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ABSTRACT 

 

TOPOLOGY OPTIMIZATION USING HYPER RADIAL 

BASIS FUNCTION NETWORK 

 

Aditya Prakash Apte, PhD 

 

The University of Texas at Arlington, 2009 

 

Supervising Professor:  Bo Ping Wang 

 Topology optimization has been conventionally used in automobile and aerospace 

industries to produce lightweight structures for minimum compliance or maximum fundamental 

frequency. Today, topology optimization finds application in solving diverse types of problems 

ranging from medicine to consumer products. Popular continuum based method SIMP fails to 

provide global solution due to too many variables involved. In this work, a novel hyper radial 

basis function network is presented as topology description function. The proposed approach 

provides drastic reduction in number of design variables involved in topology optimization. This 

makes the use of heuristic global solution possible. Parallel processing, reanalysis formulation 

and automatic selection of optimal volume fraction are proposed to speed up analysis. 

Application to solve minimum compliance, maximum fundamental frequency, compliant 

mechanisms and optical medical imaging problems are presented. The proposed approach can 

be easily incorporated with legacy software. The design process is made efficient by speeding 

up analysis and decreasing the need for human interpretation.  
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CHAPTER 1 

INTRODUCTION 

1.1 Historical Perspective on Structural Optimization 

“Optimization is intrinsically tied to our desire to excel, whether we are an athlete, artist 

or engineer” [1]. Optimization has therefore naturally manifested into improved performance of 

structural components and savings in costs. This section provides a brief overview of 

progression of Structural optimization over the last five decades. Structural optimization dates to 

the work of Maxwell (1869) and Mitchell (1904). Structural optimization in 1950’s was mostly 

random search. Shanley's work (1952) used analytical methods. 1960 saw a groundbreaking 

paper by Schmit which ushered modern, computer based era of structural optimization. In his 

1981 review of Structural Synthesis development, Schmit credits a paper by Klein (1955) for 

providing some key ideas. 1960s saw a great deal of research in structural optimization, dealing 

mainly with member sizing of trusses, frames and shell structures. Sequential Linear 

Programming (Kelly, 1960) (SLP), Sequential Unconstrained Minimization Techniques (Fiacco 

and McCormick, 1968) (SUMT) and Feasible Directions methods (Zoutendijk, 1960) came forth. 

Finite difference gradients were mostly used. Analytical Gradient calculation by Fox was 

provided in 1965. Structural Optimization could handle only small number of design variables 

(about 50). As a result, Structural Optimization almost died as it was considered computationally 

too expensive to be a usable design tool (Gallatly, Berke and Gibson, 1971). 1970’s saw efforts 

to make Structural Optimization more practical by allowing more number of design variables 

and efficient computational methods. Optimality criteria offered the ability to deal with large 

numbers of design variables but with a limited number of constraints and without the generality 

of numerical optimization methods. Approximation Concepts were developed in Numerical 

Optimization (Schmit and Farshi, 1974). These methods were based on the concept of creating 
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approximations using the underlying physics to allow for large moves and this reduced the 

number of detailed finite element analyses from well over 100 to the order of ten. Other notable 

works in the 1970’s included Augmented Lagrange Multiplier (Rockefellar in 1973), Generalized 

Reduced Gradient (Gabriel and Ragsdell, 1977) and Response Surface Methods 

(Vanderplaats, 1979). 1980’s and beyond can be characterized as a period of refinement. 

Random search methods gave way to Genetic Search (Hajela, 1990), Simulated Annealing 

(Nemhauser and Wolsey, 1988), Particle Swarming (James Kennedy and Russell C. Eberhart, 

1995), Ant Colony Optimization (Marco Dorigo, 1992), Differential Evolution (Price and Storn, 

1995), DIRECT (D. R. Jones, C. D. Perttunen and B. E. Stuckman, 1999) and Deterministic 

global search methods. Sequential Unconstrained Minimization Techniques focused on interior 

point methods based on the Kuhn-Tucker conditions (Hagar, et al, 1994). An exterior penalty 

function method was developed for solution of very large scale continuous and discrete variable 

problems (Vanderplaats, 2004b). Second generation approximations were created using force 

approximations (Bofang and Zhanmei, 1981 and Vanderplaats and Selajegheh, 1989) instead 

of the earlier stress approximations. Similarly, Releigh quotient approximations were created for 

 
Figure 1.1 Number of Design Variables that can be optimized grew 

exponentially (Vanderplaats 2006) 
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eigenvalue constraints (Canfield, 1990). These new approximations expanded the element 

types to shell and frame elements among others. Importantly, for such elements as frames it 

was now possible to treat the physical dimensions as design variables and section properties as 

intermediate variables so that the designer could now deal with the actual variables of interest. 

The number of design variables that can be optimized grew exponentially as depicted in Fig. 1 

[Vanderplaats]. This led to formulation and solution of sophisticated optimization problems 

during concept design phase; like topology optimization. Next section describes various 

categories of structural optimization problems. 

1.2 Categories of Structural Optimization 

Structural Optimization can be broadly classified into Sizing, Material, Shape and 

Topology optimization. A good overview with examples has been provided in [Ole Sigmund] and 

reproduced as follows. 

1.2.1 Sizing Optimization 

A simple sizing-optimization problem is shown in Fig. 1.2. In the sizing-optimization 

problem, the layout of the structure is prescribed; in this case, it is a truss structure consisting of 

31 truss elements. The cross-sectional area of each element is a design variable. The truss 

structure is optimized by modifying the areas of the individual truss elements that maximize the 

stiffness of the truss structure for a given total weight. Sizing optimization is the simplest way of 

doing structural optimization. 

 

1.2.2 Material Optimization 

A simple material-optimization problem is shown in Fig. 1.3. Instead of building the 

beam as a truss structure, it can be built as a layered fiber-composite. The goal here is to find 

Figure 1.2 Example demonstrating Sizing Optimization (Sigmund [2]) 
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the material composition that optimizes the stiffness of the beam. In the beam design case, the 

design variables are the orientations and thicknesses of the individual layers of the composite 

as shown figure. 

 
1.2.3 Shape Optimization 

An intuitive way to save weight is to drill circular holes in the structural component. 

However, circular holes are not structurally efficient. Stress concentrations may be high along 

the edges of the holes and may cause the structure to break when loaded. The structure may 

be improved using shape optimization. In this case, the design variables are parameters that 

change the shape of the holes. The procedure is illustrated in figure 1.4. 

  
1.2.4 Topology Optimization 

 Given a design volume filled with material, the objective of Topology 

Optimization is to find the stiffest structure (or a structure fulfilling desired mechanical function) 

using a specified fraction of the material. This is a powerful tool for defining an initial structure 

for later refinement using shape and sizing optimization. An example of structural layout 

produced by topology optimization is shown in figure 1.5.  

Figure 1.3 Example demonstrating Material Optimization (Sigmund [2]) 

Figure 1.4 Example demonstrating Shape Optimization (Sigmund [2]) 
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Figure 1.5 Example demonstrating Material Optimization (Sigmund [2]) 
 

 

 

 1.3 Historical Perspective on Topology Optimization 

A good review on history and advances in topology optimization was published by 

Vanderplaats [1], Sigmund [2], Rozvany [3] and Eschenauer and Niels Olhoff [4] and. Some of 

the highlights have been reproduced here for the ease of reference. Topology Optimization 

(though not formally referred to as such) dates back to the work of Mitchell (1904) where he 

presented minimum weight layout of truss structure. Rozvany (1972) and Prager and Rozvany 

(1977) extended the idea to beam systems. Basic Idea of Continuum based topology 

optimization was presented by Rossow and Taylor in 1973. Thus, the design region for topology 

optimization can be represented using discrete [5] (truss/frame) or continuum [4,6] (triangular, 

quadrilateral, cubic etc) elements. In discrete or ground structure approach the number, position 

and connectivity between members of structure is optimized. In topology optimization of 

continuum structures, the shape of external as well as internal boundaries and the number of 

inner holes are optimized simultaneously with respect to a predefined design objective 

(Eschenauer and Olhoff, 2001 [4]). Table 1.3.1 (Jasbir S. Arora et al [7]) gives a comparison 

between the two approaches.  
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Table 1.1 Comparison between ground structure and continuum based approaches [7] 

 Ground Structure Continuum 

Computation Cost Single analysis cost trivial, 
but many analyses required 

Single analysis cost 
significant, but few design 

iterations required 

Design Space Limited 
Allows "many" more 

arrangements of members 
than discrete 

Other considerations Allows modeling of cross 
sections 

Designs tend to be 
"unrealistically heavy" due to 

continuum modeling. 
 

The continuum based approach can be further classified into microstructure (material 

based) and macrostructure (geometry based). In microstructure approach the finite element grid 

is fixed and each material is assigned a material density of 0 (void) or 1 (solid). In 

macrostructure approach the finite element mesh can be deformed during the optimization 

process to allow for the deformation of geometry. The use of microstructure continuum 

approach is more common as it spans the entire design region to ensure participation of all sites 

and same finite element mesh can be reused. The microstructure continuum models 

traditionally used are homogenization (Bendsoe and Kikuchi [6]), layered microstructure and 

simultaneous interpolation of material with penalization (SIMP) models (Bendsoe [8]). The SIMP 

models are preferred due to their simplicity and reduced number of variables (as many as 

number of finite elements) compared to homogenization and layered microstructure models. 

SIMP models are used in most of the commercial software. Most of the current research in 

topology optimization deals with improving the SIMP method for speed and clarity of results. 

The use of topology description function is one such promising improvement; which this works 

builds on. 

1.4 Rationale for Hyper Radial Basis Function Network as Topology Description Function 

The SIMP method computes optimal density of each element and hence there must be 

as many design variables as the number of finite elements. The number of elements must be 

sufficient to obtain a correct representation of geometrical features as well as accurate physical 
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response. The idea of using Topology Description Function (TDF) stems from the fact that the 

number of elements required in FEA model to represent the geometrical features far exceeds 

that required to obtain a correct physical response. As such, describing the geometrical features 

using a TDF instead of the traditional approach leads to a drastic reduction in number of 

parameters required to describe the geometrical features, assuming that a TDF can be 

represented by a small number of parameter as compared to the corresponding number of 

elements required. This permits the use of a coarse mesh (sufficient to obtain correct physical 

response) in solving the FE analysis problem and results in speed-up of topology optimization 

while yielding smooth topologies. 

