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ABSTRACT         

 SIGNAL PROCESSING TECHNIQUES FOR ARTIFACT  

REMOVAL IN ELECTROENCEPHALOGRAM  

(EEG) 

Jyoti Bhat, M.S. 

The University of Texas at Arlington, 2009 

 

Supervising Professor: Dr. Thomas Ferree 

The electroencephalographic recordings measure the electric impulses generated in the brain, in 

response to a given stimulus.  The spontaneous EEG data is used for diagnosis and treatment of some brain 

diseases.  For the data to be used for clinical applications, it needs to be free of the various artifacts like the 

eye blinks, movement, head movements and muscle activity.  These artifacts need to be corrected or the 

affected parts need to be removed in the preprocessing of the EEG dataset.  This pre-processing is normally 

done manually, which tends to be not only time-consuming but also subjective.  With large number of 

datasets to be analyzed, it is necessary to have uniformity in the analysis. Uniformity, reproducibility and 

reliability in the preprocessed data can be obtained if a statistical approach is taken while preprocessing the 

datasets.  Ideally, this can be semi- or fully- automated.  This approach therefore, needs to be taken while 

removing the less frequently occurring artifacts and correcting the more frequently occurring artifacts, so as 

to retain more complete datasets for further research or clinical purposes.   
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This thesis covers the entire span of EEG data preprocessing and data quality assurance.  It 

emphasizes the correction of eye blink artifact, one of the most frequently occurring artifacts.  The spatial 

filter method, which makes use of the underlying brain activity data segment while computing its filter 

coefficients, is introduced as an effective approach for correcting ocular artifacts.  This spatial filter 

described is based on the spatial distribution of the eye blink over the entire scalp region.  In order to detect 

and reject subtle artifact, a novel set of signal attributes are proposed that describe the head movements, 

horizontal eye movements, and spurious bad electrodes.  The resultant data obtained after the pre-

processing steps are clean, i.e. free of artifact contamination free.   

In order to quantify the results, data was visually inspected after each step of EEG data 

preprocessing.  Instances of the artifacts in each step were visually identified before and after 

preprocessing.  The results of the visual inspection done by an expert in EEG data analysis were then 

validated with the results obtained from the automated preprocessing method developed.  The results 

obtained by manual as well as semi-automated preprocessing method matched perfectly, with the semi-

automated method not only taking less time for computations but also increases the reproducibility of the 

data. 
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CHAPTER 1  

INTRODUCTION 

Neurons in the brain are electrically active cells.  When activated these neurons generate action 

potentials.  The action potential travelling down the axon, releases chemical neurotransmitters at the 

synapse.  With the release of the chemical neurotransmitters at the synapse, activation of the chemical 

neuroreceptors located on the dendrite of the post-synaptic neuron is observed.  This generates a post-

synaptic potential at the synapse.  Electrodes when placed on the scalp of the subject record a spatial 

average of these post-synaptic potentials.  The recorded signal is known as the electroencephalogram 

(EEG).  Derived measures of EEG activity are informative biomarkers for brain activity [1].  The electrical 

fluctuations in the brain are generally in the range of ±50 micro volts, µV [2].  The acquired EEG data 

needs to be preprocessed before it could use it for clinical purposes. 

Preprocessing of the EEG data is mainly required to eliminate the artifact signals which, are 

acquired along with the EEG signal.  The most damaging artifacts are those seen with the largest change in 

the amplitude of the recorded EEG signal.  Artifact signals in the data are usually assumed to be 

uncorrelated with the signal of interest i.e. the EEG signal.  

This work describes a preprocessing protocol that removes the artifacts in a semi-automated 

manner.  The focus of this work is removal of the eye blink artifact from the EEG dataset using the spatial 

filter technique with preservation of clean EEG.  We would look at removing the gross artifacts in the 

Chapter 2.  We will then look at the algorithm for removing the eye blink artifact in the Chapter 3.  In 
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Chapter 4, we would look at removing the subtle artifacts from the data.  The semi-automated artifact 

removal algorithm is developed in MATLAB (R2007b, The MathWorks, USA).   

 

1.1 Artifacts 

Contamination of the EEG signal at the various time points is seen while the EEG data is being 

acquired.  Artifacts are defined as any signal whose source is extraneous to the brain.  The artifacts in an 

EEG dataset can be broadly classified into two categories, namely, physiological artifacts and              

extra-physiological artifacts.  Physiological artifacts are generated from sources in the patient’s body while, 

extra-physiological artifacts are generated by sources outside the patient’s body.  The different types of 

artifacts that are commonly seen are as follows: 

 

1.1.1 Ocular Artifacts 

‘The human eye is a seat of steady electric potential field’ [3].  To use the battery analogy, the 

positive terminal for the human eye resides in the cornea while the retina acts like the negative terminal.  

As a result of this electric field, the eye movement or the eye blink causes a change in the electric fields.  

The electric potential recorded because of the eye movement or the eye blink is known as the electro-

oculogram (EOG).  This signal can be recorded with the help of peri-orbital electrodes placed near the eyes.  

The vertical EOG electrodes (VEOG) electrodes placed above and below the orbit of the eyes record 

change in the potential caused by the vertical eye movements and the eye blinks [3 and 4].  The horizontal 

EOG electrodes (HEOG) placed in the left and right outer canthi of the eyes record the change in the 

potential due to horizontal eye movements [3 and 4]. 

The voltage difference generated due an eye blink or movement is large compared to the voltage 

in the EEG electrodes.  This is due to volume conduction effect seen in these underlying tissues.  These 

large potentials contaminated the EEG electrodes in a way that the voltage at these electrodes falls of 
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roughly as the square of the distance from the eyes [4].  Hence the frontal electrodes are largely affected by 

the vertical eye movements and eye blinks.  Away from the eyes the amount of contamination reduces.  

Hence, the occipital electrodes are comparatively less affected by the eye blink artifact and the vertical eye 

movement artifact.  The horizontal eye movements are propagated more in the temporal electrodes and are 

negligible in the other electrodes [5].  The  Figure 1.1 shows the contamination of EEG electrodes due to 

ocular artifact in red blocks.  The contamination due to vertical eye movements and eye blinks is largely 

seen in frontal electrodes and that due to horizontal eye movements is seen in temporal electrodes.  

 

 

 Figure 1.1: Contamination due to ocular artifacts (marked by red blocks)  

While this clearly illustrates EOG contamination in EEG, it is also the case that the EEG potential 

contaminates the EOG electrodes.  This effect needs to be considered while developing algorithms to 

remove the contamination caused by this type of artifact in the EEG signal [4].   
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1.1.2 Muscle Artifact 

Muscle contraction is observed when the subject is either anxious or not relaxed.  The muscle 

contraction generates a high frequency signal, which is commonly known as the electromyogram (EMG).  

