
DYNAMIC SCENE INTERPRETATION AND UNDERSTANDING

FROM TWO VIEWS

by

NINAD SHASHIKANT THAKOOR

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT ARLINGTON

December 2009

Copyright c⃝ by Ninad Shashikant Thakoor 2009

All Rights Reserved

To my Aai-Baba, family and friends.

ACKNOWLEDGEMENTS

I would like to express my gratitude to my advisor Dr. Jean Gao for guiding

me onto the right path for research. Her constant encouragement and motivation

were pivotal in my research.

I am grateful to my co-advisor Dr. Venkat Devarajan for his guidance and

support during my doctoral studies. I would like to thank Dr. Sungyong Jung,

Dr. Qilian Liang and Dr. Michael Manry for devoting their time to serve on my

dissertation committee.

I greatly appreciate the faculty and the staff at electrical engineering depart-

ment and computer science and engineering department for bearing with me and for

being more than helpful.

I would like to thank my present and former colleagues at the Biocomputing

and Vision lab for making it the the best place to be at UTA.

I would also like to thank all my friends who made Arlington a home away

from home for me starting day one till today.

However, none of this would be possible without my family, their encourage-

ment and sacrifices which have gotten me here from a tiny village in India.

November 23, 2009

iv

ABSTRACT

DYNAMIC SCENE INTERPRETATION AND UNDERSTANDING

FROM TWO VIEWS

Ninad Shashikant Thakoor, Ph.D.

The University of Texas at Arlington, 2009

Supervising Professor: Jean Gao

Co-Supervising Professor: Venkat Devarajan

Interpretation of a static or dynamic scene starts by segmenting the scene

followed by recognition. Our work concentrates on the general problem of segmenting

and recognizing animate and inanimate objects in a scene captured from two different

views. The two views here refer to either a pair of frames captured by a stereo camera

or two frames (with spatial overlap) captured with a moving camera.

The work described in the dissertation starts with an iterative split-and-merge

framework for segmentation of an unknown number of objects captured with stereo

camera. The disparity of a scene is modeled by approximating various surfaces in

the scene to be planar. In the split phase, the number of planar surfaces along with

the underlying plane parameters is assumed to be known from the initialization or

from the previous merge phase. Based on these parameters, planar surfaces in the

disparity image are labeled to minimize the residuals between the actual disparity

and the modeled disparity. The labeled planar surfaces are separated into spatially

continuous regions which are treated as candidates for the merging that follows. The

v

regions are merged together under a maximum variance constraint while maximizing

the merged area. A multi-stage branch-and-bound algorithm is proposed to carry

out this optimization efficiently.

For moving objects, a framework is proposed for two-view multiple structure-

and-motion segmentation. This segmentation problem has three unknowns namely

the memberships, corresponding fundamental matrices and the number of objects.

To handle this otherwise recursive problem, hypotheses for fundamental matrices are

generated through local sampling. Once the hypotheses are available, a combinatorial

selection problem is formulated to optimize a model selection cost which takes into

account the hypotheses likelihoods and the model complexity. An explicit model for

the outliers is also added for a robust model selection. The model selection cost is

minimized through a branch-and-bound procedure.

Followed by segmentation, object recognition was applied to understand the

scene. The segmented objects lack exact boundaries; thus shape based recognition

or classification will not perform well. We follow a more general approach of visual

object recognition instead. Visual object recognition relies on spatial image features

to identify the objects. The state of the art visual object recognition approaches use

a visual bag-of-words to represent images. Bag-of-features is an orderless collection

of invariantly detectable image patches. The approach discards spatial relationships

between these patches and, gives objects, their context and the background clutter

equal importance. In a modification to the original visual bag-of-words, separate

representations for positively and negatively relevant image patches are formed. Im-

provements in the classification accuracies due to the separation are demonstrated

through experimentation.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iv

ABSTRACT . v

LIST OF FIGURES . x

LIST OF TABLES . xiii

Chapter Page

1. INTRODUCTION . 1

1.1 Segmenting Scene with Stereo Disparity 1

1.2 Segmenting Scene with Structure-and-Motion 3

1.3 Visual Object Recognition . 5

1.4 Problems and Organization . 6

2. STEREO DISPARITY SEGMENTATION 7

2.1 Introduction . 7

2.2 Stereo Disparity Segmentation Problem 9

2.3 Segmentation Methodology . 11

2.3.1 Split . 12

2.3.2 Merge . 13

2.4 Multi-Stage Branch-and-Bound Merging 15

2.5 Experimental Results . 19

2.5.1 Middlebury College Stereo Images 21

2.5.2 JISCT Stereo Images . 25

2.5.3 University of Bologna Stereo Sequences 28

2.5.4 Computational Complexity . 32

vii

3. MULTIPLE STRUCTURE-AND-MOTION SEGMENTATION 34

3.1 Introduction . 34

3.2 Multiple Structure-and-Motion Segmentation Problem 36

3.3 Branch-and-Bound Algorithm for Segmentation 39

3.3.1 Solution Tree . 39

3.3.2 Monotonicity of Partial Costs 42

3.3.3 Lower Bound on Cost . 46

3.3.4 Null Hypothesis Likelihood . 48

3.3.5 Branch-and-Bound Algorithm 49

3.4 Experimental Results . 49

3.4.1 Synthetic Data . 51

3.4.1.1 50 Outliers, 1 Cluster of Varying Size 10 to 50 52

3.4.1.2 50 Outliers, 1 Cluster of Size 50, 1 Cluster of Vary-
ing Size 10 to 50 . 52

3.4.1.3 50 Outliers, 2 Clusters of Size 50 each, 1 Cluster
of Varying Size 10 to 50 54

3.4.1.4 50 Outliers, 3 Clusters of Size 50 each, 1 Cluster
of Varying Size 10 to 50 54

3.4.2 Real Data . 56

4. COMPUTATIONAL COMPLEXITY OF BRANCH-AND-BOUND 63

4.1 Introduction . 63

4.2 Generalized Multi-Hypotheses Branch-and-Bound Model Selection . . 66

4.2.1 Segmentation as a Model Selection Problem 66

4.2.2 Branch-and-Bound Algorithm for Model Selection 70

4.2.3 Application to Multiple Structure-and-Motion Segmentation . 74

4.3 Branch-and-Bound as an Edge-Weighted Tree Search Problem 75

4.3.1 Average Complexity . 77

viii

4.4 Cost Probabilities, Optimality and Complexity Matrices 80

4.4.1 Cost Probabilities for Uniformly Distributed Edge Weights . . 80

4.4.2 Cost Probabilities by Sampling 81

4.4.3 Computing Optimality Matrix 82

4.4.4 Computing Complexity Matrix 85

4.5 Experimental Results . 86

5. VISUAL OBJECT RECOGNITION . 92

5.1 Introduction . 92

5.2 Motivation . 93

5.3 Estimating Relevance . 97

5.4 Relevance Weighted Bag-of-Features Classifier 98

5.5 Experimental Results . 99

6. CONCLUSION AND FUTURE WORK 105

6.1 Stereo Disparity Segmentation . 105

6.2 Two-View Multiple Structure and Motion Segmentation 106

6.3 Computational Complexity of Branch-and-Bound 107

6.4 Visual Object Recognition . 107

Appendix

A. COST PROBABILITIES FOR UNIFORM IID 108

REFERENCES . 113

BIOGRAPHICAL STATEMENT . 125

ix

LIST OF FIGURES

Figure Page

2.1 Geometry of a plane observed through a stereo camera 9

2.2 Solution tree for Ns=4 . 17

2.3 Flowchart for multi-stage branch-and-bound merging 20

2.4 (a) Left image of pair “Barn,” (b) Right image of pair “Barn,”
(c) Ground truth disparity, (d) Detected planar surfaces (B = 0.1,
iterations=4), (e) Calculated subpixel disparity, (f) Detected pla-
nar surfaces (B = 0.05, iterations=4, Vinet’s measure=0.0396), (g)
Detected planar surfaces with split-and-merge (B = 0.05, Vinet’s
measure= 0.0533) . 22

2.5 (a) Left image of pair “Poster,” (b) Ground truth disparity, (c)
Detected planar surfaces (B = 0.1, iterations=4), (d) Calculated
subpixel disparity, (e) Detected planar surfaces (B = 0.05, iter-
ations=4, Vinet’s measure=0.0419), (f) Detected planar surfaces
with split-and-merge (B = 0.05, Vinet’s measure= 0.2448) 26

2.6 (a) Left image of pair “Venus,” (b) Ground truth disparity, (c)
Detected planar surfaces (B = 0.1, iterations=4), (d) Calculated
subpixel disparity, (e) Detected planar surfaces (B = 0.05, iter-
ations=4, Vinet’s measure=0.0319) , (f) Detected planar surfaces
with split-and-merge (B = 0.05, Vinet’s measure= 0.1890) 27

2.7 (a) Left image of pair “Shrub,” (b) Calculated subpixel disparity,
(c) Initial segmentation (Ninit = 10), (d) Detected planar surfaces
(B = 0.5, iterations=4), (e) Detected planar surfaces by split-and-
merge (B = 0.5) . 29

2.8 (a) Left image of pair “Parking meter,” (b) Calculated subpixel
disparity, (c) Initial segmentation (Ninit = 10), (d) Detected planar
surfaces (B = 0.3,iterations=4), (e) Detected planar surfaces by
split-and-merge (B = 0.3) . 30

x

2.9 (a) Left image of pair “outdoor” frame 2, (b) Calculated subpixel
disparity, (c) Detected planar surfaces (B = 0.3, iterations=5), (d)
Left image of pair “outdoor” frame 126, (e) Calculated subpixel dis-
parity, (f) Detected planar surfaces (B = 0.3, iterations=6), (g) Left
image of pair “indoor” frame 10, (h) Calculated subpixel disparity,
(i) Detected planar surfaces (B = 0.3, iterations=6) 32

3.1 Spatially coherent sampling . 39

3.2 Solution tree for Nh = 5 and a null hypothesis, number in the
rectangle indicates extended representation for the node 41

3.3 Computation of lower bound on cost 48

3.4 Flowchart of the proposed algorithm, hashed portion of the chart
checks for various bounds . 50

3.5 Synthetic data cluster detection and classification accuracy (a) Set
1 - 50 Outliers + 1 cluster of varying size 10 to 50, (b) Set 2 - 50
Outliers + 1 cluster of size 50 + 1 cluster of varying size 10 to 50,
(c) Set 3 - 50 Outliers + 2 clusters of size 50 each + 1 cluster of
varying size 10 to 50, (d) Set 4 - 50 Outliers + 3 clusters of size 50
each + 1 cluster of varying size 10 to 50 53

3.6 Spinning wheels: (a) Disparities between two frames, each cluster is
denoted by different color, matches marked by red are outliers; (b)
Segmentation result for the first frame; (c) Segmentation result for
the second frame . 55

3.7 Box-book-mag: (a) Disparities between two views, each cluster is
denoted by different color, matches marked by red are outliers; (b)
Segmentation result for the first view; (c) Segmentation result for
the second view. 56

3.8 Desk: (a) Disparities between two views, each cluster is denoted by
different color, matches marked by red are outliers; (b) Segmenta-
tion result for the first view; (c) Segmentation result for the second
view . 57

3.9 Car-truck-box: (a) Disparities between two views, each cluster is
denoted by different color, outliers are marked by red; (b) Segmen-
tation result for frame 1; (c) Segmentation result for frame 8 58

xi

3.10 Kanatani: (a) Disparities between two views, each cluster is de-
noted by different color; (b) Segmentation result for frame 10; (c)
Segmentation result for frame 15 . 59

3.11 Sequences from JHU155 database: Left: Segmentation result with
disparities for the first view, Right: Segmentation result for the
second view (a)(b) “cars3” sequence; (c)(d) “people1” sequence;
(e)(f) “truck2” sequence; (g)(h) “1R2TCR” sequence 61

4.1 Solution tree for Nc = 5 and an additional candidate for outliers 71

4.2 (a) Original branch-and-bound tree for Nc = 3, (b) its edge-weighted
equivalent, (c) Coding for the tree nodes 76

4.3 Pr(Sm < Sn) for uniform iid random variables 82

4.4 Pr(Sm < Sn) for squared Gaussian iid random variables generated
by sampling . 83

4.5 PrT (Sm < Sn) for the MSaM segmentation problem 88

4.6 PrI(Sn < Sm) for the MSaM segmentation problem 89

4.7 Expected complexity . 89

4.8 Comparison of expected and actual complexity 90

5.1 (a) Original image, (b) Quantized features, (c) Original image over-
laid with locations of features from one of the histogram bins marked
as black dots . 94

5.2 Relevance weighted visual bag-of-features approach 99

5.3 Graz02: ROC curves Left: Without relevance separation Right:
With relevance separation for (a)(b) Class “Bike,”(c)(d) Class “Cars,”
(e)(f) Class “Person” . 101

5.4 Some of the test images and the corresponding positive relevance
weights, for which the relevance weighted classification significantly
outperforms the conventional classifier 103

5.5 Some of the test images and the corresponding positive relevance
weights, for which the relevance weighted classification was signifi-
cantly outperformed by the conventional classifier 103

5.6 Some of the test images and the corresponding positive relevance
weights, for which both the classifiers perform badly 104

xii

LIST OF TABLES

Table Page

2.1 Solutions explored in the first stage for the ground truth “Barn”
disparity . 24

2.2 Solutions explored in the first stage for the calculated subpixel
“Barn” disparity . 24

2.3 Solutions explored in the first stage for “Shrub” 31

2.4 Solutions explored in the first stage for “Parking meter” 31

2.5 Execution time in seconds . 33

3.1 Execution summary for the experiments 60

5.1 Graz02: Chi square kernel with 40 visual words used for relevance
estimation: Equal error rate in % averaged over 10 runs 102

5.2 Graz02: Chi square kernel with 40 visual words used for relevance
estimation : Area under ROC curve averaged over 10 runs 102

A.1 Repeated differential table for (t + j − k)n−1 111

A.2 Repeated integration table for tm . 111

xiii

CHAPTER 1

INTRODUCTION

Scene interpretation and understanding is at the heart of many computer vision

applications such as video surveillance, video retrieval, navigation of mobile robots,

intelligent environments and assistance technologies for visually impaired or elderly.

This dissertation addresses key problems in the area of scene interpretation and

understanding. In this chapter, a literature survey of the various topics related to

our research is provided. The most recent work is identified for each of these topics.

Additional references under each of the topics are provided in the later chapters when

these topics are discussed in greater detail.

1.1 Segmenting Scene with Stereo Disparity

Planar surfaces are abundant in any manmade environment. For example,

indoor images contain walls, floors, ceilings etc.; outdoor images contain sidewalks,

roads, walls, roofs etc. Additionally, objects such as humans and vehicles can appear

to be planar if they are observed from a distance. The ground plane is present in

virtually every scene. Thus, segmentation of planar objects would greatly assist the

automatic analysis of a dynamic or static scene and it can be carried out based on

the depth information alone.

When an object is captured with a stereo camera, it appears shifted in one

view compared to the another. This shift is known as disparity. In general, the

disparity is inversely proportional to depth. The real time estimation of disparity

for a stereo camera has become a reality due to the advances in general purpose

1

2

microprocessor and signal processor technology, which has resulted in higher data

handling and computation speeds and better architectures allowing pipelining and

parallel processing. Small vision system by SRI International [1], Stereo-on-a-Chip

system by Videre design [2] and DeepSea system by TYZX [3] are a few examples of

commercially available real time stereo systems that can be used as depth sensors.

While stereo vision based depth sensors are less accurate than conventional depth

sensors such as laser radars (LADARs) and structured light scanners, stereo holds

advantages of being cheap, portable, flexible, passive, quick, and power efficient.

Therefore computer vision systems are increasingly integrating stereo vision into

their framework.

The depth segmentation problem has been extensively dealt with in the terms

of the range image segmentation. However, due to the different modality of the depth

estimates achieved through stereo, a different treatment of the disparity segmentation

problem becomes necessary. The disparity based spatial segmentation in which depth

values drive the spatial segmentation has been addressed by some researchers [4].

Disparity and motion information are also combined to carry out segmentation [5,6].

However, very limited work has been done in segmentation of disparity alone. The

following paragraphs summarize these efforts.

Se and Brady [7] apply random sample consensus (RANSAC) to the disparity

values to detect the ground plane in their stereo vision based algorithm. They assume

that the ground plane is always visible and is the dominant plane in the image. The

detected ground plane is then used to detect any small obstacles against it. Okada

et al. [8] utilize randomized Hough transform to the Euclidean 3D data calculated

from the stereo. The peak points in the Hough space are selected as the plane

candidates. Finally, each image point is associated with a closest plane candidate.

Trucco et al. [9] apply their method to the disparity of a weakly calibrated stereo.

3

For each image pixel, the plane parameters are calculated by least squares fitting on

the disparity values of the local neighborhood. The planes are found by carrying out

clustering in the plane parameter space. However, for the point on the boundary of

the planes, the calculated parameters are inaccurate. This leads to inaccurate plane

labels in these regions.

Wang and Wang [10] use a planar surface model very similar to [9], the only

difference is that range values are used instead of disparity. A Bayesian framework is

used to impose a prior on the spatial continuity of the planar surfaces with a Markov

random field (MRF). The range images are known to be “clean”. Therefore, the

improvement in the segmentation of range data due to the MRF formulation is not

evident.

1.2 Segmenting Scene with Structure-and-Motion

The segmentation of structure-and-motion is a vital step towards interpre-

tation of a dynamic scene. A typical dynamic scene structure includes multiple

independently moving objects, which are being captured by a moving camera. Con-

ventional approaches based on the frame difference [11, 12] or the 2-D flow based

methods [13, 14] are restricted in segmenting such a scene. The frame difference

based approaches are limited due to the need for camera motion compensation. The

2-D flow based approaches are limited by the typical affine camera model.

To address the problem in a better way, a comprehensive theory of structure-

and-motion (SaM) estimation from perspective images has been developed by com-

puter vision researchers over the years [15]. Analysis of dynamic scenes based on this

theory, also known as multi-body structure-and-motion (MSaM) is now being exten-

sively explored. A two-view MSaM segmentation problem starts with sparse image

correspondences between two camera views and groups the correspondences with

4

same motion. Some of these correspondences are incorrect and should be treated

as outliers. The two-view MSaM problem can be interpreted as a geometric prob-

lem [16] as well. However, its direct application to real world problems is limited

as it does not account for the outliers. An interesting alternative is a clustering

perspective. The two-view MSaM clustering is a chicken-and-egg problem. To seg-

ment the scene, one needs motion models for all the objects. To estimate the motion

models of individual objects, one has to segment the objects first. To solve such

a recursive problem, iterative techniques such as expectation maximization can be

used [17]. However, results of expectation maximization can be guaranteed to be

only locally optimal and hence depend on the initial motion models. An alterna-

tive to the iterative method is a sequential extraction strategy, where motion with

largest number of matches, i.e. a dominant motion, is segmented and separated at

a time until the entire scene is explained [18]. A limitation of such methods is that

similar motions are often incorrectly segmented. The object encountered earlier in

the search is assigned some fraction of other objects, which have similar motion.

To get out of the chicken-and-egg dilemma, some researchers have applied

random sampling to generate multiple hypotheses for the motions in a scene [19,20].

For the image correspondences, which occupy the same spatial neighborhood, the

motion is expected to be the same. This knowledge of spatial coherency helps in the

selection of reliable hypotheses by local sampling of image correspondences through

a RANSAC-like process. Once hypotheses are available through sampling, a suitable

cost function can be optimized to achieve motion segmentation. Another important

aspect of clustering is the number of clusters. While most of the clustering techniques

assume that the number of clusters is known, such assumption is invalid for the

segmentation of a dynamic scene. Typically, clustering is carried out for a varying

number of clusters and, the best according to a certain criterion is selected.

5

1.3 Visual Object Recognition

Object recognition is a classic problem in image processing and computer vi-

sion. Among others, object recognition based on shape is widely used [21–24]. A

shape can be represented either by its contour or by its region [25, 26]. Curvature,

chain codes, Fourier descriptors, etc. are contour based descriptors while medial axis

transform, Zernike moments, etc. are region-based features. Contour based descrip-

tors are used as they preserve the local information that is important in classification

of complex shapes. However, medial axis or skeleton based descriptors such as shock

graphs [23, 24] and bone graphs [27] are popular in vision community as well. The

skeleton based descriptions preserve structural information for each part of the shape

with relation to the others. Thus, in case of articulation, viewpoint change and, par-

tial occlusion, skeleton based approaches are more successful. However, almost all

shape based approaches require the extraction of exact boundaries of an object in a

scene, which still remains a challenging problem.

An alternative to the shape based object classification is visual object recogni-

tion [28–32]. Visual object recognition relies on the visual appearance of an object

for recognition and, works directly with the image representation of an object. In

these approaches, invariant spatial features are first extracted from the image of the

object. A similarity measure based on example objects or a classifier is then used to

recognize the object. The most popular approach to visual object recognition is the

visual bag-of-words. In the visual bag-of-words approach, each image is represented

as a histogram of quantized image features. The approach discards all the spatial in-

formation about the features, which simplifies the recognition framework. However,

the approach gains invariance to object view point by doing this.

