

A PORTABLE BIOTELEMETER FOR BATTERYLESS GERD SENSORS

by

SANDEEP BATTULA

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

THE UNIVERSITY OF TEXAS AT ARLINGTON

December 2009

Copyright © by Sandeep Battula 2009

All Rights Reserved

iii

ACKNOWLEDGEMENTS

 First, I want to thank my supervising professor, Dr.Chiao for giving me the opportunity

to be part of his excellent research work. He has supported me throughout my thesis with his

patience and knowledge whilst allowing me the room to work in my own way . He was always

there to listen and to give advice regarding my research and career.

My special thanks to Dr.Carter and Dr.Vasilyev for their interest in my research and for

taking time to be on my thesis defense committee.

 I thank my parents, my brothers and my fiancée for unconditional support and

encouragement to pursue my interests, even when the interests went beyond boundaries.

 Last but not least, I offer my thanks and regards to all iMEMS group, roommates and

friends who supported me during the completion of the project.

November 21, 2009

iv

ABSTRACT

A PORTABLE BIOTELEMETER FOR BATTERYLESS GERD SENSORS

Sandeep Battula, M.S.

The University of Texas at Arlington, 2009

Supervising Professor: Jung-Chih Chiao

In many medical problems, a continuous monitoring of the disease in vivo is essential

to prevent further deterioration of health. The monitoring usually exceeds 24 hours. With the

help of current advanced technologies, micro-medical devices are built to sense the internal

physiological conditions in patients. Telemetry is used to transmit information to an external

monitoring device. For the convenience and comfort of the patient, these monitoring systems

should have low power consumption and be portable.

This work discusses the design of a low power portable biotelemeter for batteryless

Gastro esophageal reflux disease (GERD) sensors which can detect acid and non-acid refluxes

in esophagus. When a batteryless GERD sensor is placed in the working region of the

telemeter, it should wirelessly power up the sensor and receive a modulated physiological

signal from the implant. The sensor signals should be extracted from this modulated signal

using a demodulation circuit. In the GERD monitoring, depending on the modulated frequency

changes, the acid refluxes in esophagus then can be detected.

A microcontroller was introduced to measure, process and record this information

signals. To record this data to a secured digital (SD) card, the Serial Peripheral Interface (SPI)

mode communication link was setup between the card and microcontroller. In the SD card, the

measured signal is recorded with its corresponding time stamp in a TEXT file format. Using the

v

microcontroller, the total power consumption was reduced by controlling the timings of powering

up the batteryless sensor. Experiments were conducted to study the effect of different

environmental parameters including distances, motion arti facts, and misalignment on the

measured signals. Performance and stability of the system were also studied in the

experiments.

The designed biotelemeter has a reading range up to 6 cm along z-axis, with less than

5% change in the measured frequency. All the frequencies measured at every point within the

reading range are repeatable. When sensor is not perfectly aligned to telemeter at a distance of

1.5cm, the maximum allowable tilt is ± 60
 o

 about the x-axis, ±55
o
 about the y -axis and no

change about the z-axis. The shift in the frequency because of the refluxes is much higher than

the change in the frequency with any environmental parameter, so the signal to noise ratio is

maintained. The frequency measured is stable with the battery voltage, time and any other

parameter. The power consumption of the device is improved with a closed loop timing control

using the microcontroller by 34 times.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ...iii

ABSTRACT... iv

LIST OF ILLUSTRATIONS.. viii

LIST OF TABLES ..xii

Chapter Page

1. INTRODUCTION……………………………………..………..…..................................... 1

1.1 Monitoring System for GERD ... 1

1.2 Architecture of Currently Available Monitoring System for GERD 2

1.3 Obstacles in Current Implantation .. 3

1.4 Previous Work .. 4

1.4.1 Working Principle ... 4

1.4.2 Architecture of Implantable Batteryless Sensors 6

1.5 Present Work.. 8

2. BIOTELEMETER FOR BATTERYLESS GERD SENSORS 9

 2.1 Wireless Power to Batteryless Sensors .. 10

2.1.1 Coil Antenna Design... 10

2.1.2 Class E Power Amplifier Design .. 12

 2.2 Wireless Communication with Implantable Sensors 15

3. DATA PROCESSING AND RECORDING USING MICROCONTROLLER 18

3.1 Microcontroller Hardware... 18

 3.1.1 Microcontroller Circuit ... 20

 3.1.2 Microcont roller and Secured Digital Card Interface 20

3.2 Microcontroller Software .. 23

vii

3.2.1 Frequency Counter .. 25

3.2.2 Data Processing Unit .. 32

3.2.3 Data Recording to Secured Digital Card 34

3.2.4 Timing Control .. 35

3.2.4.1 Open Loop Control .. 35

3.2.4.2 Closed Loop Control ... 37

3.2.5 Sensor Position Detection... 40

3.2.6 Battery Charging Indication ... 40

4. COMMUNICATION BETWEEN MICROCONTROLLER AND SECURED DIGITAL

CARD .. 41

4.1 SPI Mode Setup on Microcontroller .. 42

4.1.1 SPI Write ... 43

4.1.2 SPI Read ... 43

4.2 SD Card SPI Mode Communication ... 44

4.2.1 Command Tokens .. 44

4.2.1.1 Write a Command to SD Card 46

4.2.2 Response Token .. 46

4.2.3 Data Tokens .. 49

4.3 SD Card Initiation.. 50

4.3.1 SD Card RESET .. 50

4.3.2 SPI Mode Selection.. 50

4.4 Data Write to SD Card... 51

5. EXPERIMENTS AND RESULTS ... 55

5.1 Motion Arti fact Tests ... 57

5.1.1 Effect of Relative Motion between Sensor and BEST
TM

 on the

Received Signal in Different Directions 57

5.1.2 Repeatability in measured value with change in distance

between BESTTM and sensor ... 60

viii

5.1.3 Effect of Relative Motion between Sensor and BEST
TM

 on the
Received Signal at Different Angles 62

5.1.4 Repeatability in Measured Value with Change in Angle
between BEST

TM
 and Sensor .. 66

5.1.5 Effect on the received signal with change in sensor
environments and at different distances 68

5.1.6 Determination of maximum allowable change in received
signal... 70

5.2 Performance and Stability Tests... 71

5.2.1 Stability of the GERD Monitoring System with Drop in

Battery Voltage... 71

5.2.2 Stability of the GERD Monitoring System with Time 72

5.2.3 Determination Of Power Consumption Or Battery Life

with Different Optimization Codes .. 73

5.3 Conclusion ... 75

6. DISCUSSION AND CONCLUSION ... 76

7. FUTURE WORK .. 79

7.1 Flexibility .. 79

7.2 Multiple Sensing ... 80

7.3 Reading Distance ... 81

7.4 Power Consumption .. 81

APPENDIX

A. MICROCONTROLLER PROGRAM ... 82

B. IRF510 MOSFET DATASHEET... 135

REFERENCES... 138

BIOGRAPHICAL INFORMATION .. 141

ix

LIST OF ILLUSTRATIONS

Figure Page

1.1 Schematics of an Implantable Batteryless Impedance-pH Sensor and an External

Biotelemeter.. 1

1.2 Block Diagram of (a) Implantable Microsystem and (b) External Biotelemeter 2

1.3 Schematic Diagrams of Transponder and Reader. .. 4

1.4 Architecture of Proposed Impedance-pH Monitoring System with (a) Implantable
Batteryless GERD Sensor and (b) Batteryless Endoluminal Sensing Telemeter 5

1.5 Block Diagram of (a) Single Sensor Platform and (b) Multiple Sensor Platform...................... 6

1.6 (a) Prototype of the Wireless Impedance Sensor (b) A Prototype of the Wireless

Impedance and pH Sensor... 8

2.1 Block Diagram of BEST

TM
.. 9

2.2 Inductively Coupled Reader and Tag Antennas. .. 10

2.3 Circuit Diagram of Design Class E Amplifier.. 13

2.4 Simulation Result of Voltage across Coil in Class E Amplifier... 13

2.5 BEST

TM
 with a High Capacity Battery and a Normal Battery ... 14

2.6 Stages in Demodulating Circuit .. 16

2.7 Circuit Diagram of Passive Envelope Detector .. 16

2.8 Circuit Diagram of Band-Pass Filter.. 17

2.9 Interfacing Of Microcontroller with Reader Circuit .. 17

3.1 Recording and Processing Unit of BEST

TM
 ... 18

3.2 Circuit Diagram of Microcontroller .. 19

3.3 Circuit Diagram of Microcontroller Interfaced to Secured Digital Card 22

3.4 Frequency Counting Using Logic 1... 25

3.5 Frequency Counting Using Logic 2... 26

x

3.6 Frequency Counter Using Timer 1 and Timer 2 ... 26

3.7 Flow Chart of Timer 1 Initiation .. 27

3.8 Flow Chart of Timer 2 Initiation. ... 27

3.9 Flow Chart of Interrupt Routine .. 28

3.10 Unprocessed Data Table ... 29

3.11 Complete Working of Frequency Counter with All Blocks Together 29

3.12 Conversion of a Number to its ASCII Digits Flow Chart .. 30

3.13 Flowchart of Complete Data Processing ... 31

3.14 Conversion of Unprocessed Data Table to Process Data Buffer Using Data

Processing .. 32

3.15 A TEXT File on Secured Digital Card Opened on Computer Using Winhex 33

3.16 A Recorded TEXT File (Named as BEST) on Secured Digital Card 34

3.17 Flow Chart of Open Loop Control ... 35

3.18 BEST

TM
 in Open Loop Control ... 36

3.19 Different Signal Timings in Open Loop Control .. 36

3.20 Complete Circuit Diagram of BEST

TM
 in Open Loop .. 37

3.21 BEST

TM
 in Closed Loop Control ... 37

3.22 Flow Chart of Closed Loop Control ... 38

3.23 Different Signal Timings in Closed Loop Control.. 39

3.24 Complete Circuit Diagram of BEST

TM
 in Closed Loop .. 39

3.25 Flow Chart of Sensor Position Detection ... 40

3.26 Flow Chart of Battery Charging Indicator .. 40

4.1 Flow Chart of SPI Initiation on Microcontroller ... 41

4.2 Flow Chart of Data Transfer to SD Card Using SPI Write ... 42

4.3 Flow Chart of Data Transfer from Using SD Card SPI Read... 43

4.4 Format of Command Token ... 44

4.5 Flow Chart of Writing a Command to SD Card .. 46

xi

4.6 SPI Mode Communication between Microcontroller and SD Card....................................... 47

4.7 Bit Format of Response R1.. 47

4.8 Bit Format of Data Response ... 48

4.9 Byte Formats of Single Block Write Data Tokens .. 49

4.10 Power-Up Diagram of SD Card .. 50

4.11 Flow Chart of SD Card SPI Mode Initiation ... 52

4.12 Communication for Data Transfer between Microcontroller and SD Card 53

4.13 Timing Diagram of Data Transfer Communication between Microcontroller and SD Card ... 53

4.14 Flow Chart of Data Write to SD Card .. 54

5.1 (a) BEST
TM

with GERD Sensor (b) Internal PCB Circuit, Antenna and High Capacity
Batteries of BEST

TM
 ... 56

5.2 Experimental Setup # 1 ... 58

5.3 Percentage Change in Frequency in Different Directions ... 59

5.4 Experimental Setup # 2 ... 60

5.5 Repeatability of the Sensor with Change in Distance along Z-Axis 61

5.6 Percentage Change in Frequency with Change in Distance along Z-Axis............................ 62

5.7 Experimental Setup # 3 ... 63

5.8 Rotation of Sensor about X-Axis .. 63

5.9 Rotation of Sensor about Y-Axis .. 64

5.10 Rotation of Sensor about Z-Axis... 64

5.11 Rotation of Sensor about XYZ Axes At Z =1.5cm .. 65

5.12 Rotation of Sensor at Z =1.5cm & Z = 4.5cm... 66

5.13 Repeatability with Rotation of Sensor ... 67

5.14 Experimental Setup # 4 ... 68

5.15 Frequency Measured In Different Sensor Environments and at Different Distances 69

5.16 Frequency Calibration ... 70

5.17 Effect of Supply Voltage on Measured Frequency ... 71

xii

5.18 Variation of Frequency Signal with Time in Open Loop .. 72

5.19 Percentage Variation of Frequency Signal with Time in Open Loop 73

5.20 Comparison of Variation of Frequency Signal with Time in Open Loop and Closed Loop

Timing Controls ... 74

6.1 Different Operating Regions of the Sensor.. 77

7.1 A Next Generation Flexible Belt Model for BEST
TM

.. 80

xiii

LIST OF TABLES

Table Page

2.1 Comparison of practical and theoretical values ... 15

3.1 Pins of SD Card .. 21

3.2 Power Requirements of SD Card ... 23

3.3 Resistors and Capacitors Required for SD Card Interfacing with Microcontroller 23

3.4 Microcontroller Configuration Settings .. 24

3.5 Microcontroller Pin Definitions .. 25

4.1 SD Card Commands ... 45

 1

CHAPTER 1

INTRODUCTION

In the modern medicine, non-invasive or minimally invasive diagnosis methods are

preferred to invasive methods or bulky systems for diagnosis of many medical problems. For

diagnosis of these problems, continuous monitoring of the disease condition is essential to

prevent further deterioration of health which usually exceeds 24 hours. With the help of current

advanced technologies like Micro Electro Mechanical Systems (MEMS), Wireless

Communications, Radio Frequency Identification (RFID) and Circuit Designing, many

monitoring systems are being designed for different medical problems. Present work discusses

the design of a biotelemeter for Gastro esophageal reflux disease (GERD) monitoring system.

Figure 1.1 Schematics of an implantable battery less impedance-pH sensor and an
external bio-telemeter

1.1 Monitoring System for GERD

Gastro esophageal reflux disease (GERD) or acid reflux is a condition in which the

liquid content of the stomach regurgitates (backs up or refluxes) into the esophagus. The acidic

nature of these refluxes damages the mucosal lining of the esophagus causing heart burn,

dysphasia etc. A continuous esophageal impedance-pH monitoring is one of the best ways of

 2

diagnosing GERD [1.1]. This continuous monitoring is important because an early detection of

GERD prevents cancer.

A wireless solution for monitoring GERD includes design of Implantable GERD sensor

and an external telemeter. This implantable sensor detects acid refluxes by sensing PH or

Impedance or both. An external telemeter for GERD sensors is a device which continuously

monitors and records the refluxes in the esophagus. This impedance-pH monitoring system

consists of an Implantable sensor and an external biotelemeter as shown in Fig 1.1.

(a)

(b)

Figure 1.2 Block diagram of (a) an implantable microsystem and (b) an external biotelemeter.

1.2 Architecture of Currently Available Monitoring System for GERD

A currently available wireless monitoring system for GERD is Bravo
TM

 pH monitoring

system. This system includes an implantable microsystem and an external pH recording

telemeter. Physically, this system is similar to the system proposed in previous section

(Sec.1.1), but working of these systems are completely different.

 3

A typical architecture of a battery based wireless medical monitoring systems is shown

in Fig.1.2. An implantable microsystem is a device which electrically senses a medical problem

using a sensor electrode or multiple sensor electrodes. This sensing signal is processed on a

microcontroller and transmitted to an external monitoring system using RF/IR transmitters. A

battery is included in this micro-system to power up all these internal circuit ry. An external

sensing telemeter receives the information modulated signal from microsystem, processes and

records the sensing information. Even on external side a battery is required to power up all the

circuitry of telemeter. Usually, this information is displayed on the telemeter or an interface is

provided to display the recorded information on a computer [1.2].

1.3 Obstacles in Current Implantation

 There are various obstacles or limitations in implementation of these wireless

medical monitoring systems, which are broadly classified in to obstacles in application and

obstacles in electrical design.

Some of the obstacles in application include:

1. Size of the sensor

2. Sensing modality

3. Calibration of sensors

4. Patient comfort with implantable system or external monitoring system

5. Biodegradable implantable systems

Some of the obstacles in electrical design include:

1. Life of the product: This is greatly determined by battery life of the implantable

microsystem.