The amount of contamination depends on the amount of muscle activity. The contamination due to this 

artifact is seen in electrodes that are placed directly on the muscles.  This activity is frequently seen in the 

temporal electrodes. The frontal electrodes also show contamination due to this artifact if the muscles on 

the forehead are not in a relaxed state.  The red block in the Figure 1.2 below shows EMG artifact 

contamination in all the channels.  

 

 

Figure 1.2: Contamination due to muscle artifact 
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1.1.3 ECG/EKG Artifact 

ECG artifact is induced in EEG because of the ECG signal produced by the heart. The R-wave of 

the ECG has high amplitude as compared to other ECG wave components.  The ECG artifact 

contamination is of relatively small amplitude.  The ECG artifact contamination is normally seen in 

subjects with short and wide necks [5].  This artifact is normally seen in the mastoids M1 and M2.  The red 

blocks shown in Figure 1.3 below show the artifact contamination in the EEG signal due to EKG. 

 

 

Figure 1.3: Contamination due to ECG artifact 
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1.1.4 Sixty Hz Line Interference 

This artifact is caused due to interference of 60 Hz line frequency in the EEG data set. The strong 

signals generated due to A/C power supplies kept very close to the EEG data acquisition amplifiers cause 

the 60 Hz line frequency to interfere with the EEG data.  This artifact can contaminate a single electrode or 

all electrodes.  The contamination of the dataset due to this artifact depends on the source of the problem 

[5, 6 and 7].  This artifact can be easily filtered out using a simple notch filter.  Normally, the notch filter 

cut-off frequency is set to 60 ± 2 Hz.   Figure 1.4 below shows electrode P8 is contaminated by the 60 Hz 

line interference. 

 

 

Figure 1.4: Contamination due to 60 Hz line interference 
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1.1.5 Change in Electrode Impedance 

Improper contact between the EEG electrodes and scalp causes a change in the impedance of that 

electrode.  A sudden change in the sponge position might cause a change in electrical contact, thereby 

changing the impedance during recording [5, 6 and 7].  Figure 1.5 shows that impedance of the electrode 

TP8 changing during the recording.  Such an electrode records predominantly noise.  

 

 

Figure 1.5: Change in electrode impedance seen 

 

Other artifacts that are rarely seen are the pulse artifact, respiration artifact and skin artifact.  The 

pulse artifact is seen if any EEG electrode is placed over a pulsating vessel. The respiration artifact is 

normally seen in sleep studies where the subject is lying down.  The effect of the respiration artifact in EEG 
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data is seen as slow or sharp pulses which are in synchronization with inhalation or exhalation.  The skin 

artifacts are seen if the scalp of the subject perspires.  Sweat on the scalp then causes change in the 

impedances [5 and 7]. 

 

1.2 Need for Automatic Artifact Removal Process 

As discussed in the above section a number of artifacts contaminating the EEG data affects the 

data analysis.  Precise screening of the EEG data is required for accurate spatial mapping, for source signal 

analysis, for current density measures and also for accurate temporal analysis based on single - trial 

methods [8]. The frequency of occurrence of few artifacts is large and some of the artifact contaminations 

cannot be avoided.  Techniques need to be developed which will help remove these artifacts from the EEG 

data.  Some of these artifacts can be treated by rejecting contaminated parts of the data while for other 

artifacts filtering techniques are developed.  Rejecting data segments contaminated by the artifacts reduces 

the amount of data available for further analysis.  If the amount of data to be analyzed is vast then, it is very 

difficult to manually clean such large amount of datasets for artifact removal.  This increases manpower 

time and labor.  The process of preprocessing thus becomes very subjective and hence there is no 

repeatability in the results of this type of preprocessing [9 and 10].  Hence statistical analysis needs to be 

used for artifact removal.    

Some artifacts like the 60 Hz line interference can be easily removed using a notch filter technique 

[7].  The electrodes that do record artifacts due to changes in the electrode impedance can be detected and 

rejected automatically using some characteristics like the first derivative of the signal over time, etc [8].  

Other artifacts like the ocular artifacts can be removed using different filtering techniques or segments 

affected can be removed from further analysis.  A systematic, automatic or semi-automatic and statistics 

based method needs to be developed which will help remove the contaminations in the EEG data [9].     
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1.3 Preprocessing Steps 

After the EEG data acquisition is completed, the offline EEG data preprocessing starts with 

filtering the data.  In filtering the dataset helps remove the unwanted high frequencies from the data.  The 

acquired data is high pass filtered at a frequency of 0.15Hz and 12dB/octave.  This filtering step removes 

and detrends the low frequency drifts, below the range of frequencies normally studied (typically 1Hz-

45Hz) further in the EEG analysis. 

The overall approach to this work is to characterize each artifact by its temporal characteristics 

and/or spatial characteristics and use those to design a procedure which would help eliminate as many 

artifacts as possible.  The common steps that are followed during preprocessing of EEG data are: 

1.3.1 Gross Artifact Removal 

The gross contaminated channels and data segments are removed in this step.  The electrodes or 

segments of data that are removed are the electrodes and data segments which appear much larger to the 

eye blink artifact contamination and which would affect the EOG artifact removal.  These electrodes or 

data segments overshadow the rest of the artifacts present in the EEG data and are rejected from the further 

analysis by any EEG experimenter. 

1.3.2 EOG Artifact Removal 

The EOG artifact i.e. eye blinks and vertical eye movements affect the data largely.  Rejection of 

the data affected by this artifact would result in considerable loss of the data and hence, various techniques 

have been devised for correction of this artifact.  A new technique which makes use of the background 

artifact free EEG data while computing the filter coefficients is discussed in detail in this work.  After 

removal of the EOG artifact the subtle artifacts become more evident.   



 

10 

 

1.3.3 Subtle Artifact Removal 

After the EOG algorithm, remaining artifacts include horizontal eye movements, muscle artifacts, 

head movements which are seen as drifts in the data, etc.  Together these are the called subtle artifacts, 

because they are not as prominent as those discussed previously, but they can still affect subsequent 

spectral analysis and hence must be removed from the data.  

 This is the last step of preprocessing.  The data then obtained is artifact free and hence can be 

easily used for doing the further spectral analysis or for clinical purposes.  

 

1.4 Statement of the Problem 

The primary goal of this work is to design and develop an automated/ semi-automated algorithm 

for artifact removal.  In order to do this with maximum flexibility, algorithms were developed in Matlab.  

The EEGLAB Toolbox was used to read in data, so most functions were written to operate on the EEGLAB 

data structure.  The entire preprocessing algorithm discussed in the section 1.3 was implemented in Matlab.  

Our implementation of the ocular artifact filtering algorithm in Matlab was validated against the 

implementation in Scan Edit (NeuroScan, Inc.) and was then used for further studies of sensitivity to 

analysis parameters, etc. 

 



 

11 

 

CHAPTER 2  

GROSS ARTIFACT REMOVAL 

The presence of artifacts in an EEG dataset is seen as a large change in the amplitude of the 

recorded EEG signal.  The gross artifacts are seen in one or more particular electrodes and/or throughout 

some temporal segments of the EEG data segment.  The 0.15 Hz high-pass filter affects the first few and 

the last few seconds of the data, and is discarded.  Other artifacts present at this point in the data pipeline 

are easily identified by their amplitudes, and their automated – detection and rejection proceeds on these 

grounds.  