The use of TDF has been researched in the past and found to be promising. Modeling 

material densities as TDF helps get rid of checkerboard patterns as observed by M. Stolpe and 

K. Svanberg [9]. They used finite element approximation for continuous material distribution in a 

fixed design space. Important considerations in using TDF are the model representation, where 

geometry is evolving from an initial state to an optimized one, and the technique used to 

associate design variables with mesh data. Using constructive solid geometry as a basis for 

formulating and controlling topology design problem results in robust procedures as observed 

by V. Kumar et al [10] and P.M. Finnigian et al [11. De Ruiter, M.J. and Van Keulen [12] used a 

network of Gaussian basis functions to define topology description function along with the 

penalization method. The location and widths of these bases were fixed and the only variables 

were the basis weights. They used as many bases as the number of finite elements. Thus, 

number of design variables remained the same as those used in SIMP method. S.Y. Wang et al 

[13] used the RBF multiquadric splines to construct the implicit level set function for topology 

optimization. Level-set methods need to deal with formulating and solving the Hamilton Jacobi 

equations, which can be challenging. Wavelet [14] is an another way to represent the density 

function in terms of basis functions that are linked to lengthscales and which are not directly 

coupled to the finite element mesh of the analysis. Annicchiarico and Cerrolaza [15] used β -
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splines and genetic algorithm to solve a specific example of cantilevered beam with circular 

hole. GY Cui et al [16] used Bezier curves for morphological representation of structural 

geometry and simulated annealing for maximum natural frequency topology design. Though the 

approaches outlined above sound promising, in general they suffer from (i) difficulties involved 

with finding the approximation function which correctly represents the material density, (ii) 

expressing parameters involved in the approximation function as continuous variables for 

efficient optimization and (iii) gradient-based solution of the optimization problem involved. The 

parameters used in the methods outlined above to model the material distribution (or geometry) 

are not intuitive. For example, it is difficult for a user to tweak wavelet parameters to produce a 

desired effect on the material distribution and so on. On the other hand, hyper radial basis 

function network (HRBFN) [17, 18] is intuitive and can be made user interactive. After solving 

the topology design problem; if required, the user can interactively change the location, width, 

orientation or weight of one or more bases to produce the desired effect on structural topology. 

The HRBFN parameters are continuous design variables and gradient-based algorithm are 

developed to solve the topology optimization problem. 
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CHAPTER 2 

HYPER RADIAL BASIS FUNCTION NETWORK 

2.1 Introduction 

 Hyper radial basis functions [17, 18] are similar to the radial basis functions commonly 

used for response surface modeling. Unlike the radial basis, hyper radial basis functions can 

have different widths in different directions and can be oriented along any direction. The term 

“hyper” refers to the fact that this basis, and in turn the network, has many widths and 

orientations. Figure 2.1 shows cross sections of 2D radial basis and hyper radial basis functions 

with and without orientation.  

 

 

 

 

 

 

 

 

 

The hyper radial basis is more flexible compared to the regular radial basis. This comes at the 

cost of introducing nonlinear parameters in the basis, which can be a challenge during 

optimization. At the same time, there is a drastic reduction in the number of parameters 

compared to the radial basis network. This is because a single hyper radial basis can used to 

represent a structural link as opposed to many radial basis functions required to achieve the 

same. The reduction in number of parameters allows the use of global optimization method, 

( )cc yx ,  

σ  xσ

( )cc yx ,

yσ

 

xσ

( )cc yx ,

yσ

θ

Figure 2.1 Cross sections of 2D (a) Radial Basis function, (b) Hyper Radial Basis with no 
orientation and (c) Hyper Radial Basis function with orientation 

(a) (b) (c) 
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which helps overcome the nonlinearity in design problem including the one introduced by hyper 

radial basis.  

2.2 Mathematical Formulation 

The parametric model for hyper radial basis function network is represented as 

( )∑
=

−+=
r

i
iiiii XwwXf

1
0 ,,)( θαμφ        (1) 

where r is the number of bases, nRX ∈  is an input vector, iφ is the basis function, iw are the 

weights of the network, ( )n21 ..., iiii μμμμ =  is the location vector of the ith basis, 

( )p21 ..., iiii αααα =  is the orientation vector of the ith basis where p is the number of 

parameters required to define the orientation of the basis in an n-dimensional space, 

( )n21 ..., iiii θθθθ =  is the bandwidth vector of the ith basis and  denotes Euclidean norm. The 

hidden layer for this network represents the parameters iw , iμ , iα , iθ to characterize the 

material distribution. The output layer represents the material distribution as continuous function 

of the hidden parameters.  

For 2-D design space, 2RX ∈  i.e. n=2 and p=1. The basis function of the network is 

chosen to be Gaussian function which can be represented as 

( ) 2

,, ig
iiii eX −=− θαμφ     (2) 

where  [ ] [ ] xTTxg

i

iTT
i Δ
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⎡
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For 3-D design space, 3RX ∈  i.e. n=3 and p=3. The Gaussian basis function of this 

network is be represented by eq. (2) where 2g  is expressed as follows. 

   [ ] [ ] i

i

i

i

TT
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Thus, the material distribution can be approximated as shown in eq. (3)  

∑
=

−+==
r

i

g
i

iewwwXX
1

0

2

),,,,()( θαμρρ    (3) 

where w  refers to network weights for material distribution (i.e. the basis weights iw , i=1 to r), 

)...,( 21 rμμμμ =  refers to the center locations for r bases, )...,( 21 rαααα =  refers to the angle 

parameters for r bases, )...,( 21 rθθθθ =  refers to the bandwidth parameter for r bases. In case 

of 2-D problems, 6r parameters are required to describe the material distribution or TDF and 
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hence to train the network; whereas in case of 3-D problems, 10r parameters are required to 

describe the material distribution. The next section presents examples of 2D and 3D hyper 

radial basis functions and the network. 

2.3 Examples 

 Consider a 2-D hyper radial basis with center location (1.5, 1), bandwidth (0.5, 1) and 

angle (30). Figure 2.2 (a) shows the magnitude and shape of this basis in 2-D space. Figure 2.2 

(b) shows the iso-density contour of the basis at a magnitude of 0.05. 

                       

             (a)      (b) 

Following is an example of 2-D hyper radial basis network with 2 bases. For the 1st 

basis let the weight, center location, bandwidth and angle be (1), (1.5, 1), (0.3, 0.1) and (30°) 

respectively. For the 2nd basis let the weight, center location, bandwidth and angle be (1), (2, 2), 

(0.25 0.05) and (120°) respectively. Figure 2.3 (a) shows the magnitude and shape of this 

network in 2-D space. Figure 2.3 (b) shows the iso-density contour of basis at a magnitude of 

0.05. 

Figure 2.2 (a) Shape and magnitude of 2-D hyper radial basis. (b) Shape (Cross 
section) of 2-D hyper radial basis at magnitude of 0.05 units 
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             (a)      (b) 

Following are examples of 3-D hyper radial basis function and the network with 2 

bases. Figure 2.4 shows the iso-surface for a 3-D hyper radial basis at density level of 0.001 

with basis weight 1, center-location (1.5, 1.6, 1.1), bandwidth (0.05, 0.02, 0.5) and angle (30°, 

 

Figure 2.4 Example of 3-D Hyper Radial Basis Function 

z 

Figure 2.3 (a) Shape and magnitude of 2-D hyper radial basis. (b) Shape (Cross 
section) of 2-D hyper radial basis at magnitude of 0.05 units 

 

x 
y 
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60°, 20°). Figure 2.5 shows the iso-surfaces for two basis functions (blue and green) of an 

HRBF network superimposed. 

2.3 Conclusion 

This chapter presented the mathematical formulation of hyper radial basis function 

network along with 2D and 3D examples. The examples demonstrate the flexibility of HRNFN in 

terms magnitude and orientation to model the material distribution in topology optimization and 

hence make HRBFN an ideal candidate for describing structural topology. Since the parameters 

governing HRBFN are nonlinear, the optimization problem becomes challenging. The next 

chapters present algorithm to solve the optimization problem along with application to various 

topology design problems. 

 

Figure 2.5 Example of 3-D Hyper Radial Basis Function Network 

 
x y 

z 
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CHAPTER 3 
 

MINIMUM COMPLIANCE AND MAXIMUM FUNDAMENTAL FREQUENCY 
TOPOLOGY DESIGN 

 

Topology optimization to design minimum compliance or maximum fundamental frequency 

structures represents the most commonly solved topology optimization problem. It is applied to 

problems in automobile, aerospace and commercial products. This chapter presents the 

problem formulation, solution procedure and examples for the two types of problems. 2-D and 

3-D examples are presented for minimum compliance topology design and 2-D examples are 

presented for maximum fundamental frequency design. 

3.1 Minimum Compliance Topology Design 

3.1.1 Problem Statement 

The optimization problem can be stated as follows 

Minimize  Kuuf T=== ComplianceEnergyStrain    (4) 

where K  is the global stiffness matrix of the structure, u  is the displacement vector obtained 

by solving the system of equations  

PuK =       (5) 

where P  is the vector of global nodal loads and K is assembled from the elemental stiffness 

matrices as follows. 
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( )∑
=

+=
eN

j
jereg

n
j KK

1

)(
*

ρρ        (6) 

where jeK )(  is the elemental stiffness matrix for the jth element and eN  is the number of 

elements for finite element analysis. *n = 4 was used in this work. The choice of the value of *n  

was based on previous literature and to maintain the positive-definiteness of stiffness matrix. 

The density jρ  of an element might become (-) ve during the optimization process due to (-) ve 

basis weights; but an even power of *n ensures that stiffness matrix is positive-definite. reqρ = 

10-3 was used to avoid singularity in stiffness matrix. jρ , the density of jth element, is governed 

by HRBFN as follows 

∑
=

−==
r

i

g
ijjjjj

iewZeYeXe
1

2

),,(ρρ    (7) 

where ),,( jjj ZeYeXe  is the centroid of jth element. Note that the density across each element 

is assumed constant and evaluated at its centroid. The constraints for this problem are 

described as follows.  

(i) Total material usage should be less than the specified value as represented by eq. (8).  

req

N

j
j

e

ρρ ≤∑
=1

      (8) 

where reqρ  is the total volume of material to be retained. Note that unlike traditional SIMP, 

there is no upper limit of 1 for elemental pseudo-density. In our experience, this upper limit of 1 

makes the material to spill over to unnecessary elements just to satisfy the total fraction material 
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constraint. On the other hand if there is no upper limit on the elemental density, the elements on 

load path, which are important, get high density values. The material does not spill over to the 

unnecessary elements since the fraction material constraint gets satisfied from higher density 

values for the important elements. This makes a priori knowledge of fraction volume or the use 

of adaptive fraction volume selection algorithms [19] not necessary for the proposed approach. 

One of the ramifications of not imposing upper bound of 1 on pseudo-density is that the user 

defined material properties might be rendered useless. The workaround would be to pass the 

pseudo-density through a sigmoid function or normalization by maximum of all the elemental 

pseudo densities. Then the stiffness matrix would be scaled by pseudo-densities lying between 

0 and 1, whereas the constraints would be computed using the raw (no upper bound) pseudo-

densities. This normalization was not implemented in the current work since we were not 

concerned about the exact value of compliance. 

(ii) The problem formulation allows for negative weights for individual basis functions. But the 

material density at each element, which is a linear combination of contributions from various 

basis functions, should be non-negative. Equation 9 represents this constraint. 