2. Cost of the final product: This is usually high because of development of

Special devices (Ex. Bravo data link, Media pump, Calibration stand etc.) and

Special Software (Ex. Bravo polygram NET software)

 4

1.4 Previous Work

In the previous work a new impedance-pH monitoring system was proposed based on

radio frequency identification (RFID) technology including a transponder and a reader [1.3].

1.4.1 Work ing Principle

In this design, a RFID transponder acts as a Batteryless Implantable Microsystem and a RFID

reader acts as an External Monitoring Telemeter. The complete working of the system is shown

in Fig.1.3.

Figure 1.3 Schematic diagrams of Transponder and Reader.

The coil antennas on both sides are connected to a capacitors forming resonance at the

same frequency. At resonant frequency, the reader coil generates maximum electromagnetic

fields coupling into the transponder coil. In the near field region, the impedance seen by the

reader coil changes, when the switch at the transponder opens or closes. This load modulation

alters the voltage level at the reader coil. This modulation frequency is usually much less than

that of the resonant carrier frequency of the system [1.4].

Figure 1.3 shows the modulated signals at the reader coil at different switching

frequencies. Signal amplitude at the reader is high, when the switch at the transponder is open

(OFF), due to low loading effects. It is low, when the switch is close (ON) as the t ransponder

 5

loads the reader coil and the reader is shifted from resonance condition [1.5]. The switching

frequency at the transponder varies with sensor impedance and pH conditions. Hence a

wireless batteryless impedance-pH system is achieved [1.6].

(a)

(b)

Figure 1.4 Architecture of the proposed impedance-pH monitoring system with (a) implantable
batteryless GERD sensor and (b) batteryless endoluminal sensing telemeter.

The architecture of this new impedance-pH monitoring system based on working

principle explained above is shown in Fig.1.4. Unlike other implantable microsystems, this is a

passive sensor, making it ―Implantable Batteryless GERD sensor‖ as shown in Fig.1.4 (a). As

discussed in previous section, this external telemeter is based on RFID reader which powers up

and communicates with battery-less sensors, making it a ―Batteryless Endoluminal Sensing

Telemeter‖ (BEST
TM

) as shown in Fig.1.4 (b).

 6

1.4.2 Architecture of Implantable Batteryless Sensors

An implantable batteryless sensor is the transponder side of RFID technology. This can be

designed either for single sensor or multiple sensors . The complete block diagram of

transponder for single sensor and multiple sensors is shown in the Fig. 1.5 (a) and Fig. 1.5 (b)

respectively [1.7].

Figure 1.5 Block diagram of (a) single sensor platform and (b) multiple sensor plat form.

The antenna and the capacitor shown in the Fig. 1.5(a) and Fig. 1.5(b) forms a

resonant circuit to receive powers and modulate the data. The voltage multiplier and the

regulator build up a constant DC level to operate the rest of the circuit. The frequency generator

generates a varying frequency signal depending upon the impedance or pH or both in the

circuit. By connecting the electrodes to the frequency generator, the output frequency can be

controlled by the impedance of the materials on the electrodes [1.8].

 7

Voltage multiplier and Regulator: A 4 stage voltage multiplier circuit was designed and

optimized experimentally to achieve the longest read range [1.9]. The output of the voltage

multiplier was connected to a 2.5-V CMOS regulator and a storage capacitor. A 12-V zener

diode was added to protect the regulator from high voltages in case of close proximities of

transponder and reader.

Frequency generator: A frequency generator generates a square wave signal whose frequency

depends on the condition of the sensing element. For example, the pH sensor electrodes

produce a potential difference depending upon the medium [1.11]. So the frequency generator

output frequency varies with this potential difference [1.12]. The number of frequency

generators required depends upon the number of sensors. These frequency generators are

designed such that they work over a large frequency range and their frequency ranges should

not overlap [1.13].

For an Impedance sensor, a relaxation oscillator was designed for a frequency range of

9 KHz to 12 KHz. As the Impedance was changed from 0 ohm (short circuit) to infinity ohm

(open circuit), the output of the frequency generator changed from 9 KHz to 12 KHz.

For a pH sensor, a relaxation oscillator was designed as shown in Fig. 3.6 for a

frequency range of 15 KHz to 23 KHz. This oscillator was designed to generate output signal

depending upon the potential difference between the terminals of pH sensor electrodes. As the

pH was changed from 1 to 12, the output of the frequency generator changed from 9 KHz to 12

KHz [1.14].

Modulator: For modulation of signal from single frequency generator, a MOSFET was used as

switch shown in the Fig.1.6 (a). For modulation of signals from multiple frequency generators, a

simple time division multiplexing scheme was used as switch shown in the Fig.1.6 (b) [1.15].

The prototypes of the single sensor (impedance) and dual sensor (impedance and PH)

circuitries were assembled on a 4-layer PCB as shown in Fig. 1.6 (a) and Fig. 1.6 (b)

respectively. The prototypes were coated with Polydimethylsiloxane (PDMS), a biocompatible

polymer as it shown in Fig 1.6 [1.7].

 8

(a)

(b)

Figure 1.6 (a) A prototype of the wireless impedance sensor. (b) A prototype of the wireless
impedance and pH sensor.

1.5 Present Work

Our present work here is design of an External Monitoring Telemeter for above

discussed battery less GERD sensors. All the blocks of biotelemeter are discussed in detail in

next chapters.

 9

CHAPTER 2

BIOTELEMETER FOR GERD SENSORS

A biotelemeter is a device which monitors or records or displays the sensing parameter

by wirelessly communicating with the implanted device. Our current biotelemeter design not

only wirelessly communicates with implantable sensor but also wirelessly powers it. So this

specially designed bio-telemeter is called ―Batteryless Endoluminal Sensing Telemeter‖

(BEST
TM

). The main features of BEST
TM

 are

 Wireless power to batteryless sensors

 Wireless communication

 Signal processing

 Recording to secured digital (SD) card

 Low power consumption

 Sensor position detection

 Battery charging indication

Figure 2.1 Block diagram of BEST
TM

 10

2.1 Wireless Power to Battery-less Sensors

The batteryless sensors are powered up wirelessly by inductively coupling them with

BEST
TM

.

So to power up the sensors wirelessly involves two major designs:

 BEST
TM

 coil antenna design

 Class E power amplifier design

2.1.1. BEST
TM

Coil Antenna Design

Consider a Tag Antenna and a BEST
TM

Coil Antenna (or simply Reader Antenna) which

are inductively coupled as shown in Fig 2.2.

Figure 2.2 Inductively coupled reader and tag antennas.

 Voltage induced in tag coil antenna

 Voltage across reader coil antenna

 (1)

Magnetic flux produced by the reader coil

Operating frequency =1.3MHz

 (2)

 11

N – Number of turns of reader coil

Current in reader coil

From (1) & (2)

 (3)

(As = 1.3MHz)

Also

 (4)

From (3) & (4)

 High

 High

Wire Diameter of Reader Coil Antenna

This was determined from the AC resistance of the coil antenna [2.1].

 – length of the coil

 – Conductivity of material

 – Width of the coil

 – Thickness of the coil

 – Skin depth

For 1.3 MHz, AWG # 16 was chosen [2.8]

 12

Radius of Reader Coil Antenna

The Optimum Coil radius (a) was determined from the reading distance (r) [2.7].

Reader coil radius was calculated as 5cm for a reading distance of 3.5cm.

Number of Turns of Antenna

With the radius of reader coil antenna as 5cm and coil diameter as AWG#16, different

antennas with turns number N = 1, 2, 3, 4, 5, … were designed and corresponding inductance

of the coil was determined using LCR meter.

From the highest ratio, Number of turns was determined as N=3 & Inductance was 2.5 .

2.1.2. Class E Power Amplifier Design

To transfer power from Reader coil to Tag coil, a class E Power amplifier was chosen.

This was chosen because of its high efficiency than compare other power amplifier [2.2].

Theory:

From the inductance of the reader coil antenna (L) determine in Sec.3.1.1, its corresponding

capacitance (C) was determined to resonate at 1.3MHz frequency [2.3].

 Operating frequency =1.3MHz

Inductance of the reader coil antenna

Resonant capacitance

Simulation:

 IRF510 MOSFET was chosen after simulating various RF MOSFETs for low switching

loss in the circuit [2.4]. A 3.8V battery was chosen for simulation of circuit because of

commercial availability of 3.8V high capacity batteries. The circuit shown in Fig. 2.3 was

simulated with 1.3MHz square wave input signal. A 100uH inductor or RF choke was placed in

 13

series with 3.8V supply to maintain constant input current [2.5]. A 10 capacitor was placed in

parallel to IRF510 MOSFET to pass the current when MOSFET was open [2.6].

Figure 2.3 Circuit diagram of design class E Amplifier

Figure 2.4 Simulation result of voltage across coil in class E amplifier

 14

Practical Circuit

The above simulated Class E power amplifier was designed on PCB with slight tuning

in capacitance for resonance at 1.3MHz.

DC Batteries

Though all the circuit components were designed to work at 3.8V, two separate DC

batteries were chosen. One was high capacity (1300mAh) rechargeable battery and other one

was normal capacity battery (500mAh) as shown in Fig.2.5.

As discussed earlier, a class E power amplifier requires high power to transfer wireless

power to batteryless sensors. So a high capacity battery supplies power to this power amplifier

while the other battery supplies power to low power devices (op-amps, microcontroller & SD

card) on board.

Main advantage of using two batteries is for user interface. So, BEST
TM

 indicates the

user to recharge the battery for every few days, while whole device works for few months on a

normal non rechargeable battery. This gives an additional feature to BEST
TM

, called ―Battery

Recharge indicator‖. Working of this Indicator is discussed in detail in Sec.3.2.6.

Using two batteries also isolates the high current class E amplifier circuit from low

current microcontroller circuit.

Figure 2.5 BEST
TM

 with a high capacity battery and a normal battery.

With continuous operation a 1300 battery lasted for 5 hours

 15

 DC Current input = 260mA

Table 2.1 Comparison of practical and theoretical values

Parameter Theoretical Practical

Voltage (V) 3.8 3.8

Current (mA) 80 260

Power Consumption (mW) 663 980

Inductance (uH) 2.5 2.54

Capacitance (nF) 8 10.2

Operating Frequency (KHz) 1.3 1.315

Maximum Reading Distance (cm) 3.5 (Optimum) 5.5 (up to)

2.2 Wireless Communication with Implantable sensors

Another important feature of BEST
TM

is wireless communication with implanted sensor.

As discussed in Sec.1.3.1, the same reader coil designed for wireless power transfer itsel f acts

as an antenna for communication. When the Tag sensor is at operating distance from BEST
TM

the voltage across the reader coil antenna is modulated with information signal from the sensor.

This modulated signal is processed and information is extracted using Demodulating Circuit.

As shown in Fig.2.1 a Demodulating Circuit has

1. Passive envelope detector

2. Active band pass filter

3. Non inverting amplifier

4. Comparator

 16

Figure 2.6 Stages in Demodulating Circuit.

Passive Envelope Detector

A envelop detector was designed to extract the envelope signal from carrier signal. In this,

carrier signal across the reader coil was first rectified using a diode and the high frequency

signal was suppressed by the RC network shown in Fig.2.6. Finally this signal was passed

through a buffer to reduce the DC signal.

Figure 2.7 Circuit diagram of passive envelope detector.

.

Active Band-pass filter

To eliminate all the frequencies other than information signal frequency, an active band pass

filter was designed as shown in Fig.2.3. This unity gain Butterworth band-pass filter was

designed for frequency range of 500Hz to 75 kHz.

 17

Non Inverting Amplifier

Hence obtained information signal was amplified to required voltage level using non inverting

amplifiers as shown in Fig.2.4.

Figure 2.8 Circuit diagram of band-pass filter.

Comparator

This was basically designed to convert the analog signal obtained to digital signal for further

processing by microcontroller.

Figure 2.9 Interfacing of microcontroller with reader circuit.

 18

CHAPTER 3

DATA PROCESSING AND RECORDING USING MICROCONTROLLER

 The digital signal output of demodulating circuit was connected to a microcontroller for

data processing and recording to SD card.

3.1 Microcontroller Hardware

A microcontroller was programmed to process the output frequency from the

demodulating circuit. After processing the frequency signal it was recorded on SD card along

with its corresponding time in a text (.TXT) file format. For this purpose a digital signal

processing microcontroller from Microchip, dsPIC30f4013 was chosen. This microcontroller

along with SD Card is called ―Processing and Recording Unit‖ as shown in Fig.3.1.

Figure 3.1 Recording and Processing unit of BEST
TM

.

The desired features of microcontroller for choosing dsPIC30f4013 are:

1. 40 pin, PDIP package

2. Low-power consumption

3. Wide operating voltage range (2.5v to 5.5v)

4. 16-bit timers/counters

5. SPI module

 19

6. C compiler optimized instruction set architecture

The circuit of the processing and recording unit is basically

1. Microcontroller circuit

2. Microcontroller circuit interfaced with SD card

Figure 3.2 Circuit diagram of microcontroller

 20

3.1.1 Microcontroller Circuit

The microcontroller circuit was designed as shown in Fig.3.2 with a supply voltage of

3.8V and storage capacitors of 0.1uF. For on-board programming a MPLAD ICD2 connection

was provided. A RESET switch was provided to reset the system, a red LED was connected to

pin 2 to indicate working of program to the user, and a yellow LED was connected to indicate

power supply.

The output of last stage op-amp of demodulating circuit was connected to T1CK pin (pin

14) of microcontroller. This connection was connected though a ME switch (Memory Erase

Switch). The purpose of ME switch was to erase memory by keeping it open and resetting the

system.

3.1.2 Microcontroller and Secured Digital Card Interface

To record the processed data from microcontroller, a 16MB Sandisk SD card was

chosen. Some main system features are:

 Up to 16MB of data storage.

 SD Card protocol compatible.

 Supports SPI Mode.

 Secured and non-secured data storage.

 Voltage range:

o Basic communication (CMD0, CMD15, CMD55, ACMD41): 2.0—3.6V.

o Other commands and memory access: 2.7—3.6V.

 Variable clock rate 0—25 MHZ.

 Up to 12.5 MB/sec data transfer rate (using 4 parallel data lines).

 Correction of memory field errors.

 Password protected of cards (not on all models).

 Write protect feature using mechanical switch.

 Built-in write protection features (permanent and temporary).

 21

 Card detection (Insertion/Removal).

 Application specific commands.

SD card was connected to microcontroller using a 9 -pin connector in SPI mode as

shown in Table 3.1. The serial peripheral pins of microcontroller were connected to serial

communication pins (Data in & Data out) of SD card as shown in Fig.3.3. Power supply to SD

card was also provided by pin 3 of microcontroller. For SD card selection, pin 5 of

microcontroller was connected to SD card chip select pin.

Table 3.1 Pins of SD card.

Pin # Name Type SPI Description

1 Chip Select (CS) Input Active low

2 Data In Input Data and commands from microcontroller

3 VSS1 Supply Supply voltage ground

4 VDD Supply Supply Voltage (3.8V)

5 Clock (CLK) Input
Clock signal from microcontroller serial port to

synchronize communication

6 VSS2 Supply Supply voltage ground

7 Data Out Output Data transfer from SD card to microcontroller

8 Reserved

9 Reserved

According to the power requirements shown in Table 3.2, supply voltage of the whole

system was chosen as 3.8V (Maximum withstand voltage of SD card is 3.8V). Table 3.2 also

shows current drawn during different modes of operation. As stated in Table 3.2, a 100K Ohm

resistor was connected to Data Out pin to prevent bus floating. Storage capacitors 3.3uF and

 22

0.1uF are connected in parallel to supply voltage (3.8V) from microcontroller, to avoid any

voltage fluctuations.

Figure 3.3 Circuit diagram of microcontroller interfaced to Secured Digital card.

 23

Table 3.2 Power requirements of SD card

Table 3.3 Resistors and capacitors required for SD card interfacing with microcontroller

3.2 Microcontroller Software

The following development tools were used to program the dsPIC30f4013

microcontroller.

