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ABSTRACT 

 
 

FINITE ELEMENT ANALYSIS OF BIO-HEAT TRANSFER 

FOR MAGNETIC FLUID HYPERTHERMIA 

APPLICATION 

 

Kamalkumar N Chauhan, M.S  

 

The University of Texas at Arlington, 2009 

 

Supervising Professor:  Brian H. Dennis  

 Finite Element solution for the multi-region bio-heat Equation is present to 

model magnetic fluid hyperthermia. This study solves the Penne‟s two dimensional bio-heat 

equation using finite element method and develops the thermal behavior of the tumor and 

healthyportion of the composite tissue using low curie nanoparticles. 

The inner cylinder represents the tumor tissue containing low Curie temperature 

nanoparticles. Low Curie temperature nanoparticles generate heat due to the Neel and 

Brownian relaxation when a magnetic field is applied. The outer cylinder represents the healthy 

tissue. 

First part of this thesis discusses about the background related to the nanoparticles 

heat dissipation and finite element procedure. Second part of thesis deals with the computer 

implementation of the finite element method. Last part discusses the numerical results of this 

thesis. 
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Numerical results indicate that tumor region is heated without adversely affecting too 

much of the healthy region. Optimized distribution of the low curie nanoparticles in the tumor 

tissue can significantly control the temperature in tumor region in hyperthermia therapy.Different 

boundary conditions and different blood perfusion rates, irregular geometry have been taken 

into consideration in this thesis. 
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CHAPTER 1 

MAGNETIC FLUID HYPERTHERMIA (MFH) 

1.1 Introduction 

 When Pennes developed the bio-heat equation with heat transfer and blood 

perfusion term, many researchers tried to solve it for different applications, both numerically and 

analytically. In recent decades, this Pennes‟ equation has been used to model hyperthermia 

cancer therapy. Hyperthermia cancer treatment has proven to be an effective method in cancer 

treatment compare to surgery, chemotherapy and radiation. In Hyperthemia cancer treatment 

involves heating a tumor region to 43  to 45  [1]. Even though this temperature is unpleasant 

for the patient, cancer cells are more susceptible to this temperature range and can be killed 

over a period of time. These methods cause minimal damage to the healthy tissue therefore 

leaving limited negative side effects in this treatment. Sometimes oncologists often use 

hyperthermia cancer treatment in combination with radiotherapy and chemotherapy. In addition 

to the eliminating many cancer cells, hyperthermia can make resistant cells more vulnerable to 

other treatment. 

Hyperthermia can treat for specific location or the entire body. Local hyperthermia 

applied externally to tumor region near the skin surface. Hyperthermia focuses microwave laser 

or ultrasonic energy on disease tissue for larger tumor or multiple tumor location. 

1.2 Magnetic fluid hyperthermia cancer treatment 

 Gilchrist and other proposed the use of magnetic material in hyperthermia in 

1957 [1]. Magnetic particles exhibit ferro or ferromagnetic properties. This particle display 

magnetism even in the absence of an applied magnetic field. Magnetic particles that use in 

hyperthermia cancer have permanent magnetic orientation or moment. Applied alternate 

magnetic field provides the necessary energy to magnetic particles to reorient the particles 
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magnetic moment. This magnetic energy when dissipated is converted to thermal energy. In 

addition, change in the magnetic moments can force the nanoparticles to physically rotate. 

Hyperthermia cancer treatment uses this thermal energy to destroy the cancer cells effectively. 

As nanoparticles rotate through viscous fluid to return to their equilibrium position, heat also has 

been generated this time. However this heat contributes very little in total heat generation. 

Pankhurst and others have also described the heating in nanoparticles[1]. Particles 

with diameter 10 nanometers demonstrate super magnetic properties. The magnetic moment of 

super magnetic nanoparticles is randomly oriented by the thermal energy and they do not 

produce magnetism in the absence of the magnetic field. Unlike ferro and ferromagnetic 

materials, they do not aggregate after exposure to the magnetic field. Aggregation can hinder 

the body‟s effort to remove the nanoparticles. Therefore super magnetic nanoparticles are ideal 

candidates for the hyperthermia cancer treatment. 

Magnetic fluids are generally made of magnetic nanoparticles dispersed in water or 

hydrocarbon fluid. Here we use magnetic fluids for medical applications so we need to check 

both compatibility of fluid and nanoparticles. Also fluid should have neutral pH value and 

physiological salinity. Nanoparticles should be distributed evenly throughout the magnetic fluid 

and also nanoparticles should be small enough so that precipitation can be avoided because of 

the gravitational force. Magnetic material should not be toxic. Generally Fe3O4 is a common 

choice to use as a magnetic nanoparticle. Magnetic nanoparticles should be uniform in size and 

shape.  

Synthesis methods generate the nanoparticles in uniform size and shape. Two most 

common techniques include solution chemistry and aerosol/vapor are used in synthesis 

methods. In solution chemistry, homogeneous reactions are used to prepare nanoparticles. This 

reaction occurs in two stages: particle formation and growth. In particle formation, single group 

of particles form when solution reaches the critical saturation point. After that as solution adhere 
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to their surface, growth of the nanoparticle occurs. During growth stage, formation of the new 

nanoparticles should be avoided. 

Aerosol/vapor method use spray pyrolysis and laser pyrolysis[1]. Spray pyrolysis starts 

with aerosol droplet generator. This aerosol droplet generator produces fine droplets solution. 

This fine droplets solution pass through series reactor that evaporate the solvent and pyrolize 

the resulting nanoparticles. Laser pyrolysis technique employs continuous carbon dioxide laser 

to start nanoparticles formation reaction. Particle aggregation can be almost eliminated in laser 

pyrolysis and produce narrower particle size distribution. Both of this method produces large 

quantities of nanoparticles that are used in hyperthermia cancer treatment. 

Once magnetic nanoparticles have been synthesized, magnetic fluid has been 

delivered to the tumor tissue. Several methods can be used to deliver the magnetic fluid in 

hyperthermia treatment. Magnetic fluid can be injected directly to the tumor tissue. Sometimes 

magnetic fluid can be injected to the artery which mixes with blood and supplies to the disease 

tissue. Group of small tumors whose location cannot be pinpointed uses different technique to 

inject magnetic fluid. Once the magnetic fluid delivers to the tumor region which includes 

magnetic nanoparticles, it produces localize heating in the tumor region, supplied antibodies to 

the magnetic nanoparticles via invascular injection make hyperthermia treatment more 

selective. 

1.3 Low – Curie temperature naoparticles 

Recently, researchers have quantitatively studied the MFH. The heating effect of 

embedded nanoparticles when applied to external magnetic field based on three dimensional 

bio-heat equations with space dependent thermo-physiological parameter indicates that 

nanoparticles produces high heating on target tissue, which is heavily dependent on magnetic 

properties of nanoparticles. Xu et al. [2] stimulated the temperature distribution in hyperthermia 

by an external ferrite core applicator in composite model and got an agreement between 

theoretical and experimental values. Because most of the nanoparticles under current 
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investigation have high Curie temperature, they produce temperature in tumor region well 

beyond the effective temperature of the hyperthermia. 

The Curie temperature which is defined as the temperature where material loses its 

magnetic momentum and heating function is based on Neel relaxation which can be altered 

through material composition and size of the nanoparticles. 

Although a high temperature is desired in tumor region but if temperature passes 

beyond the effective hyperthermia temperature, there is a significant damage in the healthy 

tissue. We can overcome this problem by selecting “self regulating” nanoparticles. By designing 

the low curie nanoparticles, temperature can be easily regulated. Nanoparticles with Curie 

temperature near the therapeutic hyperthermia range can effectively maintain the temperature 

between 42  - 47 .  These self regulating nanoparticles ensure disease tissues reach the 

necessary temperatures and at the same time it prevents the excessive heating in the healthy 

tissue thereby preventing damage in the healthy tissue. 
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CHAPTER 2 

HEATING MAGNETIC FLUID WITH ALTERNATING MAGNETIC FIELD 

2.1 Introduction 

 Magnetic nanoparticles are used for local hyperthermia, thermo ablative cancer 

therapy. Rosenweig‟s theory predicts that radio frequency magnetic heating of the ferrofluid 

depends on the size of the nanoparticles which is determined by magnetic moment, magnetic 

anisotropy and the viscosity of the fluid. Here material parameter of magnetic particles are 

strongly time dependent, heating rates are peak at certain temperature. Materials with low Curie 

temperature for which magnetic properties are strongly time dependent can explain the problem 

of self regulated heating of ferro-fluids. 