0≥jρ  for eNj to1=     (9) 

(iii) Bounds for HRBFN parameters are chosen based on the design domain. The bounds for 

weight parameters range from 1−=Loww  to 1=Highw  to allow formation of cavities. Figures 3 

and 4 demonstrate the use of negative basis weights in formation of cavities. Two-dimensional 

cross-sections are presented for the ease of visualization and the same logic holds true for 

three dimensional geometries. As shown in figure 3.1 (a) four basis functions with positive 

weights are required to form a cavity as opposed to just two basis functions in figure 3.1 (b).  
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Figure 3.1 (a) Formation of cavity using four basis functions with equal weight of 1, (b) 
Formation of cavity using two basis functions with weights of 1 and -1.2 for big and small 

basis respectively 
 

Thus, allowing negative basis-weights significantly increase the flexibility of network to 

represent intricate geometries. The bounds for location parameter μ  are chosen to span the 

entire design domain. The bounds for bandwidth θ  are chosen to be a fraction size of design 

domain ensuring that a network base is capable of spanning the entire breadth of the design 

space. The bounds for angle parameters range from °=°= 180,0 HighLow αα  to ensure that 

the network base can be oriented in any direction. 

3.1.2 Sensitivity Analysis 

Sensitivity analysis refers to computation of gradients of objective function with respect 

to the design variables. Analytical sensitivity analysis was performed to speed-up the 

optimization process. The sensitivity of compliance with respect to an HRBFN parameter h  can 

be computed as follows. Differentiating eq. (4) w.r.t. parameter h , we obtain 

   (a)             (b) 



 

 19

( ) U
d
dKU

d
dUKU

d
KUUd

d
df TT

T

hhhh
+== 2    (10) 

Note that ( )θαμ orw ,,=h  for each basis. ih can be one of the basis parameters 

321321321 ,,,,,,,,, iiiiiiiiiiw αααθθθμμμ . The load vector in eq. (5) is independent of design 

variables. Differentiating eq. (5) and pre-multiplying by TU , we get 

U
d
dKU

d
dUKU TT

hh
−=     (11) 

Substituting eq. (11) in eq. (10), we obtain the sensitivity of objective f  w.r.t. parameter h . 

U
d
dKU

d
df T

hh
−=     (12) 

hd
dK

 in eq. (12) can be computed analytically or by using approximate method like finite 

difference or complex variable method [20, 21]. In this work the analytical sensitivity was 

implemented and verified with finite difference and complex variable methods. Differentiating 

eq. (6) w.r.t. one of the parameters for ith basis, we obtain 

( )
i

N

j
jereg

n
j

i

e

K
K

hh ∂

+∂
=

∂
∂

∑
=1

)(
*

ρρ
    (13) 

Substituting eq. (7) in eq. (13), we obtain 
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     (14) 

On further simplifying eq. (14), we obtain 

( )∑
=

−
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⎟
⎟
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⎠

⎞
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⎜
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ewK

1

)(

*
2

hh
     (15) 

Thus, the sensitivity of compliance to HRBFN parameters can be obtained analytically by 

substituting eq. (15) in eq. (11). 

3.1.3 Solution Procedure 

Parameterization of topology using HRBFN drastically reduces the dimension of design 

space from thousands of variables (equal to the number of finite elements) to a few hundred 

HRBFN parameters. This permits the use of global optimization techniques since enough 

sample points can be generated to span the entire design space. In this work, a swarm based 

global optimization method; Particle Swarm Optimization (PSO) [22, 23] was used to provide 

the starting point for gradient based algorithm to ensure global optimal solution. Sequential 

linear programming and perturbations were used to refine the global PSO solution. The final 

structure was obtained by retaining densities above certain level referred to as the optimal 

density-level. An automated method to calculate optimal density-level was developed. The 

optimal density level is selected such that no further reduction in compliance occurs with 

decrease in cutoff value for density. The flowchart in figure 3.2 briefly describes the design 

procedure used to design topology. The next sections describe gradient-based algorithm in 

detail. The details about global optimization algorithm PSO can be obtained from [22, 23]. 
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3.1.3.1 Perturbation algorithm to obtain a minimum compliance design close to the 

optimal solution. 

Figure 3.1.3 briefly describes the perturbation algorithm. The nonlinear design variables 

- location and angle are perturbed based on the signs of their sensitivities. The nonlinear design 

variable bandwidth is perturbed based on the sign of difference between its sensitivity and the 

Processor # 1 

Processor # 2 

Processor # 16 

Generation of 
Swarm Population 
(analogous to 
DOE) 

Update Design 
using Swarm 
intelligence 

h i

Next Iteration 

Perturbation 
and SLP 

Final 
Topology 

Geometry, Loading, 
Boundary Conditions, Mesh-
size, and Number of basis 

Problem 
Definition 

Global 
optimal 
topology 

Gradient-based 
refinement of global 
solution 

Figure 3.2 Flowchart for Solution Procedure 
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median of sensitivities of bandwidths of all the bases. This is because the sensitivity of 

compliance with respect to the bandwidth is always negative for structures with symmetric 

(positive definite) stiffness matrices. This is explained in more detail as follows through eq. (10) 

and (14). Consider the sensitivity of compliance with respect to 1st bandwidth for the ith base 

( )1iθ . Eq. (9) can be rewritten for bandwidth variable as 

U
d
dKU

d
dC

i

T

i 11 2
1

θθ
−=       (10) 

Substituting eq. (6) in eq. (10), we obtain eq. (11) as 
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Substituting the density from eq. (3) in eq. (11), we obtain eq. (12) as 

         U
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Differentiating eq. (11) with respect to the bandwidth, we obtain the sensitivity in eq. (13)  
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Similarly, for 2nd bandwidth of the ith base, we obtain sensitivity as shown in eq. (14). 
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Figure 3.3 Flowchart for Perturbation and SLP algorithm  
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Note that in eq. (13) and (14), the term in [ ]  is always positive definite. Hence, the sensitivity 

given by eqs. (13) and (14) is always negative. The linear variable weight is computed using 

linear programming by imposing the constraints as shown in figure 3.1.3. 

3.1.3.2 Sequential linear programming starting from the design yielded by p 

This section shows how the topology optimization problem is formulated as linear 

programming (LP) problem [24]. The topology optimization problem for minimum compliance 

design can be mathematically stated as shown in eq. (7), (15) and (16). 

Minimize KUUC T

2
1

=        

 Subject to req

N

j
j

e

ρρ ≤∑
=1

     (15) 

and 1≤jρ        (16) 

where eNj to1= , eN  is the number of elements in FE analysis model and reqρ  is the total 

volume of material to be retained. The standard form of LP problem is: 

Calculate x  to minimize xf T  subject to BAx ≤ . 

Hence, the objective and constraints in our compliance minimization problem should be 

formulated to be compatible with the LP formulation. The objective function can be reformulated 

using Taylor’s series expansion for compliance by retaining up to 1st order terms as follows. 
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dv

ii
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j xx
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where dvN is the number of design variables. Specifically, dvN = 6r for 2D and dvN = 10r for 3D. 
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Note that the first two terms in eq. (18) are constant and independent of the new design. Hence, 

minimizing C  in eq. (18) is same as minimizing eq. (19) 

i

N

i i

x
x
CC ∑

= ∂
∂

=
dv

1

      (19) 

In matrix form 

[ ] { }xFC T=        (20) 

where [ ]
x
CF
∂
∂

=  is the gradient of compliance evaluated at current design 0x  and has the 

dimension 1dv ×N . 

x  is a vector of design variables, i.e. the HRBFN parameters and has the dimension 1dv ×N . 

The constraint eq. (15) can be formulated as follows. 
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N

j
j

e

ρρ ≤∑
=1  

Using Taylor’s series expansion and retaining only 1st order term, 
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In matrix form, 

11 bxA ≤       (23) 

where ∑
= ∂
∂

=
eN

j

j

x
A

1
1

ρ
 is of the dimension dv1 N× . 

x  is a vector of design variables, i.e. the HRBFN parameters and has the dimension 1dv ×N . 
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The constraint eq. (16) can be formulated as follows 

1≤jρ  

Using Taylor’s series expansion and retaining only 1st order term, 
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In matrix form 

22 bxA ≤       (26) 

where 
x

A
∂
∂

=
ρ

2  is of the dimension dve NN × . 

x  is a vector of design variables, i.e. the HRBFN parameters and has the dimension 1dv ×N . 
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ρ  is of the dimension 1e ×N  

The constraint eq. (15) and (16) can together be put into matrix form by combining eq. (23) and 

(26) as 
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Eq. (20) and (27) represent the standard form for LP problem. This SLP problem can be solved 

using commercial optimization toolbox available within MATLAB, MOSEK [reference] to name a 

few. 
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3.1.4 2-D Examples 

This section presents examples to demonstrate the application of HRBFN to design 2-D and 3-

D topologies. The examples demonstrate the use of coarse FEA mesh, mesh-independency, 

the application of perturbation and SLP algorithm and automated method to obtain optimal 

cutoff density. 

3.1.4.1 Demonstration of HRBFN based approach producing solution using coarse FEA 
meshs 
  Figure 3.4 (a) shows a cantilever beam fixed at one end and horizontal axial loading at 

the other end. The objective is to get a minimum compliance design using 40% of the total 

material. The first example uses a coarse finite element analysis grid ( 48× ). Figure 3.4 (b) 

shows optimal topology obtained by traditional method (Sigmund et al [25]) using filtering 

scheme so that the top 40% densities are retained. Figure 3.4 (d) shows the optimal locations 

and shapes of HRBF network bases. Figure 3.4 (e) shows the topology obtained by HRBFN 

approach using 10 bases, same mesh size as that of SIMP method and the same filtering 

scheme. Figure 3.4 (c) shows unfiltered plot for the SIMP method with intermediate densities. 

Figure 3.4 (f) shows the result of perturbation algorithm (refer to section 3.1.3.1) which serves 

as a starting point for sequential linear programming. It is evident that the filtered plot for SIMP 

method does not provide a good idea about what the topology should look like. As opposed to 

that, the HRBFN approach provides a correct representation of topology and the topology is 

quite close to being “manufacturable”.  Note that the unfiltered plot for traditional topology 

shown in figure 3.4 (c) gives some idea about what the final topology should look like, but it is 

nowhere close to being “manufacturable” and consists of checkerboard patterns which are 

difficult to interpret. In more complicated structures, the unfiltered plots might be may lead to 

incorrect designs due to difficulty in interpreting checherboard patterns. The number of finite 

element analyses used for both the approaches were fixed to be 40. The value of compliance 

for HRBFN approach was 1.4941e-6 whereas the value of compliance for traditional approach 

was found to be 2.8384e-6. Note that the value of compliance in case of traditional SIMP 
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method might change significantly after manufacturing the desired structure since the topology 

needs to be modified for manufacturing. But in case of HRBFN approach the value of 

compliance would remain more or less the same since the topology obtained is already close to 

being manufacturable.  