Programming Language: C programming

Language Tool-suite for C Compiler: Microchip C30 Tool-suite

Development software: MPLAB IDE v8.10

Programmer: MPLAB ICD2

The dsPIC30f4013 microcontroller was programmed to perform following functions:

1. Frequency counting

2. Data processing

3. Frequency recording on SD card

4. Timing control

 24

5. Sensor position detection

6. Battery charging Indication

7. Memory Erase

8. Read/ Busy Indication

Microcontroller Configuration

In the program, p30f4013.h header file was included and the following configuration of

microcontroller, shown in Table 3.4 was chosen. The corresponding code to this is given in

Code 1 (Appendix A).

Table 3.4 Microcontroller configuration settings

CATEGORY SETTING

Oscillator 7.37 MHz Internal RC oscillator; 8x PLL

Fail-Safe Clock Monitor (FSCM) Disabled

Clock Switching Disabled

Watchdog Timer (WDT) Disabled

Programmable Brown-out Reset (PBOR) Disabled

POR Timer Value 64ms

Brown out Voltage 2.0V

Master Clear Enable

General Code segment write protect Disabled

General segment code protection Disabled

Communication Channel Select PGC & PGD

 25

Table 3.5 Microcontroller pin definitions

PINS DEFINITION

RB0 LED

RB10 FG

RB1 SD_PWR

RB3 SD_CS

RF2 SDI

RF3 SDO

RF6 SCK

Microcontroller pin definition

Microcontroller pins were defined in the program as shown in Table 3.5. The

corresponding code to this is given in Code 2 (Appendix A).

3.2.1 Frequency Counter

As mention in Sec.3.1.1, frequency signal was fed to pin 16 of microcontroller for

frequency counting. This signal frequency can measured either by logic 1 or logic 2 discussed

below.

Logic 1: Count the number of pulses in 1sec (1000msec) as shown in Fig.3.4

Figure 3.4 Frequency counting using logic 1.

If N is number of pulses in 1 sec

=> Frequency (f) = N Hz

 26

Logic 2: Count the number of pulses in 100msec and the measured number was multiplied by

10 to get frequency of the signal as shown in Fig.3.5.

Figure 3.5 Frequency counting using logic 2.

If n is number of pulses in 0.1 sec

=> Pulses in 1 sec is 10n

=> Frequency (f) =10n Hz

The logic 2 was implemented for faster response and minimum operation time. This

means logic 2 updates frequency for every 100ms while logic 1 updates for every 1 sec. So, by

using logic 1 measurement is 10 times faster than using logic 2 (though there is tradeoff with

accuracy, faster response is more desired).

The information signal frequency counting was realized by using two timers Timer 1 and

Timer 2.

Figure 3.6 Frequency counter using timer 1 and timer 2.

 27

Figure 3.7 Flow chart of timer 1 initiation.

Figure 3.8 Flow chart of timer 2 initiation.

 28

Figure 3.9 Flow chart of Interrupt Routine.

Timer 1: This was initiated as a counter by resetting interrupt flag, set to increment for every

pulse. The flow chart to initiate Timer 1 is shown in Fig.3.6 and corresponding code is given in

Code 3 (Appendix A).

Timer 2: It was initiated as a timer to interrupt for every 100ms by resetting timer and interrupt

flag, setting period register to generate interrupt. The flow chart of Timer 1 is shown in Fig.3.7

and corresponding code is given Code 4 (Appendix A).

 29

 Figure 3.10 Unprocessed Data Table.

Figure 3.11 Complete working of frequency counter with all blocks together.

 30

Figure 3.12 Conversion of a number to its ASCII digits flow chart.

Interrupt Routine

For measuring the frequency of the signal, Timer 1 was turned ON and Timer 2

(Counter) was turned ON immediately. After 100msec in the interrupt routine, the number of

pulses (n) counted by Timer 2 was multiplied by 10(f = 10n) to determine the actual frequency

of the signal. Later this frequency with its corresponding time was transferred to Unprocessed

Data table as shown in Fig.3.10. This Data table was made using arrays. Once this data table

was filled in interrupt routine, the program pointer was returned to its last point in the

main/function program. The flow chart of Interrupt Routine is shown in Fig.3.9 and

corresponding code is given Code 5 (a) (Appendix A).

 31

The complete working of frequency counter is shown in Fig.3.11 and corresponding code is

given Code 5 (Appendix A).

Figure 3.13 Flowchart of complete data processing.

 32

3.2.2 Data processing unit

Here the data recorded on unprocessed data table was processed for the following

purposes:

1. Keep a 512 bytes data block (data buffer) ready to transfer to SD card

2. Convert data in Data Table to data that can be displayed on a TEXT(.TXT) file

A 512 byte data buffer was created as a global unsigned character array. The Time and

Freq (Frequency) headings were preprocessed in the main program before timers initialization.

The loading of these headings to Data Buffer is given in Code 6 (Appendix A).

Microcontroller was programmed to start data processing once it received a permit from

interrupt routine and a new value was found in the Data Table. This permit was cleared once

data processing started to avoid reentrancy. The logic flow shown in Fig.3.12 was followed for

converting data in Data Table to TEXT file displayable ASCII data.

Figure 3.14 Conversion of unprocessed data table to processed data buffer using data

processing.

 33

In this logic every number was divided by the powers of ten and their reminder were

collected. These reminders were then added to integer number 30 to get ASCII values of the

number. This was first done to Time data and then to frequency data in data table. These ASCII

data bytes were loaded to 512 byte Data Buffer mentioned above, but with a SPACE ‗ ‘ byte

between Time ASCII data and Frequency ASCII data to display space in the final TEXT file.

This was repeated for whole Data Table and every time this was done, a ENTER ‗ ‗byte was

loaded to Data Buffer to display data on the next line in the final TEXT file. Once this 512 bytes

of Data Buffer was about to full, two ENTER ‗ ‗bytes were loaded to skip next line. This whole

data processing was shown in Fig 3.13 and corresponding code is given in Code 7 (Appendix

A). An example of a Data Buffer converted from a Data Table using Data processing is shown

Fig.3.14

Figure 3.15 A TEXT file on SD card opened on computer using WinHex.

.

 34

3.2.3 Data recording to Secured Digital card

A Serial Peripheral Interface (SPI) communication mode was setup between

microcontroller and SD card. The 512 byte data kept ready in Data Buffer was sent to a desired

address location (here it is 0028672) on SD card. This address location was determined by

saving a TEXT file to SD card and reading memory of the same, using WinHex software.

Fig.3.15 shows the memory map of TEXT file on SD card using WinHex. This software

shows address locations and ASCII data which is on SD card memory. It also shows the data

displayed on TEXT file on the extreme right of the Fig.3.15.

After recording the data to SD card a new set of data was kept ready by the data

processing unit, repeating the whole processing again and again till the device was RESET or

turned OFF. But after every recording to SD card, the memory address of the card was

increased by 512 to transfer data to next memory location.

A sample recorded TEXT file on SD card with frequency measurement in shown in Fig.3.16.

Figure 3.16 A recorded TEXT file (named as BEST) on Secured Digital card .

 35

3.2.4 Timing control

The class E amplifier consumes a great extent of power as it has to power up the

batteryless sensor. So there a lot of power can be saved if the class E amplifier switching

timings are controlled. Depending upon power transferred to batteryless sensor continuously or

intermittently, there are two types of controls.

1. Open loop control

2. Closed loop control

Figure 3.17 Flow chart of open loop control

3.2.4.1 Open Loop Control

Our discussion so far was based open loop control, in which complete signal flow was

unidirectional as shown in Fig.3.18. A 1.3MHz carrier signal was generated from oscillator

(OSC) which was modulated with information signal from sensor using inductive coupling. This

modulated signal was demodulated using demodulating circuit designed. A microcontroller was

 36

programmed to receive this signal, process and record it on a SD card. Here frequency of the

signal was measured continuously without any pause, as oscillator was not controlled. This led

to very high power consumption in open loop control. The complete flow chart of Open Loop

Control by integrating all the blocks discussed so far is shown in Fig.3.17. Corresponding code

for this control is given in Code 8 (Appendix A). The timings of different signals are shown in

Fig.3.19 and complete circuit diagram in open loop is shown in Fig.3.20.

Figure 3.18 BEST
TM

 in open loop control.

Figure 3.19 Different signal timings in open loop control.

 37

Figure 3.20 Complete circuit diagram of BEST
TM

 in open loop.

Figure 3.21 BEST
TM

 in closed loop control.

3.2.4.2 Closed Loop Control

To save power and have better control of device, closed loop control was introduced as

shown in Fig.3.21. Here the oscillator block was completely removed and microcontroller was

programmed to generate 1.315MHz carrier frequency. Microcontroller was programmed to

 38

power up the reader coil antenna and received the information signal from demodulating circuit.

This signal was processed and recorded on SD card similar to open loop control. The main

advantage of this control was reduction in power consumption. This was achieved by

introducing some delay in the carrier signal which powers up the antenna. So it was

programmed to work for 100ms and 900ms delay (pause) time. The complete flow chart of

closed loop control with all the blocks discussed so far together is shown in Fig 3.22.

Corresponding code for this control is given in Code 9 (Appendix A). The timings of different

signals are shown in Fig.3.23 and complete circuit diagram in open loop is shown in Fig.3.24.

Figure 3.22 Flow chart of closed loop control.

 39

Figure 3.23 Different signal timings in closed loop control.

Figure 3.24 Complete circuit diagram of BEST
TM

 in closed loop.

 40

3.2.5 Sensor position detection

Once sensor is implanted, to avoid misalignment between sensor and BEST
TM

, this

additional feature was included. Here microcontroller was programmed to detect the out of

range frequencies or Noise and turn ON an indicator. The sensor position detect code is given

in Code 10 (Appendix A) and its corresponding flow chart is shown in Fig.3.25.

Figure 3.25 Flow chart of sensor position detection.

3.2.6 Battery Charging Indication

This is also an additional feature provided on BEST
TM

. As shown in Fig. 3.26 if there is

no battery the frequency goes below 7 KHz. Based on this, microcontroller was programmed to

turn ON an indicator, in case of battery outage / improper battery connection.

Figure 3.26 Flow chart of battery charging indicator.

 41

CHAPTER 4

COMMUNICATION BETWEEN MICROCONTROLLER AND SECURED DIGITAL CARD

This communication is a part of data recording to SD card discussed in Sec.3.2.3. To

transfer the 512 bytes data buffer obtained from data processing to SD card, a communication

link was setup between microcontroller and SD card. For this communication a Serial Peripheral

Interface (SPI) port on the microcontroller was chosen.

Figure 4.1 Flow chart of SPI initiation on microcontroller.

 42

4.1 SPI Mode Setup on Microcontroller

To initiate communication with SD card, its power was turned OFF and chip select was

deactivated, as shown in Fig.4.1. Later appropriate port directions were chosen and the

following configuration of SPI was chosen using the microcontroller code 11 (Appendix A)

SPI peripherals Configuration of microcontroller

 Set SPI port to slowest setting

 Master mode

 8 bit

 Idle state for clock is high level

 Primary prescaler 64:1

 Secondary prescaler 8:1

SD card was initiated as shown in flow chart below (Fig.4.1) and Code 11(Appendix A)

to setup the communication link between SD card and microcontroller.

Figure 4.2 Flow chart of data transfer to SD card using SPI Write.

 43

4.1.1 SPI Write

A byte of data can be written to SD card using SPI Write, logic flowchart shown in

Fig.4.2. Here data is transferred to SPI buffer register (SPI1BUF) and let the microcontroller

wait till data is transferred to SD card. The code used to SPI write data is given in Code 12

(Appendix A).

Figure 4.3 Flow chart of data transfer from using SD card SPI Read.

4.1.2 SPI Read

Similarly, using SPI communication a data byte can be read from SD card as shown in

SPI Read flowchart (Fig.4.3). Here microcontroller reads the data without initiating a SPI Read,

if any data is available already in SPI buffer register. Else, a new Read is initiated by writing a

dummy data to register and then let it wait for till buffer is full. In the end this data is returned to

main program. The code used to SPI read is shown here.

 44

4.2 SD Card SPI Mode Communication

To communicate with SD card, byte oriented SPI bus protocol was followed. In this

protocol commands were sent on Data In/ SDO line and response or data was received on Data

out/ SDI line from SD card.

Before going any further to understand SD card SPI mode communicati on, it is

important to know the following (in SPI Mode).

 Command Tokens

 Responses Tokens

 Data Tokens

4.2.1 Command Tokens

 A command is a token that starts an operation. It is sent from the microcontroller to a

SD card, serially on the Data In / CMD line. This command format is as shown in Fig.4.4.

Figure 4.4 Format of command token.

Here

Command [Byte 1, Bit 5-0] : There are 64 commands that can be sent to SD card

from microcontroller. Out of these only few are

available in SPI mode and some used for

programming here are listed in Table 4.1.

Command

Argument

[Byte 2-5, Bit 31-0] : Depending upon the function to be performed

appropriate command argument corresponding to its

command can be chosen from Table 4.1 below.

 45

CRC [Byte 6 Bit 7-1] : Usually CRC for all the commands are ignored,

except for CMD0. If required CRC can be activated

any time in the program. If activated, the following is

the logic

Table 4.1 SD card Commands

CMD Command Abbreviation Command Description Argument Res.

0 GO_IDLE_STATE Resets the SD Card None R1

1 SEND_OP_COND
Activates the card's initialization

process
None R1

9 SEND_CSD
Asks card to send card-specific
data

None R1

10 SEND_CID
Asks card to send card
identification

None R1

12 STOP_TRANSMISSION
Forces card to stop transmission

during multi-block read
None R1

13 SEND_STATUS
Asks card to send its status
register

None R1

16 SET_BLOCKLEN
Selects block length for all
subsequent block commands

(default is 512)

[31:0]
block

length

R1

17 READ_SINGLE_BLOCK
Reads a block of the size
specified by SET_BLOCKLEN

[31:0] data
address

R1

18 READ_MULTIPLE_BLOCK
Continuously transfers data until
interrupted by

STOP_TRANSMISSION

[31:0] data
address

R1

24 WRITE_BLOCK
Writes a block of the size
specified by SET_BLOCKLEN

[31:0] data
address

R1

25 WRITE_MULTI_BLOCK
Continuously writes blocks of
data until a stop token

[31:0] data
address

R1

 46

Figure 4.5 Flow chart of writing a command to SD card.

4.2.1.1 Write a command to SD card

To perform various tasks these commands, discussed above are sent to SD card. The

framing of these 6 byte commands should be set correctly. Each byte of this command is written

to SD card using SPI write discussed in detail, in Sec.4.1.1. Now, program waits for a valid

response from SD card (these responses are discussed in detail in next Sec.4.2.1.2). Before

returning to main program, a write dummy byte to SD card to provide up to 10 clock cycles time

to it, to process the command. The flow chart of writing a command to SD card is shown in

Fig.4.5 and corresponding code is given Code 14 (Appendix A).

4.2.2 Response Token

A response is a token that is sent from a SD card, to the microcontroller as an answer

to a previously received command. A response is transferred serially on the Data Out line. A

typical command and response communication between microcont roller and SD card is shown

in Fig.4.6.

 47

In SPI Mode of SD card there are five types of response formats. Those formats are

1. Format R1

2. Format R1b

3. Format R2

4. Format R3

5. Data Respons

Of all these responses only Format R1 and Data response formats were used in the

Figure 4.6 SPI mode communication between microcontroller and SD card.

Format R1

This is an automatically generated 8 bit (1byte) response for every command sent

(except for SEND_STATUS commands).

Figure 4.7 Bit format of Response R1.

 48

Here

Bit Error Description

0 In idle state The card is in idle state and running initializing process

1 Erase reset An erase sequence was cleared before executing

because an out of erase sequence command was

received

2 Illegal command An illegal command code was detected.

3 Communication CRC error The CRC check of the last command failed

4 Erase sequence error An error in the sequence of erase commands occurred

5 Address error A misaligned address, which did not match the block

length was used in the Command

6 Parameter error The command‘s argument (e.g., address, block length)

was out of the allowed range for this card

7 - Always low (‗0‘)

The bit format of Response R1 is shown in Fig.4.7. If there is an error, the bit corresponding to

the error is set high (‗1‘). These R1 response bits are defined in the program as given in code

15 (Appendix A). These bits are compared with received response from SD card to detect its

status.