 Magnetic particles have been used in different biomedical applications from long 

decades. Magnetic nanoparticles are used as heat source in the presence of radio frequency for 

hyperthermia cancer treatment. By use of magnetic nanoparticle, tumor tissue can be heated in 

the range of 42-46 °C [3] in hyperthermia cancer treatment without much harm to the healthy 

surrounding tissue. Cancer cells are more susceptible in the temperature range of 42-46 °C. 

Tolerance limit of inductive heating of tissue limits the safe range of magnetic fluid amplitudes 

and frequency that can be applied to magnetic hyperthermia treatment. It has been shown that 

combination of magnetic field strength (H) and frequency (f) is biologically invasive when H*f is 

less than or equal to 4.85 x 10
8 
Hz .A /m 

 During magnetic hyperthermia treatment, nanoparticles dissipate energy through eddy 

currents, hysteresis resonance and relaxation losses. This loss mechanism depends on the 

crystal perfection and micro magnetic switching of the nanoparticles. In magnetic fluid 

hyperthermia cancer treatment, we consider only hysteresis losses. These losses diminish near 

the curie temperature of the ferromagnetic material. If the composition of the 
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material is tuned so that Curie temperature is brought near the maximum temperature, heating 

can be self regulated so that tissue will not overheat. The heating rate also strongly depends on 

the saturation magnetization, Magnetic Anisotropy and carrier viscosity. In this thesis, we 

consider material properties of ferro-fluid with Curie temperature 42 °C - 47 °C which could be 

of interest in magnetic hyperthermia therapy application. 

2.2 Power dissipation 

From the first law of the thermodynamics  

                                                    𝑑𝑈 = 𝛿𝑄 + 𝛿𝑊                                                                  (2.1) 

Where U is the internal energy and W is the magnetic work done on the system. Magnetic work 

in general is given by 𝛿𝑊 = 𝐻   . 𝑑𝐵  . Where 𝐻    is the magnetic fluid intensity (A.m
-1

) and 𝐵   is the 

induction, 

For the adiabatic process 𝛿𝑄 = 0, 

                                                              𝑑𝑈 =  𝐻   . 𝑑𝐵                                                               (2.2) 

Here, 𝐵   = µ0 (𝐻      +M    ), Where M     is the magnetization and µ0 = 4π x 10
-7 

is the permeability of the 

free space. 

Substituting the value of 𝐵   in equation (2.2) with integration by parts shows that cyclic increase 

of the internal energy can be written as  

                                                    ∆𝑈 = −𝜇0    𝑀    𝑑𝐻                                                    (2.3) 

Equation 2.3 shows that when magnetization lags the field, above integration gives the positive 

result which indicates conversion of magnetic work to internal energy. 

We can write magnetization in terms of complex ferro fluid susceptibility [4] 

𝜒 =  𝜒′ −  𝑖𝜒′′ 

With the resulting magnetic field  

                                                            𝐻 𝑡 = 𝐻0 cos 𝜔𝑡 = 𝑅𝑒 𝐻0𝑒
𝑖𝜔𝑡                                  (2.4) 

The resulting magnetization is  
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𝑀    𝑡 = 𝑅𝑒[𝜒𝐻0𝑒
𝑖𝜔𝑡  ] = 𝐻0(𝜒′ cos 𝜔𝑡 +  𝜒′′ 𝑠𝑖𝑛 𝜔𝑡)                       (2.5) 

In above equation 𝜒 ′ is the in-phase component of 𝜒 and 𝜒 ′′  is the out-phase component of𝜒. 

Substituting the value of M to equation (2.3), 

                                        ∴  ∆𝑈 =  2𝜇0  𝐻0
2 𝜒′′  sin𝜔𝑡 

2𝜋 𝜔 

0
𝑑𝑡                                            (2.6) 

From the equation (2.6), we can say that only 𝜒 ′′ present in the equation, so it is called the loss 

component. 

Now volumetric power dissipation, 𝑃 = 𝑓 ∆𝑈 

Integrating the equation (2.6) and multiplying with frequency , 𝑓 = 𝜔 2𝜋  

                                                            ∴ 𝑃 = 𝜇0  𝜒
′′ 𝜋 𝑓 𝐻0

2                                                   (2.7) 

Here 𝜒 ′′ must be depends on the parameter of the ferro fluid. 

2.3 Theory of heating with time dependent material parameter 

The relaxation equation for motion less fluid in an oscillatory field is [4], 

                                                        
𝜕𝑀 𝑡  

𝜕𝑡
=

1

𝜏
 𝑀0 𝑡 − 𝑀 𝑡                                               (2.8) 

Where , 𝜏 = Relaxation time, 

            𝑀0 = Equilibrium magnetization in the applied field 

                  =  𝜒0  𝐻0 cos𝜔𝑡 = 𝑅𝑒 (𝜒0  𝐻0  𝑒
𝑖𝜔𝑡  ) 

             𝜒0  = Equilibrium susceptibility 

Substituting the value of 𝑀0 and 𝑀 𝑡  in equation (2.8) yields,  

                                                                    𝜒 =
𝜒0  

1+𝑖𝜔𝑡
                                                             (2.9) 

Here, 𝜒0  =  𝜒𝑖
3

𝜉
 (coth 𝜉 −

1

𝜉
)      

Here 𝜉 is Langevin parameter and 𝜒𝑖  is the initial susceptibility. 

From the equation (2.9), we can say that complex susceptibility depends on the frequency. 

From which component of susceptibility are,  

𝜒′ =
𝜒0  

1+ 𝜔𝑡  2 
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                                                                𝜒′′ =  
𝜔𝑡

1+(𝜔𝑡)2   𝜒0                                                    (2.9b) 

Above relation is identical to the Debye spectra of polar molecules in the absence of constant 

field. 

2.4 Relaxation process in magnetic field 

  In magnetic hyperthermia cancer, nanoparticles are introduced in to the tumor region 

which produces RF magnetic field to eliminate cancer cells in tumor region. Brown and Neel 

relaxation [5] are dominant in dissipation of the energy. Here we neglect eddy currents and 

resonance losses. When nanoparticles rotate in the medium, Frictional interaction occurs 

between the particles and the medium which dissipates the heat. This is called Brown 

relaxation. Neel relaxation occurs when magnetic particles remain stationary and magnetic 

moment rotates within the crystal. Maximum heat dissipates through Brown relaxation so Neel 

relaxation must not be allowed to be dominant for achieving higher heating rates. 

The Brownian time constant is given by, 

τB= 
3 η 𝑉𝐻

KB  T
                                                         (2.10) 

Where, η = Viscosity coefficient of the matrix fluid 

          KB = Boltzmann constant 

               = 1.38 X 10
-23 J K-1 

                  
T= Absolute temperature (K) 

             𝑉𝐻= Hydro dynamic volume of the particle 

Equation (2.10) reveals that Brownian constant depends on both, the viscosity of the medium 

and hydrodynamic volume of  𝑉𝐻. Here   𝑉𝐻 is larger than magnetic volume 𝑉𝑀 =  4𝜋𝑅3 3 .   𝑉𝐻  is 

assumed that   𝑉𝐻 = (1 + 𝛿 𝑅 )  3 𝑉𝑀 , where 𝛿 is the thickness of the sorbed surfactant layer. 

The Neel relaxation time is given by, 

𝜏𝑁 =
 𝜋

2
 𝜏0 𝑒

Г

 Г                                                          (2.11) 

Where,Г = 𝒦 VM KB  T , 𝒦 is the anisotropy constant. 
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In the equivalent form,   𝜏𝑁 =
 𝜋

2
 𝜏𝐷  𝑒

Г

Г
3

2                                                                            (2.12 a) 

                                      𝜏𝐷 =  Г 𝜏0                                                                                     (2.12 b) 

A typical ferro fluid has a broad distribution of particle size with a mean size 10 nm. In relaxation 

process, both Brownian and Neel relaxation occur in same time, the effective relaxation time 𝜏 

is given by, 

                                                         
1

𝜏
=  

1

𝜏𝐵
+ 

1

𝜏𝑁
                                                         (2.13) 

 

Figure 2.1: Time constant vs particle size for magnetic particle 

Figure 2.1 shows that shorter time constant is dominant in determining the effective relaxation 

time for given size of nanoparticles. 

From the equation (2.7) and (2.9 b), power dissipation  

                                                        𝑃 = 𝜋 𝜇0  𝜒0   𝐻0
2 𝑓 

2𝜋𝑓𝜏

1+(2𝜋𝑓𝜏 )2                                    (2.14)     

Equation (2.14) is the power dissipation density for mono dispersed particle. Susceptibility 𝜒0   

depends on the magnetic field but here assume that it is constant. It is assumed that 𝜒0  is the 

chord susceptibility corresponding to Langevin equation 𝐿  𝜉 = 𝑀   𝑀𝑠 = coth 𝜉 −
1

𝜉
 

Where 𝜉 =  𝜇0  𝑀𝑑  𝐻 𝑉𝑀 𝐾𝐵  𝑇 
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          𝑀𝑠=   

Here  is the domain magnetization of suspended particle and  is the volume fraction solid. 