6

1.4 Problems and Organization

This dissertation makes contributions to the above areas, which are key to

scene interpretation and understanding. The specific problems addressed are:

1. Segmenting a dynamic scene captured by a stereo camera by detecting an

unknown number of planar surfaces from stereo disparity.

2. Interpreting a dynamic scene captured by a moving camera by segmenting an

unknown number of objects from sparse image correspondences.

3. Improving visual bag-of-words approach by reintroducing spatial information

the while maintaining the simplicity of the approach.

This dissertation is organized as follows: Chapter 2 presents multi-stage merg-

ing for stereo disparity segmentation. Chapter 3 discusses structure-and-motion seg-

mentation with multi-hypotheses clustering. Chapter 4 analyzes the computational

complexity for the branch-and-bound clustering algorithm proposed in chapter 3.

Chapter 5 presents the proposed two-step visual object recognition scheme. The

dissertation concludes in chapter 6 with suggestions for future work.

CHAPTER 2

STEREO DISPARITY SEGMENTATION

2.1 Introduction

The ubiquitous nature of planar surfaces in indoor as well as outdoor environ-

ments has driven the research related to their detection and segmentation. For ex-

ample, indoor images contain walls, floors, ceilings, etc.; outdoor images can contain

the ground, sidewalks, roads, walls, roofs, etc. Additionally, objects, such as humans

and vehicles, can appear to be planar if they are observed from a distance. The

presence of planar surfaces can ease various tasks such as mobile navigation [33,34],

scene structure segmentation [35], and camera self-calibration [36]. To mention a

few approaches, the planar surface detection can be carried out with sparse image

features [37, 38], optical flow vectors [39], 3D range data [10, 40], or stereo dispar-

ity [8, 9].

The disparity based planar surface segmentation problem can be formulated

as a clustering problem similar to [9] or [10], where the number of clusters is known

in advance. However, this formulation of little use to interpret scenes, for which the

number of objects is unknown. An interesting alternative formulation for clustering

is provided by Veeman et al. [41, 42] known as maximum variance clustering that

automatically chooses the number of clusters. According to [42], objective cluster-

ing requires scale information, which can be provided by maximum allowable cluster

variance. Region growing and split-and-merge algorithms also rely on the maxi-

mum variance criterion. Our method adapts the maximum variance criterion in a

split-and-merge clustering framework and selects the number of planar surfaces au-

7

8

tomatically as a byproduct of the merging process. The split-and-merge or region

growing algorithms generally start from seed regions and result in a different segmen-

tation if the seed regions are changed. To remove the suboptimality in the merging,

we apply a branch-and-bound algorithm.

A branch-and-bound approach [43] to the global optimization splits the opti-

mization problem into smaller subproblems. For these subproblems, upper and/or

lower bounds of a cost function are estimated. These bounds are used to elimi-

nate the subproblems that would not lead to an optimal solution. The subproblems

that survive are further divided and the bound calculation is continued until all the

subproblems are explored. The branch-and-bound procedures are applied in diverse

areas such as optimal feature subset selection [43–45], image registration [46], rate-

distortion based coding [47], job scheduling [48, 49] and clustering [43, 44, 50]. How-

ever, similar to other clustering formulations, the conventional branch-and-bound

formulation needs the number of clusters to be known.

In this chapter, a multi-stage branch-and-bound procedure for a variable num-

ber of clusters is proposed as a part of an iterative split-and-merge algorithm for

the planar surface segmentation from the disparity. An overview of the proposed

approach is as follows: an initial labeling of the disparity image is carried with

conventional k-means clustering. The initial labeling is then split to form spatially

continuous regions. These regions are merged using the multi-stage branch-and-

bound merging. The proposed algorithm extracts a single planar surface at a time

by maximizing the area of the surface under the constraint that the variance of each

merged area has to be less than a fixed value. The merging process is repeated until

all the regions are merged to form the planar surfaces. The number of merging stages

gives the number of planar surfaces present in the image. With the updated number

of planar surfaces and parameters, the split-and-merge is repeated until convergence

9

or, until visually acceptable segmentation is attained. Our preliminary work based

on this idea appeared in [51]. The work presented in this chapter was published

in [52].

The rest of the chapter is organized as follows: section 2.2 states the problem

to be solved. The split-and-merge paradigm utilized is illustrated in section 2.3.

The proposed branch-and-bound algorithm is formulated in section 2.4. Section 2.5

presents the experimental results for a variety of stereo images.

2.2 Stereo Disparity Segmentation Problem

When an object is captured from two different cameras, similar to the motion

parallax effect, it appears to have shifted in the two views. This shift is known as

the stereo disparity. The disparity is inversely proportional to the distance of the

object from the camera. A simplified geometric model of the stereo imaging process

is shown in figure 2.1.

b

Figure 2.1. Geometry of a plane observed through a stereo camera.

10

An object point P (X, Y, Z), which lies on a plane in a scene of interest, with

normal n = [πa πb πc]
T is being observed by a stereo camera. The point P is in the

plane decided by the following equation [15]

πaX + πbY + πcZ + πd = 0. (2.1)

Here πd is a constant such that πd/∥n∥ is the distance of the plane from the origin.

Image of this object point is formed at the image pixel location (xL, yL) in the left

camera and (xR, yR) in the right camera. Exploiting similarity of the triangles in the

stereo camera model,

xL =
f ·X
Z

, yL =
f · Y
Z

, d = |xL − xR| =
f · b
Z

, (2.2)

where d is the disparity, b is the distance between the two cameras also known as

the stereo baseline and f is the focal length of the camera. After inserting (2.2) in

(2.1) and redefining the constants, we have:

d = ax + by + c, (2.3)

where (a, b, c) are plane parameters in the disparity space. Note that the subscripts

representing a camera are dropped for simplicity. Thus, the planar surfaces can be

segmented by carrying out clustering in the (a, b, c) space. Before formulating the

clustering algorithm in the next section, the problem is defined in the rest of this

section.

11

Let S denote the pixel lattice of size M , where the disparity image D =

[d1 d2 . . . dM]T is being observed. There are N planes in the image {P1, P2, . . . , PN},

such that S =
∪N

k=1 Pk. The corresponding label field is given by

F = [f1 f2 . . . fM]T , fi ∈ L, (2.4)

where L = {1, 2, . . . , N} is a set of possible plane labels. The disparity at a pixel

i ∈ S is thus given by:

di =
N∑
k=1

{akxi + bkyi + ck}hki + ni. (2.5)

Here, (xi, yi) is the spatial location of the pixel i. hki is an indicator function such

that hki = 1 ⇔ fi = k. The parameters θk = [ak bk ck]T are the coefficients of

the equation of the plane Pk in the disparity space. The observation is assumed

to be corrupted by Gaussian noise ni with zero mean and standard deviation σi

to account for inaccuracies in estimation of disparity. Since the uncertainty in the

disparity estimation can arise from the lack of texture, a measure that judges the

“texturedness” of the local image can be used to initialize σi. Such measures include

good features to track [53] and Harris corner detector [54]. To simplify the model,

σi is replaced by σ for all i making the noise independent and identically distributed

(iid). Our goal is to find the number of planes N , the corresponding labeling F and

the parameters Θ = [θ1 θ2 . . . θN], given the disparity image D.

2.3 Segmentation Methodology

This section elaborates on the proposed method, which follows a split-and-

merge paradigm. The splitting is accomplished with spatial continuity and the merg-

12

ing is carried out under a constraint of maximum allowable variance for a cluster.

The following two subsections explain the split-and-merge steps of the algorithm.

2.3.1 Split

In the split step, it is assumed that the number of planar surfaces N and the

corresponding plane parameters Θ are known either due to their initialization or as

a result of the multi-stage merge in the previous iteration. Given the parameters Θ,

the label field F can be found as,

F̂ = arg max
F

Pr(F |Θ, D),

= arg max
F

Pr(D|F) Pr(F). (2.6)

With a noninformative prior for the label field, (2.6) reduces to a maximum likelihood

estimate. The estimate for the label of each pixel can be computed as:

f̂i = arg min
f

{
[di − (afxi + bfyi + cf)]2

}
. (2.7)

An estimate for the label field can thus be generated by minimizing the residuals be-

tween the actual disparity and the modeled disparity. The planar surfaces generated

after the labeling are expected to be spatially continuous. As the optimization in

(2.7) does not enforce spatial continuity, the label field generated is not necessarily

spatially continuous. The label field F is split into Ns regions based on the spatial

continuity criterion with connected component analysis.

13

The least square estimate for the plane parameters θk = [ak bk ck]T for the

region Pk can be calculated as,

ak

bk

ck

 =

ϕ1
k ϕ4

k ϕ6
k

ϕ4
k ϕ2

k ϕ5
k

ϕ6
k ϕ5

k ϕ3
k

−1

ϕ7
k

ϕ8
k

ϕ9
k

 . (2.8)

Here,

ϕ1
k =

∑
i∈Pk

x2
i , ϕ

2
k =

∑
i∈Pk

y2i , ϕ
3
k =

∑
i∈Pk

1 = |Pk|

ϕ4
k =

∑
i∈Pk

xiyi, ϕ
5
k =

∑
i∈Pk

yi, ϕ
6
k =

∑
i∈Pk

xi,

ϕ7
k =

∑
i∈Pk

xidi, ϕ
8
k =

∑
i∈Pk

yidi, ϕ
9
k =

∑
i∈Pk

di,

ϕ10
k =

∑
i∈Pk

di.
2

The corresponding sum of residuals for the region Pk is given by,

r2k = [ϕ10
k + a2kϕ

1
k + b2kϕ

2
k + c2kϕ

3
k + 2akbkϕ

4
k +

2bkckϕ
5
k + 2akckϕ

6
k − 2akϕ

7
k − 2bkϕ

8
k − 2ckϕ

9
k]. (2.9)

In the merge phase, only the variables Φk and the sum of residuals r2k defined here

need to be dealt with, rather than the individual pixel values. This significantly

reduces the computational burden in the merge phase.

2.3.2 Merge

In this section, the main contribution of this chapter, a multi-stage merging

strategy, is proposed that can automatically detect the number of planar surfaces. At

14

each stage, a planar surface is extracted by merging regions Pk under the constraint

that the variance of the planar surface formed by merging η2 is less than the maximum

allowable variance B. According to the notion of maximum variance clustering, the

value of B is used to select the scale of segmentation and has to be provided by the

user. Since the variance of a cluster is the result of the variations in the signal and

the noise involved in the acquisition, the knowledge of both must be applied to select

an appropriate value of B. The average residuals η2, for the surface extracted at the

jth stage Pj, can be calculated as,

η2(Pj) =
1

|Pj|
∑
i∈Pj

||di − (ajxi + bjyi + cj)||2 ≤ B, (2.10)

where (aj, bj, cj) can be computed from the ϕk values of the merged regions as,

aj

bj

cj

 =

∑

ϕ1
k

∑
ϕ4
k

∑
ϕ6
k∑

ϕ4
k

∑
ϕ2
k

∑
ϕ5
k∑

ϕ6
k

∑
ϕ5
k

∑
ϕ3
k

−1

∑
ϕ7
k∑

ϕ8
k∑

ϕ9
k

 . (2.11)

The summations in the above matrix equation are carried over Pk ∈ Pj. However,

this constraint alone does not yield a unique solution. While obeying this constraint,

the area of the extracted surface is maximized. The area criterion can be expressed

in terms of the variable ϕk values as,

A(Pj) =
∑

Pk∈Pj

ϕ3
k. (2.12)

Thus, at each stage j we want to choose an optimal merged surface Pj, which

is a subset of P = {P1, P2, . . . , PNs}, such that its area A(Pj) is maximized and the

variance η2(Pj) remains under a fixed value B. Once such a subset is determined,

15

this optimal subset is extracted as P∗
j and its members are removed from the set P

to update P as P = P \ P∗
j . Ns is also updated to Ns = Ns − |P∗

j |. The merging

process is repeated for the updated values of P and Ns until P is empty.

After a successful merging phase, an updated number of planar surfaces N is

available, which is the same as the number of merging stages in the iteration. The

corresponding planar surface parameters can be calculated from (2.11) where the

summations are carried over Pk ∈ P∗
j , j = 1, 2, . . . , N . If the labeling results do

not converge, then the split-and-merge procedure can be repeated using the updated

value of N and the planar surface parameters.

In the next section, a branch-and-bound algorithm is formulated to merge

regions optimally and efficiently.

2.4 Multi-Stage Branch-and-Bound Merging

Let Pj = {z1, z2, . . . , zn} denote the set of n elements, which optimizes the

merging criterion at the jth stage. For convenience, hereon the regions are indicated

with their indices alone, i.e., z1, z2, . . . , zn ∈ {1, 2, . . . , Ns}. The number of possible

solutions for each stage of the merging is given by,

Ns∑
i=0

(
Ns

i

)
= 2Ns , (2.13)

which increases exponentially with Ns. This makes it difficult to evaluate all the

solutions even for a small number such as 20 or 30. This optimization can be carried

out efficiently with a branch-and-bound procedure [43].

The solutions for the problem can be represented as a rooted tree. Each node

of the tree gives one possible solution for the problem. The regions included in the

solution can be found by the walk from the root of the tree to the current node. If the

16

root of the tree represents an empty set, then each node encountered is added to the

set of its parent node to generate the solution. Alternatively, the encountered nodes

are removed if the root node includes all the possible regions. In our formulation, we

choose an empty set as the root node. For the merging problem, the probability of

encountering a solution is higher near the root when this formulation is used. This

greatly speeds up the search for the optimal solution.

It is important that every solution is listed only once to avoid unnecessary

computations. This can be ensured by creating child nodes that are different than:

• left siblings,

• ancestors,

• left siblings of ancestors.

One simple way of generating such a solution tree for Ns = 4 is shown in figure 2.2.

Note that, in the solution tree for Ns = n, z1 < z2 < z3 . . . < zn and (left sibling <

right sibling). These two conditions ensure that the rule stated above to generate

the child nodes is followed. The current solution {z1, z2, z3 . . . , zn} is a subproblem

for all its descendants. Additionally, all the solutions representing the predecessors

of the current solution are subproblems for {z1, z2, z3 . . . , zn}.

Before the branch-and-bound algorithm is formulated, we estimate the bounds

on the best solution that can be reached from the current node. Consider a solution

at a node to be Pj = {z1, z2, . . . , zn}. The best solution in terms of area, i.e. the

maximum area that the node can lead to, is given by the sum of the areas of the

regions at the current node and the areas of all the regions with index greater than

zn.

Amax (Pj) = A (Pj) + A (zn + 1, zn + 2, . . . , Ns) . (2.14)

17

2

Z1

Z3

Z2

Z4

1 2

3

4

4 4

3 4

4

3

3

4 4

4

Figure 2.2. Solution tree for Ns=4.

Clearly, if Amax is smaller than the present optimal value for area A∗
j , then the current

node cannot lead to a better solution and the child nodes of this node can be safely

excluded from the search.

On the other hand, the best solution in terms of the variance minimizes the

average residuals. The variance does not increase or decrease monotonically with

the tree depth, therefore a bound on its value cannot be derived directly. However,

the sum of residuals (before normalization by the area) increases monotonically with

the depth and can be used to construct a bound on the variance. The bound on the

variance is given by the ratio of the lower bound on value of residuals of the child

nodes and upper bound on area of the child nodes, i.e. Amax.

η2min (Pj) =
|Pj|η2(Pj) + min{r2zn+1, r

2
zn+2, . . . , r

2
Ns
}

Amax

. (2.15)

18

If η2min is greater than the bound B, then the current parent node will not lead to

the optimal solution and search for the optimal solution can be terminated at this

node.

An additional bound can be derived when at least one stage of merging has

finished, i.e. when j > 1. As P∗
j is extracted by maximizing the area under the same

bound B as the one used for j − 1, the area of the optimal solution in any stage A∗
j

must be less than or equal to the optimal area achieved in the previous stage A∗
j−1.

Thus, an upper bound on A∗
j , i.e. Aupper, can be imposed as,

A∗
j ≤ Aupper = A∗

j−1. (2.16)

A multi-stage branch-and-bound merging algorithm based on the above bounds

is listed below.

1. Overall initialization: Set stage j = 1, the number of planar surfaces N = 1,

and the upper bound on the area Aupper = ∞.

2. Stage initialization: Set number of spatially continuous regions Ns = |P |, the

optimal area A∗
j=0, the optimal merging P∗

j = ∅, the tree level i = 1 and the

current node z0 = 0.

3. Generate Successors: Initialize LIST (i),

LIST (i) = {zi−1 + 1, zi−1 + 2, . . . , Ns}. (2.17)

4. Select new node: If LIST (i) is empty, go to step 6. Otherwise, set zi = k

where k ∈ LIST (i). Set the current solution Pj = {z1, z2, . . . , zi}. Delete k

from LIST (i).

19

5. Check bounds: Compute Amax (Pj). If Amax (Pj) < A∗
j , go to step 6. Calculate

η2min (Pj). If η2min (Pj) > B, go to step 6. Compute A (Pj). If Aupper < A (Pj),

go to step 6. Compute η2 (Pj). If A∗ ≤ A (Pj) and η2 (Pj) ≤ B, set A∗ = A (Pj)

and P∗
j = Pj. Set i = i + 1 and go to step 3.

6. Backtrack to the lower level: Set i = i − 1. If i > 0, go to step 4. If A∗
j = 0,

set P∗
j = {1}. Set Aupper = A∗

j . Update P = P \ P∗
j . If P = ∅, terminate the

algorithm. Set j = j + 1, N = N + 1 and go to step 2.

Figure 2.3 gives the flowchart for the multi-stage branch-and-bound merging

process for a better understanding.

2.5 Experimental Results

The proposed planar surface segmentation process was tested with a variety

of synthetic and real data. Before proceeding to the results, we briefly describe the

initialization strategy for the algorithm. During the initialization, we utilize the fact

that the planar objects are expected to have constant or piecewise continuous values

of disparity. To initialize the planar surface parameters, the cumulative histogram

of the disparity image was split into Ninit equal segments. First, the disparity values

for the image are arranged in ascending or descending order. The disparity values

are then separated in Ninit number of bins each carrying an equal number of pixels,

i.e. the first M
Ninit

pixels in the ordered pixels are assigned to plane 1, next M
Ninit

are

assigned to plane 2 and so on.

Unlike the conventional iterative methods (e.g. expectation-maximization, gen-

eralized k-means, and segmentation-estimation), which carry out the labeling and the

segmentation in separate steps, our method carries out these steps simultaneously.

Iterations for the method are required to capture the boundaries that are not cap-

20

Initialize
Segmentation

Label regions P

Compute statistics
and residuals for

each region

For stage j, initialize
tree level i=1,

Optimal area A*=0,

Optimal solution P*=

Stage j=1,
Upper bound on

area Aupper=

Generate child nodes

Any child
nodes left?

Select a new node P,

Compute area A,
Maximum possible
area Amax, Variance

, Minimum possible

variance min for P

No

Yes

Amax < A*?

min > B?

No

Yes

Yes

No

Aupper< A?

No

A > A*

& < B?

P*=P

A* = A(P*)

i=i+1

Yes

i=i-1

Yes

i=0

P*=

P=P\P*

P=

P*=largest region

Terminate the algorithm

Yes

Yes

Yes

No

No

No

Aupper=A*,
j=j+1

Sort regions P by
decreasing area

No

Figure 2.3. Flowchart for multi-stage branch-and-bound merging.

21

tured by the initialization. Thus, a very small number of iterations (typically 4) is

required to produce visually acceptable segmentation.

2.5.1 Middlebury College Stereo Images

The first set of experiments was carried out with the stereo image pairs and

their ground truth disparity available at the Middlebury stereo vision research page

[55]. For each image, the number of planar surfaces is known and this information

can be used to verify the success of the proposed method.

Figures 2.4(a) and (b) show the left and right images of the “Barn” sequence.

Each image in this sequence is of size 432 × 381. The image shows 6 planar surfaces

of various size, shape and orientation. First, the ground truth disparity (shown

in figure 2.4(c)) was segmented with bound B = 0.1. The number of surfaces was

initialized to be Ninit = 10. For each segment, the planar parameters were estimated,

which were used for the spatial continuity based splitting in the first iteration of the

algorithm. The planar surfaces extracted after 4 iterations of the split-and-merge

are shown in figure 2.4(d).

The planar surface extraction was repeated for the estimated disparity map.

To calculate the disparity map, the sum of absolute differences (SAD) was minimized

over a window shifted along the epipolar lines of the image. Additionally, to remove

the outliers, including the occluded areas, we employ the left-right check [56]. For

the “Barn” images, a window of size 7 × 7 was used for the matching. Finally, a

subpixel value of the disparity was estimated by fitting a parabola to the SAD values

around the integer disparity [57].

Figure 2.4(e) shows the estimated disparity for the sequence. The small dark

areas around the edges of the planes are the occluded areas, for which a reliable

estimate of the disparity is unavailable. The detected planar surfaces are shown in

22

(a) (b) (c)

(d) (e)

(f) (g)

Figure 2.4. (a) Left image of pair “Barn,” (b) Right image of pair “Barn,” (c)
Ground truth disparity, (d) Detected planar surfaces (B = 0.1, iterations=4), (e)
Calculated subpixel disparity, (f) Detected planar surfaces (B = 0.05, iterations=4,
Vinet’s measure=0.0396), (g) Detected planar surfaces with split-and-merge (B =
0.05, Vinet’s measure= 0.0533).

