its 

induced curvature. Mathematically, it can be written as 

xxx DM κ⋅=
 

2.3.2.1 Isotropic Material 

For isotropic materials, the bending stiffness "" xD  can be expresses as
 

EIDstiffnessBending x ==_                                            (2.26) 

where I is the moment of inertia of the cross-section.  

Except for pure moment loading, a beam is designed to carry both bending moments and 

transverse shear forces as the latter usually produce the former. For a beam of a large 

span/depth ratio, the bending stress is usually more critical than the transverse shear stress. 

From the ratio 
h

L

MAX

MAX 4
=

τ
σ

 it is evident that bending stress plays a more dominant role than 

transverse shear stress if the span-to-depth ratio is large (as in wing structures) [56]. 
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2.3.2.2 Composite Materials (Smeared Property Approach)  

Equation 2.25 shows that, in order to calculate the axial stiffness, it is possible to 

calculate an equivalent Young’s Modulus for the composite and multiplied it by the area of the 

cross-section. Therefore, using an analogous approach, the equivalent Young’s Modulus (Eq. 

2.24) of the composite multiplied by the inertia of the cross-section gives the bending stiffness. 

I
ha

IED x
Smeared

x
11

1~
==                                                  (2.27) 

Once again, when using isotropic material properties in Equation 2.27, it reduces to 

Equation 2.26, because xE
~

reduces to E .

 

2.4 Parallel Axis Theorem  

The laminate properties such as the stiffness matrices [A], [B], and [D] are derived at a 

reference axis of the laminate. In lamination theory, the reference axis is chosen in the mid-plane 

of the laminate. In practice, the reference axis may be selected at another place like the centroid 

for example.  In those cases, those stiffness matrices [A], [B], and [D] must be translated to the 

other reference axis by the Parallel Axis Theorem. The primed and unprimed notations refer to 

the new and original coordinate systems (Fig. 2.2), respectively. ρ is the distance measuring from 

the original coordinate system to the new coordinate system. 

][]2][][

][][][
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                                           (2.28) 
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Figure 2.2 Reference planes 

The shift of the stiffness matrices has been derived and given in many textbooks [12]. In 

some cases, it is desired to shift the compliance matrices instead of the stiffness matrices. The 

expressions of the compliance matrices are obtained as   

][][

][][][

][])[]([][][ 2

dd

dbb

dbbaa T

=′

+=′

+++=′

ρ
ρρ

                                       (2.29) 

The detail derivation of the compliance matrices shift Equations (Eq. 2.29) can be found 

in Appendix A. It is noted that the extensional stiffness [A’] and the flexibility matrices [d’] remain 

unchanged when the axis is shifted.  

2.5 Axial and Bending Stiffness in Laminated Rectangular cross-section Beams 

The axial and bending stiffnesses of composite beam depend on the deformation of the 

configuration of the cross-section. The configuration deformation is affected by the width of the 

beam. Hence, in order to perform the analysis, narrow and wide beams need to be considered 

separately. Wide and narrow refer to the aspect ratio of the cross-section, that is, the ratio of the 

cross-section width to height. The difference between these two cases lies in the anticlastic 

effect, which refers to the transverse distortion of the beam [55]. 
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2.5.1 Narrow Beams 

For a narrow beam the axial strain distributions give rise to a deformation of the cross-

section in the transverse direction because the Poisson effect [55] (Fig. 2.3). A narrow beam is a 

beam in which its width-height ratio is small. Therefore, the load xN  and moment xM acting on 

the axial direction are only considered; the loads and moments in the other directions are 

neglected.   

 

Figure 2.3 Narrow beam deformed cross-section 

Substituting 0==== xyyxyy MMNN  in Equation 2.18 give the following equations 

[57],  

xxx MN ⋅+⋅= 1111
0 baε

 

xxx MN ⋅+⋅= 1111 dbκ
 

Writing them in the matrix from and inverting it,  
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xx bda

a
M κ⋅

−
= 2

111111

11                                                   (2.31)
 

From Equation 2.30, the axial stiffness can be extracted since xN  is the axial force per 

unit width acting on the composite. Therefore, substituting 
w

N
N x

x =
 

in Equation 2.30, the axial 

stiffness becomes, 

 

2
111111

11

bda

wd
A Narrow

x −
=                                                    (2.32) 

It is important to highlight that Equation 2.32 reduces to Equations 2.23 and 2.25 when 

the lay-up is symmetric; in this case, b11 becomes zero (Eq. 2.33). Therefore, when the lay-up is 

symmetric, the smeared property gives the same answer as the narrow beam does. However, 

when the lay-up is un-symmetric, the answers are different. For a symmetric cross-section, 

Equation 2.32 reduces to 2.33. 

11

  ,

a

w
A SymNarrow

x =                                                        (2.33) 

Similarly, from Equation 2.31 can be extracted the bending stiffness of a narrow beam.  

Substituting 
w

M
M x = in Equation 2.31, it is possible to conclude that, 

 

      
2
111111

11

bda

wa
D Narrow

x −
=                                                    (2.34)

 

Once again, when the lay-up is symmetric, b11 vanishes, and Equation 2.34 reduces to, 

11

  ,

d

w
D SymNarrow

x =                                                      (2.35)
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This result is very important since there is a significant difference between the smeared 

property bending stiffness (Eq. 2.27) and the narrow beam bending stiffness (Eq. 2.34). The 

smeared property approach bending stiffness does not take the order of the stacking sequence 

into consideration. As emphasized earlier, the smeared property approach considers only an 

equivalent Young’s Modulus and multiplied it by the inertia of the cross-section; therefore, the 

effect of the stacking sequence on the bending stiffness is not taken into account. This ignorance 

is acceptable if the laminate is very thin and the distance from the bending axis is relative large 

(e.g. like I-section). However, if the laminate is thick and the distance from the bending axis is 

very small, the stacking sequence will have a significant effect on the bending stiffness. This 

effect is only included in narrow beam approach (Eq. 2.34) since d11 contains that information.    

2.5.2 Wide Beams 

Opposite to a narrow beam, a wide beam, acting essentially as a plate, does not show 

distortion of the cross-section except at the outer edges [55] (Fig. 2.4). A wide beam is a beam in 

which its width-height ratio is large. As a result of this, its curvatures κy and κxy are restrained.  

 

Figure 2.4 Wide beam deformed cross-section 

Substituting 0==== xyy
o
xy

o
y κκγε  in Equation in 2.17 gives the following equations,  

xxx BAN κε 11
0

11 +=
 

xxx DBM κε 11
0

11 +=
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Just as before, writing them in the matrix from and inverting it,  
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111111
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Rearranging Equation 2.36, it is possible to relate the axial force per unit width and the 

axial strain. 
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11

2
11

11 xx D
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AN ε⋅




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


−=                                                     (2.38) 

As usually, substituting 
w

N
N x

x =
 

in Equation 2.38, and the axial stiffness can be 

extracted. 
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AwAWide
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When the lay-up is symmetric, B11 vanishes and Equation 2.39 reduces to, 

11
  , wAA SymWide

x =                                                          (2.40) 

Similarly, rearranging Equation 2.37, and substituting 
w

M
M x =  , the bending stiffness 

of a wide beam can be found. 
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Once again, when the lay-up is symmetric, B11 vanishes and Equation 2.41 reduces to, 

11
  , wDD SymWide

x =                                                        (2.42) 

2.5.3 General Beam 

There is no clear distinction between the wide and narrow beams. For a general 

laminated beam, the structural response exhibits in-between the two above mentioned cases.  

2.6 Centroid 

The centroid is a significant sectional property of the structure’s cross-section that is used 

to determine the response.  

2.6.1 Isotropic Material 

For isotropic materials, the centroid depends only of geometric parameters (Eq. 2.43). 

  
∑
∑=

i

ii
c A

Ay
y     and    

∑
∑=

i

ii
c A

Az
z                                         (2.43) 

where yc and zc are the centroid locations of each element i, and Ai is the cross-section area of 

element i.  

2.6.2 Composite Laminate 

In composites, the centroid is defined as the location where an axial load c
xN  does not 

cause a change in curvature c
xκ and a bending moment c

xM  does not produce axial strain c
xε . In 

other words, the load acting at the centroid decouples the structural response between axial 

extension and bending. Hence, the centroid of the laminate cross-section can be obtained from 

the following procedure. From Equation 2.18, it is possible to obtain the axial strain and curvature 

referred to the centroid instead of the mid-plane.  

c
x

cc
x

cc
x MbNa 1111 +=ε                                                      (2.44) 
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From the centroid definition the application of bending moment does not contribute to the 

axial strain of the beam. Hence, b11
c must be equal to zero ( 011 =

cb ). With aid of Equation 2.29, 

we have, 

0111111 =+= dbbc ρ

 11

11

d

b
−=ρ                                                             (2.45) 

where ρ  is the distance from the mid-plane axis to the centroid of the laminate. 

 It should be noted that for a symmetric laminate 0=ρ . This implies that the centroid 

coincides with the mid-plane axis of the laminate.  

2.6.3 Smeared Property Approach 

As explained earlier, the smeared property approach uses an equivalent Young’s 

Modulus to calculate the axial and bending stiffnesses (Eq. 2.24). This equivalent Young’s 

Modulus is base on the assumption that it is constant through all the laminate. Therefore, for 

smeared property approach, the centroid is always going to be at the mid-plane of each laminate; 

however, if working with two laminates bonded together, the equivalent Young’s Modulus will be 

different for each laminate. With the help of Equation 2.46 is possible to calculate the centroid 

through the smeared property approach. 

  
)()(

)()(

2211

222111

AEAE

zAEzAE
z Smeared

c +

+
=

                                                 

(2.46) 

where 1z  is the distance from the bottom of the cross-section to the mid-plane of laminate 1; and  

2z  is the distance from the same bottom of the cross-section to the mid-plane of laminate 2.  
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CHAPTER 3  

STIFFENER REINFORCED LAMINATED BEAMS 

Bonding composite laminates together is a common practice in today industry. This could 

be done for reparation of a damage composite structure, for reinforcement, or to created new 

compound structures. A theory was developed from lamination theory in order to study the 

behavior of these bonded composite laminates.  This theory is capable of predicting the axial and 

bending stiffnesses, the centroid location, and the stresses generated in each ply of the whole 

structure due to axial and bending loads. 

This chapter considers two different laminates bonded together one on the top of the 

other one. First, we consider the two laminates are aligned together, and then, we consider the 

case when they are not aligned. The results were compared with lamination theory and finite 

element method. 

Typical MATLAB program used in the calculations are included in Appendix C. 

3.1 Constitutive Equations of Composite Beam 

Since the beam is narrow and long, moment My and twisting curvature kxy in the y-plane 

can be ignored. For a laminated beam under an axial load, a bending moment Mx, an Mxy may be 

induced. Conversely, a bending moment in a laminated beam may induce the in-plane 

deformation. In this case, the following assumptions will be assumed in this study 

0=== yxyy MNN  and 0=xyκ . Substituting these assumptions in Equation 2.18, Equation 

3.1 is obtained 
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Since 0=xyκ , Equation 3.1 can be rewritten as, 
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Equation 3.2 is the constitutive equation of laminated beam. It should be noted that if the 

laminate is symmetric,  0=∗b . Inverting Equation 3.2, 

















=








∗∗

∗∗

x

o
x

x

x

DB

BA

M

N

κ
ε

                                                  

(3.4) 

Where, 
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(3.5) 

The centroid of composite beam can be calculate similar to the way it is calculated in 

lamination theory; however, instead of using Equation 2.45, the reduced properties to one 

dimension must be used, that is,  

∗
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−=
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b
ρ

                                                              

(3.6) 
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3.2 Aligned Rectangular Strip Stiffener Reinforcement 

An aligned stiffener bonded or co-cured in a laminated beam as shown in Figure 3.1 is 

considered in this section. The bondline thickness is ignored in this study.    

3.2.1 Description of the Geometry 

The laminated beam is assumed to be thin in thickness and narrow in its width compared 

to its length. Figure 3.2 shows a cross-section of a laminated beam with a stiffener reinforcement 

at the top of the beam.  

 

Figure 3.1 Laminated beam with a stiffener reinforcement on the top 

 

Figure 3.2 Stiffener at the center of laminate beam 

 1z  is the distance from the bottom of the cross-section to the mid-plane of the beam.  

cz  is the distance from the bottom to the centroid of the whole structure.  On the other hand, 1z  
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is the distance from this centroid to the mid-plane of the beam.  Similar notation is used for 

stiffener. In addition, w1 is the width of the beam and w2 is the width of the stiffener (Fig. 3.2). 

3.2.2 Equivalent Axial Stiffness 

Let assume a total load 
c
xN  be applied at the centroid of the beam cross-section. An 

axial load and a bending moment for each laminate are induced as shown in Figure 3.3. Let  

1xN , 2xN , 1xM , and 2xM  be the axial load and moment per unit width of laminate 1 (beam) 

and 2 (stiffener), respectively.  

 

Figure 3.3 Axial forces and moments acting on centroids of the beam and stiffener 

Considering the force balanced,  

2211 xx
c
x NwNwN +=

                                      
 (3.7) 

Substituting Equation 3.4 into 3.7 for each laminate, it is obtained,  

)()( 2222211111 x
o
xx

o
x

c
x BAwBAwN κεκε ∗∗∗∗ +++=

                             

(3.8) 

o
x1ε  and o

x2ε  are the  mid-plane strain of laminate 1 and 2 in x-direction and 1xκ and 2xκ  

are the curvature of each laminate. Because of the two laminates perfectly bonded, the curvature 

of each laminate should be equal to the one of the entire bonded laminate. The mid-plane strain 

of each laminate can be in terms of the mid-plane strain and the curvature of the entire bonded 

laminate as  

c
x

c
xx zκεε +=

                                                          
(3.9) 
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Since the load is applied to the centroid of a composite beam, there is no curvature 

induced to the entire cross-section of the laminate. Therefore,
 

021 === c
xxx κκκ and 

c
x

o
x

o
x εεε == 21  .  Consequently, Equation 3.8 becomes,  

c
x

c
x AwAwN ε)( 2211

∗∗ +=
                                               

(3.10) 

Comparing Equation 3.10 with Equation 2.20 the equivalent axial stiffness of the whole 

structure xA can be expressed as  

∗∗ += 2211 AwAwAx                                     (3.11) 

3.2.3 Equivalent Bending Stiffness 

In a similar way, the equivalent bending stiffness can be determined. Let a bending 

moment c
xM

 
be applied at the centroid of the beam. The equilibrium equations of moments (Fig. 

3.3) give, 

2222211111 xxxx
c
x MwzNwMwzNwM +++=                          (3.12) 

Substituting back Equations 3.4 into 3.12, 
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With aid of Equation 3.9, we have  

c
x

o
x z κε 11 =      

and
   

c
x

o
x z κε 22 =                                           

(3.14) 

In addition, c
xxx κκκ == 21 . Therefore,  

c
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c
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2
22211111111

2
111

∗∗∗∗∗∗∗∗ +++++++=   (3.15) 

By definition, we have the equivalent bending stiffness of the whole structure expressed 

as shown below. 

∗∗∗∗∗∗ +++++= 22222
2
22211111

2
111 22 DwzBwzAwDwzBwzAwDx                   (3.16) 
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3.2.4 Centroid  

The centroid is the location where the summation of the moments of the cross-sectional 

area equal zero. The centroid can be calculated taking summation of moments of the axial loads 

acting on the centroids of each laminate and equating them to the total axial force acting on the 

centroid of the whole structure. Referring Figure 3.4, we obtain  

 

Figure 3.4 Axial force acting the centroids of each laminate 

c
xcxcxc NzwNzwNz =+ 222111                              (3.17) 

Substituting Equation 3.4 and 3.7 into 3.17,  
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          (3.18) 

No curvatures of each laminate as well as the whole structure are induced because of all 

the forces are assumed to be acting on their centroid. Hence, we have 021 === c
xxx κκκ  

resulting in c
x

o
x

o
x εεε == 21  . Consequently, Equation 3.18 becomes, 
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+
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=
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AwzAwz
z cc

c                                           (3.19) 

This last equation gives the centroid position of the whole section as a function of the 

properties of the laminated beam and the laminated stiffener.   
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Another approach to calculate the centroid is based upon the axial forces acting on the 

mid-plane of each laminate plus the moment generate due to the translation of this force from the 

centroid to the mid-plane of the beam and stiffener (Fig. 3.5) As a result, the summation of 

moments becomes (Eq. 3.20),  

 

Figure 3.5 Axial forces and moments acting on the mid-plane of each laminate 

2222211111 xxxx
c
xc MwwNzMwwNzNz +++=       (3.20) 

Substituting Equation 3.4 and 3.7 into 3.20, 
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As explained before, we have 021 === c
xxx κκκ , and c

x
o
x

o
x εεε == 21 . Consequently, 

Equation 3.21 becomes, 

∗∗
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zc                                      (3.22) 

Appendix B proof that Equation 3.22 reduces to Equation 3.19. Therefore, both are 

equivalent. 
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3.3 Results Comparison of Centroid Calculations 

In this study, first was considered an isotropic material, aluminum was chosen with a 

Young Modulus of 10.498e6 psi and a Poisson’s ratio of 0.33. After that, a composite material 

was used. The composite’s properties were the following E1=18.2e6 psi, E2=E3=1.41e6, ν12= ν23= 

ν13=0.27, and G12=G23=G13=0.92e6 psi. The laminate consisted of 12 plies of 0.005 inches each 

one.   

3.3.1 Isotropic Material 

In order to validate the present method is necessary to evaluate an isotropic material 

because the answer can be calculated easily. An isotropic material rectangular cross-section is 

broken in two pieces as shown in Figure 3.6; therefore, it is possible to treat each piece like an 

independent laminate.  

 

Figure 3.6 Isotropic Laminates 

Table 3.1 lists the results of the centroid zc calculated by three different methods. The 

results show excellent agreement each other. Equation 2.45 is the centroid calculated from 

lamination theory. On the other hand, Equation 3.6 is the centroid calculated through a modified 

lamination theory for composite beams. 
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Table 3.1 Results for isotropic material 

Present Eq. 2-45 Eq. 3-6 Smeared Prop.

Method Approach

-b11/d11
-b*/d*

zc [tply] 6.0000 6.0000 0.0 6.0000 0.0 6.0000 0.0

Diff % Diff % Diff %

 

3.3.2 Symmetric Laminate  

A symmetric laminate [+452/02]S  of graphite/epoxy is split into two pieces in three 

different cases as shown in Figure 3.7.  

                     Case 1                                      Case 2                                        Case 3 

 

Figure 3.7 Composite Laminate [+452/02]S 

The centroid calculations in terms of ply thickness are presented in the Table 3.2. The 

present method gives excellent results for symmetric and balanced laminate. On the other hand, 

the smeared property approach results are far. 

Table 3.2 Results for Composite [+452/02]s 

Present Eq. 2-45 Eq. 3-6 Smeared Prop.

Method Approach

-b11/d11
-b*/d*

Case 1 zc [tply] 5.9970 6.0000 0.1 6.0000 0.1 5.1176 -14.7

Case 2 zc [tply] 6.0000 6.0000 0.0 6.0000 0.0 6.0000 0.0

Case 3 zc [tply] 6.0030 6.0000 -0.1 6.0000 -0.1 6.8824 14.6

Diff % Diff % Diff %
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3.3.3 Un-symmetric and Balanced Laminate 

A layup [+45/0/90]3T  of un-symmetric laminate is going divided into two pieces, layer by 

layer as shown in Figure 3.8. 

                    Case 4                                       Case 6                                       Case 8 

 

Figure 3.8 Three different case where the un-symmetric laminate 

The first case (Table 3.3) was the top laminate containing just 1 ply and the bottom 

laminate containing 11 plies. The results listed in Table 3.3 indicate that a less than 2% difference 

of the calculated centroid is observed among the present, laminate and laminated beam methods. 

However, a smeared property method gives a slightly higher difference. It should be noted that 

the laminate is an un-symmetric but quasi-isotropic laminate. When the laminate is loaded, the 

curvature is induced. Using the smear property of laminate, the induced curvature is ignored. The 

results are also plotted in Figure 3.9.   

Even though the beam of case 4 is identical to the stiffener in case 8 (and the beam in 

case 8 is identical as well as the stiffener in case 4), case 4 and 8 produce different results 

because the height of those beam and stiffener are different in each case. 
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Table 3.3 Results for un-symmetric laminate [+45/0/90]3T  ply by ply 

Present Eq. 2-45 Eq. 3-6 Smeared Prop.

Method Approach

# plies # plies -b11/d11 -b*11/d*11

1 1 11 zc [tply] 5.7174 5.8261 1.9 5.8282 1.9 5.6558 -1.1

2 2 10 zc [tply] 5.7284 5.8261 1.7 5.8282 1.7 5.3799 -6.1

3 3 9 zc [tply] 5.7341 5.8261 1.6 5.8282 1.6 5.6399 -1.6

4 4 8 zc [tply] 5.7144 5.8261 2.0 5.8282 2.0 5.8178 1.8

5 5 7 zc [tply] 5.7761 5.8261 0.9 5.8282 0.9 5.6630 -2.0

6 6 6 zc [tply] 5.8209 5.8261 0.1 5.8282 0.1 5.5842 -4.1

7 7 5 zc [tply] 5.8204 5.8261 0.1 5.8282 0.1 6.5176 12.0

8 8 4 zc [tply] 5.9257 5.8261 -1.7 5.8282 -1.6 6.1822 4.3

9 9 3 zc [tply] 5.9249 5.8261 -1.7 5.8282 -1.6 5.9121 -0.2

10 10 2 zc [tply] 5.8863 5.8261 -1.0 5.8282 -1.0 6.2861 6.8

11 11 1 zc [tply] 5.8882 5.8261 -1.1 5.8282 -1.0 6.3987 8.7

Case #
Diff %Diff %Diff %
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Figure 3.9 Plot of un-symmetric laminate [+45/0/90]3T  ply by ply results 

 



 

43 
 

3.3.4 Un-symmetric and Un-balanced Laminate 

An un-balanced and un-symmetric [152/302/452/602/752/902]T  laminate was considered. 

Three different cases are considered as shown in Figure 3.10.  

                    Case 1                                         Case 2                                       Case 3 

 

Figure 3.10 Three different case for un-balanced laminate 

Once again, the present method gives results close to the laminate and laminated beam 

methods compared with the smear method (Table 3.4). It should be noted that the smeared 

property approach neglects the shear deformation and curvature of the laminates; as results, the 

high percentage difference from the other two methods.  

Table 3.4 Results for un-balanced [152/302/452/602/752/902]T  laminate 

Present Eq. 2-45 Eq. 3-6 Smeared Prop.

Method Approach

-b11/d11
-b*/d*

Case 1 zc [tply] 8.3940 8.4131 0.2 8.9460 6.6 7.7195 -8.0

Case 2 zc [tply] 8.5700 8.4131 -1.8 8.9460 4.4 7.2944 -14.9

Case 3 zc [tply] 8.7234 8.4131 -3.6 8.9460 2.6 6.8356 -21.6

Diff % Diff % Diff %
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3.4 Ply Stress Calculations 

The stresses in each laminate can be calculated through the following procedure. 
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(3.23) 

where c
xε  and c

xκ  
can be obtained from the stiffnesses,
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To calculate the strains in the mid-plane of laminate 1,  
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And to calculate the strain in each ply of laminate 1, 
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Finally, to calculate the stresses in each ply of laminate 1,  
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Similarly, the equation for laminate 2 can be determined.  
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3.5 Finite Element Model 

A model was built in ANSYS to simulate the composite laminates. Two laminates of 10 

inches long and 0.5 inches wide were bonded together. The bottom one constituted by 8 plies 

and the top one of 4 plies. So this was equivalent of a total of 12 plies laminate (since both widths 

were the same). Each ply with a thickness of 0.005 inches.  

The element used was solid46, a 3D block element with 8 nodes and 3 degrees of 

freedom per node. The mesh generated was 320 elements through the length, 16 through the 

width, and 2 per ply. This gives a total of 136,425 nodes.  

Two cases were considered an axial load and a moment were applied. An axial load of 1 

lb was applied at the centroid of the cross-section (Figure 3.11).  

 

Figure 3.11 c
xN  applied to the centroid of the cross-section 

The other case was the moment applied. A pair of forces were assigned  to generate the 

moment; each force being a 1 lb and acting one ply away from the centroid of the cross-section 
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(that is 0.005 inches).  This generates a total moment of 0.01 lb-in. A typical mesh for this case is 

shown in Figure 3.12.  

 

Figure 3.12 Two forces generating c
xM  

The boundary conditions were applied as follows (Fig. 3.13): the whole plane on the other 

side of the laminate were constricted in the x-direction (axial direction).  The middle of the 

laminate in the y-direction was constrained in that direction (Uy=0). And the location of the 

centroid in the z-direction was constrained in that direction (Uz=0) as well. 
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Figure 3.13 Applied Boundary Conditions 

Aluminum was chosen with a Young Modulus of 10.498 Msi and a Poisson ratio of 0.33. 

After that, a composite material was used. The composite’s properties were the following 

E1=18.2e6 psi, E2=E3=1.41e6, ν12= ν23= ν13=0.27, G12=G23=G13=0.92e6 psi, and tply=0.005 in.  

Three cases of composite material models were simulated. The laminates [06]S, [±452/02]s 

and  [±45/0/90]3T were studied.   

3.6 Finite Element Results 

3.6.1 Axial and Bending Stiffnesses obtained from FEM 

The axial stiffnesses were calculated from the FEM model by the following equation. 

)(2 L/2 x=

=
atx

x U

FL
A  
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 To avoid distortions of the results by the boundary conditions or the applied load, the 

results were read half way through the length of the beam; that is at L/2. And F is the applied 

load.  

The bending stiffnesses were calculated from the FEM model by first determining the 

curvature of the beam, c
xκ , and then dividing the applied moment by it.  

c
xx

c
x DM κ=

    

→

   

c
x

c
x

x

M
D

κ
=

 

3.6.2 Centroid Locations 

The centroids zc were calculated using Equation 3.22. The axial stiffnesses were 

calculated through Equation 3.11. Finally, the bending stiffnesses were calculated using Equation 

3.16. The units of the centroid zc are in numbers of ply thicknesses since its value was divided by 

that thickness.  

As it was explained before, the centroid is defined as the location where an axial load 

does not cause a change in curvature and a bending moment does not produce axial strain. In 

other words, the load acting at the centroid decouples the structural response between axial 

extension and bending. Therefore, it was checked that for an applied axial load at the centroid 

there were no bending (curvature) and for an applied moment at the centroid of the cross-section, 

there were no axial displacement.  

Finally, all the axial displacements (for the axial stiffness and centroid) and z-vertical 

displacements (for the bending stiffness and centroid) were read at the centroid of the cross-

section. The mesh was done extremely careful so there was nodes presents in the centroids of 

each case. For the first three cases there was not major problem since the centroid of the whole 

cross-section corresponds with a line between plies since all these three cases the whole cross-

section have symmetric layups. However, for the last case, the whole cross-section layup were 

un-symmetric, so special care was needed in order to ensure the mesh have node in the centroid 

of the cross-section.  
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3.6.3 Comparison of Laminate Stiffnesses 

Four cases were considered in this study. They are isotropic material, all 0° ply laminate, 

symmetric and balanced laminate, and un-symmetric laminate in the overlapped region. All of the 

results are listed in Table 3.5. 

Table 3.5 Comparison of the axial and bending stiffnesses for different cases 

 

First, to confirm the procedure and equations was correct, an isotropic material was used 

to be able to calculate the centroid and axial and bending stiffnesses by close-from theoretical 

solution. Those results were also compared to the FEM model to validate the model as well. The 

results matched perfectly giving confidence that the FEM model and equations were right.  

The next step was to compare those equations with the composite FEM model since, 

unfortunately, there is not close-form theoretical solution. The first case was all the plies with an 

angle ply of 0°. The bottom laminate consists of 8 plies and the top laminate consists of 4 plies. 

The results are extremely good.  

The next step was to consider a symmetric total laminate. Strictly speaking, because two 

laminate are being bonded together, neither of those laminates were symmetric; however, when 

bonded together the layup of the total cross-section is symmetric.  Once again the bottom 

laminate had 8 plies and the top laminate had 4 plies. In this case, the bottom laminate layup was 
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[04/-45/45/-45/+45]T and the top laminate layup was [±452]T. The results are in excellent 

agreement.  

Finally, in order to try to cover all the possible cases, the last selection was to consider an 

un-symmetric laminate (once again when bonded together both laminates). That is the bottom 

laminate with a layup of [±45/0/90]2T and the top laminate with a layup of and [±45/0/90]T. For this 

case the results were 5% difference between the present and finite element method. 

3.6.4 Ply Stresses of Isotropic Material 

3.6.4.1 Beam Laminate under Axial Load, c
xN  

Figure 3.14 through 3.16 show the stresses through the cross-section of two isotropic 

laminates bonded together subjected to an axial load. The horizontal axis represents each ply of 

the whole cross-section. The first 8 plies are the bottom laminate and the last 4 plies are the 

laminate at the top, for a total of 12 plies. The applied axial load was 1 lb; however, in composite 

notation, this load must be divided by the width of the laminate which is 0.5 inches. Therefore, 

applied load in composite notation is inlbN c
x / 2= . 

For theoretical solution it is known that σx=Fx/A. The total height cross-section is 8 plies 

multiplied by 0.005 inches which is the thickness of each ply plus 4 plies multiplied by 0.005 

inches; that is 12x0.005=0.06 inches. Therefore, the area of the total cross-section is 0.03 in2 and 

the axial stress is 33.33 psi which confirms the results from the FEM model (Figure 3.14). The 

transversal and shear stresses are decoupled from axial extension for isotropic materials; 

therefore, as expected σy=0 and τxy=0 (Figures 3.15 and 3.16).   

All of the ply stresses calculated by three different methods are listed in Table 3.6. 
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Figure 3.14 FEM axial stress due to c
xN  in isotropic material 
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Figure 3.15 FEM transversal stress due to c
xN  in isotropic material 
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Figure 3.16 FEM shear stress due to c
xN  in isotropic material 
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Table 3.6 Stresses due to c
xN  applied to isotropic material 

σx σy τxy

[psi] %Diff [psi] %Diff [psi] %Diff

Lamination Theory 33.33 0.00 0.00

FEM 33.33 0.0 0.00 0.0 0.00 0.0

Prensent Method 33.33 0.0 0.00 0.0 0.00 0.0

Lamination Theory 33.33 0.00 0.00

FEM 33.33 0.0 0.00 0.0 0.00 0.0

Prensent Method 33.33 0.0 0.00 0.0 0.00 0.0

Lamination Theory 33.33 0.00 0.00

FEM 33.33 0.0 0.00 0.0 0.00 0.0

Prensent Method 33.33 0.0 0.00 0.0 0.00 0.0

Lamination Theory 33.33 0.00 0.00

FEM 33.33 0.0 0.00 0.0 0.00 0.0

Prensent Method 33.33 0.0 0.00 0.0 0.00 0.0

Lamination Theory 33.33 0.00 0.00

FEM 33.33 0.0 0.00 0.0 0.00 0.0

Prensent Method 33.33 0.0 0.00 0.0 0.00 0.0

Lamination Theory 33.33 0.00 0.00

FEM 33.33 0.0 0.00 0.0 0.00 0.0

Prensent Method 33.33 0.0 0.00 0.0 0.00 0.0

Lamination Theory 33.33 0.00 0.00

FEM 33.33 0.0 0.00 0.0 0.00 0.0

Prensent Method 33.33 0.0 0.00 0.0 0.00 0.0

Lamination Theory 33.33 0.00 0.00

FEM 33.33 0.0 0.00 0.0 0.00 0.0

Prensent Method 33.33 0.0 0.00 0.0 0.00 0.0

Lamination Theory 33.33 0.00 0.00

FEM 33.33 0.0 0.00 0.0 0.00 0.0

Prensent Method 33.33 0.0 0.00 0.0 0.00 0.0

Lamination Theory 33.33 0.00 0.00

FEM 33.33 0.0 0.00 0.0 0.00 0.0

Prensent Method 33.33 0.0 0.00 0.0 0.00 0.0

Lamination Theory 33.33 0.00 0.00

FEM 33.33 0.0 0.00 0.0 0.00 0.0

Prensent Method 33.33 0.0 0.00 0.0 0.00 0.0

Lamination Theory 33.33 0.00 0.00

FEM 33.33 0.0 0.00 0.0 0.00 0.0

Prensent Method 33.33 0.0 0.00 0.0 0.00 0.0

Force Lamination Theory 400.00 x0.0025= 1.0000

Balance FEM 400.01 x0.0025= 1.0000

Present Method 400.00 x0.0025= 1.0000

ply #1 ISO

ISO

ply #3 ISO

ply #2 ISO

ISO

ISO

ISO

ISO

ISO

ISO

ISO

ISO

ply #8

ply #7

ply #6

ply #5

ply #12

ply #11

ply #10

ply #9

ply #4

 

To check on the force balance, the summation of all the stresses was calculated and 

listed at the bottom of each table. Then they were multiplied by the area of each ply (0.0025 in2) 

to obtain the total force (Table 3.6). 

The present method results match perfectly with the FEM and the lamination theory 

results, which validates the new method and FEM model.   
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3.6.4.2 Beam Laminate under Bending Moment, c
xM  

Now for the same isotropic bonded laminates, a moment is applied at the centroid of the 

whole cross-section. This moment is generated by a pair of axial forces acting on a distance of 

one ply of the centroid each one in different directions. The total moment applied is 

2x(1lb)x(0.005in)=0.01lb-in. Just like before, the transversal and shear stresses are decoupled 

from bending for isotropic materials; therefore, as expected σy=0 and τxy=0 (Figures 3.18 and 

3.19). On the other hand, the axial stress is a linear function from the bottom to the top of the 

cross-section (Figure 3.17). The maximum axial stress is σx,max=Mc/I; that is, σx,max= 

(0.01lb_in)(6x0.005in)/(1/12x0.5inx(12X0.005in)3)= 33.33 psi, this is exactly the output of the FEM 

simulation (Figure 3.17). All of the stresses calculated by three different methods are tabulated in 

Table 3.7.  
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Figure 3.17 FEM axial stress due to c
xM  in isotropic material 
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Figure 3.18 FEM transversal stress due to c
xM  in isotropic material 
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Figure 3.19 FEM shear stress due to c
xM  in isotropic material 

The results are listed in Table 3.7. 
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Table 3.7 Stresses due to c
xM  applied to isotropic material 

σx σy τxy

[psi] %Diff [psi] %Diff [psi] %Diff

Lamination Theory 30.56 0.00 0.00

FEM 30.56 0.0 0.00 0.0 0.00 0.0

Prensent Method 30.56 0.0 0.00 0.0 0.00 0.0

Lamination Theory 25.00 0.00 0.00

FEM 25.00 0.0 0.00 0.0 0.00 0.0

Prensent Method 25.00 0.0 0.00 0.0 0.00 0.0

Lamination Theory 19.44 0.00 0.00

FEM 19.45 0.0 0.00 0.0 0.00 0.0

Prensent Method 19.44 0.0 0.00 0.0 0.00 0.0

Lamination Theory 13.89 0.00 0.00

FEM 13.89 0.0 0.00 0.0 0.00 0.0

Prensent Method 13.89 0.0 0.00 0.0 0.00 0.0

Lamination Theory 8.33 0.00 0.00

FEM 8.33 0.0 0.00 0.0 0.00 0.0

Prensent Method 8.33 0.0 0.00 0.0 0.00 0.0

Lamination Theory 2.78 0.00 0.00

FEM 2.78 0.0 0.00 0.0 0.00 0.0

Prensent Method 2.78 0.0 0.00 0.0 0.00 0.0

Lamination Theory -2.78 0.00 0.00

FEM -2.78 0.0 0.00 0.0 0.00 0.0

Prensent Method -2.78 0.0 0.00 0.0 0.00 0.0

Lamination Theory -8.33 0.00 0.00

FEM -8.33 0.0 0.00 0.0 0.00 0.0

Prensent Method -8.33 0.0 0.00 0.0 0.00 0.0

Lamination Theory -13.89 0.00 0.00

FEM -13.89 0.0 0.00 0.0 0.00 0.0

Prensent Method -13.89 0.0 0.00 0.0 0.00 0.0

Lamination Theory -19.44 0.00 0.00

FEM -19.45 0.0 0.00 0.0 0.00 0.0

Prensent Method -19.44 0.0 0.00 0.0 0.00 0.0

Lamination Theory -25.00 0.00 0.00

FEM -25.00 0.0 0.00 0.0 0.00 0.0

Prensent Method -25.00 0.0 0.00 0.0 0.00 0.0

Lamination Theory -30.56 0.00 0.00

FEM -30.56 0.0 0.00 0.0 0.00 0.0

Prensent Method -30.56 0.0 0.00 0.0 0.00 0.0

ply #2 ISO

ply #1 ISO

ply #5 ISO

ply #4 ISO

ply #3 ISO

ply #12 ISO

ply #11 ISO

ply #10 ISO

ply #9 ISO

ply #8 ISO

ply #7 ISO

ply #6 ISO

 

 

All the axial, transversal, and shear stresses from lamination theory match perfectly with 

those from the FEM model and the present method. 
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3.6.5 Ply Stresses of 0° Laminate 

3.6.5.1 c
xN acting on the [04]S and [02]S of parent and stiffener 

Repeating the same procedure but this time instead of using an isotropic material, a 

composite material was used. For this first try with composites, all the plies were chosen to be at 

an angle ply of 0° to avoid any shear deformation o r other undesired effects.  Therefore, the 

transversal and shear stresses are decoupled from axial extension; that is why σy=0 and τxy=0 

were expected (Fig. 3.21 and 3.22). Once again the axial stress (Fig. 3.20) can be calculated as 

before σx=Fx/A=33.33psi, just like the FEM model output.  