Temperature rise for monodispersion particle as  . Where c is the ferrofluid 

specific heat and  is the duration of heating. 
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CHAPTER 3 

INTRODUCTION TO FINITE ELEMENT METHOD 

3.1 Introduction 

 Engineering and physics problems can be defined through system of partial differential 

equation (PDE). It is easy to solve simple partial differential equations analytically like Poisson 

equation, Heat equation etc. But partial differential equation can‟t be that simple in engineering 

and physics problem. It is difficult to solve such a partial differential equation analytically. For 

such a complex partial differential equation, it is necessary to obtain approximate solution of the 

PDE‟s rather than the exact solution. Computational fluid dynamics known as CFD uses 

numerical methods and algorithms to solve these partial differential equations. Computers 

perform million of calculation to perform and give the numerical simulation of the fluid and heat 

transfer problem. 

 In back 1940s, finite difference method was used to find the solution for partial 

differential equations. For irregular geometries and for unusual specification of the boundary 

condition, this method is difficult to use. The difficulties associated with finite difference method 

inspired scientists to develop finite element method. 

3.2 Finite element method: Background 

 The finite element method is a numerical technique to obtain approximate solution of 

partial differential equation in wide variety of engineering and physics problem. Essentially it 

gives a consistent technique for modeling the domain as a whole or geometry as an assembly 

of discrete parts. 

  In late 1950s, Finite element method was developed in structure and aircraft problem. 

In 1973, publication of Strang and Fix‟s [6] „An Analysis of Finite Element Method’ gave strong 

mathematical foundation to this method and from there, this method emerged as one of the 



 

 
12 

most powerful numerical modeling techniques used in a wide variety of a engineering discipline 

e.g. structure mechanics, fluid dynamics, heat conduction, electromagnetism etc. This method 

has been accepted in different fields in engineering and physics problems due to its good 

attributes like ability to handle complex geometries, ability to treat different kinds of boundary 

conditions, easy programmability and sound mathematical foundation. An important feature of 

this method is that it has the ability to form a solution for individual elements before putting them 

together to represent the entire problem solution so that complex geometry or domain reduces 

to a series of simplified problems. 

In the past, finite element method was synonymous with Galerkin finite element 

method. Galerkin finite element method is highly successful in different engineering areas and 

this method is based on the method of weight residual. First step in Galerkin finite element 

method is to convert partial differentials equation in to weak statement. One then applies some 

constrains to the given weak statement to characterize a finite set of basic functions. It produces 

symmetric stiffness matrix and here, the difference between exact solution of PDE‟s and 

approximate finite element solution is minimized with respect to energy norms. 

3.3 Procedure of the finite element method 

Regardless of the approach used to find the element properties, finite element method 

always uses step by step procedure to solve the given partial differential equation. Below is the 

step by step procedure that gives a general idea of how this method works [7]. 

 Discretize the continuum 

  The first step in finite element method is to divide given geometry or domain into 

different elements. A variety of element shapes like triangle, rectangle, tetrahedral etc can be 

used to divide a given domain. However engineering judgment is necessary for selecting the 

element that uses to divide the domain. 

 Select the interpolation function 

Once domain has been devide, the next step is to give the node numbers to each 

element and select the interpolation function for them. Interpolation function can be scalar, 
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vector or polynomials. The degree of polynomials chosen depends upon the number of nodes 

assigned to the element and number of unknown of the nodes. 

 Find the element properties 

 Once element and its interpolation function have been selected, we need to define the 

matrix equation expressing the properties of individual elements. The matrix equation can be 

selected by different approaches like direct approach, variation approach or weight residual 

approach. 

  Assemble the element properties 

 The next task in the finite element method is to assemble the element stiffness matrix. 

In the assembly, at a node where elements are interconnected, the value of the field variable 

must be the same for each element sharing the node. This is the important feature of the 

assembly procedure. 

 Imposed the boundary condition 

 Now system equations are almost ready to solve the problem but we need to make 

changes in the equation as per the given boundary condition. We give known values as per the 

boundary condition to the dependent node. 

 Solve the system equation 

 After assembly of the matrix and applying the boundary condition to the given problem, 

now we must solve a set of linear or non linear algebraic equations. 

 Post Processing 

Solutions obtained through above define procedures sometimes can be used to 

calculate some important parameters. Examples, in a heat conduction problem, once we find 

the temperature for a given problem it can be used to find the heat flux. 
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CHAPTER 4 

BIO HEAT MODEL AND FINITE ELEMENT IMPLEMENTATION 

4.1 Bio heat model 

 Heat transfer in biological tissue is normally done by blood supply governed by the 

distributed arterial and venous branching conduits. Dimension of the arterial conduits depends 

in so many parameters [8] like human age and health and is under homeostatic control which is 

difficult to understood and also it is difficult to describe it analytically. Arterial dimension vary 

dynamically and conservatively under feedback control, based on the local metabolic needs of 

tissue. 

To solve this problem, many people developed modified pennes‟ equation. Chen and 

Holmes [9] gave heat transfer between blood and tissue in three modes. In the first mode, 

equilibrium of blood temperature with tissue temperature is represented by perfusion term that 

used in pennes‟ equation. Second mode related to heat transfer taking place when there is a 

temperature gradient between flowing blood and tissue temperature. The last mode reflects the 

heat transfer due to the small temperature fluctuation about the tissue temperature gradient of 

“nearly equilibrated” flowing blood. Weinbaum and jiji [10]considered a control volume of the 

tissue surrounding a pair of thermally significant blood vessels directly connected by capillaries. 

Baish introduced vascular tissue as composite with blood vessels acting like conductive fibers 

immersed in less conductive matrix, the surrounding tissue. Therefore there are so many 

controversies related to the Pennes model describing the bio-heat equation in regimes. 

Nonetheless whole organ, where, discrepancies between a pennes‟ and other model prediction 

are not necessarily of overriding concern. [10], [11]. 
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Figure 4.1: Composite Tissue Model 

 In our model, we consider two concentric cylinders representing tumor and healthy 

tissue as shown in the figure 4.1. Tumor tissue is taken with height b and radius r1. Surrounding 

this cylinder, are represent healthy tissue with radius r2 and height b. The bio-heat equation for 

the tumor tissue is representing by the equation [15]:  

 𝜌1 𝑐1  
𝜕𝑇1

𝜕𝑡
 = 𝑘1 

1

𝑟
 
𝜕

𝜕𝑟
  𝑟 

𝜕𝑇1

𝜕𝑟
 +  𝑘1 

𝜕2𝑇1

𝜕𝑍2 + 𝜔𝑏1 𝑐𝑏1  𝑇𝑎𝑟𝑡 − 𝑇1 + 𝑃(𝑇1) 

where, 𝑃 𝑇1 = 𝜋 𝜇0  𝜒0   𝐻0
2 𝑓 

2𝜋𝑓𝜏

1+(2𝜋𝑓𝜏 )2 

The bio-heat equation for healthy tissue is represented by equation: 

 𝜌 2𝑐2  
𝜕𝑇2

𝜕𝑡
 = 𝑘2 

1

𝑟
 
𝜕

𝜕𝑟
  𝑟 

𝜕𝑇2

𝜕𝑟
 +  𝑘2 

𝜕2𝑇2

𝜕𝑍2
+ 𝜔𝑏2 𝑐𝑏2  𝑇𝑎𝑟𝑡 − 𝑇2  

In above equation, 𝜌1  and 𝜌2 are the density of tumor tissue and healthy tissue respectively. 𝑐1 

and 𝑐2 are the specific heat capacities of tumor and healthy tissue respectively. In the right hand 

side of the equation, first and second term represents the temperature gradient in axial and 

radial direction. 𝜔𝑏1 and 𝜔𝑏2 are the volumetric perfusion rate of tumor and healthy tissue 

respectively. Third term in both the equation represents the heat sink term where 𝑇𝑎𝑟𝑡  is arterial 

R1 

Tumor 

Tissue 

Healthy 

Tissue 

R2 

b 
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temperature. Normally 𝑇𝑎𝑟𝑡  is consider body normal temperature which is justified if there is no 

heat transfer taking place between arterial blood and surrounding tissue before capillaries 

reached. 

In mathematical terms, a basic assumption of the Pennes model is that thermal 

equilibrium Xeq or the distance it takes before the blood in vessel reaches thermal equilibrium 

with surrounding tissue is infinite everywhere , except in the the capillaries where Xeq =0. Only 

the thermal equilibrium of the larger vessels can be defined with heat sink term. Heat transfer 

with smaller model require different model. 

