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ABSTRACT 

 

ANALYSIS OF TAPERED LAMINATED COMPOSITE TUBES UNDER TENSION 

AND TORSION 

  
Publication No.  ______ 

  

Chethana Shankara Rao, M.S. 

 

The University of Texas at Arlington, 2007 

 
Supervising Professor:  Wen S Chan 

  
 

Closed form expressions for determining the displacement and twisting angle of 

tapered composite tubes are developed. The analytical expressions are developed based 

on the modified laminated plate theory which includes the tubular wall curvature of the 

laminate. It is found that the axial deformation and the twisting angle calculated by the 

current method agree well with the results obtained from the finite element method. 

 The effect of stacking sequence, taper angle and fiber orientations on the axial 

deformation and twisting angle are studied by using the developed method. It is found 

that the taper angle plays a significant role on the axial deformation and the twisting 

angle provided the laminate lay-up is given.  
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CHAPTER 1 

INTRODUCTION 

 
1.1  Overview 

 
The applications of composite materials in aeronautical and other engineering 

structures are ever increasing, due to their highly desirable properties like high specific 

strength/ stiffness, low co-efficient of expansion, damping properties and directional 

dependence. One of the first uses of composite materials was about 30 years ago in the 

empennage skins of F14 aircraft. With extensive research in the field, composite 

materials are now being applied to primary structures of many aircrafts including 

fuselage and wings. Of-late composites are gaining popularity in automobile and civil 

industries. Fiber reinforced plastics (FRP), which is one of the most widely used 

composite in automobile industry, contributes towards reduced fuel consumption, 

increased pay load, strength and stiffness and lesser corrosion.  

 

Laminated composite shells in particular are prominent in bearing various types 

of loads and are hence used in many engineering structures. The analysis of laminated 

composites is quite complicated since the material behavior is anisotropic, which gets 

further intensified in the analysis of complex structures like shells. Laminated composite 

shells are used in fuselage structures, pressure vessels, missiles and spacecraft, jet nozzles 

etc.  A shell is defined as a thin walled body with a curvature at least in one direction. 
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The use of thin walled tube constitutes the most unified approach for 

characterizing the mechanical properties of fiber reinforced composites.  A thin walled 

tube, whose radius to thickness ratio is very large, is under a state of uniform stress under 

combined tension, torsion and internal pressure. Some applications of composite shells 

are described below.  

 

Carbon fiber baseball bats (see Fig 1.1) are used in amateur baseball since the 

flying distance becomes longer and serves as a good replacement for wood, which is is 

becoming less and less available. 

 

 

Fig 1.1 Composite baseball bat 

 

Tennis rackets (Fig 1.2) made of carbon fibers are far lighter than wooden rackets 

and have higher service life than wooden rackets.  
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Fig 1.2 Composite tennis rackets 

 

Golf shafts (Fig 1.3) made of composites are much lighter than metal shafts 

giving higher swing speed for a given power. Composite golf shafts, which were used 

initially only by senior players and ladies is now gaining popularity among professional 

and amateur players.  

 

Fig 1.3 Composite golf shaft 
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 Composites are used in compressed natural gas (CNG) tanks (Fig 1.4) for 

natural gas cars due to their light weight.  

 

 

Fig 1.4 Composite CNG tank 

 

Other applications include wind mill blades, rollers, shafts and X ray inspection 

equipment. Laminated cylindrical shells are used in pressure vessels, missiles and 

aircraft, fuselage structures etc. Laminated conical shells are often used as transition 

elements between cylinders of different diameters, end closures etc. The use of laminated 

composites in conical shells are however limited to tubes of low radius ratio, since high 

radius ratios results in a non-uniform orientation of fibers in a ply.   

 

1.2 Literature Survey 

Good research has been carried out in the past; many of which focus on the 

behavior of laminated shells under different loading conditions, hygrothermal effects etc. 

Other studies in the area include buckling and post buckling analysis of laminated shells, 

delaminations and thermal analysis. Many of these studies have been carried out using 

finite element technique.  
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Reddy [1] gives a detailed description of the analysis of laminated plates in 

vibration; buckling and bending using the Classical Laminated Plate theory and First 

order shear deformation theory. He also discusses the vibration and buckling 

phenomenon of cross ply laminated circular cylindrical shells.  