 

2.1 Method  

2.1.1 Participants 

Our lab has analyzed on the order of 100 datasets, using the methods discussed herein.  In order to 

test and quantify the effectiveness of our algorithms, data were acquired from 60 male subjects recruited for 

the Gulf War Illness and Chemical Exposure study program at the University of Texas Southwestern 

Medical Center at Dallas.  Subjects participated in a wide range of experiments, including different neuro-

imaging modalities.  EEG data collected as part of this large program is used to test the effectiveness of the 

algorithms.  A written consent was obtained from each subject participating in this study according to the 

Institutional Review Board University of Texas Southwestern Medical Center at Dallas.  
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2.1.2 Data Acquisition 

Continuous EEG data were acquired using a 64-channel Quickcap and Neuroscan SynAmps2 

amplifier (Compumedics, Inc.).  The Scan Acquire 4.3 software (Compumedics, Inc.) sampled the EEG at 

1 kHz, and hardware filtered at 200 Hz.  Impedances of all the electrodes were kept below typically 10 kΩ. 

Vertical eye movements and eye blinks were recorded with electrodes placed above and below the orbit of 

the left eye. Horizontal eye movements were recorded with electrodes placed at the left and right outer 

canthi of the eyes [4].  The subject was instructed to stay relaxed to reduce muscle artifact contamination.  

Datasets were acquired in alternating eyes open eyes closed conditions.  Duration for each condition was 

about 1minute.  Five trials for each condition were acquired, thus making the entire duration of the EEG 

dataset about 10 minutes.  This acquired data were high pass finite impulse response (FIR) filtered in Scan 

Edit 4.3 (Compumedics, Inc.).  The filter used had cut-off frequency 0.15 Hz and slope 12 dB/octave. 

 

2.2 Data Segments 

The effects of filtering are seen as huge drifts at the beginning and end of the dataset.  In most 

studies, the number of data segments to be removed from the analysis is subjective decision.  The goal of 

this work is develop an automated or semi-automated method to render this decision more objective and 

based on clear statistical tests. 

  

2.2.1 Signal Attributes 

In preparation for spectral analysis, the entire data length was divided into 1-second data 

segments. The effect of the filter varies across electrodes and across subjects.  The root mean square (RMS) 

voltage indicates the rate at which voltage of that electrode varies over the length of the data segment [11].  

The RMS value for each electrode each data segment was calculated using the following formula: 
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where, ),( ecσ  is the RMS voltage of the electrode c, in the data segment e; t is the time points in that data 

segment; t1 is the total number of time points in the data segment = 1 second/Sampling Time = 1 second /1 

milliseconds = 1000.  To obtain a single number representing the amount of contamination in all the 

electrodes, for each data segment, a mean value of these RMS values across all the electrodes was 

computed: 
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    ---- Equation 2 

where eV  is the mean of the RMS voltage across all the electrodes for the data segment e; ),( ecσ is the 

RMS voltage of the electrode c in the data segment e; N is the total number of EEG electrodes.  The larger 

the mean values of the data segments more is the contamination due to the filter.  In order to determine the 

exact number of data segments that are affected by the filter the rate at which these mean values change is 

computed.  The rate at which these means change across the data segments is then computed by taking the 

first derivative of these means, V ′  and can be obtained using the following formula: 
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de

Vd
V e=′      ---- Equation 3 

As mentioned earlier, the effect of the filter on each electrode is different.  By computing the mean for each 

epoch, a single value characteristic to each epoch was obtained.  The rate at which these means change over 

epochs will thus, indicate the gradual decrease or increase of the effect of the filter on the data.  In order to 

statistically determine the exact number of segments affected by the filter, these V ′  act as an input to the 

statistical test used. 

 

2.2.2 Statistical Test 

To statistically determine the number of segments to be rejected from the analysis, intuition might 

suggest defining outliers as segments when the rate at which the mean of the RMS value changes say 3 

standard deviations above the mean.  The presence of outliers, however, causes the standard deviation to be 

over-estimated, and highly dependent upon the tails.  Instead, the Mean/Median Absolute Deviation 

(MAD) Test was used [12].  For normal data, MAD is simply related to the standard deviation, which aids 

intuition when choosing a statistical cut-off. Technically speaking, MAD can be defined in terms of either 

the mean or the median.  In order to limit sensitivity to outliers the median was used. 

The absolute deviation of the first derivative eV ′  from the median value, Ye, is obtained from the 

following formula [12]: 

eee YVD −′=      ---- Equation 4 

where, De is the absolute deviation of the data segment e, from the median value, Ye.  The boundary values, 

Lim, for this test are computed using the following formula 
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ee XYLim ∗+= λ     ---- Equation 5     

where Ye is the median value of the first derivative valueseV ′ ; Xe is the median of the absolute deviations, 

De; λ is the confidence coefficient [8].  For the present purpose, the value of λ = 3can be interpreted as an 

equivalent of p value < 0.01.   

The first derivative values of data segments crossing these limits are then declared as outlier data 

segments.  Outlier data segments adjacent to the first and the last data segment are then selected to be 

rejected from the dataset.  The outlier data segments in the middle portion of the data are simply ignored 

and not removed.  The original dataset is then truncated to this new time length. 

2.2.3 Results    

Figure 2.1 shows the first segment of the data affected by the filter (marked by red block). 

 

Figure 2.1: Data segments affected by filter (marked in red block) 
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The automated data segment rejection method discussed (section 2.2.1) was implemented in 

Matlab.  The results for this algorithm were validated with the ones obtained in Scan Edit 4.3.  In Scan, 

rejection of these data segments must be done manually by an expert in EEG data analysis.  The expert 

determined, the first 4 seconds of data were affected due to filtering.  Our Matlab algorithm also 

determined that the first 4 seconds of data was affected by the filter.  Figure 2.1 shows the data segment 

detected and rejected by the automated algorithm.  After the removal of bad data segments, the vertical 

scale is adjusted, and the bad electrodes are seen more clearly in Figure 2.2.  

 

 

Figure 2.2: Malfunctioning electrodes clearly visible after removal of affected data segments 
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2.3 Malfunctioning Electrodes 

For accurate recording of the electric field of the brain, the number of electrodes used in most labs 

is 32, 64 or 128, and some labs uses as many as 256 or even 512 electrodes.  As the number of electrodes 

increases, the probability of an electrode having poor contact also increases.  It thus, makes the precise 

screening for artifact removal a difficult task with large amounts of data to be analyzed.  Statistical control 

of artifact contaminated electrodes is highly preferable in such large dense array systems [8].  The rejection 

of electrodes contaminated due to artifacts at this stage is limited to grossly bad electrodes.  As mentioned 

earlier, these are the electrodes that are contaminated due to change in the electrode impedance during data 

acquisition.     