3.1.4.2 Demonstration of Mesh independency of HRBFN approach 

The same problem in section 3.1.4.1 was solved using a finer mesh ( 1020× ) and 15 basis 

functions. The topology resulting from HRBFN approach was similar to the one obtained using 

coarse mesh. Figure 3.5 shows topologies obtained from SIMP and HRBFN methods. It is 

evident that the classical SIMP method is mesh-dependent; whereas HRBFN approach does 

not depend on mesh size. 
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Figure 3.4 Demonstration of Mesh independency of HRBFN based approach: Coarse-mesh 
model. (a) Boundary conditions & loading (b) Result of SIMP based topology design by 

retaining the 40% of the densest elements. (c) Result of SIMP based topology design without 
filtering out intermediate densities. (d) Locations and shapes of hyper radial basis functions. 
(e) Result of perturbation algorithm for HRBFN based topology design by retaining 40% the 
densest network. (f) Result of Perturbation and SLP algorithm for HRBFN based topology 

design by retaining 40% the densest network. 
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The selection of lower and upper bounds for HRBFN parameters is quite general and 

automated. The weight parameter can range from any negative to positive number to allow 

intricate concave shapes. The location parameter is such that the network base can be located 

anywhere within the rectangular area under consideration. The angle parameter is such that it 

allows for any orientation of network base. The width parameter is such that the network base 

can span entire rectangular area under consideration. The lower and upper bounds on HRBFN 

parameters for the example presented are as follows. For weight parameter 

1,0 == HighLow ww  since we guess before hand that this topology would not require concave 

or other intricate shapes. For location parameter, 20,0 11 == HighLow μμ , 

10,0 22 == HighLow μμ  since a rectangular plate of dimension 20 units in x-direction and 10 
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Figure 3.5 Demonstration of Mesh independency of HRBFN based approach: Fine-mesh 
model. (a) Boundary conditions & loading (b) Result of SIMP based topology design without 
filtering out intermediate densities. (c) Locations and shapes of hyper radial basis functions.    
(d) Result of Perturbation and SLP algorithm for HRBFN based topology design by retaining 

40% the densest network. 
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units in y-direction is considered. For width parameter, 4,5.0 11 == HighLow σσ , 

40,2 22 == HighLow σσ  to ensure a network base is capable of spanning the entire breadth of 

the rectangular plate. For angle parameter, °=°= 180,0 HighLow θθ  to ensure a network base 

can be oriented in any direction. The lower and upper bounds for all the examples presented in 

this work were chosen similar to this example. 

3.1.4.3 Demonstration HRBFN based approach for topology design of structure subject 

to multiple loads 

This example presents application of HRBFN approach to design minimum compliance 

structure subject to multiple loading. The constraint is to use 40% of the total material. The 

topology was designed using 15 HRBF bases with finite element mesh size of 20×10. The 

number of bases to be selected is based on the anticipated topology. Note that each base 

(represented by 6 design variables) is capable of acting as a link in the final topology. Hence, 

the number of bases used in the design process must be greater than the maximum anticipated 

structural links in the final design. Although the 15 number of bases are not required, it 

demonstrates the robustness of the proposed scheme. Some of these 15 bases are not active 

(low values for weight variable) in the final design. Figure 3.6 shows topologies obtained from 

SIMP and HRBFN methods. It is of note that the proposed HRBFN approach and the traditional 

SIMP produce similar topologies. The topology resulting from HRBFN approach is more intuitive 

and close to being manufacturabe. Note that all examples presented in this work use fixed 

mesh size and fixed number of bases (i.e. they do not change during the design process). This 

is consistent with the fact that in practical applications, a designer does not have liberty to 

iteratively increase the number of finite elements and number of basis functions to guarantee 

convergence to exact topology. The size of finite element model is mostly governed by 

computing resources and time constraints.  
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3.1.4.4 Demonstration of HRBFN based approach for multi-objective topology design 

This example presents application of HRBFN in design of minimum compliance 

structures with multiple objectives. Two objectives for this example are depicted in figure 3.7 (a) 

and (b). Note that the combined objective function used was an equally weighted sum of 

individual objectives. There are other objective formulations suggested in literature like K-S 

function (Kreisselmeier and Steinhauser, 1979) which would be worth investigating. But for the 

example presented, an equally-weighted sum worked well. The mesh size used was 2020×  

elements. Figure 3.7 (c) shows optimal basis locations and shapes obtained by the proposed 
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Figure 3.6 Demonstration of HRBFN based approach for multiple loads. (a) 
Boundary conditions & loading (b) Result of SIMP based topology design without 

filtering out intermediate densities. (c) Locations and shapes of hyper radial 
basis functions. (d) Result of Perturbation and SLP algorithm for HRBFN based 

topology design by retaining 40% the densest network. 
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approach with 10 bases. Figure 3.7 (d) shows the filtered topology obtained by the proposed 

approach. 

 

 

 

 

 

 

 

 

3.1.5 3-D Examples 

The 3D examples presented demonstrate the application of HRBFN in 3D to design 

minimum compliance topologies. The three examples presented are minimum compliance 

topologies for stool, cantilever beam and coarse mesh with multiple loads. 
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Figure 3.7 Demonstration of HRBFN based approach for multiple objectives. (a) Boundary 
conditions & loading for 1st objective (b) Boundary conditions & loading for 2nd objective. (c) 
Topology obtained by solving multi-objective problem with HRBFN approach. (d) Locations 

and shapes of optimal HRBF bases. 
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Figure 3.8 Problem Definition: Design of stool topology 

3.1.5.1 Topology design of Stool 

 

Consider a cube with physical dimensions 40×40×60 units as shown in figure 3.8. A 

quarter-model was solved considering symmetry. The quarter model was meshed with 8-noded 

cubic elements with a grid-size 12×12×18. Four basis functions (40 design variables) were used 

to represent the structure. PSO was used to obtain starting point for sequential linear 

programming. Parallel processing was used to generate the swarm population for each iteration 

of PSO. The Cluster used for parallel processing consists of Dell PowerEdge 1950 dual quad 

core 2.33GHz Intel EM64T Xeon processors with 16GB of memory each. We had license to run 

16 processes at a time. 25 hours were required to run 600 particle swarm iterations with 

population size of 128 per iteration. Starting from the PSO-solution, SLP was run for 200 

iterations, which required 3 hours. Figure 3.9 shows the solution obtained from global optimizer 

PSO described in section 3.1.3.1. Figure 3.1.10 shows the final topology obtained by refining 

the global solution using SLP described in section 3.1.3.1. The total material usage was set to 

40% (our trials indicate that the final topology is pretty much independent of this value). The 

final structure was obtained by retaining densities above the optimal density-level. The optimal 

density-level was computed based on graph shown in figure 3.11. Traditional SIMP design was 

obtained using the web-based tool developed by Tcherniak and Sigmund [26]. The topology 
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from traditional SIMP depends on the value of material fraction to be retained. Figure 3.12 

shows traditional SIMP topologies for total volume fractions 40%, 30%, 20% and 5%. The 

proposed approach has clear advantage over traditional SIMP in terms of being independent of 

fraction total material usage constraint. The topology from proposed approach is free of jagged 

edged, checkerboards and close to being manufacturable. 

 

 

 

 

 

 

Figure 3.9 Stool: Solution using Particle Swarm Optimization with parallel processing. 
Cluster consists of Dell PowerEdge 1950 dual quad core 2.33GHz Intel EM64T Xeon 

processors with 16GB of memory each. 25 hours were required to run 600 particle swarm 
iterations with population size of 128 per iteration (76800 objective evaluations). 
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Figure 3.11 Stool: Automatic selection of optimal density level. The point marked by * is 
selected as the optimal density level since there is no further decrease in compliance with 

respect to density-level. The optimal density corresponds to 3% of the total volume 

Figure 3.10 Stool: Solution using Sequential Linear Programming starting from the solution of 
Particle Swarm Optimization. 3 hours were required to run 200 sequential iterations. 
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Figure 3.12 Stool: Traditional SIMP design for total volume fraction of                 
(a) 40% (b) 30% (c) 20% (d) 5% 

(a) (b) 

(c) (d) 
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Figure 3.13 Design of Cantilever: Problem Definition 

3.1.5.2 Cantilever Beam 

Consider a design domain with physical dimensions 10×3×16 units as shown in figure 

3.13. The model was meshed with 8-noded cubic elements with a grid-size 10×4×16. 

 

Twelve basis functions (120 design variables) were used to represent the structure. Total 

material fraction of 40% was used as a constraint. Perturbation and SLP algorithm was run on a 

PC with 2.13GHz processor and 2GB memory for 300 iterations each, which took about 3 

hours. Figure 3.14 shows the topology obtained by HRBFN based approach. The optimal 

density-level was computed based on graph shown in figure 3.15. Figure 3.16 shows traditional 

SIMP topologies for total volume fractions 40%, 30% and 20%. The results produced by SIMP 

varied according to total volume fraction. As opposed to this, the HRBFN based approach 

provided an easy to interpret topology without a priori knowledge of the fraction material usage 

constraint. 
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Figure 3.15 Cantilever: Automatic selection of optimal density level. The optimal 
density corresponds to 10% of the total volume 

 

Figure 3.14 Cantilever: Solution using Perturbation and Sequential Linear Programming. 3 
hours were required to run 600 sequential iterations. 
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Figure 3.17 Coarse mesh with multiple Loads: Loading 
and Boundary conditions. 

 

1 2

3

 

3.1.5.3 Coarse mesh with multiple Loads 

This example demonstrates the minimum compliance topology design for structure 

subject to multiple loads. The design domain is cube with physical dimensions 20×30×40 units. 

The domain is meshed with 8-noded cubic elements with a grid-size 6×6×11. Figure 3.17 shows 

loading and boundary conditions.  

 

  

Figure 3.16 Cantilever: Traditional SIMP design for total volume fraction of              
(a) 40% (b) 30% (c) 20%  

(a) (b) (c) 
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Figure 3.18 Coarse mesh with multiple Loads: Solution using Perturbation and Sequential 
Linear Programming. 30 minutes were required to run 600 sequential iterations. 