The results listed in Table 3.8. 
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Figure 3.20  FEM axial stress due to c
xN  in [04]S and [02]S of parent and stiffener 
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Figure 3.21 FEM transverse stress due to c
xN  in [04]S and [02]S of parent and stiffener 
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Figure 3.22 FEM shear stress due to c
xN  in [04]S and [02]S of parent and stiffener 
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Table 3.8 Stresses due to c
xN  applied to [04]S and [02]S of parent and stiffener 

σx σy τxy

[psi] %Diff [psi] %Diff [psi] %Diff

Lamination Theory 33.33 0.00 0.00

FEM 33.33 0.0 0.00 0.0 0.00 0.0

Prensent Method 33.33 0.0 0.00 0.0 0.00 0.0

Lamination Theory 33.33 0.00 0.00

FEM 33.33 0.0 0.00 0.0 0.00 0.0

Prensent Method 33.33 0.0 0.00 0.0 0.00 0.0

Lamination Theory 33.33 0.00 0.00

FEM 33.33 0.0 0.00 0.0 0.00 0.0

Prensent Method 33.33 0.0 0.00 0.0 0.00 0.0

Lamination Theory 33.33 0.00 0.00

FEM 33.33 0.0 0.00 0.0 0.00 0.0

Prensent Method 33.33 0.0 0.00 0.0 0.00 0.0

Lamination Theory 33.33 0.00 0.00

FEM 33.33 0.0 0.00 0.0 0.00 0.0

Prensent Method 33.33 0.0 0.00 0.0 0.00 0.0

Lamination Theory 33.33 0.00 0.00

FEM 33.33 0.0 0.00 0.0 0.00 0.0

Prensent Method 33.33 0.0 0.00 0.0 0.00 0.0

Lamination Theory 33.33 0.00 0.00

FEM 33.33 0.0 0.00 0.0 0.00 0.0

Prensent Method 33.33 0.0 0.00 0.0 0.00 0.0

Lamination Theory 33.33 0.00 0.00

FEM 33.33 0.0 0.00 0.0 0.00 0.0

Prensent Method 33.33 0.0 0.00 0.0 0.00 0.0

Lamination Theory 33.33 0.00 0.00

FEM 33.33 0.0 0.00 0.0 0.00 0.0

Prensent Method 33.33 0.0 0.00 0.0 0.00 0.0

Lamination Theory 33.33 0.00 0.00

FEM 33.33 0.0 0.00 0.0 0.00 0.0

Prensent Method 33.33 0.0 0.00 0.0 0.00 0.0

Lamination Theory 33.33 0.00 0.00

FEM 33.33 0.0 0.00 0.0 0.00 0.0

Prensent Method 33.33 0.0 0.00 0.0 0.00 0.0

Lamination Theory 33.33 0.00 0.00

FEM 33.33 0.0 0.00 0.0 0.00 0.0

Prensent Method 33.33 0.0 0.00 0.0 0.00 0.0

Force Lamination Theory 400.00 x0.0025= 1.0000

Balance FEM 400.01 x0.0025= 1.0000

Present Method 400.00 x0.0025= 1.0000

ply #1 0

0

ply #3 0

ply #2 0

0

0

0

0

0

0

0

0

ply #8

ply #7

ply #6

ply #5

ply #12

ply #11

ply #10

ply #9

ply #4

 

The results agree perfectly. In addition, a force balanced check was done to make sure 

all the summation of stresses in the cross-section equate the applied force so there is equilibrium. 

It is shown that the force balanced for the three methods ( bN c
x l 1= ).  
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3.6.5.2 c
xM  acting on the [04]S and [02]S of parent and stiffener 

For the bending case the results are what was expected; σy=0 and τxy=0 (Figure 3.24 and 

3.25). And for the axial stress σx,max=Mc/I=33.33 psi (Figure 3.23).  

All the stresses are listed in Table 3.9.  
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Figure 3.23 FEM axial stress due to c
xM  in [04]S and [02]S of parent and stiffener 
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Figure 3.24 FEM transverse stress due to c
xM  in [04]S and [02]S of parent and stiffener 
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Figure 3.25 FEM shear stress due to c
xM  in [04]S and [02]S of parent and stiffener 
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Table 3.9 Stresses due to c
xM  applied to [04]S and [02]S of parent and stiffener 

σx σy τxy

[psi] %Diff [psi] %Diff [psi] %Diff

Lamination Theory 30.56 0.00 0.00

FEM 30.56 0.0 0.00 0.0 0.00 0.0

Prensent Method 30.56 0.0 0.00 0.0 0.00 0.0

Lamination Theory 25.00 0.00 0.00

FEM 25.00 0.0 0.00 0.0 0.00 0.0

Prensent Method 25.00 0.0 0.00 0.0 0.00 0.0

Lamination Theory 19.44 0.00 0.00

FEM 19.45 0.0 0.00 0.0 0.00 0.0

Prensent Method 19.44 0.0 0.00 0.0 0.00 0.0

Lamination Theory 13.89 0.00 0.00

FEM 13.89 0.0 0.00 0.0 0.00 0.0

Prensent Method 13.89 0.0 0.00 0.0 0.00 0.0

Lamination Theory 8.33 0.00 0.00

FEM 8.33 0.0 0.00 0.0 0.00 0.0

Prensent Method 8.33 0.0 0.00 0.0 0.00 0.0

Lamination Theory 2.78 0.00 0.00

FEM 2.78 0.0 0.00 0.0 0.00 0.0

Prensent Method 2.78 0.0 0.00 0.0 0.00 0.0

Lamination Theory -2.78 0.00 0.00

FEM -2.78 0.0 0.00 0.0 0.00 0.0

Prensent Method -2.78 0.0 0.00 0.0 0.00 0.0

Lamination Theory -8.33 0.00 0.00

FEM -8.33 0.0 0.00 0.0 0.00 0.0

Prensent Method -8.33 0.0 0.00 0.0 0.00 0.0

Lamination Theory -13.89 0.00 0.00

FEM -13.89 0.0 0.00 0.0 0.00 0.0

Prensent Method -13.89 0.0 0.00 0.0 0.00 0.0

Lamination Theory -19.44 0.00 0.00

FEM -19.45 0.0 0.00 0.0 0.00 0.0

Prensent Method -19.44 0.0 0.00 0.0 0.00 0.0

Lamination Theory -25.00 0.00 0.00

FEM -25.00 0.0 0.00 0.0 0.00 0.0

Prensent Method -25.00 0.0 0.00 0.0 0.00 0.0

Lamination Theory -30.56 0.00 0.00

FEM -30.56 0.0 0.00 0.0 0.00 0.0

Prensent Method -30.56 0.0 0.00 0.0 0.00 0.0

ply #2 0

ply #1 0

ply #5 0

ply #4 0

ply #3 0

ply #12 0

ply #11 0

ply #10 0

ply #9 0

ply #8 0

ply #7 0

ply #6 0

 

All the stresses match perfectly among three different methods for the bending case of a 

composite beam.  
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3.6.6 Ply Stresses of [+452/02]s Symmetric Laminate 

3.6.6.1 c
xN  acting on the parent laminate [04/-45/45/-45/+45]T and the stiffener [±452]T 

For this case, the beam contains a bottom laminate with [04/-45/45/-45/+45]T layup and a 

top laminate with [±452]T layup bonded together. Since the top and bottom laminate are not 

symmetrical, there is no decoupled between the transversal and shear stresses and the axial 

extension.  

Since the axial load was applied to the centroid of the whole cross-section, there is not 

bending, all the axial stresses are constant within the same fiber orientation of the ply (see Fig. 

3.26). In addition, the 0° plies have much more axi al stress than the +45° ones, which makes 

totally sense since the first ones are stiffer than the second ones.   

Table 3.10 lists all the stress results.  

 

Figure 3.26 FEM axial stress due to c
xN  in [04/-45/45/-45/+45]T and [±452]T of parent and stiffener 
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Figure 3.27 FEM transverse stress due to c
xN  in [04/-45/45/-45/+45]T and [±452]T of parent and 

stiffener 
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Figure 3.28 FEM shear stress due to c
xN  in [04/-45/45/-45/+45]T and [±452]T of parent and 

stiffener 

 

 



 

65 
 

Table 3.10 Stresses due to c
xN  applied to [04/-45/45/-45/45]T and [±452]T of parent and stiffener 

σx σy τxy

[psi] %Diff [psi] %Diff [psi] %Diff

Lamination Theory 13.41 1.09 5.98

FEM 13.42 0.1 1.09 -0.2 5.98 0.1

Prensent Method 12.73 -5.1 0.00 -100.0 5.25 -12.2

Lamination Theory 13.41 1.09 -5.98

FEM 13.42 0.1 1.10 0.2 -5.98 0.1

Prensent Method 12.73 -5.1 0.00 -100.0 -5.25 -12.2

Lamination Theory 13.41 1.09 5.98

FEM 13.42 0.1 1.09 -0.1 5.98 0.1

Prensent Method 12.73 -5.1 0.00 -100.0 5.25 -12.2

Lamination Theory 13.41 1.09 -5.98

FEM 13.42 0.1 1.09 0.0 -5.98 0.1

Prensent Method 12.73 -5.1 0.00 -100.0 -5.25 -12.2

Lamination Theory 73.19 -2.19 0.00

FEM 73.25 0.1 -2.19 0.2 0.00 0.0

Prensent Method 74.25 1.5 -0.05 -97.8 0.10 0.0

Lamination Theory 73.19 -2.19 0.00

FEM 73.25 0.1 -2.19 0.0 0.00 0.0

Prensent Method 74.14 1.3 -0.46 -79.1 0.10 0.0

Lamination Theory 73.19 -2.19 0.00

FEM 73.25 0.1 -2.19 0.0 0.00 0.0

Prensent Method 74.03 1.1 -0.87 -60.3 0.10 0.0

Lamination Theory 73.19 -2.19 0.00

FEM 73.25 0.1 -2.19 0.2 0.00 0.0

Prensent Method 73.91 1.0 -1.28 -41.6 0.10 0.0

Lamination Theory 13.41 1.09 -5.98

FEM 13.42 0.1 1.09 0.0 -5.98 0.1

Prensent Method 14.56 8.6 2.83 158.8 -7.03 17.7

Lamination Theory 13.41 1.09 5.98

FEM 13.42 0.1 1.09 -0.1 5.98 0.1

Prensent Method 14.25 6.3 1.99 82.2 6.83 14.3

Lamination Theory 13.41 1.09 -5.98

FEM 13.42 0.1 1.10 0.2 -5.98 0.1

Prensent Method 12.13 -9.6 -0.67 -161.0 -4.59 -23.3

Lamination Theory 13.41 1.09 5.98

FEM 13.42 0.1 1.09 -0.2 5.98 0.1

Prensent Method 11.82 -11.8 -1.51 -237.6 4.39 -26.6

Force Lamination Theory 400.00 x0.0025= 1.0000

Balance FEM 400.33 x0.0025= 1.0008

Present Method 400.00 x0.0025= 1.0000

ply #1

ply #12

ply #11

ply #10

ply #9

ply #8

ply #2

ply #7

ply #6

ply #5

ply #4

ply #3

-45

45

45

-45

45

-45

0

0

0

0

-45

45

 

The axial stresses from the present method are in agreement compared with lamination 

theory. In addition, for 0° plies the results agree  better than for +45° ones. For the transversal and 

shear stresses the results are very small, so the percentual difference is exaggerated; however, 

looking closely to the values, the difference is small. 
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3.6.6.2 c
xM  acting on [04/-45/45/-45/+45]T and [±452]T of parent and stiffener 

For the bending case, again the axial stress is way more significant than the transversal 

or shear stresses. In addition, the axial stress is a linear function with jumps between plies as 

expected (Fig. 3.29 through 3.31). Once again, the 0° plies have a greater axial stress than the 

+45° as expected as well. 

Table 3.11 lists all the ply stresses. 

 

Figure 3.29 FEM axial stress due to c
xM  in [04/-45/45/-45/+45]T and [±452]T of parent and 

stiffener 
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Figure 3.30 FEM transversal stress due to c
xM  in [04/-45/45/-45/+45]T and [±452]T of parent and 

stiffener 
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Figure 3.31 FEM shear stress due to c
xM  in [04/-45/45/-45/+45]T and [±452]T of parent and 

stiffener 
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Table 3.11 Stresses due to c
xM  applied to [04/-45/45/-45/45]T and [±452]T of parent and stiffener 

σx σy τxy

[psi] %Diff [psi] %Diff [psi] %Diff

Lamination Theory 24.19 -1.57 8.64

FEM 24.15 -0.2 -1.65 4.8 8.56 -0.9

Prensent Method 25.29 4.5 -0.43 -72.8 9.95 15.2

Lamination Theory 23.54 2.46 -11.27

FEM 23.65 0.5 2.55 3.7 -11.37 0.9

Prensent Method 22.29 -5.3 1.16 -52.7 -9.95 -11.7

Lamination Theory 15.40 -1.00 5.50

FEM 15.37 -0.2 -1.05 4.8 5.45 -0.9

Prensent Method 15.37 -0.2 -1.16 16.1 5.56 1.2

Lamination Theory 13.08 1.36 -6.26

FEM 13.14 0.5 1.41 3.7 -6.32 0.9

Prensent Method 12.36 -5.5 0.43 -68.6 -5.56 -11.2

Lamination Theory 40.98 -1.32 -0.14

FEM 41.03 0.1 -1.33 0.2 -0.14 3.6

Prensent Method 40.91 -0.2 -0.98 -25.9 0.18 -230.5

Lamination Theory 13.66 -0.44 -0.05

FEM 13.68 0.1 -0.44 -0.1 -0.05 3.6

Prensent Method 13.68 0.1 -0.15 -65.7 0.18 -491.4

Lamination Theory -13.66 0.44 0.05

FEM -13.68 0.1 0.44 -0.1 0.05 3.7

Prensent Method -13.56 -0.7 0.68 53.5 0.18 291.4

Lamination Theory -40.98 1.32 0.14

FEM -41.03 0.1 1.33 0.2 0.14 3.6

Prensent Method -40.80 -0.4 1.51 13.8 0.18 30.5

Lamination Theory -13.08 -1.36 6.26

FEM -13.14 0.5 -1.41 3.7 6.32 0.9

Prensent Method -12.41 -5.1 -0.56 -59.1 5.59 -10.8

Lamination Theory -15.40 1.00 -5.50

FEM -15.37 -0.2 1.05 4.8 -5.45 -0.9

Prensent Method -15.73 2.2 0.72 -27.7 -5.94 8.1

Lamination Theory -23.54 -2.46 11.27

FEM -23.65 0.5 -2.55 3.7 11.37 0.9

Prensent Method -22.30 -5.2 -1.25 -49.1 9.95 -11.7

Lamination Theory -24.19 1.57 -8.64

FEM -24.15 -0.2 1.65 4.9 -8.56 -0.9

Prensent Method -25.62 5.9 0.03 -97.9 -10.30 19.3

ply #3 45

ply #2 -45

ply #1 45

ply #6 0

ply #5 0

ply #4 -45

ply #9 -45

ply #8 0

ply #7 0

ply #12 45

ply #11 -45

ply #10 45

 

The results match very well with the lamination theory prediction. Once again, the 0° plies 

results agree better than for +45° ones. And the percentual difference is once aga in magnified for 

the transversal and shear stresses. 
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3.6.7 Ply Stresses of [+45/0/90]3T Un-symmetric Laminate 

3.6.7.1 c
xN  acting on [±45/0/90]2T and [±45/0/90]T of parent and stiffener 

For the un-symmetric case, the beam contains a bottom laminate of [±45/0/90]2T and a 

top laminate of [±45/0/90]T bonded together. The results are present in Figures 3.32 through 3.34 

and listed in Table 3.12. 

For this case, the lamination theory was modified. The reference plane was not the mid-

plane of the total laminate but the centroid of the total cross-section. This was done only in this 

case because this is the only case with the centroid at a different location than the mid-plane. The 

compliance matrices were shifted from the mid-plane to the centroid using Equation 2.29. 

 

Figure 3.32 FEM axial stress due to c
xN  in [±45/0/90]2T and [±45/0/90]T of parent and stiffener 
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Figure 3.33 FEM transverse stress due to c
xN  in [±45/0/90]2T and [±45/0/90]T of parent and 

stiffener 
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Figure 3.34 FEM shear stress due to c
xN  in [±45/0/90]2T and [±45/0/90]T of parent and stiffener 
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Table 3.3.12 Stresses due to c
xN  applied to [±45/0/90]2T and [±45/0/90]T of parent and stiffener 

σx σy τxy

[psi] %Diff [psi] %Diff [psi] %Diff

Lamination Theory 17.05 4.47 8.34

FEM 17.17 0.7 4.51 0.8 8.40 0.7

Prensent Method 15.15 -11.2 -0.72 -116.2 6.51 -22.0

Lamination Theory 20.81 8.49 -12.48

FEM 20.94 0.6 8.55 0.6 -12.56 0.6

Prensent Method 16.41 -21.1 2.74 -67.8 -7.33 -41.3

Lamination Theory 84.26 -0.92 -0.21

FEM 84.76 0.6 -0.93 0.6 -0.21 0.6

Prensent Method 87.95 4.4 -0.13 -85.4 0.41 -298.6

Lamination Theory 5.91 -30.44 -0.12

FEM 5.94 0.6 -30.62 0.6 -0.12 0.9

Prensent Method 6.78 14.7 -1.88 -93.8 0.41 -454.0

Lamination Theory 21.15 9.63 12.65

FEM 21.27 0.6 9.70 0.7 12.73 0.6

Prensent Method 18.23 -13.8 4.30 -55.4 9.44 -25.4

Lamination Theory 21.57 10.32 -13.05

FEM 21.68 0.5 10.37 0.5 -13.12 0.5

Prensent Method 18.59 -13.8 5.27 -48.9 -9.67 -25.9

Lamination Theory 84.48 -0.10 0.16

FEM 84.90 0.5 -0.10 1.1 0.16 0.0

Prensent Method 87.69 3.8 -1.08 947.8 0.12 -26.3

Lamination Theory 6.13 -19.85 0.25

FEM 6.16 0.5 -19.95 0.5 0.25 0.1

Prensent Method 6.19 1.0 -29.84 50.3 0.12 -53.4

Lamination Theory 25.25 14.79 16.96

FEM 25.37 0.5 14.87 0.5 17.05 0.5

Prensent Method 23.87 -5.4 12.41 -16.1 15.11 -10.9

Lamination Theory 22.34 12.15 -13.63

FEM 22.43 0.4 12.20 0.4 -13.69 0.4

Prensent Method 24.23 8.5 13.38 10.1 -15.34 12.6

Lamination Theory 84.70 0.72 0.52

FEM 85.04 0.4 0.72 0.3 0.52 0.3

Prensent Method 88.21 4.1 0.82 14.9 0.12 -77.8

Lamination Theory 6.35 -9.27 0.61

FEM 6.38 0.4 -9.29 0.2 0.61 0.3

Prensent Method 6.71 5.6 -5.27 -43.2 0.12 -81.1

Force Lamination Theory 400.00 x0.0025= 1.0000

Balance FEM 402.05 x0.0025= 1.0051

Present Method 400.00 x0.0025= 1.0000

0

90

45

-45

0

90

45

-45

0

90

45

-45

ply #1

ply #12

ply #11

ply #10

ply #9

ply #8

ply #2

ply #7

ply #6

ply #5

ply #4

ply #3

 

The results are relative close to each other. The force balance indeed remains in 

equilibrium.  
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3.6.7.2 c
xM

 
acting on [±45/0/90]2T and [±45/0/90]2T of parent and stiffener 

For the bending case, it was expected a linear relationship for the axial stress as 

explained many times before (Figures 3.35 through 3.37). 

Table 3.13 lists all the results.  
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Figure 3.35 FEM axial stress due to c
xM  in [±45/0/90]2T and [±45/0/90]T of parent and stiffener 
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Figure 3.36 FEM transverse stress due to c
xM  in [±45/0/90]2T and [±45/0/90]T of parent and 

stiffener 
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Figure 3.37 FEM shear stress due to c
xM  in [±45/0/90]2T and [±45/0/90]T of parent and stiffener 
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Table 3.13 Stresses due to c
xM  applied to the [±45/0/90]2T and [±45/0/90]T of parent and stiffener 

σx σy τxy

[psi] %Diff [psi] %Diff [psi] %Diff

Lamination Theory 19.59 8.04 11.01

FEM 19.83 1.2 8.15 1.4 11.16 1.4

Prensent Method 15.52 -20.8 -0.39 -104.9 6.38 -42.1

Lamination Theory 18.14 8.52 -11.34

FEM 18.31 1.0 8.59 0.8 -11.44 0.8

Prensent Method 14.25 -21.4 2.09 -75.4 -6.59 -41.9

Lamination Theory 54.21 -0.54 -0.24

FEM 54.82 1.1 -0.55 1.2 -0.24 -0.5

Prensent Method 59.59 9.9 -0.57 3.9 0.11 -143.4

Lamination Theory 2.72 -16.59 -0.23

FEM 2.75 1.1 -16.78 1.2 -0.23 0.0

Prensent Method 3.38 24.5 -1.14 -93.2 0.11 -146.5

Lamination Theory 4.26 0.45 1.65

FEM 4.32 1.5 0.47 4.5 1.68 2.0

Prensent Method 6.67 56.6 3.13 601.8 3.70 124.1

Lamination Theory 2.21 0.33 -1.31

FEM 2.24 1.5 0.34 2.3 -1.33 1.5

Prensent Method 4.32 95.7 2.64 702.6 -3.21 144.5

Lamination Theory -4.94 -0.43 -0.18

FEM -4.95 0.2 -0.44 1.0 -0.18 2.0

Prensent Method -3.31 -33.0 -0.18 -58.5 -0.25 38.4

Lamination Theory -1.53 -0.34 -0.16

FEM -1.54 0.8 -0.36 4.8 -0.17 2.8

Prensent Method -1.46 -4.7 0.87 -355.4 -0.25 52.4

Lamination Theory -11.07 -7.15 -7.71

FEM -11.20 1.1 -7.24 1.3 -7.80 1.3

Prensent Method -11.76 6.2 -7.84 9.8 -8.42 9.2

Lamination Theory -13.72 -7.86 8.72

FEM -13.83 0.8 -7.91 0.6 8.77 0.6

Prensent Method -14.11 2.8 -8.33 6.0 8.91 2.2

Lamination Theory -64.10 -0.32 -0.11

FEM -64.72 1.0 -0.33 0.8 -0.12 7.2

Prensent Method -66.45 3.7 -0.67 105.3 -0.25 118.4

Lamination Theory -5.77 15.91 -0.10

FEM -5.83 1.0 16.07 1.0 -0.11 9.7

Prensent Method -6.14 6.3 10.38 -34.8 -0.25 155.2

ply #12 45

ply #11 -45

ply #10 0

ply #9 90

ply #8 45

ply #7 -45

ply #6 0

ply #5 90

ply #4 45

ply #3 -45

ply #2 0

ply #1 90
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3.7 Non-aligned Top-and-Bottom Laminates bonded together 

This section includes the case when both laminates are not aligned with respect to y-

coordinate as shown in Figure 3.38.  

3.7.1  Description of the Geometry and Bi-axial Bending 

All the distances in z-direction remains the same as in Figure 3.2; however, it is 

necessary to define some distance in the y-direction. 1cy  is the distance from the most right of 

the cross-section to the centroid of the beam.  Similarly, 2cy  is the distance from the most right of 

the cross-section to the centroid of the stiffener. cy  is the distance from the most right of the 

cross-section to the centroid of the two laminate bonded together. 

 

Figure 3.38 Non-aligned top and bottom laminates 

If the beam is subjected to a bi-axial bending, as shown in Figure 3.39, the strain can be 

written as shown for isotropic materials [56] as 

c
z

c
x

c
x

o
x yz κκεε ++=

 

where zκ is defined in the same manner as for xκ shown below, 

2

2

x

v
z ∂

∂
−=κ          and        

2

2

x

w
x ∂

∂
−=κ  

 The bending moment about the x-axis and z-axis acting at the centroid can be defined as 

c
zxy

c
xx

c
x DDM κκ '+=
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c
zy

c
xxy

c
z DDM κκ += '

 

where ∫= dAyM x
c
z σ . 

 
It should be noted that the positive zM points to –z-axis direction. 

 

Figure 3.39 Mz applied to a laminate 

3.7.2 Equivalent Axial Stiffness 

The equivalent axial stiffness is the same as the case shown in section 3.2.2. 

∗∗ += 2211 AwAwAx  

3.7.3 Equivalent Bending Stiffnesses 

Unlike aligned laminated beam, the equivalent bending stiffness xD , yD , and xyD are 

required for performing stress analysis. 

To obtain the bending stiffness xD , the results need to be read only at the curvature c
xκ  

when applied c
xM , because, c

zxy
c
xx

c
x DDM κκ '+= . Therefore, the expression for, xD  is the 

same as the one obtained from the aligned laminated beam. 

∗∗∗∗∗∗ +++++= 22222
2
22211111

2
111 22 DwzBwzAwDwzBwzAwDx  
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Figure 3.40 Axial load applied on the centroid of each laminate 

Referring to Figure 3.40, we have 

2211 yNyNM xx
c
z +=  

222111 yNwyNwM xx
c
z +=  

222222111111 )()( yBAwyBAwM x
o
xx

o
x

c
z κεκε ∗∗∗∗ +++=  

It is noted that y1 and y2 are often in opposite direction. On the other hand, the strains in 

the mid-planes of each laminate can be substituted by c
z

c
x

c
x

o
x yz κκεε ++= , where 0=c

xε . 

And realizing that all the curvature are the same )( 21 xx
c
xx κκκκ === . To obtain the 

bending stiffness '
xyD , the results need to be read only at the curvature c

xκ  when applied c
zM , 

because, c
zy

c
xxy

c
z DDM κκ += ' .  

c
x

c
z yBzAwyBzAwM κ])()([ 2222211111

∗∗∗∗ +++=  

2222211111
' )()( yBzAwyBzAwDxy
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The last bending stiffness yD  can be calculated applying the same moment Mz but 

reading the curvature in z instead of x. The best way to treat this problem is using the help of 

stiffness for the web in the composite I-Beam theory. 
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3.7.4 Centroids 

The vertical centroid zc is calculated as shown in Equation 3.19. 
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On the other hand, the horizontal centroid, yc, can be obtained in an analogous way as zc 

(Fig. 3.38).
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3.8 Finite Element Model 

A model was built in ANSYS to simulate the composite laminates. Two laminates of 10 

inches length; the bottom laminate of 8 plies was 0.5 inches wide while the top laminate of 4 plies 

was 0.25 inches wide. Both were bonded together.  

The element used was solid46, a 3D block element with 8 nodes and 3 degrees of 

freedom per node. The mesh generated for the bottom laminate was 320 elements through the 

length, and 19 through the width. 2 elements per ply were used and special care was used in 

order to define nodes in the centroid of the whole cross-section which happens to be located in 

the bottom laminate. On the other hand, the top laminate mesh has 11 elements through the 

wide, and 2 elements per ply through the height. This gives a total of 160,821 nodes.  
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In order to evaluate the stiffnesses, three cases were considered an axial load c
xN  and 

two moments c
xM and c

zM  were applied.  

An axial load of 1 lb was applied at the centroid of the cross-section. The mesh was 

specially designed so when applying the other moments c
xM and c

zM , there were nodes defined 

in the location where the pair of forces should act. That is why the mesh is not uniform around the 

centroid (Fig. 3.41).  

     

Figure 3.41 c
xN  applied to the centroid of the whole cross-section 

The other case was the moment applied. A pair of forces were assigned  to generate the 

moment; each force being a 1 lb and acting one ply away from the centroid of the cross-section 

(that is 0.005 inches).  This generates a total moment of 0.01 lb-in. A typical mesh for this case is 

shown in Figure 3.42.  
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Figure 3.42 Two forces generating c
xM  

The other moment c
zM

 
as defined in Figure 3.39 is generated by a pair of forces acting 

an equal distance from the centroid in opposite directions. Each force being a 1 lb and acting 

0.03125 inches away from the centroid of the whole cross-section (Fig. 3.43). This generates a 

total moment of 0.0625 lb-in.  
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Figure 3.43 Two forces generating c
zM  

The boundary conditions were applied has follows similar as before; however, the 

constrained planes were not the mid-planes but the centroid planes (Fig. 3.44). As before, the 

whole plane on the other side of the laminate was constrained in the x-direction (axial direction).  

The centroid plane yc of the laminate in the y-direction was constrained in that direction (Uy=0). 

And the location of the centroid plane zc in the z-direction was constrained in that direction (Uz=0) 

as well.  

 



 

82 
 

 

Figure 3.44 Applied boundary conditions 

The same two materials were used for the simulations. First, the isotropic material was 

used to compare the results with closed form theoretical solutions.   

For the composite material 3 cases were simulated. First all the plies to be 0°; that one 

ply of [04]S and the other of [02]S. The second was the bottom laminate [04/-45/45/-45/+45]T and 

the top laminate [±452]T. And finally, the last case was the bottom laminate [±45/0/90]2T and the 

top laminate [±45/0/90]T.  
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3.9 Comparison of the Axial and Bending Stiffnesses 

3.9.1 Axial and Bending Stiffnesses obtained from FEM 

The axial stiffnesses were calculated from the FEM model by the following equation. 

)(2 L/2 x=

=
atx

x U

FL
A  

 To avoid distortions of the results by the boundary conditions or the applied load, the 

results were read half way through the length of the beam; that is at L/2. And F is the applied 

load.  

For the bending stiffnesses  some assumptions has to be made. It can be assumed that 

c
zκ  is very small compare to c

xκ , ( c
x

c
z κκ << ), when c

xM
 

is applied. Therefore, 

c
zxy

c
xx

c
x DDM κκ '+=

 
reduces to simply c

xx
c
x DM κ= ; and the bending stiffness xD  can be 

calculated from the FEM model by first determining the curvature of the beam, c
xκ , and then 

dividing the applied moment by it.  
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In the same way, it can be assumed that c
xκ  is very small compare to c

zκ , ( c
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c
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when c
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is applied. In the same manner, c

zy
c
xxy

c
z DDM κκ += '  reduces to c

zy
c
z DM κ= ; 

therefore, 

 

c
zy

c
z DM κ=

    

→

   

c
z

c
z

y

M
D

κ
=

 

 



 

84 
 

3.9.2 Centroid Locations 

The centroid zc and yc were calculated using Equation 3.19 and 3.27, respectively. The 

axial stiffnesses were calculated through Equation 3.11 and the bending stiffnesses were 

calculated using Equations 3.16, 3.25, and 3.26.  

The centroid rather than calculated from the FEM model was confirmed by it. As it was 

explained before, the centroid is defined as the location where an axial load does not cause a 

change in curvature and a bending moment does not produce axial strain. In other words, the 

load acting at the centroid decouples the structural response between axial extension and 

bending. Therefore, it was checked that for an applied axial load at the centroid there were not 

bending (curvature) and for an applied moment at the centroid of the cross-section, there were 

not axial displacement. 

Finally, all the axial displacements (for the axial stiffness and centroid) and vertical and 

lateral displacements (for the bending stiffness) were read at the centroid of the cross-section. 

The mesh was done careful so there were nodes presents in the centroids of each case.   

3.9.3 Method of obtaining xyD ′    

Let the moment being applied at the centroid of the laminate. Then we have 

c
zxy

c
xx

c
x DDM κκ ′+=

 

c
zy

c
xxy

c
z DDM κκ +′=

 

Solving the above equations, we have 
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The strain at any given point can be written as 

c
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c
x
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since 0=c
xε , we have 

y
DDD

MDMD
z

DDD

MDMD

xyyx

c
xxy

c
zx

xyyx

c
zxy

c
xy

x 22 ′−

′−
+

′−

′−
=ε

                                

(3.28) 

 

Since the only moment applied was c
xM  ( 0=c

zM ), and the results were read at certain 

point where (y=0).  

x

c
xy

yxxy

zMD
DDD

ε
−=′

                                                 

(3.29) 

In this way the bending stiffness xyD ′  was calculated from the FEM results.  

3.9.4 Results Comparison 

Four cases were considered in this study. They are isotropic material, all 0° ply laminate, 

symmetric and balanced laminate, and un-symmetric laminate in the overlapped region. All of the 

results are listed in Table 3.14.  

The theoretical solution of xD , yD , and xyD ′ for composite cases are not available. For 

isotropic material model, the composite laminated beam was input the isotropic material 

properties and the results matched perfectly with the closed-form solution. This gives confidence 

the developed equations are correct.   

For all the cases the bottom laminate consists of 8 plies and the top laminate consists of 

4 plies. The results match perfectly as before for the equations. 
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For the third case, the bottom laminate layup was [04/-45/45/-45/+45]T and the top 

laminate layup was [±452]T. The results are very excellent agreement.  

Finally, the last cases contains the bottom laminate with a layup of [±45/0/90]2T and a top 

laminate with a layup of [±45/0/90]T. For this case the results in excellent agreement as well 

except for xyD ′ . 
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Table 3.14 Comparison of the axial and bending stiffnesses for different cases  
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3.10 Z-Stiffener 

This section will utilize the equation developed in Section 3.7 in order to calculate the 

axial and bending stiffness of a stiffener with Z-shape.  

From Equations 3.19 and 3.27 is possible to expand them to calculate the centroid of the 

Z stiffener case.  
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The subscripts f and w refer to the flage and the web laminates, respectively. 

 

The axial stiffness can be calculated expanding Equation 3.11 for the Z stiffener case.  

∗∗∗ ++= wwffffx AwAwAwA 2211                                       
(3.32) 

Finally, for the bending stiffnesses a combination of Equations 3.16, 3.25, and 3.26 must 

be taken into consideration.  
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(3.35) 

As we can see in Figure 3.45 the top and bottom flanges have 0.25 inches in width and 

contain 12 plies of 0.005 inches each one. The web is 0.5 inches wide and contains only 4 plies 
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of the same thickness. The stiffener is 10 inches long. First an isotropic material is used, and then 

a composite material is used; just as before. The material properties are the same from the 

previous sections. The layup for the flanges is [+45/02/-45/45]s and for the web is [+45]s. 

The FEM model was built in ANSYS with 41,861 nodes constrained as a cantilever 

beam. For the axial force, 1 lb was used and the free side was constrained to have the same 

axial deformation (rigid region). On the other hand, for the bending case, a moment of 0.56 lb-in 

was used. The results are presented in the following table.  

 

Figure 3.45 Z-stiffener dimensions 

3.10.1 Stiffnesses Comparison  

3.10.1.1 Isotropic Material 

For isotropic material, Table 3.15 presents the results of the axial stiffness of the Z-

stiffner. For the bending cases, Tables 3.16 and 3.17 lists the results for the bending stiffnesses 

and the curvatures.  
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Table 3.15 Axial stiffness of isotropic material Z-stiffener 

 

Table 3.16 Bending stiffness of isotropic material Z-stiffener 

 

Table 3.17 Comparison of FEM and present method results of Z-stiffener 

 

The curvatures were compared as well through the following equations,  

   
2
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y
c
xc

x DDD
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     and 
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xy
c
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z DDD
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(3.36)

 

3.10.1.2 Composite Material 

For the composite cases, the layup is the following: for the flanges is [+45/02/-45/45]s and 

for the web is [+45]s. The axial stiffness results are presented in Table 3.18. The bending 

stiffnesses are showed in Table 3.19 and the curvatures in Table 3.20. For the bending 

stiffnesses case, the results can not be read directly from the FEM model since there is coupling 

between them. Therefore, in order to compare them it was necessary to compare '
xyD which 

contains all of them (Eq. 3.29) and the curvatures (Eq. 3.36).  
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Table 3.18 Axial stiffness of composite material Z-stiffener 

 

Table 3.19 Bending stiffness of composite material Z-stiffener 

 

Table 3.20 Curvatures of composite material Z-stiffener 

 

3.10.2 Stress and Strain Comparison 

3.10.2.1 Isotropic Material 

For the isotropic case, the strains from Equation 3.28 were obtained and then multiplied 

by the Young’s Modulus to calculate the stresses. These ones were compared with the FEM and 

theoretical results. This procedure was done for the point A, B, C, and D showed in Figure 3.45. 

All these results are listed in Table 3.20. All the results are very close to each other. 

Table.3.20 Axial stresses of isotropic Z-stiffener 

y z Theoretical Eq. 3-28 Diff % FEM Diff %

[in] [in] [psi] [psi] [psi]

A -0.24 0.31 -69.13 -68.95 -0.3 -69.11 0.0

B 0.01 0.31 207.70 207.42 -0.1 207.91 0.1

C -0.01 -0.31 -207.70 -207.42 -0.1 -207.91 0.1

D 0.24 -0.31 69.13 68.95 -0.3 69.11 0.0  
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3.10.2.2 Composite Material 

For the composite case, the strains were obtained again from Equation 3.28. Since, it is 

not possible to calculate the stresses directly; the strains were used to perform the comparison. 

Table 3.21 contains the results. Once again, the results agree very well.  

Table 3.21 Axial strains of composite Z-stiffener 

y z FEM Eq. 3-28 Diff %

[in] [in] [in/in] [in/in]

A -0.24 0.31 -9.9654E-06 -9.8891E-06 -0.8

B 0.01 0.31 2.9800E-05 2.9667E-05 -0.4

C -0.01 -0.31 -2.9792E-05 -2.9667E-05 -0.4

D 0.24 -0.31 9.9627E-06 9.8891E-06 -0.7  
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CHAPTER 4  

LAMINATES BONDED SIDE BY SIDE 

This chapter employs the concept used in Chapter 3; however, instead of bonding the 

laminates one on the top of the other, in this chapter, they are bonded side by side.  

In this case the mid-planes of both laminates are at the same heights; therefore, instead 

of working with the centroids, the mid-planes will be used as a plane of reference.  

The objective of this chapter is to calculate the equivalent axial and bending stiffnesses 

and the axial stress in each ply. Since the axial stress is the most significant stress present, it is 

the only stress consider.  

All the beams on this chapter will be consider narrow beams.  

4.1 Equivalent Axial Forces and Moments acting on each Laminate 

To better understand the response of each laminate it is necessary to discompose the 

total applied load into two equivalent forces acting independently on each laminate as shown in 

Figure 4.1.  