23

figure 2.4(f) after some postprocessing. The postprocessing involved size filtering

on the detected regions. Any regions of size less than 50 pixels were filtered out.

These regions along with the occluded regions were then labeled by nearest neighbor

interpolation. The foreground planes are bigger compared with the ones in the seg-

mented ground truth. This is due to the use of the square window to calculate the

disparities. Additionally, note that the disparities at extremities of the image, espe-

cially the left and right edges, cannot be estimated. For this reason, the calculated

disparity images are smaller than the ground truth disparity images.

For comparison, a quad-tree based split-and-merge algorithm was implemented

[58]. The steps involved in the algorithm are listed below:

• Split the region into four quadrants if the variance is greater than B.

• If no further splitting is possible then combine the neighboring regions such

that the average residuals of the combined regions are less than B.

• Stop if no regions can be merged.

Note that apart from the splitting and merging strategy used, this algorithm fol-

lows the same computational framework as our algorithm. Figure 2.4(g) shows the

result of the planar surface segmentation with quad-tree split-and-merge segmen-

tation. Vinet’s measure [59, 60] is used for the objective comparison between both

the methods. For the “Barn” images, the proposed method slightly outperforms (by

∼1%) the quad-tree split-and-merge method according to Vinet’s measure. Addi-

tionally, the planar surface boundaries have a jagged appearance in the quad-tree

based method due to the splitting method used.

24

Table 2.1. Solutions explored in the first stage for the ground truth “Barn” disparity

Iteration N Ns Solutions Fraction
explored explored

1 7 37 1987 1.44e-8
2 6 30 1032 9.61e-7
3 6 22 237 5.65e-5
4 6 23 269 3.21e-5

Table 2.2. Solutions explored in the first stage for the calculated subpixel “Barn”
disparity

Iteration N Ns Solutions Fraction
explored explored

1 7 40 1462 1.33e-9
2 6 40 4092 3.72e-9
3 6 23 224 2.67e-5
4 6 21 146 6.96e-5

Tables 2.1 and 2.2 show the number of solutions explored to extract the largest

planar surface from the ground truth and the calculated disparity. The fraction

explored is calculated as,

Fraction explored =
Solutions explored

2Ns
. (2.18)

The tables demonstrate the effectiveness of the proposed branch-and-bound algo-

rithm that explores a very small fraction of the solution space to reach the optimal

solution. Before the multi-stage merging was carried out, all the spatially continuous

regions were sorted according to decreasing area. To speed up the solution, regions

smaller than 50 pixels were removed from the search. If the number of regions left in

the search after this was greater than 40, then the 40 largest areas were considered

for the merging operation to speed up the process further. Note that even with 40

25

areas, the number of possible solutions is 240 ≈ 1.099e12. The tables also show that

the number of planar surfaces is correctly identified as 6 in both the cases.

Figures 2.5 and 2.6 show additional results with the “Poster” and “Venus”

images, both with the ground truth and the calculated disparities. The number

of planar surfaces detected in the “Poster” image was six for the ground truth as

well as the computed disparity. Five planar surfaces are detected in the “Venus”

ground truth disparity. However, for the smallest planar surface, which lies in the

right bottom corner of the image, the disparity cannot be calculated. Thus, only

four surfaces are detected in the calculated disparity. For the “Poster” and “Venus”

images, the proposed method significantly outperforms the quad-tree split-and-merge

method. This can be seen visually as well as through the Vinet’s measure. The quad-

tree split-and-merge oversegments the image even though it uses the same value of

maximum allowable variance B as the proposed method. This is mainly due to the

suboptimal merging the method uses.

2.5.2 JISCT Stereo Images

Images chosen in the first experiment contained only planar objects and the

scenes were not natural. The second set of experiments was carried out with some of

the JISCT stereo images [61], which contain a few real life sequences with non-planar

objects. The first sequence is called “Shrub” and its left image is shown in figure 2.7

(a). The dimensions of the image sequence are 512 × 480. The images contain a

hedge in front of a building wall along with a parking sign and a part of a road at

the bottom.

Similar to the first experiment, Ninit was chosen to be 10. The initial segmen-

tation is shown in figure 2.7(c). After four iterations of the split-and-merge with

bound B = 0.5, three planar surfaces are detected. One corresponds to the wall,

26

(a) (b)

(c) (d)

(e) (f)

Figure 2.5. (a) Left image of pair “Poster,” (b) Ground truth disparity, (c) De-
tected planar surfaces (B = 0.1, iterations=4), (d) Calculated subpixel disparity,
(e) Detected planar surfaces (B = 0.05, iterations=4, Vinet’s measure=0.0419), (f)
Detected planar surfaces with split-and-merge (B = 0.05, Vinet’s measure= 0.2448).

27

(a) (b)

(c) (d)

(e) (f)

Figure 2.6. (a) Left image of pair “Venus,” (b) Ground truth disparity, (c) De-
tected planar surfaces (B = 0.1, iterations=4), (d) Calculated subpixel disparity,
(e) Detected planar surfaces (B = 0.05, iterations=4, Vinet’s measure=0.0319) , (f)
Detected planar surfaces with split-and-merge (B = 0.05, Vinet’s measure= 0.1890).

28

the econd corresponds to the hedge, and the last represents the part of the road.

Table 2.3 shows the number of solutions explored in the first stage of the algorithm

for the images. Due to the increased complexity of the scene compared to the first

experiment, the maximum number of solutions is explored in the first stage of the

first iteration, i.e. 212644 for Ns = 40 (fraction 1.93e-7). This large number is due to

the presence of numerous small regions and very few large regions. As more regions

are needed to form the optimal solution, the optimal solution will be present farther

from the root, which leads to a higher number of solutions being explored.

The other image sequence used for the experiment was “Parking meter.” The

dimensions of this image sequence are 512 × 480 as well. The left side of the image

shows a hedge in front of a wall. Additionally, a few parking meters are visible with a

part of a car. The plane detection results for B = 0.3 after four iterations are shown

in figure 2.8 (d). Three separate planes are detected for the hedge, one parallel to

the camera image plane, the second parallel to the wall, and the last very close to

the camera. The partially visible car is also labeled to be in a plane parallel to the

image plane. Two different planes for the two parallel wall surfaces can also be seen.

This scene is more challenging than the others due to its complex structure. This

complexity is also reflected in the number of solutions explored in Table 2.4. As

seen in figure 2.8(e), the quad-tree based split-and-merge performs very badly for

the scene.

2.5.3 University of Bologna Stereo Sequences

Finally, the proposed method was tested with “Indoor” and “Outdoor” video

sequences from the University of Bologna [62]. These sequences have resolution of

640× 480. The stereo disparity was calculated by matching windows of size 15× 15.

The bound on variance B was chosen to be 0.3 for these images.

29

(a) (b)

(c) (d)

(e)

Figure 2.7. (a) Left image of pair “Shrub,” (b) Calculated subpixel disparity, (c) Ini-
tial segmentation (Ninit = 10), (d) Detected planar surfaces (B = 0.5, iterations=4),
(e) Detected planar surfaces by split-and-merge (B = 0.5).

30

(a) (b)

(c) (d)

(e)

Figure 2.8. (a) Left image of pair “Parking meter,” (b) Calculated subpixel dis-
parity, (c) Initial segmentation (Ninit = 10), (d) Detected planar surfaces (B =
0.3,iterations=4), (e) Detected planar surfaces by split-and-merge (B = 0.3) .

31

Table 2.3. Solutions explored in the first stage for “Shrub”

Iteration N Ns Solutions Fraction
explored explored

1 3 40 212644 1.93e-7
2 3 40 81755 7.44e-8
3 3 34 2981 1.74e-7
4 3 34 10177 5.92e-7

Table 2.4. Solutions explored in the first stage for “Parking meter”

Iteration N Ns Solutions Fraction
explored explored

1 5 40 21356 1.94e-8
2 5 40 24159 2.20e-8
3 5 40 30027 2.73e-8
4 5 40 38323 3.49e-8

Figure 2.9(a) shows frame 2 of the “Outdoor” sequence. The frame contains a

staircase, a wall, and a small rectangular panel against the wall. The detected planar

surfaces are shown in figure 2.9(c). Five iterations of the proposed split-and-merge

procedure were applied to achieve this result.

Figure 2.9(d) shows frame 126 of the “Outdoor” sequence. In addition to the

original planar surfaces, a human can also be seen in the frame. The detected planar

surfaces are shown in figure 2.9(f). Six iterations of the proposed split-and-merge

procedure were carried out. As a human is not a planar object, he is split into three

piecewise planar patches.

The background for the “Indoor” sequence is shown in figure 2.9(g). As most

of the image is textureless, the calculated disparity is sparse. However, the planes

appearing in the image are correctly identified.

32

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2.9. (a) Left image of pair “outdoor” frame 2, (b) Calculated subpixel dis-
parity, (c) Detected planar surfaces (B = 0.3, iterations=5), (d) Left image of pair
“outdoor” frame 126, (e) Calculated subpixel disparity, (f) Detected planar surfaces
(B = 0.3, iterations=6), (g) Left image of pair “indoor” frame 10, (h) Calculated
subpixel disparity, (i) Detected planar surfaces (B = 0.3, iterations=6) .

2.5.4 Computational Complexity

For the branch-and-bound algorithms, the worst case complexity is the same as

the brute force search. However, the average case complexity, which is an indicator

of performance of the algorithm, is much lesser. Table 2.5 compares the execution

time for various experiments for the MATLAB implementations of the quad-tree

split-and-merge and the proposed algorithm using a Dell Vostro 400 desktop with

Intel Core 2 Duo 2.33 GHz (E6550) processor as a single thread. Being a global

33

Table 2.5. Execution time in seconds

Experiment Quad tree Branch and bound (4 iters.)
Barn 9.83 5.30

Poster 14.15 3.94
Venus 23.92 16.94
Shrub 17.29 55.81

Parking meter 26.85 25.12

optimization technique, execution of the proposed branch-and-bound algorithm was

expected to be slower than the quad-tree split-and-merge. However, on an average

the branch-and-bound algorithm outperformed the quad-tree split-and-merge.

CHAPTER 3

MULTIPLE STRUCTURE-AND-MOTION SEGMENTATION

3.1 Introduction

The disparity segmentation problem and the multiple structure-and-motion

(MSaM) segmentation problem are very similar. While disparity segmentation groups

pixels in a scene based on a model for their structure, MSaM segmentation groups

correspondences with similar motion. A multi-stage merging formulation similar to

chapter 2 is possible for structure-and-motion segmentation as well. For various

reasons listed below, a new formulation is needed to carry out MSaM segmentation.

• Nonlinear problem: The bounds estimated in branch-and-bound merging are

due to the linear nature of the structure model applied. While estimation of

the bounds for the nonlinear model involved in MSaM segmentation should be

possible, it is not straightforward. Possibly, these bounds would not be “tight”,

slowing the branch-and-bound search.

• Density of correspondences: The epipolar geometry between left and right

views from stereo camera is fixed, while the epipolar geometry between two

views captured from a moving camera changes continuously. The known epipo-

lar geometry reduces the search area for correspondences. For calibrated and

rectified stereo camera images, search along horizontal scan line is needed to

establish the correspondences. For images captured from a moving camera, the

correspondences have to be searched for over the entire image. Additionally,

the variation of perspective between two views is larger in a moving camera

compared to a stereo camera. For these reasons, matching image features is

34

35

easier for a stereo camera compared to a moving camera. Thus, a very few

reliable matches are possible for a moving camera. Due to the sparsity of the

correspondences, the spatial continuity based split phase of the split and merge

algorithm proposed in chapter 2 is ineffective.

• Outliers : In addition to sparsity of matches, unknown epipolar geometry and

drastic changes in perspective cause more mismatches with moving camera.

Thus, an explicit treatment of these outliers becomes necessary to avoid their

negative impact on MSaM segmentation.

• Greedy formulation: The segmentation formulation in chapter 2 is greedy and,

was preferable dues to the large volume of data. As the data is sparse for

MSaM segmentation, an optimal formulation for the problem is now feasible.

The MSaM segmentation problem, where the number of objects is unknown, is

typically formulated as a recursive and sequential clustering problem. The clustering

is carried out by varying the number of objects,i.e. clusters, and selecting an optimal

number of cluster with a model selection criterion such as Bayesian information

criterion (BIC) or the Akaike information criterion (AIC) [63]. At each stage, the

problem is recursive as segmentation labels are required for estimation of cluster

parameters and vice-versa.

This chapter formulates the MSaM problem as a one-step combinatorial op-

timization problem under a sampling based framework. Initially, hypotheses for

structure-and-motion model are generated by local sampling of correspondences be-

tween two views. A null hypothesis is also introduced suggesting that any match can

be an outlier with uniform likelihood. Next, a model selection criterion, which penal-

izes the likelihood of the clustering by number of clusters, is added to the framework.

The model selection criterion is optimized through a branch-and-bound process to

36

obtain the final MSaM segmentation. Our preliminary work based on this idea was

presented in [64].

The chapter is organized as follows: Section 3.2 formulates the MSaM segmen-

tation as a combinatorial optimization problem. A branch-and-bound solution to the

problem is then formulated in section 3.3. The experimental results are presented in

section 3.4.

3.2 Multiple Structure-and-Motion Segmentation Problem

Consider a set of N image correspondences

X = {(x1,x
′
1), (x2,x

′
2), . . . , (xN ,x

′
N)},

where xi and x′
i are image coordinates of the ith correspondence. The relationship

of various object structures and motions in the scene can be expressed as,

x
′T
i

(
K∑
j=1

Lj(i)Fj

)
xi = 0. (3.1)

Here, Fj is the fundamental matrix [15] for jth rigid body in the scene. The indicator

function Lj(i) is 1 when ith correspondence belongs to the jth rigid body and 0

otherwise. A label field L = [l1, l2, . . . , lN] is associated with the indicator function

Lj(i) such that, li = j if Lj(i) = 1. The goal of the MSaM segmentation is to

estimate the label field L. Once the label field in known, the fundamental matrix Fj

can be computed as the least square estimate as,

Fj = arg min
F

∑
∀i,li=j

d(xi,x
′
i, F)2. (3.2)

37

Here, d is a distance measure such as symmetric transfer error, reprojection error or

Sampson approximation [15].

On the other hand, if Fjs are known, the maximum likelihood estimate for the

label of ith match is given by,

l̂i = arg min
l

d(xi,x
′
i, Fl)

2. (3.3)

Equations (3.2) and (3.3) represent the parameter estimation and the label estimation

or segmentation steps respectively. Since these steps are interdependent, the MSaM

problem can be solved iteratively to maximize the likelihood of the correspondences.

Assuming that the uncertainties in the matches are normally distributed with zero

mean and standard deviation σ, the log likelihood of the matches is given by,

log{Lik(X)} = −1

2

(
SSD

σ2

)
+ Constant, (3.4)

where,

SSD =
N∑
i=1

K

min
j=1

d(xi,x
′
i, Fj), (3.5)

This optimization procedure also assumes that the number of clusters K is known

a priori. This assumption is unrealistic in most of the scenes. The likelihood of

the correspondences is inversely proportional to the SSD given by (3.5) and it can

only decrease if a new cluster is added. Since the likelihood of the correspondences

increases as K is increased, the likelihood alone cannot be applied to select an optimal

value of K. A model selection criterion such as the Bayesian information criterion

(BIC) or the Akaike information criterion (AIC) can be utilized to select the optimal

K [63]. These criteria penalize the log likelihood of the model in proportion to the

38

size of the model K. A generalized cost function to incorporate this idea can be

written as,

C = −2 log{Lik(X)} + α ·K. (3.6)

Where α is a positive constant. For BIC, α = log(N) and for AIC, α = 2N . The

first term of (3.6) gives the negative log likelihood of the model, which decreases with

increase in K. The second term of (3.6) is the penalty term, which increases with

increase K. Thus, the minimum cost C compromises between likelihood and number

of cluster to select optimal K.

The cost function in (3.6) can be optimized by iterative optimization of the

likelihood in (3.4) for varying values of K. Finally, the optimal K can be selected to

minimize the cost C.

Alternative to this approach is a simultaneous model selection and segmen-

tation approach. In this approach, multiple hypotheses for fundamental matrix Fj

where j = 1, 2, . . . , Nh are generated by sampling the correspondences. Figure 3.1

shows three different motions marked with +, ∗ and X and the outliers marked by O.

RANSAC is applied to correspondences in the circular spatial neighborhood of a cor-

respondence to estimate Fj. Use of the spatial neighborhood ensures that RANSAC

can correctly and quickly estimate hypotheses for fundamental matrices. Once these

hypotheses are known, the MSaM segmentation problem is reduced to a combinato-

rial optimization problem to select K hypotheses out of total Nh hypotheses. Note

that there are 2Nh possible solutions for this problem. Thus, even for a moderate

value of Nh, an exhaustive search becomes intractable. However, the nature of the

problem allows us to use a branch-and-bound approach to obtain an optimal solution

in a reasonable time for practical problems.

39

+

+
+

+

+

+
+

+

+ +

*

*

* *
* *

* *

x

x
x

x

x x

x
x

x

O

O

O

O

O

O

O

O

O

O

O

Figure 3.1. Spatially coherent sampling.

3.3 Branch-and-Bound Algorithm for Segmentation

This section constructs the branch-and-bound algorithm for the optimization of

cost function in (3.6). A branch-and-bound algorithm requires formulation of various

components such as branching, bounding, pruning and retracting [43]. Apart from

bounding, all the other components can be represented as a rooted tree. In the

following subsection, the tree representation of the MSaM problem is formulated.

3.3.1 Solution Tree

There are Nh hypotheses H = {F1, F2, . . . , FNh
} for the fundamental matrices

Fj and we have to choose K of them to minimize the criterion in (3.6). All possible

solutions of this optimization problem can be represented as a rooted tree. Each node

encountered on the tree represents a solution. The node is also the partial solution

for its descendent nodes. It is important that every solution is listed only once to

avoid unnecessary computations. This can be ensured by creating child nodes that

are different than:

40

• left siblings,

• ancestors,

• left siblings of ancestors.

One simple way of generating such a solution tree for Nh = 5 is shown in figure 3.2

with an additional null hypothesis F0 shown as z0 = 0 in the figure. The null

hypothesis is that for a given match, none of the Nh hypotheses is valid. This means

that the match is an outlier. We will introduce the null hypothesis in detail later

in the section. Note that, in the solution tree (z0 < z1 < z2 < z3 . . . < zn) and

(left sibling < right sibling). These two conditions ensure that the rule stated above

to generate the child nodes is followed. Note that this gives rise to a binomial tree

of degree Nh [65]. This tree has the following properties.

• It has 2Nh nodes and each node corresponds to a solution.

• The height of the tree is Nh, which is equal to the largest possible value of K.

• At any given depth zn, it has zn!
Nh!(Nh−k)!

nodes.

The solution tree can be explored by search algorithms such as breadth first search

and depth first search. We choose the depth first search to take advantage of the

recursive relationships of various computations, which will be clear in our discussion

later. In general, depth first search avoids the exponential space complexity as well.

Any tree search algorithm is applied as a series of branch forward, branch right and

retraction operations [43].

To understand the various tree operations and their physical interpretation, we

assume that the circled node in figure 3.2 indicates the current search location. The

current location can be represented by the nodes traversed to reach it, i.e. ⟨0, 1, 3⟩.

This means that the null hypothesis, hypotheses F1 and F3 are included in the current

solution. We can define a binary representation for the node. In an Nh bit wide binary

representation, the nodes traversed to reach the current node can be represented by

41

5

2 3 41 5

3 4 4 52 3 4 5 55

43 4 4 5 55 5

4 55 5 5

z1

z3

z2

z4

z0

z5

55

XXXXX0

XXXX1 XXX10 XX100 X1000 10000

11111

11110

11100

11000

11101

11001 11010

Figure 3.2. Solution tree for Nh = 5 and a null hypothesis, number in the rectangle
indicates extended representation for the node.

‘1’ and the hypotheses that are not traversed can be indicated by ‘0’. With a slight

abuse of notation, we extend this binary notation to include representation for the

partial solutions. We represent the hypotheses that can be traversed in the future by

X (don’t care). By replacing Xs by ‘0’s, the extended partial solution representation

of a node can be turned into a binary solution representation of the same. Thus,

the circled node in figure 3.2 is represented by XX101. The extended representation

not only indicates that the current solution is 00101 but through Xs it also indicates

that it is the partial solution for solutions 01101 i.e. ⟨0, 1, 3, 4⟩, 10101 i.e. ⟨0, 1, 3, 5⟩

and 11101 i.e. ⟨0, 1, 3, 4, 5⟩.

A branch forward operation moves deeper in the tree by one level. After

a branch forward operation, the partial solution ⟨0, 1, 3⟩ would lead to ⟨0, 1, 3, 4⟩.