EEG voltage in a good electrode is in the range of ±50µV [2].  The effect of change in electrode 

impedance is difficult to characterize in time or frequency domain.  It is however, comparatively easy to 

characterize as a measure of voltage.  In order to characterize the electrode as a measure of voltage, 

computation of three different signal attributes is done which helps to determine the bad electrodes 

statistically [8].   

2.3.1 Signal Attributes 

The three signal attributes used in detection of the bad electrodes are; the standard deviation of the 

voltage, the maximum absolute value of the voltage and the maximum of the gradient of the voltage [8].  

All these parameters are computed at each EEG electrode and over the entire time length of the dataset.   

The standard deviation of the voltage: 
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where, cσ  is the standard deviation of the electrode c, ),( tcV is the voltage of the electrode c at the time 

point t, cV  is the mean voltage of the electrode c, T is the time length of the entire dataset [8]. 

The maximum absolute value of the voltage [8]: 

    ),(max tcc VAV =     ---- Equation 7 

where, cAV is the maximum absolute value of the voltage over the entire time t (1: T) for electrode c.   

The maximum of the gradient of the voltage over time or the first derivative of voltage [8].   

 
dt

dV
V c

c =′      ---- Equation 8 

where, cV′  is the first derivative of voltage for electrode c over the entire time.  These parameter matrices or 

editing matrices are column matrices with the number of rows in the column equal to the number of EEG 

electrodes.  These parameters are then used as an input for statistical detection of outliers.   

 

2.3.2 Statistical Test 

In the paper by Junghöfer et al. [8] determination of the outlier electrodes was made by a statistical 

test based upon the following expression [8]:   
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where pY  is the median for each of the parameters p (i.e.  p = 1 for standard deviation of the voltage, p = 2 

for maximum absolute value of the voltage and p = 3 for maximum value of the voltage over time i.e. the 
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first derivative of the voltage over time), V(p,c) is the parameter p for the electrode c, N is the total number of 

electrodes and λ is the confidence coefficient which is set to 3 [8 and section 2.2.2].  The term under the 

square root sign is similar to that of the standard deviation except calculated over the median and not mean 

[8].  Although intuitive, this expression has no precedent in the statistical literature.  For this reason, and 

the reasons given above, we used the MAD statistic instead.  As a first step in this analysis, the median 

value, pY  of all three parameters (i.e.  p = 1 for standard deviation of the voltage, p = 2 for maximum 

absolute value of the voltage and p = 3 for maximum value of the voltage over time i.e. the first derivative 

of the voltage over time) is computed.  A median is selected over the mean, since it is less sensitive to 

outliers as compared to the mean.  The absolute deviation can be written as [12], 

         pcpcp YVD −= ),(),(     ---- Equation 10 

where D(p,c) is the deviation of parameter p for the electrode c, V(p,c) is the parameter p for the electrode c; Yp  

is the median of the parameter p (i.e.  p = 1 for standard deviation of the voltage, p = 2 for maximum 

absolute value of the voltage and p = 3 for maximum value of the voltage over time i.e. the first derivative 

of the voltage over time).   

An electrode is determined to be an outlier, if the absolute deviation of that electrode for any of 

the three parameters, crosses the boundary values computed by the formula: 

         ppp XYLim ∗+= λ     ---- Equation 11 

where Yp is the median of the parameter p (i.e.  p = 1 for standard deviation of the voltage, p = 2 for 

maximum absolute value of the voltage and p = 3 for maximum value of the voltage over time i.e. the first 

derivative of the voltage over time) and Xp is the median of the absolute deviation values, Dp, of the 

parameter p (i.e.  p = 1 for standard deviation of the voltage, p = 2 for maximum absolute value of the 

voltage and p = 3 for maximum value of the voltage over time i.e. the first derivative of the voltage over 

time) and λ is the confidence coefficient which is set to 3 [8and section 2.2.2]. 
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2.3.3 Results   

 

Figure 2.3: Malfunctioning electrodes AF4, FT8, TP8, O2 

The Figure 2.3 below shows really malfunctioning electrodes AF4, FT8, TP8 and O2.  These 

electrodes are contaminated due to change in electrode impedance.  After computing the three parameters 

and using the MAD test these four electrodes were correctly determined as the ones to be rejected. The 

three parameters were again computed after rejecting these electrodes from the dataset.  The following 

Figure 2.4 shows the histograms of these three parameters before removal (1st row of the figure) and after 

removal (2nd row of the figure) of these electrodes.  The line in magenta is the MAD boundary value.  The 

y-axis of these histograms is the number of electrodes in each bin and the x-axis is the bin interval.  The 

title of the histograms is written below the histograms.  Since all the parameter values computed are 

positive, only the upper boundary value is determined.  Figure 2.5 shows the four electrodes removed from 

the dataset.  These results were validated with the results obtained after analyzing the data manually in 

Bad electrodes 
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Scan by an expert in EEG data analysis.  The presence of the other artifact like the ocular artifacts is clearly 

seen after completion of the first step of preprocessing i.e. gross artifact removal.  

 

Figure 2.4: Histogram of the 3 parameters 

 

Figure 2.5: EOG artifact clearly visible after removal of malfunctioning electrodes from data 
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CHAPTER 3  

OCULAR ARTIFACT REMOVAL 

As the first step of pre-processing, the gross artifacts are removed as discussed in earlier Chapter.  

The data segments or electrodes which are characterized as outliers in the gross artifact removal procedure 

have negligible amount of EEG recorded.  Therefore instead of correcting this artifact, data affected is 

rejected.  After the gross artifact removal, the physiological artifacts need to be treated.  The most frequent 

of the physiological artifacts seen contaminating the EEG data is the eye blink artifact.  The principle of 

rejection of data segments affected by the eye blink artifacts, if adopted, will lead to considerable reduction 

in the amount of data available for further analysis.  Hence, the principle of correction of the data segments 

contaminated due to this artifact is adopted.  Reliable techniques which would help correct for these 

artifacts, without distorting the underlying brain activity are developed.  The spatial filter technique for 

removal of the eye blink artifact is discussed to great details.  The discussed spatial filter technique uses the 

pure (artifact-free), background EEG for computing its filter coefficients.  To understand the EOG 

algorithm it is necessary to know about the EOG and how it affects the underlying EEG signal in brief.   

 

3.1 EOG & Its Effect on EEG 

Analogy can be made between the human eye and a battery. The positive terminal of the eye is at 

the cornea and the negative terminal is at the retina. The movement of the eye or the eye lid thus, generates 

a potential difference. This potential forms a basis for a signal which, is measured with the help of         
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peri-orbital surface electrodes. This signal is known as the electro-oculogram (EOG) [3].  These large 

movements are visible as artifacts in the EEG signal, due to volume conduction between the underlying 

tissues [1]. The EOG artifact contaminates the EEG signal, such that it falls off roughly as the square of the 

distance from the eyes. The eye blink artifact therefore, has a frontal topography [4].  Figure 3.1 shows the 

EOG when eyes move 30° to the right (1st row) and 15° to the left (2nd row) [3]. 