 

Figure 4.1 Total axial load discomposed into two loads acting on each laminate 



 

94 
 

Starting from the basis, the total axial load is the summation of the individual axial loads 

acting on each laminate. 

21 xxx NNN +=
                                                        

(4.1) 

On the other hand, for narrow beams, these individual axial loads acting on each 

laminate can be related to the strain by Equation 2.30.  
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Substituting the last equation in Equation 4.1, and assuming that all the axial strains are 

equal; that is o
x

o
x

o
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Now, substituting equation 4.2 for the second laminate, 
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Rearranging for 2xN , 
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In an analogous manner, the axial force acting on the first laminate 1xN  can be 

calculated as well.  
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With 1xN  and 2xN
 

found, it is possible to treat each laminate individually with the 

equivalent axial load. 

Similarly, for the bending case, the total applied moment can be decomposed into two 

equivalent moments acting on each laminate.   

21 xxx MMM +=
                                                       

(4.6) 

On the other hand, for narrow beams, each of these individual moments acting on each 

laminate can be related to the curvature by Equation 2.31. 
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Substituting Equation 4.7 into 4.6, and assuming that all the curvatures are equal; that is 
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Now, substituting Equation 4.7 for the second laminate, 
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Rearranging for 2xM , 
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In an analogous manner, the moment acting on the first laminate 1xM  can be calculated 

as well.  
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Once again, with 1xM  and 2xM
 

found, it is possible to treat each laminate individually 

with the equivalent applied moment. 

4.2 Finite Element Model 

A model was built in ANSYS to simulate the composite laminate. The model consists of 

0.5 inches width laminate (left) bonded together side by side with a 0.25 inches width laminate 

(right). Both laminates have 12 plies of 0.005 inches thickness and were 10 inches long.  

The element used was solid46, a 3D block element with 8 nodes and 3 degrees of 

freedom per node. The mesh generated for the model was 100 elements through the length, 24 

elements through the width of the left laminate, 12 elements through the width of the right 

laminate, and 2 element per ply; therefore, a total of 93,425 nodes. The typical mesh is shown in 

Figure 4.2. 

The axial load was applied as a pressure of 1 psi over all the surface of the free side. 

Because the cross-section area was 0.045 in2, the total axial load was lbN x   045.0= . The other 

side was constrained in all the directions as a cantilever beam.   
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Figure 4.2 Mesh, loading, and boundary conditions of the model 

For the bending case the loading was defined as follow. One side constrained in all the 

directions as a cantilever beam, just as before. The other side was loaded with a uniform 

outgoing force in the half top of the beam’s cross-section. The half bottom was loaded with the 

same uniform force but inward (Fig. 4.3 and 4.4). The magnitude of the force was 0.1 lb per node 

and the total moment applied was calculated through the positions of all the nodes,  

inlbM x −=   4330.1 . 

 

Figure 4.3 Lateral view of the loading for the bending case 
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Figure 4.4 Perspective view of the loading for the bending case 

4.3 Axial Stresses due to an Axial Loading and Bending 

First an isotropic material was simulated in order to compare the results with the 

theoretical close-from solution. The isotropic material chosen was the same aluminum used in the 

previous chapter. As usually, the next step was to consider a composite material (it was used 

again the same composite material used in the previous chapter) with all the angle plies equal to 

0° to avoid any shear deformation or undesired effe ct. Therefore, two laminates of [06]s were 

bonder together side by side. After that, two symmetric laminates were used [+452/02]s. Then, an 

anti-symmetric laminate [+452/04/+452]T were bonded with a symmetric laminate [+452/02]s. 

Finally, and un-balanced laminate [454/02]s and a symmetric laminate [+452/02]s were bonded 

together. The results of these 5 cases are presented in the following section. 

4.3.1 xN  acting on two Isotropic Laminates 

The applied pressure to the cross-section was 1 psi. Therefore, the internal stress 

generated in each ply of each laminate is 1 psi as expected (Fig. 4.5). Both results were read half 

way through the length and width of each laminate. Table 4.1 lists the equivalent forces acting on 

each laminate and Table 4.2 shows the stresses acting on each ply of the laminates.  
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Figure 4.5 FEM axial stress through the thickness of each isotropic laminate 

The total force applied to the model is 0.18 lb. 
**

1a and 
**

2a  are calculated for each 

laminate using lamination theory. And 1xN  and 2xN  (Table 4.1) are calculating using Equations 

4.4 and 4.5. 

Table 4.1  Calculation of the equivalent axial load for each laminate 
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Table 4.2 Axial stresses in each isotropic-isotropic laminate 

σx σx

[psi] %Diff [psi] %Diff

FEM 1.00020 FEM 1.00020

Present Method 1.00000 0.0 Present Method 1.00000 0.0

Lamination Theory 1.00000 0.0 Lamination Theory 1.00000 0.0

Theoretical Sol. 1.00000 0.0 Theoretical Sol. 1.00000 0.0

FEM 1.00000 FEM 1.00000

Present Method 1.00000 0.0 Present Method 1.00000 0.0

Lamination Theory 1.00000 0.0 Lamination Theory 1.00000 0.0

Theoretical Sol. 1.00000 0.0 Theoretical Sol. 1.00000 0.0

FEM 0.99999 FEM 0.99999

Present Method 1.00000 0.0 Present Method 1.00000 0.0

Lamination Theory 1.00000 0.0 Lamination Theory 1.00000 0.0

Theoretical Sol. 1.00000 0.0 Theoretical Sol. 1.00000 0.0

FEM 0.99999 FEM 0.99999

Present Method 1.00000 0.0 Present Method 1.00000 0.0

Lamination Theory 1.00000 0.0 Lamination Theory 1.00000 0.0

Theoretical Sol. 1.00000 0.0 Theoretical Sol. 1.00000 0.0

FEM 1.00000 FEM 1.00000

Present Method 1.00000 0.0 Present Method 1.00000 0.0

Lamination Theory 1.00000 0.0 Lamination Theory 1.00000 0.0

Theoretical Sol. 1.00000 0.0 Theoretical Sol. 1.00000 0.0

FEM 1.00000 FEM 1.00000

Present Method 1.00000 0.0 Present Method 1.00000 0.0

Lamination Theory 1.00000 0.0 Lamination Theory 1.00000 0.0

Theoretical Sol. 1.00000 0.0 Theoretical Sol. 1.00000 0.0

FEM 1.00000 FEM 1.00000

Present Method 1.00000 0.0 Present Method 1.00000 0.0

Lamination Theory 1.00000 0.0 Lamination Theory 1.00000 0.0

Theoretical Sol. 1.00000 0.0 Theoretical Sol. 1.00000 0.0

FEM 1.00000 FEM 1.00000

Present Method 1.00000 0.0 Present Method 1.00000 0.0

Lamination Theory 1.00000 0.0 Lamination Theory 1.00000 0.0

Theoretical Sol. 1.00000 0.0 Theoretical Sol. 1.00000 0.0

FEM 1.00000 FEM 1.00000

Present Method 1.00000 0.0 Present Method 1.00000 0.0

Lamination Theory 1.00000 0.0 Lamination Theory 1.00000 0.0

Theoretical Sol. 1.00000 0.0 Theoretical Sol. 1.00000 0.0

FEM 1.00000 FEM 1.00000

Present Method 1.00000 0.0 Present Method 1.00000 0.0

Lamination Theory 1.00000 0.0 Lamination Theory 1.00000 0.0

Theoretical Sol. 1.00000 0.0 Theoretical Sol. 1.00000 0.0

FEM 1.00000 FEM 1.00000

Present Method 1.00000 0.0 Present Method 1.00000 0.0

Lamination Theory 1.00000 0.0 Lamination Theory 1.00000 0.0

Theoretical Sol. 1.00000 0.0 Theoretical Sol. 1.00000 0.0

FEM 1.00020 FEM 1.00020

Present Method 1.00000 0.0 Present Method 1.00000 0.0

Lamination Theory 1.00000 0.0 Lamination Theory 1.00000 0.0

Theoretical Sol. 1.00000 0.0 Theoretical Sol. 1.00000 0.0
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The finite element method axial stresses in each ply match perfectly with the present 

method results. At the same time, both the FEM model and the present method match with the 

theoretical solution and lamination theory results.  

4.3.2 xN  acting on two [06]S Laminates 

Two composite laminates of [06]s were bonded together side by side. Figure 4.6 show the 

stresses generated in each laminate. Once again the FEM results match with the close-form 

solution of 1 psi.  
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Figure 4.6  FEM axial stress through the thickness of [06]S laminates 

**
1a , 

**
2a  , 1xN  and 2xN

 
were calculated for each composite laminate. Table 4.3 shows 

the equivalent forces acting on each laminate and Table 4.4 lists the stresses experienced in the 

laminates.  

Table 4.3  Calculation of the equivalent axial load for each laminate 
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Table 4.4 Axial stresses in each [06]s-[06]s laminate 

σx σx

[psi] %Diff [psi] %Diff

FEM 1.00000 FEM 1.00000

Present Method 1.00000 0.0 Present Method 1.00000 0.0

Lamination Theory 1.00000 0.0 Lamination Theory 1.00000 0.0

FEM 1.00000 FEM 1.00000

Present Method 1.00000 0.0 Present Method 1.00000 0.0

Lamination Theory 1.00000 0.0 Lamination Theory 1.00000 0.0

FEM 1.00000 FEM 1.00000

Present Method 1.00000 0.0 Present Method 1.00000 0.0

Lamination Theory 1.00000 0.0 Lamination Theory 1.00000 0.0

FEM 1.00000 FEM 1.00000

Present Method 1.00000 0.0 Present Method 1.00000 0.0

Lamination Theory 1.00000 0.0 Lamination Theory 1.00000 0.0

FEM 1.00000 FEM 1.00000

Present Method 1.00000 0.0 Present Method 1.00000 0.0

Lamination Theory 1.00000 0.0 Lamination Theory 1.00000 0.0

FEM 1.00000 FEM 1.00000

Present Method 1.00000 0.0 Present Method 1.00000 0.0

Lamination Theory 1.00000 0.0 Lamination Theory 1.00000 0.0

FEM 1.00000 FEM 1.00000

Present Method 1.00000 0.0 Present Method 1.00000 0.0

Lamination Theory 1.00000 0.0 Lamination Theory 1.00000 0.0

FEM 1.00000 FEM 1.00000

Present Method 1.00000 0.0 Present Method 1.00000 0.0

Lamination Theory 1.00000 0.0 Lamination Theory 1.00000 0.0

FEM 1.00000 FEM 1.00000

Present Method 1.00000 0.0 Present Method 1.00000 0.0

Lamination Theory 1.00000 0.0 Lamination Theory 1.00000 0.0

FEM 1.00000 FEM 1.00000

Present Method 1.00000 0.0 Present Method 1.00000 0.0

Lamination Theory 1.00000 0.0 Lamination Theory 1.00000 0.0

FEM 1.00000 FEM 1.00000

Present Method 1.00000 0.0 Present Method 1.00000 0.0

Lamination Theory 1.00000 0.0 Lamination Theory 1.00000 0.0

FEM 1.00000 FEM 1.00000

Present Method 1.00000 0.0 Present Method 1.00000 0.0

Lamination Theory 1.00000 0.0 Lamination Theory 1.00000 0.0

Laminate #1 Laminate #2

ply #12 0 ply #12 0

ply #11 0 ply #11 0

ply #10 0 ply #10 0

ply #9 0 ply #9 0

ply #8 0 ply #8 0

ply #7 0 ply #7 0

ply #6 0 ply #6 0

ply #5 0 ply #5 0

ply #4 0 ply #4 0

ply #1 0 ply #1 0

ply #3 0 ply #3 0

ply #2 0 ply #2 0

 

Once again the results match very well for all the plies in both composite laminates.  
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4.3.3 xN  acting on two [+452/02]S Laminates 

Now it is consider two symmetric laminates bonded together with angle plies of 45° to 

consider the effect of shear deformations. The results are shown in Figure 4.7. 
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Figure 4.7 FEM axial stress through the thickness of [+452/02]S laminates 

In Figure 4.7, the 0° plies have higher axial stres s than the +45° ones, since the first ones 

are stiffer than the second ones. Table 4.5 calculates 
**

1a , 
**

2a  , and the equivalent axial loads for 

each laminate. 

Table 4.5 Calculation of the equivalent axial load for each laminate 

 

 

Table 4.6 lists the stresses present in the laminates.  
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Table 4.6 Axial stresses in each [+452/02]S [+452/02]S laminate 

σx σx

[psi] %Diff [psi] %Diff

FEM 0.40245 FEM 0.40291

Present Method 0.40221 -0.1 Present Method 0.40221 -0.2

Lamination Theory 0.40221 -0.1 Lamination Theory 0.40221 -0.2

FEM 0.40243 FEM 0.40281

Present Method 0.40221 -0.1 Present Method 0.40221 -0.1

Lamination Theory 0.40221 -0.1 Lamination Theory 0.40221 -0.1

FEM 0.40247 FEM 0.40278

Present Method 0.40221 -0.1 Present Method 0.40221 -0.1

Lamination Theory 0.40221 -0.1 Lamination Theory 0.40221 -0.1

FEM 0.40252 FEM 0.40291

Present Method 0.40221 -0.1 Present Method 0.40221 -0.2

Lamination Theory 0.40221 -0.1 Lamination Theory 0.40221 -0.2

FEM 2.19700 FEM 2.19720

Present Method 2.19558 -0.1 Present Method 2.19558 -0.1

Lamination Theory 2.19558 -0.1 Lamination Theory 2.19558 -0.1

FEM 2.19700 FEM 2.19700

Present Method 2.19558 -0.1 Present Method 2.19558 -0.1

Lamination Theory 2.19558 -0.1 Lamination Theory 2.19558 -0.1

FEM 2.19700 FEM 2.19700

Present Method 2.19558 -0.1 Present Method 2.19558 -0.1

Lamination Theory 2.19558 -0.1 Lamination Theory 2.19558 -0.1

FEM 2.19700 FEM 2.19720

Present Method 2.19558 -0.1 Present Method 2.19558 -0.1

Lamination Theory 2.19558 -0.1 Lamination Theory 2.19558 -0.1

FEM 0.40252 FEM 0.40290

Present Method 0.40221 -0.1 Present Method 0.40221 -0.2

Lamination Theory 0.40221 -0.1 Lamination Theory 0.40221 -0.2

FEM 0.40247 FEM 0.40279

Present Method 0.40221 -0.1 Present Method 0.40221 -0.1

Lamination Theory 0.40221 -0.1 Lamination Theory 0.40221 -0.1

FEM 0.40244 FEM 0.40279

Present Method 0.40221 -0.1 Present Method 0.40221 -0.1

Lamination Theory 0.40221 -0.1 Lamination Theory 0.40221 -0.1

FEM 0.40245 FEM 0.40293

Present Method 0.40221 -0.1 Present Method 0.40221 -0.2

Lamination Theory 0.40221 -0.1 Lamination Theory 0.40221 -0.2

ply #1 45 ply #1 45

ply #3 45 ply #3 45

ply #2 -45 ply #2 -45

ply #5 0 ply #5 0

ply #4 -45 ply #4 -45

ply #7 0 ply #7 0

ply #6 0 ply #6 0

ply #9 -45 ply #9 -45

ply #8 0 ply #8 0

ply #11 -45 ply #11 -45

ply #10 45 ply #10 45

Laminate #1 Laminate #2

ply #12 45 ply #12 45

 

The present method results agree very well with the finite element and lamination theory 

results for all the plies including the 45° angle p lies.  
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4.3.4 xN  acting on [+452/04/+452]T  and [+452/02]S Laminates 

Now it is studied the effect of an anti-symmetric laminate bonded with a symmetric 

laminate. Once again, the 0° plies have much more a xial stress than the +45° ones as explained 

before. The results are presented in Figure 4.8. 
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Figure 4.8 FEM axial stress through the thickness of [+452/04/+452]T and [+452/02]S 

**
1a , 

**
2a  , 1xN  and 2xN

 
were calculated for each composite laminate. Table 4.7 shows 

the equivalent forces acting on each laminate and Table 4.8 lists the stresses experienced in the 

laminates.  

Table 4.7 Calculation of the equivalent axial load for each laminate 

 

**
1a and 

**
2a  are not longer equal since they are two different types of laminates. 

Therefore, lamination theory can not be used in this case. 
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Table 4.8 Axial stresses in each [+452/04/+452]T-[+452/02]S laminate 

σx σx

[psi] %Diff [psi] %Diff

FEM 0.38570 FEM 0.38903

Present Method 0.37837 -1.9 Present Method 0.40248 3.5

FEM 0.41833 FEM 0.41888

Present Method 0.42447 1.5 Present Method 0.40248 -3.9

FEM 0.39225 FEM 0.39413

Present Method 0.38759 -1.2 Present Method 0.40248 2.1

FEM 0.41187 FEM 0.41175

Present Method 0.41525 0.8 Present Method 0.40248 -2.3

FEM 2.19800 FEM 2.19820

Present Method 2.19615 -0.1 Present Method 2.19704 -0.1

FEM 2.19800 FEM 2.19790

Present Method 2.19615 -0.1 Present Method 2.19704 0.0

FEM 2.19790 FEM 2.19780

Present Method 2.19615 -0.1 Present Method 2.19704 0.0

FEM 2.19790 FEM 2.19800

Present Method 2.19615 -0.1 Present Method 2.19704 0.0

FEM 0.41183 FEM 0.39415

Present Method 0.41525 0.8 Present Method 0.40248 2.1

FEM 0.39222 FEM 0.41174

Present Method 0.38759 -1.2 Present Method 0.40248 -2.2

FEM 0.41828 FEM 0.38669

Present Method 0.42447 1.5 Present Method 0.40248 4.1

FEM 0.38563 FEM 0.41722

Present Method 0.37837 -1.9 Present Method 0.40248 -3.5

Laminate #1 Laminate #2

ply #12 45 ply #12 45

ply #11 -45 ply #11 -45

ply #10 45 ply #10 45

ply #9 -45 ply #9 -45

ply #8 0 ply #8 0

ply #7 0 ply #7 0

ply #6 0 ply #6 0

ply #5 0 ply #5 0

ply #4 45 ply #4 -45

ply #1 -45 ply #1 45

ply #3 -45 ply #3 45

ply #2 45 ply #2 -45

 

The results match well. As expected the 45° angle p lies have a larger error than the 0° 

angle plies. This is because there is not shear deformation in the last ones.  
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4.3.5 xN  acting on [454/02]S and [+452/02]S Laminates 

Finally it is being considered an un-balanced laminate bonded together with a symmetric 

and balanced laminate (Fig. 4.9). 
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Figure 4.9 FEM axial stress through the thickness of [454/02]S and [+452/02]S 

Table 4.9 calculates 
**

1a , 
**

2a , and the equivalent axial loads for each laminate. Once 

again, 
**

1a and 
**

2a  are different for each laminate. 

Table 4.9 Calculation of the equivalent axial load for each 

laminate  

Table 4.10 lists the stresses present in the laminates. 
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Table 4.10 Axial stresses in each [454/02]S-[+452/02]S laminate 

σx σx

[psi] %Diff [psi] %Diff

FEM 0.30475 FEM 0.42205

Present Method 0.30455 -0.1 Present Method 0.42152 -0.1

FEM 0.30474 FEM 0.42192

Present Method 0.30455 -0.1 Present Method 0.42152 -0.1

FEM 0.30474 FEM 0.42191

Present Method 0.30455 -0.1 Present Method 0.42152 -0.1

FEM 0.30468 FEM 0.42194

Present Method 0.30455 0.0 Present Method 0.42152 -0.1

FEM 2.32030 FEM 2.30230

Present Method 2.31890 -0.1 Present Method 2.30096 -0.1

FEM 2.32040 FEM 2.30220

Present Method 2.31890 -0.1 Present Method 2.30096 -0.1

FEM 2.32040 FEM 2.30230

Present Method 2.31890 -0.1 Present Method 2.30096 -0.1

FEM 2.32030 FEM 2.30220

Present Method 2.31890 -0.1 Present Method 2.30096 -0.1

FEM 0.30468 FEM 0.42193

Present Method 0.30455 0.0 Present Method 0.42152 -0.1

FEM 0.30474 FEM 0.42192

Present Method 0.30455 -0.1 Present Method 0.42152 -0.1

FEM 0.30474 FEM 0.42190

Present Method 0.30455 -0.1 Present Method 0.42152 -0.1

FEM 0.30475 FEM 0.42207

Present Method 0.30455 -0.1 Present Method 0.42152 -0.1
ply #1 45 ply #1 45

ply #3 45 ply #3 45

ply #2 45 ply #2 -45

ply #5 0 ply #5 0

ply #4 45 ply #4 -45

ply #7 0 ply #7 0

ply #6 0 ply #6 0

ply #9 45 ply #9 -45

ply #8 0 ply #8 0

ply #11 45 ply #11 -45

ply #10 45 ply #10 45

Laminate #1 Laminate #2

ply #12 45 ply #12 45

 

The present method results agree very well with the finite element results for all the plies. 

The next step is to consider the axial stresses due to bending for isotropic and composite 

laminates bonded together.  

 

 

 

 



 

109 
 

4.3.6 xM  acting on two Isotropic Laminates 

Two isotropic laminate were bonded together under bending. The results are presented 

in Fig. 4.10.  
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Figure 4.10 FEM axial stress through the thickness of each laminates 

As expected the axial stress is a linear function. As explained earlier the applied moment 

is inlbM x −=   4330.1 . The theoretical solution for the isotropic case is 
I

cM x
x =σ  (Table 

4.12). 
**

1d and 
**

2d  are calculated for each laminate using lamination theory and 1xM  and 2xM
 

are calculating through Equations 4.10 and 4.11. The results are shown in Table 4.11.  

Table 4.11  Calculation of the equivalent moment for each laminate 
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Table 4.12 Axial stresses in each ISO-ISO laminate     

σx σx

[psi] %Diff [psi] %Diff

FEM 2937.9 FEM 2937.9

Present Method 2939.4 0.1 Present Method 2939.4 0.1

Lamination Theory 2939.4 0.1 Lamination Theory 2939.4 0.1

Theoretical Sol. 2939.4 0.1 Theoretical Sol. 2939.4 0.1

FEM 2404.9 FEM 2404.9

Present Method 2405.0 0.0 Present Method 2405.0 0.0

Lamination Theory 2405.0 0.0 Lamination Theory 2405.0 0.0

Theoretical Sol. 2405.0 0.0 Theoretical Sol. 2405.0 0.0

FEM 1870.8 FEM 1870.8

Present Method 1870.6 0.0 Present Method 1870.6 0.0

Lamination Theory 1870.6 0.0 Lamination Theory 1870.6 0.0

Theoretical Sol. 1870.6 0.0 Theoretical Sol. 1870.6 0.0

FEM 1336.3 FEM 1336.3

Present Method 1336.1 0.0 Present Method 1336.1 0.0

Lamination Theory 1336.1 0.0 Lamination Theory 1336.1 0.0

Theoretical Sol. 1336.1 0.0 Theoretical Sol. 1336.1 0.0

FEM 802.0 FEM 802.0

Present Method 801.7 0.0 Present Method 801.7 0.0

Lamination Theory 801.7 0.0 Lamination Theory 801.7 0.0

Theoretical Sol. 801.7 0.0 Theoretical Sol. 801.7 0.0

FEM 267.8 FEM 267.8

Present Method 267.2 -0.2 Present Method 267.2 -0.2

Lamination Theory 267.2 -0.2 Lamination Theory 267.2 -0.2

Theoretical Sol. 267.2 -0.2 Theoretical Sol. 267.2 -0.2

FEM -267.8 FEM -267.8

Present Method -267.2 -0.2 Present Method -267.2 -0.2

Lamination Theory -267.2 -0.2 Lamination Theory -267.2 -0.2

Theoretical Sol. -267.2 -0.2 Theoretical Sol. -267.2 -0.2

FEM -802.2 FEM -802.2

Present Method -801.7 -0.1 Present Method -801.7 -0.1

Lamination Theory -801.7 -0.1 Lamination Theory -801.7 -0.1

Theoretical Sol. -801.7 -0.1 Theoretical Sol. -801.7 -0.1

FEM -1336.4 FEM -1336.4

Present Method -1336.1 0.0 Present Method -1336.1 0.0

Lamination Theory -1336.1 0.0 Lamination Theory -1336.1 0.0

Theoretical Sol. -1336.1 0.0 Theoretical Sol. -1336.1 0.0

FEM -1870.9 FEM -1870.9

Present Method -1870.6 0.0 Present Method -1870.6 0.0

Lamination Theory -1870.6 0.0 Lamination Theory -1870.6 0.0

Theoretical Sol. -1870.6 0.0 Theoretical Sol. -1870.6 0.0

FEM -2405.1 FEM -2405.1

Present Method -2405.0 0.0 Present Method -2405.0 0.0

Lamination Theory -2405.0 0.0 Lamination Theory -2405.0 0.0

Theoretical Sol. -2405.0 0.0 Theoretical Sol. -2405.0 0.0

FEM -2938.1 FEM -2938.1

Present Method -2939.4 0.0 Present Method -2939.4 0.0

Lamination Theory -2939.4 0.0 Lamination Theory -2939.4 0.0

Theoretical Sol. -2939.4 0.0 Theoretical Sol. -2939.4 0.0
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The finite element method axial stresses in each ply match perfectly with the present 

method, lamination theory, and theoretical solution. The next step is to consider composites. 

4.3.7 xM  acting on two [06]S Laminates 

Two composite laminates of [06]s bonded together side by side are studied under 

bending. Figure 4.11 shows the stresses generated in each laminate.   
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Figure 4.11 FEM axial stress through the thickness of each [06]S laminate 

**
1d , 

**
2d  , 1xM  and 2xM

 
were calculated for each composite laminate. Table 4.13 

shows the equivalent moments acting on each laminate and Table 4.14 lists the stresses 

experienced in the laminates.  

Table 4.13  Calculation of the equivalent moment for each laminate 
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Table 4.14 Axial stresses in each [06]s-[06]s laminate 

σx σx

[psi] %Diff [psi] %Diff

FEM 2939.3 FEM 2939.3

Present Method 2939.4 0.0 Present Method 2939.4 0.0

Lamination Theory 2939.4 0.0 Lamination Theory 2939.4 0.0

FEM 2404.9 FEM 2404.9

Present Method 2405.0 0.0 Present Method 2405.0 0.0

Lamination Theory 2405.0 0.0 Lamination Theory 2405.0 0.0

FEM 1870.5 FEM 1870.5

Present Method 1870.6 0.0 Present Method 1870.6 0.0

Lamination Theory 1870.6 0.0 Lamination Theory 1870.6 0.0

FEM 1336.1 FEM 1336.1

Present Method 1336.1 0.0 Present Method 1336.1 0.0

Lamination Theory 1336.1 0.0 Lamination Theory 1336.1 0.0

FEM 801.7 FEM 801.7

Present Method 801.7 0.0 Present Method 801.7 0.0

Lamination Theory 801.7 0.0 Lamination Theory 801.7 0.0

FEM 267.2 FEM 267.2

Present Method 267.2 0.0 Present Method 267.2 0.0

Lamination Theory 267.2 0.0 Lamination Theory 267.2 0.0

FEM -267.2 FEM -267.2

Present Method -267.2 0.0 Present Method -267.2 0.0

Lamination Theory -267.2 0.0 Lamination Theory -267.2 0.0

FEM -801.7 FEM -801.7

Present Method -801.7 0.0 Present Method -801.7 0.0

Lamination Theory -801.7 0.0 Lamination Theory -801.7 0.0

FEM -1336.1 FEM -1336.1

Present Method -1336.1 0.0 Present Method -1336.1 0.0

Lamination Theory -1336.1 0.0 Lamination Theory -1336.1 0.0

FEM -1870.5 FEM -1870.5

Present Method -1870.6 0.0 Present Method -1870.6 0.0

Lamination Theory -1870.6 0.0 Lamination Theory -1870.6 0.0

FEM -2404.9 FEM -2404.9

Present Method -2405.0 0.0 Present Method -2405.0 0.0

Lamination Theory -2405.0 0.0 Lamination Theory -2405.0 0.0

FEM -2939.3 FEM -2939.3

Present Method -2939.4 0.0 Present Method -2939.4 0.0

Lamination Theory -2939.4 0.0 Lamination Theory -2939.4 0.0

Laminate #1 Laminate #2 

ply #12 0 ply #12 0

ply #11 0 ply #11 0

ply #10 0 ply #10 0

ply #9 0 ply #9 0

ply #8 0 ply #8 0

ply #7 0 ply #7 0

ply #6 0 ply #6 0

ply #5 0 ply #5 0

ply #4 0 ply #4 0

ply #1 0 ply #1 0

ply #3 0 ply #3 0

ply #2 0 ply #2 0

 

 Once again the results match very well for all the plies in both [06]s composite laminates. 
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4.3.8 xM  acting on two [+452/02]S Laminates 

Now it is consider two symmetric [+452/02]S laminates bonded together under bending. 

Figure 4.12 presents the stresses experience in each laminate. 
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Figure 4.12 FEM axial stress through the thickness of [+452/02]S laminates 

Once again, the axial stress is a linear function with jumps according to the stacking 

sequence which makes perfectly sense. The 0° plies have much more axial stress than the +45° 

ones, because the first ones are stiffer than the second ones. Table 4.15 shows the equivalent 

moment acting on each laminate, and Table 4.16 lists the stresses generated in the laminates.  

Table 4.15 Calculation of the equivalent moment for each laminate 
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Table 4.16 Axial stresses in each [+452/02]S -[+452/02]S laminate 

σx σx

[psi] %Diff [psi] %Diff

FEM 2324.0 FEM 2324.0

Present Method 2327.3 0.1 Present Method 2327.3 0.1

Lamination Theory 2327.3 0.1 Lamination Theory 2327.3 0.1

FEM 2270.3 FEM 2270.3

Present Method 2264.1 -0.3 Present Method 2264.1 -0.3

Lamination Theory 2264.1 -0.3 Lamination Theory 2264.1 -0.3

FEM 1479.6 FEM 1479.6

Present Method 1481.0 0.1 Present Method 1481.0 0.1

Lamination Theory 1481.0 0.1 Lamination Theory 1481.0 0.1

FEM 1261.6 FEM 1261.6

Present Method 1257.8 -0.3 Present Method 1257.8 -0.3

Lamination Theory 1257.8 -0.3 Lamination Theory 1257.8 -0.3

FEM 3946.1 FEM 3946.1

Present Method 3942.5 -0.1 Present Method 3942.5 -0.1

Lamination Theory 3942.5 -0.1 Lamination Theory 3942.5 -0.1

FEM 1315.3 FEM 1315.3

Present Method 1314.2 -0.1 Present Method 1314.2 -0.1

Lamination Theory 1314.2 -0.1 Lamination Theory 1314.2 -0.1

FEM -1315.4 FEM -1315.4

Present Method -1314.2 -0.1 Present Method -1314.2 -0.1

Lamination Theory -1314.2 -0.1 Lamination Theory -1314.2 -0.1

FEM -3946.1 FEM -3946.1

Present Method -3942.5 -0.1 Present Method -3942.5 -0.1

Lamination Theory -3942.5 -0.1 Lamination Theory -3942.5 -0.1

FEM -1261.6 FEM -1261.6

Present Method -1257.8 -0.3 Present Method -1257.8 -0.3

Lamination Theory -1257.8 -0.3 Lamination Theory -1257.8 -0.3

FEM -1479.6 FEM -1479.6

Present Method -1481.0 0.1 Present Method -1481.0 0.1

Lamination Theory -1481.0 0.1 Lamination Theory -1481.0 0.1

FEM -2270.3 FEM -2270.3

Present Method -2264.1 -0.3 Present Method -2264.1 -0.3

Lamination Theory -2264.1 -0.3 Lamination Theory -2264.1 -0.3

FEM -2324.0 FEM -2324.0

Present Method -2327.3 0.1 Present Method -2327.3 0.1

Lamination Theory -2327.3 0.1 Lamination Theory -2327.3 0.1

-45 ply #11 -45

ply #10 45 ply #10 45

-45 ply #9 -45

ply #8 0 ply #8 0

0 ply #7 0

ply #6 0 ply #6 0

0 ply #5 0

ply #4 -45 ply #4 -45

ply #3 45

ply #2 -45 ply #2 -45

ply #1 45 ply #1 45

Laminate #1 Laminate #2 

ply #12 45 ply #12 45

ply #11

ply #9

ply #7

ply #5

ply #3 45

 

The present method results agree very well with the finite element results for all the plies 

including the 45° angle plies. 

 



 

115 
 

4.3.9 xM  acting on [+452/04/+452]T  and [+452/02]S Laminates 

Now it is studied the effect of an anti-symmetric laminate bonded with a symmetric 

laminate under bending. The stresses are shown in Figure 4.13. 
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Figure 4.13 FEM axial stress through the thickness of [+452/04/+452]T laminates 

**
1d and 

**
2d  are calculated for each laminate using lamination theory and 1xM  and 2xM

 

are calculating through Equations 4.10 and 4.11. The results are shown in Table 4.17. Table 4.18 

presents the stresses experienced in each laminate. 

Table 4.17 Calculation of the equivalent moment for each laminate 
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Table 4.18 Axial stresses in each [+452/04/+452]T - [+452/02]S laminate 

σx σx

[psi] %Diff [psi] %Diff

FEM 2370.9 FEM 2441.5

Present Method 2436.8 2.8 Present Method 2328.1 -4.6

FEM 2196.6 FEM 2127.5

Present Method 2134.5 -2.8 Present Method 2264.9 6.5

FEM 1482.8 FEM 1552.8

Present Method 1522.6 2.7 Present Method 1481.5 -4.6

FEM 1256.9 FEM 1183.2

Present Method 1220.3 -2.9 Present Method 1258.3 6.3

FEM 3935.2 FEM 3931.8

Present Method 3931.6 -0.1 Present Method 3943.9 0.3

FEM 1312.9 FEM 1309.1

Present Method 1310.5 -0.2 Present Method 1314.6 0.4

FEM -1309.3 FEM -1313.1

Present Method -1310.5 0.1 Present Method -1314.6 0.1

FEM -3931.6 FEM -3936.0

Present Method -3931.6 0.0 Present Method -3943.9 0.2

FEM -1184.9 FEM -1183.4

Present Method -1220.3 3.0 Present Method -1258.3 6.3

FEM -1563.5 FEM -1553.0

Present Method -1522.6 -2.6 Present Method -1481.5 -4.6

FEM -2073.6 FEM -2127.5

Present Method -2134.5 2.9 Present Method -2264.9 6.5

FEM -2502.5 FEM -2441.8

Present Method -2436.8 -2.6 Present Method -2328.1 -4.7

Laminate #1 Laminate #2 

ply #12 45 ply #12 45

ply #11 -45 ply #11 -45

ply #10 45 ply #10 45

ply #9 -45 ply #9 -45

ply #8 0 ply #8 0

ply #7 0 ply #7 0

ply #6 0 ply #6 0

ply #5 0 ply #5 0

ply #4 45 ply #4 -45

ply #1 -45 ply #1 45

ply #3 -45 ply #3 45

ply #2 45 ply #2 -45

 

The results match well. As expected the 45° angle p lies have a larger error than the 0° 

angle plies. This is because there is not shear deformation in the last ones. 
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4.3.10 xM  acting on [454/02]S  and [+452/02]S Laminates 

Finally it is being considered an un-balanced laminate bonded together with a symmetric 

and balanced laminate under bending. Figure 4.14 presents the results.  
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Figure 4.14 FEM axial stress through the thickness of [454/02]S laminates 

Table 4.19 shows the equivalent moment acting on each laminate, and Table 4.20 lists 

the stresses generated in the laminates. 

Table 4.19 Calculation of the equivalent moment for each laminate 
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Table 4.20 Axial stresses in each laminate [454/02]S-[+452/02]S 

σx σx

[psi] %Diff [psi] %Diff

FEM 2338.5 FEM 1657.2

Present Method 2102.8 -10.1 Present Method 2439.3 47.2

FEM 1913.8 FEM 3564.0

Present Method 1720.5 -10.1 Present Method 2373.0 -33.4

FEM 1488.8 FEM 1068.0

Present Method 1338.2 -10.1 Present Method 1552.3 45.3

FEM 1063.5 FEM 1968.8

Present Method 955.8 -10.1 Present Method 1318.3 -33.0

FEM 4408.7 FEM 4388.9

Present Method 4722.5 7.1 Present Method 4132.1 -5.9

FEM 1469.5 FEM 1463.0

Present Method 1574.2 7.1 Present Method 1377.4 -5.9

FEM -1469.6 FEM -1463.1

Present Method -1574.2 7.1 Present Method -1377.4 -5.9

FEM -4408.7 FEM -2926.2

Present Method -4722.5 7.1 Present Method -4132.1 41.2

FEM -1063.5 FEM -1968.8

Present Method -955.8 -10.1 Present Method -1318.3 -33.0

FEM -1488.8 FEM -1068.1

Present Method -1338.2 -10.1 Present Method -1552.3 45.3

FEM -1913.9 FEM -3563.8

Present Method -1720.5 -10.1 Present Method -2373.0 -33.4

FEM -2338.5 FEM -1657.2

Present Method -2102.8 -10.1 Present Method -2439.3 47.2
ply #1 45 ply #1 45

ply #3 45 ply #3 45

ply #2 45 ply #2 -45

ply #5 0 ply #5 0

ply #4 45 ply #4 -45

ply #7 0 ply #7 0

ply #6 0 ply #6 0

ply #9 45 ply #9 -45

ply #8 0 ply #8 0

ply #11 45 ply #11 -45

ply #10 45 ply #10 45

Laminate #1 Laminate #2 

ply #12 45 ply #12 45

 

The results diverge comparing with the finite element results.  

4.4 Axial Stiffness 

The axial stiffness can be obtained as follow. From Equation 4.1, 

21 xxx NNN +=  

On the other hand, the axial strain can be related to the actual applied force (Eq. 4.2), 

o
xx

a

w
N ε

∗∗
= ; substituting this in the previous equation and since all the axial strains are equal    

( o
x

o
x

o
x εεε == 21 ), 
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w
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εε 
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




+=

∗∗∗∗

∗∗

2

2

1

1

                                                  

(4.12) 

From Equation 4.12 it is possible to extract that,  

∗∗∗∗∗∗
+=

2

2

1

11

a

v

a

v

a
                                                       

(4.13) 

where wwv /11 =  and wwv /22 = . For a symmetric layup, ∗∗a reduces to 11a . 