Figure 3.19 Coarse mesh with multiple Loads: Solution of traditional SIMP method 

Figures 3.18 and 3.19 show the designs obtained by proposed and traditional SIMP 

methods. Perturbation and SLP algorithm was run on a PC with 2.13GHz processor and 2GB 

memory. The computation-time for the proposed approach was approximately half an hour for 

500 SLP iterations. 
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Figure 3.20 Use of CERR [26] in Topology Manipulation and Visualization 

It is worth noting that, for all the examples, the proposed approach yields smooth, 

checkerboard-free topology which is easy to interpret and can be converted to parametric CAD 

solid model. On the other hand, the traditional SIMP design needs further interpretation and 

processing for conversion to CAD model. Koguchi and Kikuchi [27] recently proposed a surface 

reconstruction algorithm to convert the SIMP topology into parametric CAD model. Kumar and 

Gossard [28], Hsu [29] used the method of density contour to extract SIMP geometries. Our 

final structure is an iso-density surface at the optimal density level. The geometry-extraction 

step is unnecessary in our proposed approach. HRBFN, in principle can also be used to post-

process SIMP results for conversion to CAD models. In this work a more comprehensive 

approach has been presented which is analogous to finding the optimal parameters of CAD 

model. The computation time can be further sped-up using an efficient compiled language like C 

or Java.  
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Open source software CERR (Computational Environment for Radiotherapy Research) 

[30], originally developed for radiotherapy research, was used to extract and visualize 3D 

topologies from the proposed HRBFN approach. CERR, along with our module for topology 

optimization, has methods for extracting geometry from 3D volumetric data, importing and 

exporting geometry in formats such as DICOM (Digital Image Communications in Medicine)1, 

PLY (Polygon File Format)2, and editing geometry. This software can be used to display 

topology optimization results from various algorithms or institutions simultaneously, determine 

consensus geometry (Myerson et al [31]) and image enhancement. Figure 3.20 is a snapshot of 

CERR showing three orthogonal views of the designed topology for the example presented in 

3.1.5.3. The blue polygon shows the outline for structure at specific density level. It can be 

further edited interactively to satisfy manufacturing or any other criteria. The software developed 

provides a platform for sharing and evaluating results from various topology optimization 

methods. 

3.2 Maximum Fundamental Frequency Topology design 

In this section, the application of HRBFN to solve maximum fundamental natural 

frequency topology optimization problems is presented. The solution procedure is similar to that 

of the minimum compliance topology design. Problem formulation and sensitivity analysis are 

presented followed by 2-D examples. 

3.2.1 Problem Statement 

The optimization problem can be stated as follows 

Minimize 2
1ω−=f       (28) 

Where 1ω  is the fundamental frequency of system (or structure) calculated by finite element 

analysis with the material density governed by HRBFN. For dynamic systems, the governing 

equation is 

                                                 
1 http://medical.nema.org/ (Dec 01, 2009) 
2 http://en.wikipedia.org/wiki/PLY_(file_format) (Dec 01, 2009) 
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Φ=Φ MK 2ω                (29) 

where K  is the global stiffness matrix assembled from the elemental stiffness matrices. M is 

the global mass matrix assembled from the elemental mass matrices using lumped mass 

formulation. ω  represents natural frequency and [ ]nφφφ .....21=Φ  represents modal matrix. 

The assembly of global stiffness and mass matrices is shown in equation 30. 
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where, jeK )(  and jeM )(  are the elemental stiffness and mass matrix for the jth element. The 

constraints for this problem are the total material usage, the bound for material density (greater 

than 0) and the bound constraints for HRBFN parameters as explained in section 3.1.1. 

3.2.2 Sensitivity Analysis 

The sensitivity of objective with respect to an HRBFN parameter is given by 
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where ih  is one of the six parameters for ith basis function. 
id

dK
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M
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∂

 in eq. (31) can be 

computed analytically or by using approximate method like finite difference or complex variable 

method. In this work, the sensitivity was computed using analytical method and verified by the 

complex variable method. Differentiating eq. (30) w.r.t. parameter ih  we obtain 
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Substituting eq. (7) in eq. (32), we obtain 
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On further simplifying eq. (33), we obtain 
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Thus, the sensitivity of objective to HRBFN parameters can be obtained by substituting eq. (34) 

in eq. (31). 

3.2.3 Examples 

Two 2D examples are presented to demonstrate the maximum fundamental frequency 

topology design. The results are compared with traditional SIMP method. As a first example, 

consider a 12x6 units cantilever beam fixed at the bottom and loaded with mass at the top edge 

as shown in Figure 3.21 (a). The constraint is to use 40% of the total material. Figure 3.21 (b) 

shows optimal topology obtained by the SIMP method using 1020×  mesh. The problem was 

solved using the proposed HRBFN approach using 15 bases and the same mesh size. Figure 

3.21 (c) shows optimal locations and shapes of the bases obtained by the proposed approach. 

Figure 3.1.21 (d) shows topology obtained by the proposed approach using filtering scheme so 

that the top 40% densities are retained.  For the second example, consider a cantilever beam 

fixed at left end and mass attached to the other end as shown in Figure 3.22 (a). Figure 3.22 (b) 

shows optimal topology obtained by the density method using 1020×  mesh. In this case, the 

SIMP method did not converge for the 40% material usage constraint. Figure 3.22 (c) shows 

optimal basis locations and shapes obtained by the proposed approach with 15 bases and the 

same mesh size. Figure 3.1.22 (d) shows topology obtained by the proposed approach. These 

examples demonstrate that HRBFN based approach is able to produce easily interpretable 

topologies compared to the traditional SIMP method. 
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Figure 3.21 (a) Boundary conditions & loading (b) Result of SIMP Method (c) Locations 
and shapes of HRBF Bases (d) Result of HRBF based topology design 

 

Figure 3.22 (a) Boundary conditions & loading (b) Result of SIMP Method. The solution did not 
converge for the selected constraint and selected solution parameters (c) Locations and 

shapes of HRBF Bases (d) Result of HRBF based topology design 

1kg 
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(c) (d) 
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3.3 Conclusion 

This chapter presented the application of HRBFN to design 2D and 3D topologies for 

minimum compliance and maximum fundamental frequency objectives. Problem formulation 

was presented followed by analytical sensitivity analysis, solution procedure and examples. The 

optimization algorithm, which uses heuristic global optimizer followed by sequential linear 

programming, was presented. The HRBF results were compared with well established SIMP 

designs and found to be better interpretable and mesh-independent.  
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CHAPTER 4  

DESIGN OF COMPLIANT MECHANISM 

 

4.1 Introduction 

A compliant mechanism transfers or transforms motion, force, or energy without using 

rigid links connected at movable joints [32]. Compliant mechanisms gain at least some of their 

mobility from the deflection of flexible members rather than from movable joints only. Some of 

the advantages of compliant mechanisms include the potential for a dramatic reduction in the 

total number of parts required to accomplish a specified task, ease of manufacturing, scalability 

(i.e. implemented in micro, meso and macro scales) and weight reduction. Hence they have a 

great deal of application in MEMS, robotics, medical devices and consumer products along with 

many other areas. But analyzing and designing such compliant mechanisms is a challenging 

task. Some of the difficulties in design include nonlinear relationship between geometry and 

elastic behavior and fatigue and hysteresis which can limit the performance. Moreover, the 

design problem has inherent multiple local minima. Hence, due to too many design variables 

involved, the traditional continuum based method SIMP is unable to provide a global solution. 

Since HRBFN representation of topology scales down the number of variables significantly, it is 

useful in this design. Multi-criteria optimization to minimize strain energy and maximize mutual 

energy simultaneously [33, 34, 35] is used in this work. The problem formulation proposed by 

[34] handles multiple input and output displacements. Since different sets of boundary 

conditions are applied to solve for mutual and strain energy, two sets of equations need to be 

solved. In this work we propose a reanalysis formulation [36, 37, 38, 39] to obtain the strain 

energy from the solution of mutual energy problem. This circumvents the need to solve two sets 

of equations separately and hence cuts-down the solution time by half. 
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The next sections describe problem formulation which includes sub-problems for 

mutual and strain energies along with the sensitivity analysis, reanalysis formulation to speed 

up analysis and the example of compliant motion inverter. 

4.2 Problem formulation 

A multi-criteria optimization approach is used to minimize strain energy and maximize 

mutual energy of the structure. The two sub-problems involved in this approach, namely, 

calculation of strain and mutual energy are described in this section. The design procedure and 

integration of HRBFN with FEA is explained with the help of an example compliant mechanism 

design problem for motion inverter depicted in figure 4.1. 

 

 
4.2.1 Mutual Energy (Kinematic function) 

Kinematic function represents the flexibility of the structure for specified input loading 

and output displacements. It is stated as shown in eq. (35). 

 Mutual Energy  =  A
T

B Kuv    (35) 

K  is the stiffness matrix of the structure and assembled as shown in eq. (36). 
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Input Load 
Output 
displacement 

Figure 4.1 Compliant mechanism motion inverter 
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where jeK  is the elemental stiffness matrix for the jth element, eN  is the number of 

elements for finite element analysis, jρ  is the density of jth element and *n  is the power of 

density. *n = 4 was used for the examples presented. The contribution of ith hyper radial basis 

function towards the density of jth finite element is shown in eq. (37). 
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iw , ( )21, ii θθ , ( )21, ii μμ  and 1iα represent weight, width, location and orientation of ith basis 

respectively. The density across each element is assumed constant and evaluated at its 

centroidal coordinates ( )jj YeXe , . Au  and Bv  in eq. (35) are displacement vectors obtained by 

solving the system of equations represented by figures 4.2 (a) and (b) respectively. 
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(a) (b) 

 

 

 

 

 

 

4.2.2 Strain Energy (Structural function) 

Structural function represents the stiffness of the structure. It is stated as shown in eq. 

(38). 

Strain Energy = se
T

se uKu     (38) 

where K  is the global stiffness matrix of the structure assembled from eqs. (36) and (37), seu  

is the displacement vector obtained by solving the system of equations represented by figure 

4.3. Note that the system represented in figure 4 has less degrees of freedom as compared to 

the one used for calculating the mutual energy. 

 

 

 

 

 

 

 

 

Applied 
load pt. A 

Dummy force in the 
direction of desired 
output displacement 

pt B 

Artificially constrain the 
point of loading 

pt. A 

Dummy force opposite to 
desired output 
displacement (represents 
resistance) 

pt. B 

Figure 4.3 Calculation of displacement vector seu  by solving sese fuK =  

Figure 4.2  (a) Calculation of displacement vector uA  by solving K uA = fA  (b) Calculation of 

displacement vector vB  by solving K vB = fB 
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4.3 Optimization Problem Formulation and Solution Procedure 

The optimization problem has multiple criteria to minimize the strain energy and 

maximize the mutual energy simultaneously. The design variables are the parameters 

governing the HRBFN. The problem is stated in eq. (39) 

Calculate the density of each finite element to minimize   

se
T

se

A
T

B

uKu
uKvf −=−=

EnergyStrain
EnergyMutual         (39) 

subject to the total material usage and bound constraints. 

The optimization problem stated in eq. (39) is solved using the two-step (global + local search) 

algorithm mentioned in Chapter 4. The analytical sensitivity analysis required to obtain fast 

convergence is described in next section. 