Data Response

This is an automatically generated 8 bit (1 byte) response format received for every

data block transferred to SD card. Of all the 8 bits only bits 1, 2 & 3 determines the status of the

data sent as shown in Fig.4.8.

Figure 4.8 Bit format of Data Response

 49

Here

Bit Description

0 Always high

1
‗010‘—Data accepted.

‗101‘—Data rejected due to a CRC error.

‘110‘—Data Rejected due to a Write Error

2

3

4 Always low

5 -

6 -

7 -

4.2.3 Data Tokens

Data is transferred between SD card and microcontroller via data tokens. Data tokens

are 4 to 515 bytes long depending upon the length of the data block. There are two types of

data token formats.

1. For single block read/write and multiple block read

2. For multiple block write

Here the format for Single Block Write data tokens is shown in Fig.4.9.

Figure 4.9 Byte formats of single block write data tokens.

 50

4.3 SD Card Initiation

4.3.1 SD card RESET

To initiate SD card in SPI mode, microcontroll er was programmed to deactivate SD

card, turn OFF and turn ON SD card power. But before and after turning it ON, a time delay was

created to give time for SD card to change voltage levels. It is essential to give SD Card about a

hundred clock cycles to boot up (which include supply ramp up time and eliminate power up

synchronization problems) as shown in Fig.4.10, so a dummy data byte was written16 times to

SD card.

Figure 4.10 Power-up Diagram of SD card.

4.3.2 SPI Mode Selection

After SD card was RESET, SPI mode was selected by asserting CS signal during

transmission of command GO_IDLE_STATE (CMD0). The command token was formatted as

discussed in Sec.4.2.1. So the entire command sequence was 40 00 00 00 00 95

(hexadecimal). This command was sent to SD card using SPI Command Write discussed in

 51

Sec.4.2.1.1. Immediately a status response was returned from SD card for this command. This

response was compared with a R1 response format to determine the status of the SD card as

discussed in Sec.4.2.2.1. SPI Mode selection was confirmed, if an appropriate response (00h

byte – No errors) was received. Else command CMD0 was written to SD card again and again

till a valid response is received.

Once SD card was set in SPI communication mode, command CMD1 was sent to SD

card, to activate the card‘s initialization process. The end of initialization was determined by the

no error (00h byte) response from SD card. Then command CMD55 was sent to SD card to

notify next coming application specific commands. The response of this command was ignored.

Finally an application specific command ACMD41 was sent to SD card to activate the card‘s

initialization process. The end of initialization or SD card Idle or SD card rea dy state was

determined by the no error (00h byte) response from SD card. The complete SD card initiation

process is shown in Fig.4.11 and corresponding code is given in code 13 (Appendix A).

4.4 Data Write to SD card

Once SD card was initialized, microcontroller was programmed to write the 512 byte

data stored in data buffer to SD card. The address location to write data was determined using

WinHex software as discussed in Sec.3.2.3. A single block write command CMD24 was sent to

SD card to transfer data. By default data block length on SD card was set to 512 bytes, so a

command to set the block length was not sent.

The command token for single block write command CMD24 was determined from the

command formats discussed in Sec.4.2.1. Here, command was taken as 24 (decimal),

command argument (in this case, address location to write data as shown in Tab.4.1) was taken

as 28672 (decimal) and CRC bytes were taken as FF (hexadecimal) as they are ignored. This

command token was sent to SD card and response was read from SD card. Similar to any other

command token writing to SD card, this was written to card till a No error (00h byte) R1

response was received.

 52

Figure 4.11 Flow chart of SD card SPI mode initiation.

 53

As soon as SD card was ready for data transfer, data token (formatted as discussed in

Sec.4.2.3) was sent using SPI Write. In this data token, a start block token (FEh byte) was

sent, followed by 512 byte Data Buffer and invalid 16 bit CRC (FFh bytes). The data response

was read from SD card using SPI Read. Microcontroller was left waiting until a valid (Data

accepted) data response was read from the card. The end of data writing to card was

determined by this data response. Then SD card chip select was deactivated and activated with

a delay of 8 clock cycles. Finally SD card was read using SPI Read before deact ivating the card

again.

The complete SPI Mode data write to SD card from microcontroller was shown in

Fig.4.12 and corresponding timings diagram was shown in Fig.4.13. Entire flow chart of data

write to SD card is shown in Fig.4.14 and its corresponding code is given in Code 17 (Appendix

A).

Figure 4.12 Communication for data transfer between microcontroller and SD card.

Figure 4.13 Timing diagram of data transfer communication between microcontroller and card.

 54

Figure 4.14 Flow chart of data write to SD card.

 55

CHAPTER 5

EXPERIMENTS AND RESULTS

The final working device, its internal circuit, reader antenna and batteries used are

shown in Fig.5.1 (b). As mention in Sec.1.3.1, this BEST
TM

 for GERD sensors is based on

inductive coupling, which depends on distance and medium between them. As magnetic field is

not uniform everywhere around the BEST
TM

, signal received is not same everywhere around it.

So it is essential to study the variation and repeatability of the signal in different medium and at

different distances. At the same time stability and performance of device with time are studied.

All the experiments conducted can be classified into motion artifact tests and performance and

stability tests, which include the following.

I. Motion Artifact Tests

1. Effect of relative motion between sensor and BEST
TM

 on the received signal in

different directions.

2. Repeatability in measured value with change in distance between BEST
TM

 and

sensor.

3. Effect of relative motion between sensor and BEST
TM

 on the received signal at

different angles.

4. Repeatability in measured value with change in angle between BEST
TM

 and

sensor.

5. Effect of sensor environment on the received signal in different direction.

6. Determination of maximum allowable change in received signal.

7. Determination of working region of sensor around BEST
TM

.

 56

II. Performance and Stability Tests

1. Stability of the GERD monitoring system with drop in battery voltage (effect of

battery voltage on measured frequency signal).

(a)

(b)

Figure 5.1 (a) BEST
TM

 with GERD sensor; (b) Internal PCB circuit, Antenna and High Capacity

batteries of BEST
TM

Antenna

GERD
Sensor

DC Batteries

PCB

Circuitry

 57

2 Stability of the GERD monitoring system with time (effect of any other

parameters on measured frequency signal).

3 Determination of power consumption or battery life with different optimization

codes.

All the measurements were conducted with distance between BEST
TM

and sensor

starting from 1cm. For our application, study of variation in signal at father distances is more

important than at close proximities.

5.1 Motion Arti fact Tests

The main objective of these experiments is to study the effects of relative motion

between BEST
TM

 and sensor, on measured frequency signal.

5.1.1 Effect of relative motion between sensor and BEST
TM

 on the received signal in different

directions

To study the effects of motion in different directions on the measured frequency signal

on the SD card, the GERD sensor was moved along all X, Y & Z axis keeping the BEST
TM

 fixed

at a place. The recorded frequency signal on SD card was analyzed.

Experimental setup: To move the sensor along X, Y & Z axis, the setup shown in Fig.5.2 was

adopted. In this BEST
TM

 was fixed at a place on the experiment table. A 7.5 cm x 7.5 cm square

foam board was divided into a matrix of 6 x 6 squares. This foam board was placed at the

centre of BEST
TM

, and was aligned to the center of antenna by measuring the distances on all

the sides. Now keeping the foam board at 1.5cm distance from telemeter, GERD sensor was

moved to the center of each square and corresponding frequency was recorded. The same

procedure was repeated with increasing the distance between foam board and BEST
TM

 by 1cm,

till signal was completely lost.

 58

Figure 5.2 Experimental Setup # 1

Experimental result: On every square and at different distances from BEST
TM

, frequency signal

was recorded on SD card. On every square there were up to 50 recordings measured, this data

was processed and color coded as shown in Fig.5.3. From this, the working region of the whole

system was determined depending upon the variation of signal from the average value.

Each square in Fig.5.3 shows the percentage change in frequency from the actual

frequency. The change in frequency is acceptable, i f it is below 5%. Here in the Fig.5.3, darker

squares are out of range readings while lighter squares are within range readings.

1. BEST
TM

 measured signal up to 4.5 cm with <5% in the measured frequency.

2. At 4.5cm the area of coverage was 2.5 X 2.5 sq cm.

 59

Figure 5.3 Percentage change in frequency in different directions.

 60

5.1.2 Repeatability in measured value with change in distance between BEST
TM

and sensor

Experimental setup: To study the repeatability in the measured value, the setup shown in

Fig.5.4 was adopted. BEST
TM

 was fixed at placed and sensor was moved along Z-axis away

from the sensor marked on the foam board scale (Here a metal scale should not used to

measure the distance as it effects the magnetic field). The frequency signal measured at

different distances was recorded on SD card. The same procedure was repeated again but this

time sensor was moved towards the BEST
TM

.

Figure 5.4 Experimental Setup # 2

Experimental result: The frequencies recorded on the SD card were processed and plotted on

graph shown in Fig.5.5. Here Y-axis shows the frequency measured by the BEST
TM

 and X-axis

shows distance between BEST
TM

 and sensor (motion along Z-axis) in steps of 0.5cm. Each step

on X-axis is collection of up to 50 recordings or recordings for 5 sec. The corresponding

percentage change in frequency with distance was plotted on Fig.5.6.

 61

Figure 5.5 Repeatability of the sensor with change in distance along Z-axis

1. The frequency signal measured by BEST
TM

was repeatable with in working range.

2. With the experimental setup 2, frequency measured was in acceptable range till 5.5 cm

3. With the experimental setup 2, the percentage change in frequency is less than 5%.

4. The frequency shift from within the range measurement and out of range measurement

was very drastic. (This is highly desired.)

 62

Figure 5.6 Percentage change in frequency with change in distance along Z-axis.

5.1.3 Effect of relative motion between sensor and BEST
TM

 on the received signal at different

angles

To study the effects of rotation on the measured frequency by BEST
TM

 the sensor was

rotated about all the three axes.

Experimental Setup: To rotate the sensor about X, Y & Z axis, the setup shown in Fig.5.7 was

adopted. Angle of rotation about X, Y and Z were called as angle respectively. In this

setup, BEST
TM

 was fixed at a place on the experiment table. On foam board, lines were drawn

with increasing angle (w.r.t horizontal line) in steps of 30 deg. This foam board with angled lines

was placed on the top of the BEST
TM

.

 63

Figure 5.7 Experimental setup # 3

Rotation about X axis (change in angle): Centre of sensor was aligned to centre of BEST
TM

and side of sensor was aligned to the horizontal line on the foam board as shown in Fig.5.8.

Then sensor was rotated in steps of 15 deg by aligning to the lines on the foam board. At

every angle about 50 frequency samples were recorded. Same procedure was repeated for

different distances from BEST
TM

.

Figure 5.8 Rotation of sensor about X-axis

 64

Rotation about Y axis (change in angle): The same procedure mention above was repeated

here but sensor was positioned as shown in Fig.5.9 about Y-axis.

Figure 5.9 Rotation of sensor about Y-axis

Rotation about Z axis (change in angle): For this, rectangles of size of sensor were drawn on

a foam board which are rotated 180 deg in steps of 15 .This board was fixed at a distance from

BEST
TM

 and sensor was placed in every rectangle. At every angle about 50 frequency samples

were recorded. Same procedure was repeated for different distances from BEST
TM

.

Figure 5.10 Rotation of sensor about Z-axis

 65

Figure 5.11 Rotation of Sensor about XYZ axes at Z =1.5cm

Experimental Result:

 The frequencies recorded on SD card at every angle at fixed distance (Z= 1.5cm) were

averaged and plotted on graph as shown in Fig.5.11. All the angles are plotted on same

graph with frequency measured on Y-axis and angles in degrees on X-axis.

On another graph frequencies with change in angle about all axes and change in

distance are plotted as shown in Fig.5.12.

1. When the sensor was rotated about X-axis, the maximum angle of rotation with respect

to reference plane for frequency to be in acceptable range was +/- 60 deg.

2. When the sensor was rotated about Y-axis, the maximum angle of rotation with respect

to reference plane for frequency to be in acceptable range was +/- 55 deg.

 66

3. There was no change in frequency with rotation of sensor about Z-axis rotation with

respect to reference plane.

4. As distance increased the max angle of rotation decreases slightly.

5. Acceptable orientation of sensor at a distance up to 4.5cm was +/-52 deg for a 7%

change in frequency.

Figure 5.12 Rotation of Sensor at Z =1.5cm & Z = 4.5cm

5.1.4 Repeatability in measured value with change in angle between BEST
TM

 and sensor

Experimental setup: The setup similar to that mentioned above was adopted here to study the

repeatability with rotation of sensor. In this setup keeping BEST
TM

fixed, sensor was rotated 180

deg about X-axis in steps of 15 deg, in clockwise direction and anti clockwise direction at

distance Z =1.5cm. Same procedure was repeated for Z=4.5 cm.

 67

Experimental result: The results recorded on SD card are plotted with measured frequencies on

Y- axis and angle of rotation on X-axis (here 0-90 deg is angle of rotation in both clockwise and

anti clockwise direction).

1. When sensor was rotated about X-axis, the frequency measured by BEST
TM

 was

repeatable up to 60 deg at a distance of Z =1.5cm.

2. The measured frequency was still repeatable up to 60deg even if distance was changed

to Z = 4.5cm.

Figure 5.13 Repeatability with rotation of sensor

 68

5.1.5 Effect on the received signal with change in sensor environments and at different

distances

The GERD sensor was designed to work in different environments, so it is important to

study the effect of environment on the measured signal. As mentioned in Sec.1.3.2, the acid

reflux is detected by shift in frequency (∆ F), which should be much higher than change in

frequency with motion/rotation (δ f).

Figure 5.14 Experimental setup # 4

Experimental setup: This effect was studied with the experimental setup as shown in Fig.5.14.

In this BEST
TM

 was fixed at a position and sensor immersed in a solution (water / orange juice,

short circuit and air) was moved away in steps of 0.5cm from 1cm to 6.5cm. The same

procedure was repeated with sensor immersed in different medium. Here sensor electrodes

were open circuited (air) and short circuited to determine the frequency shift (F) in extreme

possible conditions.

Experimental result: From the data recorded on the SD card, graphs similar to motion arti fact

plots were plotted, where X-axis was not linear scale but a stepped scale. And Y-axis was

frequency measured in KHz. All the frequencies data obtained in different me dium were plotted

on same graph as shown in Fig.5.15.

 69

Figure 5.15 Frequency measured in different sensor environments and at different distances.

1. When sensor was in open air (OC) which is one extreme possible condition of the

sensor, the frequency measured was in the range of 7-7.5KHz.

2. When sensor was short circuited (other possible extreme condition) the frequency was

shifted to 12KHz.

3. A non acid frequency shift is in the range of 8-9 KHz

4. An acidic reflux is in the range of 10-11KHz

5. As distance increased the measured frequency also increased but not overlapped with

the frequency range of other medium.

 70

6. When sensor was out of range the frequency measured was >12 KHz but not any other

defined frequencies.

5.1.6 Determination of maximum allowable change in received signal

Experimental setup: From the above experiments, the following results were studied.

Experimental result: From the data obtained from the previous experiment, the maximum and

minimum frequency values for a given medium were determined. All the values between these

boundaries were averaged to determine the average frequency for a given medium. The shift in

the frequency because of the solution change (∆ F) and change in frequency with motion (δ f)

are compared on Fig. 5.16.

Figure 5.16 Frequency calibration

∆ F > δ f

δ f – Allowable range of frequencies of a liquid

∆ F – Shift in average frequency with different liquids

1. The shift in frequency due to change in medium was much higher than maximum

change in frequency at a given frequency.

2. The complete frequency range of operation is 7-12KHz

3. Any value greater than 12KHz and less than 7KHz is noise

 71

5.2 Performance and Stability Tests

These tests were conducted to determine the stability of the received signal with long

operation time. These tests also included tests for battery life.

5.2.1Stability of the GERD monitoring system with drop in battery voltage

As discussed in Sec.2.1.1, inductive coupling between reader and Tag senor antenna

also depends on supply voltage of Class E amplifier. The purpose of the experiment was to

study the effect of change in supply voltage on measured frequency.