4.5 Bending Stiffness 

A similar procedure can be used to obtain the equivalent bending stiffness. From 

Equation 4.6, 

21 xxx MMM +=  

On the other hand, the curvature can be related to the actual applied moment (Eq. 4.7), 

xx
d

w
M κ

∗∗
= ; substituting this in the previous equation and since all the curvatures are equal     

( xxx κκκ == 21 ), 

xx d

w

d

w

w

d
κκ 







+=

∗∗∗∗

∗∗

2

2

1

1

                                                 

(4.14) 

From the previous equation it is possible to extract that,  

∗∗∗∗∗∗
+=

2

2

1

11

d

v

d

v

d
                                                     

(4.15) 

where wwv /11 =  and wwv /22 = . For a symmetric layup, ∗∗d reduces to 11d . 
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4.6 Comparison of the Axial and Bending Stiffnesses 

The axial stiffnesses can be extracted from Equation 4.2, 01
xx a

wN ε
∗∗

= . The 

equivalent ∗∗a  for the two laminates can be calculated with the help of Equation 4.13.  

∗∗
=

a

w
Ax

                                                            

(4.16) 

It is important to highlight that if the layup is symmetric, Equation 4.16 and 4.13 become  

11a

w
A Sym

x =
 

   and    
211

2

111

1

11 )()(

1

a

v

a

v

a
+=  

A similar procedure can be used to extract the bending stiffness from Equation 4.7, 

xx d
wM κ

∗∗
=

1
. The equivalent ∗∗d  for the two laminates is calculated through Equation 4.15. 

∗∗
=

d

w
Dx

                                                            

(4.17) 

Once again, if the layup is symmetric, Equation 4.17 and 4.15 reduces to,  

11d

w
D Sym

x =    and     
211

2

111

1

11 )()(

1

d

v

d

v

d
+=  

The axial stiffnesses were calculated from the FEM model multiplying the applied load by 

the length and dividing by the axial displacement. To avoid distortions of the results by the 

boundary conditions or the applied load, the results were read half way through the length of the 

beam; that is at L/2. And in the bonding between the two laminates.  

)(2 L/2 x=

=
atx

x U

FL
A
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The bending stiffnesses were calculated from the FEM model by first determining the 

curvature of the beam, and then dividing the applied moment by it.  

xxx DM κ=

    

→

   

x

x
x

M
D

κ
=  

All the results are listed in Table 4.21. First an isotropic material was used to be able to 

calculate the axial and bending stiffnesses by theoretical solution. The results matched very well. 

When possible, the results were compared to the smeared property approach. For the isotropic 

and [06]s cases the results converge but for the [+452/02]s the smeared property results diverge for 

the bending stiffness. For the other cases, it is not possible to use the smeared property 

approach. On the other hand, the present method can be use in all the cases and the results 

agree with the finite element results.      

Table 4.21 Axial and bending stiffnesses of two laminates bonded side by side 
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CHAPTER 5  

ARBITRARY CLOSED CROSS-SECTION BEAM 

The idea of this chapter is to develop a closed-form method able to calculate the axial 

and bending stiffnesses of an arbitrary closed cross-section beam. Some attempts have been 

done in this area for specific cross-section as circular, elliptical, or hat [38-41]. However, the 

present method will generalize the parametrization to include any cross-section. The results will 

be compared to smeared property, previous methods, and FEM results.   

5.1 Smeared Property Approach 

As presented in Chapter 2, smeared property approach is a widely used procedure to 

calculate the stiffnesses of a composite beam with certain cross-section. A equivalent averaged 

Young’s Modulus of the material and lay-up is calculated and then multiplied by the area or the 

inertia in order to calculate the axial (Eq. 2.25) or bending stiffness (Eq. 2.26), respectively.  

11

~
a

w
AEA xx ==

                                                         

(5.1) 

I
ha

IED x
Smeared

x
11

1~
==

                                                  

(5.2) 

5.2 Previous Method 

The previous methods have attempted to calculate the axial, bending, and torsional 

stiffness of a composite beam with a specific cross-section. Chan and Demirhan [38] developed a 

method to calculate the axial and bending stiffness of a circular cross-section beam (Figure 5.1.).  
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Figure 5.1 Circular cross-section beam with an infinitesimal section 

The method considered the cross-section formed by infinitesimal sections inclined certain 

angle θx with respect to the horizontal coordinate y as shown in Figure 5.2.  

 

Figure 5.2 Cross-sectional view of the infinitesimal section 

Therefore, the idea was to rotate the reduced stiffness matrix [Q] around x certain angle 

θx, then do the rotation around z according to each angle ply θz in the lay-up of the composite, 

and lastly translate it to the actual position in the cross-section. Finally, the overall stiffness of the 

composite tube is obtained by integrating over the entire θx domain. From there, the term 11d  

was extracted and inverted to calculate the bending stiffness of the circular cross-section beam. 

The procedure is better described in the following flow chart (Fig. 5.3), 
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Figure 5.3 Flow chart of the previous method 

In a similar way the stiffness of an elliptical cross-section was developed by Lin and Chan 

[39]. On the other hand, Rao and Chan [41] used a similar procedure to calculate the torsional 

stiffness of a tapered circular cross-section beam.  

5.3 Modified Method 

The previous method considers first the rotation about x-coordinate and then the rotation 

about z-coordinate. A modified method was developed by Syed and Chan [40] in calculating the 

stiffness matrix of a slant laminate. They reversed the previous procedure by rotating z-axis first, 

and then x-axis as shown in Figure 5.4. In addition, if the beam cross-section is un-symmetric, the 

bending stiffness of the beam should be calculated by Equation 2.34 as shown in section 2.5.1.   
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Figure 5.4 Flow chart of the modified method 

5.4 Present Method 

The present method doesn’t consider a rotation about the x-coordinate. In this way, it is 

very similar to the smeared property approach with the difference that the present method is 

capable of working with any arbitrary cross-section. The parametrization was generalized to 

include all possible cross-sections: circular, elliptical, airfoil, and so on.  

5.4.1 Line Integration of Structural Properties 

Consider C to be the median curve of the thin-walled section. A point P(x,y,z) on the 

curve can be defined as ψ
ρ

, as shown in the Figure 5.5. 

 

Figure 5.5 Parametrization of an arbitrary cross-section 
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kzjyix ˆˆˆ ++=ψ
ρ

 

Let t be a position parameter over a closed interval [a,b]. Then ψ
ρ

can be rewritten as 

ktzjtyitx ˆ)(ˆ)(ˆ)( ++=ψ
ρ

 

Let f be a function of any structural property over a given domain. Then the overall 

structural property can be evaluated in the following integral,  

∫∫ ′⋅′==
b

aC

dttttztytxfdszyxfF )()())(),(),((),,( ψψ
ρρ

                      

(5.3)

 

5.4.1.1. Circular Cross-section 

For a point on a circular cross-section, we have  

ktRSinjtRCos ˆ)(ˆ)( +=ψ
ρ

 

where R is the radius of the circular cross-section.  

 Then, we have   

∫∫∫ =′⋅′=
b

a

b

aC

dttztyfRdttttztyfdszyf ))(),(()()())(),((),( ψψ
ρρ

 

 5.4.1.2. Generalized Circular Cross-section 

 Let the circular cross-section be in y-z plane. Then, we have 

22 yRz m −±=
 

where Rm is the mean radius of the cross-section.  
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 Using the parametrization, we have 

ty =
 

)(22 tftRz =−±=
 

ktfjtt ˆ)(ˆ)( +=ψ
ρ

 

22

2
2)]([1)()(

tR

R
tftt

−
=′+=′⋅′ ψψ

ρρ

 

5.4.2 Stiffness Matrices of Thin-walled Section 

Considerinbg an infinitesimal element of the walled laminate. Its stiffness matrices are 

[A], [B], and [D] defined in section 2.1. These stiffness matrices translated to the centroid of the 

cross-section are given in Equation 2.28 and shown below: 

][]2][][

][][][

][][

2 ABDD

ABB

AA

ρρ

ρ

+−=′

−=′

=′

                                             

(5.4)

 

where )(tf=ρ , which is the function of the cross-section. 

Integrating over the domain t to obtain the equivalent stiffness matrices for the arbitrary 

cross section.  

∫ ′⋅′′=
b

a

dtttAA )()(][][ ψψ
ρρ

                                               (5.5)
 

∫ ′⋅′′=
b

a

dtttBB )()(][][ ψψ
ρρ

                                               

(5.6)
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∫ ′⋅′′=
b

a

dtttDD )()(][][ ψψ
ρρ

                                               

(5.7)
 

Then, building the large equivalent stiffness matrix and inverting it to obtain the 

equivalent compliance matrices.  









=








−

db

ba

DB

BA
T

1

                                                   

(5.8)

 

From there, it is easy to extract the terms needed to calculate the axial and bending 

stiffnesses for a composite beam with arbitrary cross section. The process is shown in Figure 5.6.

 

 

Figure 5.6 Flow chart of the present method 

5.5 Finite Element Model of Beam with Circular Cross-section  

Several models were created in ANSYS to simulate the composite tubes. The outer 

radius was varied from 0.2 to 2.6 inches. The length was established in 15 times the outer radius 

for each case. The mesh was 44 elements per length and 160 elements around the 

circumference. The composites had 16 plies with a thickness of 0.0052 inches, resulting the total 

thickness of 0.0832 inches. One element per ply through the thickness was used. As a result, the 
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total number of nodes used in the mesh was 122,400 nodes. Once again, the element used was 

solid46, a 3D block element with 8 nodes and 3 degrees of freedom per node.  

Two cases were considered an axial load and a moment were applied. For the axial 

case, a unit axial load was applied to the model; in addition a rigid region was introduced to 

constrain the deformation (Figure 5.7). On the other hand, for the bending case the loads were 

applied to all the nodes in the free side, in that way, it simulates a distribute load (Figure 5.8).  

 

Figure 5.7 Axial load applied to the circular cross-section beam with a rigid region defined 
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Figure 5.8 Distribute force generating the bending moment 

The boundary conditions were applied has follows: the whole plane on the other side of 

the beam were constricted in the x-direction (axial direction).  The mid-plane of the beam in the y-

direction was constricted in that direction (Uy=0). And the mid-plane of the beam in the z-direction 

was constricted in that direction (Uz=0) as well as shown in Figure 5.9. 
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Figure 5.9 Applied Boundary Conditions 

5.6 Result Comparison of Beam with Circular Cross-section 

5.6.1 Smeared Property, Previous, Modified, and Present Method in Isotropic Tube 

The materials were the same used in the work of Chan and Demirhan [38] to compare 

the results. First, an isotropic material was used to compare results from the models with the 

theoretical solutions.  Steel was chosen with a Young Modulus of 30 Msi and a Poisson ratio of 

0.3. Using this isotropic material, the previous method, the modified method and the present 

method were compared against the FEM and smeared property approach results. Two nodes in 

the mid-plane of the side of the beam were selected to read the vertical displacement. Those 

displacements were used to calculate its curvature. The, the total applied moment were divided 

by this curvature to calculate the bending stiffness. The outer radius was varied from 0.2 to 2.6 

inches. The length was established in 15 times the outer radius. And the moments were applied 

as a distribute load across the cross-section and it was calculate for each specific case.  
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The parametrization was done as follow 

ktRjtt m
ˆˆ)( 22 −±=ψ

ρ
            

],[ mm RRt −∈
                                  

(5.9) 

where Rm is the mean radius; the integration was done from –Rm to Rm.   

Figure 5.10 shows the results obtained by three different methods. It indicates that the 

present method agrees well with FEM and smeared property approaches.  

 

Figure 5.10 Comparison of the different methods for isotropic material 

5.6.2 Smeared Property, Previous, Modified, and Present Method in Composite Tube 

Similar to the previous section, the composite material used is the same used in the work 

of Chan and Demirhan [38] to compare the results. It had the following properties: E1=24.8e6 psi, 

E2=E3=1.41e6, ν12= ν23= ν13=0.329, and G12=G23=G13=0.90e6 psi. The lay-up used was 

[±452/02/±45]s and the model and the radius was varied in the same manner used in the isotropic 

case in the previous section. 
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The results are plotted in Figure 5.11. The FEM results match well with the smeared 

property approach and the present method. The previous method and the modified method 

results are distant.  

 

Figure 5.11 Comparison of the different methods for composite material 

5.7 Present Method Results 

For this section, the present method was compared against FEM results and when 

possible against theoretical solution, lamination theory, and smeared property approach. Another 

composite material was selected for this section with the following properties E1=18.2e6 psi, 

E2=E3=1.41e6, ν12= ν23= ν13=0.27, and G12=G23=G13=0.92e6 psi. Three different lay-ups were 

used  [08]s, [452/-452/02/902]s, and [90/0/-45/45]4T. The outer radius was kept at 1 in for all the 

cases.  

5.7.1  Axial Stiffness and Stress for Isotropic Beam under Axial Load  

A steel beam is simulated under a 1 lb axial load. The mesh and loads were as defined 

before. The deformation is uniform as expected because the rigid region as shown in Figure 5.12. 

The axial stresses are shown in Figure 5.13. 
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Figure 5.12 FEM axial displacements 
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Figure 5.13 FEM axial stresses present in isotropic tube 
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Table 5.1 lists the axial stiffness of an isotropic tube calculated through different methods. 

All the results agree extremely well.   

Table 5.1 Axial stiffness for isotropic tube 

 

Table 5.2 shows the axial stresses developed in the isotropic tube due to the axial 

loading. The FEM, theoretical solution, and present method results agree very well.  

Table 5.2 Axial stresses in isotropic tube 

σx σx

[psi] %Diff [psi] %Diff

FEM 1.9965 FEM 1.9965

Theoretical Solution 1.9960 0.0 Theoretical Solution 1.9960 0.0

Present Method 1.9960 0.0 Present Method 1.9960 0.0

FEM 1.9965 FEM 1.9965

Theoretical Solution 1.9960 0.0 Theoretical Solution 1.9960 0.0

Present Method 1.9960 0.0 Present Method 1.9960 0.0

FEM 1.9965 FEM 1.9965

Theoretical Solution 1.9960 0.0 Theoretical Solution 1.9960 0.0

Present Method 1.9960 0.0 Present Method 1.9960 0.0

FEM 1.9965 FEM 1.9965

Theoretical Solution 1.9960 0.0 Theoretical Solution 1.9960 0.0

Present Method 1.9960 0.0 Present Method 1.9960 0.0

FEM 1.9965 FEM 1.9965

Theoretical Solution 1.9960 0.0 Theoretical Solution 1.9960 0.0

Present Method 1.9960 0.0 Present Method 1.9960 0.0

FEM 1.9965 FEM 1.9965

Theoretical Solution 1.9960 0.0 Theoretical Solution 1.9960 0.0

Present Method 1.9960 0.0 Present Method 1.9960 0.0

FEM 1.9965 FEM 1.9965

Theoretical Solution 1.9960 0.0 Theoretical Solution 1.9960 0.0

Present Method 1.9960 0.0 Present Method 1.9960 0.0

FEM 1.9965 FEM 1.9965

Theoretical Solution 1.9960 0.0 Theoretical Solution 1.9960 0.0

Present Method 1.9960 0.0 Present Method 1.9960 0.0

ply #16 ISO

ply #15 ISO

ply #14 ISO

ply #10 ISO

ply #9 ISO

ply #13 ISO

ply #12 ISO

ply #11 ISO

ply #1 ISO

ply #8 ISO

ply #7 ISO

ply #6 ISO

ply #5 ISO

ply #4 ISO

ply #3 ISO

ply #2 ISO
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5.7.2 Axial Stiffness and Stress for Composite Beam [08]s under Axial Load  

Figure 5.14 presents the axial stress in the composite tube with all angle plies equal to 

0°. 
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Figure 5.14 FEM axial stresses present in [08]s composite tube 

 
Table 5.3 shows the axial stiffness for [08]s composite tube. FEM, smeared property, and 

present method results match perfectly.  

Table 5.3 Axial stiffness for [08]s composite tube  

 

Table 5.4 lists the axial stresses present in the composite tube. Once again, the FEM and 

present method results agree very well. 
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Table 5.4 Axial stresses in [08]s composite tube 

σx

[psi] %Diff

FEM 1.9965

Present Method 1.9960 0.0

FEM 1.9965

Present Method 1.9960 0.0

FEM 1.9965

Present Method 1.9960 0.0

FEM 1.9965

Present Method 1.9960 0.0

FEM 1.9965

Present Method 1.9960 0.0

FEM 1.9965

Present Method 1.9960 0.0

FEM 1.9965

Present Method 1.9960 0.0

FEM 1.9965

Present Method 1.9960 0.0

FEM 1.9965

Present Method 1.9960 0.0

FEM 1.9965

Present Method 1.9960 0.0

FEM 1.9965

Present Method 1.9960 0.0

FEM 1.9965

Present Method 1.9960 0.0

FEM 1.9965

Present Method 1.9960 0.0

FEM 1.9965

Present Method 1.9960 0.0

FEM 1.9965

Present Method 1.9960 0.0

FEM 1.9965

Present Method 1.9960 0.0
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5.7.3 Axial Stiffness and Stress for Composite Beam [452/-452/02/902]s under Axial Load  

The axial stresses are shown in Figure 5.15. The 0° plies have higher axial stress than 

the +45° as shown. In addition, the 90° plies have the l east axial stress since it is the one with the 

least axial stiffness.  

 

Figure 5.15 FEM axial stresses present in [452/-452/02/902]s composite tube 

 
Table 5.5 and 5.6 lists the axial stiffness and stress; the results agree very well.  

Table 5.5 Axial stiffness for [452/-452/02/902]s composite tube 
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Table 5.6 Axial stresses in [452/-452/02/902]s composite tube 

σx

[psi] %Diff

FEM 1.3194

Present Method 1.3225 0.2

FEM 1.3211

Present Method 1.3225 0.1

FEM 1.3232

Present Method 1.3225 -0.1

FEM 1.3249

Present Method 1.3225 -0.2

FEM 4.9877

Present Method 4.9809 -0.1

FEM 4.9877

Present Method 4.9809 -0.1

FEM 0.3611

Present Method 0.3580 -0.9

FEM 0.3592

Present Method 0.3580 -0.3

FEM 0.3572

Present Method 0.3580 0.2

FEM 0.3553

Present Method 0.3580 0.8

FEM 4.9780

Present Method 4.9809 0.1

FEM 4.9780

Present Method 4.9809 0.1

FEM 1.3208

Present Method 1.3225 0.1

FEM 1.3221

Present Method 1.3225 0.0

FEM 1.3232

Present Method 1.3225 -0.1

FEM 1.3247

Present Method 1.3225 -0.2
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5.7.4 Axial Stiffness and Stress for Composite Beam [90/0/-45/45]4T under Axial Load  

Figure 5.16 presents the axial stress in the [90/0/-45/45]4T composite tube. 

 
Figure 5.16 FEM axial stresses present in [90/0/-45/45]4T composite tube 

 
Table 5.7 shows the axial stiffness for [90/0/-45/45]4T composite tube. FEM, smeared 

property, and present method results match perfectly. 

Table 5.7 Axial stiffness for [90/0/-45/45]4T composite tube 

 

 

Table 5.8 lists the axial stresses present in the composite tube. Once again, the FEM and 

present method results agree very well. 
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Table 5.8 Axial stresses in [90/0/-45/45]4T composite tube 

σx

[psi] %Diff

FEM 1.3213

Present Method 1.3225 0.1

FEM 1.3161

Present Method 1.3225 0.5

FEM 4.9813

Present Method 4.9809 0.0

FEM 0.3586

Present Method 0.3580 -0.2

FEM 1.3234

Present Method 1.3225 -0.1

FEM 1.3181

Present Method 1.3225 0.3

FEM 4.9814

Present Method 4.9809 0.0

FEM 0.3587

Present Method 0.3580 -0.2

FEM 1.3255

Present Method 1.3225 -0.2

FEM 1.3199

Present Method 1.3225 0.2

FEM 4.9815

Present Method 4.9809 0.0

FEM 0.3589

Present Method 0.3580 -0.2

FEM 1.3275

Present Method 1.3225 -0.4

FEM 1.3217

Present Method 1.3225 0.1

FEM 4.9816

Present Method 4.9809 0.0

FEM 0.3591

Present Method 0.3580 -0.3
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5.7.5 Bending Stiffness and Stress for Isotropic Beam under Bending  

A steel beam is simulated under a moment of 1.659358 lb-in. The axial stresses are 

shown in Figure 5.17. 
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Figure 5.17 FEM axial stresses present in isotropic tube 

 
Table 5.9 lists the bending stiffness of an isotropic tube calculated through different 

methods. All the results agree extremely well.   

Table 5.9 Bending stiffness for isotropic tube 

 

Table 5.10 shows the axial stresses developed in the isotropic tube due to bending. The 

FEM, theoretical solution, and present method results agree very well.  
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Table 5.10 Axial stresses in isotropic tube 

σx

[psi] %Diff

FEM 7.1822

Theoretical Solution 7.1792 0.0

Present Method 7.1837 0.0

FEM 7.1456

Theoretical Solution 7.1418 -0.1

Present Method 7.1463 0.0

FEM 7.1080

Theoretical Solution 7.1044 -0.1

Present Method 7.1088 0.0

FEM 7.0704

Theoretical Solution 7.0669 0.0

Present Method 7.0714 0.0

FEM 7.0329

Theoretical Solution 7.0295 0.0

Present Method 7.0339 0.0

FEM 6.9954

Theoretical Solution 6.9921 0.0

Present Method 6.9965 0.0

FEM 6.9579

Theoretical Solution 6.9547 0.0

Present Method 6.9590 0.0

FEM 6.9204

Theoretical Solution 6.9172 0.0

Present Method 6.9216 0.0

FEM 6.8830

Theoretical Solution 6.8798 0.0

Present Method 6.8841 0.0

FEM 6.8455

Theoretical Solution 6.8424 0.0

Present Method 6.8467 0.0

FEM 6.8080

Theoretical Solution 6.8049 0.0

Present Method 6.8092 0.0

FEM 6.7706

Theoretical Solution 6.7675 0.0

Present Method 6.7718 0.0

FEM 6.7332

Theoretical Solution 6.7301 0.0

Present Method 6.7343 0.0

FEM 6.6959

Theoretical Solution 6.6927 0.0

Present Method 6.6969 0.0

FEM 6.6585

Theoretical Solution 6.6552 0.0

Present Method 6.6594 0.0

FEM 6.6201

Theoretical Solution 6.6178 0.0

Present Method 6.6219 0.0

ply #6

ply #5

ply #11

ply #10

ply #9

ply #8

ply #7

ply #16

ply #15

ply #14

ply #13

ply #12

ISO

ply #4

ply #3

ply #2

ply #1

ISO

ISO

ISO

ISO

ISO

ISO

ISO

ISO

ISO

ISO

ISO

ISO

ISO

ISO

ISO

 



 

144 
 

 

5.7.6 Bending Stiffness and Stress for Composite Beam [08]s under Bending  

Figure 5.18 presents the axial stress in the composite tube with all angle plies equal to 

0°. 
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Figure 5.18 FEM axial stresses present in [08]s composite tube 

Table 5.11 shows the axial stiffness for [08]s composite tube. FEM, smeared property, 

and present method results very well. 

Table 5.11 Bending stiffness for [08]s composite tube 

 

Table 5.12 lists the axial stresses present in the composite tube. The FEM and present 

method results agree very well. 
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Table 5.12 Axial stresses in [08]s composite tube 

σx

[psi] %Diff

FEM 7.1908

Present Method 7.1837 -0.1

FEM 7.1532

Present Method 7.1463 -0.1

FEM 7.1143

Present Method 7.1088 -0.1

FEM 7.0760

Present Method 7.0714 -0.1

FEM 7.0377

Present Method 7.0339 -0.1

FEM 6.9993

Present Method 6.9965 0.0

FEM 6.9610

Present Method 6.9590 0.0

FEM 6.9227

Present Method 6.9216 0.0

FEM 6.8844

Present Method 6.8841 0.0

FEM 6.8460

Present Method 6.8467 0.0

FEM 6.8077

Present Method 6.8092 0.0

FEM 6.7694

Present Method 6.7718 0.0

FEM 6.7310

Present Method 6.7343 0.0

FEM 6.6926

Present Method 6.6969 0.1

FEM 6.6549

Present Method 6.6594 0.1

FEM 6.6158

Present Method 6.6219 0.1
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5.7.7 Bending Stiffness and Stress for Composite Beam [452/-452/02/902]s under Bending 

The axial stresses are shown in Figure 5.19. As explained before, the 0° plies have much 

more axial stress than the +45° ones, and 90° plies because they are the most s tiffer.  

 

Figure 5.19 FEM axial stresses present in [452/-452/02/902]s composite tube 

 
Table 5.13 and 5.14 lists the axial stiffness and stress; the results agree very well.  

Table 5.13 Bending stiffness for [452/-452/02/902]s composite tube 
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Table 5.14 Axial stresses in [452/-452/02/902]s composite tube 

σx

[psi] %Diff

FEM 4.7748

Present Method 4.7582 -0.3

FEM 4.7240

Present Method 4.7334 0.2

FEM 4.7067

Present Method 4.7117 0.1

FEM 4.6797

Present Method 4.6869 0.2

FEM 17.5460

Present Method 17.5579 0.1

FEM 17.4180

Present Method 17.4644 0.3

FEM 1.2490

Present Method 1.2484 0.0

FEM 1.2609

Present Method 1.2417 -1.5

FEM 1.2611

Present Method 1.2350 -2.1

FEM 1.2494

Present Method 1.2283 -1.7

FEM 16.9840

Present Method 16.9970 0.1

FEM 16.9220

Present Method 16.9035 -0.1

FEM 4.4712

Present Method 4.4634 -0.2

FEM 4.4382

Present Method 4.4386 0.0

FEM 4.3916

Present Method 4.4109 0.4

FEM 4.3829

Present Method 4.3861 0.1
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Figure 5.20 Axial stresses in [452/-452/02/902]s composite tube in the 16th ply 
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5.7.8 Bending Stiffness and Stress for Composite Beam [90/0/-45/45]4T under Bending 

Figure 5.21 presents the axial stress in the [90/0/-45/45]4T composite tube. 

 

Figure 5.21 FEM axial stresses present in [90/0/-45/45]4T composite tube 

Table 5.15 shows the axial stiffness for [90/0/-45/45]4T composite tube. FEM, smeared 

property, and present method results match well. 

Table 5.15 Bending stiffness for [90/0/-45/45]4T composite tube 

 

Table 5.16 lists the axial stresses present in the composite tube. The FEM and present 

method results agree very well. 
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Table 5.16 Axial stresses in [90/0/-45/45]4T composite tube 

σx

[psi] %Diff

FEM 1.3337

Present Method 1.3265 -0.5

FEM 17.7410

Present Method 17.8192 0.4

FEM 4.7223

Present Method 4.7088 -0.3

FEM 4.7217

Present Method 4.6953 -0.6

FEM 1.2701

Present Method 1.2613 -0.7

FEM 17.3990

Present Method 17.4453 0.3

FEM 4.6148

Present Method 4.6095 -0.1

FEM 4.6147

Present Method 4.5961 -0.4

FEM 1.2425

Present Method 1.2344 -0.6

FEM 17.0230

Present Method 17.0714 0.3

FEM 4.5084

Present Method 4.5102 0.0

FEM 4.5093

Present Method 4.4968 -0.3

FEM 1.2153

Present Method 1.2076 -0.6

FEM 16.6510

Present Method 16.6976 0.3

FEM 4.3938

Present Method 4.4110 0.4

FEM 4.3971

Present Method 4.3975 0.0
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5.8 Kollar’s Method 

Another method to calculate the bending stiffness of a circular cross-section beam was 

developed by Kollar and Springer [12].  


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



+=

1111

3

d

R
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R
D mm

x π                                                       (5.10) 

5.9 Varying the Radius 

A composite beam was studied under bending with different radiuses. Using the material 

properties for the composite from the previous section E1=18.2e6 psi, E2=E3=1.41e6, ν12= ν23= 

ν13=0.27, and G12=G23=G13=0.92e6 psi, and with a lay-up of [+452/90]s; the model was built. The 

number of plies was 10 and it thickness was 0.005 inches. This time the median radii of the 

cross-section varied from 2 to 0.0625 inches (Fig. 5.22). The length was fixed for all the cases in 

30 inches. The idea was to understand what happen when the radius become very small.  

   

Figure 5.22 Radius of 2 in, 0.125 in, and 0.0625 in 

Table 5.17 list the results for the bending stiffness calculated through FEM, smeared 

property, present, and Kollar methods. The averaged radius was varied from 2 in to 0.0625 in.  

Table 5.17 Bending stiffness for different radiuses 
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All the results agree very well. In addition, as the radius becomes small, the results start 

to diverge as expected.   

5.10 Varying the Lay-up 

Since the smeared property approach does not take into consideration the lay-up, it was 

varied to see how well this method behaves. Table 5.18 shows the results for the same model 

where only the lay-up was changed.   

Table 5.18 Bending stiffness for different lay-ups 

 

As expected the smeared property method results doesn’t change. Therefore, their 

answer is not so accurate. Kollar method even though it changes according to the lay-up, the 

results still far. Finally, the present method which takes into account the lay-ups predicts very well 

the bending stiffness and their results are the closest one.   

5.11 Airfoil Beam 

The advantage of the present method is that not only works for circular cross-section 

beam but for any arbitrary cross-section as an airfoil (Fig. 5.23 and 5.24). The curve of airfoil 

laminate is defined in two parts. First a semi-circle with outer radius in 1 inches. In the second 

part, the angle of the airfoil was selected to be 10°. Therefore, their parametrization are the 

following 

ktRjtt m
ˆˆ)( 22

1 −±=ψ
ρ

            
]0,[ mRt −∈
                              

(5.11) 

where Rm=0.9584 in. and it is the mean radius; the integration was done from –Rm to 0.   

 For the airfoil, the parametrization was done as follow 
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(5.12) 

where Lo=5.4353565 in. and it is the width of the airfoil as shown in Figure 5.24; the integration 

was done from 0 to Lo.   

 

Figure 5.23 Airfoil model 
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Figure 5.24 Airfoil cross-section 

5.11.1 Finite Element Model 

Two models were built in order make the simulations: an isotropic steel model, and a 

composite model with different lay-ups. The length of the beam was fixed in 15 inches. The model 

had 16 plies of 0.0052 inches with a total of 169,692 nodes. 

Two cases were defined: axial and bending load (Fig. 5.25 and 5.26). In the axial case, a 

10.434 lb load was applied and a rigid region was defined to constrain the deformation. For the 

bending case, a distribute load was applied to create a total moment of 0.72839 lb-in. In both 

case, the other end was constrained in all the 3 directions (cantilever beam).     
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Figure 5.25 Axial loading 

 

Figure 5.26 Bending loading 
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5.11.2 Isotropic Airfoil under Axial Load 

First, an isotropic airfoil was simulated in order to compare the results with the theoretical 

solution. Figure 5.27 shows that the deformation of the airfoil is indeed unformed as desired.  

 

 

Figure 5.27 Deformation of isotropic airfoil 

Figure 5.28 shows the axial stress generated in the airfoil due to the axial load 

 
Figure 5.28 Axial stress in isotropic airfoil 
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Table 5.19 compares the axial stress in the airfoil between the FEM model and the 

theoretical solution. The results agree very well. 

Table 5.19 Axial stress in isotropic airfoil 

σx

[psi] %Diff

Theoretical Value 8.7372

FEM 8.7428 -0.1  

Table 5.20 lists the axial stiffnesses calculated through the present method and 

compared against the FEM and theoretical results. The results are close to each other.  

Table 5.20 Axial stiffness of isotropic airfoil 

 

5.11.3 Composite Airfoil [08]s under Axial Load 

A composite airfoil was simulated with all the plies equal to 0° angle ply. Table 5.21 

shows the comparison between the axial stress of the FEM model and the theoretical solution.  

Table 5.21 Axial stress in [08]s composite  airfoil 

σx

[psi] %Diff

Theoretical Value 0.86584

FEM 0.86817 -0.3  

The axial stiffness are listed in Table 5.22. The results agree.  
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Table 5.22 Axial stiffness of [08]s composite airfoil 

 

5.11.4 Composite Airfoil [452/-452/02/902]s under axial load 

A [452/-452/02/902]s composite airfoil was simulated. The axial displacements are 

presented in Figure 5.29 and the axial stress is plotted in Figure 5.30. The ply by ply stresses are 

shown in Figure 5.31. Once again, the stiffest plies take the largest stresses.  

 

Figure 5.29 Axial displacement in [452/-452/02/902]s composite airfoil 

 

Figure 5.30 Axial stress in [452/-452/02/902]s composite airfoil 
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Figure 5.31 Axial stress in the plies of [452/-452/02/902]s composite airfoil 

 

Table 5.23 lists the axial stiffness of the composite airfoil calculated by the FEM model 

and the present method. The results agree.  

Table 5.23 Axial stiffness of [452/-452/02/902]s composite airfoil 
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5.11.5 Isotropic Airfoil under Bending 

The same airfoil was simulated under bending. The deformation is presented in Figure 

5.32. 

 

Figure 5.32 Deformation of isotropic airfoil under bending 

Table 5.24 list the bending stiffness calculated through the present method and 

compared against the theoretical and FEM results. They agree very well.  

Table 5.24 Bending stiffness of isotropic airfoil 
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5.11.6 Composite Airfoil [08]s under bending 

 
For a composite airfoil with all the angle ply equal to 0°, the axial stiffness are listed in 

Table 5.25. The results agree well. 

 
Table 5.25 Bending stiffness of [08]s composite airfoil 

 

5.11.7 Composite Airfoil [452/-452/02/902]s under bending 

A [452/-452/02/902]s composite airfoil was simulated under bending. Table 5.26 lists the 

bending stiffness of the composite airfoil calculated by the FEM model and the present method. 

The results agree very well.  

Table 5.26 Bending stiffness of [452/-452/02/902]s composite airfoil 

 

 
5.11.8 Composite Airfoil [908]s under bending 

Finally a composite airfoil with all the angle ply equal to 90°, the axial stiffness are listed 

in Table 5.27. Once again, the results agree well. 

Table 5.27 Bending stiffness of [908]s composite airfoil 
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CHAPTER 6  

CONCLUSIVE REMARKS AND FUTURE WORK 

An analytical method was developed to calculate the centroid, axial and bending 

stiffnesses, and ply stresses due to axial loading and bending of two laminated composite beams 

aligned bonded together one on the top of the other one. The results were compared with 

lamination theory, smeared property approach, and finite element method. The method was 

extended to calculate the centroid, axial and the bending stiffnesses of two laminate non-aligned 

top-and-bottom bonded together. This method reduces the two-dimensional properties of 

composite materials into one-dimensional structures or beams. The uniqueness of this method is 

that it includes the coupling effect due to the us-symmetry of the laminate as well as the structural 

configuration while smeared property approach does not.  

In addition, another method was developed to calculate the equivalent axial and bending 

stiffnesses as well as the axial stresses in two laminates bonded side by side. The results were 

compared with, smeared property approach, theoretical solution and finite element method. 

A new method is developed to calculate the axial and bending stiffnesses, and ply 

stresses for thin walled composite beam with arbitrary cross-section. The results were compared 

with finite element method, smeared property, previous, and modified method. 

From this research, the following conclusions can be made. 

• For the two laminate aligned bonded together one on the top of the other one method, 

the centroid shows excellent agreement with lamination theory for all the cases.  

•  For the two laminate aligned bonded together one on the top of the other one method, 

the axial and bending stiffnesses shows excellent agreement with finite element method 
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for all the cases. Smeared property approach results are deviated; especially for the 

bending stiffness case.     

• For the two laminate aligned bonded together one on the top of the other one method, 

the stresses agree when all the plies are zero degree. For the symmetric case, the axial 

stresses are close from lamination theory and finite element method, especially for the 

zero degree plies. For the un-symmetric case, the stresses diverge.     

•  For the two laminate non-aligned bonded together one on the top of the other one 

method, the centroid, axial and bending stiffnesses are in excellent match with the finite 

element method and theoretical solution. The only case where there results are far is for 

the product of inertia of the un-symmetric laminate case.  

• This method was extended to include the case of a Z-stiffener. The centroid, axial and 

bending stiffnesses match very well with the finite element and theoretical results.  

• For the two laminates bonded side by side method, the stresses, axial and bending 

stiffnesses results match well with the finite element method one for all the cases less for 

the axial stresses for un-balanced laminate under bending and its bending stiffness.   

• For the arbitrary cross-section method, the stress, axial and bending stiffnesses for a 

circular cross-section beam agree very well for all the cases with the finite element 

method and smeared property approach results. On the other hand, the previous method 

results diverge.  

• For the arbitrary cross-section method, axial and bending stiffnesses for an airfoil cross-

section beam agree very well for all the cases with the finite element method. 

In future studies, the analysis could be extended to include hygrothermal effects, interlamina 

shear, torsion stiffness, failure analysis, and shear flow for thin walled structures.  

In addition, there is room for improvement for the present method; especially, when treating 

un-symmetric laminates. Moreover, other kind of reinforcements can be studied; for example,      

I-beams type.   
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On the other hand, the present method for arbitrary cross-section can be used to study any 

other arbitrary cross-section other than circular and airfoil. In addition, it can be included the case 

of open cross-sections which was not included.  
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APPENDIX A 

DERIVATION OF PARALLEL THEOREM FOR COMPLAINCE MATRICES OF LAMINATE 
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The following shows the detail procedure to obtain the shifted compliance matrices. The 

primed and unprimed notations refer to the new and original coordinate systems (Fig. A.1), 

respectively. ρ is the distance measure from the original coordinate system to the new coordinate 

system.  