4.4 Sensitivity Analysis 

 
For the multi-criteria objective represented by eq. (40), the sensitivity is given by 

     ( ) ( ) ( ) ( )
( )2EnergyStrain

'EnergyMutual*EnergyStrainEnergyMutual*'EnergyStrain' −
=f        (40) 

where ( ) ' represents derivative with respect to one of the design variables (i.e. one of the 

HRBFN parameters). Now let’s calculate the sensitivity of strain energy and mutual energy 

separately. Differentiating eq. (38), we get 

( ) ( ) ( ) ( ) ( ) ( )xuxKxuxuKxu se
T

sese
T

se ''2 '  EnergyStrain +=                (41) 

The notation ( )xuse  is used to represents the fact that seu  is a function of x . For equilibrium of 

system shown in figure 4.3,  

sese fuK =                      (42) 

Differentiating both sides of eq. (42) and pre-multiplying by ( )Tse xu , we get 

( ) ( ) ( ) ( ) ( ) ( )'' xuxKxuxuxKxu se
T

sese
T

se −=         (43) 

Substituting eq. (43) into eq. (41), we get 
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( ) ( ) ( ) ( )xuxKxu se
T

se ' '  EnergyStrain −=     (44) 

Eq. (44) can be used to calculate the sensitivity of strain energy w.r.t. the design variable. Now, 

in order to compute sensitivity of mutual energy, let’s differentiate eq. (35) w.r.t. a design 

variable 

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 'v' v'v ' Energy Mutual xuxKxxuxKxxuxKx A
T

BA
T

BA
T

B ++=        (45) 

For equilibrium of system shown in figure 4.2 (a),     

   AA fuK =       (46) 

Differentiating both sides of eq. (46) and pre-multiplying by ( )TB xv , we get 

 ( ) ( ) ( ) ( ) ( ) ( )'' xuxKxvxuxKxv A
T

BA
T

B −=      (47) 

For equilibrium of system shown in figure 4.2 (b),                                                          

   BB fvK =       (48) 

Differentiating both sides of eq. (48) and post-multiplying by ( )xuA , we get 

( )( ) ( ) ( ) ( ) ( ) ( )xuxKxxuxKx A
T

BA
T

B 'v'v −=     (49) 

Substituting eq. (48) and (49) in (45), we get 

  ( ) ( ) ( ) ( )xuxKxv A
T

B ' '  EnergyMutual −=        (50) 

( )'xK  in eqs. 44 and 50 can be computed analytically from eq. 36. Differentiating eq. 

36 w.r.t. one of the parameters for ith basis, we obtain 

( )
( )

x

K
xK

eN

j
jereg

n
j

∂

+∂
=
∑
=1

)(
'

*

ρρ
    (51) 

where x can be one of the basis parameters 12121 ,,,,, iiiiiiw αμμθθ  
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Substituting eq.  37 in eq. 51, ( )'xK  can be further simplified as    

  ( ) ( )∑
=

−

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

∂
∂

=
e iN

j
je

g
i K

x

n
ewxK

1

)(

*

'
2

    (52) 

Thus, the sensitivity of multi-criteria objective function can be computed by substituting eqs. 

(35), (38), (44) and (50) in eq. (40). 

4.5 Reanalysis Formulation 

Reanalysis techniques (Arora 1976, Krisch 1993, Krisch and Liu 1997, Chen et al 1999) 

[36, 37, 38, 39] are used to reduce the computation cost for repetitive simulations after 

modifying initial structure. As described in section 4.2, the design procedure requires solution of 

two sets of equations, one for mutual energy and the other for strain energy due to different 

boundary conditions. The inversion of stiffness matrix for solving the above equations is 

computationally expensive. In this section we propose a reanalysis formulation for introducing 

additional constraints to a system to avoid inverting the stiffness matrix twice.  

 

Figure  4.4: Model A (more degrees of freedom than model B) 

 
AP
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Let figure 4.4 represent a structural system corresponding to the one used in calculating 

mutual energy. This system will be referred to as model A. AK , AP  and Au  be the stiffness 

matrix, load vector and displacement vectors for model A respectively, taking into consideration 

the applied boundary conditions. Then, we have, 

            AAA PuK =                         (53) 

Now, let us introduce additional constraints (boundary conditions) to model A. Let’s also change 

the loading as represented in figure 4.5. This system, which corresponds to the one used in 

calculating strain energy, will be referred to as model B. Then, model B is governed by the 

following system of equations. 

BBB PuK =               (54) 

where BK , BP , Bu  are the stiffness matrix, load vector and displacement vectors for model B 

respectively, taking into consideration the applied boundary conditions.  

 

Since model A has more degrees of freedom than model B, let’s partition the matrix and vectors 

as follows. 

   ⎥
⎦

⎤
⎢
⎣

⎡
=

RRRA

ARB
A KK

KK
K      (55) 

Figure 4.5: Model B (less degrees of freedom than model A) 
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⎭
⎬
⎫

⎩
⎨
⎧

=
R

B
A u

u
u                (56) 

⎭
⎬
⎫

⎩
⎨
⎧

=
R
P

P B
A                  (57)  

where Bu , Ru and R are unknown vectors. Define, 

⎭
⎬
⎫

⎩
⎨
⎧

+
⎭
⎬
⎫

⎩
⎨
⎧

=
R

P
P B

A
0

0
               (58) 

or 

 [ ]RWPP BA +=
)

                (59) 

Where  
⎭
⎬
⎫

⎩
⎨
⎧

=
0
B

B
P

P
)

        (60)  

 [ ]
⎭
⎬
⎫

⎩
⎨
⎧

=
I

W
0

            (61)  

Substituting eq. (59) in eq. (53), we get 

 [ ]RWPuK BAA +=
)

            (62) 

Thus, 

 WRKPKu ABAA
11 −− +=

)
         (63) 

Define, 

 BAB PKu
A

)1−=           (64) 

 WKY AW
1−=             (65)  

Then eq. (63) becomes 

 RYuu WBA A
+=         (66)  

Referring to eq. (56), eq. (66) can be written in partitioned form as 
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Input 
load 

Output 
displaceme

Figure 4.6: Symmetry boundary conditions for design of motion inverter 
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⎪⎩

⎪
⎨
⎧
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⎭
⎬
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⎩
⎨
⎧

= 0       (67)  

From the lower portion of eq. (67), we get 

 ( ) RYu
RA WRB +=0        (68)  

From eq. (68), R  can be calculated as 

( ) ( )
RBW AR

uYR 1−=       (69)  

Once { }R  is known, we can compute Bu  from the top portion of eq. (33) as follows 

  ( ) RYuu
BA WBBB +=                    (70)  

Eq. (70) is the reanalysis solution of Bu . Note that in this formulation, the required data, 

ABu and WY  are computed from model A (eqs. 64 and 65). Thus we do not need to solve eq. 54 

directly. The reanalysis formulation derived above can be used to compute seu  in eq. 42 from 

the solution of mutual energy sub-problem. 

 
4.6 Example 

The design procedure described above was applied to design motion inverter shown in 

figure 4.1. Symmetry was used to design only the top half of domain. The symmetry boundary 

conditions are shown in fig. 4.6. The physical dimensions of the domain before symmetry were 
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Figure 4.8 Topology design for Motion Inverter using HRBFN 

 

 
Figure 4.7 Location, shape and orientation of hyper radial bases for symmetric model 

20× 10 units. The mesh-size used for finite element analysis after imposing symmetry was 

20× 10. The constraint for total material to be retained was set at 10%. Note that unlike 

traditional SIMP, there was no upper limit of 1 for elemental pseudo-density as explained in 

section 3.1.1. 12 basis functions were used to design the compliant mechanism. 12800 function 

evaluations (16 parallel processors) were used to obtain an approximate global solution with 

PSO. 400 SLP iterations were used to further refine the approximate global solution. Figure 4.7 

shows the optimal locations, shapes and orientations of hyper radial basis functions obtained 

after SLP. Figure 4.8 shows the final topology of compliant motion inverter obtained using the 

proposed approach. The boundary of structure is the iso-density contour of HRBFN.  
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The value of optimal density level can be obtained from visual inspection or using an automated 

level selection suggested in section 3.1.5.1. This makes a priori knowledge of fraction volume or 

the use of adaptive fraction volume selection algorithms not necessary for the proposed 

approach.  

4.7 Conclusion 

A global solution for designing compliant mechanism using continuum based topology 

optimization method was presented. The proposed HRBFN approach parameterizes structural 

geometry with small number of parameters, which makes the global solution possible. Exact 

reanalysis formulation was used which cuts down the finite element analysis time by half. An 

example design for motion inverter was presented. The design produced was free of 

checkerboards, smooth and close to being manufacturable. Moreover the design process is fully 

automated, where a priori knowledge of fraction material to be retained is not necessary. 
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CHAPTER 5 
 

IMAGE RECONSTRUCTION FOR OPTICAL MEDICAL IMAGING 

5.1 Introduction 

This chapter presents the application of HRBFN based topology design in optical image 

reconstruction. Diffusion optical tomography [40] is a technique of using near infrared (NIR) light 

in the wavelength range of 700 to 1000 nm to probe light scattering media, such as thick 

biological tissues, in order to derive images of their scattering and absorption coefficients 

( )as μμ ,' . The goal of optical tomography is to reconstruct distribution of the optical 

coefficients within a spatial domain Ω  based on the measurement made on the boundary Ω∂ . 

Mathematically, the reconstruction of optical coefficients in optical tomography is a nonlinear, 

multi-minima inverse problem. The equation that models light propagation in highly scattering 

media, such as breast and brain tissues, is the diffusion equation. This equation is derived from 

the Boltzmann equation [41] with the assumptions (i) anisotropic radiance (ii) change of flux 

much lower than collision frequency. The simplified diffusion equation is then stated as 

0)())(( =−∇∇ ruruk aμ  where  Ω∈r ; suu =  at the optical source and 
)'(3

1

sa

k
μμ +

= .  

The two main challenges in optical tomography are to: (i) solve the diffusion equation so as to 

obtain the fluence distribution of light at various points along the boundary of the tissue, given 

the distribution of optical properties within the medium (known as the forward problem), and (ii) 

estimate the optical properties of the medium by matching the forward model to the 

experimentally obtained boundary measurements (known as the inverse problem). Typically, 

finite element or difference methods are used to solve the diffusion equation. In order to 

estimate the optical properties, an approach similar to topology optimization is used. Hence, the 
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design variables are the optical properties of each finite element. Using a description function to 

represent optical properties would lead to reduction in number of design variables and also help 

get rid or artifacts due to checkerboards in topology optimization. In this work, hyper radial basis 

function is used to represent the distribution of optical properties and the diffusion equation is 

solved using finite element method. 

5.1.1 Critical wavelength-range and its application 

Biological materials are relatively transparent to light in the NIR range and hence permit 

photon transmission in a relatively large depth. Absorption and scattering are two phenomena 

that affect the propagation of light in biological tissues, and scattering is the dominant 

phenomenon for light in the NIR range as shown in figure 5.1. 

 

 

The absorption and scattering coefficients, known as the optical properties, describe 

the likelihood that a photon, which is injected into the biological material, is absorbed or 

scattered over some given distance. Absorption occurs at specific wavelengths, that is, 

absorption is wavelength dependent and is determined by the molecular properties of the tissue 

Figure 5.1 Wavelength v/s aμ (Liu et al  [42]) 
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or biological material. Scattering is caused by a refractive index mismatch at the boundaries of 

cell membranes and intracellular organelles. With knowledge of the optical properties, it is 

possible to determine the vascular saturation of hemoglobin [42] (or the oxygen saturation of 

blood), the blood volume and various metabolic activities of biological materials. These 

parameters may be clinically important in predicting the response of tumor to radiation therapy, 

chemotherapy and/or overall tumor prognosis. Determination of the optical properties is done by 

image reconstruction. 