Experimental setup: For this a setup similar to Fig.5.4 was adopted. Here sensor was fixed at a

distance of Z=1.5cm and a full charged 3.8V DC battery (capacity 1300mAh) was connected to

Class E amplifier. The change in battery voltage was recorded for every 1hour.

Figure 5.17 Effect of supply voltage on measured frequency.

 72

Experimental result: To plot the change in frequency with change in battery supply voltage, the

measured frequency was plotted on Y-axis and battery voltage was plotted on X-axis. The

average frequency for every one hour at the two different dis tances was plotted on same graph

as shown in Fig.5.17.

Figure 5.18 Variation of frequency signal with time in open loop.

5.2.2 Stability of the GERD monitoring system with time

It is important to determine, if there is any change in measured frequency s ignal when

device was used continuously for several days.

Experimental setup: Same setup shown in Fig.5.4 was used but with closed loop control for

longer life.

 73

Experimental result: There was no effect of any other parameter other than voltage on the

measured frequency as there was not much variation with time, as shown in Fig.5.18.

5.2.3 Determination of power consumption or battery life with different optimization codes

Experimental setup for open loop control of BEST
TM

: A fully charged 3.8V and 1300mAh battery

was used in class E amplifier circuit which was working in open loop control. The telemeter and

sensor were placed as shown in Fig.5.4 at a distance of 1.5cm (close proximity) and this setup

was left undisturbed till the battery was completely discharged. The recorded frequency on the

SD card was plotted as shown in Fig.5.18. The same experiment was repeated again with a full

charged battery again at 4.5 cm (farther distance) to study the change in power consumption or

change in battery life with increase in distance between telemeter and sensor.

Figure 5.19 Percentage variation of frequency signal with time in open loop.

 74

Experimental result:

1. A 3.8V and 1300mAh battery lasted 5 hour with distance between sensor and telemeter

was 1.5 cm.

2. The same full charged battery lasted for same time with distance between sensor and

telemeter was 4.5 cm.

3. There is no much change in battery life with change in distance

Experimental setup for closed loop control of BEST
TM

: As mentioned in Sec. 3.2.4.2, the power

consumption can be improved by implementing the closed loop control using microcontroller.

This change in battery life with different controls was tested with the same experimental setup

with distance of 1.5cm. The recorded frequency obtain from closed loop control experiment and

open loop experiment were plotted on same graph shown in Fig.5..20 with Z = 1.5 cm.

Figure 5.20 Comparison of variation of frequency signal with time in open loop and

closed loop timing controls.

 75

Experimental result:

1. There was a drastic change in battery life with different controls; the battery life was

improved 34 times by implanting closed loop control.

2. But the measured frequency is higher than that was measured in open loop.

5.3 Conclusion

Experiments were conducted to study the effects of the different parameters on the

measured signal and also performance and stability of the system. From the motion artifact

tests it can be concluded that, sensor at 4.5cm from BEST
TM

, the area of coverage was 2.5 X

2.5 sq cm about centre of system, with <5% change in the measured frequency. All the

frequencies measured at every point within the reading range are repeatable. When sensor is

not perfectly aligned to BEST
TM

 at a distance of 1.5cm the maximum allowable tilt is +/- 60

degrees about X-axis, +/-55 degrees about Y-axis and no change about Z-axis. The complete

frequency range of operation of the monitoring system is 7-12 KHz and any frequency other

than this noise because of sensor out of range or battery outage. In this range an acid re flux

can be determined in 10-11 KHz range and a non reflux in 8-9 KHz range. The shift in the

frequency (ΔF) because of the refluxes is much higher than the change in the frequency (δf)

with any parameter. The following conclusions can be made from the performance and stability

tests, the frequency measured on BEST
TM

is stable with battery voltage, time and any other

parameter. The performance of the device is improved with closed loop control using

microcontroller. With this control, battery li fe of a 3.8V DC 1300mAh battery is improved 30

times from open loop control. Also it is important to notice there is no change in battery life with

change in distance between BEST
TM

 and sensor.

 76

CHAPTER 6

DISCUSSION AND CONCLUSION

A portable biotelemeter for batteryless Gastro esophageal reflux disease (GERD)

sensors was designed. Wireless power to sensors and wireless communication with the same

was achieved by inductively coupling with the telemeter. For this an antenna was designed to

work at 1.3MHz with a reading range up to 5.5cm and a class E power amplifier using IRF510

MOSFET was designed to t ransfer power to antenna. A demodulating circuit was designed to

demodulate the information signal from the 1.3MHz carrier signal. This demodulating circuit was

integrated with microcontroller circuit to measure and process the information signal. A SD card

was interfaced with the microcontroller in Serial Peripheral Interface (SPI) mode, to record the

monitored signal with its corresponding time and displayed on a TEXT file. To reduce the power

consumption of the biotelemeter (BEST
TM

) different timing controls were implemented using

microcontroller. Apart from all these some additional features like memory Erase, Read/Busy

indication, Sensor position detection and Battery charging Indication were provided.

Experiments were conducted to study the effects of the different parameters on the

measured signal and also performance and stability of the system. From the motion artifact

tests it can be concluded that, sensor at 4.5cm from BEST
TM

, the area of coverage was 2.5 X

2.5 sq cm about centre of system, with <5% change in the measured frequency. All the

frequencies measured at every point within the reading range are repeatable. With centre of

BEST
TM

 aligned to centre of sensor along Z-axis, can measure upto 5.5cm with less than 5%

change in measurement. When sensor is not perfectly aligned to BEST
TM

at a distance of 1.5cm

the maximum allowable tilt is +/- 60 degrees about X-axis, +/-55 degrees about Y-axis and no

change about Z-axis. Though this maximum tilt about X and Y axis decreases with increase in

measuring distance, the maximum tilt at a distance of 4.5cm is +/ - 52 deg with less than 7%

 77

change in measurement. The frequency measurement is still repeatable when rotated about

any axis and within maximum allowable tilt. The complete frequency range of operation of the

monitoring system is 7-12 KHz and any frequency other than this noise because of sensor out

of range or battery outage. In this range an acid reflux can be determined in 10-11 KHz range

and a non reflux in 8-9 KHz range. The shift in the frequency (ΔF) because of the refluxes is

much higher than the change in the frequency (δf) with any parameter. Also it has to be made

sure that tilt in alignment is not in the range of 50-75 degrees. Any other position other than this

can be detected with frequency measurement greater than 12 KHz on the telemeter.

Figure 6.1 Different operating regions of the sensor.
.

When the sensor is moved away or towards the biotelemeter there are three operating

regions. In working region, the batteryless sensor is powered up by the telemeter and

 78

modulated signal is extracted. In this region the allowable change in frequency f is less than 5%

and variation of signal at a distance is less. The second region is called weak signal region in

which the sensor is powered up with a weak magnetic coupling but received signal has high

noise. The change in frequency f1 and f2 at a distance of 6.2cm and 6.4 respectively , is greater

than 1000 KHz (or greater than 5%) and variation in signal is also high. The third region is

called out of range region in which the sensor is at distance that the telemeter fails to power it

up. In this region the signal is just noise which is greater than 12 KHz with high variation in the

received signal.

The following conclusions can be made from the performance and stability tests, the

frequency measured on BEST
TM

is stable with battery voltage, time and any other parameter.

The performance of the device is improved with closed loop control using microcontroller. With

this control, battery life of a 3.8V DC 1300mAh battery is improved 30 times from open loop

control. The change battery life is because of the intermittent operation of the telemeter using

microcontroller With this the battery li fe can be improved up to 30% depending upon the

intermittent duration of operation [6.1]. Also, during continuous operation of class E amplifier

the temperature of the MOSFET increases because of the switching losses. This increases the

power consumption by changing the operating characteristics of amplifier. So with intermittent

operation, the MOSFET is cooled during the pauses improving the battery life further. The

operating characteristics of MOSFET IRF510 are shown in Appendix B. Also it is important to

notice there is no change in battery life with change in distance between BEST and sensor.

So a low power, minimum motion artifact, wearable (less weight because of light weight

of batteries and other circuitry) and portable biotelemeter for batteryless Gastro esophageal

reflux disease (GERD) sensors was designed.

 79

CHAPTER 7

FUTURE WORK

 The portable bio-telemeter BEST
TM

 was designed for detection of acid reflux in

esophagus using impedance sensing (GERD impedance sensor) only. All the desired features

of the BEST for the GERD application are given below.

 Portable

 Flexible

 Light weight

 Multi-sensing (pH and impedance)

 Record to a user friendly device

 Power Consumption

 Reading range

 Motion artifact

 Rechargeable

Of all the desired features of BEST
TM

, basic features are implemented in current

telemeter design. Some of the different ways of implementing the other features are discussed

in the next sections. A next generation flexible belt model for BEST
TM

 implementing all the

features can be designed as shown in Fig.7.1. This model includes a bigger antenna and

telemetry circuit embedded in a flexible cloth belt.

7.1 Flexibility

 The BEST
TM

 can be made flexible by reducing the size of telemeter circuitry to smallest

size possible and embedding it in a flexible cloth belt. So all the telemeter circuitry, Secured

Digital (SD) card and battery on the current design should made to fit in the inner dark box

shown in Fig.7.1. The telemeter circuit can be reduced by redesigning at SMD level or replacing

 80

whole circuit with microchip which can be designed to perform all the telemeter functions. The

size of the SD card can be reduced by replacing with a micro SD card. For reducing the size of

the batteries, the current ones can be replaced with a less capacity batteries by trading off with

duration of operation with full charging.

Figure 7.1 A next generation flexible belt model for BEST
TM

.

7.2 Multi-sensing

 The current telemeter was programmed to detect the acid reflux in esophagus by

impedance change on GERD impedance sensor only. But for GERD diagnosis, it is essential to

monitor both PH and impedance, so the telemeter has to be programmed to receive both

signals from GERG Impedance-pH sensors as shown in Fig.1.5 (b). For this sensor, one

frequency generator generates frequency depending upon the impedance of the medium and

the other one generate depending upon PH value of the medium. The MUX switches between

these two generators with 1Hz frequency. Now the microcontroller program on the telemeter

has to be changed to processes these two signals and record to SD card.

 81

7.3 Reading Distance

The current reading distance of the telemeter can be improved by increasing the radius of the

antenna coil. At the same time the thickness of the wire and number of coil turns has to be small

to make it flexible. An optimum size among all these parameters has to be determined.

7.4 Power Consumption

 As some of the important parameters like antenna size are going to be changed from

the current design, the power consumption of the device also changes. Another important

parameter that effects the power consumption is microcontroller timing. The current design

operates only for 100ms to measure the frequency signal and goes to sleep mode for next

900ms, this cycle repeats. But for the multi sensing the telemeter has to operate for at least 1

sec to measure both the signals. So to improve the power consumption microcontroller can be

programmed to operate for 1sec and go to sleep mode for next 1sec repeating the cycle.

 82

APPENDIX A

MICROCONTROLLER PROGRAM

 83

Code 1: Microcontroller Configuration

#include "p30f4013.h"

_FOSC(CSW_FSCM_OFF & FRC_PLL8);

_FWDT(WDT_OFF);

_FBORPOR(PBOR_OFF & BORV_20 & PWRT_64 & MCLR_EN);

_FGS(CODE_PROT_OFF);

Code 2: Pin Definitions

#define LED PORTBbits.RB0

#define LED_DIR TRISBbits.TRISB0

#define FG PORTBbits.RB10

#define FG_DIR TRISBbits.TRISB10

#define SD_PWR PORTBbits.RB1

#define SD_PWR_DIR TRISBbits.TRISB1

#define SD_CS PORTBbits.RB3

#define SD_CS_DIR TRISBbits.TRISB3

#define SDI PORTFbits.RF2

#define SDI_DIR TRISFbits.TRISF2

#define SCK PORTFbits.RF6

#define SCK_DIR TRISFbits.TRISF6

#define SDO PORTFbits.RF3

#define SDO_DIR TRISFbits.TRISF3

 84

Code 3: Timer 1 Initiation

void Init_Timer1(void)

{

T1CON = 0; /* Reset Timer 1 */

IFS0bits.T1IF = 0; /* Reset Timer 1 interrupt flag */

IEC0bits.T1IE = 1; /* Enable Timer 1 interrupt */

PR1 = 0xFFFF; /* Timer 1 period register was set to increment its register (TMR1) for

each external pulse */

T1CONbits.TCS = 0; /* Set timer 1 in counter mode i.e set it to external timer clock */

T1CON =0x8006; /* Turn ON Timer 1*/

}

Code 4: Timer 2 Initiation

void Init_Timer2(void)

{

T2CON = 0; /* Reset Timer 2 */

 IFS0bits.T2IF = 0; /* Reset Timer 2 interrupt flag */

IEC0bits.T2IE = 1; /* Enable Timer 2 interrupt */

 PR2 = 0x591E; /* Set Timer 2 period register to generate an interrupt for every 100ms

*/

T2CONbits.TCS = 0; /* select external timer clock */

T2CON =0x8020; /* enable Timer 2 and start the count */

}

 85

Code 5: Complete working of frequency counter and data recording to Data Table

Main()

{

.

.

While(1)

{

Init_Timer1(); /*Turn ON Timer 1*/

Init_Timer2(); /*Turn ON Timer 2*/

.

.

/*Information Signal Processing*/

.

}

}

Code 5 (a):

void __attribute__((interrupt)) _T2Interrupt(void)

{

freq[m]=(TMR1*10); /* Frequency = 10 x number of pulses counted ; Record Frequency

on Frequency Buffer*/

TMR1=0; /* Reset Counter */

if(m==0) /* If Time Buffer is full, record time on the top of Time Buffer */

{

 time[0]=time[49]+1;

}

 86

if(m!=0) /* If Time buffer is not full, record time in the next row of Time buffer */

{

 time[m]=time[m-1]+1;

}

m++; /* Increament the pointer of the table to next row*/

if(m==50) /* If table is full, go to top of the table */

 {

 m=0;

 }

flag=1; /* Permit the main program to process the recorded information */

IFS0bits.T2IF = 0; /* Reset Timer 1 interrupt flag */

}

Code 6: Preprocessing of Data Buffer

unsigned char buf[512];

int main (void)

{

 unsigned int p;

 p = 0; //reset counter

 buf[0] ='T';

 buf[1]='i';

 buf[2]='m';

 buf[3]='e';

 buf[4]=0x09;

 buf[5]='F';

 buf[6]='r';

 buf[7]='e';

 87

 buf[8]='q';

 buf[9]=0x20;

 buf[10]=0x0D;

 buf[11]=0x0A;

 p=12;

.

.

/*Data Processing*/

.

.

}

Code 7: Processing of data in Data Table

/*Check if writing pointer leads reading pointer; Check if SD card data buffer is full; Check if data

processing is permitted by the interrupt routine */

if((flag==1)&(p<=497)&((m-n)>0)|((m==0)&(n==49)))

{

flag=0; /*Disable the permit to process information*/

/*Program to convert a Time number to its individual digits and store this data on to DATA

BUFFER*/

 div=1000000000;

 while(div>=1)

 {

 digit=time[n]/div; /*Divide the number by powers of ten*/

 digit=(digit%10); /*Digit is reminder when divided by ten*/

 88

 if((digit !=0)|(flag==2)) /*Convert a number to individual digits*/

 {

flag=2; /*Check if zero is significant*/

 buf[p]=digit+0x30; /*Convert each digit to its corresponding ASCII

value*/

 p++; /*Increment the Data Buffer pointer*/

 }

 div/=10; /*Repeat for different powers of ten*/

 }

 flag=0; /*Disable the permit to process information*/

 buf[p]=0x09; /*Give as space between Time digit data and frequency digi t data*/

 p++;

 div=10000; /*Increment the Data Buffer pointer*/

/*Program to convert a Frequency number to its individual digits and store this data on to DATA

BUFFER; Repeat the above program again for Frequency*/

 while(div>=1)

 {

 digit=freq[n]/div;

 digit=(digit%10);

 if((digit !=0)|(flag==2))

 {

flag=2;//check for zeros

 buf[p]=digit+0x30;

 p++;

 }

 89

 div/=10;

 }

 n++;

 if(n==50) /*Check if reading pointer is at bottom of the Data Table*/

 n=0;

 flag=0;

 buf[p]=0x0D; /*ASCII value of 'Enter' to go to next line*/

 p++;

 buf[p]=0x0A;

 p++;

 flag=0;

 if(p>497)

 {

 for(;p<510;p++)

 buf[p]=0;

 buf[510]=0x0D;

 buf[511]=0x0A;

 p=0;

}

}

 90

Code 8: Complete Code for Open Loop Control

#include "p30f4013.h"

_FOSC(CSW_FSCM_OFF & FRC_PLL8);

_FWDT(WDT_OFF);

_FBORPOR(PBOR_OFF & BORV_20 & PWRT_64 & MCLR_EN);

_FGS(CODE_PROT_OFF);

// Pin definitions

#define LED PORTBbits.RB0

#define LED_DIR TRISBbits.TRISB0

#define FG PORTBbits.RB10

#define FG_DIR TRISBbits.TRISB10

#define SD_PWR PORTBbits.RB1

#define SD_PWR_DIR TRISBbits.TRISB1

#define SD_CS PORTBbits.RB3

#define SD_CS_DIR TRISBbits.TRISB3

#define SDI PORTFbits.RF2

#define SDI_DIR TRISFbits.TRISF2

#define SCK PORTFbits.RF6

#define SCK_DIR TRISFbits.TRISF6

#define SDO PORTFbits.RF3

#define SDO_DIR TRISFbits.TRISF3

// R1 Response Codes from SD Card

#define R1_IN_IDLE_STATE (1<<0) // Card is in idle state and running initializing process.