][]2][][

][][][

][][

2 ABDD

ABB
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ρρ

ρ
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                                              (A.1) 

 

Figure A.1 References planes 

 

On the other hand, inverting the stiffness matrices is given in [59] as 
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Therefore, it is possible to relate the stiffness matrices and the compliance matrices by 
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However, considering a shift of a distance ρ (Eq. A.1), the stiffness and compliance 

matrices become 
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From the above equation it is possible to equate,  
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Expanding these equations,  

1−∗ =′ AA  
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ρρρ +−=+−=−−=′ −−−−∗ BAAABAABAB 1111 )(  

ρρρ −=−=−=′ −−−−∗ 1111)( BAAABAAABH  

)()()2( 12 ABAABABDD ρρρρ −−−+−=′ −∗  

∗−∗ =−=′ DBBADD 1  

This proof that, 

∗∗ =′ DD        or        dd =′                                            (A.4) 

On the other hand,  

1−∗∗ ′′=′ DBb                                                           (A.5) 

Substituting back Eqs. A.2 and A.4 into A.5, 

dBb ′′=′ ∗  

In addition ρ+−=′ −∗ BAB 1 ,. Therefore, 

ddBAb ′+′−=′ − ρ1  

It is also known that,  BAB 1−∗ −= . Therefore,  

ddBb ′+′=′ ∗ ρ  

Finally, changing back  1−∗′=′ Dd , 

dDBb ′+′=′ −∗∗ ρ1  

And realizing that 1−∗∗= DBb  and dd =′ , 

   dbb ρ+=′                                                             (A.6) 
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Finally, from A.2 it is known that, 

∗−∗∗∗ ′′′−′=′ HDBAa 1  

Substituting back Eq. A.3 and A.4 in this equation,   
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dbbaa T 2)( ρρ +++=′                                                 (A.7) 

 

 

 

 

 

 

 

 

 

 

 

 



 

170 
 

 

 

 

 

 

 

 

 

 

APPENDIX B 

PROOF THAT THE CENTROID EQUATIONS 3.19 AND 3.22 ARE EQUIVALENT 
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This section proofs that equation 3.19 expands to equation 3.22 and both are equivalent.  
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which is equation 3.22.  

 

 

 

 

 

 



 

173 
 

 

 

 

 

 

 

 

 

APPENDIX C 

 MATLAB Files 
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Typical MATLAB file for Stiffener Reinforced Laminated Beam Symmetric Case  
[04/-45/45/-45/45]T and [±452]T under bending. 
 
 
% Bottom Laminate 
 
E1=18.2e6; 
E2=1.41e6; 
v12=0.27; 
G12=0.92e6;    
 
ply=0.005; 
 
h0=-4*ply; 
h1=-3*ply; 
h2=-2*ply; 
h3=-1*ply; 
h4=0*ply; 
h5=1*ply; 
h6=2*ply; 
h7=3*ply; 
h8=4*ply; 
 
S11=1/E1; 
S22=1/E2; 
S12=-v12/E1; 
S21=S12; 
S33=1/G12; 
S=[S11 S12 0;S21 S22 0;0 0 S33]; 
Q=inv(S); 
 
b=0*pi/180; 
n=sin(b); 
m=cos(b); 
TStress=[m^2 n^2 2*m*n;n^2 m^2 -2*m*n;-m*n m*n m^2-n^2]; 
TStrain=[m^2 n^2 m*n;n^2 m^2 -m*n;-2*m*n 2*m*n m^2-n^2]; 
QB_0=inv(TStress)*Q*TStrain; 
 
b=45*pi/180; 
n=sin(b); 
m=cos(b); 
TStress=[m^2 n^2 2*m*n;n^2 m^2 -2*m*n;-m*n m*n m^2-n^2]; 
TStrain=[m^2 n^2 m*n;n^2 m^2 -m*n;-2*m*n 2*m*n m^2-n^2]; 
QB_45=inv(TStress)*Q*TStrain; 
    
b=-45*pi/180; 
n=sin(b); 
m=cos(b); 
TStress=[m^2 n^2 2*m*n;n^2 m^2 -2*m*n;-m*n m*n m^2-n^2]; 
TStrain=[m^2 n^2 m*n;n^2 m^2 -m*n;-2*m*n 2*m*n m^2-n^2]; 
QB_N45=inv(TStress)*Q*TStrain; 
   
P8=QB_0; 
P7=QB_0; 
P6=QB_0; 
P5=QB_0; 
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P4=QB_N45; 
P3=QB_45; 
P2=QB_N45; 
P1=QB_45; 
 
A=P1*(h1-h0)+P2*(h2-h1)+P3*(h3-h2)+P4*(h4-h3)+P5*(h5-h4)+P6*(h6-h5)+P7*(h7-h6)+P8*(h8-
h7); 
B=1/2*(P1*(h1^2-h0^2)+P2*(h2^2-h1^2)+P3*(h3^2-h2^2)+P4*(h4^2-h3^2)+P5*(h5^2-
h4^2)+P6*(h6^2-h5^2)+P7*(h7^2-h6^2)+P8*(h8^2-h7^2)); 
D=1/3*(P1*(h1^3-h0^3)+P2*(h2^3-h1^3)+P3*(h3^3-h2^3)+P4*(h4^3-h3^3)+P5*(h5^3-
h4^3)+P6*(h6^3-h5^3)+P7*(h7^3-h6^3)+P8*(h8^3-h7^3)); 
 
ABD=[A(1,1) A(1,2) A(1,3) B(1,1) B(1,2) B(1,3); 
     A(2,1) A(2,2) A(2,3) B(2,1) B(2,2) B(2,3); 
     A(3,1) A(3,2) A(3,3) B(3,1) B(3,2) B(3,3); 
     B(1,1) B(1,2) B(1,3) D(1,1) D(1,2) D(1,3); 
     B(2,1) B(2,2) B(2,3) D(2,1) D(2,2) D(2,3); 
     B(3,1) B(3,2) B(3,3) D(3,1) D(3,2) D(3,3)]; 
  
abd1=inv(ABD); 
 
p1=-abd1(1,4)/abd1(4,4)  
 
% Top Laminate 
 
E1=18.2e6; 
E2=1.41e6; 
v12=0.27; 
G12=0.92e6;     
 
ply=0.005; 
 
h0=-2*ply; 
h1=-1*ply; 
h2=0*ply; 
h3=1*ply; 
h4=2*ply; 
 
S11=1/E1; 
S22=1/E2; 
S12=-v12/E1; 
S21=S12; 
S33=1/G12; 
S=[S11 S12 0;S21 S22 0;0 0 S33]; 
Q=inv(S); 
 
b=45*pi/180; 
n=sin(b); 
m=cos(b); 
TStress=[m^2 n^2 2*m*n;n^2 m^2 -2*m*n;-m*n m*n m^2-n^2]; 
TStrain=[m^2 n^2 m*n;n^2 m^2 -m*n;-2*m*n 2*m*n m^2-n^2]; 
QB_45=inv(TStress)*Q*TStrain; 
    
b=-45*pi/180; 
n=sin(b); 
m=cos(b); 
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TStress=[m^2 n^2 2*m*n;n^2 m^2 -2*m*n;-m*n m*n m^2-n^2]; 
TStrain=[m^2 n^2 m*n;n^2 m^2 -m*n;-2*m*n 2*m*n m^2-n^2]; 
QB_N45=inv(TStress)*Q*TStrain; 
   
P4=QB_45; 
P3=QB_N45; 
P2=QB_45; 
P1=QB_N45; 
 
A=P1*(h1-h0)+P2*(h2-h1)+P3*(h3-h2)+P4*(h4-h3); 
B=1/2*(P1*(h1^2-h0^2)+P2*(h2^2-h1^2)+P3*(h3^2-h2^2)+P4*(h4^2-h3^2)); 
D=1/3*(P1*(h1^3-h0^3)+P2*(h2^3-h1^3)+P3*(h3^3-h2^3)+P4*(h4^3-h3^3)); 
 
ABD=[A(1,1) A(1,2) A(1,3) B(1,1) B(1,2) B(1,3); 
     A(2,1) A(2,2) A(2,3) B(2,1) B(2,2) B(2,3); 
     A(3,1) A(3,2) A(3,3) B(3,1) B(3,2) B(3,3); 
     B(1,1) B(1,2) B(1,3) D(1,1) D(1,2) D(1,3); 
     B(2,1) B(2,2) B(2,3) D(2,1) D(2,2) D(2,3); 
     B(3,1) B(3,2) B(3,3) D(3,1) D(3,2) D(3,3)]; 
  
abd2=inv(ABD); 
 
p2=-abd2(1,4)/abd2(4,4) 
 
 
% Centroids, Stiffnesses, and Stresses 
 
tply=0.005; 
w1=0.5; 
w2=0.5; 
 
zb1=4*tply; 
zb2=10*tply; 
 
c1=-1/((abd1(1,6)^2-abd1(1,1)*abd1(6,6))*abd1(4,4)-
2*abd1(1,4)*abd1(1,6)*abd1(4,6)+abd1(1,1)*abd1(4,6)^2+abd1(1,4)^2*abd1(6,6)) 
c2=-1/((abd2(1,6)^2-abd2(1,1)*abd2(6,6))*abd2(4,4)-
2*abd2(1,4)*abd2(1,6)*abd2(4,6)+abd2(1,1)*abd2(4,6)^2+abd2(1,4)^2*abd2(6,6)) 
 
A1ss=c1*(abd1(4,4)*abd1(6,6)-abd1(4,6)^2); 
A2ss=c2*(abd2(4,4)*abd2(6,6)-abd2(4,6)^2); 
B1ss=c1*(-abd1(1,4)*abd1(6,6)+abd1(1,6)*abd1(4,6)); 
B2ss=c2*(-abd2(1,4)*abd2(6,6)+abd2(1,6)*abd2(4,6)); 
D1ss=c1*(-abd1(1,6)^2+abd1(1,1)*abd1(6,6)); 
D2ss=c2*(-abd2(1,6)^2+abd2(1,1)*abd2(6,6)); 
 
zc=((zb1+p1)*w1*A1ss+(zb2+p2)*w2*A2ss)/(w1*A1ss+w2*A2ss); 
 
z1=(zb1)-zc; 
z2=(zb2)-zc; 
 
yb1=0.5/2; 
yb2=0.5/2; 
 
yc=((yb1)*w1*A1ss+(yb2)*w2*A2ss)/(w1*A1ss+w2*A2ss); 
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z1=(zb1)-zc; 
z2=(zb2)-zc; 
 
EA=w1*A1ss+w2*A2ss 
 
y1=(yb1)-yc; 
y2=(yb2)-yc; 
 
EI=w1*A1ss*z1^2+2*w1*B1ss*z1+w1*D1ss+w2*A2ss*z2^2+2*w2*B2ss*z2+w2*D2ss 
 
exc=0/EA; 
kxc=0.01/EI; 
 
stiff1=[A1ss B1ss+z1*A1ss; 
  B1ss D1ss+z1*B1ss]; 
 
stiff2=[A2ss B2ss+z2*A2ss; 
  B2ss D2ss+z2*B2ss]; 
 
NM1=stiff1*[exc;kxc]; 
NM2=stiff2*[exc;kxc]; 
 
Mxy1=-1/abd1(6,6)*(abd1(1,6)*NM1(1)+abd1(4,6)*NM1(2)); 
Mxy2=-1/abd2(6,6)*(abd2(1,6)*NM2(1)+abd2(4,6)*NM2(2)); 
 
midplane1=[abd1(1,1) abd1(1,4) abd1(1,6); 
           abd1(2,1) abd1(2,4) abd1(2,6); 
           abd1(3,1) abd1(3,4) abd1(3,6); 
           abd1(4,1) abd1(4,4) abd1(4,6); 
           abd1(5,1) abd1(5,4) abd1(5,6); 
           abd1(6,1) abd1(6,4) abd1(6,6)]*[NM1(1);NM1(2);Mxy1]; 
        
midplane2=[abd2(1,1) abd2(1,4) abd2(1,6); 
           abd2(2,1) abd2(2,4) abd2(2,6); 
           abd2(3,1) abd2(3,4) abd2(3,6); 
           abd2(4,1) abd2(4,4) abd2(4,6); 
           abd2(5,1) abd2(5,4) abd2(5,6); 
           abd2(6,1) abd2(6,4) abd2(6,6)]*[NM2(1);NM2(2);Mxy2]; 
        
% Stresses on the Bottom Laminate 
z=-3.5*tply; 
strain1=[midplane1(1);midplane1(2);midplane1(3)]+z*[midplane1(4);midplane1(5);midplane1(6)]; 
stress1=QB_45*strain1 
 
% Stresses on the Top Laminate 
z=1.5*tply; 
strain2=[midplane2(1);midplane2(2);midplane2(3)]+z*[midplane2(4);midplane2(5);midplane2(6)]; 
stress2=QB_45*strain2 
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 Typical MATLAB file for Non-Aligned Stiffener Reinforced Laminated Beam Un-symmetric Case  
[±45/0/90]3T. 
 
 
% Bottom Laminate 
 
E1=18.2e6; 
E2=1.41e6; 
v12=0.27; 
G12=0.92e6;    
 
ply=0.005; 
 
h0=-4*ply; 
h1=-3*ply; 
h2=-2*ply; 
h3=-1*ply; 
h4=0*ply; 
h5=1*ply; 
h6=2*ply; 
h7=3*ply; 
h8=4*ply; 
 
S11=1/E1; 
S22=1/E2; 
S12=-v12/E1; 
S21=S12; 
S33=1/G12; 
S=[S11 S12 0;S21 S22 0;0 0 S33]; 
Q=inv(S); 
 
b=0*pi/180; 
n=sin(b); 
m=cos(b); 
TStress=[m^2 n^2 2*m*n;n^2 m^2 -2*m*n;-m*n m*n m^2-n^2]; 
TStrain=[m^2 n^2 m*n;n^2 m^2 -m*n;-2*m*n 2*m*n m^2-n^2]; 
QB_0=inv(TStress)*Q*TStrain; 
 
b=45*pi/180; 
n=sin(b); 
m=cos(b); 
TStress=[m^2 n^2 2*m*n;n^2 m^2 -2*m*n;-m*n m*n m^2-n^2]; 
TStrain=[m^2 n^2 m*n;n^2 m^2 -m*n;-2*m*n 2*m*n m^2-n^2]; 
QB_45=inv(TStress)*Q*TStrain; 
    
b=-45*pi/180; 
n=sin(b); 
m=cos(b); 
TStress=[m^2 n^2 2*m*n;n^2 m^2 -2*m*n;-m*n m*n m^2-n^2]; 
TStrain=[m^2 n^2 m*n;n^2 m^2 -m*n;-2*m*n 2*m*n m^2-n^2]; 
QB_N45=inv(TStress)*Q*TStrain; 
 
b=90*pi/180; 
n=sin(b); 
m=cos(b); 
TStress=[m^2 n^2 2*m*n;n^2 m^2 -2*m*n;-m*n m*n m^2-n^2]; 
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TStrain=[m^2 n^2 m*n;n^2 m^2 -m*n;-2*m*n 2*m*n m^2-n^2]; 
QB_90=inv(TStress)*Q*TStrain; 
   
P8=QB_45; 
P7=QB_N45; 
P6=QB_0; 
P5=QB_90; 
P4=QB_45; 
P3=QB_N45; 
P2=QB_0; 
P1=QB_90; 
 
A=P1*(h1-h0)+P2*(h2-h1)+P3*(h3-h2)+P4*(h4-h3)+P5*(h5-h4)+P6*(h6-h5)+P7*(h7-h6)+P8*(h8-
h7); 
B=1/2*(P1*(h1^2-h0^2)+P2*(h2^2-h1^2)+P3*(h3^2-h2^2)+P4*(h4^2-h3^2)+P5*(h5^2-
h4^2)+P6*(h6^2-h5^2)+P7*(h7^2-h6^2)+P8*(h8^2-h7^2)); 
D=1/3*(P1*(h1^3-h0^3)+P2*(h2^3-h1^3)+P3*(h3^3-h2^3)+P4*(h4^3-h3^3)+P5*(h5^3-
h4^3)+P6*(h6^3-h5^3)+P7*(h7^3-h6^3)+P8*(h8^3-h7^3)); 
 
ABD=[A(1,1) A(1,2) A(1,3) B(1,1) B(1,2) B(1,3); 
     A(2,1) A(2,2) A(2,3) B(2,1) B(2,2) B(2,3); 
     A(3,1) A(3,2) A(3,3) B(3,1) B(3,2) B(3,3); 
     B(1,1) B(1,2) B(1,3) D(1,1) D(1,2) D(1,3); 
     B(2,1) B(2,2) B(2,3) D(2,1) D(2,2) D(2,3); 
     B(3,1) B(3,2) B(3,3) D(3,1) D(3,2) D(3,3)]; 
  
abd1=inv(ABD); 
 
a111=abd1(1,1) 
d111=abd1(4,4) 
p1=-abd1(1,4)/abd1(4,4) 
 
% Top Laminate 
 
E1=18.2e6; 
E2=1.41e6; 
v12=0.27; 
G12=0.92e6;     
 
ply=0.005; 
 
h0=-2*ply; 
h1=-1*ply; 
h2=0*ply; 
h3=1*ply; 
h4=2*ply; 
 
S11=1/E1; 
S22=1/E2; 
S12=-v12/E1; 
S21=S12; 
S33=1/G12; 
S=[S11 S12 0;S21 S22 0;0 0 S33]; 
Q=inv(S); 
 
b=0*pi/180; 
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n=sin(b); 
m=cos(b); 
TStress=[m^2 n^2 2*m*n;n^2 m^2 -2*m*n;-m*n m*n m^2-n^2]; 
TStrain=[m^2 n^2 m*n;n^2 m^2 -m*n;-2*m*n 2*m*n m^2-n^2]; 
QB_0=inv(TStress)*Q*TStrain; 
 
b=45*pi/180; 
n=sin(b); 
m=cos(b); 
TStress=[m^2 n^2 2*m*n;n^2 m^2 -2*m*n;-m*n m*n m^2-n^2]; 
TStrain=[m^2 n^2 m*n;n^2 m^2 -m*n;-2*m*n 2*m*n m^2-n^2]; 
QB_45=inv(TStress)*Q*TStrain; 
    
b=-45*pi/180; 
n=sin(b); 
m=cos(b); 
TStress=[m^2 n^2 2*m*n;n^2 m^2 -2*m*n;-m*n m*n m^2-n^2]; 
TStrain=[m^2 n^2 m*n;n^2 m^2 -m*n;-2*m*n 2*m*n m^2-n^2]; 
QB_N45=inv(TStress)*Q*TStrain; 
 
b=90*pi/180; 
n=sin(b); 
m=cos(b); 
TStress=[m^2 n^2 2*m*n;n^2 m^2 -2*m*n;-m*n m*n m^2-n^2]; 
TStrain=[m^2 n^2 m*n;n^2 m^2 -m*n;-2*m*n 2*m*n m^2-n^2]; 
QB_90=inv(TStress)*Q*TStrain; 
   
P4=QB_45; 
P3=QB_N45; 
P2=QB_0; 
P1=QB_90; 
 
A=P1*(h1-h0)+P2*(h2-h1)+P3*(h3-h2)+P4*(h4-h3); 
B=1/2*(P1*(h1^2-h0^2)+P2*(h2^2-h1^2)+P3*(h3^2-h2^2)+P4*(h4^2-h3^2)); 
D=1/3*(P1*(h1^3-h0^3)+P2*(h2^3-h1^3)+P3*(h3^3-h2^3)+P4*(h4^3-h3^3)); 
 
ABD=[A(1,1) A(1,2) A(1,3) B(1,1) B(1,2) B(1,3); 
     A(2,1) A(2,2) A(2,3) B(2,1) B(2,2) B(2,3); 
     A(3,1) A(3,2) A(3,3) B(3,1) B(3,2) B(3,3); 
     B(1,1) B(1,2) B(1,3) D(1,1) D(1,2) D(1,3); 
     B(2,1) B(2,2) B(2,3) D(2,1) D(2,2) D(2,3); 
     B(3,1) B(3,2) B(3,3) D(3,1) D(3,2) D(3,3)]; 
  
abd2=inv(ABD); 
 
a112=abd2(1,1) 
d112=abd2(4,4) 
p2=-abd2(1,4)/abd2(4,4) 
 
%  Centroids and Stiffnesses 
 
tply=0.005; 
w1=0.5; 
w2=0.25; 
 
zb1=4*tply; 
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zb2=10*tply; 
 
A1s=abd1(4,4)/(abd1(1,1)*abd1(4,4)-abd1(1,4)^2); 
A2s=abd2(4,4)/(abd2(1,1)*abd2(4,4)-abd2(1,4)^2); 
B1s=abd1(1,4)/(abd1(1,4)^2-abd1(1,1)*abd1(4,4)); 
B2s=abd2(1,4)/(abd2(1,4)^2-abd2(1,1)*abd2(4,4)); 
D1s=abd1(1,1)/(abd1(1,1)*abd1(4,4)-abd1(1,4)^2); 
D2s=abd2(1,1)/(abd2(1,1)*abd2(4,4)-abd2(1,4)^2); 
 
zc=((zb1+p1)*w1*A1s+(zb2+p2)*w2*A2s)/(w1*A1s+w2*A2s); 
 
z1=(zb1)-zc; 
z2=(zb2)-zc; 
 
yb1=0.5/2; 
yb2=0.25/2+0.0625; 
 
yc=((yb1)*w1/abd1(1,1)+(yb2+p2)*w2/abd2(1,1))/(w1/abd1(1,1)+w2/abd2(1,1)); 
 
z1=(zb1)-zc; 
z2=(zb2)-zc; 
 
EA=w1*A1s+w2*A2s 
 
y1=(yb1)-yc; 
y2=(yb2)-yc; 
 
EIyy=w1*A1s*z1^2+2*w1*B1s*z1+w1*D1s+w2*A2s*z2^2+2*w2*B2s*z2+w2*D2s 
EIzz=A1s*(w1^3/12+y1^2*w1)+A2s*(w2^3/12+y2^2*w2) 
EIyz=w1*(A1s*z1+B1s)*y1+w2*(A2s*z2+B2s)*y2 
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Typical MATLAB file for the Z-stiffener. 
 
% Flanges 1 
 
E1=18.2e6; 
E2=1.41e6; 
v12=0.27; 
G12=0.92e6;   
 
ply=0.005; 
 
h0=-6*ply; 
h1=-5*ply; 
h2=-4*ply; 
h3=-3*ply; 
h4=-2*ply; 
h5=-1*ply; 
h6=0*ply; 
h7=1*ply; 
h8=2*ply; 
h9=3*ply; 
h10=4*ply; 
h11=5*ply; 
h12=6*ply; 
 
S11=1/E1; 
S22=1/E2; 
S12=-v12/E1; 
S21=S12; 
S33=1/G12; 
S=[S11 S12 0;S21 S22 0;0 0 S33]; 
Q=inv(S); 
 
b=45*pi/180; 
n=sin(b); 
m=cos(b); 
TStress=[m^2 n^2 2*m*n;n^2 m^2 -2*m*n;-m*n m*n m^2-n^2]; 
TStrain=[m^2 n^2 m*n;n^2 m^2 -m*n;-2*m*n 2*m*n m^2-n^2]; 
QB_45=inv(TStress)*Q*TStrain; 
 
b=-45*pi/180; 
n=sin(b); 
m=cos(b); 
TStress=[m^2 n^2 2*m*n;n^2 m^2 -2*m*n;-m*n m*n m^2-n^2]; 
TStrain=[m^2 n^2 m*n;n^2 m^2 -m*n;-2*m*n 2*m*n m^2-n^2]; 
QB_N45=inv(TStress)*Q*TStrain; 
    
 
 
b=0*pi/180; 
n=sin(b); 
m=cos(b); 
TStress=[m^2 n^2 2*m*n;n^2 m^2 -2*m*n;-m*n m*n m^2-n^2]; 
TStrain=[m^2 n^2 m*n;n^2 m^2 -m*n;-2*m*n 2*m*n m^2-n^2]; 
QB_0=inv(TStress)*Q*TStrain; 
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P12=QB_45; 
P11=QB_N45; 
P10=QB_0; 
P9=QB_0; 
P8=QB_N45; 
P7=QB_45; 
P6=QB_45; 
P5=QB_N45; 
P4=QB_0; 
P3=QB_0; 
P2=QB_N45; 
P1=QB_45; 
 
A=P1*(h1-h0)+P2*(h2-h1)+P3*(h3-h2)+P4*(h4-h3)+P5*(h5-h4)+P6*(h6-h5)+P7*(h7-h6)+P8*(h8-
h7)+P9*(h9-h8)+P10*(h10-h9)+P11*(h11-h10)+P12*(h12-h11); 
B=1/2*(P1*(h1^2-h0^2)+P2*(h2^2-h1^2)+P3*(h3^2-h2^2)+P4*(h4^2-h3^2)+P5*(h5^2-
h4^2)+P6*(h6^2-h5^2)+P7*(h7^2-h6^2)+P8*(h8^2-h7^2)+P9*(h9^2-h8^2)+P10*(h10^2-
h9^2)+P11*(h11^2-h10^2)+P12*(h12^2-h11^2)); 
D=1/3*(P1*(h1^3-h0^3)+P2*(h2^3-h1^3)+P3*(h3^3-h2^3)+P4*(h4^3-h3^3)+P5*(h5^3-
h4^3)+P6*(h6^3-h5^3)+P7*(h7^3-h6^3)+P8*(h8^3-h7^3)+P9*(h9^3-h8^3)+P10*(h10^3-
h9^3)+P11*(h11^3-h10^3)+P12*(h12^3-h11^3)); 
 
ABD=[A(1,1) A(1,2) A(1,3) B(1,1) B(1,2) B(1,3); 
     A(2,1) A(2,2) A(2,3) B(2,1) B(2,2) B(2,3); 
     A(3,1) A(3,2) A(3,3) B(3,1) B(3,2) B(3,3); 
     B(1,1) B(1,2) B(1,3) D(1,1) D(1,2) D(1,3); 
     B(2,1) B(2,2) B(2,3) D(2,1) D(2,2) D(2,3); 
     B(3,1) B(3,2) B(3,3) D(3,1) D(3,2) D(3,3)]; 
  
abdf1=inv(ABD); 
 
Asf1=1/(abdf1(1,1)-abdf1(1,4)^2/abdf1(4,4)) 
Bsf1=1/(abdf1(1,4)-abdf1(1,1)*abdf1(4,4)/abdf1(1,4)) 
Dsf1=1/(abdf1(4,4)-abdf1(1,4)^2/abdf1(1,1)) 
 
% Flanges 2 
 
E1=18.2e6; 
E2=1.41e6; 
v12=0.27; 
G12=0.92e6;    
 
ply=0.005; 
 
h0=-6*ply; 
h1=-5*ply; 
h2=-4*ply; 
h3=-3*ply; 
h4=-2*ply; 
h5=-1*ply; 
h6=0*ply; 
h7=1*ply; 
h8=2*ply; 
h9=3*ply; 
h10=4*ply; 
h11=5*ply; 
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h12=6*ply; 
 
S11=1/E1; 
S22=1/E2; 
S12=-v12/E1; 
S21=S12; 
S33=1/G12; 
S=[S11 S12 0;S21 S22 0;0 0 S33]; 
Q=inv(S); 
 
b=45*pi/180; 
n=sin(b); 
m=cos(b); 
TStress=[m^2 n^2 2*m*n;n^2 m^2 -2*m*n;-m*n m*n m^2-n^2]; 
TStrain=[m^2 n^2 m*n;n^2 m^2 -m*n;-2*m*n 2*m*n m^2-n^2]; 
QB_45=inv(TStress)*Q*TStrain; 
 
b=-45*pi/180; 
n=sin(b); 
m=cos(b); 
TStress=[m^2 n^2 2*m*n;n^2 m^2 -2*m*n;-m*n m*n m^2-n^2]; 
TStrain=[m^2 n^2 m*n;n^2 m^2 -m*n;-2*m*n 2*m*n m^2-n^2]; 
QB_N45=inv(TStress)*Q*TStrain; 
    
b=0*pi/180; 
n=sin(b); 
m=cos(b); 
TStress=[m^2 n^2 2*m*n;n^2 m^2 -2*m*n;-m*n m*n m^2-n^2]; 
TStrain=[m^2 n^2 m*n;n^2 m^2 -m*n;-2*m*n 2*m*n m^2-n^2]; 
QB_0=inv(TStress)*Q*TStrain; 
 
P12=QB_45; 
P11=QB_N45; 
P10=QB_0; 
P9=QB_0; 
P8=QB_N45; 
P7=QB_45; 
P6=QB_45; 
P5=QB_N45; 
P4=QB_0; 
P3=QB_0; 
P2=QB_N45; 
P1=QB_45; 
 
A=P1*(h1-h0)+P2*(h2-h1)+P3*(h3-h2)+P4*(h4-h3)+P5*(h5-h4)+P6*(h6-h5)+P7*(h7-h6)+P8*(h8-
h7)+P9*(h9-h8)+P10*(h10-h9)+P11*(h11-h10)+P12*(h12-h11); 
B=1/2*(P1*(h1^2-h0^2)+P2*(h2^2-h1^2)+P3*(h3^2-h2^2)+P4*(h4^2-h3^2)+P5*(h5^2-
h4^2)+P6*(h6^2-h5^2)+P7*(h7^2-h6^2)+P8*(h8^2-h7^2)+P9*(h9^2-h8^2)+P10*(h10^2-
h9^2)+P11*(h11^2-h10^2)+P12*(h12^2-h11^2)); 
D=1/3*(P1*(h1^3-h0^3)+P2*(h2^3-h1^3)+P3*(h3^3-h2^3)+P4*(h4^3-h3^3)+P5*(h5^3-
h4^3)+P6*(h6^3-h5^3)+P7*(h7^3-h6^3)+P8*(h8^3-h7^3)+P9*(h9^3-h8^3)+P10*(h10^3-
h9^3)+P11*(h11^3-h10^3)+P12*(h12^3-h11^3)); 
 
ABD=[A(1,1) A(1,2) A(1,3) B(1,1) B(1,2) B(1,3); 
     A(2,1) A(2,2) A(2,3) B(2,1) B(2,2) B(2,3); 
     A(3,1) A(3,2) A(3,3) B(3,1) B(3,2) B(3,3); 
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     B(1,1) B(1,2) B(1,3) D(1,1) D(1,2) D(1,3); 
     B(2,1) B(2,2) B(2,3) D(2,1) D(2,2) D(2,3); 
     B(3,1) B(3,2) B(3,3) D(3,1) D(3,2) D(3,3)]; 
  
abdf2=inv(ABD); 
 
Asf2=1/(abdf2(1,1)-abdf2(1,4)^2/abdf2(4,4)) 
Bsf2=1/(abdf2(1,4)-abdf2(1,1)*abdf2(4,4)/abdf2(1,4)) 
Dsf2=1/(abdf2(4,4)-abdf2(1,4)^2/abdf2(1,1)) 
 
% Web 
 
E1=18.2e6; 
E2=1.41e6; 
v12=0.27; 
G12=0.92e6;   
 
ply=0.005; 
 
h0=-2*ply; 
h1=-1*ply; 
h2=0*ply; 
h3=1*ply; 
h4=2*ply; 
 
S11=1/E1; 
S22=1/E2; 
S12=-v12/E1; 
S21=S12; 
S33=1/G12; 
S=[S11 S12 0;S21 S22 0;0 0 S33]; 
Q=inv(S); 
 
b=45*pi/180; 
n=sin(b); 
m=cos(b); 
TStress=[m^2 n^2 2*m*n;n^2 m^2 -2*m*n;-m*n m*n m^2-n^2]; 
TStrain=[m^2 n^2 m*n;n^2 m^2 -m*n;-2*m*n 2*m*n m^2-n^2]; 
QB_45=inv(TStress)*Q*TStrain; 
 
b=-45*pi/180; 
n=sin(b); 
m=cos(b); 
TStress=[m^2 n^2 2*m*n;n^2 m^2 -2*m*n;-m*n m*n m^2-n^2]; 
TStrain=[m^2 n^2 m*n;n^2 m^2 -m*n;-2*m*n 2*m*n m^2-n^2]; 
QB_N45=inv(TStress)*Q*TStrain; 
   
P4=QB_45; 
P3=QB_N45; 
P2=QB_N45; 
P1=QB_45; 
 
A=P1*(h1-h0)+P2*(h2-h1)+P3*(h3-h2)+P4*(h4-h3); 
B=1/2*(P1*(h1^2-h0^2)+P2*(h2^2-h1^2)+P3*(h3^2-h2^2)+P4*(h4^2-h3^2)); 
D=1/3*(P1*(h1^3-h0^3)+P2*(h2^3-h1^3)+P3*(h3^3-h2^3)+P4*(h4^3-h3^3)); 
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ABD=[A(1,1) A(1,2) A(1,3) B(1,1) B(1,2) B(1,3); 
     A(2,1) A(2,2) A(2,3) B(2,1) B(2,2) B(2,3); 
     A(3,1) A(3,2) A(3,3) B(3,1) B(3,2) B(3,3); 
     B(1,1) B(1,2) B(1,3) D(1,1) D(1,2) D(1,3); 
     B(2,1) B(2,2) B(2,3) D(2,1) D(2,2) D(2,3); 
     B(3,1) B(3,2) B(3,3) D(3,1) D(3,2) D(3,3)]; 
  
abdw=inv(ABD); 
 
Asw=1/(abdw(1,1)-abdw(1,4)^2/abdw(4,4)) 
Bsw=1/(abdw(1,4)-abdw(1,1)*abdw(4,4)/abdw(1,4)) 
Dsw=1/(abdw(4,4)-abdw(1,4)^2/abdw(1,1)) 
 
% Stiffnesses  
 
tply=0.005; 
 
w1=0.25; 
w2=0.25; 
hw=0.5; 
 
yb1=-w1/2+2*tply; 
yb2=w1/2-2*tply; 
 
zb1=12*tply+hw+6*tply; 
zb2=6*tply; 
zc=12*tply+hw/2; 
yc=0; 
z1=zb1-zc; 
z2=zb2-zc; 
y1=yb1-yc; 
y2=yb2-yc; 
 
Ax=w1*(Asf1+(z1)*Bsf1)+w2*(Asf2-(z2)*Bsf2)+hw*Asw 
Dx=w1*(Asf1*z1^2+2*z1*Bsf1+Dsf1)+w2*(Asf2*z2^2+2*z2*Bsf2+Dsf2)+Asw*(1/12*hw^3) 
Dxy=w1*(Asf1*z1+Bsf1)*y1+w2*(Asf2*z2+Bsf2)*y2 
Dy=Asf1*(1/12*w1^3+y1^2*w1)+Asf2*(1/12*w2^3+y2^2*w2)+hw*Dsw 
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Typical MATLAB file for Laminates Bonded Side by Side Un-symmetric Case [±452/04/±452]T -
[±452/02]S under Axial load. 
 