In terms of the extended representation, the trailing X is replaced by ‘1’. A branch

forward operation adds one more hypothesis to the solution. A branch right operation

moves to the sibling branch towards right. In the extended representation, leading ‘1’

42

is replaced by ‘0’ and trailing X is replaced by ‘1’. The solution ⟨0, 1, 3⟩ would branch

right to give the solution ⟨0, 1, 4⟩. A branch right operation replaces a hypothesis with

the next hypothesis. Thus, the number of hypotheses after the branch right operation

remains the same. A retraction moves the solution one level up the tree. A retraction

is carried out when no forward or right branching is possible. Solution ⟨0, 1⟩ is the

result of the retraction at the circled node. For the extended representation, the

operation first replaces leading 1 with X and then all the leading ‘0’s with X. Note

that a retraction is generally followed by a branch right step. The branch-and-bound

algorithm is terminated when a retraction leads to the root node.

3.3.2 Monotonicity of Partial Costs

The solution representing a node at depth n be given by

Z(n) = {⟨z0, z1, z2, . . . , zn−1, zn⟩,D(n)}.

The hypotheses z0, z1, z2, . . . , zn−1, zn correspond to fundamental matrices

Fz0 , Fz1 , Fz2 , . . . , Fzn−1 , Fzn

respectively. Minimum distances at depth n are given by

D(n) = [D(1, n), D(2, n), . . . , D(N,n)]

and D(i, n) corresponds to the minimum distance for the ith match among the

current set of hypotheses.

D(i, n) =
n

min
k=0

d(xi,x
′
i, Fzk). (3.7)

43

The cost function for the solution Z(n) can be written as,

C(Z(n)) =
1

σ2

N∑
i=1

D(i, n)︸ ︷︷ ︸
Negative log likelihood,L̃

+ α · n︸︷︷︸
Penalty

, (3.8)

The cost function is made up of two terms, one corresponding to the negative log

likelihood L̃ and another corresponding to penalty.

Eqn. (3.7) can be rewritten as,

D(i, n) = min

{
n−1

min
k=0

d(xi,x
′
i, Fzk), d(xi,x

′
i, Fzn)

}
= min {D(i, n− 1), d(xi,x

′
i, Fzn)} . (3.9)

Thus, in terms of the partial solution D(i, n − 1), the newly formed D(i, n) can

be calculated incrementally with (3.9). When a new hypothesis zn is added to the

existing partial solution, it means that a new cluster center Fzk is being added. The

matches, which are close to the new cluster center, are reassigned to the new cluster,

while others remain unchanged. Additionally, it is clear from (3.9) that,

∀i,D(i, n) ≤ D(i, n− 1).

This suggests that,

N∑
i=1

D(i, n) ≤
N∑
i=1

D(i, n− 1) (3.10)

L̃{Z(n)} ≤ L̃{Z(n− 1)}. (3.11)

When a new cluster center is added, the penalty term of cost function increases by

α while the negative log likelihood term decreases or remains the same. We will

44

use these monotonicity properties in the following subsection to establish the lower

bound on the cost function.

Leading from the monotonic decrease of the negative log likelihood and the

linear increase of penalty term, a monotonicity requirement can be imposed on the

optimal solution. We define likelihood value for a hypothesis zm, Gn(zm) as increase

in the negative log likelihood of the solution Z(n), if zm is removed from the solution

to form a new solution Z ′(n− 1) [Note that Z ′(n− 1) and Z(n− 1) are different if

m ̸= n]. Similar to the likelihood value Gn(zm), one can also define vn(i, zm), the per

pixel value of hypothesis zm at depth n for pixel i as,

vn(i, zm) = D′(i, n− 1) −D(i, n) (3.12)

Where D′(i, n − 1) is the minimum distance for the ith match with an updated set

of hypotheses (z0, z1, z2, . . . , zn−1, zn) \ zm. From the definition, the likelihood value

can be written in terms of the per pixel value of a hypothesis as,

Gn(zm) =
1

σ2

N∑
i=1

vn(i, zm). (3.13)

Using these definitions, we construct the proof of the monotonicity of the cost func-

tion.

Theorem 3.3.1 The per pixel value of a hypothesis zm for pixel i is largest when it

is first added, i.e. for any n > m, vn(i, zm) ≤ vm(i, zm) .

45

Proof A hypothesis zm is first added at depth m. For depth n < m, zm is not part

of the solution and has zero per pixel value. From (3.7) and (3.12), the per pixel

value of hypothesis zm for pixel i when n ≥ m,

vn(i, zm) = min

{
m−1

min
k′=0

d(xi,x
′
i, Fzk′),

n

min
k′′=m+1

d(xi,x
′
i, Fzk′′)

}
−

n

min
k=0

d(xi,x
′
i, Fzk) (3.14)

=

(
min

{
m−1

min
k′=0

d(xi,x
′
i, Fzk′),

n

min
k′′=m+1

d(xi,x
′
i, Fzk′′)

}
− d(xi,x

′
i, Fzm)

)
+

(3.15)

where,

(f(·))+ =

f(·),if f(·) > 0;

0, otherwise.

is a function, which maps negative values to zero, while keeping positive values

unchanged. When n = m

vm(i, zm) =

(
m−1

min
k′=0

d(xi,x
′
i, Fzk′) − d(xi,x

′
i, Fzm)

)
+

. (3.16)

Comparing (3.15) and (3.16), for any n > m

vn(i, zm) ≤ vm(i, zm). (3.17)

Theorem 3.3.2 For optimality of a solution Z(n), it is necessary that α ≤ Gn(zm)

for all m ≤ n.

46

Proof If the solution Z(n) is optimal then for any m ≤ n,

C{Z(n)} ≤ C{Z ′(n− 1)}

L̃{Z(n)} + α · n ≤ L̃{Z ′(n− 1)} + α · (n− 1)

α ≤ L̃{Z ′(n− 1)} − L̃{Z(n)}

α ≤ Gn(zm) (3.18)

Theorem 3.3.3 If the initial likelihood value of a hypothesis zm, Gm(zm) < α , all

the solutions leading from the current partial solution cannot be optimal.

Proof From (3.13) and (3.17),

Gn(zm) ≤ Gm(zm). (3.19)

If Gm(zm) < α then,

Gn(zm) < α. (3.20)

Then according to Theorem 3.3.2, any solution, which includes zm, cannot be opti-

mal.

If C{Z(n)} > C{Z(n−1)} then Gm(zm) < α. Thus, for Theorem 3.3.3 to hold,

the cost function must be monotonically decreasing.

3.3.3 Lower Bound on Cost

To establish a lower bound on the cost, we define a complementary variable

D∗(i, zn) as,

D∗(i, zn) =
Nh

min
k=zn+1

d(xi,x
′
i, Fk).

47

The variable D∗(i, zn) gives the minimum of the distance measures from all hypothe-

ses, which can be included in the solution in the future. In case of the variable

D∗(i, zn), its value solely depends on the last node zn. As there are only Nh possi-

bilities for the value of zn, D∗(i, zn) can be pre-computed to speed up the branch-

and-bound process. Similar to D(i, n), D∗(i, n) can also be calculated incrementally

as,

D∗(i, zn) = min[D∗(i, zn + 1), d(xi,x
′
i, Fzn+1)].

Consider a possible partial solution Z(4) = ⟨0, 1, 3, 4, 7⟩ for Nh = 10. The variable

D at level n = 4 can be computed as,

D(i, 4) = min{d(xi,x
′
i, F0), d(xi,x

′
i, F1),

d(xi,x
′
i, F3), d(xi,x

′
i, F4), d(xi,x

′
i, F7)}.

Now for the same example, we consider the complementary variable D∗.

D∗(i, F7) = min{d(xi,x
′
i, F8), d(xi,x

′
i, F9), d(xi,x

′
i, F10)}.

With the help of the complementary variable, the lower bound on the solutions

leading from Z(n) is,

CLower(Z(n)) =
1

σ2

N∑
i=1

min[D(i, n), D∗(i, zn)]

+α · (n + 1). (3.21)

If CLower(Z(n)) > C∗, then the current partial solution can be safely abandoned as it

would not lead to a better solution than the current optimal solution C∗. Figure 3.3

pictorially represents the computation of the bound. Each stack of parallelograms

48

d

D*

D

Residuals for each

hypothesis

Minimum of residuals for

hypotheses > zn

Least residuals leading

from current solution

+ n

Residuals for current

solution

+ n+1)

Current cost

Lower bound on cost

Figure 3.3. Computation of lower bound on cost.

indicates various quantities involved in bound computation and arrow-heads lead-

ing to a parallelogram indicate minimum taken over parallelograms attached to the

arrow-tails.

3.3.4 Null Hypothesis Likelihood

Matching errors are common in the MSaM problems. These errors can severely

deteriorate the quality of the solutions achieved for the MSaM segmentation. The

outliers can be assumed to be uniformly distributed throughout the image with

likelihood d0. For ease of notation, we assume that,

d0 = d(xi,x
′
i, F0).

With the introduction of this outlier likelihood as null hypothesis, the proposed

MSaM segmentation scheme would act as a simple redescending M-estimator [66].

49

3.3.5 Branch-and-Bound Algorithm

Based on the monotonicity requirement and the lower bound, the branch-and-

bound segmentation algorithm is listed below.

1. Initialization: Set the tree level n = 1, current node z0 = 0 and current optimal

cost C∗ = C(Z(0)).

2. Generate child nodes: Initialize LIST (n),

List(n) = {zn−1 + 1, zn−1 + 2, . . . , Nh}

3. Select new node: If List(i) is empty, to step (5). Otherwise, set zn = k where

k ∈ List(i). Set current solution Z(n) = {z0, z1, . . . , zn}. Delete k from List(i).

4. Check bounds:

• Compute C(Z(n)) and CLower(Z(n)).

• If C(Z(n)) < C∗, set C∗ = C(Z(n)) and Z∗ = Z(n).

• If C(Z(n− 1)) < C(Z(n)) or CLower(Z(n)) > C∗, go to step (3).

• If C(Z(n− 1)) > C(Z(n)) and CLower(Z(n)) < C∗, set i = i + 1 and go to

step (2).

5. Backtrack to lower level: Set n = n − 1. if n > 0 go to step (3), otherwise

terminate the algorithm.

The flowchart of the algorithm is shown in figure 3.4. In the following section,

the branch-and-bound hypothesis selection was implemented and the achieved results

are presented.

3.4 Experimental Results

The proposed MSaM segmentation approach was implemented and tested with

synthetic as well as publicly available data sets. The MSaM segmentation was im-

50

Initialize
tree level n=1,

Parent node=z0=0,
Optimal cost C*=C(Z(0))

Generate child nodes
zn-1+1,zn-1+2,…,Nh

Any child
nodes left?

Select a child node,
Compute cost of
current solution

C(Z(n)), Lower bound
on cost CLower(Z(n))

No

Yes

C(Z(n-1)) <C(Z(n))
or CLower(Z(n))>C*

Yes

Yes

n=n+1

Yes

n=n-1

n=0

Terminate the algorithm

Yes
No

C(Z(n-1)) >C(Z(n))
and CLower(Z(n))<C*

No

C(Z(n))<C*

C*=C(Z(n))
Z*=Z(n)

No

No

Br
an

ch
 rig

ht
Br

an
ch

 fo
rw

ard

Re
tra

cti
on

Figure 3.4. Flowchart of the proposed algorithm, hashed portion of the chart checks
for various bounds.

51

plemented in Matlab and executed on a Core 2 Duo processor operating at 2.33GHz

as a single thread.

To generate the motion hypotheses, for each matched image feature the fun-

damental matrix was computed from its circular neighborhood. Matches in the

neighborhood were used to compute the fundamental matrix using “Structure-and-

Motion Toolkit” from [67]. Similar to RANSAC, outliers and inliers were selected

for each fundamental matrix with d0 as the threshold. To avoid repeated hypothesis,

which are similar, hypothesis with smaller support which had substantial (> 80%)

overlapping inliers with larger hypothesis were suppressed. Finally, the surviving

hypotheses were arranged in a decreasing order of the number of inliers. The BIC

was optimized for these hypotheses to select the optimal hypotheses combination.

3.4.1 Synthetic Data

The proposed MSaM segmentation approach was first tested with synthetic

data. For the experiments, 100 random 3D motions were generated with [67]1. These

motions were combined together to form various experimental data sets. The goal of

these experiments was to test effectiveness of the approach for clusters with varying

cluster size and varying number of clusters. The results for the experiments are

shown in figure 3.5 and are discusses in the rest of this subsection.

Four different sets of experiments were carried out. The experimental results

are presented as cluster detection accuracy and classification accuracy for each of the

set.

1We use the function ‘torr gen 2view matches’ with the default parameters.

52

3.4.1.1 50 Outliers, 1 Cluster of Varying Size 10 to 50

For the first experiment in this set, one of the 100 motions was randomly

selected and 10 samples of the motion were selected. One sample each from 50

other motions was selected to form the outlier cluster. The MSaM segmentation was

carried out to calculate the number of clusters and the cluster memberships. This

process was repeated 100 times. The experiment was repeated by changing the size

of the inlier cluster to 20 (experiment 2), 30 (experiment 3), 40 (experiment 4) and

50 (experiment 5). For these set of experiments, the expected number of clusters was

2, one for the outliers and one for the motion with varying number of samples. Since

the framework detects at least one inlier cluster, as seen in figure 3.5(a) 2 clusters

are always detected irrespective of the varying inlier cluster size, which leads to a

100% cluster detection accuracy for all the experiments. Thus, the cluster detection

accuracy is invalid for this experiment. However, it should be noted that the number

of clusters is almost never overestimated.

The outliers were also included in estimating the classification accuracy, i.e.

to reach 100% accuracy all the inliers must be labeled as one cluster while all the

outliers should be labeled as the other cluster. It can be seen that for the inlier

cluster size of 10 the classification accuracy is 79.1%, which indicates that majority

of 83.33% outliers are correctly identified as outliers. As the varying cluster size goes

to 20 and beyond, the classification accuracy is greater than 94%.

3.4.1.2 50 Outliers, 1 Cluster of Size 50, 1 Cluster of Varying Size 10 to 50

The second set of experiments was carried out by adding a randomly selected

motion with sample size 50 to the data in the first experiment. Thus, the expected

number of clusters was 3 in this experiment; one for the outliers, one for the inlier

53

0 1 2 3 4 5 6
0

20

40

60

80

100

120

Experiment

%
 A

cc
u

ra
cy

Cluster detection
Classification

0 1 2 3 4 5 6
0

20

40

60

80

100

120

Experiment

%
 A

cc
u

ra
cy

Cluster detection
Classification

(a) (b)

0 1 2 3 4 5 6
0

20

40

60

80

100

120

Experiment

%
 A

cc
u

ra
cy

Cluster detection
Classification

0 1 2 3 4 5 6
0

20

40

60

80

100

120

Experiment

%
 A

cc
u

ra
cy

Cluster detection
Classification

(c) (d)

Figure 3.5. Synthetic data cluster detection and classification accuracy (a) Set 1 -
50 Outliers + 1 cluster of varying size 10 to 50, (b) Set 2 - 50 Outliers + 1 cluster
of size 50 + 1 cluster of varying size 10 to 50, (c) Set 3 - 50 Outliers + 2 clusters of
size 50 each + 1 cluster of varying size 10 to 50, (d) Set 4 - 50 Outliers + 3 clusters
of size 50 each + 1 cluster of varying size 10 to 50.

motion of sample size 50 and one for the inlier motion with varying cluster size. When

varying cluster size is 10 (experiment 1), our method fails to detect that cluster 95%

of times (figure 3.5(b)). This happens as it is hard to obtain a clean sample to detect

the inlier hypothesis due to the large number of outliers compared to the inliers.

Additionally, at times for less number of samples it might be cheaper to explain

them as outliers rather than assigning them a new cluster. In this scenario, the

expected classification accuracy is 90.9%((50 + 50)/(50 + 50 + 10)) if all the outliers

54

and the inlier cluster of size 50 is correctly identified. The experimental classification

accuracy is 88.67%, which is close to the expected accuracy. When the varying cluster

size becomes 20 (experiment 2), the cluster detection accuracy is 98%. As the size of

the cluster goes beyond 30 (experiments 3, 4 and 5) the cluster detection accuracy

reaches almost 100% and the classification accuracy percentage reaches about 95.

3.4.1.3 50 Outliers, 2 Clusters of Size 50 each, 1 Cluster of Varying Size 10 to 50

The third set of experiments was carried out by adding a randomly selected

motion with sample size 50 to the data in the second experiment. The expected

number of clusters is 4 in these experiments. Failure to detect the motions, which

have 10 samples, continues in this set of experiments. However, the cluster detection

accuracy drops to 95% for the cluster size of 20. This happens because as the number

of data points becomes larger, adding a cluster becomes more expensive.

3.4.1.4 50 Outliers, 3 Clusters of Size 50 each, 1 Cluster of Varying Size 10 to 50

The third set of experiments was carried out by adding a randomly selected

motion with sample size 50 to the data in the third experiment. The cluster detection

accuracy as well as classification accuracy in this case is slightly lower compared to

previous experiments. However, this is expected due to increase in clustering penalty.

In another synthetic data experiment, we use “Spinning wheels” synthetic test

data from [68]. This sequence contains four rotating objects with 50 tracked points

each with 50 outliers. Frame 1 and 3 of the sequence were used in our experiment.

After sampling and non maximal suppression, 22 hypotheses were selected. The pro-

posed approach detects 4 clusters along with outliers. The total number of solutions

explored by the branch-and-bound process was 2043.

55

(a)

(b) (c)

Figure 3.6. Spinning wheels: (a) Disparities between two frames, each cluster is
denoted by different color, matches marked by red are outliers; (b) Segmentation
result for the first frame; (c) Segmentation result for the second frame.

56

3.4.2 Real Data

For all the real data used in these experiments, we use sparsely matched fea-

tures provided by the provider of the data. For the first experiment with real data,

“Box-book-mag” and “Desk” image pairs from [69] are used. “Box-book-mag” pair

has three independently moving objects while camera is stationary. Figure 3.7 (a)

shows disparities between the image pair indicated in different colors. While red col-

ored matches are the detected outliers, each of rest of the colors represents disparities

for a segmented object.

(a)

(b) (c)

Figure 3.7. Box-book-mag: (a) Disparities between two views, each cluster is denoted
by different color, matches marked by red are outliers; (b) Segmentation result for
the first view; (c) Segmentation result for the second view..

57

For the “Desk” image pair shown in figure 3.8, there are three moving objects

namely the pile of books, the computer screen and the journal. Although the camera

has also moved, there are no matches for the background. Thus, the background

motion is not detected. The result of segmentation can be seen in figure 3.8 (b) and

(c).

(a)

(b) (c)

Figure 3.8. Desk: (a) Disparities between two views, each cluster is denoted by
different color, matches marked by red are outliers; (b) Segmentation result for the
first view; (c) Segmentation result for the second view.

In the next experiment, our method is applied to the “car-truck-box” sequence

used by Vidal et al. [20,70]. The motion between frame 1 and frame 8 of the sequence

58

was analyzed. In this sequence, there are three different motions. The box lies on

a rotating desk, while the car and the truck are moved away from each other with

hand. As seen in 3.9, three moving objects are correctly identified; however some of

the motion vectors are incorrectly assigned. This is due to the sampling scheme that

we use, rather than the cost function being optimized. If optimal motions are subset

of the hypotheses being constructed then the segmentation results are guaranteed to

be optimal with respect to the cost function.

(a)

(b) (c)

Figure 3.9. Car-truck-box: (a) Disparities between two views, each cluster is denoted
by different color, outliers are marked by red; (b) Segmentation result for frame 1;
(c) Segmentation result for frame 8.

59

In the next sequence, taken from Sugaya and Kanatani [71] has a single moving

object, i.e. the car. However, camera is also moving for this sequence. Frame 10 and

frame 15 are used for segmentation in our experiment. The egomotion of camera and

the motion of the car are correctly segmented and are shown in figure 3.10(c).

(a)

(b) (c)

Figure 3.10. Kanatani: (a) Disparities between two views, each cluster is denoted
by different color; (b) Segmentation result for frame 10; (c) Segmentation result for
frame 15.

Finally, the proposed approach was tested with JHU155 database sequences

[72], which includes various checkerboard and traffic sequences with two or three

motion groups. The “cars3” sequence shown in Fig. 3.11 (a) has two moving cars

60

captured by a moving camera. Fig. 3.11 (b) gives segmentation results for the

“people1” sequence, which depicts a pedestrian captured by a moving camera. The

“truck2” sequence is segmented in the moving vehicle and the background in Fig.

3.11 (c). The checkerboard sequence in Fig. 3.11 (d), with one rotating object and

one translating object captured by a rotating camera, was also successfully segmented

by the proposed approach.

Table 3.1 shows summary of the execution of our method for all the experi-

ments. Fraction of solutions explored shown in the table is calculated as,

Fraction explored =
Solutions explored

2Nh
.

As seen for the table, the fraction of all the solutions explored is very small. This is

also reflected in the execution speed. Note that the execution times for search alone

are listed and they do not include sampling and pre-computing involved. Speedups

achieved increase with increase in Nh since more solutions are generally rejected

implicitly by rejecting a partial solution.