 5.1.2 Literature review 

Three kinds of image reconstruction techniques [43] are found in the literature, namely, 

the time resolved method, the frequency domain method, and the continuous intensity method 

(DC). In a time resolved case, an ultra-short pulsed laser is used as the light source and the 

temporal distribution of the light emerging from the tissue surface is detected using either a 

synchronous scan streak camera with picoseconds’ time resolution or a time-correlated single 

photon counting (TCSPC) system. In the frequency domain method, a radio frequency 

modulated light source is used to illuminate an object and the phase and modulation depth of 

the transmitted light are measured, usually using a heterodyne detection method. Both the time 

resolved and frequency domain schemes exhibit high temporal resolutions (in the picoseconds 

range for the time resolved and nanosecond for the frequency domain). However, tomographic 

measurements made with the time resolved technology require data-acquisition time on a time 

frame of minutes to derive data having acceptable low noise levels. In addition, they have the 

disadvantages of high cost and complexity in the equipment. In the DC case, a point laser 

source with constant intensity is used to continuously illuminate the object and the amplitude of 

the outgoing light on the boundary is measured. Though continuous intensity system has the 

advantage of low cost and relatively high signal to noise ratio (SNR), it presents difficulty in 

simultaneous unique recovery of diffusion and absorption coefficients and inability to probe 

objects embedded deep inside the medium. 
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The equation that models light propagation in highly scattering media, such as breast 

and brain tissues, is the diffusion equation. This equation is derived from the Boltzmann 

equation with the assumptions of (i) anisotropic radiance (ii) change of flux much lower than 

collision frequency. The equation is further simplified assuming a time step of unity. The 

simplified diffusion equation is then stated as 0)())(( =−∇∇ ruruk aμ  where Ω∈r ; suu =  

at the optical source and 
)'(3

1

sa

k
μμ +

= .  The two main challenges in optical tomography 

are: (i) to solve the diffusion equation so as to obtain the optical flounce distribution of light at 

various points along the boundary of the tissue, given the distribution of optical properties within 

the medium (known as the forward problem), and (ii) to estimate the optical properties of the 

medium by matching the forward model to the experimentally obtained boundary measurements 

(known as the inverse problem). 

Majority of reconstruction schemes use the finite element or finite difference method to 

solve the forward problem and an optimization or perturbation algorithm to solve the inverse 

problem. Different types of boundary conditions [44] applicable to the problem can be found in 

the literature. These boundary conditions include (a) Dirichlet condition at boundary (b) Dirichlet 

condition at extrapolated boundary, matched refractive index (c) Robin condition, matched 

refractive index (d) Dirichlet condition at extrapolated boundary, mismatched refractive index (e) 

Robin condition and mismatched refractive index. The exact boundary condition to be used is 

not yet fully understood and should be verified experimentally. In this work the Dirichlet 

condition at boundary is used. Simon Arridge [40,  41, 42, 43, 44, 45, 46] is one of the pioneers 

in this field and has developed Time-Resolved Optical Scattering and Absorption Tomography 

software for image reconstruction at University College, London. It is based on solving forward 

and inverse problems as stated earlier. Klibonov et al [47] have developed an Elliptic Systems 

Method that derives and linearizes the inverse problem to a well-posed boundary value problem 

for a coupled system of elliptic partial differential equations. Brian Pogue et al [49, 50] have 
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reconstructed images solving the inverse problem using the Levenberg-Marquardt optimization 

scheme. Yong Xu et al [51] have used regularized Newton approach to optimize the inverse 

problem objective function. Andreas Hielscher [52] used the perturbation method to solve the 

inverse problem. It is worth noting that most of the previous work heeds more attention towards 

locating the abnormality than estimating exact absorption and scattering coefficients. 

Apart from noninvasive determination of the oxygenation level within biological tissues, 

there has been research in the use of this technique for obtaining tomographic images of the 

neonatal head, with a view of determining oxygenation and deoxygenation levels of blood. The 

diffusion approximation of the Boltzmann transport equation is not valid in the regions of low 

scatter such as the cerebrospinal fluid found in neonatal heads. Methods have been proposed 

for dealing with non-scattering regions within diffusing materials, like the one proposed by 

Arridge et al through the use of radiosity-diffusion model. Huabei Jiang [53] presented a third 

order approximation to diffusion equation for imaging brain tissues. Taufiquar Khan and Huabei 

Jiang [54] suggested diffusion approximation to radiative transport equation for scattering media 

with spatially varying refractive indices. In this work photon transport is modeled using second 

order diffusion equation. 

5.2 Forward Problem in Optical Tomography 

The forward model in optical tomography can be briefly described as shown in figure 

5.2. In the forward model the distribution of optical properties ( 'sμ and aμ ) in a tissue sample 

under study are known. Also the light intensity at source position ( su ) is given. The 
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optical fluence rates at the detector locations will be determined by solving the forward model as 

follows. The light fluence rate in tissues depends upon absorption and scattering coefficients. 

The equation used to model light propagation within tissues is the diffusion approximation to the 

radiative transport equation or Boltzmann equation. Thus, the governing equation for this time-

invariant case is 

 0)())(( =−∇∇ ruruk aμ           (71) 

where Ω=r  and suu =  at the optical source              (72) 

Also, 
)'(3

1

sa

k
μμ +

=             (73) 

A finite element approximation to equation (20) and (21) can be expressed as  

0))()(( =+ uKkK ak αμ      (74) 

Subject to the boundary condition   

sj uu =        (75) 

where su  is the source strength and j is a node on the boundary Ω∂  where the source is 

located. Note that kK  and aK  are assembled from the element matrices according to standard 

finite element procedures. Please refer to the appendix D for the finite element formulation. 

'sμ  aμ  

Detectors
?=u  

suu =  
Source

are known

Figure 5.2 The Forward Problem in Optical Tomography 
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kek KK ∑= )(        (76) 

∑=
aea KK μ)(        (77) 

Before applying the boundary conditions, we have 

0=KU                                       (78) 

Since we know the source strength, assuming a point source, we can partition U  as 

⎭
⎬
⎫

⎩
⎨
⎧

=
f

s

U
U

U          (79) 

Partitioning K accordingly leads equation (74) to 

⎭
⎬
⎫

⎩
⎨
⎧

=
⎭
⎬
⎫

⎩
⎨
⎧
⎥
⎦

⎤
⎢
⎣

⎡
0
0

U
U

KK
KK

f

s

fffs

sfss        (80) 

Then fU can be computed from  

sfsfff UKUK −=        (81) 

The global stiffness matrix K  can be assembled from the following equation 

∑∑ +=
aeake KKkK μμ )()(      (82) 

where  ∫=
eA

T
ke dxdyK ]'[]'[)( φφ       (83) 

  ∫=
e

a

A

T
e dxdyK ][][)( φφμ       (84) 

Where ][φ  = shape function matrix. Please refer the appendices A to C for derivation of shape 

functions.  

Within each element, k and aμ  are function of the hyper radial basis parameters. 
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( ) ( )
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where ),( cc yx  are the coordinates of centroid of the element, N  is the number of tumors, 

0aC , aiC , axiσ , ayiσ , aix and aiy  are the hyper radial basis parameters. 

( ) ( )

∑
=
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22

),('
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μ       (86) 

where ),( cc yx  are the coordinates of centroid of an element, N is the number of hyper radial 

basis functions, 0sC , siC , sxiσ , syiσ , six and siy  are the hyper radial basis parameters. 

5.3 Inverse Problem in Optical Tomography 

The inverse problem is one where the distribution of optical properties ( 'sμ  and aμ ) 

is unknown. We know the fluence intensity at source ( su ) and detectors. In order to obtain the 

distribution of optical properties, we use a numerical optimization technique. We start from an 

initial guess and minimize the least square error function using an optimization subroutine. A 

brief algorithm used to solve this inverse problem is stated as follows. 

Let )(m
ijU = Measured u at node i when the light source is at j. 

       ijU  = Corresponding computed value. 

The inverse problem can be stated as follows. 

Given the fluence measurements )(m
ijU , 

Calculate ( ) ( )sisisyisxisissaiaiayiaxiaiaasa yxCCyxCC ,,,,,',,,,,,', 00 σσμσσμμμ =  
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To minimize 
2

1 1

)( )(∑∑
= =

−=
Ns

j

Np

i

m
ijij UUf       (87) 

Following is a brief description of solution algorithm used. 

1. Start from initial guess 

( ) ( ) ( )sisisyisxisissaiaiayiaxiaiaasa yxCCyxCC ,,,,,',,,,,,', 00 σσμσσμμμ = . 

2. Use equation (82) to compute stiffness K . For each light Source, 

            (a) Compute fluence intensity u  using equation (28) 

(b) Compute contribution to error eeT  

where 
mT uube −=                 (88) 

m
u = all measured data for this light source. 

                              Tb  = Boolean matrix (composed of 0 and 1’s so that uubT = at measured 

point) 

3. Update ( ) ( )sisisyisxisissaiaiayiaxiaiaasa yxCCyxCC ,,,,,',,,,,,', 00 σσμσσμμμ =  using 

quadratic approximation with trust region approach implemented via MATLAB 

optimization toolbox. 

Using equation (88), equation (87) can be written as 

   ∑
=

=
Ns

j
j

T
j eef

1
)(                 (89)                              

 where 
)(

}{
m

jj
T

j uube −=                

where sN  is the number of sources, pN  is the number of detectors and Tb = Boolean matrix 

(composed of 0 and 1’s so that uubT = at measured point). 
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5.4 Sensitivity Analysis 

In order to help convergence, sensitivity analysis is the crux of inverse problem. In this 

work analytical sensitivity analysis is derived as follows. If we want to use gradients in the 

optimizer, we need to calculate 
i

f
α∂
∂

 ( iα is a design parameter). From equation (89), we have 

∑ ∂

∂
=

∂
∂

i

jT
j

i

e
ef

αα
2 ,                  (90) 

Then using equation (88), we obtain 

i

jT

i

j u
b

e
αα ∂

∂
=

∂

∂ }{
                              (91) 

Substitution of equation (91) in equation (90) leads to 

∑ ∂
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u
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2                             (92) 

Thus, 
i

f
α∂
∂

 depends on
α∂

∂ ju}{
, which can be computed by sensitivity analysis as follows. 

Differentiating eq. 81 with respect to design parameter α  gives 
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where i  represents the thi design parameter.      

Since sU  is constant (known intensity of light source) 0=
∂
∂

i

sU
α

. 

Then equation (93) leads to 
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Recall  
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Thus, the gradient is computed substituting equation (95) and (91) in equation (90). 