 

Figure 3.1:Electrooculogram (EOG) [3] 

 

Figure 3.2: Effect of EOG in EEG 
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Figure 3.2 shows effect of EOG artifact in the EEG data.  After understanding the EOG in brief, 

let us now look at the different techniques that have been developed over the years for eye blink artifact 

removal.  

 

3.2 Previous Work 

Numerous approaches have been proposed for filtering EOG artifacts [13]. The different 

techniques that have been developed over the years for correcting the EOG artifact are: 

 

3.2.1 EOG Subtraction/Regression Analysis 

The oldest approach for correction of the eye blink artifact is based upon simple linear regression 

algorithms [14].  In this approach, it is assumed that the artifact present in EEG channels is proportional to 

the EOG artifact measured in the EOG channels.  The approach taken here is to determine the 

proportionality constant at each EEG electrode, and the corrected EEG signal is obtained by subtracting the 

EOG value scaled by the propagation factors from the raw data [15]. Regression algorithms are very easy 

to implement, however, a reduction in the cortical activity is also seen [16]. This is because the regression 

technique assumes that the EOG signal used for the computations contains only the potential difference 

generated due to the eye movements or blinks [13], when in fact the EOG includes EEG activity mostly 

from frontal brain areas. 

3.2.2 Dipole Modeling 

Another approach uses dipole sources to model both the EOG artifact and the underlying brain 

activity [17].  The corrected EEG data is retrieved by subtracting the time-varying amplitudes of the EOG 

dipoles from the measured EEG data [17 and  18]. There are two main limitations of this approach.  First, 
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the accuracy of this technique depends upon the accuracy of the dipole models, which requires an accurate 

electrode model [18].  That in turn requires measurements of the electrode locations, a structural MRI for 

defining head tissues, and estimates of tissue conductivities, which are variable across subjects and 

locations on the head and are therefore not well known [4].  Second, it is exceedingly difficult and perhaps 

not even sensible to model spontaneous brain activity with a small number of dipoles.  It is advantageous to 

have a method of ocular artifact reduction that does not require head modeling and works for both 

continuous and event-related studies [13]. 

 

3.2.3 ICA /Blind Source Methods 

Principal component analysis (PCA) and independent component analysis (ICA) assume that the 

EEG signal is a linear mixture of statistically independent sources.  An unmixing matrix is defined which is 

optimized to enforce statistical independence [15]. Both techniques decompose the given signal into 

spatially and temporally distinct components.  The first step of ICA is PCA, so the ICs span the sub-space 

of the PCs.  In cases where the artifact is superimposed linearly on the signal, represented by a few 

components, and among the larger components in the total signal, these techniques may be effective at 

isolating the artifact.  The rejected components are selected by visual inspection [15]. The corrected data is 

then obtained by back-projecting all the components except those corresponding to the eye blinks [15, 19].  

It has been shown that ICA is quite effective at removing certain types of artifacts, including line noise [19] 

and ocular artifacts [15 and 19].  Its main limitation is that memory requirements typically prohibit the 

application of ICA to long continuous data sets and hence epoched datasets need to be used [15].  This is 

problematic for two reasons.  First, segmenting continuous data has the strong likelihood of bisecting 

artifact waveforms.  If only the edge of an eye blink artifact were caught in a given epoch, for example, it 

seems unlikely that it would appear as a prominent component to survive sub-space selection.  Second, in 

practical terms, it is often preferable to remove artifacts from data before segmenting according to a given 

stimulus or response.  There may be multiple segmenting strategies available in a given data set, and 
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comparisons between conditions may become biased by independent application of artifact filtering.  For 

all these reasons, we prefer an artifact filtering strategy that can be applied to continuous data [13]. 

 

3.2.4 Spatial Filter 

The waveform of a given EEG data segment is considered as a linear combination of two other 

waveform signals namely, the artifact signal and brain activity signal.  These two signals are used to model 

their own topographies in other words, the spatial distribution over the entire scalp region.  The 

topographies thus gives the spatial distribution while, the waveform indicates their time course variation.  

Figure 3.3 shows the decomposition of a small EEG data segment into its artifact and brain signal 

components and then further into their respective topographies and waveforms.  This modeled artifact 

topography is then inverted to obtain the spatial filter coefficients [20].   

 

 

Figure 3.3: Spatial filter [20] 
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3.3 Theory of The Spatial Filter 

Multi-channel EEG data comprises a multivariate dataset having dimensions N*T, where N is the 

number of electrodes, and T is the number of sample points for each electrode. The spatial filter algorithm 

described here uses two files, generated from the original data file: an average artifact file, and an artifact-

free file.  The average artifact file is the average of all epochs generated from artifact examples, and has 

dimension N*TE, where N is the number of electrodes, and TE is the duration of the artifact epoch.  For an 

eye blink, this duration is normally 800 milliseconds (–200 to +600 ms relative to the peak). This average 

artifact file has the EEG signal at all the electrodes suppressed approximately by 1/√E, where E is the total 

number of epochs contributing in the average.  The pre-whitening filter is constructed from the artifact-free 

file, typically 30-60 seconds long.  The spatial covariance of each of these files is N*N.  Covariance is used 

rather than correlation, to preserve the spatial variations in amplitude that characterize ocular artifacts. 

In order to motivate the analytical form of the spatial filter and its pre-whitening matrix, consider 

the average eye blink signal, a, to be a superposition of the pure blink signal, b, and pure EEG signal, c.  

Recording blinks without any superimposed EEG signal is not practical; hence the best estimate of the eye 

blink is obtained by removing the contributions of the background EEG data. In the present formulation, 

these contributions are removed only at the level of the signal covariance, which is sufficient for linear 

spectral analysis.  This transformation is achieved by pre-multiplying the multivariate average eye blink file 

by the matrix C–1/2, where C is the covariance matrix of the preserved or pure EEG data, i.e., C = ccT.  This 

step is a type of pre-whitening of the data.  Let ā (having the same dimensions as that of a) be the average 

eye blink in the transformed system.  