#define R1_ERASE_RESET (1<<1) // An erase sequence was cleared before executing.

 91

#define R1_ILLEGAL_COMMAND (1<<2) // An illegal command code was detected

#define R1_COM_CRC_ERROR (1<<3) // The CRC check of the last command failed.

#define R1_ERASE_SEQ_ERROR (1<<4) // An error in the erase commands occurred.

#define R1_ADDRESS_ERROR (1<<5) // A misaligned in address

#define R1_PARAMETER (1<<6) // The command's argument was out of range

// Timer 1 Initiation

void Init_Timer1(void)

{

T1CON = 0; /* Reset Timer 1 */

IFS0bits.T1IF = 0; /* Reset Timer 1 interrupt flag */

IEC0bits.T1IE = 1; /* Enable Timer 1 interrupt */

PR1 = 0xFFFF; /* Timer 1 period register was set to increment its register (TMR1) for

each external pulse */

T1CONbits.TCS = 0; /* Set timer 1 in counter mode i.e set it to external timer clock */

T1CON =0x8006; /* Turn ON Timer 1*/

}

// Timer 2 Initiation

void Init_Timer2(void)

{

T2CON = 0; /* Reset Timer 2 */

 IFS0bits.T2IF = 0; /* Reset Timer 2 interrupt flag */

IEC0bits.T2IE = 1; /* Enable Timer 2 interrupt */

 PR2 = 0x591E; /* Set Timer 2 period register to generate an interrupt for every 100ms

*/

 92

T2CONbits.TCS = 0; /* select external timer clock */

T2CON =0x8020; /* enable Timer 2 and start the count */

}

void SPIWrite(unsigned char data)

{

SPI1BUF = data; /* Tranfer data to SPI Buffer Register*/

while(SPI1STATbits.SPITBF); /*Wait until send buffer is ready for more data*/

}

unsigned char SPIRead(void)

{

unsigned char data;

if(SPI1STATbits.SPIRBF) /*Check if SPI Transmit Buffer is full*/

{

data = SPI1BUF; /*Don't initiate a read ;Read the existing data */

 SPI1STATbits.SPIROV = 0; /*Clear receive overflow flag bit*/

 return data;

 }

/* No data availabel, initiate a read*/

SPI1BUF = 0xFF; /*write dummy data to initiate an SPI read*/

 while(SPI1STATbits.SPITBF); /* wait until the data is finished reading*?

 data = SPI1BUF;

 SPI1STATbits.SPIROV = 0;

 return data;

}

 93

void SPI_Init(void)

{

 SD_PWR = 0; /*Turn OFF SD card Power*/

 SD_PWR_DIR = 0; /* Set pin RB1 direction to output*/

 SD_PWR = 0; /*Turn OFF SD card Power*/

 SD_CS = 1; /*Deactivate SD Card chip select */

 SD_CS_DIR = 0; /*Set pin RB3 direction to output*/

 SD_CS = 1; /*Deactivate SD Card chip select */

 SDI_DIR = 1; /*Set pin RF2 direction to input*/

 SCK_DIR = 1; /*Set pin RF6 direction to input*/

 SDO_DIR = 1; /*Set pin RF3 direction to input*/

 SPI1STAT = 0x8000; /*Enable SPI port*/

 // Configure SPI port

 // set SPI port to slowest setting

 // master mode

 // 8 bit

 // Idle state for Clock is high level

 // Primary prescaler 64:1

 // Secondary prescaler 8:1

 SPI1CON = 0x0060;

}

 94

unsigned char SD_WriteCommand(unsigned char* cmd)

{

unsigned int i;

unsigned char response;

unsigned char savedSD_CS = SD_CS;

/*Set the framing bits correctly*/

cmd[0] |= (1<<6);

cmd[0] &= ~(1<<7);

cmd[5] |= (1<<0);

/*Send the 6 byte command*/

SD_CS = 0;

for(i = 0; i < 6; ++i)

{

 SPIWrite(*cmd);

 cmd++;

}

/* Wait for the valid response*/

i = 0;

do

{

response = SPIRead();

if(i > 100)

 {

 95

 break;

 }

 i++;

} while(response == 0xFF);

SD_CS = 1;

/*Wait 8 clocks to process the command by SD card*/

SPIWrite(0xFF);

SD_CS = savedSD_CS;

return(response);

}

unsigned char SD_Init()/*Initiate SD Card*/

{

unsigned int i = 0;

unsigned char status;

SD_CS = 1; /*Deactivate SD Card chip select*/

SD_PWR = 0; /*Turn OFF SD card Power*/

/*Wait for power to go down*/

for(i = 0; i; i++);

for(i = 0; i; i++);

for(i = 0; i; i++);

for(i = 0; i; i++);

SD_PWR = 1; /*Turn on SD Card*/

 96

for(status = 0; status < 10; ++status) /*Wait for power to come up*/

 {

 for(i = 0; i; i++);

 for(i = 0; i; i++);

 for(i = 0; i; i++);

 for(i = 0; i; i++);

 }

for(i = 0; i < 16; ++i) /*We need to give SD Card about a hundred clock cycles to boot up*/

 {

 SPIWrite(0xFF); /*Write dummy data to pump clock signal line*/

 }

SD_CS = 0; /*Activate SD card chip select*/

unsigned char CMD0_GO_IDLE_STATE[] = {0x00,0x00,0x00,0x00,0x00,0x95};

/*Define GO IDLE STATE Command with a valid CRC*/

// Wait for the SD Card to go into IDLE state

i = 0;

do

{

status = SD_WriteCommand(CMD0_GO_IDLE_STATE);

 /*Send GO IDLE STATE Command SD card with a valid CRC*/

 if(i++ > 50) /*If response is not valid, try 50 times and give up */

 {return 1; }

 97

 } while(status != 0x01); /*Wait for valid response from SD card*/

unsigned char CMD1_SEND_OP_COND[] = {0x01,0x00,0x00,0x00,0x00,0xFF};

/*Define SEND OPERATING CONDITIONS command w/o valid CRC*/

i = 0;

do

 {

 status = SD_WriteCommand(CMD1_SEND_OP_COND);

/*Send SEND OPERATING CONDITIONS command to SD card*/

 if(i++ > 50) /*If response is not valid, try 50 times and give up */

 {return 2; }

} while((status & R1_IN_IDLE_STATE) != 0); /*Wait for IN IDLE STATE response

from SD card*/

unsigned char CMD55_APP_CMD[] = {55,0x00,0x00,0x00,0x00,0xFF};

/*Define Application Specific CMD55 command w/o valid CRC*/

status = SD_WriteCommand(CMD55_APP_CMD); /*Send Application Spec ific CMD55

command to SD card and ignore the response from SD card*/

i = 0;

unsigned char ACMD41_SD_SEND_OP_COND[] = {41,0x00,0x00,0x00,0x00,0xFF};

/*Define ACMD41 command to initialize SD Card mode w/o valid CRC*/

do

{

status = SD_WriteCommand(ACMD41_SD_SEND_OP_COND);

 98

/*Send ACMD41 command to SD Card*/

 if(i++ > 50) /*If response is not valid, try 50 times and give up */

 {return 3; }

 } while((status & R1_IN_IDLE_STATE) != 0);

/*Wait for IN IDLE STATE response from SD card*/

SD_CS = 1;/*Deactivate SD card chip select*/

return 0;

}

unsigned char SD_WriteBlock(unsigned long addr, unsigned char *buf)/*Write a 512 Data Buffer

Block to SD card*/

{

unsigned char response;

unsigned int i, retry=0;

unsigned char CMD24_WRITE_SINGLE_BLOCK[] = {24,0x00,0x00,0x00,0x00,0xFF};

/*Define WRITE SINGLE BLOCK command(CMD34) w/o valid CRC*/

CMD24_WRITE_SINGLE_BLOCK[1] = ((addr & 0xFF000000) >> 24);

/*Include address of the memory location on SD card in the command*/

CMD24_WRITE_SINGLE_BLOCK[2] = ((addr & 0x00FF0000) >> 16);

CMD24_WRITE_SINGLE_BLOCK[3] = ((addr & 0x0000FF00) >> 8);

CMD24_WRITE_SINGLE_BLOCK[4] = ((addr & 0x000000FF));

SD_CS = 0; /*Activate SD card chip select*/

response = SD_WriteCommand(CMD24_WRITE_SINGLE_BLOCK);

/*Send WRITE SINGLE BLOCK command(CMD34)to SD card*/

 99

if(response != 0x00) /*check for SD status: 0x00 - OK (No flags set)*/

return 1;

SPIWrite(0xFF);

SPIWrite(0xFE); /*Send start block token 0xfe (0x11111110)*/

for(i=0; i<512; i++) /*Send 512 bytes of Data*/

SPIWrite(buf[i]);

SPIWrite(0xff); //Transmit dummy CRC (16-bit), CRC is ignored here

SPIWrite(0xff);

i=0;

do /*Data response and busy response from card*/

{

response = SPIRead();

i++;

}while((response & 0x1f) != 0x05);

i=0;

while(!SPIRead()) /*wait for SD card to complete writing and get idle*/

{

i++;

if(retry++ > 0xfffe) /*If SD card is busy for very long time*/

 {

 SD_CS = 1; /*Deactivate SD card chip select*/

 return 1;

 100

 }

}

SD_CS = 1; /*Deactivate SD card chip select*/

SPIWrite(0xff); /*Wait 8 clock cycles*/

SD_CS = 0; /*Activate SD card chip select*/

//verify if card is still busy

while(!SPIRead()) //wait for SD card to complete writing and get idle

 {

 i++;

 if(retry++ > 0xfffe) /*If SD card is busy for very long time*/

 {

 SD_CS = 1; /*Deactivate SD card chip select*/

 return 1;

 }

 }

SD_CS = 1;/*Deactivate SD card chip select*/

return 0;

}

unsigned char buf[512];

unsigned int flag, freq[50],m=0;

long long int digit,div,time[50];

int FG_ON=1;

int main (void)

{

 101

 unsigned int i, j, x;

 unsigned int p;

 unsigned long y;

 unsigned char status;

 ADPCFG = 0xFFFF; // Force all ADC pins as digital I/O

 Init_Timer1();

 Init_Timer2();

 TMR2=0;

 TMR1=0;

 //Preprocessing of Data Buffer

 p = 0; //reset counter

 buf[0] ='T';

 buf[1]='i';

 buf[2]='m';

 buf[3]='e';

 buf[4]=0x09;

 buf[5]='F';

 buf[6]='r';

 buf[7]='e';

 buf[8]='q';

 buf[9]=0x20;

 buf[10]=0x0D;

 buf[11]=0x0A;

 p=12;

 102

 // Configure output pins

 LED_DIR = 0;

 LED = 1;

 y=28672;

int n=0;

while(1)

 {

 if((flag==1)&(p<=497)&((m-n)>0)|((m==0)&(n==49)))

 {

flag=0; /*Disable the permit to process information*/

/*Program to convert a Time number to its individual digits and store this data on to DATA

BUFFER*/

 div=1000000000;

 while(div>=1)

 {

 digit=time[n]/div; /*Divide the number by powers of ten*/

 digit=(digit%10); /*Digit is reminder when divided by ten*/

 if((digit !=0)|(flag==2)) /*Convert a number to individual digits*/

 {

flag=2; /*Check if zero is significant*/

 103

 buf[p]=digit+0x30; /*Convert each digit to its corresponding ASCII

value*/

 p++; /*Increment the Data Buffer pointer*/

 }

 div/=10; /*Repeat for different powers of ten*/

 }

 flag=0; /*Disable the permit to process information*/

 buf[p]=0x09; /*Give as space between Time digit data and frequency digit data*/

 p++;

 div=10000; /*Increment the Data Buffer pointer*/

/*Program to convert a Frequency number to its individual digits and store this data on to DATA

BUFFER; Repeat the above program again for Frequency*/

 while(div>=1)

 {

 digit=freq[n]/div;

 digit=(digit%10);

 if((digit !=0)|(flag==2))

 {

flag=2;//check for zeros

 buf[p]=digit+0x30;

 p++;

 }

 div/=10;

 }

 n++;

 104

 if(n==50) /*Check if reading pointer is at bottom of the Data Table*/

 n=0;

 flag=0;

 buf[p]=0x0D; /*ASCII value of 'Enter' to go to next line*/

 p++;

 buf[p]=0x0A;

 p++;

 flag=0;

 if(p>497)

 {

 for(;p<510;p++)

 buf[p]=0;

 buf[510]=0x0D;

 buf[511]=0x0A;

 p=0;

}

}

SPI_Init(); /*Initiate SPI perpherals of microcontroller*/

status = SD_Init(); /*Initiate Communication with SD card and get the status of SD

card */

do

{

 while(status) /*Wiat till SD card is ready for Data tranfer */

 {

 105

 status = SD_Init();/*Initiate Communication with SD card and get the status of

SD card */

 LED = 0; /*Turn ON red LED in case of communication with SD card

failed*/

 };

 status = SD_WriteBlock(y,buf);/*Write the 512 bytes block of data(Data Buffer)to SD

Card at the memory location y and get status of SD card*/

 } while(status); /*If failed to write try till Data Buffer Block is written*/

y+=512; /*Increment the Adress location on SD card by 512 to write next 512

bytes of data to it*/

}

}

i=0;

while(i <= 40)

 {

 LED = i & 1;

 for(j = 0; j < 40000; ++j);

 i++;

 }

}

 return 0;

}

 106

void __attribute__((interrupt)) _T2Interrupt(void)

{

freq[m]=(TMR1*10);

TMR1=0;

if(m==0)

{

time[0]=time[49]+100;

 }

if(m!=0)

 {

 time[m]=time[m-1]+100;

 }

m++;

if(m==50)

 {m=0;}

flag=1;

/* reset Timer 1 interrupt flag */

IFS0bits.T2IF = 0;

}

 107

Code 9: Complete Code for Closed Loop Control

#include "p30f4013.h"

_FOSC(CSW_FSCM_OFF & FRC_PLL8);

_FWDT(WDT_OFF);

_FBORPOR(PBOR_OFF & BORV_20 & PWRT_64 & MCLR_EN);

_FGS(CODE_PROT_OFF);

// Pin definitions

#define LED PORTBbits.RB0

#define LED_DIR TRISBbits.TRISB0

#define FG PORTBbits.RB10

#define FG_DIR TRISBbits.TRISB10

#define SD_PWR PORTBbits.RB1

#define SD_PWR_DIR TRISBbits.TRISB1

#define SD_CS PORTBbits.RB3

#define SD_CS_DIR TRISBbits.TRISB3

#define SDI PORTFbits.RF2

#define SDI_DIR TRISFbits.TRISF2

#define SCK PORTFbits.RF6

#define SCK_DIR TRISFbits.TRISF6

#define SDO PORTFbits.RF3

#define SDO_DIR TRISFbits.TRISF3

// R1 Response Codes from SD Card

#define R1_IN_IDLE_STATE (1<<0) // Card is in idle state and running initializing process.