 

Much focus has not been poured on the analytical modeling of laminated shells. 

While finite element techniques are cumbersome and time consuming, experimental 

techniques need proper specimens and mounting techniques. In such conditions, there is a 

high need for an easy-to-use analytical solution. Demirhan and Chan [2] have presented 

two analytical closed form expressions for the evaluation of the stiffness matrices of 

cylindrical composite tube, one employing the laminated plate theory and the other 

employing the laminated shell theory. The models are compared with the smear property 

approach and also with the results from a finite element model. In their model, effect of 

curvature of the laminate in tubes are included Recently, Lin and Chan [3] modified the 

former model for circular tube to develop a model for elliptical cylindrical tube under 

bending. Finite element model is used for the verification of this model.  

 

Ren [4] has developed and elastic solution for an anisotropic laminated circular 

cylindrical shell simply supported and subjected to axisymmetric loads using three 

dimensional elasticity theory.  Many research has been conducted on laminated shells 

using numerical techniques like finite element method. Tafreshi [5] has presented a 

computational model for the delamination in isotropic and laminated composite 

cylindrical shells. A combined double layer and single layer of shell elements are 
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employed to study the effects of delamination on the global load carrying capacity of 

such systems under axial compressive load. Vaziri [6] has studied the sensitivity of 

buckling behavior of cracked composite cylindrical shells to service life buckling by 

performing a linear buckling analysis. Computational models are developed by using a 

special meshing technique in which the element size is reduced incrementally from the 

uncracked region to the cracked tip. Gummadi and Palazotto [8] have presented a 

progressive failure analysis on cylindrical shells. Non linear finite element formulation 

with large rotation capability is used to predict the onset of failure modes. The different 

failure modes considered are: fiber breakage, matrix cracking and delamination.  

 

Yan, Ying and Chen [7] have studied the behavior of simply supported laminated 

cylindrical shell with viscoelastic interfaces in cylindrical bending.  

 

Very little work has been carried out in the field of laminated conical shells. Most 

of them deal with buckling and vibration, some of which are presented below.  

Correia, Soares and Herskovits [9] have presented a numerical method for the 

structural analysis of laminated conical shells using a quadrilateral isoparametric element 

based on higher order shear deformation theory. The model developed can be used to 

perform static analysis with arbitrary boundary conditions and loads and for solving eigen 

values problems.  

 

Liu [10] has developed a theory for non linear bending of symmetrically 

laminated, cylindrically orthotropic, shallow conical shells subjected to an 
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axisymmetrically distributed load. Transverse shear effects were also included in his 

model.  

 

Goldfield [11] has studied the sensitivity of stiffened conical shells to 

imperfection via post buckling analysis.  

 

Raju, Chandra and Rao [12] have presented the transient temperatures in 

laminated composite conical shells subjected to aerodynamic heating. Unsteady heat 

conduction equations for a laminated composite conical shell corresponding to an 

axisymmetric temperature field are formulated.  

 

 Most of the research in laminated conical shells is based on thermal and buckling 

analysis. No attempt has been made in the past to study the structural response of 

laminated conical shells (tapered composite tubes).  

 

1.3 Objective and Approach of Thesis 

In the current research, an effort is made to develop an analytical model for the 

computation of deformations of tapered laminated composite tube under axial tension and 

torsion. IM6/ 3501-6 Graphite/ Epoxy is used as the composite material in the current 

research. The analytical models are developed based on the laminated plate theory and 

are extensions of the model developed for circular cylindrical tubes [3], which is 

discussed in detail in Chapter 2. The analytical model developed is more like a procedure 

than a closed form solution. The models are validated using a finite element model, 
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which is first used to analyze an isotropic tube in order to ensure the validity of the 

model. The finite element model is developed in the computer program ANSYS. 

Parametric studies are conducted on tubes to study the effect of stacking sequence, fiber 

orientation and taper angles.  