 For the proposed model, the equations define the transient heat transport in the tumor 

and healthy tissue respectively. To simplify, the characteristic coefficients are taken to be 

independent of the position within the region. This model enables the study of the non-localized 

transient temperature behavior in tissue wherein fluctuation in the heat flux and temperature 

extend throughout many physiological regions where perfusion, density, specific heat and 

metabolic heat generation can vary. 

4.2 Boundary condition 

As the living systems are very complex, it is very difficult to find appropriate boundary 

conditions. Also boundary conditions are neither constant nor periodic. Boundary conditions for 

bio-heat equation for tumor tissue and healthy tissue are also different for various bio-medical 

applications. In our model, we use low Curie temperature nanoparticles that control the 

temperature profile. However it is still interesting to investigate the effect of various type of 

boundary condition on heat generation and dissipation which lead to corresponding distinct 

temperature profile. In our model we consider two types of boundary conditions: first is 

isothermal boundary condition and second is adiabatic boundary condition on the low Curie 

temperature controlled magnetic fluid hyperthermia. 
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 Adiabatic boundary condition 

At the interface of tumor and healthy tissue, temperature and heat flux are continuous. 

So at the interface of disease and healthy tissue, temperature and heat flux conditions are 

describe by following expression [16]. 

                                                               𝑇1   𝑟1 , 𝑧, 𝑡 =  𝑇2 (𝑟2 , 𝑧, 𝑡)                                                (4.1)  

                                                𝑘1  
𝜕𝑇1   𝑟1 ,𝑧,𝑡 

𝜕𝑟
=  𝑘2  

𝜕𝑇2   𝑟2 ,𝑧,𝑡 

𝜕𝑟
                                       (4.2)      

Here we are selecting the adiabatic boundary condition. The reason behind selecting 

this adiabatic condition is that temperature field is not affected by centre domain or external 

heating to the position far from the centre domain. There is no heat transfer taking place far 

from the centre of the domain. In this case, there is no heat leaving from the top of the tissue 

surface. The boundary condition for this case: 

                                                    
𝜕𝑇1(𝑟,𝑏,𝑡)

𝜕𝑧
=

𝜕𝑇2(𝑟,𝑏,𝑡)

𝜕𝑧
= 0                                  (4.3) 

Here b = top surface of the tumor and healthy tissue 

At the bottom of the healthy and disease tissue, z=0:  

                                                       
𝜕𝑇1(𝑟,0,𝑡)

𝜕𝑧
=

𝜕𝑇2(𝑟,0,𝑡)

𝜕𝑧
= 0                                  (4.4)                 

At the outer surface of the healthy tissue 𝑟 =  𝑟2: 

                                                           
𝜕𝑇2(𝑟2 ,𝑧,𝑡)

𝜕𝑟
= 0                                              (4.5)    

 Isothermal Boundary Condition 

      At the position far from the centre of the domain, temperature will remain constant 

that is temperature of top and bottom surface of the cylinder tissue must match the core body 

temperature. Also outer body temperature of the healthy tissue is equal to the body normal 

temperature. 

At the bottom side of the composite tissue, the boundary condition is: 
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                                                    𝑇1 𝑟, 0, 𝑡 =  𝑇2 𝑟, 0, 𝑡 =  𝑇0                                                  (4.6) 

At the top side of the composite tissue, the boundary condition is: 

                                                    𝑇1 𝑟, 𝑏, 𝑡 =  𝑇2 𝑟, 𝑏, 𝑡 =  𝑇0                                                   (4.7)                                        

At the outer surface of the healthy tissue, boundary condition is: 

                                                𝑇2 𝑟2, 𝑧, 𝑡 =  𝑇0                                                               (4.8) 

Here we neglect the thermo regulation mechanism of the biological bodies which induced slight 

temperature. 

 Initial condition: 

       Before applying AC magnetic field to the tumor tissue, the temperature of the body 

is equal to the body core temperature. Therefore, initial condition prior to the application of the 

ac magnetic field is given by:  

                                                               𝑇1 𝑟, 𝑧, 0 =  𝑇2 𝑟, 𝑧, 0 =  𝑇0                                         (4.9)                  

Here, z=height of the composite tissue 

         b= Top surface of the composite tissue 

         𝑇0= Body core temperature 

4.3 Finite element procedure and its computer implementation 

In this section, finite element procedure for Pennes bio-heat equation is explained. Also 

computer code for this finite element procedure is explained with appropriate part.. 

4.3.1 Finite Element Procedure 

 The finite element procedure has been explained for the Pennes bio-heat equation. 

Pennes bio heat equation in two dimensions is:            

𝜌1 𝑐1  
𝜕𝑇1

𝜕𝑡
 = 𝑘1 

1

𝑟
 
𝜕

𝜕𝑟
  𝑟 

𝜕𝑇1

𝜕𝑟
 +  𝑘1 

𝜕2𝑇1

𝜕𝑍2
+ 𝜔𝑏1 𝑐𝑏1  𝑇𝑎𝑟𝑡 − 𝑇1 + 𝑃(𝑇1)                (4.10) 

 

𝜌 2𝑐2  
𝜕𝑇2

𝜕𝑡
 = 𝑘2 

1

𝑟
 
𝜕

𝜕𝑟
  𝑟 

𝜕𝑇2

𝜕𝑟
 +  𝑘2 

𝜕2𝑇2

𝜕𝑍2
+ 𝜔𝑏2 𝑐𝑏2  𝑇𝑎𝑟𝑡 − 𝑇2                                    (4.11)                                     
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Equation (4.10) and (4.11) are related to Pennes bio-heat equation related to tumor and healthy 

tissue respectively. Here in this section, finite element procedure for tumor tissue has been 

explained in detail. Therefore governing equation for finite element procedure: 

ℒ 𝑇 = 𝜌1 𝑐1  
𝜕𝑇1

𝜕𝑡
− 𝑘1 

1

𝑟
 
𝜕

𝜕𝑟
  𝑟 

𝜕𝑇1

𝜕𝑟
 − 𝑘1 

𝜕2𝑇1

𝜕𝑍2 − 𝜔𝑏1 𝑐𝑏1  𝑇𝑎𝑟𝑡 − 𝑇1 − 𝑃 𝑇1 = 0   

(4.12) 

 We first approximate the given governing equation 𝑇 𝑥, 𝑦  by 𝑇   𝑥, 𝑦 , which has the 

form:   

                                        𝑇 =  𝑁𝑖
𝑚
𝑖=1 𝑇  𝑖(𝑥, 𝑦)                                                (4.13) 

Here 𝑁𝑖  is the element interpolation function and m is the number of nodes per element. 

The first step is to choose the interpolation function or weighting function for given 

governing equation. In Galerkin finite element method, weighting function has been chosen 

same as approximating function i.e. 𝑤𝑗  𝑥, 𝑦 = 𝑁𝑗 (𝑥, 𝑦). Applying weighting function to the 

equation (4.12) and writing equation to the integral form: 

 𝑁𝑖  [
  

𝛺
𝜌1 𝑐1  

𝜕𝑇1

𝜕𝑡
− 𝑘1 

1

𝑟
 
𝜕

𝜕𝑟
  𝑟 

𝜕𝑇1

𝜕𝑟
 − 𝑘1 

𝜕2𝑇1

𝜕𝑍2 − 𝜔𝑏1 𝑐𝑏1  𝑇𝑎𝑟𝑡 − 𝑇1 −

 𝑃 𝑇1 ] 2𝜋𝑟 𝑑𝑟 𝑑𝑧 = 0                                                                                                          (4.14)    

 Here 𝛺 is the domain and 𝑁𝑖  is the interpolation function 

 𝑁𝑖  [
  

𝛺
𝜌1 𝑐1  

𝜕𝑇1

𝜕𝑡
] 2𝜋𝑟 𝑑𝑟 𝑑𝑧 −  𝑁𝑖  [

  

𝛺
𝑘1 

1

𝑟
 
𝜕

𝜕𝑟
  𝑟 

𝜕𝑇1

𝜕𝑟
 + 𝑘1 

𝜕2𝑇1

𝜕𝑍2 ]2𝜋𝑟 𝑑𝑟 𝑑𝑧 −

 𝑁𝑖  [
  

𝛺
 𝜔𝑏1 𝑐𝑏1  𝑇𝑎𝑟𝑡 − 𝑇1 ]2𝜋𝑟 𝑑𝑟 𝑑𝑧 −  𝑁𝑖  [

  

𝛺
 𝑃 𝑇1 ] 2𝜋𝑟 𝑑𝑟 𝑑𝑧 = 0              (4.15)               

In equation (4.15) involving second order term: 

 𝑁𝑖  [
  

𝛺
𝑘1 

1

𝑟
 
𝜕

𝜕𝑟
  𝑟 

𝜕𝑇1

𝜕𝑟
 + 𝑘1 

𝜕2𝑇1

𝜕𝑍2
]2𝜋𝑟 𝑑𝑟 𝑑𝑧 .                                                       (4.16) 

Solving equation (4.16) by integration by parts and writing in the matrix form, 



 

 20 

[𝐾𝑐] =
𝜋.𝑘1 .(𝑟1+ 𝑟2+𝑟3 )

6.𝐴
 

𝑏1
2 + 𝑐1

2 𝑏1. 𝑏2 + 𝑐1. 𝑐2 𝑏1. 𝑏3 + 𝑐1. 𝑐3 

 𝑏2
2 + 𝑐2

2 𝑏2. 𝑏3 + 𝑐2. 𝑐3  

  𝑏3
2 + 𝑐3

2

                 (4.17) 

Therefore [𝐾𝑐] is the symmetric matrix. 