Now, if we want to use Hessian in the optimizer, we need to have 
ik

f
αα ∂∂

∂ 2

 ( iα  and kα  are 

design parameters). From equation (90) 
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Using equation (88) 
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Substituting equations (90) and (97) in equation (96) 
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Thus, 
ik

f
αα ∂∂

∂ 2

 depends on 
ik

u
αα ∂∂

∂ }{2

 and  
i

u
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∂ }{
 .  

i

u
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∂ }{  is already calculated in equation (95) and 
ik

u
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∂ }{2

 can be computed by sensitivity 

analysis of 1st order sensitivity as follows. 

From equation (93), since 0=
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sU
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Figure 5.3 Simulated tissue and tumor model for Optical Tomography 
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Differentiating equation (99) with respect to kα  
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Then equation (100) leads to 
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Thus, the Hessian is computed substituting equation (102) and (97) in equation (96). 

5.5 Example 

An example presented in this section illustrates the application of HRBFN in detecting 

abnormalities (tumors) within normal tissues. Figure 5.3 represents simulated phantom model. 
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The region in yellow represents normal tissue whereas regions in blue and red represent tumors 

with absorption coefficients 0.13 and 0.2 cm -1.  The forward problem is solved and the detector 

intensities are obtained at locations shown by red circular markers. Figure 5.4 shows finite 

element mesh along with detector locations used to solve the inverse problem. A 3-noded 

triangular element is used in FEA.  

 

 

Figure 5.4 FEA mesh and location of source/detector pairs 

Figure 5.5 Reconstructed Optical map 
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Figure 5.5 shows the result of solving inverse problem using three bases in HRBFN. The design 

variables in the optimization problem were the HRBFN parameters representing absorption and 

scattering coefficients of tumor/s. It can be observed that the optical map of tumors represented 

in Figure 5.3 is not exactly reconstructed (figure 5.5). This can be attributed to the fact that the 

optical image reconstruction problem is ill-posed with multiple minima. A global optimization 

method to reach the exact solution needs further investigation.  

5.6 Conclusion 

 The application of HRBFN for optical image reconstruction was presented in this 

chapter. Finite element formulation was presented to solve the forward problem. The 

optimization procedure to reconstruct optical map from the detector measurements was 

presented. An example showing reconstruction of optical map for a simulated phantom was 

presented. The result was encouraging; but needs further improvements to reconstruct the 

optical map in terms of location as well as absorption and scattering coefficients. 
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CHAPTER 6 
 

CONCLUSION AND FUTURE WORK 

6.1 Conclusion 

This dissertation presented the application of HRBFN as a topology description function 

for topology optimization. Application of HRBFN to various types of topology optimization 

problems, namely, compliance minimization, fundamental frequency maximization, compliant 

mechanism, optical tomographic imaging, was demonstrated. A robust optimization algorithm 

was developed using heuristic global optimizer and sequential linear programming. Objective 

function was evaluated in parallel to generate swarm population for the global optimizer. The 

proposed parallel processing would be useful to take advantage of ever increasing computing 

power; with multi-core processors and clusters becoming routine. The traditional SIMP method 

requires a priori knowledge about the fraction of material to be retained. This makes SIMP 

method prone to human interpretation and leads to errors. A simple modification to the 

traditional formulation, which makes SIMP method independent of a priori knowledge of fraction 

material to be retained and gets rid of checkerboards was proposed. The topologies obtained 

for the example problems attempted were free of checkerboard patterns, easily interpretable 

and close to being “manufacturable”, thus demonstrating the potential of the proposed 

approach. With the use of HRBFN, the actual values of objectives (frequency, output 

displacement etc.) of manufactured topology would be quite close to those obtained from 

theoretical topology design. This would be useful in designing topologies for sophisticated 

applications (e.g. compliant mechanisms) where the objective function values (e.g. output 

displacement of compliant mechanism) are critical. 

Some of the original contributions arising from this work include  
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(1) Development of orient-able hyper radial basis function network and its 

application to topology optimization problems. 

(2) Development of global optimization algorithm for solution of topology 

optimization problems with multiple minima. 

(3) Algorithm for automatic selection of optimal fraction volume to be retained.  

(4) Development of reanalysis formulation for design of compliant mechanisms 

which results in cut-down of analysis-time by half. 

(5) Application of topology optimization technique for image reconstruction in optical 

tomography. 

The concepts and tools developed are available in the form open-source, Matlab 

software which can be further modified for research use.  

6.2 Future Work 

The future work includes 

(1) The use of HRBFN to post process SIMP results. Please refer to appendix E for an 

example of post processing tool for 2D topologies. 

(2) Automated methods to select density level in order to obtain structures with optimal 

or redundant load paths with some factor of safety. 

(3) Integration of approximate reanalysis techniques to avoid inversion of huge 

stiffness matrix for small system changes. 

(4) The application of basis functions other than the Gaussian for HRBFN. 

The next section provides an example of post processing tool for 2D topologies. 
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APPENDIX A 

SHAPE FUNCTIONS FOR 4-NODED QUADRILATERAL ELEMENT
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A four-nodded rectangular element is used in finite element analysis of rectangular 

geometry. The shape functions for this element are derived as follows.  

Let ∑
=

==
4

1i
ii Nufau  

Where ]1[ yxyxf =  and Taaaaa ]4321[=  

 

The element under consideration has a width W and height H. The nodal coordinates of this 

element are 
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The shape function matrix 1−= fAN
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APPENDIX B 

SHAPE FUNCTIONS FOR 3-NODED TRIANGULAR ELEMENT
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A three-nodded triangular element is used in finite element analysis of 2D geometry 

with arbitrary shape. The shape functions for this element are derived as follows.  

Let ∑
=

==
4

1i
ii Nufau  

Where ]1[ yxf =  and Taaaa ]321[=  

 

The element under consideration has coordinates (x1, y1), (x2, y2) and (x3, y3). The nodal 

coordinates of this element are 
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APPENDIX C 

SHAPE FUNCTIONS FOR 8-NODED CUBOID ELEMENT
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An eight-nodded rectangular element is used in finite element analysis of cuboid 

geometry. The shape functions for this element are derived as follows.  

Let ∑
=

==
4

1i
ii Nufau  

Where ]zx   xyz   yz   xy   zy      x   1 [=f  and Taaaaaaaaa ]87654321[=  

 

The element under consideration has a width W and height H. The nodal coordinates of this 
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APPENDIX D 

FINITE ELEMENT FORMULATION FOR OPTICAL TOMOGRAPHY
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 Given the boundary value problem 

0)( =−+∇∇− fuuk aμ         (d.1) 

 

 

 

 

 

 

 

 

The Finite Element of above boundary value problem is derived using the weak formulation. 

Following are the steps used for weak formulation: 

1. Multiply the PDE with a test function and integrate the result over the domain. 

2. Insert the boundary condition. 

Let v be the test function. Then proceeding by the above steps, 

0))(( =−+∇−∇∫
Ω

dxdyfuukv aμ        (d.2) 

Note that 

)()( kuvvukuvk •∇+∇∇=∇•∇         

vukuvkkuv ∇∇−∇•∇=•∇ )()(        (d.3) 

Substituting (d.3) into (d.2), 

∫∫
ΩΩ

=∇∇−−+∇∇ 0)()( dxdyuvkdxdyfvuvvuk aμ      (d.4) 

Using divergence theorem for the last term in equation (d.4), we get 
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Substituting (d.5) into (d.4), we get 

∫ ∫
Ω Ω∂

=−−+∇∇
2

0)( vds
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Substituting (d.7) into (d.6), we get 

∫ ∫
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=−+−+∇∇
2
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The boundary condition on 1φ∂  is uu ˆ=  

The finite element formulation can then be derived from (d.8) as follows 
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APPENDIX E 

2D POST PROCESSING TOOL
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The SIMP method provides solution for material density only at the discrete locations 

(i.e. elements of FEA model). This presents two major issues: (i) It is difficult to modify the 

topology with manual interaction and (ii) The topology obtained is not close to being 

manufacturable. Using a TDF like HRBFN to describe the topology would help circumvent these 

problems, provided it is easy to manipulate the shape of the HRBFN. An interactive topology 

modification tool was developed to tweak 2D topologies interactively. The problem formulation 

can be stated as follows:  

Determine HRBFN Parameters to 

Minimize ( )∑
=

−=
eN

j
SIMPjjf

1

2ρρ    (e.1) 

where  

jρ  is the density of element j is governed by HRBFN as explained in eq. (7). 

SIMPjρ  is the density of element j obtained by SIMP method. 

The constraints are bound for HRBFN parameters. Sequential Linear Programming is 

used to solve this problem. The sensitivity analysis for the objective mentioned in eq. (e.1) is  

∑ ∑∑ ∑
= =

−

= =

−

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

∂

⎟
⎠
⎞⎜

⎝
⎛∂

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=

∂
∂ e

i
e

i

N

j

r

i i

g
iN

j
SIMPj

r

i

g
i

ew
ewf

1 11 1

2

2
**2

hh
ρ

  (e.2) 

where ih  is one of the six parameters for ith basis function. 

Fig E.1 (a) shows the maximum natural frequency topology design obtained from SIMP method. 

Fig E.1 (b) shows the optimal HRBFN parameters computed to fit the SIMP solution. These 

HRBFN parameters can be further adjusted manually to obtain a manufacturable topology. A 

post – processing tool was developed for the ease of manual interaction with HRBFN bases and 
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is described in next section. One of the advantages of HRBFN is that its parameters are 

intuitive. Hence, it would be easy to make small changes to improve topologies or even design 

new topologies manually, provided such graphical tool exists. A tool developed to let users 

interact with 2D HRBFN parameters to perform structural design and modifications is described 

as follows. Fig E.2 (a) represents the boundary conditions, loading and FEA grid for the 

example problem. Fig. E.2 (b) shows topology obtained by using HRBFN method as explained 

in section 3.1 of this work. A bulge at the right end of the structure is visible and clearly looks 

like an artifact from the optimization solution. This topology is input to the post-processing tool 

shown in Fig E.3. The tool displays bases in different colors along with their ids, weights and the 

operation desired. The operations which can be performed on a base are “move”, “rotation” and 

“expansion”. “Move” operation lets user drag the base to desired location. “Rotation” operation 

lets user rotate the base by desired amount. “Expansion” operation lets user expand or contract 

the base in one of its local x or y dimensions. 
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Figure E.1 (a) Topology obtained from SIMP method. (b) HRBFN-Fit for SIMP solution 
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  Fig E.4 and E.5 show the modified HRBFN parameters and topology to get rid of bulge 

observed in Fig E.3. Note that the filtering scheme similar to that described before was used to 

obtain topology in Fig E.5. 

  

 

 

 

Figure E.3 Post-processing tool to design / modify 2-D topologies. 

 

Figure E.2 (a) Boundary conditions, load and FEA grid for compliance minimization 
example. (b) Topology obtained from SIMP method. Region enclosed by red-rectangle 

needs tweaking. 
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Figure E.4 Modified HRBFN parameters 

Figure E.5 Modified topology using post-processing tool 
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