 
 
% Laminate 1 
 
E1=18.2e6; 
E2=1.41e6; 
v12=0.27; 
G12=0.92e6;   
 
ply=0.005; 
total_t=12*ply; 
 
h0=-6*ply; 
h1=-5*ply; 
h2=-4*ply; 
h3=-3*ply; 
h4=-2*ply; 
h5=-1*ply; 
h6=0*ply; 
h7=1*ply; 
h8=2*ply; 
h9=3*ply; 
h10=4*ply; 
h11=5*ply; 
h12=6*ply; 
 
S11=1/E1; 
S22=1/E2; 
S12=-v12/E1; 
S21=S12; 
S33=1/G12; 
S=[S11 S12 0;S21 S22 0;0 0 S33]; 
Q=inv(S); 
 
b=0*pi/180; 
n=sin(b); 
m=cos(b); 
TStress=[m^2 n^2 2*m*n;n^2 m^2 -2*m*n;-m*n m*n m^2-n^2]; 
TStrain=[m^2 n^2 m*n;n^2 m^2 -m*n;-2*m*n 2*m*n m^2-n^2]; 
QB_0=inv(TStress)*Q*TStrain; 
 
b=45*pi/180; 
n=sin(b); 
m=cos(b); 
TStress=[m^2 n^2 2*m*n;n^2 m^2 -2*m*n;-m*n m*n m^2-n^2]; 
TStrain=[m^2 n^2 m*n;n^2 m^2 -m*n;-2*m*n 2*m*n m^2-n^2]; 
QB_45=inv(TStress)*Q*TStrain; 
    
b=-45*pi/180; 
n=sin(b); 
m=cos(b); 
TStress=[m^2 n^2 2*m*n;n^2 m^2 -2*m*n;-m*n m*n m^2-n^2]; 
TStrain=[m^2 n^2 m*n;n^2 m^2 -m*n;-2*m*n 2*m*n m^2-n^2]; 
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QB_N45=inv(TStress)*Q*TStrain; 
   
P12=QB_45; 
P11=QB_N45; 
P10=QB_45; 
P9=QB_N45; 
P8=QB_0; 
P7=QB_0; 
P6=QB_0; 
P5=QB_0; 
P4=QB_45; 
P3=QB_N45; 
P2=QB_45; 
P1=QB_N45; 
 
A=P1*(h1-h0)+P2*(h2-h1)+P3*(h3-h2)+P4*(h4-h3)+P5*(h5-h4)+P6*(h6-h5)+P7*(h7-h6)+P8*(h8-
h7)+P9*(h9-h8)+P10*(h10-h9)+P11*(h11-h10)+P12*(h12-h11); 
B=1/2*(P1*(h1^2-h0^2)+P2*(h2^2-h1^2)+P3*(h3^2-h2^2)+P4*(h4^2-h3^2)+P5*(h5^2-
h4^2)+P6*(h6^2-h5^2)+P7*(h7^2-h6^2)+P8*(h8^2-h7^2)+P9*(h9^2-h8^2)+P10*(h10^2-
h9^2)+P11*(h11^2-h10^2)+P12*(h12^2-h11^2)); 
D=1/3*(P1*(h1^3-h0^3)+P2*(h2^3-h1^3)+P3*(h3^3-h2^3)+P4*(h4^3-h3^3)+P5*(h5^3-
h4^3)+P6*(h6^3-h5^3)+P7*(h7^3-h6^3)+P8*(h8^3-h7^3)+P9*(h9^3-h8^3)+P10*(h10^3-
h9^3)+P11*(h11^3-h10^3)+P12*(h12^3-h11^3)); 
 
ABD=[A(1,1) A(1,2) A(1,3) B(1,1) B(1,2) B(1,3); 
     A(2,1) A(2,2) A(2,3) B(2,1) B(2,2) B(2,3); 
     A(3,1) A(3,2) A(3,3) B(3,1) B(3,2) B(3,3); 
     B(1,1) B(1,2) B(1,3) D(1,1) D(1,2) D(1,3); 
     B(2,1) B(2,2) B(2,3) D(2,1) D(2,2) D(2,3); 
     B(3,1) B(3,2) B(3,3) D(3,1) D(3,2) D(3,3)]; 
  
abd1=inv(ABD); 
 
ass1=(abd1(1,1)*abd1(4,4)-abd1(1,4)^2)/abd1(4,4) 
dss1=(abd1(1,1)*abd1(4,4)-abd1(1,4)^2)/abd1(1,1) 
 
% Laminate 2 
 
E1=18.2e6; 
E2=1.41e6; 
v12=0.27; 
G12=0.92e6;   
 
ply=0.005; 
total_t=12*ply; 
 
h0=-6*ply; 
h1=-5*ply; 
h2=-4*ply; 
h3=-3*ply; 
h4=-2*ply; 
h5=-1*ply; 
h6=0*ply; 
h7=1*ply; 
h8=2*ply; 
h9=3*ply; 



 

189 
 

 

h10=4*ply; 
h11=5*ply; 
h12=6*ply; 
 
S11=1/E1; 
S22=1/E2; 
S12=-v12/E1; 
S21=S12; 
S33=1/G12; 
S=[S11 S12 0;S21 S22 0;0 0 S33]; 
Q=inv(S); 
 
b=0*pi/180; 
n=sin(b); 
m=cos(b); 
TStress=[m^2 n^2 2*m*n;n^2 m^2 -2*m*n;-m*n m*n m^2-n^2]; 
TStrain=[m^2 n^2 m*n;n^2 m^2 -m*n;-2*m*n 2*m*n m^2-n^2]; 
QB_0=inv(TStress)*Q*TStrain; 
 
b=45*pi/180; 
n=sin(b); 
m=cos(b); 
TStress=[m^2 n^2 2*m*n;n^2 m^2 -2*m*n;-m*n m*n m^2-n^2]; 
TStrain=[m^2 n^2 m*n;n^2 m^2 -m*n;-2*m*n 2*m*n m^2-n^2]; 
QB_45=inv(TStress)*Q*TStrain; 
    
b=-45*pi/180; 
n=sin(b); 
m=cos(b); 
TStress=[m^2 n^2 2*m*n;n^2 m^2 -2*m*n;-m*n m*n m^2-n^2]; 
TStrain=[m^2 n^2 m*n;n^2 m^2 -m*n;-2*m*n 2*m*n m^2-n^2]; 
QB_N45=inv(TStress)*Q*TStrain; 
   
P12=QB_45; 
P11=QB_N45; 
P10=QB_45; 
P9=QB_N45; 
P8=QB_0; 
P7=QB_0; 
P6=QB_0; 
P5=QB_0; 
P4=QB_N45; 
P3=QB_45; 
P2=QB_N45; 
P1=QB_45; 
 
A=P1*(h1-h0)+P2*(h2-h1)+P3*(h3-h2)+P4*(h4-h3)+P5*(h5-h4)+P6*(h6-h5)+P7*(h7-h6)+P8*(h8-
h7)+P9*(h9-h8)+P10*(h10-h9)+P11*(h11-h10)+P12*(h12-h11); 
B=1/2*(P1*(h1^2-h0^2)+P2*(h2^2-h1^2)+P3*(h3^2-h2^2)+P4*(h4^2-h3^2)+P5*(h5^2-
h4^2)+P6*(h6^2-h5^2)+P7*(h7^2-h6^2)+P8*(h8^2-h7^2)+P9*(h9^2-h8^2)+P10*(h10^2-
h9^2)+P11*(h11^2-h10^2)+P12*(h12^2-h11^2)); 
D=1/3*(P1*(h1^3-h0^3)+P2*(h2^3-h1^3)+P3*(h3^3-h2^3)+P4*(h4^3-h3^3)+P5*(h5^3-
h4^3)+P6*(h6^3-h5^3)+P7*(h7^3-h6^3)+P8*(h8^3-h7^3)+P9*(h9^3-h8^3)+P10*(h10^3-
h9^3)+P11*(h11^3-h10^3)+P12*(h12^3-h11^3)); 
 
ABD=[A(1,1) A(1,2) A(1,3) B(1,1) B(1,2) B(1,3); 
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     A(2,1) A(2,2) A(2,3) B(2,1) B(2,2) B(2,3); 
     A(3,1) A(3,2) A(3,3) B(3,1) B(3,2) B(3,3); 
     B(1,1) B(1,2) B(1,3) D(1,1) D(1,2) D(1,3); 
     B(2,1) B(2,2) B(2,3) D(2,1) D(2,2) D(2,3); 
     B(3,1) B(3,2) B(3,3) D(3,1) D(3,2) D(3,3)]; 
  
abd2=inv(ABD); 
 
ass2=(abd2(1,1)*abd2(4,4)-abd2(1,4)^2)/abd2(4,4) 
dss2=(abd2(1,1)*abd2(4,4)-abd2(1,4)^2)/abd2(1,1) 
 
% Stress Laminate 1 
 
NM=[0.02999/0.5;0;0;0;0;0]; 
 
strain=abd1*NM; 
 
strain0=[strain(1);strain(2);strain(3)]; 
curvature0=[strain(4);strain(5);strain(6)]; 
 
zk=5.5*ply; 
 
strain_xy=strain0+zk*curvature0; 
 
stress_xy=QB_45*strain_xy; 
 
 vpa(stress_xy(1)) 
 
% Stress Laminate 2 
 
NM=[0.01501/0.25;0;0;0;0;0]; 
 
strain=abd2*NM; 
 
strain0=[strain(1);strain(2);strain(3)]; 
curvature0=[strain(4);strain(5);strain(6)]; 
 
zk=5.5*ply; 
 
strain_xy=strain0+zk*curvature0; 
 
stress_xy=QB_45*strain_xy; 
 
 vpa(stress_xy(1)) 
% Stiffnesses 
 
v1=0.5/0.75; 
v2=0.25/0.75; 
 
ass=inv(v1/ass1+v2/ass2); 
dss=inv(v1/dss1+v2/dss2); 
 
Ax=0.75/ass 
Dx=0.75/dss 
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Typical MATLAB file for the Circular Cross-section Beam Symmetric Case [452/-452/02/902]S 

under Axial load. 
 
clear all 
clc 
 
E1=18.2e6; 
E2=1.41e6; 
v12=0.27; 
G12=0.92e6;  
 
ply=0.0052; 
 
R=1-8*ply; 
Ro=R+8*ply; 
Ri=R-8*ply; 
 
syms t 
f=sqrt(R^2-t^2); 
 
h0=-f-8*ply; 
h1=-f-7*ply; 
h2=-f-6*ply; 
h3=-f-5*ply; 
h4=-f-4*ply; 
h5=-f-3*ply; 
h6=-f-2*ply; 
h7=-f-1*ply; 
h8=-f+0*ply; 
h9=-f+1*ply; 
h10=-f+2*ply; 
h11=-f+3*ply; 
h12=-f+4*ply; 
h13=-f+5*ply; 
h14=-f+6*ply; 
h15=-f+7*ply; 
h16=-f+8*ply; 
 
h17=f-8*ply; 
h18=f-7*ply; 
h19=f-6*ply; 
h20=f-5*ply; 
h21=f-4*ply; 
h22=f-3*ply; 
h23=f-2*ply; 
h24=f-1*ply; 
h25=f+0*ply; 
h26=f+1*ply; 
h27=f+2*ply; 
h28=f+3*ply; 
h29=f+4*ply; 
h30=f+5*ply; 
h31=f+6*ply; 
h32=f+7*ply; 
h33=f+8*ply; 
 



 

192 
 

 

S11=1/E1; 
S22=1/E2; 
S12=-v12/E1; 
S21=S12; 
S33=1/G12; 
S=[S11 S12 0;S21 S22 0;0 0 S33]; 
Q=inv(S); 
 
b=0*pi/180; 
n=sin(b); 
m=cos(b); 
TStress=[m^2 n^2 2*m*n;n^2 m^2 -2*m*n;-m*n m*n m^2-n^2]; 
TStrain=[m^2 n^2 m*n;n^2 m^2 -m*n;-2*m*n 2*m*n m^2-n^2]; 
QB_0=inv(TStress)*Q*TStrain; 
 
b=45*pi/180; 
n=sin(b); 
m=cos(b); 
TStress=[m^2 n^2 2*m*n;n^2 m^2 -2*m*n;-m*n m*n m^2-n^2]; 
TStrain=[m^2 n^2 m*n;n^2 m^2 -m*n;-2*m*n 2*m*n m^2-n^2]; 
QB_45=inv(TStress)*Q*TStrain; 
    
b=-45*pi/180; 
n=sin(b); 
m=cos(b); 
TStress=[m^2 n^2 2*m*n;n^2 m^2 -2*m*n;-m*n m*n m^2-n^2]; 
TStrain=[m^2 n^2 m*n;n^2 m^2 -m*n;-2*m*n 2*m*n m^2-n^2]; 
QB_N45=inv(TStress)*Q*TStrain; 
   
b=90*pi/180; 
n=sin(b); 
m=cos(b); 
TStress=[m^2 n^2 2*m*n;n^2 m^2 -2*m*n;-m*n m*n m^2-n^2]; 
TStrain=[m^2 n^2 m*n;n^2 m^2 -m*n;-2*m*n 2*m*n m^2-n^2]; 
QB_90=inv(TStress)*Q*TStrain; 
 
P32=QB_45; 
P31=QB_45; 
P30=QB_N45; 
P29=QB_N45; 
P28=QB_0; 
P27=QB_0; 
P26=QB_90; 
P25=QB_90; 
P24=QB_90; 
P23=QB_90; 
P22=QB_0; 
P21=QB_0; 
P20=QB_N45; 
P19=QB_N45; 
P18=QB_45; 
P17=QB_45; 
P16=QB_45; 
P15=QB_45; 
P14=QB_N45; 
P13=QB_N45; 
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P12=QB_0; 
P11=QB_0; 
P10=QB_90; 
P9=QB_90; 
P8=QB_90; 
P7=QB_90; 
P6=QB_0; 
P5=QB_0; 
P4=QB_N45; 
P3=QB_N45; 
P2=QB_45; 
P1=QB_45; 
 
A=P1*(h1-h0)+P2*(h2-h1)+P3*(h3-h2)+P4*(h4-h3)+P5*(h5-h4)+P6*(h6-h5)+P7*(h7-h6)+P8*(h8-
h7)+P9*(h9-h8)+P10*(h10-h9)+P11*(h11-h10)+P12*(h12-h11)+P13*(h13-h12)+P14*(h14-
h13)+P15*(h15-h14)+P16*(h16-h15)+P17*(h18-h17)+P18*(h19-h18)+P19*(h20-h19)+P20*(h21-
h20)+P21*(h22-h21)+P22*(h23-h22)+P23*(h24-h23)+P24*(h25-h24)+P25*(h26-h25)+P26*(h27-
h26)+P27*(h28-h27)+P28*(h29-h28)+P29*(h30-h29)+P30*(h31-h30)+P31*(h32-h31)+P32*(h33-
h32);                                                                                                                         
B=1/2*(P1*(h1^2-h0^2)+P2*(h2^2-h1^2)+P3*(h3^2-h2^2)+P4*(h4^2-h3^2)+P5*(h5^2-
h4^2)+P6*(h6^2-h5^2)+P7*(h7^2-h6^2)+P8*(h8^2-h7^2)+P9*(h9^2-h8^2)+P10*(h10^2-
h9^2)+P11*(h11^2-h10^2)+P12*(h12^2-h11^2)+P13*(h13^2-h12^2)+P14*(h14^2-
h13^2)+P15*(h15^2-h14^2)+P16*(h16^2-h15^2)+P17*(h18^2-h17^2)+P18*(h19^2-
h18^2)+P19*(h20^2-h19^2)+P20*(h21^2-h20^2)+P21*(h22^2-h21^2)+P22*(h23^2-
h22^2)+P23*(h24^2-h23^2)+P24*(h25^2-h24^2)+P25*(h26^2-h25^2)+P26*(h27^2-
h26^2)+P27*(h28^2-h27^2)+P28*(h29^2-h28^2)+P29*(h30^2-h29^2)+P30*(h31^2-
h30^2)+P31*(h32^2-h31^2)+P32*(h33^2-h32^2)); 
D=1/3*(P1*(h1^3-h0^3)+P2*(h2^3-h1^3)+P3*(h3^3-h2^3)+P4*(h4^3-h3^3)+P5*(h5^3-
h4^3)+P6*(h6^3-h5^3)+P7*(h7^3-h6^3)+P8*(h8^3-h7^3)+P9*(h9^3-h8^3)+P10*(h10^3-
h9^3)+P11*(h11^3-h10^3)+P12*(h12^3-h11^3)+P13*(h13^3-h12^3)+P14*(h14^3-
h13^3)+P15*(h15^3-h14^3)+P16*(h16^3-h15^3)+P17*(h18^3-h17^3)+P18*(h19^3-
h18^3)+P19*(h20^3-h19^3)+P20*(h21^3-h20^3)+P21*(h22^3-h21^3)+P22*(h23^3-
h22^3)+P23*(h24^3-h23^3)+P24*(h25^3-h24^3)+P25*(h26^3-h25^3)+P26*(h27^3-
h26^3)+P27*(h28^3-h27^3)+P28*(h29^3-h28^3)+P29*(h30^3-h29^3)+P30*(h31^3-
h30^3)+P31*(h32^3-h31^3)+P32*(h33^3-h32^3)); 
  
AB=int(A*sqrt(1+(diff(f,t))^2),t,-R,R); 
BB=int(B*sqrt(1+(diff(f,t))^2),t,-R,R); 
DB=int(D*sqrt(1+(diff(f,t))^2),t,-R,R); 
 
ABDB=[AB(1,1) AB(1,2) AB(1,3) BB(1,1) BB(1,2) BB(1,3); 
     AB(2,1) AB(2,2) AB(2,3) BB(2,1) BB(2,2) BB(2,3); 
     AB(3,1) AB(3,2) AB(3,3) BB(3,1) BB(3,2) BB(3,3); 
     BB(1,1) BB(1,2) BB(1,3) DB(1,1) DB(1,2) DB(1,3); 
     BB(2,1) BB(2,2) BB(2,3) DB(2,1) DB(2,2) DB(2,3); 
     BB(3,1) BB(3,2) BB(3,3) DB(3,1) DB(3,2) DB(3,3)]; 
  
abdb=inv(ABDB); 
 
% Stiffnesses 
 
our_EAx=1/(abdb(1,1)) 
 
our_EIx=vpa(abdb(1,1)/(abdb(1,1)*abdb(4,4)-abdb(1,4)^2)) 
 
% Stresses 
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NM=[1;0;0;0;0;0]; 
 
strain=abdb*NM; 
 
strain0=[strain(1);strain(2);strain(3)]; 
curvature0=[strain(4);strain(5);strain(6)]; 
 
zk=R+(0.5)*ply; 
 
strain_xy=strain0+zk*curvature0; 
 
stress_xy=QB_90*strain_xy; 
 
vpa(stress_xy(1)) 
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Typical MATLAB file for the Airfoil Beam with [908]S under Bending. 
 
clear all 
clc 
 
E1=18.2e6; 
E2=1.41e6; 
v12=0.27; 
G12=0.92e6;  
 
ply=0.0052; 
syms t 
f=(-0.9584/5.43535649594*t+0.9584); 
 
h0=-f-8*ply; 
h1=-f-7*ply; 
h2=-f-6*ply; 
h3=-f-5*ply; 
h4=-f-4*ply; 
h5=-f-3*ply; 
h6=-f-2*ply; 
h7=-f-1*ply; 
h8=-f+0*ply; 
h9=-f+1*ply; 
h10=-f+2*ply; 
h11=-f+3*ply; 
h12=-f+4*ply; 
h13=-f+5*ply; 
h14=-f+6*ply; 
h15=-f+7*ply; 
h16=-f+8*ply; 
 
h17=f-8*ply; 
h18=f-7*ply; 
h19=f-6*ply; 
h20=f-5*ply; 
h21=f-4*ply; 
h22=f-3*ply; 
h23=f-2*ply; 
h24=f-1*ply; 
h25=f+0*ply; 
h26=f+1*ply; 
h27=f+2*ply; 
h28=f+3*ply; 
h29=f+4*ply; 
h30=f+5*ply; 
h31=f+6*ply; 
h32=f+7*ply; 
h33=f+8*ply; 
 
S11=1/E1; 
S22=1/E2; 
S12=-v12/E1; 
S21=S12; 
S33=1/G12; 
S=[S11 S12 0;S21 S22 0;0 0 S33]; 
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Q=inv(S); 
   
b=90*pi/180; 
n=sin(b); 
m=cos(b); 
TStress=[m^2 n^2 2*m*n;n^2 m^2 -2*m*n;-m*n m*n m^2-n^2]; 
TStrain=[m^2 n^2 m*n;n^2 m^2 -m*n;-2*m*n 2*m*n m^2-n^2]; 
QB_90=inv(TStress)*Q*TStrain; 
 
P32=QB_90; 
P31=QB_90; 
P30=QB_90; 
P29=QB_90; 
P28=QB_90; 
P27=QB_90; 
P26=QB_90; 
P25=QB_90; 
P24=QB_90; 
P23=QB_90; 
P22=QB_90; 
P21=QB_90; 
P20=QB_90; 
P19=QB_90; 
P18=QB_90; 
P17=QB_90; 
P16=QB_90; 
P15=QB_90; 
P14=QB_90; 
P13=QB_90; 
P12=QB_90; 
P11=QB_90; 
P10=QB_90; 
P9=QB_90; 
P8=QB_90; 
P7=QB_90; 
P6=QB_90; 
P5=QB_90; 
P4=QB_90; 
P3=QB_90; 
P2=QB_90; 
P1=QB_90; 
 
A=P1*(h1-h0)+P2*(h2-h1)+P3*(h3-h2)+P4*(h4-h3)+P5*(h5-h4)+P6*(h6-h5)+P7*(h7-h6)+P8*(h8-
h7)+P9*(h9-h8)+P10*(h10-h9)+P11*(h11-h10)+P12*(h12-h11)+P13*(h13-h12)+P14*(h14-
h13)+P15*(h15-h14)+P16*(h16-h15)+P17*(h18-h17)+P18*(h19-h18)+P19*(h20-h19)+P20*(h21-
h20)+P21*(h22-h21)+P22*(h23-h22)+P23*(h24-h23)+P24*(h25-h24)+P25*(h26-h25)+P26*(h27-
h26)+P27*(h28-h27)+P28*(h29-h28)+P29*(h30-h29)+P30*(h31-h30)+P31*(h32-h31)+P32*(h33-
h32);                                                                                                                         
B=1/2*(P1*(h1^2-h0^2)+P2*(h2^2-h1^2)+P3*(h3^2-h2^2)+P4*(h4^2-h3^2)+P5*(h5^2-
h4^2)+P6*(h6^2-h5^2)+P7*(h7^2-h6^2)+P8*(h8^2-h7^2)+P9*(h9^2-h8^2)+P10*(h10^2-
h9^2)+P11*(h11^2-h10^2)+P12*(h12^2-h11^2)+P13*(h13^2-h12^2)+P14*(h14^2-
h13^2)+P15*(h15^2-h14^2)+P16*(h16^2-h15^2)+P17*(h18^2-h17^2)+P18*(h19^2-
h18^2)+P19*(h20^2-h19^2)+P20*(h21^2-h20^2)+P21*(h22^2-h21^2)+P22*(h23^2-
h22^2)+P23*(h24^2-h23^2)+P24*(h25^2-h24^2)+P25*(h26^2-h25^2)+P26*(h27^2-
h26^2)+P27*(h28^2-h27^2)+P28*(h29^2-h28^2)+P29*(h30^2-h29^2)+P30*(h31^2-
h30^2)+P31*(h32^2-h31^2)+P32*(h33^2-h32^2)); 
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D=1/3*(P1*(h1^3-h0^3)+P2*(h2^3-h1^3)+P3*(h3^3-h2^3)+P4*(h4^3-h3^3)+P5*(h5^3-
h4^3)+P6*(h6^3-h5^3)+P7*(h7^3-h6^3)+P8*(h8^3-h7^3)+P9*(h9^3-h8^3)+P10*(h10^3-
h9^3)+P11*(h11^3-h10^3)+P12*(h12^3-h11^3)+P13*(h13^3-h12^3)+P14*(h14^3-
h13^3)+P15*(h15^3-h14^3)+P16*(h16^3-h15^3)+P17*(h18^3-h17^3)+P18*(h19^3-
h18^3)+P19*(h20^3-h19^3)+P20*(h21^3-h20^3)+P21*(h22^3-h21^3)+P22*(h23^3-
h22^3)+P23*(h24^3-h23^3)+P24*(h25^3-h24^3)+P25*(h26^3-h25^3)+P26*(h27^3-
h26^3)+P27*(h28^3-h27^3)+P28*(h29^3-h28^3)+P29*(h30^3-h29^3)+P30*(h31^3-
h30^3)+P31*(h32^3-h31^3)+P32*(h33^3-h32^3)); 
  
AB=int(A*sqrt(1+(diff(f,t))^2),t,0,5.43535649594); 
BB=int(B*sqrt(1+(diff(f,t))^2),t,0,5.43535649594); 
DB=int(D*sqrt(1+(diff(f,t))^2),t,0,5.43535649594); 
 
ABDB1=[AB(1,1) AB(1,2) AB(1,3) BB(1,1) BB(1,2) BB(1,3); 
     AB(2,1) AB(2,2) AB(2,3) BB(2,1) BB(2,2) BB(2,3); 
     AB(3,1) AB(3,2) AB(3,3) BB(3,1) BB(3,2) BB(3,3); 
     BB(1,1) BB(1,2) BB(1,3) DB(1,1) DB(1,2) DB(1,3); 
     BB(2,1) BB(2,2) BB(2,3) DB(2,1) DB(2,2) DB(2,3); 
     BB(3,1) BB(3,2) BB(3,3) DB(3,1) DB(3,2) DB(3,3)]; 
  
ply=0.0052; 
 
R=0.9584; 
 
syms t 
f=sqrt(R^2-t^2); 
 
h0=f-8*ply; 
h1=f-7*ply; 
h2=f-6*ply; 
h3=f-5*ply; 
h4=f-4*ply; 
h5=f-3*ply; 
h6=f-2*ply; 
h7=f-1*ply; 
h8=f+0*ply; 
h9=f+1*ply; 
h10=f+2*ply; 
h11=f+3*ply; 
h12=f+4*ply; 
h13=f+5*ply; 
h14=f+6*ply; 
h15=f+7*ply; 
h16=f+8*ply; 
 
P16=QB_90; 
P15=QB_90; 
P14=QB_90; 
P13=QB_90; 
P12=QB_90; 
P11=QB_90; 
P10=QB_90; 
P9=QB_90; 
P8=QB_90; 
P7=QB_90; 
P6=QB_90; 
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P5=QB_90; 
P4=QB_90; 
P3=QB_90; 
P2=QB_90; 
P1=QB_90; 
 
A=P1*(h1-h0)+P2*(h2-h1)+P3*(h3-h2)+P4*(h4-h3)+P5*(h5-h4)+P6*(h6-h5)+P7*(h7-h6)+P8*(h8-
h7)+P9*(h9-h8)+P10*(h10-h9)+P11*(h11-h10)+P12*(h12-h11)+P13*(h13-h12)+P14*(h14-
h13)+P15*(h15-h14)+P16*(h16-h15); 
B=1/2*(P1*(h1^2-h0^2)+P2*(h2^2-h1^2)+P3*(h3^2-h2^2)+P4*(h4^2-h3^2)+P5*(h5^2-
h4^2)+P6*(h6^2-h5^2)+P7*(h7^2-h6^2)+P8*(h8^2-h7^2)+P9*(h9^2-h8^2)+P10*(h10^2-
h9^2)+P11*(h11^2-h10^2)+P12*(h12^2-h11^2)+P13*(h13^2-h12^2)+P14*(h14^2-
h13^2)+P15*(h15^2-h14^2)+P16*(h16^2-h15^2)); 
D=1/3*(P1*(h1^3-h0^3)+P2*(h2^3-h1^3)+P3*(h3^3-h2^3)+P4*(h4^3-h3^3)+P5*(h5^3-
h4^3)+P6*(h6^3-h5^3)+P7*(h7^3-h6^3)+P8*(h8^3-h7^3)+P9*(h9^3-h8^3)+P10*(h10^3-
h9^3)+P11*(h11^3-h10^3)+P12*(h12^3-h11^3)+P13*(h13^3-h12^3)+P14*(h14^3-
h13^3)+P15*(h15^3-h14^3)+P16*(h16^3-h15^3)); 
 
AB=int(A*sqrt(1+(diff(f,t))^2),t,-R+0.001,-0.001); 
BB=int(B*sqrt(1+(diff(f,t))^2),t,-R+0.001,-0.001); 
DB=int(D*sqrt(1+(diff(f,t))^2),t,-R+0.001,-0.001); 
 
ABDB2=[AB(1,1) AB(1,2) AB(1,3) BB(1,1) BB(1,2) BB(1,3); 
     AB(2,1) AB(2,2) AB(2,3) BB(2,1) BB(2,2) BB(2,3); 
     AB(3,1) AB(3,2) AB(3,3) BB(3,1) BB(3,2) BB(3,3); 
     BB(1,1) BB(1,2) BB(1,3) DB(1,1) DB(1,2) DB(1,3); 
     BB(2,1) BB(2,2) BB(2,3) DB(2,1) DB(2,2) DB(2,3); 
     BB(3,1) BB(3,2) BB(3,3) DB(3,1) DB(3,2) DB(3,3)]; 
  
m11=vpa(real(ABDB2(1,1))); 
m12=vpa(real(ABDB2(1,2))); 
m13=vpa(real(ABDB2(1,3))); 
m14=vpa(real(ABDB2(1,4))); 
m15=vpa(real(ABDB2(1,5))); 
m16=vpa(real(ABDB2(1,6))); 
m21=vpa(real(ABDB2(2,1))); 
m22=vpa(real(ABDB2(2,2))); 
m23=vpa(real(ABDB2(2,3))); 
m24=vpa(real(ABDB2(2,4))); 
m25=vpa(real(ABDB2(2,5))); 
m26=vpa(real(ABDB2(2,6))); 
m31=vpa(real(ABDB2(3,1))); 
m32=vpa(real(ABDB2(3,2))); 
m33=vpa(real(ABDB2(3,3))); 
m34=vpa(real(ABDB2(3,4))); 
m35=vpa(real(ABDB2(3,5))); 
m36=vpa(real(ABDB2(3,6))); 
m41=vpa(real(ABDB2(4,1))); 
m42=vpa(real(ABDB2(4,2))); 
m43=vpa(real(ABDB2(4,3))); 
m44=vpa(real(ABDB2(4,4))); 
m45=vpa(real(ABDB2(4,5))); 
m46=vpa(real(ABDB2(4,6))); 
m51=vpa(real(ABDB2(5,1))); 
m52=vpa(real(ABDB2(5,2))); 
m53=vpa(real(ABDB2(5,3))); 
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m54=vpa(real(ABDB2(5,4))); 
m55=vpa(real(ABDB2(5,5))); 
m56=vpa(real(ABDB2(5,6))); 
m61=vpa(real(ABDB2(6,1))); 
m62=vpa(real(ABDB2(6,2))); 
m63=vpa(real(ABDB2(6,3))); 
m64=vpa(real(ABDB2(6,4))); 
m65=vpa(real(ABDB2(6,5))); 
m66=vpa(real(ABDB2(6,6))); 
  
ABDB2p=[real(m11) real(m12) real(m13) real(m14) real(m15) real(m16); 
        real(m21) real(m22) real(m23) real(m24) real(m25) real(m26); 
        real(m31) real(m32) real(m33) real(m34) real(m35) real(m36); 
        real(m41) real(m42) real(m43) real(m44) real(m45) real(m46); 
        real(m51) real(m52) real(m53) real(m54) real(m55) real(m56); 
        real(m61) real(m62) real(m63) real(m64) real(m65) real(m66)]; 
 
     
ABDBT=ABDB1+2*ABDB2p; 
  
abdb=inv(ABDBT); 
 
our_EIx=vpa(abdb(1,1)/(abdb(1,1)*abdb(4,4)-abdb(1,4)^2)) 
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Typical ANSYS file for Stiffener Reinforced Laminated Beam Symmetric Case  
[04/-45/45/-45/45]T and [±452]T under Axial Load. 
 
 
/FILNAM, Laminate 
/title, Laminate 
/prep7 
 
MP,EX,1,18.2E6 
MP,EY,1,1.41E6 
MP,EZ,1,1.41E6 
MP,PRXY,1,0.27 
MP,PRYZ,1,0.27 
MP,PRXZ,1,0.27 
MP,GXY,1,0.92E6 
MP,GYZ,1,0.92E6 
MP,GXZ,1,0.92E6 
 
L=10 
b1=0.5 
tply=0.005 
force=1 
 
n=1 
 
*DO,i,1,12,1 
k,n,0,-b1/2,(i-7)*tply 
k,n+1,L,-b1/2,(i-7)*tply 
k,n+2,L,b1/2,(i-7)*tply 
k,n+3,0,b1/2,(i-7)*tply 
k,n+4,0,-b1/2,(i-6)*tply 
k,n+5,L,-b1/2,(i-6)*tply 
k,n+6,L,b1/2,(i-6)*tply 
k,n+7,0,b1/2,(i-6)*tply 
V,n,n+1,n+2,n+3,n+4,n+5,n+6,n+7 
n=n+8 
*ENDDO 
 
allsel 
nummrg,kp 
 
ET,1,SOLID46 
 
R,1 
RMODIF,1,1,1,0,0,0,0 
RMODIF,1,7,0 
RMODIF,1,13,1,45,tply 
 
R,2 
RMODIF,2,1,1,0,0,0,0 
RMODIF,2,7,0 
RMODIF,2,13,1,-45,tply 
 
R,3 
RMODIF,3,1,1,0,0,0,0 
RMODIF,3,7,0 
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RMODIF,3,13,1,45,tply 
 
R,4 
RMODIF,4,1,1,0,0,0,0 
RMODIF,4,7,0 
RMODIF,4,13,1,-45,tply 
 
R,5 
RMODIF,5,1,1,0,0,0,0 
RMODIF,5,7,0 
RMODIF,5,13,1,0,tply 
 
R,6 
RMODIF,6,1,1,0,0,0,0 
RMODIF,6,7,0 
RMODIF,6,13,1,0,tply 
 
R,7 
RMODIF,7,1,1,0,0,0,0 
RMODIF,7,7,0 
RMODIF,7,13,1,0,tply 
 
R,8 
RMODIF,8,1,1,0,0,0,0 
RMODIF,8,7,0 
RMODIF,8,13,1,0,tply 
 
R,9 
RMODIF,9,1,1,0,0,0,0 
RMODIF,9,7,0 
RMODIF,9,13,1,-45,tply 
 
R,10 
RMODIF,10,1,1,0,0,0,0 
RMODIF,10,7,0 
RMODIF,10,13,1,45,tply 
 
R,11 
RMODIF,11,1,1,0,0,0,0 
RMODIF,11,7,0 
RMODIF,11,13,1,-45,tply 
 
R,12 
RMODIF,12,1,1,0,0,0,0 
RMODIF,12,7,0 
RMODIF,12,13,1,45,tply 
 
*DO,i,1,12,1 
VSEL,S,VOLU,,i 
VATT,1,i,1,0 
*ENDDO 
 
dx=320 
xx=1 
LSEL,s,Lenght,,L 
LESIZE,all,,,dx,xx 
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dy=16 
yy=1 
LSEL,S,Lenght,,b1 
LESIZE,all,,,dy,yy 
 
dz=2 
zz=1 
LSEL,S,Lenght,,tply 
LESIZE,ALL,,,dz,zz 
 
allsel 
VMESH,ALL 
 
tol=1e-5 
 
NSEL,S,LOC,x,0 
D,ALL,Ux,0 
 
NSEL,S,LOC,x,0 
NSEL,R,LOC,y,0 
D,ALL,Uy,0 
 
NSEL,S,LOC,x,0 
NSEL,R,LOC,z,0 
D,ALL,Uz,0 
 
NSEL,S,LOC,X,L-tol,L+tol 
NSEL,R,LOC,y,0-tol,0+tol 
NSEL,R,LOC,Z,0-tol,0+tol 
F,ALL,FX,force 
 
allsel 
 
FINISH   
/SOL 
 
SOLVE    
FINISH   
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 Typical ANSYS file for Non-Aligned Stiffener Reinforced Laminated Beam Un-symmetric Case  
[±45/0/90]3T under Mx. 
 