The covariance matrix, Ā, of the matrix ā, having dimensions N*N, can be written 

T
aaA=  

                  ( )( )TaCaCA 2/12/1 −−=   
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                ( )TT CaaCA 2/12/1 −−=  

                2/12/1 −−= ACCA     ---- Equation 12 

  Since C–1/2 is a real Hermitian matrix, it remains unchanged by the transpose operation.  The 

covariance matrix of the average blink signal with the covariance of EEG present i.e. a, can be written as   

                 ( )( )TT cbcbaaA ++==   

                           TT ccbbA +=     ---- Equation 13 

The two cross terms (bcT and cbT) are dropped from the further computations, under the 

assumption that the blink artifact is uncorrelated with the brain EEG.  Recent reports suggest that this may 

be not entirely correct, nevertheless, it is assumed here to simplify the derivation.  The above equation thus 

represents sum of two covariance matrices: pure blink B = bbT, and pure EEG C = ccT. The matrix Ā 

therefore can be manipulated as follows:  

2/12/1 −−= ACCA    ---- Equation 14 

                                   2/12/12/12/1 −−−− += CCCBCCA /2  

IBCCA += −− 2/12/1   

     TUWUA=     ---- Equation 15 

Since B and C are covariance matrices, the matrix Ā is also symmetric.  It is trivial to show that 

pure EEG data, when pre-whitened, gives the identity matrix, I.  The eigenvalue decomposition of the 

matrix Ā, gives the eigenvalue matrix W and eigenvector matrix U.  Note that the eigenvalues are equal to 

those the matrix C–1/2 B C–1/2, simply increased by 1: 
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     ( ) xxxIM +=+ λ    ---- Equation 16 

     ( ) ( )xxIM 1+=+ λ  

A corollary is that the eigenvectors are identical.  This implies that, even though the topography of 

the pure blink is not available, the topography of the pre-whitened eye blink can be obtained.  The 

eigenvectors of this pre-whitened eye blink give us the projection of the eye blink over the scalp.  The 

artifact (eye blink) subspace is captured by UrUr
T, where r is the number of components corresponding to 

the artifact.  The number of components can be determined subjectively or on statistical grounds (section 

3.4.3).  To remove the projections of the artifact from the data, the artifact subspace is subtracted from the 

identity matrix (I - UrUr
T) [21].   

In order to filter artifacts from the data, consider the spatial filter defined by  

( ) 2/12/1 −−= CUUICF T
rr   ---- Equation 17 

To correct the artifact contaminated data we pre-multiply the filter coefficients, F, to the EEG data.  The 

EEG data has the covariance due to EEG present.  The projections in Ur are of the pre-whitened eye blink.  

It is hence required that before the artifact subspace is removed from the EEG data, the covariance due to 

EEG be removed.  The artifact subspace therefore needs to be post-multiplied by the matrix C-1/2.  In order 

to get the corrected data without the distortion we need to restore the covariance due to EEG.  Hence, the 

artifact subspace is pre-multiplied by the matrix C1/2 [13 and 22]. 

 

3.4 Method 

3.4.1 Clean Data File 

As discussed in Section 3.3, for removing the EEG covariance from the average eye blink file, a 

clean pure EEG file representing the underlying brain activity is required.  This clean or artifact-free EEG 
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file was created in Scan Edit 4.3.  Data segments having no artifact contamination were selected manually.  

These data segments were then concatenated.  This file is then imported to Matlab using the EEGLAB 

Toolbox.  The covariance of this file is then computed thus forming the matrix, C.  

 

3.4.2 Average Eye Blink File  

With gross artifacts removed, eye blinks were identified in the VEOG electrode by setting a 

voltage threshold at -200µV.  Markers were inserted at the time points where the voltage of the VEOG 

electrode exceeds the set threshold (99 is the eye blink marker that is inserted after VEOG voltage 

threshold see Figure 3.2).  This file with the eye blink markers was then segmented around these markers.  

The eye blink epochs span -200 to +600 milliseconds around these eye blink markers.  This file is a three-

way array with dimensions N*TE*E, where N is the number of electrodes, TE is the epoch length (in our 

case 800 milliseconds), and E is the number of epochs.  This file was then used as an input to a GUI, 

created in Matlab, which helps selection of the eye blinks epochs (section 3.5.1). The average eye blink 

after file is then made from the selected epochs and used to determine the number of components to be 

retained, as discussed below. 

 

3.4.3 Sensitivity to Number of Components Retained 

The selection of r, the number of components to retain in the eigenvalue decomposition of the 

artifact template, is the key to the formation of the spatial filter F.  The most common method, for 

determining r, is to retain enough components to explain a specified fraction of the total variance, but the 

choice of that fraction remains arbitrary.  There is a substantial literature on statistical methods for making 

this choice objectively.  We have investigated these methods in recent work [23], and found parallel 

analysis to perform well.  This is essentially a generalization of the familiar eigenvalue-greater-than-one 

criterion [24]. That criterion is applicable to correlation matrices, and uses the fact that a correlation matrix 
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formed from an infinite number of samples of Gaussian distributed data has all eigenvalues equal to one 

[25].  For finite correlation matrices, however, it is known that null data have eigenvalues distributed 

around one.  A refinement, therefore, is to form an ensemble of null data matrices with the same 

dimensions as the original data matrix, and compute a null distribution for each eigenvalue [24].  Parallel 

analysis [25 generalizes this approach further, to accommodate covariance matrices whose eigenvalues 

deviate from one according to the magnitudes of the numbers in the original data matrix.  In our 

implementation of parallel analysis, the null data matrices were generated by shuffling all of the values in 

the original data matrix, mixing both rows and columns [23].   

In order to select r, Scan Edit 4.3 permits the user to select a percent variance to retain, but 

provides no guidance on how to select that percentage.  In order to assess the sensitivity of the spatial filter 

to r, that parameter was varied in our Matlab implementation as the spatial filter was applied to the model 

data set [13].   

 

3.5 Results 

3.5.1 GUI for Eye Blink Epoch Selection 

The VEOG channels of eyes open and normal blinking dataset were voltage threshold and eye 

blink markers were added to obtain the epoched file (section 3.4.2).  Epochs from the epoched file which 

resembled the time series of an eye blink were used to compute the average eye blink file.  For selection of 

these epochs a Graphic User Interface (GUI) as shown in the Figure 3.4 was created.   

The GUI displays the VEOG signal in each epoch.  The ‘Start’ button is used to start the display 

of the VEOG signal in the 1st epoch.  After display of the VEOG signal decision is made to either accept or 

reject this epoch.  The epoch is accepted only if it resembles the eye blinks seen in the entire file.  The 

‘Accept’ button is then used to record this epoch number.  If the signal in the epoch does not look like an 

eye blink then ‘Reject’ button is used which records the epoch number.  The display is then refreshed and it 
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shows the VEOG signal in the next epoch.  The ‘Accept’ and ‘Reject’ button are used to record the eye 

blink epochs which will contribute towards the average eye blink computation or not respectively.  The 

epoch number which is displayed on the screen is indicated in the edit box (marked in red block in Figure 

3.4).  After the screening all the epochs, the ‘Resume’ button is used which will then continue with the 

generation of the average eye blink file.    

 

Figure 3.4: GUI prepared for eye blink epoch selection 

An average eye blink file that was generated after the selection of the eye blink epochs is shown in 

Figure 3.5.  The blue lines represent the eye blink epochs that were accepted during the selection.  The red 

curve is the resultant average eye blink in the VEOG electrode.  Note that, although the temporal pattern is 

variable across blinks, the spatial filter is robust to this temporal variability. 
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Figure 3.5: Average eye blink signal in the VEOG electrode 

The spatial distribution of this average eye blink file is shown in Figure 3.6.  This spatial 

distribution shows the voltages of the eye blink at each electrode at the time when the voltage in the VEOG 

electrode is at its peak [22]. As expected, it is primilarly limited to frontal electrodes, and falls off with 

distance toward the back of the head.  The covariance of this average eye blink file will be the matrix, A 

(see Section 3.3).  