Table 3.1. Execution summary for the experiments

Sequence Nh Solutions Fraction Time
explored explored (Seconds)

Spinning wheels 22 2043 4.87e-4 0.17
Three car-Vidal 35 30542 8.89e-7 2.54
Book-box-mag 16 511 7.80e-3 0.06
Desk 25 1898 5.66e-5 0.16
Kanatani 14 354 2.16e-2 0.06
cars3-JHU 53 20166 2.24e-12 2.44
people1-JHU 95 7149 1.80e-25 0.94
truck2-JHU 34 622 3.62e-8 0.07
1R2TCR-JHU 58 21550 7.48e-14 2.40

61

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.11. Sequences from JHU155 database: Left: Segmentation result with
disparities for the first view, Right: Segmentation result for the second view
(a)(b) “cars3” sequence; (c)(d) “people1” sequence; (e)(f) “truck2” sequence; (g)(h)
“1R2TCR” sequence.

62

In the following chapter, we generalize the segmentation framework presented

here and establish its average computational complexity.

CHAPTER 4

COMPUTATIONAL COMPLEXITY OF BRANCH-AND-BOUND

4.1 Introduction

Clustering is a popular unsupervised learning technique applied in areas such as

data mining [73], image processing [74], pattern recognition [75] and bioinformatics

[76]. It meaningfully organizes the data by grouping similar data points in to a cluster

and splits dissimilar data points in to different clusters. Normally, the similarity

between data points is assessed with the help of a dissimilarity or distance measure

such as Euclidian distance. The classical clustering method of k-means divides the

data in to k partitions so that the sum of squared error between cluster means and

the data in the corresponding cluster is minimized. The k-means procedure falls

under the category of partitioning methods for clustering. Hierarchical methods of

clustering create a hierarchy of clusters.

In an agglomerative hierarchy, smaller clusters are merged to construct larger

clusters, starting from individual data points leading to a single cluster. Under a

divisive hierarchy, larger clusters are divided to form smaller clusters. The divisive

strategy starts with a single cluster and finally each data point corresponds to a clus-

ter. The desired complexity of clustering can be generated by cutting the hierarchy

at a predetermined depth. Density based clustering approaches grow clusters based

of the density of data points in the clustering space. Unlike partitioning approaches,

the density based approaches can detect clusters of arbitrary shapes. In the model-

based clustering approach, each cluster is represented by a parametric model [77]. A

data point is assigned to the cluster whose model explains the data point the best.

63

64

A model such as Gaussian mixture model (GMM) or hidden Markov model (HMM)

is defined a priori based on the domain knowledge. Han and Kamber [73] give de-

tailed descriptions of the contemporary techniques, which follow the aforementioned

clustering paradigms.

Image, motion, stereo disparity, and structure-and-motion segmentations can

be expressed as model-based clustering problems. For model-based clustering prob-

lems, the cluster parameters should be known in order to assign a data point to an

appropriate cluster. On the other hand, the cluster parameters can be computed only

if the cluster assignments of data points are known. This “chicken-and-egg” dilemma

leads to an iterative formulation for model-based clustering methods similar to an

expectation maximization (EM) algorithm [78].

Clustering aims to optimize an assignment cost such as dissimilarity measure

to achieve a (locally) optimal solution. If the number of clusters is increased, gen-

erally the cost for the same data reduces. The degenerate case for this occurs when

one cluster corresponds to one data point and the corresponding clustering cost is

zero. Clearly, such a scenario is undesirable. Thus, the clustering cost must be ap-

propriately adjusted, which results in penalty for additional clusters. Several model

selection methods exist, which incorporate this idea [79]. Note that the term “model”

in model selection refers to the number of clusters and the parametric models for

these clusters. To apply model selection to clustering, candidate models are sequen-

tially generated by varying the number of clusters and, the best model is selected

according to a model selection criterion. The iterative and sequential problem of

model selection for the image data can be simplified to a one step optimization by

using the knowledge that the clusters formed in an image are spatially coherent. The

candidates for cluster parameters can be generated by sampling spatially coherent

image data points. Once the candidates are known, a subset of these candidates can

65

be selected by optimizing a model selection cost. This transforms the segmentation

problem into a one step model selection problem.

This idea is utilized in structure-and-motion segmentation approaches pro-

posed recently [19,69]. Schindler and Suter [69] carry out multi-body structure-and-

motion segmentation from two camera views. After correspondences are established

between the two views, they are grouped together based on the spatial coherence.

From each group of correspondences, a candidate hypothesis for underlying structure-

and-motion model is generated using random sample consensus (RANSAC) [15]. A

geometrically robust information criterion (GRIC) [80] is optimized to select the

best subset of candidates hypotheses. The optimization of the criterion is carried

out with Tabu search [81]. Li [19] solves the two-view motion segmentation problem

starting from a set of candidate motions generated by applying spatial coherence,

prior distribution etc. The segmentation problem is then formed as a facility location

problem and solved with linear programming relaxation [82, 83]. We have a similar

approach. In chapter 3, we generate candidates for structure-and-motion by apply-

ing local sampling followed by nonmaximal suppression. We optimize the Bayesian

information criterion (BIC) [84] with a branch-and-bound strategy.

In this chapter, a general framework based on chapter 3 for multi-hypotheses

branch-and-bound model selection is outlined and, its average computational com-

plexity is analyzed. The average computational complexity of the branch-and-bound

algorithms, which search over random trees has been explored by a number of re-

searchers [85–90]. The term “random” applies to the structure of the tree and weights

of the tree edges in general. However, for the multi-hypotheses branch-and-bound

model selection problem, the structure of the tree is deterministic and only the

weights of the tree edges are random. Thus, a separate treatment for the complexity

66

of the problem becomes necessary. Our preliminary work on this topic appeared

in [91].

This chapter is organized as follows: Section 4.2 formulates a generalized multi-

hypotheses branch-and-bound model selection problem. Section 4.3 develops the

framework to estimate the expected complexity of the branch-and-bound search for

the problem. The computation of various quantities involved in the estimation of

complexity of the algorithm is discussed in section 4.4. Section 4.5 presents the

results achieved by the model selection process and its expected complexity.

4.2 Generalized Multi-Hypotheses Branch-and-Bound Model Selection

This section first formulates the model-based clustering and model selection

problem. Later, a branch-and-bound algorithm for the problem is devised and ap-

plication of the model selection to an image segmentation problem is discussed.

4.2.1 Segmentation as a Model Selection Problem

Consider a set Y consisting M observations such as image intensity/color,

video motion or stereo disparity.

Y = {y1,y2, . . . ,yM}

The corresponding cluster memberships for the observations can be denoted by L =

{l1, l2, . . . , lM}. If an observation yj belongs to a cluster k then lj = k and vice-versa.

Under the model-based clustering paradigm, the data can be explained with one of

the K clusters with parameters {Θ1,Θ2, . . . ,ΘK} respectively. A generic model for

67

estimating observations from the cluster parameters and the memberships can be

given as [92],

yj = g(xj; Θlj) + vj, j = 1, 2, . . . ,M. (4.1)

In this model, X = {x1,x2, . . . ,xM} are the independent variables, on which ob-

servations Y depend (these can be quantities such as the spatial locations of the

images or time instances for time-series data). If the data has no spatial or tem-

poral relationship, which is the case for many clustering problems, the independent

variables would not appear in the model [73]. g(x; Θf) can be a linear or nonlinear

function or any process that can compute observation y from x given parameters

Θf . V = {v1,v2, . . . ,vM} is the noise corrupting the observation, which is gener-

ally assumed to follow a zero mean independent Gaussian distribution. The model

above appears in missing data problems as well [74]. According to the missing data

formulation, the observations Y are available and the cluster memberships L are

missing.

The model-based clustering problems have two unknown quantities, the cluster

parameters Θ = {Θ1,Θ2, . . . ,ΘK} and the memberships L. Given the memberships

L, the maximum likelihood estimate for the parameters Θ is given by

Θ̂ = arg max
Θ

Pr(L|Θ,Y). (4.2)

Given the parameters Θ, the maximum likelihood estimate for the memberships L

is given by

L̂ = arg max
F

Pr(Θ|L,Y). (4.3)

68

After simplification,

Θ̂i = arg min
Θ

∑
∀j↔lj=i

||yj − g(xj; Θ)||2 (4.4)

l̂j = arg min
i

||yj − g(xj; Θi)||2 (4.5)

Here, i = 1, 2, . . . , K and j = 1, 2, . . . ,M . Conventional methods iterate between

the estimation of Θ and L till one or the other converges. They additionally require

that the number of clusters K is known a priori. This requirement is unrealistic in

most clustering problems. Thus, the number of clusters has to be varied to select

the optimal number of clusters. This process is called model selection. The model

selection constitutes the choice of K and the corresponding Θ. Since the likelihood

of the model increases as more clusters are added, a criterion which penalizes the

likelihood with increasing clusters such as Akaike Information Criterion (AIC) or

Bayesian Information Criterion (BIC) is used to select the optimal number of clusters

[63]. If the number of free parameters per cluster is N ,

AIC(Θ) = −2 log(LΘ) + 2KN. (4.6)

BIC(Θ) = −2 log(LΘ) + KN log(M). (4.7)

Or, a generalized model selection criterion can be given by

C(Θ) = − log(LΘ) + α ·K, (4.8)

69

where α is a positive constant and LΘ gives the likelihood of the data for a model Θ.

The model selection thus leads to a sequential process, which follows the iterative

clustering.

On the other hand, if a linearly ordered set of Nc candidates

C = {C1, C2, . . . , CNc}

for cluster parameters Θi is given, we can choose a subset Θ, which optimizes the

model selection criterion given in (4.8). The likelihood of the data is proportional to

the sum of the residuals for the current model and, is given by,

log(LΘ) = −1

2
M log

(
SSD(Θ)

M

)
+ Constant (4.9)

where,

SSD(Θ) =
M∑
j=1

min
Ci∈Θ

rj(Ci)

and

rj(Ci) = ||yj − g(xj;Ci)||2 (4.10)

are the residuals for jth observation for candidate Ci.

After subsuming the constants, the model selection criterion becomes,

C(Θ) = M log

(
SSD(Θ)

M

)
+ α ·K, (4.11)

which is to be minimized by selecting Θ ⊂ C, where K is the number of candidates

in the subset Θ.

There are 2Nc possible solutions for this subset selection problem. Even for

moderate Nc, an exhaustive search is computationally expensive. However, the na-

70

ture of the problem allows us to use a branch-and-bound approach to obtain an

optimal solution for the problem in a reasonable time for practical problems.

4.2.2 Branch-and-Bound Algorithm for Model Selection

All the possible solutions of the model selection problem can be represented

by a rooted tree. It is important that every solution is listed only once in the tree to

avoid unnecessary computations. This can be ensured by creating child nodes that

are different than:

• left siblings,

• ancestors,

• left siblings of ancestors.

One simple way of generating such a solution tree for five candidates is shown in

figure 4.1 with an additional candidate claiming that the data point is an outlier.

For ease of representation, each tree node is labeled by the index of the most recently

added candidate, instead of listing indices of all the candidates in the subset. The

subset of candidates corresponding to a node is given by a walk from the root node

to the node under consideration. The circled node includes candidates {C0, C1, C3}.

The candidate C0 indicates that the data point is an outlier, i.e., the point does not

belong to any of the cluster parameter candidates. Note that, in the solution tree,

the node label zi increases monotonically with the tree depth and the node label is

lesser than its right sibling’s label. These two conditions ensure that the rule stated

above to generate the child nodes is followed.

Each node of the tree represents a subset of candidates and two hypotheses,

one that the subset gives the optimal solution of the model selection problem and

the other that the subset is a partial solution to the problem. A partial solution is a

subset of optimal solution, i.e., adding more candidates to a partial solution would

71

5

2 3 41 5

3 4 4 52 3 4 5 55

43 4 4 4 55 5

4 55 5 5

z1

z3

z2

z4

z0

z5

55

Figure 4.1. Solution tree for Nc = 5 and an additional candidate for outliers.

lead to an optimal solution. Note that, if a partial solution hypothesis for a node

is rejected, then none of the child nodes of the node can be a partial solution. A

branch-and-bound algorithm aims to validate the hypotheses presented by all the

tree nodes explicitly or implicitly. As the algorithm is a search strategy, at any

point of search it maintains the best search result till that point. The best search

result, which is nothing but the lowest cost encountered in the search C∗, can be used

to validate the optimal solution hypothesis. If the modeling cost C(Θ) for current

node is higher than C∗, the current node cannot be an optimal solution. The partial

solution hypothesis can be validated with a lower bound on the modeling cost of all

the solutions leading from the current subset of candidates. All the solutions leading

from current subset are represented by child nodes of the current node. If the lower

bound on child nodes is higher than C∗, then the partial solution hypotheses for the

node as well as its child nodes can be safely rejected.

The lower bound on the first term of (4.11) corresponds to the lower bound on

SSD(Θ). The lower bound on SSD(Θ) is reached when a lower bounds on residuals

72

of individual data points is achieved. With candidate subset Θ, the residue for jth

observation is given by,

min
Ci∈Θ

rj(Ci).

If the subset Θ is hypothesized as a partial solution, one can add a subset of candi-

dates Θ+ to the existing subset Θ to form a solution Θ′. To find the lower bound on

the residual, one must include all the possible candidates to build Θ+. By observing

the structure of the solution tree, it is clear that the candidates Ck ∈ Θ+ must have

Ck > max(Θ). Note that, here the hypotheses are compared by their indices. Thus,

the lower bound on the residual for jth observation is given by,

min
Ci∈Θ′

rj(Ci) = min

(
min
Ci∈Θ

rj(Ci), min
Ck∈Θ+

rj(Ck)

)
= min

(
min
Ci∈Θ

rj(Ci), min
∀Ck>max(Θ)

rj(Ck)

)
.

Thus, the lower bound on SSD(Θ) is given by,

SSDLower(Θ) =
M∑
j=1

min

(
min
Ci∈Θ

rj(Ci), min
∀Ck>max(Θ)

rj(Ck)

)
. (4.12)

As at least one more candidate has to added to the partial solution of size K to reach

an optimal solution, the lower bound on second term of (4.11) is given by (K + 1).

The lower bound on the hypotheses leading from Θ is thus given by,

CLower(Θ) = M log

(
SSDLower(Θ)

M

)
+ α · (K + 1) (4.13)

From the cost function (4.11) and the bound (4.13), the branch-and-bound algorithm

can be implemented.

73

We adapt a generic queue based implementation of the branch-and-bound pro-

cedure from [86]. With the queue based implementation, the solution tree can be

explored using various search strategies. We list a few of these methods here [86],

• Best bound first (BBF)

• Ordered depth first

• Generation order depth first

• Ordered breadth first

• Generation order breadth first

These methods prioritize the search of nodes in different ways as suggested by their

names. As the BBF search algorithm has the least time complexity, we choose the

BBF search for our implementation and the complexity analysis. The following gives

an implementation of BBF search for the model selection problem,

Best bound first branch-and-bound procedure:

1. Insert hypotheses for the root node in the priority queue Q.

2. Set the optimal cost C∗ = ∞.

3. Pop the first hypothesis from Q, which is nothing but the least cost hypothesis.

4. If the popped hypothesis is an optimal cost hypothesis then terminate the

algorithm.

5. For the child nodes of the popped hypothesis, validate and insert hypotheses

in Q. For all the child nodes,

(a) Validate the optimal solution hypothesis.

• Compute cost C(Θ) for the node.

• If C(Θ) < C∗,

– Insert an optimal solution hypothesis in Q with priority 1/C(Θ).

– Delete hypotheses after the location where above hypothesis was

inserted.

74

– Set C∗ = C(Θ).

(b) Validate the partial solution hypothesis, if the node is an internal node.

• Calculate bound CLower(Θ).

• If CLower(Θ) < C∗, insert a partial solution hypothesis in Q with pri-

ority 1/CLower(Θ).

6. Go to step 3.

4.2.3 Application to Multiple Structure-and-Motion Segmentation

The multiple structure-and-motion (MSaM) segmentation problem groups im-

age correspondences according to coherent structure and motion. The set of M

image correspondences in this case be given by, Y = {y1,y2, . . . ,yM} and X =

{x1,x2, . . . ,xM}, where yj and xj are image coordinates of the jth correspondence.

If the image sequence contains K moving rigid objects, the jth image correspondence

is related as,

yT
j Fljxj = 0. (4.14)

Here F = {F1, F2, . . . , FK} correspond to fundamental matrices [15] of K rigid bodies.

We can rewrite (4.14) as a generic model shown in section 4.2 as,

yj = f(xj; Flj) + vj. (4.15)

The function f here corresponds to the triangulation method [15], which can estimate

yj given xj and the corresponding fundamental matrix. Due to the geometric nature

of the problem, maximum likelihood estimation uses a geometric distance measure

such as reprojection error

δ(yj,xj, Ci)
2 = ||yj − ŷj||2 + ||xj − x̂j||2 (4.16)

75

where ŷj and x̂j are estimated correspondences by candidate Ci given by,

ŷj = f(xj;Ci),

x̂j = f(yj;C
T
i).

The candidates for the fundamental matrix can be generated by local sampling of the

correspondences and estimating the fundamental matrix from the sample. If these

candidates are C = {C1, C2, . . . , CNc}, the residual for the jth correspondence for

candidate Ci is given by,

rj(Ci) = δ(yj,xj, Ci)
2. (4.17)

With these residuals, one can proceed to a generic implementation of the branch-

and-bound strategy for model selection outlined at the beginning of the section.

4.3 Branch-and-Bound as an Edge-Weighted Tree Search Problem

The worst case computational complexity of any branch-and-bound search al-

gorithm is the same as the complexity of the brute force search. However, a branch-

and-bound approach is generally applied to an NP-hard global optimization problem,

for which the worst case complexity gives little or no insight into the performance of

the approach. In such a situation, the average or expected computational complexity

would give a more reasonable estimate of the performance of the approach. In this

section, we formulate a framework to estimate the expected computational complex-

ity for the branch-and-bound model selection approach presented in the previous

section.

Under the current formulation, each node of the solution tree represents two

hypotheses, the optimal solution hypothesis and the partial solution hypothesis. This

76

1 2 3

2 33

3

0

(a)

1 2 3

2 33

3

0

1 2

2

0

1XX 01X 001

11X 011101

111

XXX

100 010

110

000

(b) (c)

Figure 4.2. (a) Original branch-and-bound tree for Nc = 3, (b) its edge-weighted
equivalent, (c) Coding for the tree nodes.

gives rise to a binomial tree [65] of order Nc as the representation of the model

selection problem (see figure 4.2(a)). However, in a typical tree search problem only

the leaf nodes can represent an optimal solution. To incorporate this, we modify the

original tree structure and add a “twin” node to each internal node of the binomial

tree. This updated tree structure is shown in figure 4.2(b) and will be used for

computational complexity analysis. The circled nodes are the newly added twin

nodes. In the updated tree, the leaf nodes (i.e., leaf nodes from the original tree and

newly added twin nodes) represent the optimal solution hypotheses and the internal

nodes represent the partial solution hypotheses.

77

To represent each hypothesis uniquely, we devise a representation for each

hypothesis with symbols {0, 1,X} (“zero”, “one” and “undetermined”). In this Nc

elements wide representation, if a hypothesis includes a candidate Ci then (Nc −

i)th element of the representation is ‘1’ and if the hypothesis does not include the

candidate Ci then (Nc − i)th element is ‘0’. For the partial solution hypothesis

represented by internal nodes, an additional symbol ‘X’ is used. The symbol X

indicates a candidate that can be included in a solution later in the search. The

(Nc − i)th element of the representation is set to X, if any child nodes can include

the candidate Ci. One can quickly get the “twin” node of an internal node by

replacing ‘X’s with ‘0’s.

The cost associated with a leaf node is the cost of the optimal solution hypoth-

esis C(Θ). On the other hand, the cost associated with an internal node is the cost of

the partial solution hypothesis CLower(Θ). From (4.11) and (4.13), one can conclude

that the cost of a node is lower than its child nodes. This also means that each edge

of the updated tree has a nonzero positive weight associated with it. The cost of

reaching a node can be computed by adding weights of all the edges along the path

from the node to the root of the tree. Note that, our formulation does not require

explicit computation of the edge weights as the cost of reaching a node can be di-

rectly computed from (4.11) or (4.13). The least cost leaf node in the edge-weighted

tree corresponds to the optimal solution for the branch-and-bound process. Thus,

our branch-and-bound approach can be seen as a least cost leaf search problem for

the updated edge-weighted tree.

4.3.1 Average Complexity

To estimate the average complexity, we concentrate on the BBF approach,

which explores the least number of nodes before it reaches the optimal solution [86].

78

In a BBF implementation, every time the least cost node is popped out of the priority

queue Q. Child nodes of the currently popped node are inserted in the queue Q.

The priory of a node is set inversely proportional to its cost. For the edge weighted

tree, the first leaf node popped from Q during BBF search is optimal [86]. This also

means that the complexity, i.e. the number of nodes popped out before the optimal

node, is same as the number of internal nodes with costs less than the optimal cost.

Additionally, the optimal node has the cost less than all the other leaf nodes by

definition.