In above matrix, 𝑟1, 𝑟2 , 𝑟3 are the co-ordinates of triangular element in r direction.  

Also, 𝑏1 = 𝑧2 − 𝑧3 , 𝑏2 = 𝑧3 − 𝑧1 , 𝑏3 = 𝑧1 − 𝑧2 

          𝑐1 = 𝑟3 − 𝑟2 , 𝑐2 = 𝑟1 − 𝑟3 , 𝑐3 = 𝑟2 − 𝑟1 

Here, 𝑥1, 𝑥2, 𝑥3 , 𝑦1, 𝑦2, 𝑦3 are the co-ordinates of the triangular element. 

Rewriting the equation (4.15) in the matrix form: 

 𝑐 𝑒  
𝑑𝑇

𝑑𝑡
 
𝑒

 +   𝐾𝑐 
𝑒   𝑇 𝑒  +   𝐾𝑤  𝑒   𝑇 𝑒 =  𝑇𝑎𝑟𝑡  

𝑒  +   𝑃1 
𝑒                                        (4.18)                                                                          

Where,  

 𝑐 =   𝑁𝑖 𝜌1 𝑐1
 

𝛺
 2𝜋𝑟 𝑑𝑟 𝑑𝑧  

 𝐾𝑤  = 𝜔𝑏1 𝑐𝑏1  𝑁𝑖 
 

𝛺
 2𝜋𝑟 𝑑𝑟 𝑑𝑧  

 𝑇𝑎𝑟𝑡  = 𝑇𝑎𝑟𝑡  𝑁𝑖 
 

𝛺

2𝜋𝑟 𝑑𝑟 𝑑𝑧 

  𝑃1 = 𝑃 𝑇1  𝑁𝑖 
 

𝛺

2𝜋𝑟 𝑑𝑟 𝑑𝑧 

In equation (4.18), we neglect to write boundary condition term because of the isothermal 

boundary condition and adiabatic boundary condition at the tissue surface. Value of this natural 

boundary condition is zero at the surface of the tissue .The coefficient matrix  𝑐  of the time 

derivative of the nodal temperatures is the element capacitance matrix. The coefficient matrices 

[𝐾𝑐] are element conductance matrix.  𝑇𝑎𝑟𝑡   and   𝑃1  are load vector arising from perfusion and 

due to the magnetic heat generation respectively. After we select the element shape and an 

appropriate set of interpolation function; we can evaluate this equation and assemble them for 

an aggregate element representing the whole solution domain. 
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Equation (4.18) has first order time derivative term so it is difficult to solve first order 

term directly because it will introduce unstable solution or asymmetric matrix. One way of 

avoiding this difficulty is to solve this first order term using time marching (Crank-Nicolson 

method). 

4.3.1.1 Crank-Nicolson Method 

 Partial differential equation (4.18) should be integrated with respect time to obtain the 

transient solution. It is not possible to integrate this equation as it leads to instability and 

asymmetric matrix. Therefore further more approximation is required in time to obtain a set of 

algebraic equation in terms of nodal temperatures. The most common used time integration 

method for equation (4.18) is called the 𝜃 family of approximation also called  

Crank-Nicolson method. In this method, time derivative can be split either explicitly or 

implicitly[6]. 

 Explicit method 

In explicit method, forward difference scheme has been applied to the time derivative. 

                                       ∴  
𝑑𝑇

𝑑𝑡
=  

𝑇𝑛+1  − 𝑇𝑛

∆𝑡
                                              (4.19) 

Substituting the value of (4.19) in to (4.18), 

 ∴  𝑐  
𝑇𝑛+1  − 𝑇𝑛

∆𝑡
 +  𝐾𝑐  𝑇 +  𝐾𝑤   𝑇 =  𝑇𝑎𝑟𝑡  + {𝑃1}                 (4.20) 

∴  𝑐  𝑇𝑛+1 − 𝑇𝑛  + ∆𝑡 𝐾𝑐  𝑇 + ∆𝑡  𝐾𝑤   𝑇 = ∆𝑡[ 𝑇𝑎𝑟𝑡  +  𝑃1 ]              (4.21) 

 ∴  𝑐  𝑇𝑛+1 = 𝑇𝑛 + ∆𝑡  𝑇𝑎𝑟𝑡  +  𝑃1  − ∆𝑡  𝐾𝑐  𝑇 𝑛 +  𝐾𝑤   𝑇 𝑛                    (4.22) 

From equation (4.22), we can say that once having known value of temperature for n time 

steps, temperature T at all nodes at time level n+1 are calculated. Same procedure is used to 

calculate the temperature at time level n+2 using the known values at n+1. In this way, solution 

is progressively obtained by marching in time steps. 

Explicit method is relatively simple and also we find the solution with low memory 

requirements. However for complicated geometry, explicit method is not best choice. For given 
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∆𝑥,   there is some critical value of ∆𝑡 beyond which solution is unstable. ∆𝑡  must be less than 

some limit which is imposed by stability analysis. In this case, Computer takes long running time 

to make calculation. 

 Implicit method 

 In Implicit method, backward difference scheme has been applied to the given partial 

differential equation. 

 ∴  𝑐  
𝑇𝑛+1  − 𝑇𝑛

∆𝑡
 +  𝐾𝑐  𝑇 𝑛+1 + 𝐾𝑤    𝑇 𝑛+1 =  𝑇𝑎𝑟𝑡  + {𝑃1}                                  (4.23) 

∴  𝑐  𝑇 𝑛+1 −  𝑐  𝑇 𝑛 + ∆𝑡  𝐾𝑐  𝑇 𝑛+1  +  𝐾𝑤    𝑇 𝑛+1 = ∆𝑡  𝑇𝑎𝑟𝑡  + {𝑃1} 𝑛+1 

(4.24) 

 In equation (4.24) shows that property at n time steps on the right hand side and 

properties at n+1 time steps are on the left hand side. Once we formulate the equation in 

implicit method as shows in equation (4.25), we can find the temperature for n+1 time steps by 

set of algebraic equation. 

Implicit method involves manipulations of large matrices; it involves complex set of 

calculations than explicit approach. However stability can be maintained over much larger 

values of ∆𝑡. So less computer time is required for calculation. Implicit method is used for 

complicated geometry. Since ∆𝑡 can be the large in the implicit method, Truncation error is also 

large so implicit method that follows the transient behavior may not be as accurate as explicit 

method but here relative time wise inaccuracy is not important. 

We can write both explicit and implicit form of equation in a common form that is called 

𝜃 method [6]. 

 𝑐 +  𝜃[∆𝑡([𝐾𝑐]+ [𝐾𝑊]) 𝑇 𝑛+1 = ( 𝑐 − (1 − 𝜃) (∆𝑡([𝐾𝑐]+ [𝐾𝑊])  𝑇 𝑛 + ∆𝑡( 𝑇𝑎𝑟𝑡  + {𝑃1})𝑛                                           

(4.25) 

For the different value of the 𝜃 in equation (4.25), we can get the different equation schemes: 

                  𝜃=0, the forward difference method (conditionally stable) 
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              𝜃=1, the backward difference method (unconditionally stable) 

              𝜃=0.5, the Crank-Nicolson method (unconditionally stable) 

For 𝜃 ≥ 0.5, equation (4.25) is stable and for 𝜃 ≤ 0.5 ,equation (4.25) is conditionally stable. 

For the forward difference method, the stability requirement is[6], 

∆𝑡 < ∆𝑡𝑐𝑟 =  
2

 1 − 2𝜃 𝜆𝑚𝑎𝑥
 , 𝜃 < 0.5 

Where, 𝜆𝑚𝑎𝑥  is the largest eigenvalue of the system. 