 

Figure 3.6 : Topography of the average eye blink 
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3.5.2 Sensitivity to Number of Components Retained 

The covariance matrices for the average eye blink file, A, and that of the clean/ pure eye blink file, 

C, are then used to get the matrix Ā (Equation 14).  The average eye blink acts as an input to the test used 

for statistically determining the number of components to be retained.  As discussed in Section 3.4.3, the 

test used here is the parallel analysis technique.  The eigenvalues of the matrix Ā were plotted to obtain the 

scree plot as shown in Figure 3.7 for visual inspection.   

 

Figure 3.7: Scree plot of the eigenvalues 

 

The number of factors to be retained obtained by applying the parallel analysis technique is 1.  The 

visual inspection of the scree plot also confirms this.  The topographies of the first two eigenvectors are 

shown in Figure 3.8.  The first eigenvectors has a major frontal feature that corresponds well with the 

average eye blink, but also contains other local features that are difficult to intuit.  The second eigenvector 

contains a hint of the frontal topography of the average eye blink, but is dominated by other focal features.  

These plots confirm that the first eigenvector carries the majority of the weight of the average eye blink.  
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The lack of perfect correspondence between this eigenvector and the average eye blink does not imply a 

problem, however, because the eigenvectors were derived from a covariance matrix while the average eye 

blink is derived from voltage data directly.   

 

Figure 3.8 : Topography of first two eigenvectors 

 

3.5.3 Corrected EEG 

The first eigenvector was used to generate the coefficients of the spatial filter (Equation 17).  The 

EEG data to be cleaned is then pre-multiplied by these filter coefficients.   Figure 3.9 shows the result, that 

the spatial filter removed the eye blinks essentially completely according to visual inspection.  Time points 

where an eye blink was identified are indicated by an eye blink marker (99), as can be seen in the Figure 

3.2, and Figure 3.9 shows the eye blinks removed from the data.    
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Figure 3.9: Eye blink corrected data 

 

3.5.4 Relation to Commercial Implementations 

In order to confirm our implementation of the spatial filter, and ensure that our investigations in 

Matlab would also be relevant to the implementation in Scan Edit 4.3 (Compumedics, Inc.), the spatial 

filter were applied to the eye-opened and normal-blinking data set.  The data were cleaned for eye blinks in 

Scan Edit 4.3 and also in Matlab.  In this comparison, care was taken to ensure that both algorithms were 

set to retain the same number of components and also same average and clean file were used for all the 

computation of the spatial filter coefficients. 
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The cross correlation of the two EEG time series at each EEG electrode was computed as shown 

in Figure 3.10. The cross correlation coefficient of the two EEG time series at each EEG electrode was 

found to be 1 (mean  ± standard deviation  = 1 ± 10-6), indicating that the two EEG time series at each EEG 

electrode were essentially identical, thus validating the results obtained in Matlab [9]. 

 

Figure 3.10: Correlation coefficient topography 

 

3.5.5 Extension to Vertical Eye Movements 

The results of the above discussed algorithm show that the vertical eye movements are also 

removed.  The Figure 3.11 shows presence of the eye blink and an eye movement in the data.  The next 

Figure 3.12 shows the eye blink and the eye movement artifact corrected from the data.  Intuitively, 

conclusion can be made about the vertical eye movements having a similar topography as that of the eye 

blink.   The vertical eye movements are therefore corrected, while correcting the data for contaminations 

seen due to the eye blinks. 
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Figure 3.11: Data showing eye blink and VEOG movement  

 

Figure 3.12: Eye blink and VEOG movement removed from the data                                            
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CHAPTER 4  

SUBTLE ARTIFACT REMOVAL 

After removing gross artifacts and eye blinks, data typically have other more subtle artifacts 

present.  These include horizontal eye movements, muscle artifacts, etc.  Effect of each of these artifacts 

seen on the EEG data is different and hence, needs to be treated differently.  Each artifact therefore, needs 

to be characterized differently depending on the effect seen on the data.  Similar to the gross artifact 

removal, a statistical and automated method is presented to remove or correct these subtle artifacts from the 

dataset.  In the approach presented below, several common artifacts are dealt with in order of their 

amplitude or severity. 

 

4.1 Muscle Artifacts 

Muscle artifacts are second most frequent artifacts seen in the acquired EEG data as seen in Figure 

4.1.  Myogenic potentials are the cause of the muscle artifact.  These potentials are generated due to stress 

on the frontal muscles or movement or clenching of the jaw.  These artifacts generated are mainly seen as 

broad-banded noise in the data, or on the basis of its morphology and duration [5].  The simplest approach 

to eliminate muscle artifacts would be to discard those data segments.  In studies such as ours, however, in 

which muscle artifacts are prominent, little data would be left with that approach.  Another obvious 

approach would be to use ICA to isolate muscle artifacts into a small number of components, which could 

be eliminated by discarding those components. In our investigations, however, ICA is ineffective for this 

problem, because muscle activity appears in most or all components produced by ICA.  Because our data 
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were highly contaminated with muscle, and we needed to preserve ample amounts of data, it was decided to 

treat these artifacts is by low pass filtering the data. EEG frequencies normally studied are up to 35-40 Hz 

range.  A low pass finite impulse response (FIR) filter with cut-off set 45 Hz was hence applied to remove 

this artifact from the dataset [26].  Figure 4.2 shows the high frequency muscle activity being removed after 

applying the low pass FIR filter to the data.  Some muscle artifact is still seen in frontal and temporal 

muscles, however, the problem of identifying data segments containing artifact has now become tractable. 

 

 

Figure 4.1: Muscle artifact in the data 
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Figure 4.2: Muscle artifact removed 

 

4.2 Horizontal Eye Movement Artifact 

The lateral movement of the eyes is recorded in the peri-orbital electrodes placed at the left and 

the right outer canthi of the eyes [4].  This eye movement gets propagated into the EEG due to volume 

conduction.  The electrodes usually affected by the horizontal eye movements are the ones on the lateral 

frontal side of the scalp i.e. electrodes near F7 on the left side and F8 on the right side [5].  This movement 

is usually seen as vertical offset in the recorded HEOG electrode.  It was observed that epochs normally 

had either the left or the right side lateral movement of the eyes.  Figure 4.3 shows the epochs 30 and 31 

contaminated with the HEOG artifact. 
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Figure 4.3: HEOG artifact 

 

Sometimes the contamination due to the horizontal eye movement is very prominent in the EEG 

data, while sometimes the artifact is seen clearly in the HEOG channel and appears only subtly in the EEG 

channels.  In the latter case, it would be difficult to detect horizontal eye movements using the EEG data 

alone.  In order to capture the subtle as well as the large contaminations, therefore, an algorithm was 

derived using only the HEOG electrode.   The offset in HEOG electrode was captured by computing the 

10% and 90% of the HEOG electrode for each of the epochs. The difference between these values was used 

as input to the statistical test.  The epochs contaminated with the horizontal eye movement will have a 

higher value for the difference between its 10% and 90% values.  
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4.3 Head Movement Artifact 

Head movements made by the subject get propagated into the EEG data.  The effect of the head 

movement is seen as long drifts in the EEG data.  The effect of the head movements is seen in all 

electrodes.  The direction of the drift is different in different electrodes.  A mean across all the electrodes at 

all time points in the epoch is computed.  This mean signal thus represents the behavior of the epoch.  A 1st 

degree polynomial is then fitted to this mean of the epoch.  The slope of this equation is then an input to the 

statistical test.  The higher the slope value the more is the contamination due to the head movement. 