#define R1_ERASE_RESET (1<<1) // An erase sequence was cleared before executing.

 108

#define R1_ILLEGAL_COMMAND (1<<2) // An illegal command code was detected

#define R1_COM_CRC_ERROR (1<<3) // The CRC check of the last command failed.

#define R1_ERASE_SEQ_ERROR (1<<4) // An error in the erase commands occurred.

#define R1_ADDRESS_ERROR (1<<5) // A misaligned in address

#define R1_PARAMETER (1<<6) // The command's argument was out of range

// Timer 1 Initiation

void Init_Timer1(void)

{

T1CON = 0; /* Reset Timer 1 */

IFS0bits.T1IF = 0; /* Reset Timer 1 interrupt flag */

IEC0bits.T1IE = 1; /* Enable Timer 1 interrupt */

PR1 = 0xFFFF; /* Timer 1 period register was set to increment its register (TMR1) for

each external pulse */

T1CONbits.TCS = 0; /* Set timer 1 in counter mode i.e set it to external timer clock */

T1CON =0x8006; /* Turn ON Timer 1*/

}

// Timer 2 Initiation

void Init_Timer2(void)

{

T2CON = 0; /* Reset Timer 2 */

 IFS0bits.T2IF = 0; /* Reset Timer 2 interrupt flag */

IEC0bits.T2IE = 1; /* Enable Timer 2 interrupt */

 PR2 = 0x591E; /* Set Timer 2 period register to generate an interrupt for every 100ms

*/

 109

T2CONbits.TCS = 0; /* select external timer clock */

T2CON =0x8020; /* enable Timer 2 and start the count */

}

void SPIWrite(unsigned char data)

{

SPI1BUF = data; /* Tranfer data to SPI Buffer Register*/

while(SPI1STATbits.SPITBF); /*Wait until send buffer is ready for more data*/

}

unsigned char SPIRead(void)

{

unsigned char data;

if(SPI1STATbits.SPIRBF) /*Check if SPI Transmit Buffer is full*/

{

data = SPI1BUF; /*Don't initiate a read ;Read the existing data */

 SPI1STATbits.SPIROV = 0; /*Clear receive overflow flag bit*/

 return data;

 }

/* No data availabel, initiate a read*/

SPI1BUF = 0xFF; /*write dummy data to initiate an SPI read*/

 while(SPI1STATbits.SPITBF); /* wait until the data is finished reading*?

 data = SPI1BUF;

 SPI1STATbits.SPIROV = 0;

 return data;

}

 110

void SPI_Init(void)

{

 SD_PWR = 0; /*Turn OFF SD card Power*/

 SD_PWR_DIR = 0; /* Set pin RB1 direction to output*/

 SD_PWR = 0; /*Turn OFF SD card Power*/

 SD_CS = 1; /*Deactivate SD Card chip select */

 SD_CS_DIR = 0; /*Set pin RB3 direction to output*/

 SD_CS = 1; /*Deactivate SD Card chip select */

 SDI_DIR = 1; /*Set pin RF2 direction to input*/

 SCK_DIR = 1; /*Set pin RF6 direction to input*/

 SDO_DIR = 1; /*Set pin RF3 direction to input*/

 SPI1STAT = 0x8000; /*Enable SPI port*/

 // Configure SPI port

 // set SPI port to slowest setting

 // master mode

 // 8 bit

 // Idle state for Clock is high level

 // Primary prescaler 64:1

 // Secondary prescaler 8:1

 SPI1CON = 0x0060;

}

 111

unsigned char SD_WriteCommand(unsigned char* cmd)

{

unsigned int i;

unsigned char response;

unsigned char savedSD_CS = SD_CS;

/*Set the framing bits correctly*/

cmd[0] |= (1<<6);

cmd[0] &= ~(1<<7);

cmd[5] |= (1<<0);

/*Send the 6 byte command*/

SD_CS = 0;

for(i = 0; i < 6; ++i)

{

 SPIWrite(*cmd);

 cmd++;

}

/* Wait for the valid response*/

i = 0;

do

{

response = SPIRead();

if(i > 100)

 {

 112

 break;

 }

 i++;

} while(response == 0xFF);

SD_CS = 1;

/*Wait 8 clocks to process the command by SD card*/

SPIWrite(0xFF);

SD_CS = savedSD_CS;

return(response);

}

unsigned char SD_Init()/*Initiate SD Card*/

{

unsigned int i = 0;

unsigned char status;

SD_CS = 1; /*Deactivate SD Card chip select*/

SD_PWR = 0; /*Turn OFF SD card Power*/

/*Wait for power to go down*/

for(i = 0; i; i++);

for(i = 0; i; i++);

for(i = 0; i; i++);

for(i = 0; i; i++);

SD_PWR = 1; /*Turn on SD Card*/

 113

for(status = 0; status < 10; ++status) /*Wait for power to come up*/

 {

 for(i = 0; i; i++);

 for(i = 0; i; i++);

 for(i = 0; i; i++);

 for(i = 0; i; i++);

 }

for(i = 0; i < 16; ++i) /*We need to give SD Card about a hundred clock cycles to boot up*/

 {

 SPIWrite(0xFF); /*Write dummy data to pump clock signal line*/

 }

SD_CS = 0; /*Activate SD card chip select*/

unsigned char CMD0_GO_IDLE_STATE[] = {0x00,0x00,0x00,0x00,0x00,0x95};

/*Define GO IDLE STATE Command with a valid CRC*/

// Wait for the SD Card to go into IDLE state

i = 0;

do

{

status = SD_WriteCommand(CMD0_GO_IDLE_STATE);

 /*Send GO IDLE STATE Command SD card with a valid CRC*/

 if(i++ > 50) /*If response is not valid, try 50 times and give up */

 {return 1; }

 114

 } while(status != 0x01); /*Wait for valid response from SD card*/

unsigned char CMD1_SEND_OP_COND[] = {0x01,0x00,0x00,0x00,0x00,0xFF};

/*Define SEND OPERATING CONDITIONS command w/o valid CRC*/

i = 0;

do

 {

 status = SD_WriteCommand(CMD1_SEND_OP_COND);

/*Send SEND OPERATING CONDITIONS command to SD card*/

 if(i++ > 50) /*If response is not valid, try 50 times and give up */

 {return 2; }

} while((status & R1_IN_IDLE_STATE) != 0); /*Wait for IN IDLE STATE response

from SD card*/

unsigned char CMD55_APP_CMD[] = {55,0x00,0x00,0x00,0x00,0xFF};

/*Define Application Specific CMD55 command w/o valid CRC*/

status = SD_WriteCommand(CMD55_APP_CMD); /*Send Application Specific CMD55

command to SD card and ignore the response from SD card*/

i = 0;

unsigned char ACMD41_SD_SEND_OP_COND[] = {41,0x00,0x00,0x00,0x00,0xFF};

/*Define ACMD41 command to initialize SD Card mode w/o valid CRC*/

do

{

status = SD_WriteCommand(ACMD41_SD_SEND_OP_COND);

 115

/*Send ACMD41 command to SD Card*/

 if(i++ > 50) /*If response is not valid, try 50 times and give up */

 {return 3; }

 } while((status & R1_IN_IDLE_STATE) != 0);

/*Wait for IN IDLE STATE response from SD card*/

SD_CS = 1;/*Deactivate SD card chip select*/

return 0;

}

unsigned char SD_WriteBlock(unsigned long addr, unsigned char *buf)/*Write a 512 Data Buffer

Block to SD card*/

{

unsigned char response;

unsigned int i, retry=0;

unsigned char CMD24_WRITE_SINGLE_BLOCK[] = {24,0x00,0x00,0x00,0x00,0xFF};

/*Define WRITE SINGLE BLOCK command(CMD34) w/o valid CRC*/

CMD24_WRITE_SINGLE_BLOCK[1] = ((addr & 0xFF000000) >> 24);

/*Include address of the memory location on SD card in the command*/

CMD24_WRITE_SINGLE_BLOCK[2] = ((addr & 0x00FF0000) >> 16);

CMD24_WRITE_SINGLE_BLOCK[3] = ((addr & 0x0000FF00) >> 8);

CMD24_WRITE_SINGLE_BLOCK[4] = ((addr & 0x000000FF));

SD_CS = 0; /*Activate SD card chip select*/

response = SD_WriteCommand(CMD24_WRITE_SINGLE_BLOCK);

/*Send WRITE SINGLE BLOCK command(CMD34)to SD card*/

 116

if(response != 0x00) /*check for SD status: 0x00 - OK (No flags set)*/

return 1;

SPIWrite(0xFF);

SPIWrite(0xFE); /*Send start block token 0xfe (0x11111110)*/

for(i=0; i<512; i++) /*Send 512 bytes of Data*/

SPIWrite(buf[i]);

SPIWrite(0xff); //Transmit dummy CRC (16-bit), CRC is ignored here

SPIWrite(0xff);

i=0;

do /*Data response and busy response from card*/

{

response = SPIRead();

i++;

}while((response & 0x1f) != 0x05);

i=0;

while(!SPIRead()) /*wait for SD card to complete writing and get idle*/

{

i++;

if(retry++ > 0xfffe) /*If SD card is busy for very long time*/

 {

 SD_CS = 1; /*Deactivate SD card chip select*/

 return 1;

 117

 }

}

SD_CS = 1; /*Deactivate SD card chip select*/

SPIWrite(0xff); /*Wait 8 clock cycles*/

SD_CS = 0; /*Activate SD card chip select*/

//verify if card is still busy

while(!SPIRead()) //wait for SD card to complete writing and get idle

 {

 i++;

 if(retry++ > 0xfffe) /*If SD card is busy for very long time*/

 {

 SD_CS = 1; /*Deactivate SD card chip select*/

 return 1;

 }

 }

SD_CS = 1;/*Deactivate SD card chip select*/

return 0;

}

unsigned char buf[512];

unsigned int flag, freq[50],m=0;

long long int digit,div,time[50];

int FG_ON=1;

int main (void)

{

 118

 unsigned int i, j, x;

 unsigned int p;

 unsigned long y;

 unsigned char status;

 ADPCFG = 0xFFFF; // Force all ADC pins as digital I/O

 //Preprocessing of Data Buffer

 p = 0; //reset counter

 buf[0] ='T';

 buf[1]='i';

 buf[2]='m';

 buf[3]='e';

 buf[4]=0x09;

 buf[5]='F';

 buf[6]='r';

 buf[7]='e';

 buf[8]='q';

 buf[9]=0x20;

 buf[10]=0x0D;

 buf[11]=0x0A;

 p=12;

 // Configure output pins

 LED_DIR = 0;

 119

 LED = 1;

 y=28672;

 int n=0;

 FG_DIR= 0;

 FG=0;

while(1)

 {

 FG_ON=1;

 Init_Timer1();/*Turn ON Timer 1*/

 Init_Timer2();/*Turn ON Timer 2*/

 TMR2=0;

 TMR1=0;

 while(FG_ON==1)

 {

 FG=1;

 FG=1;

 FG=1;

 FG=1;

 FG=0;

 FG=0;

 FG=0;

 }

 120

 IEC0bits.T1IE = 0;

 IEC0bits.T2IE = 0;

if((flag==1)&(p<=497)&((m-n)>0)|((m==0)&(n==49)))

{

flag=0; /*Disable the permit to process information*/

/*Program to convert a Time number to its individual digits and store this data on to DATA

BUFFER*/

 div=1000000000;

 while(div>=1)

 {

 digit=time[n]/div; /*Divide the number by powers of ten*/

 digit=(digit%10); /*Digit is reminder when divided by ten*/

 if((digit !=0)|(flag==2)) /*Convert a number to individual digits*/

 {

flag=2; /*Check if zero is significant*/

 buf[p]=digit+0x30; /*Convert each digit to its corresponding ASCII

value*/

 p++; /*Increment the Data Buffer pointer*/

 }

 div/=10; /*Repeat for different powers of ten*/

 }

 flag=0; /*Disable the permit to process information*/

 buf[p]=0x09; /*Give as space between Time digit data and frequency digit data*/

 p++;

 div=10000; /*Increment the Data Buffer pointer*/

 121

/*Program to convert a Frequency number to its individual digits and store this data on to DATA

BUFFER; Repeat the above program again for Frequency*/

 while(div>=1)

 {

 digit=freq[n]/div;

 digit=(digit%10);

 if((digit !=0)|(flag==2))

 {

flag=2;//check for zeros

 buf[p]=digit+0x30;

 p++;

 }

 div/=10;

 }

 n++;

 if(n==50) /*Check if reading pointer is at bottom of the Data Table*/

 n=0;

 flag=0;

 buf[p]=0x0D; /*ASCII value of 'Enter' to go to next line*/

 p++;

 buf[p]=0x0A;

 p++;

 flag=0;

 if(p>497)

 {

 for(;p<510;p++)

 122

 buf[p]=0;

 buf[510]=0x0D;

 buf[511]=0x0A;

 p=0;

}

}

SPI_Init(); /*Initiate SPI perpherals of microcontroller*/

status = SD_Init(); /*Initiate Communication with SD card and get the status of SD

card */

do

{

 while(status) /*Wiat till SD card is ready for Data tranfer */

 {

 status = SD_Init();/*Initiate Communication with SD card and get the status of

SD card */

 LED = 0; /*Turn ON red LED in case of communication with SD card failed*/

 };

 status = SD_WriteBlock(y,buf);/*Write the 512 bytes block of data(Data Buffer)to SD

Card at the memory location y and get status of SD card*/

 } while(status); /*If failed to write try till Data Buffer Block is written*/

y+=512; /*Increment the Adress location on SD card by 512 to write next 512

bytes of data to it*/

}

}

 123

i=0;

while(i <= 40)

 {

 LED = i & 1;

 for(j = 0; j < 40000; ++j);

 i++;

 }

}

 return 0;

}

void __attribute__((interrupt)) _T2Interrupt(void)

{

freq[m]=(TMR1*10); /* Frequency = 10 x number of pulses counted ; Record Frequency on

Frequency Buffer*/

TMR1=0; /* Reset Counter */

if(m==0) /* If Time Buffer is full, record time on the top of Time Buffer */

{

 time[0]=time[49]+1;

 }

if(m!=0) /* If Time buffer is not full,record time in the next row of Time buffer */

 {

 time[m]=time[m-1]+1;

 }

m++; /* Increament the pointer of the table to next row*/

 124

if(m==50) /* If table is full, go to top of the table */

 {

 m=0;

 }

flag=1; /* Permit the main program to process the recorded hexadecimal information */

IFS0bits.T2IF = 0; /* Reset Timer 1 interrupt flag */

FG_ON=0; /*Turn OFF Frequency Generator*/

}

Code 10: Sensor position detect and Battery charge indicator

Interrupt routine Code:

void __attribute__((interrupt)) _T2Interrupt(void)

{

freq[m]=(TMR1*10); /* Frequency = 10 x number of pulses counted ; Record Frequency

on Frequency Buffer*/

TMR1=0; /* Reset Counter */

LED=0;

If(freq[m]>12000) /*Sensor Position detect*/

 {

 LED=1;

return;

}

If(freq[m]<6000) /*Battery outage detect*/

 {

 LED=1;

return;

 125

}

if(m==0) /* If Time Buffer is full, record time on the top of Time Buffer */

{time[0]=time[49]+1;}

if(m!=0) /* If Time buffer is not full, record time in the next row of Time buffer */

{time[m]=time[m-1]+1;}

m++; /* Increment the pointer of the table to next row*/

if(m==50) /* If table is full, go to top of the table */

 {m=0; }

flag=1; /* Permit the main program to process the recorded information */

IFS0bits.T2IF = 0; /* Reset Timer 1 interrupt flag */

}

Code 11:

void SPI_Init(void)