4.3.2 Computer Implementation 

Simulation of finite element method required mesh data first. It is therefore crucial to 

read the mesh and element data from the source file and allocate proper memory to given data 

in appropriate way. For this, mesh and element connectivity data can be read and stored as 

shown in below: 

fid = fopen('m.txt', 'r'); 
data1 = textscan (fid, '%*d %*d %*d %d %d %d',10000, 'headerlines',0); 
  
%% Node co-ordinates 
fid = fopen('n.txt', 'r'); 
data2 = textscan(fid, '%*f %f %f',5000, 'headerlines',0); 
  
%% Boundry layer node 
fid=fopen('b.txt','r'); 
data3=textscan(fid, '%d',200, 'headerlines',0); 
  
%% Element and node table 
M=[data1{1} data1{2} data1{3}]; 
N=[data2{1} data2{2}]; 
O=[data3{1}]; 
%% element and node size 
[m1,m2]=size(M); 
[n1,n2]=size(N); 
[o1,o2]=size(O); 
 

 

There are different physical parameters associated with the given partial differential 

equation. So it is necessary to define and allocate memory for those parameters. Here these 

physical parameters are defined in the programme globally as shown below. 
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%% Physical parameter 
rho1=1.1*10^3; 
rho2=1*10^3; 
c11=4.2*10^3; 
k11=0.55; 
k22=0.5; 
wb1=1; 
cb1=4.2*10^3; 
Tart=37; 
%% Parameter for energy dissipation term 
tau0=10^-9; 
Kans=23*10^3; 
Vm=1.4367*10^-24; 
Kb=1.38*10^-23; 
T0=37; 
mu0=4*pi*10^-7; 
Md=446*10^3; 
H=6500; 
w=3.14159*10^6; 
 

4.3.2.1 Local Stiffness Matrix and Assembly Procedure 

 It is necessary to define the local stiffness matrix and load vector. Before defining the 

local stiffness matrix and load vector, it is crucial to allocate the memory for that stiffness matrix. 

Once you allocate the memory for the stiffness matrix and load vector, it is easy for the 

computer to find the data related to stiffness matrix and load vector. Below is the memory 

allocation for the stiffness matrix and load vector. 

%% Initialize the stiffness matrix and load vector 
K4=zeros(n1,n1); 
K3=zeros(n1,n1); 
F1=zeros(n1,1); 
F2=zeros(n1,1); 
  

Once memory has been allocated to the stiffness matrix and load vector, next step is to 

define the local stiffness matrix and load vector to the individual element. 

%% Stiffness matrix 
k1=((2*pi*k)/(12*A))*[((b1^2)+(c1^2)) (b1*b2+c1*c2) (b1*b3+c1*c3);(b1*b2+c1*c2) 
((b2^2)+(c2^2)) (b2*b3+c2*c3);(b1*b3+c1*c3) (b2*b3+c2*c3) ((b3^2)+(c3^2))]*(r1+r2+r3); 
 

 
k2=((wb1*cb1*2*pi*A)/60)*[(6*r1+2*r2+2*r3) (2*r1+2*r2+r3) (2*r1+r2+2*r3);(2*r1+2*r2+r3) 
(2*r1+6*r2+2*r3) (r1+2*r2+2*r3);(2*r1+r2+2*r3) (r1+2*r2+2*r3) (2*r1+2*r2+6*r3)]; 
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k3=((rho*c11*2*pi*A)/60)*[(6*r1+2*r2+2*r3) (2*r1+2*r2+r3) (2*r1+r2+2*r3);(2*r1+2*r2+r3) 
(2*r1+6*r2+2*r3) (r1+2*r2+2*r3);(2*r1+r2+2*r3) (r1+2*r2+2*r3) (2*r1+2*r2+6*r3)]; 
    k4=k1+k2; 

 
 %%Load vector     
    f1=((wb1*cb1*Tart*2*pi*A)/12)*[(2*r1+r2+r3);(r1+2*r2+r3);(r1+r2+2*r3)]; 

 
f2=((2*pi*p*A)/12)*[(2*r1+r2+r3);(r1+2*r2+r3);(r1+r2+2*r3)]; 
     
 

After defining the local stiffness matrix and load vector to the each element, it is 

necessary to assemble local stiffness matrix and load vector to create global matrix and load 

vector depending upon the nodal data and element connectivity data. Assembly procedure can 

be defined in the following way. 

%Assemble the matrix 
    for i=1:m2 
        for j=1:m2 
        K4(M(e,i),M(e,j))=k4(i,j)+K4(M(e,i),M(e,j)); 
        K3(M(e,i),M(e,j))=k3(i,j)+K3(M(e,i),M(e,j)); 
        end 
    end 
    for i=1:m2 
        F1(M(e,i),1)=f1(i,1)+F1(M(e,i),1); 
        F2(M(e,i),1)=f2(i,1)+F2(M(e,i),1); 
    end 
end 
  
for i=265:489 
    F2(i,1)=0; 
end 
 

 

4.3.2.2 Initialize the Matrix 

As problem is time dependent, it is necessary to define the appropriate initial condition 

to the bio-heat equation. This step is defined below as: 

for i=1:n1 
    TT(i)=37; 
end 
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4.3.2.3 Time Marching 

In order to get the temperature distribution for every time steps, explicit method has 

been used. Here saturation magnetization  for low Curie temperature cannot assume to be 

constant. In fact saturation magnetization depends on the temperature. Quick drop of saturation 

magnetization around the Curie temperature which directly leads to corresponding heat 

generation in self regulation MFH.So it is necessary to updating the value of Ms for every time 

steps. 

Here Saturation magnetization can be found using the relation of hyperbolic tangent 

function as shown below [18]. 

Ms(T)

Ms(T0)
= tanh  

Ms(T) Ms(T0) 

T Tc 
                                             (4.26) 

Equation (4.26) is non linear equation. So It is difficult to find the value of saturation 

magnetization directly from this equation. In order to find the value of saturation magnetization 

for every time step, here we used Newton-Raphson method. A better approximation for 

saturation magnetization can be made thorough formula. 

                                                                  Ms=Ms 0 −
f(Ms 0 )

f '(Ms 0 )
                                           (4.27) 

Here Ms(0) is the initial guess. One of the important things in Newton-Rapshon method is that 

function should be continuously differentiable and its derivative is non-zero at 

f Ms 0  . 

for j=1:264 
        syms Ms1 
        Mst0=1338; 
        n=1200; 
        Tc=48; 
        fMs=(Ms1/Mst0)-tanh((Ms1*Tc)/(Mst0*T(j))); 
        fMsd=diff(fMs,Ms1); 
        f=Ms1-fMs/fMsd; 
        for k=1:20 
             ff=subs(f,Ms1,n); 
             if ff==n 
                ff; 
                break 
             else 



 

 27 

                 n=ff; 
             end 
        end 
        Ms(j)=vpa(abs(ff));  
 

 

From relaxation process in the magnetic field, energy dissipation of the nano particle depends 

on the saturation magnetization of the nanoparticles. So once saturation magnetization has 

been updated, it is necessary to update the value of energy dissipation term. 

        Ms(j)=vpa(abs(ff));  
        tau=tau0*exp((Kans*Vm)/(Kb*(T(j)+273))); 
        zita=(mu0*Ms(j)*H*Vm)/(Kb*(T(j)+273)*fi); 
        X0=((Ms(j))/H)*((coth(zita))-(1/zita)); 
        p1(j)=(mu0*X0*H^2*w^2*tau)/(2*(1+(w^2*tau^2))); 
        F22(j)=F2(j,1)*p1(j)/p; 
        F11(j)=F1(j,1); 
 

 

Finally Boundary condition has been given to problem. Here Dirichlet boundary condition has 

been given. 

    Fload=F*delta_t-delta_t*K4*T+K3*T; 
    T=zeros(n1,1); 
    T=K3\Fload; 
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CHAPTER 5 

NUMERICAL RESULTS 

5.1 Introduction 

 In this section, Finite element results obtained by solving bio-heat equation in the 

context of magnetic fluid hyperthermia have been presented. Temperature distribution patterns 

over a tissue domain containing tumor have been computed for different boundary conditions 

(isothermal and adiabatic), different models (two region model and three region model) and for 

different blood perfusion rates. The finite element code used for computation has been validated 

by comparing its results for 2D Laplace equation and 1D bio heat equation. Results agree well 

with analytical solutions. The ability of finite element method to handle irregular geometries and 

irregular mesh structure has been underlined by obtaining results on irregular shaped domain 

using irregular mesh structure. 

5.2 Laplace equation 

 The finite element code has been validated by solving 2-D Laplace equation and 

comparing the results with the analytical solution. 