Let T denote the set of all the leaf nodes of the tree and I denote the set of all

internal nodes of the tree. The optimality probability of the node i, Pro(i), denotes

the probability that the node i is optimal, i.e. it has the least cost among the leaf

nodes.

Pro(i) =
∏

∀j∈T\i

Pr(C(i) < C(j)) (4.18)

The cost probabilities Pr(C(i) < C(j)) are probabilities of comparison of the sum

of edge weights leading to nodes i and j. These can be seen as probabilities of

comparison between two sums of edge weights and thus can be given by PrT (Sm <

Sn). Here Sm and Sn are the sums of m and n edge weights respectively (1 ≤

n ≤ Nc, 1 ≤ m ≤ Nc). Note that it is not necessarily true that m = depth(i) and

n = depth(j). One has to remove the common edges along the path to the root node

from the node depth to get values of m and n. If the number of common edges is

l then m = depth(i) − l and n = depth(j) − l. We define nodes i and j to have a

relationship of order (m,n). In graph theory terms, the relationship between the two

nodes can be seen as the simple path between them and (m + n) gives the length of

the simple path.

79

Due to the recursive structure of the tree, the weight relationships repeat them-

selves. Thus, Pro(i) can be written as,

Pro(i) =
Nc∏
m=1

Nc∏
n=1

PrT (Sm < Sn)Oi(m,n) (4.19)

Here Oi is the optimality matrix for the node i and its (m,n)th element indicates the

number of times the relationship (m,n) (and hence the term PrT (Sm < Sn)) appears

in the computation of Pro(i).

The complexity for node i, N(i) denotes the number of internal nodes explored

by BBF search if the node i is optimal. When the node i is optimal, the internal

node j is explored only if its cost is less than the cost of the optimal node i. Thus,

the complexity when the node i is optimal is,

N(i) =
∑
∀j∈I

Pr(CLower(j) < C(i)) (4.20)

Similar to the optimality probability Pro(i), the complexity N(i) of the node can be

expressed as,

N(i) =
Nc∑
m=1

Nc∑
n=1

PrI(Sn < Sm) ·Ri(m,n) (4.21)

Here Ri is the complexity matrix for the node i and its (m,n)th element indicates the

number of times the relationship (m,n) (and hence the term PrI(Sm < Sn)) repeats

in computation of N(i). Note that different subscripts are used for probabilities PrT

and PrI , as the sums compared by these probabilities differ slightly. For PrT , one of

the weights in both sums is for an edge from an internal node to a leaf node while

all the other weights are for edges between internal nodes. For PrI , all the weights

80

correspond to edges between internal nodes. If we assume that this difference is

negligible then,

Pr(Sm < Sn) = PrT (Sm < Sn) = 1 − PrI(Sn < Sm). (4.22)

With the optimality probability Pro(i) and the complexity N(i), the expected

complexity N can be estimated as,

N =

∑
∀i∈T Pro(i)N(i)∑

∀i∈T Pro(i)
. (4.23)

The following section describes the computation of quantities involved in the esti-

mation of the expected complexity.

4.4 Cost Probabilities, Optimality and Complexity Matrices

The optimality matrix Oi and the complexity matrix Ri are different for nodes

that do not have (1, 1) relationship and, the matrices change with the order of the

tree as well. However, the cost probabilities PrT (Sm < Sn) and PrI(Sn < Sm) are

only determined by the distribution of edge weights. This section first describes how

to estimate these probabilities.

4.4.1 Cost Probabilities for Uniformly Distributed Edge Weights

This section estimates cost probabilities for an edge weighted tree with edge

weights uniformly distributed between [0, 1]. We start with the sum of m indepen-

dently and uniformly distributed edge weights between [0, 1] given by [93],

fm(Sm) =
1

(m− 1)!

m∑
j=0

(−1)j
(
m

j

)
[(Sm − j)+]m−1 (4.24)

81

Here, (·)+ means positive part of (·). This can be written as,

(·)+ =
(·) + |(·)|

2

Pr(Sm < Sn) when m > n can be derived from fm(Sm) to be,

Pr(Sm < Sn) =
n∑

q=1

q−1∑
k=0

q−1∑
j=0

(−1)(k+j)

(
n

k

)(
m

j

)
[

n∑
p=1

(−1)(p−1) (x− k)(n−p)

(n− p)!

(x− j)(m+p)

(m + p)!

]q
(q−1)

(4.25)

Here,

[f(x)]q(q−1) = f(q) − f(q − 1)

Refer to the appendix for the detailed derivation. Pr(Sm < Sn) when m < n can

simply computed as,

Pr(Sm < Sn) = 1 − Pr(Sn < Sm).

Figure 4.3 shows the plot of these probabilities.

4.4.2 Cost Probabilities by Sampling

For a typical model selection problem, the distribution for the sums does not

have a closed form solution or it is unknown. In such a case, a close approximation

of PrT (Sn < Sm) and PrI(Sn < Sm) or Pr(Sn < Sm) can be generated with sampling.

The sampling can be implemented as a simple process listed below.

• For all the possible combinations of m and n repeat following Ns times.

– Generate a hypothesis Θ1 of size m and compute its cost C(Θ1).

82

5
10

15
20

25

5
10

15
20

25

0

0.2

0.4

0.6

0.8

1

n
m

P
r(

S
m

<S
n
)

Figure 4.3. Pr(Sm < Sn) for uniform iid random variables.

– Generate a hypothesis Θ2 of size n such that Θ1 ∩ Θ2 = ∅ and compute

its cost C(Θ2).

– Compare the costs of the hypotheses, if C(Θ1) < C(Θ1), Pr(Sm < Sn) =

Pr(Sm < Sn) + 1.

• For all the possible combinations of m and n, normalize the probabilities,

Pr(Sm < Sn) = Pr(Sm < Sn)/Ns.

Figure 4.4 shows Pr(Sm < Sn) generated with sampling when the edge weights are

independent and identically distributed (iid) as squared zero mean Gaussian with

unit standard deviation respectively.

4.4.3 Computing Optimality Matrix

The optimality matrix Oi is computed by comparing each leaf node i with all

the other leaf nodes. The edge weighted tree can be seen as a binomial tree with an

83

5
10

15
20

25

5
10

15
20

25

0

0.2

0.4

0.6

0.8

1

n
m

P
r(

S
m

<S
n
)

Figure 4.4. Pr(Sm < Sn) for squared Gaussian iid random variables generated by
sampling.

added “twin” node for all the internal nodes. Thus, the recursive properties of the

binomial tree can be used in the computation of Oi. To compute Oi, we transform

the edge weighted tree back to the binomial tree by merging the twin nodes with

the internal nodes and retaining the representation of the twin nodes after merging.

Thus, the node representation is now binary.

Computation of Oi relies on the property that a simple path between two nodes

of a binomial tree includes the root node of only the smallest subtree including both

the nodes. Note the following important properties before proceeding to compute Oi.

• Depth of a node, d(i) is equal to the number of ones in the binary representa-

tion.

• Each node i belongs to a unique combination of binomial subtrees

T0, T1, . . . , Td(i)

84

and the location of ones in the representation indicates the order of binomial

subtrees, e.g. the most significant bit indicates a binary subtree of order Nc−1

and the least significant bit indicates a binomial subtree of order 0. Note that

all the nodes belong to a subtree T0 of order Nc.

• The number of nodes belonging to a subtree Tt at depth k is given by,

Nt(k) =

(

Tt

k−t

)
, if 0 ≤ k − t ≤ Tt;

0, otherwise.
(4.26)

where k = 0, 1, 2, . . . , Nc and t = 0, 1, 2, . . . , d(i).

Since a node i only belongs to subtrees T0, T1, . . . , Td(i), to compute Oi, we

have to analyze these subtrees alone. The binomial tree can be split into these

subtrees and can be analyzed subtree by subtree, starting with the largest subtree

T0. For each subtree, we select the nodes that exclusively belong to the subtree under

consideration. This can be accomplished by removing the nodes belonging to the next

largest subtree from the subtree under consideration. Finally, one has to offset the

result of merging of the “twin” nodes. The merging leads to the relationships of the

order (m, 0) and (0, n), which would have been of the order (m+ 1, 1) and (1, n+ 1)

otherwise. Also, we have to remove the relationship (0, 0), which corresponds to

a comparison of the node i with itself. The algorithm to compute the optimality

matrix Oi follows.

1. Initialize T = {T0, T1, . . . , Td} = the subtree membership of the node i, d(i) =

depth of the node i, set Oi(1, 1) = −1 and all the other elements of Oi equal

to zero.

2. Set t = 0 such that the current subtree Tt = T0.

85

3. For the subtree Tt, at each depth k = 0, 1, . . . , Nc compute Mt(k) the number

of nodes, which belong exclusively to the subtree tree Tt.

Mt(k) =

 Nt(k) −Nt+1(k), if t < d(i);

Nt(k), Otherwise.

4. If k > 0 and d(i) − t > 0, set Oi(d(i) − t, k) = Oi(d(i) − t, k) + Mt(k) else set

Oi(d(i) − t + 1, k + 1) = Oi(d(i) − t + 1, k + 1) + Mt(k).

5. Set t = t + 1. If t ≤ d(i), then go to step (3), else terminate the algorithm.

4.4.4 Computing Complexity Matrix

To compute the complexity matrix Ri, each leaf node i has to be compared

with internal nodes of the cost weighted tree. After the “twin” node merging, one

has to compare each node i of the merged tree with all the internal nodes of the tree.

Note that the internal nodes of a binomial tree of order Nc form a binomial tree of

order (Nc − 1). Thus, similar to (4.26) the number of internal nodes belonging to

subtree Tt at depth k is given by,

Lt(k) =

(
Tt−1
k−t

)
, if 0 ≤ k − t ≤ Tt − 1;

0, otherwise.
(4.27)

The algorithm to compute the complexity matrix Ri is a slight variation of the

one that calculates Oi.

1. Initialize T = {T0, T1, . . . , Td} = the subtree membership of the node i, d(i) =

depth of the node i, set all the other elements of Ri equal to zero.

2. Set t = 0 such that the current subtree Tt = T0.

86

3. For the subtree Tt, at each depth k = 0, 1, . . . , Nc compute Mt(k) the number

of nodes, which belong exclusively to the subtree tree Tt.

Mt(k) =

 Lt(k) − Lt+1(k), if t < d(i);

Lt(k), Otherwise.

4. If m > 0 and d(i) − t > 0, set Ri(d(i) − t, k) = Ri(d(i) − t,m) + Mt(k) else set

Ri(d(i) − t + 1, k + 1) = Ri(d(i) − t + 1, k + 1) + Mt(k).

5. Set t = t + 1. If t ≤ d(i), then go to step (3), else terminate the algorithm.

Note that when the internal node j is an ancestor of the leaf node i, the

probability Pr(Sn < Sm) is 1. We have to correct the complexity matrix for these

cases by setting Ri(k, 1) = Ri(k, 1) − 1 where 0 ≤ k < d(i). With the corrected

complexity matrix Ri, the complexity N(i) becomes,

N(i) = d(i) +
Nc∑
m=1

Nc∑
n=1

Pr(Sn < Sm) ·Ri(m,n) (4.28)

Since the complexity for computing the optimality matrix and the complexity matrix

increases exponentially with Nc, the computational complexity analysis for the model

selection can only be accomplished for a moderate number of candidates. In the

following section, computational complexity of branch-and-bound model selection is

analyzed for the multiple structure-and-motion segmentation.

4.5 Experimental Results

We studied the performance of the proposed model selection framework for

multiple structure-and-motion (MSaM) segmentation problem. The MSaM segmen-

tation is carried out on a pair of images. We chose publicly available image data

87

sets for our experiments. To generate candidates for the model selection, for each

image correspondence, a fundamental matrix candidate was computed from a cir-

cular spatial neighborhood of the correspondences using the “Structure-and-Motion

Toolkit” from [67]. Outlier and inlier correspondences were selected for each funda-

mental matrix candidate by applying a threshold δT to the reprojection error of the

correspondences for the candidate. The number of inlier correspondences for each

candidate indicates the support for the candidate. To avoid repeated candidates,

which are similar, candidates with smaller support sharing substantial (> 80%) in-

lier correspondences with a candidate with larger support, were suppressed. Finally,

the surviving candidates were arranged in decreasing order of their support. The

Bayesian information criterion (BIC) was optimized for these candidates to select

the optimal hypothesis. Some correspondence are tagged as outliers as none of the

selected candidates can explain them with residuals less than δT .

The complexity of proposed branch-and-bound model selection approach was

estimated with synthetic data. For the experiments, 100 different fundamental ma-

trices were randomly generated. For each fundamental matrix, 50 correspondences

were generated with the model given by (4.15) adding iid Gaussian noise with σ = 1.

At a time, correspondences for four different fundamental matrices were combined

together to form an experimental data set. Additionally, 50 randomly selected cor-

respondences from the remaining motions were added to the data as outliers. The

number of hypotheses Nc cannot be explicitly controlled and it varies with the num-

ber of motions and their spatial configuration. For our synthetic data, Nc was close

to 20 to 30. To estimate the probabilities PrT (Sm < Sn) for the MSaM segmentation

problem, we randomly generated pairs of hypotheses and compared their BIC val-

ues. To calculate the probabilities PrI(Sm < Sn), BIC value of a randomly generated

hypothesis was compared to the lower bound on BIC value of another randomly gen-

88

erated hypothesis. Figures 4.5 and 4.6 show the probability matrices PrT (Sm < Sn)

and PrI(Sn < Sm) respectively.

5
10

15
20

25

5

10

15

20

25

0

0.2

0.4

0.6

0.8

1

n
m

P
r T

(S
m

<S
n
)

Figure 4.5. PrT (Sm < Sn) for the MSaM segmentation problem.

Once the probability matrices PrT (Sm < Sn) and PrI(Sn < Sm) are known

from sampling, the complexity for the branch-and-bound search can be estimated by

evaluating (4.23). Figure 4.7 shows the estimated expected complexity for the MSaM

segmentation problem along with other tree search problems when edge weights

are uniform iids and squared Gaussian iids. The worst case complexity, which is

equivalent to a brute force search, is also shown for comparison. Clearly, the expected

complexity of the branch-and-bound search depends on the distribution of the edge

weights. This distribution is captured by probabilities PrT (Sm < Sn) and PrI(Sn <

Sm).

As seen from the plots, although the expected complexity is much lesser than

the worst case complexity for the branch-and-bound, it remains exponential for the

89

5
10

15
20

25

5
10

15
20

25

0

0.2

0.4

0.6

0.8

1

m

n

P
r I(S

n
<S

m
)

Figure 4.6. PrI(Sn < Sm) for the MSaM segmentation problem.

5 10 15 20 25

0

5

10

15

20

25

Tree depth

lo
g

2(e
xp

ec
te

d
 c

o
m

p
le

xi
ty

)

Worst case
Uniform iid weights
Squared Gaussian iid weights
Structure and motion

Figure 4.7. Expected complexity.

90

most part. The rate of exponential depends on how quickly the off diagonal values of

probability matrices PrT (Sm < Sn) and PrI(Sn < Sm) drop to near zero/ rise close

to one. On the other hand, for the MSaM segmentation problem, the increase in the

complexity as Nc > 15 is not as drastic as Nc < 15. This again is a result of the off

diagonal values of probability matrices PrT (Sm < Sn) and PrI(Sn < Sm), almost all

of which drop to near zero/ rise close to one for Nc > 15.

Figure 4.8 compares the estimated expected complexity of the problem with

the experimentally observed complexity of the problem. We ran 400 experiments

with different data sets to find the number of nodes explored before optimal solution

was found. These experiments were then separated based on value Nc and sorted

according to increasing complexity. The lengths of plots were normalized horizontally

to 100 for easy comparison of complexity for various values of Nc. As seen in figure

4.8, although the expected complexity is slightly overestimated, it still provides a

satisfactory estimate for the observed complexity.

0 10 20 30 40 50 60 70 80 90 100
8

9

10

11

12

13

14

Normalized experiment number

lo
g

2(N
u

m
b

er
 o

f
n

o
d

es
 e

xp
lo

re
d

)

Experimental for N
h
=24

Experimental for N
h
=25

Experimental for N
h
=26

Experimental for N
h
=27

Expected for N
h
=24

Expected for N
h
=25

Expected for N
h
=26

Expected for N
h
=27

Figure 4.8. Comparison of expected and actual complexity.

91

After proposing branch-and-bound based segmentation methods in last two

chapters and, establishing computational complexity of the branch-and-bound, the

following chapter concentrates on the problem of visual object recognition.

CHAPTER 5

VISUAL OBJECT RECOGNITION

5.1 Introduction

The visual bag-of-words approach is the predominantly applied approach to

solve the visual object recognition problem [94, 95]. In the visual bag-of-words ap-

proach, each image is characterized by a histogram of the quantized image features.

Each image feature describes an invariant local interest point [96] extracted with

detectors such as Harris-affine interest point detector [97], difference-of-gaussian de-

tector [98], maximally stable extremal regions [99] etc. Each image feature describes

an image patch around the detected interest point. The descriptions of the interest

points are high dimensional vectors. Mikolajczyk and Schmid [100] compare various

descriptors available in the literature and conclude that scale invariant feature trans-

form (SIFT) [98] is the most effective description for the image patches. To reduce

dimensionality of the image descriptors, vector quantization has to be is applied to

the features before a histogram can be constructed. A clustering algorithm such

as K-means or hierarchical K-means is applied to the image features and, cluster

centers are established. The image features are quantized by assigning them to the

closest cluster center. Normally, one histogram per image is formed for the quantized

image features. In the final step of the visual bag-of-words classifier, histograms for

training images are used to train a classifier with a machine learning algorithm such

as support vector machine (SVM), boosting or neural networks.

For an image classification problem, the image patches which appear frequently

in positive examples can be seen to have a positive relevance to the recognition and,

92

93

the ones which appear frequently in negative examples can be seen to have a negative

relevance. Note that the image patches referred here can be larger than the patch de-

scribed by an image feature. In the histogram, an image feature carries equal weight

regardless of whether it appears as a part of a positively or negatively relevant image

patch, as in both cases the quantization results in the same representation. Intu-

itively, the accuracy of the classification should be improved if positive and negative

relevance of an image location is estimated and the image features are weighted ac-

cordingly to form two separate histograms. We propose a two-step framework, which

first estimates positive and negative relevance of an image location. The second step

of the framework uses the relevance of the image location estimated in the first step

to weight the image features and classifies the object with the conventional visual

bag-of-words approach applied to the weighted histograms.

This chapter is organized as follows: Section 5.2 motivates how a sliding win-

dow SVM classifier can be used in the proposed relevance framework. Approach

to estimate the relevance is described in section 5.3. Relevance weighting applied

in the bag-of-features classifier is explained in section 5.4. Experimental results are

presented in section 5.5.

5.2 Motivation

Figures 5.1(a) and (b) show an image and its quantized equivalent respectively.

As seen from 5.1(c), the same quantized feature appears on the car as well as the

background. While forming a histogram to represent the image, all the marked

features will be added to a single histogram bin. Our goal is to establish a framework,

which treats an image feature based on its location, while maintaining simplicity of

the bag-of-features approach.

94

(a) (b)

(c)

Figure 5.1. (a) Original image, (b) Quantized features, (c) Original image overlaid
with locations of features from one of the histogram bins marked as black dots.

Consider an image with M dense features

{f1, f2, f3, . . . , fM}

located at

{l1, l2, l3 . . . , lM}.

95

After quantization the features to K levels, they belong to histogram bins

{b1, b2, b3, . . . , bM}

respectively, where bm ∈ {1, 2, . . . , K}.

Support vector machines (SVMs) are frequently used as classifiers in the visual

bag-of-words classification approach. It can be easily shown that the linear kernel

assigns a weight to each feature based on its histogram bin. The decision function

for an SVM is given by,

y(x) = β +
N∑
i=1

αik(x, xi) (5.1)

where k(·, ·) represents the kernel function, xi is one of the N support vectors and

αi is the corresponding weight learned. In case of a visual bag-of-words classification

approach, the observations to be classified x are histograms, which can be normal-

ized or non-normalized. A non-normalized histogram can be denoted by H and a

normalized histogram by Ĥ. Rewriting (5.1) for visual bag-of-words representation

with a linear kernel

y(Ĥ) = β +
N∑
i=1

αi⟨Ĥ, Ĥi⟩ (5.2)

where ⟨·, ·⟩ represents the inner product. If the histogram has K bins and kth bin

has hk features, the kth normalized bin entry can be given by

ĥk =
hk∑K

k′=1 h
k′

=
hk

M
.

A partial histogram for an mth feature can be represented by H̃m, which has only

bmth histogram entry equal to one and, all the other entries equal to zero. A nor-

96

malized histogram can be built from the partial histograms of the individual features

as,

Ĥ =
1

M

M∑
m=1

H̃m (5.3)

Inserting (5.3) in (5.2),

y(Ĥ) = β +
N∑
i=1

αi⟨
1

M

M∑
m=1

H̃m, Ĥi⟩

= β +
1

M

M∑
m=1

N∑
i=1

αi⟨H̃m, Ĥi⟩.

After expanding the inner product ⟨H̃m, Ĥi⟩ to a summation of product, only one of

the product terms is nonzero. This leads to,

y(Ĥ) = β +
1

M

M∑
m=1

N∑
i=1

αih
bm
i

= β +
1

M

M∑
m=1

wbm .