{

 SD_PWR = 0; /*Turn OFF SD card Power*/

 SD_PWR_DIR = 0; /* Set pin RB1 direction to output*/

 SD_PWR = 0; /*Turn OFF SD card Power*/

 SD_CS = 1; /*Deactivate SD Card chip select */

 SD_CS_DIR = 0; /*Set pin RB3 direction to output*/

 SD_CS = 1; /*Deactivate SD Card chip select */

 SDI_DIR = 1; /*Set pin RF2 direction to input*/

 SCK_DIR = 1; /*Set pin RF6 direction to input*/

 SDO_DIR = 1; /*Set pin RF3 direction to input*/

 SPI1STAT = 0x8000; /*Enable SPI port*/

 // Configure SPI port

 // set SPI port to slowest setting

 126

 // master mode

 // 8 bit

 // Idle state for Clock is high level

 // Primary prescaler 64:1

 // Secondary prescaler 8:1

 SPI1CON = 0x0060;

}

Code 12: Write a byte of Data to SD card in SPI mode

void SPIWrite(unsigned char data)

{

SPI1BUF = data; /* Tranfer data to SPI Buffer Register*/

while(SPI1STATbits.SPITBF); /*Wait until send buffer is ready for more data*/

}

Code13: Read a byte of Data from SD card in SPI mode

unsigned char SPIRead(void)

{

unsigned char data;

if(SPI1STATbits.SPIRBF) /*Check if SPI Transmit Buffer is full*/

{

data = SPI1BUF; /*Don't initiate a read ;Read the existing data */

 SPI1STATbits.SPIROV = 0; /*Clear receive overflow flag bit*/

 return data;

 }

/* No data availabel, initiate a read*/

 127

SPI1BUF = 0xFF; /*write dummy data to initiate an SPI read*/

 while(SPI1STATbits.SPITBF); /* wait until the data is finished reading*?

 data = SPI1BUF;

 SPI1STATbits.SPIROV = 0;

 return data;

}

Code 14: Program to Write a command to SD card

unsigned char SD_WriteCommand(unsigned char* cmd)

{

unsigned int i;

unsigned char response;

unsigned char savedSD_CS = SD_CS;

/*Set the framing bits correctly*/

cmd[0] |= (1<<6);

cmd[0] &= ~(1<<7);

cmd[5] |= (1<<0);

/*Send the 6 byte command*/

SD_CS = 0;

for(i = 0; i < 6; ++i)

{

 SPIWrite(*cmd);

 cmd++;

}

 128

/* Wait for the valid response*/

i = 0;

do

{

response = SPIRead();

 if(i > 100)

 {

 break;

 }

 i++;

} while(response == 0xFF);

SD_CS = 1;

/*Wait 8 clocks to process the command by SD card*/

SPIWrite(0xFF);

SD_CS = savedSD_CS;

return(response);

}

Code 15: R1 Response format bit definitions

#define R1_IN_IDLE_STATE (1<<0)

#define R1_ERASE_RESET (1<<1)

#define R1_ILLEGAL_COMMAND (1<<2)

#define R1_COM_CRC_ERROR (1<<3)

#define R1_ERASE_SEQ_ERROR (1<<4)

 129

#define R1_ADDRESS_ERROR (1<<5)

#define R1_PARAMETER (1<<6)

Code 16: SD card initiation in SPI mode

unsigned char SD_Init()/*Initiate SD Card*/

{

unsigned int i = 0;

unsigned char status;

SD_CS = 1; /*Deactivate SD Card chip select*/

SD_PWR = 0; /*Turn OFF SD card Power*/

/*Wait for power to go down*/

for(i = 0; i; i++);

for(i = 0; i; i++);

for(i = 0; i; i++);

for(i = 0; i; i++);

SD_PWR = 1; /*Turn on SD Card*/

for(status = 0; status < 10; ++status) /*Wait for power to come up*/

 {

 for(i = 0; i; i++);

 for(i = 0; i; i++);

 for(i = 0; i; i++);

 for(i = 0; i; i++);

 }

 130

for(i = 0; i < 16; ++i) /*We need to give SD Card about a hundred clock cycles to boot up*/

 {

 SPIWrite(0xFF); /*Write dummy data to pump clock signal line*/

 }

SD_CS = 0; /*Activate SD card chip select*/

unsigned char CMD0_GO_IDLE_STATE[] = {0x00,0x00,0x00,0x00,0x00,0x95};

/*Define GO IDLE STATE Command with a valid CRC*/

// Wait for the SD Card to go into IDLE state

i = 0;

do

{

status = SD_WriteCommand(CMD0_GO_IDLE_STATE);

 /*Send GO IDLE STATE Command SD card with a valid CRC*/

 if(i++ > 50) /*If response is not valid, try 50 times and give up */

 {return 1; }

 } while(status != 0x01); /*Wait for valid response from SD card*/

unsigned char CMD1_SEND_OP_COND[] = {0x01,0x00,0x00,0x00,0x00,0xFF};

/*Define SEND OPERATING CONDITIONS command w/o valid CRC*/

i = 0;

do

 {

 131

 status = SD_WriteCommand(CMD1_SEND_OP_COND);

/*Send SEND OPERATING CONDITIONS command to SD card*/

 if(i++ > 50) /*If response is not valid, try 50 times and give up */

 {return 2; }

 } while((status & R1_IN_IDLE_STATE) != 0); /*Wait for IN IDLE STATE response

from SD card*/

unsigned char CMD55_APP_CMD[] = {55,0x00,0x00,0x00,0x00,0xFF};

/*Define Application Specific CMD55 command w/o valid CRC*/

status = SD_WriteCommand(CMD55_APP_CMD); /*Send Application Specific CMD55

command to SD card and ignore the response from SD card*/

i = 0;

unsigned char ACMD41_SD_SEND_OP_COND[] = {41,0x00,0x00,0x00,0x00,0xFF};

/*Define ACMD41 command to initialize SD Card mode w/o valid CRC*/

do

{

status = SD_WriteCommand(ACMD41_SD_SEND_OP_COND);

/*Send ACMD41 command to SD Card*/

 if(i++ > 50) /*If response is not valid, try 50 times and give up */

 {return 3; }

 } while((status & R1_IN_IDLE_STATE) != 0);

/*Wait for IN IDLE STATE response from SD card*/

SD_CS = 1;/*Deactivate SD card chip select*/

return 0;

 132

}

Code 17: Write a 512 bytes data block to SD card

unsigned char SD_WriteBlock(unsigned long addr, unsigned char *buf)/*Write a 512 Data Buffer

Block to SD card*/

{

unsigned char response;

unsigned int i, retry=0;

unsigned char CMD24_WRITE_SINGLE_BLOCK[] = {24,0x00,0x00,0x00,0x00,0xFF};

/*Define WRITE SINGLE BLOCK command(CMD34) w/o valid CRC*/

CMD24_WRITE_SINGLE_BLOCK[1] = ((addr & 0xFF000000) >> 24);

/*Include address of the memory location on SD card in the command*/

CMD24_WRITE_SINGLE_BLOCK[2] = ((addr & 0x00FF0000) >> 16);

CMD24_WRITE_SINGLE_BLOCK[3] = ((addr & 0x0000FF00) >> 8);

CMD24_WRITE_SINGLE_BLOCK[4] = ((addr & 0x000000FF));

SD_CS = 0; /*Activate SD card chip select*/

response = SD_WriteCommand(CMD24_WRITE_SINGLE_BLOCK);

/*Send WRITE SINGLE BLOCK command(CMD34)to SD card*/

if(response != 0x00) /*check for SD status: 0x00 - OK (No flags set)*/

return 1;

SPIWrite(0xFF);

SPIWrite(0xFE); /*Send start block token 0xfe (0x11111110)*/

for(i=0; i<512; i++) /*Send 512 bytes of Data*/

 133

SPIWrite(buf[i]);

SPIWrite(0xff); //Transmit dummy CRC (16-bit), CRC is ignored here

SPIWrite(0xff);

i=0;

do /*Data response and busy response from card*/

{

response = SPIRead();

i++;

}while((response & 0x1f) != 0x05);

i=0;

while(!SPIRead()) /*wait for SD card to complete writing and get idle*/

{

i++;

if(retry++ > 0xfffe) /*If SD card is busy for very long time*/

 {

 SD_CS = 1; /*Deactivate SD card chip select*/

 return 1;

 }

}

SD_CS = 1; /*Deactivate SD card chip select*/

SPIWrite(0xff); /*Wait 8 clock cycles*/

SD_CS = 0; /*Activate SD card chip select*/

//verify if card is still busy

while(!SPIRead()) //wait for SD card to complete writing and get idle

 134

 {

 i++;

 if(retry++ > 0xfffe) /*If SD card is busy for very long time*/

 {

 SD_CS = 1; /*Deactivate SD card chip select*/

 return 1;

 }

 }

SD_CS = 1;/*Deactivate SD card chip select*/

return 0;

}.

 135

APPENDIX B

IRF510 MOSFET DATASHEET

 136

 137

138

REFERENCES

[1.1] T. Starner and D. Ashbrook, ―Augmenting a pH medical study with wearable video for

treatment of GERD,‖ IEEE Eighth International Symposium on Wearable Computers ISWC

2004, Vol.1, pp.194-195, 2004.

[1.2] Nihal Fatma Guler and Elif Derya Ubeyli, ―Theory and Applications of Biotelemetry ,‖

Journal of Medical Systems, Vol. 26, No. 2, April 2002.

[1.3] Y. Lee and P. Sorrells, Passive RFID basics, Application Note AN680, Microchip

Technology Inc., 2001.

 [1.4] M. Ghovanloo and K. Najafi, ―A fully digital frequency shift keying demodulator chip for

wireless biomedical implants,‖ IEEE Southwest Symposium on Mixed-Signal Design 2003,

pp.223–227, 2003.

[1.5] Thermpon Ativanichayaphong, "Wireless Devices For Medical Applications", Phd

Dissertion, The University Of Texas At Arlington, December 2007

[1.5] M. Ghovanloo and K. Najafi, ―A fully digital frequency shift keying demodulator chip for

wireless biomedical implants,‖ IEEE Southwest Symposium on Mixed-Signal Design 2003,

pp.223–227, 2003.

[1.6] Thermpon Ativanichayaphong, Wen-Ding Huang, Jianqun Wang, Smitha M.N. Rao, H.F.

Tibbals, Shou-Jiang Tang, Stuart Spechler, H. Stephanou and J.-C. Chiao, ―An Implantable

Wireless Impedance Sensor Capable of Distinguishing Air, Water and Acid in

Gastroesophageal Reflux,‖ Digestive Disease Week 2007, Washington DC, May 19 -24, 2007.

[1.7] Thermpon Ativanichayaphong, Wen-Ding Huang, Jianqun Wang, Smitha M.N. Rao, H.F.

Tibbals, Shou-Jiang Tang, Stuart Spechler, H. Stephanou and J.-C. Chiao, ―A Wireless Sensor

for Detecting Gastroesophageal Reflux,‖ SPIE International Smart Materials, Nano - & Micro-

139

Smart Systems Symposium, Biomedical Applications of Micro- and Nanoengineering

Conference, Adelaide, Australia, Dec.10-13 2006.

[1.8] Thermpon Ativanichayaphong, Shou Jiang Tang, Jianqun Wang, Wen-Ding Huang, Harry

F. Tibbals, Stuart J. Spechler, J.-C. Chiao, ―An Implantable, Wireless and Batteryless

Impedance Sensor Capsule for Detecting Acidic and Non-Acidic Reflux,‖ Gastroenterology, Vol.

134, No. 4, pp. A-63, 2008.

 [1.10] Y. Yao, S. Yin and F. Dai, ―A novel low-power input -independent MOS AC/DC charge

pump,‖ IEEE International Symposium on Circuits and Systems, Vol.1, pp.380-383, 2005.

 [1.10] Sample, A.P.; Yeager, D.J.; Powledge, P.S.; Smith, J.R.;"Design of a Passively-

Powered, Programmable Sensing Plat form for UHF RFID Systems," IEEE International

Conference on 26-28 March 2007, Page(s):149 - 156.

[1.11] Wen-Ding Huang, Jianqun Wang, Thermpon Ativanichayaphong, Lun-Chen Hsu,

Sanchali Deb, Mu Chiao and J.C. Chiao,―Investigation of Repeatability of Sol-Gel Iridium Oxide

pH Sensor on Flexible Substrate,‖ SPIE Proceedings Vol. 7269, Smart Materials, Nano+Micro -

Smart Systems Symposium, Micro- and Nanotechnology: Materials, Processes, Packaging, and

Systems Conference, Melbourne, Australia, Dec. 9–12, 2008.

[1.12] E. Haile and J. Lepkowski, Oscillator Circuits for RTD Temperature Sensors, Application

note AN895, Microchip Technology Inc., 2004.

[1.13] Lun-Chen Hsu, Wen-Ding Huang, Hung Cao, Sanchali Deb, J-C. Chiao, ―Integrated Dual

Sensors in a Batteryless Wireless Capsule‖, BMES Biomedical Engineering Society Annual Fall

Scientific Meeting, Pittsburgh, PA, October 7-10, 2009.

 [1.14] Wen-Ding Huang, Jiquan Wang, Thermpon Ativanichayaphong, Lun -Chen Hsu, Mu

Chiao and J.-C. Chiao, ―Progress Report on Flexible Metal-Oxide pH Sensors,‖ BMES 2008,

Biomedical Engineering Society Annual Meeting, St. Louis, Oct. 1–4 2008.

[1.15] K. Finkenzeller, RFID handbook: fundamentals and applications in contactless smart

cards and identification, Chichester, England, New York: Wiley; 2003.

140

[2.1] Y. Lee, Antenna Circuit Design for RFID Applications, Application Note AN710, Microchip

Technology Inc., 2001.

[2.2] N. O. Sokal and A. D. Sokal, ―Class E—A New Class of High-Efficiency Tuned Single-

Ended Switching Power Amplifiers,‖ IEEE Journal of Solid-State Circuits, Vol SC-10, No. 3, pp

168-176, June 1975.

[2.3] Tiaotiao Xie,"Design and Development of the Class E RF Power Amplifier Prototype by

Using a Power MOSFET,"Technical Report, CReSIS TR 129.

[2.4] Nathan O. Sokal, ―Class-E High-Efficiency Power Amplifiers, from HF to Microwave,‖

Proceedings of the IEEE International Microwave Symposium, June 1998, Baltimore

[2.5] Nathan O. Sokal, ―Class- E Switching-Mode High-Efficiency Tuned RF Microwave Power

Amplifier: Improved Design Equations, ‖Proceedings of the IEEE International Microwave

Symposium, June 2000, Boston.

[2.6] W. A. Davis and K. K. Agarwal, Text Book: Radio Frequency Circuit Design John Wiley,

New York, 2001.

[2.7] W.Aerts, E.De Mulder,B.Preneel, Vandenbosch, G.; Verbauwhede, I.; Dependence of

RFID Reader Antenna Design on Read Out Distance, IEEE Transactions On Antennas And

Propagation, Vol. 56, No. 12, December 2008.

[2.8] microID® 13.56MHz RFID System Design Guide, Microchip Technology Inc.,2004.

[2.9] Gao Tongqiang, Zhang Chun, Chi Baoyong, and Wang Zhihua, ―Design and analysis of a

highly-integrated CMOS power amplifier for RFID readers,‖ Journal of Semiconductors, Vol. 30,

No. 6, pp. 065008-1-5, June 2009.

[6.1] S. Castillo, N. K. Samala, K. Manwaring, B. Izadi and D. Radhakrishnan,‖ Experimental

Analysis of Batteries under Continuous and Intermittent Operations ,‖ Proceedings of the

International Conference on Embedded Systems and Applications, pp. 18 – 24, June 2004.

141

BIOGRAPHICAL INFORMATION

Sandeep Battula was born in Andhra Pradesh, India. He received his Bachelors of

Engineering in Electrical Engineering from Osmania University, Hyderabad, India in May 2007.

He received his Master of Science in Electrical Engineering from The University of Texas at

Arlington in August 2007. He worked as IEEE Mentor for Power Systems and Electronics at The

University of Texas at Arlington from Sept. 2008 to Sept. 2009. His research interests include

Circuit Designing for Micro-Medical Devices and Biotelemetry.