 Laplace equation is a second order partial differential equation. Solution of the 

Laplace equation is important in many fields like fluid mechanics, solid mechanics and heat 

conduction. Solution of Laplace equation in heat conduction gives steady state temperature 

field. Solution of the Laplace equation is called harmonic function. In two dimensions, Laplace 

equation is defined as: 

                                                        
  𝜕2𝜑

𝜕𝑥2 +
𝜕2𝜑

𝜕𝑦2 = 0                                                              ( 5.1) 

This is often writing as, ∇2𝜑 = 0. 
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5.2.1 Test Problem 

 As a test problem, Laplace equation has been solved on a unit square domain 

with the boundary conditions: 

𝜑 0, 𝑦 = 0,    𝜑 1, 𝑦 = 0, 

𝜑 𝑥, 0 = 0,     𝜑 𝑥, 1 = 1 

Exact solution of this Laplace equation is given as:  

𝜑 𝑥, 𝑦 =  𝑏𝑛 sin 𝑛𝜋𝑥 (𝑒𝑛𝜋𝑦

𝛼

𝑛=1

− 𝑒−𝑛𝜋𝑦 )                                                (5.2) 

Where 𝑏𝑛 =
2 (1− −1 𝑛 )

𝑛𝜋 (𝑒𝑛𝜋 −𝑒−𝑛𝜋 )
 

Contour profile of this Laplace equation is given below in the figure: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1: Contour profile for exact solution and laplace equation 
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Finite element solutions have been compared with exact solution in figure 5.2. 

 

Figure 5.2: Comparison between exact solution and finite element solution of laplace 
equation 

 

 It can be observed that the finite element solution agrees well with the exact 

solution. 
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5.3 Bio heat equation 

Transport of the thermal energy in the living tissue is complex processes which involve 

conduction, radiation, metabolism evaporation and phase change. So it is difficult to analyze all 

thermal phenomena significant in a tissue. After subjecting to various assumptions, Pennes 

derived the bio –heat transfer equation often called Pennes bio-heat equation. 

The governing differential equation for the bio heat transfer problem is given as    

                      𝜌 𝑐𝑝
𝜕𝑇

𝜕𝑡
= ∇. 𝑘∇𝑇 +  𝑐𝑝 𝑀  𝑇𝑎𝑟𝑡 −  𝑇                                                           (5.2) 

Where T is the temperature, 𝑐𝑝 is the specific heat, 𝑘 is the thermal conductivity, 𝜌 is the 

density, 𝑇𝑎𝑟𝑡  is the body normal temperature. 

Different kind of analytical solutions have been found for different cases. One  such a 

case is time dependent heat conduction with 1-D rod of length L. The rod is insulated along the 

length L with the end temperature set to 0. 

For simplicity, assuming 𝑇𝑎𝑟𝑡 =0 .Therefore governing equation becomes 

 
 𝜕𝑇

𝜕𝑡
= 𝛼 

𝜕2𝑇

𝜕𝑥2 − 𝛽𝑇                                                          (5.3) 

Where 𝛽 =
𝑀

𝜌
 and 𝛼 =

𝑘

𝜌 𝑐𝑝
 .The above equation can be solved by separation of variable 

method. 

The exact solution of equation (5.3) can be written as [19] 

𝑇 𝑥, 𝑡 =  𝐴𝑛

𝛼

𝑛=1

 𝑒−(𝛼[(𝑛2𝜋2) (𝐿2)]+𝛽)𝑡  sin  
𝑛 𝜋 𝑥

𝐿
  

 

In above equation, constant 𝐴𝑛  is determined by the initial condition given in the problem. For 

this problem, initial condition is given as [19]  

𝑇 𝑥, 0 = 𝑉  1 −   
2𝑥

𝐿
 − 1 

2
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Where, V is the maximum temperature. In this problem, Maximum temperature is 10. 

An expression for the unknown constant is given as[19] 

𝐴𝑛 =
2

𝐿
 𝑇 𝑥, 0 sin  

𝑛𝜋𝑥

𝐿
 

𝐿

0

𝑑𝑥 

After further manipulation the following result is obtained[19] 

𝐴𝑛 =
𝑉

𝑛3𝜋3
 16 − [16 cos 𝑛𝜋 + 8 𝑛 𝜋 sin(𝑛𝜋)  

The accuracy of the 2-D finite element code was checked with analytical solution of bio-

heat transfer equation. 2-D finite element code was used to solve bio-heat equation in the 

insulated rod with the following parameter listed in table 5.1 

Table 5.1: Parameters for 1- D bio –heat transfer equation 

L = 10.0 

𝑇 0, 𝑡 = 𝑇 𝐿, 𝑡 = 0 

𝑐𝑝 = 𝜌 = 𝑀 = 𝑘 = 1 

𝑇𝑎𝑟𝑡 = 0 

𝑇 𝑥, 0 = 𝑉  1 −   
2𝑥

𝐿
 − 1 

2

  

 

∆𝑡 = 0.01 
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The excellent match between the computed and analytical results is displayed in figure 

5.3 below. 

  

 

Figure 5.3: Comparison between Analytical and FEM solution for bio heat equation 

5.4 Composite tissue model 

5.4.1 Physical parameter 

   We define a composite tissue with r1=1.5 cm, r2=3.5 cm and z=3 cm, where r1 and r2 are 

the radii of tumor and healthy tissue respectively, and z is the height of the tissue. In our study, 

heating area is the whole tumor region which is localized by mono dispersed super magnetic 

particle with diameter of 14 nanometers. Although this magnetic particle doesn‟t give 

importance to the size of the magnetic particle but it is very important to choose critical size of 

the magnetic particle for the maximum heat generation which can decrease the demand of the 

nanoparticles and at the same time, side effects can be limited to the lowest level during the 
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therapy. The typical physiological properties for magnetic fluid hyperthermia treatment are given 

below in the table [20]. 

Table 5.2: Thermal properties of the composite tissue 

𝑐1 =  𝑐2 = 4.2 x 103 J kg
-1

 ℃−1 

𝑇𝑎𝑟𝑡 = 37 ℃ 

Cb=4.2 x 103 J kg
-1

 ℃−1 

𝜌1 = 1.1  g cm
-3 

𝜌2 = 1 g cm
-3

 

𝑘1 = 0.0055 W cm
-1
℃−1 

𝑘2 = 0.005 W cm
-1
℃−1 

𝜑 = 0.003 

 

In the table 𝑐1 and 𝑐2 are the specific heat of tumor and healthy tissue, 𝜌1 and 𝜌2 are the 

density of tumor and healthy tissue, Cb is the specific heat of the blood, 𝑘1 and 𝑘2 are the 

thermal conductivity of the tumor and healthy tissue. 

 For the hyperthermia cancer, treatment temperature should be in the acceptable 

range in clinical practice. According to Rosensweig model, temperature depends on the higher 

frequency and amplitudes. Higher frequency leads to higher therapeutic temperature. 

Frequency and amplitude range for hyperthermia cancer are generally in the range of 

f=50 ~ 1200 kHz[22]. For our model, frequency f has been taken as 500 kHz and magnetic field 

strength H has been considered as 6500 kA/m.  

 Parameters that can be used to calculate the heat dissipation of the nanoparticles 

are given below in the table 

 

. 
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Table 5.3: Heat dissipation parameters 

 

 

 

 

 

 

 

 

 

5.4.2 Temperature Distribution 

 The temperature distribution in the tumor region and the healthy region are of 

great importance in this therapy. Here we analyze the temperature at the centre region of the 

tumor tissue and at the same time monitor heat increase in the healthy region. We predict the 

model for low curie nanoparticles evenly distributed in the centre of the tumor region. In the 

model, temperature distribution reaches to the steady state after 3000 second. Figure 5.4 

depicts the temperature distribution at the blood perfusion rates of 𝜔𝑏1 = 𝜔𝑏2 = 0.001 g cm
-3
 

s
1.
Due to the isothermal boundary condition; edge of the cylindrical tissue is at constant 

temperature of 37  as shown in the figure 5.4. The maximum temperature of the centre region 

of the tumor tissue is at of 43 . The reason behind maximum temperature at the centre of the 

tumor region is because the nanoparticle is evenly distributed in the centre of the tumor region. 

𝜏0 =  10−9 s 

𝜇0 = 4𝜋 x 10
-7 

 Tm/A 

Kb=1.38 x 10
-23 

JK
-1 

Anisotropy ,K= 23 KJ/m
3 

Md= 446 kAm
-1 

VM= 𝜋 d
3
/6 
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Figure 5.4: Temperature Distribution in composite tissue 

 Contour plot of the temperature distribution of the tumor and healthy region is 

shown in figure 5.5. It can be observed that nanoparticles distributed evenly in the centre region 

keep the temperature in the centre region in a range of 40   43  which is sufficient for the 

hyperthermia cancer therapy. Also it can be seen that the temperature of the healthy region is 

below 40  because there is no heat generation in the healthy region. A small amount of heat is 

Radius

02

Height

0
2

T
e

m
p

e
ra

tu
re

38

40

42

X Y

Z

Temp

43

42.5

42

41.5

41

40.5

40

39.5

39

38.5

38

37.5



 

 37 

transferred from the tumor region to the healthy region because of the small difference in the 

conductivity of the both tissues. So there is a minimal damage to the healthy region.  