/FILNAM, Laminate 
/title, Laminate 
/prep7 
 
MP,EX,1,18.2E6 
MP,EY,1,1.41E6 
MP,EZ,1,1.41E6 
MP,PRXY,1,0.27 
MP,PRYZ,1,0.27 
MP,PRXZ,1,0.27 
MP,GXY,1,0.92E6 
MP,GYZ,1,0.92E6 
MP,GXZ,1,0.92E6 
 
L=10 
b1=0.5 
b2=0.25 
s=0.0625 
tply=0.005 
force=1 
zc=4.93926269104891*tply 
yc=0.23866025259459 
e=0.5/16 
vx=0.0625 
 
n=1 
 
*DO,i,1,3,1 
k,n,0,0,(i-1)*tply 
k,n+1,L,0,(i-1)*tply 
k,n+2,L,6*e,(i-1)*tply 
k,n+3,0,6*e,(i-1)*tply 
k,n+4,0,0,(i)*tply 
k,n+5,L,0,(i)*tply 
k,n+6,L,6*e,(i)*tply 
k,n+7,0,6*e,(i)*tply 
V,n,n+1,n+2,n+3,n+4,n+5,n+6,n+7 
n=n+8 
*ENDDO 
 
*DO,i,1,3,1 
k,n,0,6*e,(i-1)*tply 
k,n+1,L,6*e,(i-1)*tply 
k,n+2,L,yc-7*e+6*e,(i-1)*tply 
k,n+3,0,yc-7*e+6*e,(i-1)*tply 
k,n+4,0,6*e,(i)*tply 
k,n+5,L,6*e,(i)*tply 
k,n+6,L,yc-7*e+6*e,(i)*tply 
k,n+7,0,yc-7*e+6*e,(i)*tply 
V,n,n+1,n+2,n+3,n+4,n+5,n+6,n+7 
n=n+8 
*ENDDO 
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*DO,i,1,3,1 
k,n,0,yc-7*e+6*e,(i-1)*tply 
k,n+1,L,yc-7*e+6*e,(i-1)*tply 
k,n+2,L,7*e,(i-1)*tply 
k,n+3,0,7*e,(i-1)*tply 
k,n+4,0,yc-7*e+6*e,(i)*tply 
k,n+5,L,yc-7*e+6*e,(i)*tply 
k,n+6,L,7*e,(i)*tply 
k,n+7,0,7*e,(i)*tply 
V,n,n+1,n+2,n+3,n+4,n+5,n+6,n+7 
n=n+8 
*ENDDO 
 
*DO,i,1,3,1 
k,n,0,7*e,(i-1)*tply 
k,n+1,L,7*e,(i-1)*tply 
k,n+2,L,yc,(i-1)*tply 
k,n+3,0,yc,(i-1)*tply 
k,n+4,0,7*e,(i)*tply 
k,n+5,L,7*e,(i)*tply 
k,n+6,L,yc,(i)*tply 
k,n+7,0,yc,(i)*tply 
V,n,n+1,n+2,n+3,n+4,n+5,n+6,n+7 
n=n+8 
*ENDDO 
 
*DO,i,1,3,1 
k,n,0,yc,(i-1)*tply 
k,n+1,L,yc,(i-1)*tply 
k,n+2,L,8*e,(i-1)*tply 
k,n+3,0,8*e,(i-1)*tply 
k,n+4,0,yc,(i)*tply 
k,n+5,L,yc,(i)*tply 
k,n+6,L,8*e,(i)*tply 
k,n+7,0,8*e,(i)*tply 
V,n,n+1,n+2,n+3,n+4,n+5,n+6,n+7 
n=n+8 
*ENDDO 
 
*DO,i,1,3,1 
k,n,0,8*e,(i-1)*tply 
k,n+1,L,8*e,(i-1)*tply 
k,n+2,L,yc-7*e+8*e,(i-1)*tply 
k,n+3,0,yc-7*e+8*e,(i-1)*tply 
k,n+4,0,8*e,(i)*tply 
k,n+5,L,8*e,(i)*tply 
k,n+6,L,yc-7*e+8*e,(i)*tply 
k,n+7,0,yc-7*e+8*e,(i)*tply 
V,n,n+1,n+2,n+3,n+4,n+5,n+6,n+7 
n=n+8 
*ENDDO 
 
*DO,i,1,3,1 
k,n,0,yc-7*e+8*e,(i-1)*tply 
k,n+1,L,yc-7*e+8*e,(i-1)*tply 
k,n+2,L,9*e,(i-1)*tply 
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k,n+3,0,9*e,(i-1)*tply 
k,n+4,0,yc-7*e+8*e,(i)*tply 
k,n+5,L,yc-7*e+8*e,(i)*tply 
k,n+6,L,9*e,(i)*tply 
k,n+7,0,9*e,(i)*tply 
V,n,n+1,n+2,n+3,n+4,n+5,n+6,n+7 
n=n+8 
*ENDDO 
 
*DO,i,1,3,1 
k,n,0,9*e,(i-1)*tply 
k,n+1,L,9*e,(i-1)*tply 
k,n+2,L,b1,(i-1)*tply 
k,n+3,0,b1,(i-1)*tply 
k,n+4,0,9*e,(i)*tply 
k,n+5,L,9*e,(i)*tply 
k,n+6,L,b1,(i)*tply 
k,n+7,0,b1,(i)*tply 
V,n,n+1,n+2,n+3,n+4,n+5,n+6,n+7 
n=n+8 
*ENDDO 
 
k,n,0,0,3*tply 
k,n+1,L,0,3*tply 
k,n+2,L,6*e,3*tply 
k,n+3,0,6*e,3*tply 
k,n+4,0,0,zc-4*tply+3*tply 
k,n+5,L,0,zc-4*tply+3*tply 
k,n+6,L,6*e,zc-4*tply+3*tply 
k,n+7,0,6*e,zc-4*tply+3*tply 
V,n,n+1,n+2,n+3,n+4,n+5,n+6,n+7 
n=n+8 
 
k,n,0,6*e,3*tply 
k,n+1,L,6*e,3*tply 
k,n+2,L,yc-7*e+6*e,3*tply 
k,n+3,0,yc-7*e+6*e,3*tply 
k,n+4,0,6*e,zc-4*tply+3*tply 
k,n+5,L,6*e,zc-4*tply+3*tply 
k,n+6,L,yc-7*e+6*e,zc-4*tply+3*tply 
k,n+7,0,yc-7*e+6*e,zc-4*tply+3*tply 
V,n,n+1,n+2,n+3,n+4,n+5,n+6,n+7 
n=n+8 
 
k,n,0,yc-7*e+6*e,3*tply 
k,n+1,L,yc-7*e+6*e,3*tply 
k,n+2,L,7*e,3*tply 
k,n+3,0,7*e,3*tply 
k,n+4,0,yc-7*e+6*e,zc-4*tply+3*tply 
k,n+5,L,yc-7*e+6*e,zc-4*tply+3*tply 
k,n+6,L,7*e,zc-4*tply+3*tply 
k,n+7,0,7*e,zc-4*tply+3*tply 
V,n,n+1,n+2,n+3,n+4,n+5,n+6,n+7 
n=n+8 
 
k,n,0,7*e,3*tply 
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k,n+1,L,7*e,3*tply 
k,n+2,L,yc,3*tply 
k,n+3,0,yc,3*tply 
k,n+4,0,7*e,zc-4*tply+3*tply 
k,n+5,L,7*e,zc-4*tply+3*tply 
k,n+6,L,yc,zc-4*tply+3*tply 
k,n+7,0,yc,zc-4*tply+3*tply 
V,n,n+1,n+2,n+3,n+4,n+5,n+6,n+7 
n=n+8 
 
k,n,0,yc,3*tply 
k,n+1,L,yc,3*tply 
k,n+2,L,8*e,3*tply 
k,n+3,0,8*e,3*tply 
k,n+4,0,yc,zc-4*tply+3*tply 
k,n+5,L,yc,zc-4*tply+3*tply 
k,n+6,L,8*e,zc-4*tply+3*tply 
k,n+7,0,8*e,zc-4*tply+3*tply 
V,n,n+1,n+2,n+3,n+4,n+5,n+6,n+7 
n=n+8 
 
k,n,0,8*e,3*tply 
k,n+1,L,8*e,3*tply 
k,n+2,L,yc-7*e+8*e,3*tply 
k,n+3,0,yc-7*e+8*e,3*tply 
k,n+4,0,8*e,zc-4*tply+3*tply 
k,n+5,L,8*e,zc-4*tply+3*tply 
k,n+6,L,yc-7*e+8*e,zc-4*tply+3*tply 
k,n+7,0,yc-7*e+8*e,zc-4*tply+3*tply 
V,n,n+1,n+2,n+3,n+4,n+5,n+6,n+7 
n=n+8 
 
k,n,0,yc-7*e+8*e,3*tply 
k,n+1,L,yc-7*e+8*e,3*tply 
k,n+2,L,9*e,3*tply 
k,n+3,0,9*e,3*tply 
k,n+4,0,yc-7*e+8*e,zc-4*tply+3*tply 
k,n+5,L,yc-7*e+8*e,zc-4*tply+3*tply 
k,n+6,L,9*e,zc-4*tply+3*tply 
k,n+7,0,9*e,zc-4*tply+3*tply 
V,n,n+1,n+2,n+3,n+4,n+5,n+6,n+7 
n=n+8 
 
k,n,0,9*e,3*tply 
k,n+1,L,9*e,3*tply 
k,n+2,L,b1,3*tply 
k,n+3,0,b1,3*tply 
k,n+4,0,9*e,zc-4*tply+3*tply 
k,n+5,L,9*e,zc-4*tply+3*tply 
k,n+6,L,b1,zc-4*tply+3*tply 
k,n+7,0,b1,zc-4*tply+3*tply 
V,n,n+1,n+2,n+3,n+4,n+5,n+6,n+7 
n=n+8 
 
k,n,0,0,zc-4*tply+3*tply 
k,n+1,L,0,zc-4*tply+3*tply 
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k,n+2,L,6*e,zc-4*tply+3*tply 
k,n+3,0,6*e,zc-4*tply+3*tply 
k,n+4,0,0,4*tply 
k,n+5,L,0,4*tply 
k,n+6,L,6*e,4*tply 
k,n+7,0,6*e,4*tply 
V,n,n+1,n+2,n+3,n+4,n+5,n+6,n+7 
n=n+8 
 
k,n,0,6*e,zc-4*tply+3*tply 
k,n+1,L,6*e,zc-4*tply+3*tply 
k,n+2,L,yc-7*e+6*e,zc-4*tply+3*tply 
k,n+3,0,yc-7*e+6*e,zc-4*tply+3*tply 
k,n+4,0,6*e,4*tply 
k,n+5,L,6*e,4*tply 
k,n+6,L,yc-7*e+6*e,4*tply 
k,n+7,0,yc-7*e+6*e,4*tply 
V,n,n+1,n+2,n+3,n+4,n+5,n+6,n+7 
n=n+8 
 
k,n,0,yc-7*e+6*e,zc-4*tply+3*tply 
k,n+1,L,yc-7*e+6*e,zc-4*tply+3*tply 
k,n+2,L,7*e,zc-4*tply+3*tply 
k,n+3,0,7*e,zc-4*tply+3*tply 
k,n+4,0,yc-7*e+6*e,4*tply 
k,n+5,L,yc-7*e+6*e,4*tply 
k,n+6,L,7*e,4*tply 
k,n+7,0,7*e,4*tply 
V,n,n+1,n+2,n+3,n+4,n+5,n+6,n+7 
n=n+8 
 
k,n,0,7*e,zc-4*tply+3*tply 
k,n+1,L,7*e,zc-4*tply+3*tply 
k,n+2,L,yc,zc-4*tply+3*tply 
k,n+3,0,yc,zc-4*tply+3*tply 
k,n+4,0,7*e,4*tply 
k,n+5,L,7*e,4*tply 
k,n+6,L,yc,4*tply 
k,n+7,0,yc,4*tply 
V,n,n+1,n+2,n+3,n+4,n+5,n+6,n+7 
n=n+8 
 
k,n,0,yc,zc-4*tply+3*tply 
k,n+1,L,yc,zc-4*tply+3*tply 
k,n+2,L,8*e,zc-4*tply+3*tply 
k,n+3,0,8*e,zc-4*tply+3*tply 
k,n+4,0,yc,4*tply 
k,n+5,L,yc,4*tply 
k,n+6,L,8*e,4*tply 
k,n+7,0,8*e,4*tply 
V,n,n+1,n+2,n+3,n+4,n+5,n+6,n+7 
n=n+8 
 
k,n,0,8*e,zc-4*tply+3*tply 
k,n+1,L,8*e,zc-4*tply+3*tply 
k,n+2,L,yc-7*e+8*e,zc-4*tply+3*tply 
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k,n+3,0,yc-7*e+8*e,zc-4*tply+3*tply 
k,n+4,0,8*e,4*tply 
k,n+5,L,8*e,4*tply 
k,n+6,L,yc-7*e+8*e,4*tply 
k,n+7,0,yc-7*e+8*e,4*tply 
V,n,n+1,n+2,n+3,n+4,n+5,n+6,n+7 
n=n+8 
 
k,n,0,yc-7*e+8*e,zc-4*tply+3*tply 
k,n+1,L,yc-7*e+8*e,zc-4*tply+3*tply 
k,n+2,L,9*e,zc-4*tply+3*tply 
k,n+3,0,9*e,zc-4*tply+3*tply 
k,n+4,0,yc-7*e+8*e,4*tply 
k,n+5,L,yc-7*e+8*e,4*tply 
k,n+6,L,9*e,4*tply 
k,n+7,0,9*e,4*tply 
V,n,n+1,n+2,n+3,n+4,n+5,n+6,n+7 
n=n+8 
 
k,n,0,9*e,zc-4*tply+3*tply 
k,n+1,L,9*e,zc-4*tply+3*tply 
k,n+2,L,b1,zc-4*tply+3*tply 
k,n+3,0,b1,zc-4*tply+3*tply 
k,n+4,0,9*e,4*tply 
k,n+5,L,9*e,4*tply 
k,n+6,L,b1,4*tply 
k,n+7,0,b1,4*tply 
V,n,n+1,n+2,n+3,n+4,n+5,n+6,n+7 
n=n+8 
 
k,n,0,0,4*tply 
k,n+1,L,0,4*tply 
k,n+2,L,6*e,4*tply 
k,n+3,0,6*e,4*tply 
k,n+4,0,0,zc 
k,n+5,L,0,zc 
k,n+6,L,6*e,zc 
k,n+7,0,6*e,zc 
V,n,n+1,n+2,n+3,n+4,n+5,n+6,n+7 
n=n+8 
 
k,n,0,6*e,4*tply 
k,n+1,L,6*e,4*tply 
k,n+2,L,yc-7*e+6*e,4*tply 
k,n+3,0,yc-7*e+6*e,4*tply 
k,n+4,0,6*e,zc 
k,n+5,L,6*e,zc 
k,n+6,L,yc-7*e+6*e,zc 
k,n+7,0,yc-7*e+6*e,zc 
V,n,n+1,n+2,n+3,n+4,n+5,n+6,n+7 
n=n+8 
 
k,n,0,yc-7*e+6*e,4*tply 
k,n+1,L,yc-7*e+6*e,4*tply 
k,n+2,L,7*e,4*tply 
k,n+3,0,7*e,4*tply 
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k,n+4,0,yc-7*e+6*e,zc 
k,n+5,L,yc-7*e+6*e,zc 
k,n+6,L,7*e,zc 
k,n+7,0,7*e,zc 
V,n,n+1,n+2,n+3,n+4,n+5,n+6,n+7 
n=n+8 
 
k,n,0,7*e,4*tply 
k,n+1,L,7*e,4*tply 
k,n+2,L,yc,4*tply 
k,n+3,0,yc,4*tply 
k,n+4,0,7*e,zc 
k,n+5,L,7*e,zc 
k,n+6,L,yc,zc 
k,n+7,0,yc,zc 
V,n,n+1,n+2,n+3,n+4,n+5,n+6,n+7 
n=n+8 
 
k,n,0,yc,4*tply 
k,n+1,L,yc,4*tply 
k,n+2,L,8*e,4*tply 
k,n+3,0,8*e,4*tply 
k,n+4,0,yc,zc 
k,n+5,L,yc,zc 
k,n+6,L,8*e,zc 
k,n+7,0,8*e,zc 
V,n,n+1,n+2,n+3,n+4,n+5,n+6,n+7 
n=n+8 
 
k,n,0,8*e,4*tply 
k,n+1,L,8*e,4*tply 
k,n+2,L,yc-7*e+8*e,4*tply 
k,n+3,0,yc-7*e+8*e,4*tply 
k,n+4,0,8*e,zc 
k,n+5,L,8*e,zc 
k,n+6,L,yc-7*e+8*e,zc 
k,n+7,0,yc-7*e+8*e,zc 
V,n,n+1,n+2,n+3,n+4,n+5,n+6,n+7 
n=n+8 
 
k,n,0,yc-7*e+8*e,4*tply 
k,n+1,L,yc-7*e+8*e,4*tply 
k,n+2,L,9*e,4*tply 
k,n+3,0,9*e,4*tply 
k,n+4,0,yc-7*e+8*e,zc 
k,n+5,L,yc-7*e+8*e,zc 
k,n+6,L,9*e,zc 
k,n+7,0,9*e,zc 
V,n,n+1,n+2,n+3,n+4,n+5,n+6,n+7 
n=n+8 
 
k,n,0,9*e,4*tply 
k,n+1,L,9*e,4*tply 
k,n+2,L,b1,4*tply 
k,n+3,0,b1,4*tply 
k,n+4,0,9*e,zc 
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k,n+5,L,9*e,zc 
k,n+6,L,b1,zc 
k,n+7,0,b1,zc 
V,n,n+1,n+2,n+3,n+4,n+5,n+6,n+7 
n=n+8 
 
k,n,0,0,zc 
k,n+1,L,0,zc 
k,n+2,L,6*e,zc 
k,n+3,0,6*e,zc 
k,n+4,0,0,5*tply 
k,n+5,L,0,5*tply 
k,n+6,L,6*e,5*tply 
k,n+7,0,6*e,5*tply 
V,n,n+1,n+2,n+3,n+4,n+5,n+6,n+7 
n=n+8 
 
k,n,0,6*e,zc 
k,n+1,L,6*e,zc 
k,n+2,L,yc-7*e+6*e,zc 
k,n+3,0,yc-7*e+6*e,zc 
k,n+4,0,6*e,5*tply 
k,n+5,L,6*e,5*tply 
k,n+6,L,yc-7*e+6*e,5*tply 
k,n+7,0,yc-7*e+6*e,5*tply 
V,n,n+1,n+2,n+3,n+4,n+5,n+6,n+7 
n=n+8 
 
k,n,0,yc-7*e+6*e,zc 
k,n+1,L,yc-7*e+6*e,zc 
k,n+2,L,7*e,zc 
k,n+3,0,7*e,zc 
k,n+4,0,yc-7*e+6*e,5*tply 
k,n+5,L,yc-7*e+6*e,5*tply 
k,n+6,L,7*e,5*tply 
k,n+7,0,7*e,5*tply 
V,n,n+1,n+2,n+3,n+4,n+5,n+6,n+7 
n=n+8 
 
k,n,0,7*e,zc 
k,n+1,L,7*e,zc 
k,n+2,L,yc,zc 
k,n+3,0,yc,zc 
k,n+4,0,7*e,5*tply 
k,n+5,L,7*e,5*tply 
k,n+6,L,yc,5*tply 
k,n+7,0,yc,5*tply 
V,n,n+1,n+2,n+3,n+4,n+5,n+6,n+7 
n=n+8 
 
k,n,0,yc,zc 
k,n+1,L,yc,zc 
k,n+2,L,8*e,zc 
k,n+3,0,8*e,zc 
k,n+4,0,yc,5*tply 
k,n+5,L,yc,5*tply 
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k,n+6,L,8*e,5*tply 
k,n+7,0,8*e,5*tply 
V,n,n+1,n+2,n+3,n+4,n+5,n+6,n+7 
n=n+8 
 
k,n,0,8*e,zc 
k,n+1,L,8*e,zc 
k,n+2,L,yc-7*e+8*e,zc 
k,n+3,0,yc-7*e+8*e,zc 
k,n+4,0,8*e,5*tply 
k,n+5,L,8*e,5*tply 
k,n+6,L,yc-7*e+8*e,5*tply 
k,n+7,0,yc-7*e+8*e,5*tply 
V,n,n+1,n+2,n+3,n+4,n+5,n+6,n+7 
n=n+8 
 
k,n,0,yc-7*e+8*e,zc 
k,n+1,L,yc-7*e+8*e,zc 
k,n+2,L,9*e,zc 
k,n+3,0,9*e,zc 
k,n+4,0,yc-7*e+8*e,5*tply 
k,n+5,L,yc-7*e+8*e,5*tply 
k,n+6,L,9*e,5*tply 
k,n+7,0,9*e,5*tply 
V,n,n+1,n+2,n+3,n+4,n+5,n+6,n+7 
n=n+8 
 
k,n,0,9*e,zc 
k,n+1,L,9*e,zc 
k,n+2,L,b1,zc 
k,n+3,0,b1,zc 
k,n+4,0,9*e,5*tply 
k,n+5,L,9*e,5*tply 
k,n+6,L,b1,5*tply 
k,n+7,0,b1,5*tply 
V,n,n+1,n+2,n+3,n+4,n+5,n+6,n+7 
n=n+8 
 
k,n,0,0,5*tply 
k,n+1,L,0,5*tply 
k,n+2,L,6*e,5*tply 
k,n+3,0,6*e,5*tply 
k,n+4,0,0,zc-4*tply+5*tply 
k,n+5,L,0,zc-4*tply+5*tply 
k,n+6,L,6*e,zc-4*tply+5*tply 
k,n+7,0,6*e,zc-4*tply+5*tply 
V,n,n+1,n+2,n+3,n+4,n+5,n+6,n+7 
n=n+8 
 
k,n,0,6*e,5*tply 
k,n+1,L,6*e,5*tply 
k,n+2,L,yc-7*e+6*e,5*tply 
k,n+3,0,yc-7*e+6*e,5*tply 
k,n+4,0,6*e,zc-4*tply+5*tply 
k,n+5,L,6*e,zc-4*tply+5*tply 
k,n+6,L,yc-7*e+6*e,zc-4*tply+5*tply 
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k,n+7,0,yc-7*e+6*e,zc-4*tply+5*tply 
V,n,n+1,n+2,n+3,n+4,n+5,n+6,n+7 
n=n+8 
 
k,n,0,yc-7*e+6*e,5*tply 
k,n+1,L,yc-7*e+6*e,5*tply 
k,n+2,L,7*e,5*tply 
k,n+3,0,7*e,5*tply 
k,n+4,0,yc-7*e+6*e,zc-4*tply+5*tply 
k,n+5,L,yc-7*e+6*e,zc-4*tply+5*tply 
k,n+6,L,7*e,zc-4*tply+5*tply 
k,n+7,0,7*e,zc-4*tply+5*tply 
V,n,n+1,n+2,n+3,n+4,n+5,n+6,n+7 
n=n+8 
 
k,n,0,7*e,5*tply 
k,n+1,L,7*e,5*tply 
k,n+2,L,yc,5*tply 
k,n+3,0,yc,5*tply 
k,n+4,0,7*e,zc-4*tply+5*tply 
k,n+5,L,7*e,zc-4*tply+5*tply 
k,n+6,L,yc,zc-4*tply+5*tply 
k,n+7,0,yc,zc-4*tply+5*tply 
V,n,n+1,n+2,n+3,n+4,n+5,n+6,n+7 
n=n+8 
 
k,n,0,yc,5*tply 
k,n+1,L,yc,5*tply 
k,n+2,L,8*e,5*tply 
k,n+3,0,8*e,5*tply 
k,n+4,0,yc,zc-4*tply+5*tply 
k,n+5,L,yc,zc-4*tply+5*tply 
k,n+6,L,8*e,zc-4*tply+5*tply 
k,n+7,0,8*e,zc-4*tply+5*tply 
V,n,n+1,n+2,n+3,n+4,n+5,n+6,n+7 
n=n+8 
 
k,n,0,8*e,5*tply 
k,n+1,L,8*e,5*tply 
k,n+2,L,yc-7*e+8*e,5*tply 
k,n+3,0,yc-7*e+8*e,5*tply 
k,n+4,0,8*e,zc-4*tply+5*tply 
k,n+5,L,8*e,zc-4*tply+5*tply 
k,n+6,L,yc-7*e+8*e,zc-4*tply+5*tply 
k,n+7,0,yc-7*e+8*e,zc-4*tply+5*tply 
V,n,n+1,n+2,n+3,n+4,n+5,n+6,n+7 
n=n+8 
 
k,n,0,yc-7*e+8*e,5*tply 
k,n+1,L,yc-7*e+8*e,5*tply 
k,n+2,L,9*e,5*tply 
k,n+3,0,9*e,5*tply 
k,n+4,0,yc-7*e+8*e,zc-4*tply+5*tply 
k,n+5,L,yc-7*e+8*e,zc-4*tply+5*tply 
k,n+6,L,9*e,zc-4*tply+5*tply 
k,n+7,0,9*e,zc-4*tply+5*tply 
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V,n,n+1,n+2,n+3,n+4,n+5,n+6,n+7 
n=n+8 
 
k,n,0,9*e,5*tply 
k,n+1,L,9*e,5*tply 
k,n+2,L,b1,5*tply 
k,n+3,0,b1,5*tply 
k,n+4,0,9*e,zc-4*tply+5*tply 
k,n+5,L,9*e,zc-4*tply+5*tply 
k,n+6,L,b1,zc-4*tply+5*tply 
k,n+7,0,b1,zc-4*tply+5*tply 
V,n,n+1,n+2,n+3,n+4,n+5,n+6,n+7 
n=n+8 
 
k,n,0,0,zc-4*tply+5*tply 
k,n+1,L,0,zc-4*tply+5*tply 
k,n+2,L,6*e,zc-4*tply+5*tply 
k,n+3,0,6*e,zc-4*tply+5*tply 
k,n+4,0,0,6*tply 
k,n+5,L,0,6*tply 
k,n+6,L,6*e,6*tply 
k,n+7,0,6*e,6*tply 
V,n,n+1,n+2,n+3,n+4,n+5,n+6,n+7 
n=n+8 
 
k,n,0,6*e,zc-4*tply+5*tply 
k,n+1,L,6*e,zc-4*tply+5*tply 
k,n+2,L,yc-7*e+6*e,zc-4*tply+5*tply 
k,n+3,0,yc-7*e+6*e,zc-4*tply+5*tply 
k,n+4,0,6*e,6*tply 
k,n+5,L,6*e,6*tply 
k,n+6,L,yc-7*e+6*e,6*tply 
k,n+7,0,yc-7*e+6*e,6*tply 
V,n,n+1,n+2,n+3,n+4,n+5,n+6,n+7 
n=n+8 
 
k,n,0,yc-7*e+6*e,zc-4*tply+5*tply 
k,n+1,L,yc-7*e+6*e,zc-4*tply+5*tply 
k,n+2,L,7*e,zc-4*tply+5*tply 
k,n+3,0,7*e,zc-4*tply+5*tply 
k,n+4,0,yc-7*e+6*e,6*tply 
k,n+5,L,yc-7*e+6*e,6*tply 
k,n+6,L,7*e,6*tply 
k,n+7,0,7*e,6*tply 
V,n,n+1,n+2,n+3,n+4,n+5,n+6,n+7 
n=n+8 
 
k,n,0,7*e,zc-4*tply+5*tply 
k,n+1,L,7*e,zc-4*tply+5*tply 
k,n+2,L,yc,zc-4*tply+5*tply 
k,n+3,0,yc,zc-4*tply+5*tply 
k,n+4,0,7*e,6*tply 
k,n+5,L,7*e,6*tply 
k,n+6,L,yc,6*tply 
k,n+7,0,yc,6*tply 
V,n,n+1,n+2,n+3,n+4,n+5,n+6,n+7 
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n=n+8 
 
k,n,0,yc,zc-4*tply+5*tply 
k,n+1,L,yc,zc-4*tply+5*tply 
k,n+2,L,8*e,zc-4*tply+5*tply 
k,n+3,0,8*e,zc-4*tply+5*tply 
k,n+4,0,yc,6*tply 
k,n+5,L,yc,6*tply 
k,n+6,L,8*e,6*tply 
k,n+7,0,8*e,6*tply 
V,n,n+1,n+2,n+3,n+4,n+5,n+6,n+7 
n=n+8 
 
k,n,0,8*e,zc-4*tply+5*tply 
k,n+1,L,8*e,zc-4*tply+5*tply 
k,n+2,L,yc-7*e+8*e,zc-4*tply+5*tply 
k,n+3,0,yc-7*e+8*e,zc-4*tply+5*tply 
k,n+4,0,8*e,6*tply 
k,n+5,L,8*e,6*tply 
k,n+6,L,yc-7*e+8*e,6*tply 
k,n+7,0,yc-7*e+8*e,6*tply 
V,n,n+1,n+2,n+3,n+4,n+5,n+6,n+7 
n=n+8 
 
k,n,0,yc-7*e+8*e,zc-4*tply+5*tply 
k,n+1,L,yc-7*e+8*e,zc-4*tply+5*tply 
k,n+2,L,9*e,zc-4*tply+5*tply 
k,n+3,0,9*e,zc-4*tply+5*tply 
k,n+4,0,yc-7*e+8*e,6*tply 
k,n+5,L,yc-7*e+8*e,6*tply 
k,n+6,L,9*e,6*tply 
k,n+7,0,9*e,6*tply 
V,n,n+1,n+2,n+3,n+4,n+5,n+6,n+7 
n=n+8 
 
k,n,0,9*e,zc-4*tply+5*tply 
k,n+1,L,9*e,zc-4*tply+5*tply 
k,n+2,L,b1,zc-4*tply+5*tply 
k,n+3,0,b1,zc-4*tply+5*tply 
k,n+4,0,9*e,6*tply 
k,n+5,L,9*e,6*tply 
k,n+6,L,b1,6*tply 
k,n+7,0,b1,6*tply 
V,n,n+1,n+2,n+3,n+4,n+5,n+6,n+7 
n=n+8 
 
*DO,i,7,8,1 
k,n,0,0,(i-1)*tply 
k,n+1,L,0,(i-1)*tply 
k,n+2,L,6*e,(i-1)*tply 
k,n+3,0,6*e,(i-1)*tply 
k,n+4,0,0,(i)*tply 
k,n+5,L,0,(i)*tply 
k,n+6,L,6*e,(i)*tply 
k,n+7,0,6*e,(i)*tply 
V,n,n+1,n+2,n+3,n+4,n+5,n+6,n+7 
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n=n+8 
*ENDDO 
 
*DO,i,7,8,1 
k,n,0,6*e,(i-1)*tply 
k,n+1,L,6*e,(i-1)*tply 
k,n+2,L,yc-7*e+6*e,(i-1)*tply 
k,n+3,0,yc-7*e+6*e,(i-1)*tply 
k,n+4,0,6*e,(i)*tply 
k,n+5,L,6*e,(i)*tply 
k,n+6,L,yc-7*e+6*e,(i)*tply 
k,n+7,0,yc-7*e+6*e,(i)*tply 
V,n,n+1,n+2,n+3,n+4,n+5,n+6,n+7 
n=n+8 
*ENDDO 
 
*DO,i,7,8,1 
k,n,0,yc-7*e+6*e,(i-1)*tply 
k,n+1,L,yc-7*e+6*e,(i-1)*tply 
k,n+2,L,7*e,(i-1)*tply 
k,n+3,0,7*e,(i-1)*tply 
k,n+4,0,yc-7*e+6*e,(i)*tply 
k,n+5,L,yc-7*e+6*e,(i)*tply 
k,n+6,L,7*e,(i)*tply 
k,n+7,0,7*e,(i)*tply 
V,n,n+1,n+2,n+3,n+4,n+5,n+6,n+7 
n=n+8 
*ENDDO 
 
*DO,i,7,8,1 
k,n,0,7*e,(i-1)*tply 
k,n+1,L,7*e,(i-1)*tply 
k,n+2,L,yc,(i-1)*tply 
k,n+3,0,yc,(i-1)*tply 
k,n+4,0,7*e,(i)*tply 
k,n+5,L,7*e,(i)*tply 
k,n+6,L,yc,(i)*tply 
k,n+7,0,yc,(i)*tply 
V,n,n+1,n+2,n+3,n+4,n+5,n+6,n+7 
n=n+8 
*ENDDO 
 
*DO,i,7,8,1 
k,n,0,yc,(i-1)*tply 
k,n+1,L,yc,(i-1)*tply 
k,n+2,L,8*e,(i-1)*tply 
k,n+3,0,8*e,(i-1)*tply 
k,n+4,0,yc,(i)*tply 
k,n+5,L,yc,(i)*tply 
k,n+6,L,8*e,(i)*tply 
k,n+7,0,8*e,(i)*tply 
V,n,n+1,n+2,n+3,n+4,n+5,n+6,n+7 
n=n+8 
*ENDDO 
 
*DO,i,7,8,1 
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k,n,0,8*e,(i-1)*tply 
k,n+1,L,8*e,(i-1)*tply 
k,n+2,L,yc-7*e+8*e,(i-1)*tply 
k,n+3,0,yc-7*e+8*e,(i-1)*tply 
k,n+4,0,8*e,(i)*tply 
k,n+5,L,8*e,(i)*tply 
k,n+6,L,yc-7*e+8*e,(i)*tply 
k,n+7,0,yc-7*e+8*e,(i)*tply 
V,n,n+1,n+2,n+3,n+4,n+5,n+6,n+7 
n=n+8 
*ENDDO 
 
*DO,i,7,8,1 
k,n,0,yc-7*e+8*e,(i-1)*tply 
k,n+1,L,yc-7*e+8*e,(i-1)*tply 
k,n+2,L,9*e,(i-1)*tply 
k,n+3,0,9*e,(i-1)*tply 
k,n+4,0,yc-7*e+8*e,(i)*tply 
k,n+5,L,yc-7*e+8*e,(i)*tply 
k,n+6,L,9*e,(i)*tply 
k,n+7,0,9*e,(i)*tply 
V,n,n+1,n+2,n+3,n+4,n+5,n+6,n+7 
n=n+8 
*ENDDO 
 
*DO,i,7,8,1 
k,n,0,9*e,(i-1)*tply 
k,n+1,L,9*e,(i-1)*tply 
k,n+2,L,b1,(i-1)*tply 
k,n+3,0,b1,(i-1)*tply 
k,n+4,0,9*e,(i)*tply 
k,n+5,L,9*e,(i)*tply 
k,n+6,L,b1,(i)*tply 
k,n+7,0,b1,(i)*tply 
V,n,n+1,n+2,n+3,n+4,n+5,n+6,n+7 
n=n+8 
*ENDDO 
 
*DO,i,9,12,1 
k,n,0,vx,(i-1)*tply 
k,n+1,L,vx,(i-1)*tply 
k,n+2,L,6*e,(i-1)*tply 
k,n+3,0,6*e,(i-1)*tply 
k,n+4,0,vx,(i)*tply 
k,n+5,L,vx,(i)*tply 
k,n+6,L,6*e,(i)*tply 
k,n+7,0,6*e,(i)*tply 
V,n,n+1,n+2,n+3,n+4,n+5,n+6,n+7 
n=n+8 
*ENDDO 
 
*DO,i,9,12,1 
k,n,0,6*e,(i-1)*tply 
k,n+1,L,6*e,(i-1)*tply 
k,n+2,L,yc-7*e+6*e,(i-1)*tply 
k,n+3,0,yc-7*e+6*e,(i-1)*tply 
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k,n+4,0,6*e,(i)*tply 
k,n+5,L,6*e,(i)*tply 
k,n+6,L,yc-7*e+6*e,(i)*tply 
k,n+7,0,yc-7*e+6*e,(i)*tply 
V,n,n+1,n+2,n+3,n+4,n+5,n+6,n+7 
n=n+8 
*ENDDO 
 
*DO,i,9,12,1 
k,n,0,yc-7*e+6*e,(i-1)*tply 
k,n+1,L,yc-7*e+6*e,(i-1)*tply 
k,n+2,L,7*e,(i-1)*tply 
k,n+3,0,7*e,(i-1)*tply 
k,n+4,0,yc-7*e+6*e,(i)*tply 
k,n+5,L,yc-7*e+6*e,(i)*tply 
k,n+6,L,7*e,(i)*tply 
k,n+7,0,7*e,(i)*tply 
V,n,n+1,n+2,n+3,n+4,n+5,n+6,n+7 
n=n+8 
*ENDDO 
 
*DO,i,9,12,1 
k,n,0,7*e,(i-1)*tply 
k,n+1,L,7*e,(i-1)*tply 
k,n+2,L,yc,(i-1)*tply 
k,n+3,0,yc,(i-1)*tply 
k,n+4,0,7*e,(i)*tply 
k,n+5,L,7*e,(i)*tply 
k,n+6,L,yc,(i)*tply 
k,n+7,0,yc,(i)*tply 
V,n,n+1,n+2,n+3,n+4,n+5,n+6,n+7 
n=n+8 
*ENDDO 
 
*DO,i,9,12,1 
k,n,0,yc,(i-1)*tply 
k,n+1,L,yc,(i-1)*tply 
k,n+2,L,8*e,(i-1)*tply 
k,n+3,0,8*e,(i-1)*tply 
k,n+4,0,yc,(i)*tply 
k,n+5,L,yc,(i)*tply 
k,n+6,L,8*e,(i)*tply 
k,n+7,0,8*e,(i)*tply 
V,n,n+1,n+2,n+3,n+4,n+5,n+6,n+7 
n=n+8 
*ENDDO 
 
*DO,i,9,12,1 
k,n,0,8*e,(i-1)*tply 
k,n+1,L,8*e,(i-1)*tply 
k,n+2,L,yc-7*e+8*e,(i-1)*tply 
k,n+3,0,yc-7*e+8*e,(i-1)*tply 
k,n+4,0,8*e,(i)*tply 
k,n+5,L,8*e,(i)*tply 
k,n+6,L,yc-7*e+8*e,(i)*tply 
k,n+7,0,yc-7*e+8*e,(i)*tply 
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V,n,n+1,n+2,n+3,n+4,n+5,n+6,n+7 
n=n+8 
*ENDDO 
 
*DO,i,9,12,1 
k,n,0,yc-7*e+8*e,(i-1)*tply 
k,n+1,L,yc-7*e+8*e,(i-1)*tply 
k,n+2,L,9*e,(i-1)*tply 
k,n+3,0,9*e,(i-1)*tply 
k,n+4,0,yc-7*e+8*e,(i)*tply 
k,n+5,L,yc-7*e+8*e,(i)*tply 
k,n+6,L,9*e,(i)*tply 
k,n+7,0,9*e,(i)*tply 
V,n,n+1,n+2,n+3,n+4,n+5,n+6,n+7 
n=n+8 
*ENDDO 
 
*DO,i,9,12,1 
k,n,0,9*e,(i-1)*tply 
k,n+1,L,9*e,(i-1)*tply 
k,n+2,L,vx+0.25,(i-1)*tply 
k,n+3,0,vx+0.25,(i-1)*tply 
k,n+4,0,9*e,(i)*tply 
k,n+5,L,9*e,(i)*tply 
k,n+6,L,vx+0.25,(i)*tply 
k,n+7,0,vx+0.25,(i)*tply 
V,n,n+1,n+2,n+3,n+4,n+5,n+6,n+7 
n=n+8 
*ENDDO 
 
 
allsel 
 
 
nummrg,kp 
 
ET,1,SOLID46 
 
f=1 
R,f 
RMODIF,f,1,1,0,0,0,0 
RMODIF,f,7,0 
RMODIF,f,13,1,90,tply 
 
f=2 
R,f 
RMODIF,f,1,1,0,0,0,0 
RMODIF,f,7,0 
RMODIF,f,13,1,0,tply 
 
f=3 
R,f 
RMODIF,f,1,1,0,0,0,0 
RMODIF,f,7,0 
RMODIF,f,13,1,-45,tply 
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f=4 
R,f 
RMODIF,f,1,1,0,0,0,0 
RMODIF,f,7,0 
RMODIF,f,13,1,45,zc-4*tply 
 
f=5 
R,f 
RMODIF,f,1,1,0,0,0,0 
RMODIF,f,7,0 
RMODIF,f,13,1,45,5*tply-zc 
 
f=6 
R,f 
RMODIF,f,1,1,0,0,0,0 
RMODIF,f,7,0 
RMODIF,f,13,1,90,zc-4*tply 
 
f=7 
R,f 
RMODIF,f,1,1,0,0,0,0 
RMODIF,f,7,0 
RMODIF,f,13,1,90,5*tply-zc 
 
f=8 
R,f 
RMODIF,f,1,1,0,0,0,0 
RMODIF,f,7,0 
RMODIF,f,13,1,0,zc-4*tply 
 
f=9 
R,f 
RMODIF,f,1,1,0,0,0,0 
RMODIF,f,7,0 
RMODIF,f,13,1,0,5*tply-zc 
 
f=10 
R,f 
RMODIF,f,1,1,0,0,0,0 
RMODIF,f,7,0 
RMODIF,f,13,1,-45,tply 
 
f=11 
R,f 
RMODIF,f,1,1,0,0,0,0 
RMODIF,f,7,0 
RMODIF,f,13,1,45,tply 
 
f=12 
R,f 
RMODIF,f,1,1,0,0,0,0 
RMODIF,f,7,0 
RMODIF,f,13,1,90,tply 
 
f=13 
R,f 
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RMODIF,f,1,1,0,0,0,0 
RMODIF,f,7,0 
RMODIF,f,13,1,0,tply 
 
f=14 
R,f 
RMODIF,f,1,1,0,0,0,0 
RMODIF,f,7,0 
RMODIF,f,13,1,-45,tply 
 
f=15 
R,f 
RMODIF,f,1,1,0,0,0,0 
RMODIF,f,7,0 
RMODIF,f,13,1,45,tply 
        
*DO,i,1,3,1 
VSEL,S,VOLU,,i 
VATT,1,i,1,0 
*ENDDO 
 
*DO,i,4,6,1 
VSEL,S,VOLU,,i 
VATT,1,i-3,1,0 
*ENDDO 
 
*DO,i,7,9,1 
VSEL,S,VOLU,,i 
VATT,1,i-6,1,0 
*ENDDO 
 
*DO,i,10,12,1 
VSEL,S,VOLU,,i 
VATT,1,i-9,1,0 
*ENDDO 
 
*DO,i,13,15,1 
VSEL,S,VOLU,,i 
VATT,1,i-12,1,0 
*ENDDO 
 
*DO,i,16,18,1 
VSEL,S,VOLU,,i 
VATT,1,i-15,1,0 
*ENDDO 
 
*DO,i,19,21,1 
VSEL,S,VOLU,,i 
VATT,1,i-18,1,0 
*ENDDO 
 
*DO,i,22,24,1 
VSEL,S,VOLU,,i 
VATT,1,i-21,1,0 
*ENDDO 
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*DO,i,25,32,1 
VSEL,S,VOLU,,i 
VATT,1,4,1,0 
*ENDDO 
 
*DO,i,33,40,1 
VSEL,S,VOLU,,i 
VATT,1,5,1,0 
*ENDDO 
 
*DO,i,41,48,1 
VSEL,S,VOLU,,i 
VATT,1,6,1,0 
*ENDDO 
 
*DO,i,49,56,1 
VSEL,S,VOLU,,i 
VATT,1,7,1,0 
*ENDDO 
 
*DO,i,57,64,1 
VSEL,S,VOLU,,i 
VATT,1,8,1,0 
*ENDDO 
 
*DO,i,65,72,1 
VSEL,S,VOLU,,i 
VATT,1,9,1,0 
*ENDDO 
 
*DO,i,73,88,2 
VSEL,S,VOLU,,i 
VATT,1,10,1,0 
*ENDDO 
 
*DO,i,74,88,2 
VSEL,S,VOLU,,i 
VATT,1,11,1,0 
*ENDDO 
   
*DO,i,89,92,1 
VSEL,S,VOLU,,i 
VATT,1,i-77,1,0 
*ENDDO 
 
*DO,i,93,96,1 
VSEL,S,VOLU,,i 
VATT,1,i-81,1,0 
*ENDDO 
 
*DO,i,97,100,1 
VSEL,S,VOLU,,i 
VATT,1,i-85,1,0 
*ENDDO 
 
*DO,i,101,104,1 
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VSEL,S,VOLU,,i 
VATT,1,i-89,1,0 
*ENDDO 
 
*DO,i,105,108,1 
VSEL,S,VOLU,,i 
VATT,1,i-93,1,0 
*ENDDO 
 
*DO,i,109,112,1 
VSEL,S,VOLU,,i 
VATT,1,i-97,1,0 
*ENDDO 
 
*DO,i,113,116,1 
VSEL,S,VOLU,,i 
VATT,1,i-101,1,0 
*ENDDO 
 
*DO,i,117,120,1 
VSEL,S,VOLU,,i 
VATT,1,i-105,1,0 
*ENDDO 
 
dx=320 
xx=1 
LSEL,s,Lenght,,L 
LESIZE,all,,,dx,xx 
 
dy=6 
yy=1 
LSEL,S,Lenght,,6*e 
LESIZE,all,,,dy,yy 
 
dy=7 
yy=1 
LSEL,S,Lenght,,7*e 
LESIZE,all,,,dy,yy 
 
dy=4 
yy=1 
LSEL,S,Lenght,,4*e 
LESIZE,all,,,dy,yy 
 
dy=1 
yy=1 
LSEL,S,Lenght,,1*e 
LESIZE,all,,,dy,yy 
 
dy=1 
yy=1 
LSEL,S,Lenght,,8*e-yc 
LESIZE,all,,,dy,yy 
 
dy=1 
yy=1 
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LSEL,S,Lenght,,yc-7*e 
LESIZE,all,,,dy,yy 
 
dz=2 
zz=1 
LSEL,S,Lenght,,tply 
LESIZE,ALL,,,dz,zz 
 
dz=2 
zz=1 
LSEL,S,Lenght,,zc-4*tply 
LESIZE,ALL,,,dz,zz 
 
dz=1 
zz=1 
LSEL,S,Lenght,,5*tply-zc 
LESIZE,ALL,,,dz,zz 
 
allsel 
VMESH,ALL 
 
nummrg,node,1e-4 
 
tol=1e-5 
NSEL,S,LOC,x,0 
D,ALL,Ux,0 
 
NSEL,S,LOC,x,0 
NSEL,R,LOC,y,yc 
D,ALL,Uy,0 
 
NSEL,S,LOC,x,0 
NSEL,R,LOC,z,zc 
D,ALL,Uz,0 
 
NSEL,S,LOC,X,L-tol,L+tol 
NSEL,R,LOC,y,yc, 
NSEL,R,LOC,Z,zc+tply, 
F,ALL,FX,force 
 
NSEL,S,LOC,X,L-tol,L+tol 
NSEL,R,LOC,y,yc, 
NSEL,R,LOC,Z,zc-tply, 
F,ALL,FX,-force 
 
allsel 
 
FINISH   
/SOL 
SOLVE    
FINISH   
 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
NSEL,S,loc,x,10/2 
NSEL,r,loc,y,yc 
NSEL,r,loc,z,zc 
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Typical ANSYS file for the Z-stiffener. 
 