 

 

Figure 4.4: Head movement artifact in the data 
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4.4 Inter-Electrode Gap 

Drifts having very long time duration are seen in the data.  The fitter for head movements captures 

the start and the end of the drift.  The intermediate portion of the drift is still present in the data and was not 

captured by the above discussed fitter.  A new measure is hence introduced to determine epochs having 

varied inter-electrode distance.  In order to catch this inter-electrode distance, a mean across all the time 

points for each electrode over all epochs was computed.  The variation in the difference of the mean values 

of the electrodes in a particular epoch was then computed.  EEG data epochs contaminated by a high inter-

electrode gap will have a high variation.  The variation in the difference of the mean values for each epoch, 

then acts as an input to the statistical test.  Figure 4.5 shows epochs 74, 75, 76 and 77 with larger inter-

electrode distance. 

 

Figure 4.5: Epochs showing larger inter-electrode distance 
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4.5 Sporadic Changes 

Few electrodes show sporadic changes in the measured data.  These changes affect the spectral 

analysis done further.  These epochs therefore, need to be rejected before doing the spectral analysis.  In 

order to catch electrode having more frequent sporadic changes and rejecting only such epochs this test is 

done in two steps.  In the first step, the standard deviation of each electrode for each epoch is computed.  

The standard deviation value for each channel across all the epochs is the obtained and acts as an input to 

the statistical test.  The electrodes having comparatively more sporadic changes are determined.  Standard 

deviation for all epochs in these electrodes is determined.  These standard deviation values then act as input 

to the statistical test.  The outlier epochs are then rejected from the dataset.   Figure 4.6 shows the sporadic 

change seen in the electrode P6 in the epoch number 74. 

 

Figure 4.6: Sporadic change seen in the electrode P6 
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4.6 Statistical Test 

The statistical test used here to determine the outlier epochs/ channels is the two tailed - Median 

Absolute Deviation test (refer section 2.2.2).  A two tailed test is chosen over a one-tailed test since, not all 

input quantities are positive.  Hence both the upper as well as lower boundary values were determined.  

Boundary values are given by the following formula, 

ee XYLim ∗±= λ     ---- Equation 18 

where, Ye is the median of the input values, λ is the confidence coefficient and set to 3 [2.2.2 and 8], Xe is 

the median of the absolute deviations, De of the values, Ve from their medians.  The absolute deviations are 

computed using following formula, 

eee YVD −=      ---- Equation 19 

All the epochs that cross these boundary values are then rejected from the data.  The histogram of the value 

and the MAD test interval were plotted.   

 

Figure 4.7: The histogram obtained while detecting the inter-electrode distance 
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Figure 4.7 shows the histogram showing the value computed while determining the epochs with 

unusual inter-electrode distance.  The epochs that were determined to be outliers where visually inspected 

for correctness.  The results of this statistical test were verified by visual inspection of the data and showed 

a good agreement. 

 

4.7 Results 

Figure 4.8 shows the resultant artifact free clean data.  After the entire subtle artifact removal 

algorithm was used, the dataset looks completely artifact free.  In fact, visual inspection of the entire data 

record showed small residual artifacts that were not caught by our algorithms.  The effort was still a 

success, however, for two reasons.  First, these small and infrequent artifacts are not likely to have a large 

influence on any subsequent calculations, e.g., event-related potentials, Fourier power spectrum or 

coherence.    Second, the cleanliness of the data now makes it very simple for an EEG technician to review 

the data visually and make additional rejections. 
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Figure 4.8: Clean data 
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CHAPTER 5  

FUTURE WORK AND CONCLUSION 

The goal of this work was to develop a semi-automatic data pipeline for rejecting and/or filtering 

artifacts seen commonly in EEG data, with the intention that the output signal obtained after preprocessing 

of the EEG data can be easily used by scientists and clinicians.  This facilitates further research in at least 

three ways. First, in large studies with many subjects, this improves efficiency.  Second, because the tests 

for rejecting data are phrased in statistical terms, it can be argued that the approach is more valid that visual 

inspection.  Third, because the statistical thresholds can be stated precisely, this permits the methodology to 

be articulated clearly, making it possible to reproduce the results of preprocessing across studies, 

technicians and laboratories.   

   In its present form, this data pipeline is semi-automatic, but with more work it could be 

automated essentially completely.  Automation of this process would not only reduce manpower time but 

also further increase the reliability and reproducibility.  Additional steps need to be taken for selection of 

the eye blink epochs and generation of the clean EEG data segments.  One of the approaches, which could 

be used taken to solve this problem, is correlating a standard eye blink signal for the VEOG electrode with 

the VEOG electrode of file to be analyzed.  This standard eye blink signal is computed in two steps.   In the 

first step of the computation, averaging is done across a number of trials for each individual.  This signal 

obtained for each individual is then averaged across all the individuals.  Since averaging is done twice, the 

background EEG in the standard eye blink signal is infinitesimally small.  Automatically generating a clean 

data file, however, is a much more difficult proposition.    One approach might be to use the techniques 

designed for gross artifact detection to find segments of data with the smallest amplitudes.  This is 
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justifiable because, assuming that the desired EEG and artifacts are uncorrelated, contaminated data 

segments can only have larger amplitudes.  In this way, data segments with the smallest amplitudes can be 

assumed to be clean.  One danger with this approach, however, is that legitimate brain activity fluctuates 

through time.  Selecting data segments with the smallest amplitudes may exclude time intervals in which 

typical EEG is in fact present.  This could bias the performance of the spatial filter. 

Another important extension of this work is the consideration of the number of task conditions 

when selecting clean data for building the spatial filter.  Imagine that two task conditions different in their 

degree of frontal brain activity.  If the clean file were generated from data acquired during one task 

condition primarily, then the clean data file would be biased to include or exclude that activity.  Further 

work is required to quantify this effect.  If one were concerned about this point then, ideally, one would 

take care that the clean data file contained data from both conditions in equal amounts.  In this way, there 

would be no systematic bias in the formation of the clean data file, although the effect if the difference in 

brain activity between conditions may still not be entirely negligible.  
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