 Because of the isothermal boundary condition at the edge of the tissue, there is 

slight temperature change in the z direction. From the figure, it is clear that temperature is 

slightly less near the edge of the tissue compare to the centre region of the tumor tissue. 

  

 

 

Figure 5.5: Contour plot of temperature distribution of tumor and healthy region 
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 Temperature variation with radius at different heights z=0.5 cm and z=1.5 cm is 

shown in figure 5.6. Figure reveals that temperature decreases with increase in radius. Also 

temperature levels are slightly more at z=1.5 cm compared to levels at z = 0.5 cm because of 

the isothermal boundary condition.  

 

Figure 5.6: Variation of temperature w.r.t radius for the different heights 
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 Because living tissue is complex, boundary condition can be either isothermal or 

fully adiabatic. If we continuously increase the height from 3 cm to to 200 cm, the temperature 

distribution is almost constant w.r.t heights as shown in figure 5.7 and 5.8, which removes the 

isothermal boundary condition at the edge of the tissue. 

 

Figure 5.7: Temperature distribution in composite tissue for Adiabatic Boundary 

 

Figure 5.8: Contour profile in composite tissue for adiabatic boundary 
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 From the figure 5.8, it is clear that temperature remains constant in z direction 

because of the adiabatic boundary condition so it is desirable to choose height as much as 

possible in order to choose adiabatic boundary condition which will eliminates the heat transfer 

in z direction. 

5.4.3 Three Region Model 

 In this thesis, we are analyzing the temperature distribution in tumor and healthy 

tissue in hyperthermia cancer therapy. Temperature should be high enough to kill the cancer 

cell but same time it should cause minimum damage to the healthy tissue. In three region 

model, we divide the tumor region in to two regions and redistribute the nanoparticles such that 

only inner region has the particles and outer tumor region is free of nanoparticles. Thus we 

establish three region model to predict the steady state temperature distribution in tumor and 

surrounding normal tissue. 

 The three regions are defined in the figure: first region is ranging from 0 cm to 

0.75 cm, second region is ranging from 0.75 cm to 1.5 cm and third region is ranging from 1.5 

cm to 3.5 cm. The First and the second regions constitutes the tumor region while the third  

 

 

Figure 5.9: Three region model 
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region is the healthy region. Magnetic and thermal parameters will remain the same as we used 

for two region model. 

 Temperature contour for the composite tissue for three region model with 

nanoparticles present only in the centre part of the tumor region are displayed in figure 5.10. 

 

Figure 5.10: Temperature contour for three region model 

It is clear that from the figure there is no significant difference in peak temperature in 

the centre of the tumor region compared with two region model. 

Variation of the temperature with radius along a horizontal line at z = 1.5 cm is plotted in 

figure 5.11. Since the nanoparticles are present only in the centre region, the temperature lends 

in the healthy region are much lower with the maximum value below 38  therefore causing 

almost no overheating. Although absence of nanoparticles in the outer tumor region might be 

lower the therapeutic efficiency of the treatment to some extent. 
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Figure 5.11: Radius Vs Temperature for three – region model for z=1.5 cm. 

5.4.4 Effect of Blood Perfusion Rate 

 The effects of the blood perfusion through the tissue were investigated to determine 

their influence on the steady state temperature distribution when the nanoparticles were heated. 

Change in the blood perfusion rate gives the different temperature distribution. Variation of the 

temperature with radius ,at z = 1.5 cm for different blood perfusion rates presented in figure 

5.12 below. 
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Figure 5.12: Steady state temperature distribution for the different blood perfusion rate for 
z=1.5cm for isothermal boundary condition. 

 

The figure indicates that as the blood perfusion through the tissue increases, Steady 

state temperature levels decreases. Blood perfusion through the tissue created additional 

convection losses that lower the steady state temperature levels as the blood perfusion rate 

increased from 0.001 g cm
-3

 s
-1

 to 0.008 g cm
-3

 s
-1. 
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5.4.5 Hyperthermia Treatment for Irregular Domain 

 We discuss the temperature distribution for the composite tissue here that is easy to 

model but living tissues are complex. Tissue structure is quite heterogeneous in nature. 

Sometimes it is really necessary to find the critical temperature distribution for the given area. It 

is very difficult to find the temperature distribution for such irregular geometry or critical area 

with finite difference method. One of the advantages of the finite element method is that, it 

handles irregular mesh structure and irregular geometry that enables us to get the temperature 

distribution for the critical area. 

5.4.3.1 Irregular Mesh Structure 

 Here we analyze the temperature distribution for the irregular mesh structure while 

keeping the size of the tissue and other parameters same as in the section 5.4.3. The irregular 

mesh for complex tissue is shown below in the figure 5.13. 

 

Figure 5.13: Irregular mesh structure for composite tissue model 

Temperature distribution for the irregular mesh is displayed figure 5.14. If it is necessary 

to maintain the critical temperature for given area, finite element method gives smooth solution 

compared to finite difference method. In fact solution is not possible in the finite difference 

method for irregular mesh structure.  



 

 45 

 

 

Figure 5.14: Temperature distribution for the irregular mesh structure 

Contour plots for irregular mesh structure is shown in figure 5.15. Contours are similar 

to the once obtained for regular mesh case. 
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Figure 5.15: Temperature contour for irregular mesh 

5.4.3.2 Irregular Geometry 

 As living tissue is very complex in the nature, sometimes it is necessary to do 

hyperthermia treatment for the irregular part of the body. An irregular geometry was considered 

underlining the ability of finite element method to handle irregular geometries and meshes. Two 

regions have been defined in the figure. Region A (red color) is tumor region and region B (blue 

color) is the healthy region. Thermal properties and all other parameters were considered to be 

the same as considered for regular geometry. Isothermal boundary condition was applied at the 

edge of the irregular geometry .Finite element solution for temperature field were obtained. 
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Figure 5.16: Irregular geometry model 

  Temperature distribution and temperature contours for the irregular geometry 

are displayed in figure 5.17 and 5.18 respectively. 

 

Figure 5.17: Temperature distribution for irregular geometry 
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Figure 5.18:  Temperature contour for irregular geometry 

From the figures, it is clear that finite element method provides excellent temperature 

profile contours negotiating irregular geometries quite well.   
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CHAPTER 6 

SUMMARY 

This thesis presents the finite element analysis of bio-heat transfer in magnetic fluid 

hyperthermia applications on composite tissues. The thesis evaluating the temperature 

distribution by establishing multi-region bio heat equation using low Curie temperature 

nanoparticles dispersed in to the tumor tissue. 

It has been shown that temperature in tumor region is around the 43  which is good 

enough to kill the cancer cell and in the healthy, it doesn‟t increase beyond 39℃ which will 

prevent damage to the healthy tissue. We have also shown that therapeutic effects depend on 

different factors like boundary conditions, blood perfusion rate and deposite pattern of the 

nanoparticles (three region model). 

  We considered isothermal and adiabatic boundary conditions and found that boundary 

conditions are less effective in temperature control. Analysis of different blood perfusion rate 

revealed that temperature levels in the tumor region decreases with increase in blood perfusion 

rate. Different distribution of nanoparticles also analyzed in order to optimize the localization of 

high temperature in the tumor region while minimizing the heating of the rest of the tissue. Also 

comparison between two region model and three region model was done and it was observed 

that with three region model there is better temperature control with no significant change in 

peak temperature in the tumor region. Two region model can keep all the tissue region at peak 

temperature which is good enough to kill the cancer cell in the tumor region but it would 

increase the overheating of the healthy region, which is undesirable. 

 Temperature distribution was also obtained for an example with irregular geometry and 

irregular mesh, which underlines the ability at FEM to negotiate irregular geometries and mesh 

structures, which is not possible with finite difference method as it can only be used for uniform 
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meshes. If hyperthermia cancer treatment has to be done for a critical irregular shape and 

sometimes if temperature control for some region is very critical then finite element method  will 

give the better temperature distribution. 

 There is still lot of work to be done before achieving the accurate simulation of the 

temperature distribution especially with respect to the inhomogeneous localization of the 

magnetic nanoparticles and the complexity of the blood perfusion distribution within the tissue. 

Also the complex boundary condition in the real tissues and time dependent physiological 

parameters should be investigates in more detail. 
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