Here, the weight of feature belonging to kth histogram bin is given by

wk =
N∑
i=1

αih
k
i .

A feature, which appears frequently in the positive support vectors, would have a

positive weight and, a feature appearing in the negative support vectors would have

a negative weight.

The weights established for the feature fm can be possibly used as relevance

for its location lm. Intuitively, positive or negative relevance of an image location

in the classification would mean that its neighborhood is also relevant in a similar

way. As the SVM training does not involve spatial information, the weights given

97

above are not smoothly distributed over the neighborhood. To force smoothness on

the relevance over the neighborhood, one can average the above weights over a local

window.

After averaging weights over a local window, the process reduces to evaluating

the SVM decision function over the local window. Thus, the relevance at an image

location lm can be established by evaluating the SVM classifier over a local window

Nlm . Although, the discussion here was limited to the linear kernel, from its con-

clusion, a similar sliding window implementation for relevance of location should be

possible for non-linear kernels.

5.3 Estimating Relevance

The localization approach by Fulkerson et al. [101], who apply brute force

sliding window to localize an object in an image, is adapted to estimate the positive

and negative relevance of the image patches. As the relevance has to be established

for the entire image, dense SIFT features are extracted from the image. To generate

a quantized representation of the features, hierarchical K-means clustering is applied

to the extracted dense features. To speed up the SVM classifier, which has to be

applied repeatedly, the quantized representations of the features is compressed with

agglomerative information bottleneck (AIB). The compression allows representation

of the image with a few hundred histogram bins instead of thousands of bins. The

compressed histograms are used to train an SVM classifier. To establish the positive

and negative relevance of an image location lm, the SVM classifier is applied to a

local window Nlm around the location to generate a raw decision value with (5.1). As

the raw SVM outputs cannot be used directly to weight the features, probabilistic

SVM outputs are generated by fitting a parametric sigmoid to the raw SVM outputs

during training as suggested by [102]. The estimated posterior probabilities are used

98

as the relevance weights to form soft histograms in the second step of the classifier.

The positive relevance weight at location lm is given by,

W+(lm) = Pr (+ve Class|y(Nlm)) . (5.4)

Similarly, the negative relevance weight is,

W−(lm) = Pr (−ve Class|y(Nlm)) = 1 −W+(lm) (5.5)

5.4 Relevance Weighted Bag-of-Features Classifier

In the second step of the classifier, two separate soft histograms are created: one

corresponding to features belonging to positively relevant image areas and the other

corresponding to features belonging to negatively relevant area. The soft histograms

corresponding to positively and negatively relevant image patches are given by,

(
hk′
)+

=
∑

∀n,bn=k′

W+(ln) (5.6)

(
hk′
)−

=
∑

∀n,bn=k′

W−(ln) (5.7)

Note that, the different index n indicates that the features in the second step can

be different and sparse in the second step. Use of k′ suggests that the features can

be quantized differently compared to the first step. Thus, for the second step of the

classifier, any variant of the bag-of-features classifier that uses histogram represen-

tation of the image can be applied. The only modification required is substitution

of the original histogram representation with appended soft histograms.

99

Figure 5.2 summarizes the two step relevance weighted visual bag-of-features

approach.

Testing

Testing

Training

Fe
at

u
re

E

xt
ra

ct
io

n Clustering
H

is
to

gr
am

s
SVM training

C
la

ss
ifi

ca
tio

n

V
ec

to
r

Q
ua

n
tiz

at
io

n

Centers Classifier

Training

D
en

se
 F

ea
tu

re

E
xt

ra
ct

io
n Clustering

V
ec

to
r

Q
ua

n
tiz

at
io

n

H
is

to
gr

am
s

SVM training

S
lid

in
g

W

in
do

w

C
la

ss
ifi

ca
tio

n

Centers Classifier

R
el

ev
an

ce

E
st

im
at

io
n

Learn Relevance

Model

STEP 1

STEP 2

Figure 5.2. Relevance weighted visual bag-of-features approach.

5.5 Experimental Results

The proposed relevance based two-step classifier was validated with the chal-

lenging Graz02 data set [103]. Graz02 data set is split into four classes: bike, car,

person and background. For each class, the data set provides more that 300 ex-

ample color images. For each of the object classes, a binary classifier is designed

to classify the object against the background class. For the training, the first 150

odd numbered images from each class are used, while for the testing, the first 150

even numbered images are used. To implement the proposed framework, we used

“VLFeat” library [104] and “Blocks” modular framework [105].

For each image, color dense SIFT features were extracted for every 4th pixel of

the image. This leads to about 19,000 features per image. Each feature characterizes

a 16×16 spatial window of the image. Hierarchical K-means with K = 10 with 10, 000

100

leaf nodes was carried out to construct an initial dictionary, which was compressed

to 40 visual words with AIB. Based on the visual words, the dense features were

quantized and histograms were constructed from the training images. An SVM

classifier with chi-square kernel was trained with LIBSVM [106]. The parameters of

SVM and the kernel were tuned with cross validation. LIBSVM was configured to

generate the posterior probability estimates, which were used as relevance weights in

the second step of classifier. To estimate the relevance of an image location, the SVM

classifier was applied to a square window of size 80×80 centered at the location. For

the points where the relevance estimate was unavailable, the estimate was generated

by interpolation.

For the bag-of-words classifier in the second step, conventional sparse SIFT

features were used. Similar to the first stage, clustering was carried out and a

compressed dictionary with 1000 visual words was constructed. However, instead of

creating a single histogram after quantization, two soft histograms were generated

and appended together for training. An SVM classifier with chi-square kernel was

designed with the appended histograms. A single histogram based SVM was also

trained for comparison with the conventional approach.

The performance of the proposed classification scheme is compared with the

conventional bag-of-words classifier with two measures: the equal error rate and

area under the receiver operating characteristic (ROC) curve. Equal error rate is

achieved when the classification accuracies of the positive class and the negative

class are equal. In the ROC curves shown in figure 5.3, this point is indicated by the

intersection of ROC with the diagonal equal error line. Additionally, it is desirable

that the area under ROC is close to 1.

101

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False positive rate

T
ru

e
po

si
tiv

e
ra

te

ROC (AUC = 0.849)

ROC
EER 76.7 %

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False positive rate

T
ru

e
po

si
tiv

e
ra

te

ROC (AUC = 0.879)

ROC
EER 80.7 %

(a) (b)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False positive rate

T
ru

e
po

si
tiv

e
ra

te

ROC (AUC = 0.66)

ROC
EER 64 %

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False positive rate

T
ru

e
po

si
tiv

e
ra

te
ROC (AUC = 0.811)

ROC
EER 73.3 %

(c) (d)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False positive rate

T
ru

e
po

si
tiv

e
ra

te

ROC (AUC = 0.86)

ROC
EER 80 %

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False positive rate

T
ru

e
po

si
tiv

e
ra

te

ROC (AUC = 0.932)

ROC
EER 89.3 %

(e) (f)

Figure 5.3. Graz02: ROC curves Left: Without relevance separation Right: With
relevance separation for (a)(b) Class “Bike,”(c)(d) Class “Cars,” (e)(f) Class “Per-
son”.

102

As seen from the tables 5.1 and 5.2, the proposed two step method outperforms

the conventional bag-of-features method for all the classes. The complete ROCs for

all the classes can be seen in figure 5.3.

Table 5.1. Graz02: Chi square kernel with 40 visual words used for relevance esti-
mation: Equal error rate in % averaged over 10 runs

Class Without relevance With relevance
Bike 76.73 81.26
Car 61.2 73.86

Person 79.86 87.20

Table 5.2. Graz02: Chi square kernel with 40 visual words used for relevance esti-
mation : Area under ROC curve averaged over 10 runs

Class Without relevance With relevance
Bike 0.85 0.89
Car 0.66 0.81

Person 0.86 0.92

In figure 5.4, some of the test images are shown, for which the proposed clas-

sifier labels them correctly at least eight out of ten times while the conventional

classifier fails to classify them correctly nine or ten out of ten times. Looking at

the corresponding positive relevance weights, it can be concluded that the relevance

weights are assigned according to location of the object. Although, a significant por-

tion of the background is still marked with positive relevance, the proposed classifier

succeeds in classifying the image.

On the other hand, figure 5.5 shows images, for which the proposed classifier

fails at least nine out of ten times while the conventional classifier fails at most 2

103

Figure 5.4. Some of the test images and the corresponding positive relevance weights,
for which the relevance weighted classification significantly outperforms the conven-
tional classifier.

times. Failure of the proposed classifier can be clearly attributed to the incorrect

relevance weights estimated for the objects.

Figure 5.5. Some of the test images and the corresponding positive relevance weights,
for which the relevance weighted classification was significantly outperformed by the
conventional classifier.

Finally, for the images in figure 5.6, both classifiers fail at least eight out of ten

times. For first two image, it appears that the relevance weights match the objects.

Failure in these cases might be due to the limitation of the features used. With

104

addition features and descriptors,the classification accuracy might increase for these

images. For the last two images the object size is small compared the image size,

which leads to failure of the classifiers.

Figure 5.6. Some of the test images and the corresponding positive relevance weights,
for which both the classifiers perform badly.

CHAPTER 6

CONCLUSION AND FUTURE WORK

This chapter reviews various contributions of the dissertation and suggests

direction for continuation of the work in the dissertation.

6.1 Stereo Disparity Segmentation

In chapter 2, we proposed a novel iterative split-and-merge approach for the

segmentation of the planar surfaces in the disparity space. The spatial continuity

based splitting and the maximum allowable variance based merging were carried

out iteratively to detect the number of planar surfaces and their corresponding pa-

rameters automatically. A new and efficient multi-stage merging algorithm based

on the branch-and-bound search strategy was also proposed. The effectiveness of

the proposed scheme and the branch-and-bound algorithm were demonstrated using

experimental results for different data sets.

The quality of the results of the segmentation scheme depends on the quality

of the stereo disparity. We use a basic disparity computation scheme to demonstrate

the robustness of our method. Any of the disparity computation schemes available

in the literature can be used to substitute the current computation scheme to the

multi-stage branch-and-bound method. Additionally, the multi-stage branch-and-

bound method can be modified to fit other clustering problems such as motion or

image segmentation.

Regularization plays an important role in an inverse problem such as segmen-

tation as well as disparity estimation. The smoothness and the spatial continuity are

105

106

commonly used in the disparity estimation for the regularization. Our method uses

a bound on maximum allowable variance for the regularization. A better alternative

to the sequential approach, in which the disparity computation is followed by the

segmentation, is a simultaneous disparity estimation and segmentation approach.

Such an approach would allow additional regularization criterions for both steps and

would improve the segmentation result.

Compared to the quad-tree based spilt-and-merge, speedups are achieved by

the proposed branch-and-bound algorithm in most of the cases. However, the algo-

rithm can be improved with additional heuristics. Additionally, a combination of

spatial segmentation with the proposed multi-stage merging algorithm might elimi-

nate the need for the iterative process.

6.2 Two-View Multiple Structure and Motion Segmentation

We proposed a versatile new multiple structure-and-motion (MSaM) segmen-

tation scheme and demonstrated its effectiveness through experiments in chapter 3.

The branch-and-bound scheme can easily be scaled for parallel processing by solving

each branch of the problem on a separate processor. Scheduling of these branches

can be also an interesting direction of research. Although the method is proposed

for a MSaM segmentation, it can be also applied to various other computer vision

problems involving clustering such as segment based stereo [107], [108] and dense

motion segmentation [13]. Since the outcome of the method heavily depends on the

initial hypotheses chosen, various available guided sampling approaches have to be

evaluated as to how well they explore and represent the solution space. The current

approach can also be extended to an iterative approach. After each iteration of seg-

mentation, fundamental matrices can be recalculated based on membership of the

matches and these can be added as additional hypothesis to repeat the segmentation.

107

6.3 Computational Complexity of Branch-and-Bound

In chapter 4, we generalized the a branch-and-bound algorithm for model se-

lection and analyzed its expected complexity. From the experimental results, the

average complexity of the algorithm is much lower than the worst case complexity.

Thus, branch-and-bound based model selection algorithms are practical for a hy-

pothesis selection process, which has a moderate number of hypotheses and, when

the size of optimal subset is small. With problem specific bounds and/or added

heuristics, the computational complexity of the branch-and-bound algorithm can be

improved further.

6.4 Visual Object Recognition

A positive and negative relevance based two-step classifier was proposed in

chapter 5. The first step of the classifier establishes the relevance weights for image

locations through a sliding window SVM classifier. The relevance weights are used

to weight features during creation of histograms in the second step of the classifier.

A significant improvement in the classification accuracies was observed with the

proposed approach.

The accuracy of the classifier can be further improved by adding multiple

region detectors and descriptors is the second step of the classifier. Also, other

spatial techniques such as spatial pyramid matching [109] can also incorporated in

the second step. As the first step of our classifier applies a sliding window based

SVM classifier, it significantly slows down the overall classifier. To speed up the

classification, a linear kernel combined with integral images/histograms technique

can be used in the first step at the cost of some accuracy.

APPENDIX A

COST PROBABILITIES FOR UNIFORM IID

108

109

A sum of m uniform iids is distributed as,

fm(Sm) =
1

(m− 1)!

m∑
j=0

(−1)j
(
m

j

)
[(Sm − j)+]m−1 (A.1)

Similarly for a sum of n uniform iids,

fn(Sn) =
1

(n− 1)!

n∑
k=0

(−1)k
(
n

k

)
[(Sn − k)+]n−1 (A.2)

The corresponding cumulative distributions are,

Fm(Sm) =
1

m!

m∑
j=0

(−1)j
(
m

j

)
[(Sm − j)+]m (A.3)

Fn(Sn) =
1

n!

n∑
k=0

(−1)k
(
n

k

)
[(Sn − k)+]n (A.4)

For the above series involving Sm, in interval j − 1 and j only j terms are non zero

and for the series involving Sn, in interval k − 1 and k only k terms are non zero.

Assuming Sm and Sn are independent, the joint distribution of Sm and Sn is

product of the two. From the joint distribution of Sm and Sn,

Pr(Sm < Sn) =

∫ n

Sn=0

∫ Sn

Sm=0

fm(Sm)fn(Sn)dSmdSn (A.5)

110

For n < m,

Pr(Sm < Sn)

=
1

(n− 1)!

∫ n

Sn=0

n∑
k=0

(−1)k
(
n

k

)
[(Sn − k)+]n−1

(
1

(m− 1)!

∫ Sn

Sm=0

m∑
j=0

(−1)j
(
m

j

)
[(Sm − j)+]m−1dSm

)
dSn

The bracketed expression is nothing but cumulative distribution of Sm.

=
1

(n− 1)!

∫ n

Sn=0

n∑
k=0

(−1)k
(
n

k

)
[(Sn − k)+]n−1

(
1

m!

m∑
j=0

(−1)j
(
m

j

)
[(Sn − j)+]m

)
dSn

Since Sn ≤ n, for j > n the bracketed expression is 0,

we change the upper limit of the summation over j to n.

=
1

(n− 1)!

1

m!∫ n

Sn=0

(
n∑

k=0

(−1)k
(
n

k

)
[(Sn − k)+]n−1

)(
n∑

j=0

(−1)j
(
m

j

)
[(Sn − j)+]m

)
dSn︸ ︷︷ ︸

I

(A.6)

We split integration I in to n segments of length 1. For q = {1, 2, . . . , n}.

Iq =

∫ q

Sn=q−1

(
q−1∑
k=0

(−1)k
(
n

k

)
(Sn − k)n−1

)(
q−1∑
j=0

(−1)j
(
m

j

)
(Sn − j)m

)
dSn

=

q−1∑
k=0

q−1∑
j=0

(−1)(k+j)

(
n

k

)(
m

j

)∫ q

Sn=q−1

(Sn − k)n−1(Sn − j)mdSn︸ ︷︷ ︸
Iq(j,k)

(A.7)

111

Table A.1. Repeated differential table for (t + j − k)n−1

p Repeated differential
1 (t + j − k)n−1

2 (n− 1)(t + j − k)n−2

3 (n− 1) · (n− 2)(t + j − k)n−3

p (n− 1) · (n− 2) . . . (n− (p− 1))(t + j − k)(n−p)

p + 1 (n− 1) · (n− 2) . . . (n− (p− 1))(n− p)(t + j − k)(n−(p+1))

(n− 1) (n− 1) · (n− 2) . . . 3 · 2(t + j − k)
n (n− 1) · (n− 2) . . . 3 · 2 · 1

n + 1 0

Table A.2. Repeated integration table for tm

p Repeated integration
1 tm

2 t(m+1)

(m+1)

3 t(m+2)

(m+1)(m+2)

p t(m+p−1)

(m+1)(m+2)...(m+p−1)

p + 1 t(m+p)

(m+1)(m+2)...(m+p−1)(m+p)

(n− 1) t(m+n−2)

(m+1)(m+2)...(m+n−2)

n t(m+n−1)

(m+1)(m+2)...(m+n−2)(m+n−1)

n + 1 t(m+n)

(m+1)(m+2)...(m+n−1)(m+n)

Now we solve for integration Iq(j, k).

Iq(j, k) =

∫ q

Sn=q−1

(Sn − k)n−1(Sn − j)mdSn

Let t = (Sn − j), then dt = dSn and (Sn − k) = (t + j − k).

When Sn = q − 1, t = q − 1 + j and when Sn = q, t = q + j.

=

∫ q+j

t=q−1+j

(t + j − k)n−1tmdt (A.8)

112

We apply repeated integration by parts to (A.8) with help of the tables A.1

and A.2. After resubstituting Sn − j for t we get,

Iq(j, k)

=

[
n∑

p=1

(−1)(p−1) [(n− 1) . . . (n− (p− 1))] (Sn − k)(n−p)(Sn − j)(m+p)

(m + 1) . . . (m + p− 1)(m + p)

]q
(q−1)

=

[
n∑

p=1

(−1)(p−1) (n− 1)!

(n− p)!
(Sn − k)(n−p) m!

(m + p)!
(Sn − j)(m+p)

]q
(q−1)

(A.9)

Combining (A.6), (A.7), (A.8) and (A.9),

Pr(Sm < Sn)

=
1

(n− 1)!

1

m!

n∑
q=1

q−1∑
k=0

q−1∑
j=0

(−1)(k+j)

(
n

k

)(
m

j

)
[

n∑
p=1

(−1)(p−1) (n− 1)!

(n− p)!
(Sn − k)(n−p) m!

(m + p)!
(Sn − j)(m+p)

]q
(q−1)

=
n∑

q=1

q−1∑
k=0

q−1∑
j=0

(−1)(k+j)

(
n

k

)(
m

j

)[n∑
p=1

(−1)(p−1) (Sn − k)(n−p)

(n− p)!

(Sn − j)(m+p)

(m + p)!

]q
(q−1)

(A.10)

REFERENCES

[1] K. Konolige, “Small vision system: hardware and implementation,” in Eighth

International Symposium on Robotics Research, 1997.

[2] Videre Design, http://www.videredesign.com/.

[3] Tyzx Inc., http://www.tyzx.com/.

[4] E. Izquierdo, “Disparity/segmentation analysis: matching with an adaptive

window and depth-driven segmentation,” IEEE Transactions on Circuits and

Systems for Video Technology, vol. 9, no. 4, pp. 589–607, 1999.

[5] Y. Altunbasak, A. Tekalp, and G. Bozdagi, “Simultaneous motion-disparity

estimation and segmentation from stereo,” in Proceeding of IEEE International

Conference on Image Processing, vol. 3, 1994, pp. 73–77.

[6] D. Tzovaras, N. Grammalidis, and M. G. Strintzis, “Joint three-dimensional

motion/disparity segmentation for object-based stereo image sequence coding,”

Optical Engineering, vol. 35, no. 1, pp. 137–144, 1996.

[7] S. Se and M. Brady, “Stereo vision-based obstacle detection for partially sighted

people,” in Proceedings of Asian Conferance on Computer Vision, 1997, pp.

152–159.

[8] K. Okada, S. Kagami, M. Inaba, and H. Inoue, “Plane segment finder: algo-

rithm, implementation and applications,” in Proceedings of IEEE International

Conference on Robotics and Automation, vol. 2, 2001, pp. 2120–2125.

[9] E. Trucco, F. Isgro, and F. Bracchi, “Plane detection in disparity space,” in

Proceedings of International Conference on Visual Information Engineering,

2003, pp. 73–76.

113

114

[10] X. Wang and H. Wang, “Markov random field modeled range image segmen-

tation,” Pattern Recognition Letters, vol. 25, no. 3, pp. 367–375, 2004.

[11] F. Moscheni, S. Bhattacharjee, and M. Kunt, “Spatio-temporal segmentation

based on region merging,” IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence, vol. 20, no. 9, pp. 897–915, 1998.

[12] I. Haritaoglu, D. Harwood, and L. S. Davis, “W4: real-time surveillance of peo-

ple and their activities,” IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 22, no. 8, pp. 809–830, 2000.

[13] J. Wang and E. Adelson, “Representing moving images with layers,” IEEE

Transactions on Image Processing., vol. 3, no. 5, pp. 625–638, 1994.