 
/FILNAM, CIR ISO Axial 
/TITLE, CIR ISO Axial 
 
/UNITS,BIN 
/PREP7 
 
force=1 
lenght_elements=40 
 
tply=0.005 
b1=0.25 
b2=0.25 
w=0.5 
L=10 
 
MP,EX,1,18.2e6 
MP,EY,1,1.41e6 
MP,EZ,1,1.41e6 
MP,PRXY,1,0.27 
MP,PRYZ,1,0.27 
MP,PRXZ,1,0.27 
MP,GXY,1,0.92e6 
MP,GYZ,1,0.92e6 
MP,GXZ,1,0.92e6 
 
ET,1,SOLID46 
 
R,1 
RMODIF,1,1,1,0,0,0,0 
RMODIF,1,7,0 
RMODIF,1,13,1,45,tply 
 
R,2 
RMODIF,2,1,1,0,0,0,0 
RMODIF,2,7,0 
RMODIF,2,13,1,-45,tply 
 
R,3 
RMODIF,3,1,1,0,0,0,0 
RMODIF,3,7,0 
RMODIF,3,13,1,0,tply 
 
R,4 
RMODIF,4,1,1,0,0,0,0 
RMODIF,4,7,0 
RMODIF,4,13,1,0,tply 
 
R,5 
RMODIF,5,1,1,0,0,0,0 
RMODIF,5,7,0 
RMODIF,5,13,1,-45,tply 
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R,6 
RMODIF,6,1,1,0,0,0,0 
RMODIF,6,7,0 
RMODIF,6,13,1,45,tply 
 
R,7 
RMODIF,7,1,1,0,0,0,0 
RMODIF,7,7,0 
RMODIF,7,13,1,45,tply 
 
R,8 
RMODIF,8,1,1,0,0,0,0 
RMODIF,8,7,0 
RMODIF,8,13,1,-45,tply 
 
R,9 
RMODIF,9,1,1,0,0,0,0 
RMODIF,9,7,0 
RMODIF,9,13,1,0,tply 
 
R,10 
RMODIF,10,1,1,0,0,0,0 
RMODIF,10,7,0 
RMODIF,10,13,1,0,tply 
 
R,11 
RMODIF,11,1,1,0,0,0,0 
RMODIF,11,7,0 
RMODIF,11,13,1,-45,tply 
 
R,12 
RMODIF,12,1,1,0,0,0,0 
RMODIF,12,7,0 
RMODIF,12,13,1,45,tply 
 
R,13 
RMODIF,13,1,1,0,0,0,0 
RMODIF,13,7,0 
RMODIF,13,13,1,45,tply 
 
R,14 
RMODIF,14,1,1,0,0,0,0 
RMODIF,14,7,0 
RMODIF,14,13,1,-45,tply 
 
R,15 
RMODIF,15,1,1,0,0,0,0 
RMODIF,15,7,0 
RMODIF,15,13,1,-45,tply 
 
R,16 
RMODIF,16,1,1,0,0,0,0 
RMODIF,16,7,0 
RMODIF,16,13,1,45,tply 
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n=0 
*DO,i,0,11,1 
k,n+1,0,-b1+2*tply,w/2+i*tply 
k,n+2,L,-b1+2*tply,w/2+i*tply 
k,n+3,L,-2*tply,w/2+i*tply 
k,n+4,0,-2*tply,w/2+i*tply 
k,n+5,0,-b1+2*tply,w/2+(i+1)*tply 
k,n+6,L,-b1+2*tply,w/2+(i+1)*tply 
k,n+7,L,-2*tply,w/2+(i+1)*tply 
k,n+8,0,-2*tply,w/2+(i+1)*tply 
v,n+1,n+2,n+3,n+4,n+5,n+6,n+7,n+8 
n=n+8 
*ENDDO 
 
*DO,i,0,11,1 
k,n+1,0,-2*tply,w/2+i*tply 
k,n+2,L,-2*tply,w/2+i*tply 
k,n+3,L,2*tply,w/2+i*tply 
k,n+4,0,2*tply,w/2+i*tply 
k,n+5,0,-2*tply,w/2+(i+1)*tply 
k,n+6,L,-2*tply,w/2+(i+1)*tply 
k,n+7,L,2*tply,w/2+(i+1)*tply 
k,n+8,0,2*tply,w/2+(i+1)*tply 
v,n+1,n+2,n+3,n+4,n+5,n+6,n+7,n+8 
n=n+8 
*ENDDO 
 
Local,11,0,0,0,0,0,-90,0 
 
*DO,i,-2,1,1 
k,n+1,0,-w/2,i*tply 
k,n+2,L,-w/2,i*tply 
k,n+3,L,w/2,i*tply 
k,n+4,0,w/2,i*tply 
k,n+5,0,-w/2,(i+1)*tply 
k,n+6,L,-w/2,(i+1)*tply 
k,n+7,L,w/2,(i+1)*tply 
k,n+8,0,w/2,(i+1)*tply 
v,n+1,n+2,n+3,n+4,n+5,n+6,n+7,n+8 
n=n+8 
*ENDDO 
 
CSYS,0 
 
*DO,i,0,11,1 
k,n+1,0,-2*tply,-w/2-12*tply+i*tply 
k,n+2,L,-2*tply,-w/2-12*tply+i*tply 
k,n+3,L,2*tply,-w/2-12*tply+i*tply 
k,n+4,0,2*tply,-w/2-12*tply+i*tply 
k,n+5,0,-2*tply,-w/2-12*tply+(i+1)*tply 
k,n+6,L,-2*tply,-w/2-12*tply+(i+1)*tply 
k,n+7,L,2*tply,-w/2-12*tply+(i+1)*tply 
k,n+8,0,2*tply,-w/2-12*tply+(i+1)*tply 
v,n+1,n+2,n+3,n+4,n+5,n+6,n+7,n+8 
n=n+8 
*ENDDO 
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*DO,i,0,11,1 
k,n+1,0,2*tply,-w/2-12*tply+i*tply 
k,n+2,L,2*tply,-w/2-12*tply+i*tply 
k,n+3,L,b2-2*tply,-w/2-12*tply+i*tply 
k,n+4,0,b2-2*tply,-w/2-12*tply+i*tply 
k,n+5,0,2*tply,-w/2-12*tply+(i+1)*tply 
k,n+6,L,2*tply,-w/2-12*tply+(i+1)*tply 
k,n+7,L,b2-2*tply,-w/2-12*tply+(i+1)*tply 
k,n+8,0,b2-2*tply,-w/2-12*tply+(i+1)*tply 
v,n+1,n+2,n+3,n+4,n+5,n+6,n+7,n+8 
n=n+8 
*ENDDO 
 
 
NUMMRG,KP,1.0e-4 
 
LSEL,S,LENGTH,,L 
LESIZE,ALL,,,lenght_elements 
 
LSEL,S,LENGTH,,12*tply 
LESIZE,ALL,,,12 
 
LSEL,S,LENGTH,,4*tply 
LESIZE,ALL,,,4 
 
LSEL,S,LENGTH,,w 
LESIZE,ALL,,,100 
 
LSEL,S,LENGTH,,b1-12*tply 
LESIZE,ALL,,,90 
 
LSEL,S,LENGTH,,tply 
LESIZE,ALL,,,1 
 
*DO,y,1,12,1 
VSEL,S,volu,,y 
VATT,1,y,1,0 
*ENDDO 
 
*DO,y,13,24,1 
VSEL,S,volu,,y 
VATT,1,y-12,1,0 
*ENDDO 
 
*DO,y,25,28,1 
VSEL,S,volu,,y 
VATT,1,y-12,1,11 
*ENDDO 
 
*DO,y,29,40,1 
VSEL,S,volu,,y 
VATT,1,y-28,1,0 
*ENDDO 
 
*DO,y,41,52,1 
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VSEL,S,volu,,y 
VATT,1,y-40,1,0 
*ENDDO 
 
ALLSEL 
VMESH,ALL 
 
 
EPLOT 
 
CSYS,0 
 
TOL=0.00001 
 
NSEL,S,LOC,X,L 
NSEL,r,LOC,y,0 
NSEL,r,LOC,Z,0 
F,all,FX,force 
 
NSEL,S,LOC,X,L 
CP,1,ux,all 
 
NSEL,S,LOC,X,0 
D,ALL,ALL,0 
 
ALLSEL 
/SOLU 
SOLVE 
 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
 
NSEL,S,LOC,X,0.500000*L 
NSEL,r,LOC,y,0 
NSEL,r,LOC,z,0 
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Typical MATLAB file for Laminates Bonded Side by Side Un-symmetric Case [±452/04/±452]T -
[±452/02]S under Axial load. 
 
 
/FILNAM, Laminate 
/title, Laminate 
/prep7 
 
MP,EX,1,18.2E6 
MP,EY,1,1.41E6 
MP,EZ,1,1.41E6 
MP,PRXY,1,0.27 
MP,PRYZ,1,0.27 
MP,PRXZ,1,0.27 
MP,GXY,1,0.92E6 
MP,GYZ,1,0.92E6 
MP,GXZ,1,0.92E6 
 
L=10 
b1=0.5 
b2=0.25  
tply=0.005 
force=0.1 
 
 
n=1 
 
*DO,i,1,12,1 
k,n,0,-b1,(i-7)*tply 
k,n+1,L,-b1,(i-7)*tply 
k,n+2,L,0,(i-7)*tply 
k,n+3,0,0,(i-7)*tply 
k,n+4,0,-b1,(i-6)*tply 
k,n+5,L,-b1,(i-6)*tply 
k,n+6,L,0,(i-6)*tply 
k,n+7,0,0,(i-6)*tply 
V,n,n+1,n+2,n+3,n+4,n+5,n+6,n+7 
n=n+8 
*ENDDO 
 
*DO,i,1,12,1 
k,n,0,0,(i-7)*tply 
k,n+1,L,0,(i-7)*tply 
k,n+2,L,b2,(i-7)*tply 
k,n+3,0,b2,(i-7)*tply 
k,n+4,0,0,(i-6)*tply 
k,n+5,L,0,(i-6)*tply 
k,n+6,L,b2,(i-6)*tply 
k,n+7,0,b2,(i-6)*tply 
V,n,n+1,n+2,n+3,n+4,n+5,n+6,n+7 
n=n+8 
*ENDDO 
 
allsel 
nummrg,kp 
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ET,1,SOLID46 
 
R,1 
RMODIF,1,1,1,0,0,0,0 
RMODIF,1,7,0 
RMODIF,1,13,1,-45,tply 
 
R,2 
RMODIF,2,1,1,0,0,0,0 
RMODIF,2,7,0 
RMODIF,2,13,1,45,tply 
 
R,3 
RMODIF,3,1,1,0,0,0,0 
RMODIF,3,7,0 
RMODIF,3,13,1,-45,tply 
 
R,4 
RMODIF,4,1,1,0,0,0,0 
RMODIF,4,7,0 
RMODIF,4,13,1,45,tply 
 
R,5 
RMODIF,5,1,1,0,0,0,0 
RMODIF,5,7,0 
RMODIF,5,13,1,0,tply 
 
R,6 
RMODIF,6,1,1,0,0,0,0 
RMODIF,6,7,0 
RMODIF,6,13,1,0,tply 
 
R,7 
RMODIF,7,1,1,0,0,0,0 
RMODIF,7,7,0 
RMODIF,7,13,1,0,tply 
 
R,8 
RMODIF,8,1,1,0,0,0,0 
RMODIF,8,7,0 
RMODIF,8,13,1,0,tply 
 
R,9 
RMODIF,9,1,1,0,0,0,0 
RMODIF,9,7,0 
RMODIF,9,13,1,-45,tply 
 
R,10 
RMODIF,10,1,1,0,0,0,0 
RMODIF,10,7,0 
RMODIF,10,13,1,45,tply 
 
R,11 
RMODIF,11,1,1,0,0,0,0 
RMODIF,11,7,0 
RMODIF,11,13,1,-45,tply 
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R,12 
RMODIF,12,1,1,0,0,0,0 
RMODIF,12,7,0 
RMODIF,12,13,1,45,tply 
 
R,13 
RMODIF,13,1,1,0,0,0,0 
RMODIF,13,7,0 
RMODIF,13,13,1,45,tply 
 
R,14 
RMODIF,14,1,1,0,0,0,0 
RMODIF,14,7,0 
RMODIF,14,13,1,-45,tply 
 
R,15 
RMODIF,15,1,1,0,0,0,0 
RMODIF,15,7,0 
RMODIF,15,13,1,45,tply 
 
R,16 
RMODIF,16,1,1,0,0,0,0 
RMODIF,16,7,0 
RMODIF,16,13,1,-45,tply 
 
R,17 
RMODIF,17,1,1,0,0,0,0 
RMODIF,17,7,0 
RMODIF,17,13,1,0,tply 
 
R,18 
RMODIF,18,1,1,0,0,0,0 
RMODIF,18,7,0 
RMODIF,18,13,1,0,tply 
 
R,19 
RMODIF,19,1,1,0,0,0,0 
RMODIF,19,7,0 
RMODIF,19,13,1,0,tply 
 
R,20 
RMODIF,20,1,1,0,0,0,0 
RMODIF,20,7,0 
RMODIF,20,13,1,0,tply 
 
R,21 
RMODIF,21,1,1,0,0,0,0 
RMODIF,21,7,0 
RMODIF,21,13,1,-45,tply 
 
R,22 
RMODIF,22,1,1,0,0,0,0 
RMODIF,22,7,0 
RMODIF,22,13,1,45,tply 
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R,23 
RMODIF,23,1,1,0,0,0,0 
RMODIF,23,7,0 
RMODIF,23,13,1,-45,tply 
 
R,24 
RMODIF,24,1,1,0,0,0,0 
RMODIF,24,7,0 
RMODIF,24,13,1,45,tply 
 
*DO,i,1,12,1 
VSEL,S,VOLU,,i 
VATT,1,i,1,0 
*ENDDO 
 
*DO,i,13,24,1 
VSEL,S,VOLU,,i 
VATT,1,i,1,0 
*ENDDO 
 
dx=100 
xx=1 
LSEL,s,Lenght,,L 
LESIZE,all,,,dx,xx 
 
dy=24 
yy=1 
LSEL,S,Lenght,,b1 
LESIZE,all,,,dy,yy 
 
dy=12 
yy=1 
LSEL,S,Lenght,,b2 
LESIZE,all,,,dy,yy 
 
dz=2 
zz=1 
LSEL,S,Lenght,,tply 
LESIZE,ALL,,,dz,zz 
 
allsel 
VMESH,ALL 
NSEL,S,LOC,x,0 
D,ALL,ALL,0 
 
ASEL,S,AREA,,3 
ASEL,A,AREA,,9 
ASEL,A,AREA,,15 
ASEL,A,AREA,,21 
ASEL,A,AREA,,27 
ASEL,A,AREA,,33 
ASEL,A,AREA,,39 
ASEL,A,AREA,,45 
ASEL,A,AREA,,51 
ASEL,A,AREA,,57 
ASEL,A,AREA,,63 
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ASEL,A,AREA,,69 
SFA,ALL,1,PRES,-1  
 
ASEL,A,AREA,,75 
ASEL,A,AREA,,81 
ASEL,A,AREA,,87 
ASEL,A,AREA,,93 
ASEL,A,AREA,,99 
ASEL,A,AREA,,105 
ASEL,A,AREA,,111 
ASEL,A,AREA,,117 
ASEL,A,AREA,,123 
ASEL,A,AREA,,129 
ASEL,A,AREA,,135 
ASEL,A,AREA,,141 
SFA,ALL,1,PRES,-1  
 
allsel 
 
FINISH   
/SOL 
 
SOLVE    
FINISH   
 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
NSEL,S,loc,x,5 
NSEL,r,loc,y,0 
NSEL,r,loc,z,0 
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Typical MATLAB file for the Circular Cross-section Beam Symmetric Case [452/-452/02/902]S 

under Axial load. 
 
/FILNAM, CIR COMP Axial 
/TITLE, CIR COMP Axial 
 
/UNITS,BIN 
/PREP7 
 
LOCAL,11,CYLIN,0,0,0,0,90,90 
 
Rm=0.9584 
force=1 
lenght_elements=44 
angular_elements=40 
 
tply=0.0052 
r=Rm+tply*8 
length=15 
 
MP,EX,1,18.2E6 
MP,EY,1,1.41E6 
MP,EZ,1,1.41E6 
MP,PRXY,1,0.27 
MP,PRYZ,1,0.27 
MP,PRXZ,1,0.27 
MP,GXY,1,0.92E6 
MP,GYZ,1,0.92E6 
MP,GXZ,1,0.92E6 
 
ET,1,SOLID46 
 
R,1 
RMODIF,1,1,1,0,0,0,0 
RMODIF,1,7,0 
RMODIF,1,13,1,45,tply 
 
R,2 
RMODIF,2,1,1,0,0,0,0 
RMODIF,2,7,0 
RMODIF,2,13,1,45,tply 
 
R,3 
RMODIF,3,1,1,0,0,0,0 
RMODIF,3,7,0 
RMODIF,3,13,1,-45,tply 
 
R,4 
RMODIF,4,1,1,0,0,0,0 
RMODIF,4,7,0 
RMODIF,4,13,1,-45,tply 
 
R,5 
RMODIF,5,1,1,0,0,0,0 
RMODIF,5,7,0 
RMODIF,5,13,1,0,tply 
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R,6 
RMODIF,6,1,1,0,0,0,0 
RMODIF,6,7,0 
RMODIF,6,13,1,0,tply 
 
R,7 
RMODIF,7,1,1,0,0,0,0 
RMODIF,7,7,0 
RMODIF,7,13,1,90,tply 
 
R,8 
RMODIF,8,1,1,0,0,0,0 
RMODIF,8,7,0 
RMODIF,8,13,1,90,tply 
 
R,9 
RMODIF,9,1,1,0,0,0,0 
RMODIF,9,7,0 
RMODIF,9,13,1,90,tply 
 
R,10 
RMODIF,10,1,1,0,0,0,0 
RMODIF,10,7,0 
RMODIF,10,13,1,90,tply 
 
R,11 
RMODIF,11,1,1,0,0,0,0 
RMODIF,11,7,0 
RMODIF,11,13,1,0,tply 
 
R,12 
RMODIF,12,1,1,0,0,0,0 
RMODIF,12,7,0 
RMODIF,12,13,1,0,tply 
 
R,13 
RMODIF,13,1,1,0,0,0,0 
RMODIF,13,7,0 
RMODIF,13,13,1,-45,tply 
 
R,14 
RMODIF,14,1,1,0,0,0,0 
RMODIF,14,7,0 
RMODIF,14,13,1,-45,tply 
 
R,15 
RMODIF,15,1,1,0,0,0,0 
RMODIF,15,7,0 
RMODIF,15,13,1,45,tply 
 
R,16 
RMODIF,16,1,1,0,0,0,0 
RMODIF,16,7,0 
RMODIF,16,13,1,45,tply 
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CSYS,11 
 
*DO,I,1,16,1 
K,1+4*(I-1),r-tply*(I-1),0,0 
K,2+4*(I-1),r-tply*(I-1),90,0 
K,3+4*(I-1),r-tply*(I-1),180,0 
K,4+4*(I-1),r-tply*(I-1),270,0 
K,69+4*(I-1),r-tply*(I-1),0,length 
K,70+4*(I-1),r-tply*(I-1),90,length 
K,71+4*(I-1),r-tply*(I-1),180,length 
K,72+4*(I-1),r-tply*(I-1),270,length 
L,1+4*(I-1),2+4*(I-1) 
L,2+4*(I-1),3+4*(I-1) 
L,3+4*(I-1),4+4*(I-1) 
L,4+4*(I-1),1+4*(I-1) 
L,69+4*(I-1),70+4*(I-1) 
L,70+4*(I-1),71+4*(I-1) 
L,71+4*(I-1),72+4*(I-1) 
L,72+4*(I-1),69+4*(I-1) 
L,1+4*(I-1),69+4*(I-1) 
L,2+4*(I-1),70+4*(I-1) 
L,3+4*(I-1),71+4*(I-1) 
L,4+4*(I-1),72+4*(I-1) 
*ENDDO 
 
*DO,J,1,16,1 
AL,1+12*(J-1),9+12*(J-1),5+12*(J-1),10+12*(J-1) 
AL,2+12*(J-1),10+12*(J-1),6+12*(J-1),11+12*(J-1) 
AL,3+12*(J-1),11+12*(J-1),7+12*(J-1),12+12*(J-1) 
AL,4+12*(J-1),12+12*(J-1),8+12*(J-1),9+12*(J-1) 
*ENDDO 
 
*DO,K,1,64,1 
VOFFST,K,-tply 
*ENDDO 
 
NUMMRG,KP,1.0e-4 
 
LSEL,S,,,1,8,1 
*DO,L,1,15,1 
LSEL,A,,,1+12*L,8+12*L,1 
*ENDDO 
lplot 
LESIZE,ALL,,,angular_elements 
 
 
LSEL,S,,,9,12,1 
*DO,M,1,15,1 
LSEL,A,,,9+12*M,12+12*M,1 
*ENDDO 
lplot 
LESIZE,ALL,,,lenght_elements 
 
CSYS,0 
 
LSEL,S,LOC,Z,0 
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LSEL,R,LOC,X,0 
LESIZE,ALL,,,1 
 
LSEL,S,LOC,Y,0 
LSEL,R,LOC,X,0 
LESIZE,ALL,,,1 
 
LSEL,S,LOC,Z,0 
LSEL,R,LOC,X,length 
LESIZE,ALL,,,1 
 
LSEL,S,LOC,Y,0 
LSEL,R,LOC,X,length 
LESIZE,ALL,,,1 
 
 
ALLSEL 
*DO,N,1,16,1 
TYPE,1, 
MAT,1, 
REAL,17-N 
VMESH,1+4*(N-1),4+4*(N-1),1 
*ENDDO 
EPLOT 
 
ALLSEL 
NUMMRG,NODE,1.0e-4 
NUMMRG,ELEM,1.0e-4 
NUMMRG,KP,1.0e-4 
EPLOT 
 
CSYS,0 
 
TOL=0.00001 
 
NSEL,S,LOC,X,length 
NSEL,r,LOC,Z,r-TOL,r+TOL 
F,all,FX,force 
 
NSEL,S,LOC,x,length 
CP,42,ux,all 
 
NSEL,S,LOC,X,0 
D,ALL,UX,0 
 
NSEL,S,LOC,X,0 
NSEL,r,LOC,Z,-rm-TOL,-rm+TOL 
NSEL,r,LOC,Y,0-TOL,0+TOL 
D,ALL,UY,0 
 
NSEL,S,LOC,X,0 
NSEL,r,LOC,Z,rm-TOL,rm+TOL 
NSEL,r,LOC,Y,0-TOL,0+TOL 
D,ALL,UY,0 
 
NSEL,S,LOC,X,0 
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NSEL,r,LOC,Y,-rm-TOL,-rm+TOL 
NSEL,r,LOC,Z,0-TOL,0+TOL 
D,ALL,UZ,0 
 
NSEL,S,LOC,X,0 
NSEL,r,LOC,Y,rm-TOL,rm+TOL 
NSEL,r,LOC,Z,0-TOL,0+TOL 
D,ALL,UZ,0 
 
ALLSEL 
/SOLU 
SOLVE 
 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
NSEL,S,LOC,X,0.500000*length 
NSEL,r,LOC,y,-rm-TOL,-rm+TOL 
NSEL,r,LOC,z,0-TOL,0+TOL 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

240 
 

 

Typical MATLAB file for the Airfoil Beam with [908]S under Bending. 
 
/FILNAM, CIR COMP  
/TITLE, CIR COMP  
 
/UNITS,BIN 
/PREP7 
 
LOCAL,11,CYLIN,0,0,0,0,90,90 
 
Rm=0.9584 
force=0.001 
lenght_elements=40 
angular_elements=10 
width_elements=32 
height_elements=1 
 
tply=0.0052 
r=Rm+tply*8 
length=(Rm+0.0416)*15 
pi=3.14159265359 
 
MP,EX,1,18.2E6 
MP,EY,1,1.41E6 
MP,EZ,1,1.41E6 
MP,PRXY,1,0.27 
MP,PRYZ,1,0.27 
MP,PRXZ,1,0.27 
MP,GXY,1,0.92E6 
MP,GYZ,1,0.92E6 
MP,GXZ,1,0.92E6 
 
ET,1,SOLID46 
 
R,1 
RMODIF,1,1,1,0,0,0,0 
RMODIF,1,7,0 
RMODIF,1,13,1,90,tply 
 
R,2 
RMODIF,2,1,1,0,0,0,0 
RMODIF,2,7,0 
RMODIF,2,13,1,90,tply 
 
R,3 
RMODIF,3,1,1,0,0,0,0 
RMODIF,3,7,0 
RMODIF,3,13,1,90,tply 
 
R,4 
RMODIF,4,1,1,0,0,0,0 
RMODIF,4,7,0 
RMODIF,4,13,1,90,tply 
R,5 
RMODIF,5,1,1,0,0,0,0 
RMODIF,5,7,0 
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RMODIF,5,13,1,90,tply 
 
R,6 
RMODIF,6,1,1,0,0,0,0 
RMODIF,6,7,0 
RMODIF,6,13,1,90,tply 
 
R,7 
RMODIF,7,1,1,0,0,0,0 
RMODIF,7,7,0 
RMODIF,7,13,1,90,tply 
 
R,8 
RMODIF,8,1,1,0,0,0,0 
RMODIF,8,7,0 
RMODIF,8,13,1,90,tply 
 
R,9 
RMODIF,9,1,1,0,0,0,0 
RMODIF,9,7,0 
RMODIF,9,13,1,90,tply 
 
R,10 
RMODIF,10,1,1,0,0,0,0 
RMODIF,10,7,0 
RMODIF,10,13,1,90,tply 
 
R,11 
RMODIF,11,1,1,0,0,0,0 
RMODIF,11,7,0 
RMODIF,11,13,1,90,tply 
 
R,12 
RMODIF,12,1,1,0,0,0,0 
RMODIF,12,7,0 
RMODIF,12,13,1,90,tply 
 
R,13 
RMODIF,13,1,1,0,0,0,0 
RMODIF,13,7,0 
RMODIF,13,13,1,90,tply 
 
R,14 
RMODIF,14,1,1,0,0,0,0 
RMODIF,14,7,0 
RMODIF,14,13,1,90,tply 
 
R,15 
RMODIF,15,1,1,0,0,0,0 
RMODIF,15,7,0 
RMODIF,15,13,1,90,tply 
 
R,16 
RMODIF,16,1,1,0,0,0,0 
RMODIF,16,7,0 
RMODIF,16,13,1,90,tply 
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CSYS,11 
 
*DO,I,1,16,1 
K,1+4*(I-1),r-tply*(I-1),0,0 
K,2+4*(I-1),r-tply*(I-1),90,0 
K,3+4*(I-1),r-tply*(I-1),180,0 
K,4+4*(I-1),r-tply*(I-1),270,0 
K,69+4*(I-1),r-tply*(I-1),0,length 
K,70+4*(I-1),r-tply*(I-1),90,length 
K,71+4*(I-1),r-tply*(I-1),180,length 
K,72+4*(I-1),r-tply*(I-1),270,length 
L,1+4*(I-1),2+4*(I-1) 
L,2+4*(I-1),3+4*(I-1) 
L,3+4*(I-1),4+4*(I-1) 
L,4+4*(I-1),1+4*(I-1) 
L,69+4*(I-1),70+4*(I-1) 
L,70+4*(I-1),71+4*(I-1) 
L,71+4*(I-1),72+4*(I-1) 
L,72+4*(I-1),69+4*(I-1) 
L,1+4*(I-1),69+4*(I-1) 
L,2+4*(I-1),70+4*(I-1) 
L,3+4*(I-1),71+4*(I-1) 
L,4+4*(I-1),72+4*(I-1) 
*ENDDO 
 
*DO,J,1,16,1 
AL,1+12*(J-1),9+12*(J-1),5+12*(J-1),10+12*(J-1) 
AL,2+12*(J-1),10+12*(J-1),6+12*(J-1),11+12*(J-1) 
AL,3+12*(J-1),11+12*(J-1),7+12*(J-1),12+12*(J-1) 
AL,4+12*(J-1),12+12*(J-1),8+12*(J-1),9+12*(J-1) 
*ENDDO 
 
*DO,K,1,64,1 
VOFFST,K,-tply 
*ENDDO 
 
*DO,K,1,61,4 
VDELE,K,,,1 
*ENDDO 
*DO,K,4,64,4 
VDELE,K,,,1 
*ENDDO 
 
LOCAL,12,CART,0,0,Rm,0,-10,0 
*DO,i,-8,8,1 
K,i+9+380,0,-i*tply*tan(0.1745329252),i*tply*cos(0.1745329252) 
*ENDDO 
*DO,i,-8,8,1 
K,i+9+398,length,-i*tply*tan(0.1745329252),i*tply*cos(0.1745329252) 
*ENDDO 
 
CSYS,0 
*DO,i,0,16,1 
K,i+1+415,0,5.19943117224+i*tply/tan(0.1745329252),0 
*ENDDO 
*DO,i,0,16,1 
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K,i+1+432,length,5.19943117224+i*tply/tan(0.1745329252),0 
*ENDDO 
 
CSYS,12 
*DO,i,0,15,1 
v,381+i,399+i,433+i,416+i,381+1+i,399+1+i,433+1+i,416+1+i 
*ENDDO 
 
LOCAL,13,CART,0,0,-Rm,0,10,0 
*DO,i,-8,8,1 
K,i+9+450,0,i*tply*tan(0.1745329252),i*tply*cos(0.1745329252) 
*ENDDO 
*DO,i,-8,8,1 
K,i+9+467,length,i*tply*tan(0.1745329252),i*tply*cos(0.1745329252) 
*ENDDO 
 
*DO,i,0,15,1 
v,451+i,468+i,449-i,432-i,451+1+i,468+1+i,449-1-i,432-1-i 
*ENDDO 
 
NUMMRG,KP,1.0e-3 
 
LSEL,S,RADIUS,,Rm-8*tply,Rm+8*tply 
LESIZE,ALL,,,angular_elements 
 
LSEL,S,LENGTH,,length 
LESIZE,ALL,,,lenght_elements 
 
LSEL,S,LENGTH,,5.51920563107-0.3,5.51920563107+0.3 
LESIZE,ALL,,,width_elements 
 
LSEL,S,LENGTH,,tply,tply/tan(0.1745329252) 
LESIZE,ALL,,,height_elements 
 
LSEL,S,LENGTH,,length2-length 
LESIZE,ALL,,,1 
 
ALLSEL 
 
TYPE,1, 
MAT,1, 
 
REAL,1 
VMESH,62 
REAL,2 
VMESH,58 
REAL,3 
VMESH,54 
REAL,4 
VMESH,50 
REAL,5 
VMESH,46 
REAL,6 
VMESH,42 
REAL,7 
VMESH,38 
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REAL,8 
VMESH,34 
REAL,9 
VMESH,30 
REAL,10 
VMESH,26 
REAL,11 
VMESH,22 
REAL,12 
VMESH,18 
REAL,13 
VMESH,14 
REAL,13 
VMESH,14 
REAL,14 
VMESH,10 
REAL,15 
VMESH,6 
REAL,16 
VMESH,2 
REAL,16 
VMESH,2 
 
REAL,1 
VMESH,3 
REAL,2 
VMESH,7 
REAL,3 
VMESH,11 
REAL,4 
VMESH,15 
REAL,5 
VMESH,19 
REAL,6 
VMESH,23 
REAL,7 
VMESH,27 
REAL,8 
VMESH,31 
REAL,9 
VMESH,35 
REAL,10 
VMESH,39 
REAL,11 
VMESH,43 
REAL,12 
VMESH,47 
REAL,13 
VMESH,51 
REAL,14 
VMESH,55 
REAL,15 
VMESH,59 
REAL,16 
VMESH,63 
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CSYS,12 
REAL,1 
VMESH,1 
REAL,2 
VMESH,4 
REAL,3 
VMESH,5 
REAL,4 
VMESH,8 
REAL,5 
VMESH,9 
REAL,6 
VMESH,12 
REAL,7 
VMESH,13 
REAL,8 
VMESH,16 
REAL,9 
VMESH,17 
REAL,10 
VMESH,20 
REAL,11 
VMESH,21 
REAL,12 
VMESH,24 
REAL,13 
VMESH,25 
REAL,14 
VMESH,28 
REAL,15 
VMESH,29 
REAL,16 
VMESH,32 
 
CSYS,13 
REAL,1 
VMESH,64 
REAL,2 
VMESH,61 
REAL,3 
VMESH,60 
REAL,4 
VMESH,57 
REAL,5 
VMESH,56 
REAL,6 
VMESH,53 
REAL,7 
VMESH,52 
REAL,8 
VMESH,49 
REAL,9 
VMESH,48 
REAL,10 
VMESH,45 
REAL,11 
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VMESH,44 
REAL,12 
VMESH,41 
REAL,13 
VMESH,40 
REAL,14 
VMESH,37 
REAL,15 
VMESH,36 
REAL,16 
VMESH,33 
 
EPLOT 
 
ALLSEL 
 
CSYS,0 
 
TOL=0.00001 
 
NSEL,S,LOC,X,length-TOL,length+TOL, 
NSEL,r,LOC,Z,0+tply/2-TOL,r+TOL 
F,ALL,FX,force 
 
NSEL,S,LOC,X,length-TOL,length+TOL, 
NSEL,r,LOC,Z,0-tply/2,-r-TOL 
F,ALL,FX,-force 
 
NSEL,S,LOC,X,0 
D,ALL,ALL,0 
 
allsel 
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