[14] H. Nguyen, M. Worring, and A. Dev, “Detection of moving objects in video

using a robust motion similarity measure,” IEEE Transactions on Image Pro-

cessing, vol. 9, no. 1, pp. 137–141, 2000.

[15] R. I. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision.

Cambridge University Press, ISBN: 0521540518, 2004.

[16] R. Vidal and Y. Ma, “A unified algebraic approach to 2-D and 3-D motion

segmentation,” in Proceedings of European Conference on Computer Vision,

2004, pp. 1–15.

[17] A. Gruber and Y. Weiss, “Incorporating non-motion cues into 3D motion seg-

mentation,” in Proceedings of European Conference on Computer Vision, 2006,

pp. 84–97.

[18] M. Irani and P. Anandan, “A unified approach to moving object detection

in 2D and 3D scenes,” IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 20, no. 6, pp. 577–589, 1998.

115

[19] H. Li, “Two-view motion segmentation from linear programming relaxation,”

in Proceedings of IEEE International Conference on Computer Vision and Pat-

tern Recognition, 2007.

[20] R. Vidal and S. Sastry, “Optimal segmentation of dynamic scenes from two

perspective views,” in Proceedings of IEEE International Conference on Com-

puter Vision and Pattern Recognition, vol. 2, 2003, pp. 281–286.

[21] S. Belongie, J. Malik, and J. Puzicha, “Shape matching and object recognition

using shape contexts,” IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 24, no. 4, pp. 509–522, 2002.

[22] E. Milios and E. G. M. Petrakis, “Shape retrieval based on dynamic program-

ming,” IEEE Transactions on Image Processing, vol. 9, no. 1, pp. 141–147,

2000.

[23] K. Siddiqi, A. Shokoufandeh, S. Dickinson, and S. W. Zucker, “Shock graphs

and shape matching,” International Journal of Computer Vision, vol. 35, no. 1,

pp. 13–32, 1999.

[24] T. B. Sebastian, P. N. Klein, and B. B. Kimia, “Recognition of shapes by edit-

ing their shock graphs,” IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 26, no. 5, pp. 550–571, 2004.

[25] D. Zhang and G. Lu, “Review of shape representation and description tech-

nique,” Pattern Recognition, vol. 37, no. 1, pp. 1–19, 2004.

[26] L. Latecki, R. Lakamper, and T. Eckhardt, “Shape descriptors for non-rigid

shapes with a single closed contour,” in Proceedings of IEEE International

Conference on Computer Vision and Pattern Recognition, vol. 1, 2000, pp.

424–429.

116

[27] D. Macrini, K. Siddiqi, and S. Dickinson, “From skeletons to bone graphs: me-

dial abstraction for object recognition,” in Proceedings of IEEE International

Conference on Computer Vision and Pattern Recognition, 2008.

[28] P. Viola and M. J. Jones, “Robust real-time face detection,” International

Journal of Computer Vision, vol. 57, no. 2, pp. 137–154, 2004.

[29] A. Berg, T. Berg, and J. Malik, “Shape matching and object recognition using

low distortion correspondences,” in Proceedings of IEEE International Confer-

ence on Computer Vision and Pattern Recognition, vol. 1, 2005, pp. 26–33.

[30] K. Grauman and T. Darrell, “The pyramid match kernel: discriminative clas-

sification with sets of image features,” in Proceeding of IEEE International

Conference on Computer Vision, vol. 2, 2005, pp. 1458–1465.

[31] G. Wang, Y. Zhang, and L. Fei-Fei, “Using dependent regions for object cat-

egorization in a generative framework,” in Proceedings of IEEE International

Conference on Computer Vision and Pattern Recognition, vol. 2, 2006, pp.

1597–1604.

[32] A. Bosch, A. Zisserman, and X. Munoz, “Representing shape with a spatial

pyramid kernel,” in Proceedings of ACM International Conference on Image

and Video Retrieval, 2007, pp. 401–408.

[33] J. Corso, D. Burschka, and G. Hager, “Direct plane tracking in stereo image

for mobile navigation,” in Proceedings of IEEE International Conference on

Robotics and Automation, 2003.

[34] N. Molton, S. Se, J. Brady, D. Lee, and P. Probert, “A stereo vision-based

aid for the visually impaired,” Image and Vision computing, vol. 16, no. 4, pp.

251–263, 1998.

117

[35] D. Burschka and G. Hager, “Scene classification from dense disparity maps in

indoor environments,” in Proceedings of International Conference on Pattern

Recognition, vol. 3, 2002, pp. 708–712.

[36] B. Triggs, “Autocalibration from planar scenes,” in Proceedings of European

Conference on Computer Vision, 1998, pp. 89–105.

[37] Y. Kanazawa and H. Kawakami, “Detection of planar regions with uncalibrated

stereo using distribution of feature points,” in Proceedings of British Machine

Vision Conference, vol. 1, 2004, pp. 247–256.

[38] M. Zuliani, C. Kenney, and B. Manjunath, “The multiransac algorithm and

its application to detect planar homographies,” in Proceedings of IEEE Inter-

national Conference on Image Processing, vol. 3, 2005, pp. 153–156.

[39] M. Zucchelli, J. Santos Victor, and H. Christensen, “Multiple plane segmenta-

tion using optical flow,” in Proceedings of British Machine Vision Conferance,

2002, pp. 313–322.

[40] Y. Ding, X. Ping, M. Hu, and D. Wang, “Range image segmentation based on

randomized hough transform,” Pattern Recognition Letters, vol. 26, no. 13, pp.

2033–2041, 2005.

[41] C. Veenman, M. Reinders, and E. Backer, “A maximum variance cluster al-

gorithm,” IEEE Transactions on Pattern Analysis and Machine Intelligence,

vol. 24, no. 9, pp. 1273–1280, 2002.

[42] ——, “A cellular coevolutionary algorithm for image segmentation,” IEEE

Transactions on Image Processing, vol. 12, no. 3, pp. 304–316, 2003.

[43] M. Brusco and S. Stahl, Branch-and-Bound Applications in Combinatorial

Data Analysis. Springer, 2005.

[44] K. Fukunaga, Introduction to Statistical Pattern Recognition (2nd ed.). Aca-

demic Press Professional, Inc., 1990.

118

[45] P. Somol, P. Pudil, and J. Kittler, “Fast branch & bound algorithms for opti-

mal feature selection,” IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 26, no. 7, pp. 900–912, 2004.

[46] L.-K. Shark, A. A. Kurekin, and B. J. Matuszewski, “Development and eval-

uation of fast branch-and-bound algorithm for feature matching based on line

segments,” Pattern Recognition, vol. 40, no. 5, pp. 1432–1450, 2007.

[47] M. Roder, J. Cardinal, and R. Hamzaoui, “Branch and bound algorithms for

rate-distortion optimized media streaming,” IEEE Transactions on Multime-

dia, vol. 8, no. 1, pp. 170–178, 2006.

[48] J. Jonsson and K. Shin, “A parametrized branch-and-bound strategy for

scheduling precedence-constrained tasks on a multiprocessor system,” in Pro-

ceedings of International Conference on Parallel Processing, 1997, pp. 158–165.

[49] S. Fujita, M. Masukawa, and S. Tagashira, “A fast branch-and-bound algo-

rithm with an improved lower bound for solving the multiprocessor scheduling

problem,” in Proceedings of IEEE International conference on Parallel and

Distributed Systems, 2002, pp. 611–616.

[50] W. L. G. Koontz, P. M. Narendra, and K. Fukunaga, “A branch and bound

clustering algorithm,” IEEE Transactions on Computers, vol. 24, no. 9, pp.

908–915, 1975.

[51] N. Thakoor, V. Devarajan, and J. Gao, “Multi-stage branch-and-bound for

maximum variance disparity clustering,” in Proceedings of International Con-

ference on Pattern Recognition, . 2008.

[52] N. Thakoor, J. Gao, and V. Devarajan, “Multistage branch-and-bound merging

for planar surface segmentation in disparity space,” IEEE Transactions on

Image Processing, vol. 17, no. 11, pp. 2217–2226, 2008.

119

[53] J. Shi and C. Tomasi, “Good features to track,” in Proceedings of IEEE Inter-

national Conference on Computer Vision and Pattern Recognition, 1994.

[54] C. Harris and M. Stephens, “A combined corner and edge detector,” in Pro-

ceedings of the Fourth Alvey Vision Conference, 1988, pp. 147–151.

[55] Middlebury Stereo Vision Page, http://www.middlebury.edu/stereo.

[56] D. Scharstein and R. Szeliski, “A taxonomy and evaluation of dense two-frame

stereo correspondence algorithms,” International Journal of Computer Vision,

vol. 47, no. 1-3, pp. 7–42, 2002.

[57] K. Mühlmann, D. Maier, J. Hesser, and R. Männer, “Calculating dense dispar-

ity maps from color stereo images, an efficient implementation,” International

Journal of Computer Vision, vol. 47, no. 1, pp. 79–88, 2002.

[58] R. C. Gonzalez, R. E. Woods, and S. L. Eddins, Digital Image Processing Using

MATLAB. Prentice-Hall, Inc., 2003.

[59] L. Vinet, “Segmentation et mise en correspondance de rgions de paires d’images

stroscopiques,” Ph.D. dissertation, Universit de Paris IX Dauphine, 1991.

[60] S. Chabrier, B. Emile, C. Rosenberger, and H. Laurent, “Unsupervised per-

formance evaluation of image segmentation,” EURASIP Journal on Applied

Signal Processing, vol. 2006, no. 1, pp. 1–12, 2006.

[61] JISCT Stereo Images, http://vasc.ri.cmu.edu/idb/html/jisct/index.html.

[62] Real-Time Stereo Vision based on the Uniqueness Constraint Experimental Re-

sults and Applications, http://www.vision.deis.unibo.it/smatt/stereo.htm.

[63] A. D. R. McQuarrie and C.-L. Tsai, Regression and Time Series Model Selec-

tion. World Scientific, 1998.

[64] N. Thakoor and J. Gao, “Branch-and-bound hypothesis selection for two-view

multiple structure and motion segmentation,” in Proceedings of IEEE Interna-

tional Conference on Computer Vision and Pattern Recognition, 2008.

120

[65] T. T. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms.

MIT Press, 2001.

[66] P. J. Huber, Robust Statistics. Wiley, 1981.

[67] P. Torr, A structure and motion toolkit in Matlab,

http://cms.brookes.ac.uk/staff/PhilipTorr/Beta/torrsam.zip.

[68] K. Schindler, J. U, and H. Wang, “Perspective n-view multibody structure-

and-motion through model selection,” in Proceedings of European Conference

on Computer Vision, 2006, pp. 606–619.

[69] K. Schindler and D. Suter, “Two-view multibody structure-and-motion with

outliers through model selection,” IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 28, no. 6, pp. 983–995, 2006.

[70] R. Vidal, S. Soatto, Y. Ma, and S. Sastry, “Segmentation of dynamic scenes

from the multibody fundamental matrix,” in Proceedings of Workshop on Vi-

sual Modeling of Dynamic Scenes in conjunction with European Conference on

Computer Vision, 2002.

[71] Y. Sugaya and K. Kanatani, “Multi-stage optimization for multi-body motion

segmentation,” IEICE Transactions on Information and Systems, vol. E87-D,

no. 7, pp. 1935–1942, 2004.

[72] The Hopkins 155 Dataset, http://www.vision.jhu.edu/data/hopkins155/.

[73] J. Han and M. Kamber, Data Mining: Concepts and Techniques. Morgan

Kaufmann Publishers Inc., 2006.

[74] D. A. Forsyth and J. Ponce, Computer Vision: A Modern Approach. Prentice

Hall, 2002.

[75] S. Theodoridis and K. Koutroumbas, Pattern Recognition. Academic Press,

2008.

121

[76] S. Mitra and T. Acharya, Data Mining: Multimedia, Soft Computing, and

Bioinformatics. Wiley-Interscience, 2003.

[77] S. Zhong and J. Ghosh, “A unified framework for model-based clustering,”

Journal of Machine Learning Research, vol. 4, no. 4, pp. 1001–1037, 2003.

[78] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood from

incomplete data via the em algorithm,” Journal of the Royal Statistical Society.

Series B (Methodological), vol. 39, no. 1, pp. 1–38, 1977.

[79] K. P. Burnham and D. Anderson, Model Selection and Multi-Model Inference.

Springer, 2003.

[80] P. H. S. Torr, “Geometric motion segmentation and model selection,” Philo-

sophical Transactions of the Royal Society A: Mathematical, Physical and En-

gineering Sciences, vol. 356, no. 1740, pp. 1321–1340, 1998.

[81] F. Glover and M. Laguna, Modern Heuristic Techniques for Combinatorial

Problems. John Wiley & Sons, Inc., 1993, ch. Tabu search, pp. 70–150.

[82] F. A. Chudak and D. B. Shmoys, “Improved approximation algorithms for the

uncapacitated facility location problem,” SIAM Journal on Computing, vol. 33,

no. 1, pp. 1–25, 2004.

[83] D. S. Hochbaum, Ed., Approximation algorithms for NP-hard problems. PWS

Publishing Co., 1997.

[84] G. Schwarz, “Estimating the dimension of a model,” The Annals of Statistics,

vol. 6, no. 2, pp. 461–464, 1978.

[85] L. Devroye and C. Zamora-Cura, “On the complexity of branch-and bound

search for random trees,” Random Structures and Algorithms, vol. 14, no. 4,

pp. 309–327, 1999.

[86] D. R. Smith, “On the computational complexity of branch and bound search

strategies,” Ph.D. dissertation, Duke University, 1979.

122

[87] ——, “Random trees and the analysis of branch and bound procedures,” Jour-

nal of the ACM, vol. 31, no. 1, pp. 163–188, 1984.

[88] H. S. Stone and P. Sipala, “The average complexity of depth-first search with

backtracking and cutoff,” IBM Journal of Research and Development, vol. 30,

no. 3, pp. 242–258, 1986.

[89] W. Zhang, “Branch-and-bound search algorithms and their computational

complexity.” University of southern California / Information sciences institute,

Tech. Rep. ISI/RR-96-443, May 1996.

[90] W. Zhang and R. E. Korf, “Performance of linear-space search algorithms,”

Artificial Intelligence, vol. 79, no. 2, pp. 241–292, 1995.

[91] N. Thakoor, V. Devarajan, and J. Gao, “Computation complexity of branch-

and-bound model selection,” in Proceedings of IEEE International Conference

on Computer Vision, . 2009.

[92] J. L. Crassidis and J. L. Junkins, Optimal Estimation of Dynamic Systems.

Chapman & Hall/CRC, 2004.

[93] W. Feller, An Introduction to Probability Theory and Its Applications. Wiley,

1966, vol. 2.

[94] J. Willamowski, D. Arregui, G. Csurka, C. R. Dance, and L. Fan, “Catego-

rizing nine visual classes using local appearance descriptors,” in Proceedings

of Workshop on Learning for Adaptable Visual Systems in conjunction with

International Conference on Pattern Recognition, 2004.

[95] J. Zhang, M. Marsza lek, S. Lazebnik, and C. Schmid, “Local features and

kernels for classification of texture and object categories: a comprehensive

study,” International Journal of Computer Vision, vol. 73, no. 2, pp. 213–238,

2007.

123

[96] K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman, J. Matas, F. Schaf-

falitzky, T. Kadir, and L. V. Gool, “A comparison of affine region detectors,”

International Journal of Computer Vision, vol. 65, no. 1/2, pp. 43–72, 2005.

[97] K. Mikolajczyk and C. Schmid, “Scale & affine invariant interest point de-

tectors,” International Journal of Computer Vision, vol. 60, no. 1, pp. 63–86,

2004.

[98] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” In-

ternational Journal of Computer Vision, vol. 60, no. 2, pp. 91–110, 2004.

[99] J. Matas, O. Chum, M. Urban, and T. Pajdla, “Robust wide-baseline stereo

from maximally stable extremal regions,” Image and Vision Computing,

vol. 22, no. 10, pp. 761–767, 2004.

[100] K. Mikolajczyk and C. Schmid, “A performance evaluation of local descrip-

tors,” IEEE Transactions on Pattern Analysis and Machine Intelligence,

vol. 27, no. 10, pp. 1615–1630, 2005.

[101] B. Fulkerson, A. Vedaldi, and S. Soatto, “Localizing objects with smart dic-

tionaries,” in Proceedings of European Conference on Computer Vision, 2008,

pp. 179–192.

[102] J. C. Platt, Advances in Large Margin Classifiers. MIT Press, 2000, ch. Prob-

abilistic outputs for support vector machines and comparison to regularized

likelihood methods, pp. 61–74.

[103] A. Opelt, A. Pinz, M. Fussenegger, and P. Auer, “Generic object recognition

with boosting,” IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, vol. 28, no. 3, pp. 416–431, 2006.

[104] A. Vedaldi and B. Fulkerson, “VLFeat: An open and portable library of com-

puter vision algorithms,” http://www.vlfeat.org/, 2008.

http://www.vlfeat.org/

124

[105] B. Fulkerson, A. Vedaldi, and S. Soatto, “Class segmentation and object local-

ization with superpixel neighborhoods,” in Proceeding of IEEE International

Conference on Computer Vision, 2009.

[106] C.-C. Chang and C.-J. Lin, LIBSVM: a library for support vector machines,

2001, software available at http://www.csie.ntu.edu.tw/∼cjlin/libsvm.

[107] M. Lin and C. Tomasi, “Surfaces with occlusions from layered stereo,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 26, no. 8, pp.

1073–1078, 2004.

[108] L. Hong and G. Chen, “Segment-based stereo matching using graph cuts,” in

Proceedings of IEEE International Conference on Computer Vision and Pat-

tern Recognition, vol. 1, 2004, pp. 74–81.

[109] S. Lazebnik, C. Schmid, and J. Ponce, “Beyond bags of features: spatial pyra-

mid matching for recognizing natural scene categories,” in Proceedings of IEEE

International Conference on Computer Vision and Pattern Recognition, 2006,

pp. 2169–2178.

http://www.csie.ntu.edu.tw/~cjlin/libsvm

BIOGRAPHICAL STATEMENT

Ninad Shashikant Thakoor received the Bachelor of Engineering degree in Elec-

tronics and Telecommunication Engineering from University of Mumbai in year 2001

and Master of Science degree in Electrical Engineering from University of Texas at

Arlington in 2004. He received Ph.D. in Electrical Engineering at University of Texas

at Arlington in December 2009. His research interests include shape classification,

visual object recognition, branch-and-bound algorithms, stereo disparity segmenta-

tion and motion segmentation. He is member of IEEE and engineering honor society

Tau Beta Pi.

125

	ACKNOWLEDGEMENTS
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	INTRODUCTION
	Segmenting Scene with Stereo Disparity
	Segmenting Scene with Structure-and-Motion
	Visual Object Recognition
	Problems and Organization

	STEREO DISPARITY SEGMENTATION
	Introduction
	Stereo Disparity Segmentation Problem
	Segmentation Methodology
	Split
	Merge

	Multi-Stage Branch-and-Bound Merging
	Experimental Results
	Middlebury College Stereo Images
	JISCT Stereo Images
	University of Bologna Stereo Sequences
	Computational Complexity

	MULTIPLE STRUCTURE-AND-MOTION SEGMENTATION
	Introduction
	Multiple Structure-and-Motion Segmentation Problem
	Branch-and-Bound Algorithm for Segmentation
	Solution Tree
	Monotonicity of Partial Costs
	Lower Bound on Cost
	Null Hypothesis Likelihood
	Branch-and-Bound Algorithm

	Experimental Results
	Synthetic Data
	50 Outliers, 1 Cluster of Varying Size 10 to 50
	50 Outliers, 1 Cluster of Size 50, 1 Cluster of Varying Size 10 to 50
	50 Outliers, 2 Clusters of Size 50 each, 1 Cluster of Varying Size 10 to 50
	50 Outliers, 3 Clusters of Size 50 each, 1 Cluster of Varying Size 10 to 50

	Real Data

	COMPUTATIONAL COMPLEXITY OF BRANCH-AND-BOUND
	Introduction
	Generalized Multi-Hypotheses Branch-and-Bound Model Selection
	Segmentation as a Model Selection Problem
	Branch-and-Bound Algorithm for Model Selection
	Application to Multiple Structure-and-Motion Segmentation

	Branch-and-Bound as an Edge-Weighted Tree Search Problem
	Average Complexity

	Cost Probabilities, Optimality and Complexity Matrices
	Cost Probabilities for Uniformly Distributed Edge Weights
	Cost Probabilities by Sampling
	Computing Optimality Matrix
	Computing Complexity Matrix

	Experimental Results

	VISUAL OBJECT RECOGNITION
	Introduction
	Motivation
	Estimating Relevance
	Relevance Weighted Bag-of-Features Classifier
	Experimental Results

	CONCLUSION AND FUTURE WORK
	Stereo Disparity Segmentation
	Two-View Multiple Structure and Motion Segmentation
	Computational Complexity of Branch-and-Bound
	Visual Object Recognition

	COST PROBABILITIES FOR UNIFORM IID
	REFERENCES
	BIOGRAPHICAL STATEMENT