 

1.4 Outline of the Thesis 

A review on circular cylindrical tubes [2] is carried out in Chapter 2. Analytical 

solution and finite element model for tapered tubes (Isotropic and composite) under axial 

tension are discussed in Chapter 3. Chapter 4 deals with analytical model and finite 

element model of tapered tubes (Isotropic and Composite) under torsion. Parametric 

studies to study the effects of stacking sequence, fiber orientation and taper angles are 

discussed in Chapter 5. Finally conclusions and recommendations are presented in 

Chapter 6. MATHEMATICA codes and ANSYS batch files are presented in the 

Appendix section.                                      
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CHAPTER 2 

STIFFNESS MATRICES OF UNIFORM CIRCULAR TUBES 

 

Chan and Demirhan [2] developed two new analytical methods for evaluating the 

stiffness matrices of laminated uniform circular tubes. The two methods laminated plate 

approach and laminated shell approach account for the stacking sequence and curvatures. 

The laminated shell approach is however not relevant, hence not discussed here. Both the 

theories are developed based on the lamination theory.  

 

2.1 Geometry of the Tube 

 The laminated tube considered is a uniform tube, with circular cross section with 

an outer radius oR , inner radius iR  and a length L . The length of the tube is sufficiently 

larger than its radii. Hence the tube considered is a long tube. In all the derivations the 

basic assumption of ‘Plane remains plane after deformation’ is made. 

 

2.2 Stiffness Matrices of the Tube 

The current model called the laminated plate theory is based on the conventional 

lamination theory. According to the lamination theory the stiffness matrices of an  

laminate with a ply thickness are given by: 

n ply

plyt
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k k
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B Q h h

D Q h h
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−
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−
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⎡ ⎤= −⎣ ⎦
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⎡ ⎤= −⎣ ⎦

∑

∑

∑

−   (2.1) 

 

where 
k

Q⎡ ⎤⎣ ⎦  is the reduced stiffness matrix of the layer. In the above form, the thk
k

Q⎡ ⎤⎣ ⎦  

matrices have transformation matrices in the direction only, which accounts for the 

fiber orientation. In the current research, along with a transformation about , we also 

have to include a transformation about the direction, which is discussed later in the 

chapter.  

z

z

x

 

 In order to develop the model, an infinitesimal plate element of the tube is 

considered as shown in the Fig. 2.1. The infinitesimal element is inclined at an angle θ  to 

the  axis of the tube. In order to develop the model, reduced stiffness matrices of the 

plies, which accounts for the fiber orientation are evaluated.  

z′

 

( ) [ ] ( )'
z z

Q T Q Tσ εα α⎡ ⎤ ⎡ ⎤ ⎡= − ⋅ ⋅ + ⎤⎣ ⎦ ⎣⎣ ⎦ ⎦  

 

The element which is inclined at an angle θ  with the z′ axis is rotated about 

axis to make it parallel to x′ y′axis. Hence the reduced stiffness matrix, [ ]Q′  of the 

individual plies needs to be transformed about the axis. As we know, the transformation x
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of a reduced stiffness matrix, has both stress and strain transformation 

matrices,[ ]T
σ

and[ ]T
ε

. These matrices are obtained as described below.  

Since, the infinitesimal element is dimensional, we can get the stress 

transformation matrix [

2

]T
σ

for a  case by striking off the 2, 3 and 42D th rows and 

columns of the 3  dimensional [ ]x
Tσ  matrix.  

 Thus, [ ] 2

1 0 0

0

0 0
x

T m

m
σ 0

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (2.2) 

Similarly we can find that the strain transformation matrix, [ ]T
ε

 is equal to the stress 

transformation matrix [ ]T
σ

. Hence,  

[ ] 2

1 0 0

0 0

0 0
x

T m

m
ε

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 

We can also note that, since the transformation matrices contain only , the cosine 

terms, the matrices are the same for 

m

θ+  or θ−  terms. Hence, reduced stiffness matrix 

after rotation will be given by: x

 

 [ ] [ ]'
x

Q T Q Tσ
⎡ ⎤ ⎡ ⎤= ⎣ ⎦⎣ ⎦ xε  (2.3) 

  

The stiffness matrices,[ ]A , [  and ]B [ ]D  are then calculated using the lamination theory: 
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1 (
2

1 ( )
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n
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n
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n

k k
k k

A Q h h

)B Q h h

D Q h h

−
=

−
=

−
=

⎡ ⎤= −⎣ ⎦

⎡ ⎤= ⎣ ⎦

⎡ ⎤= −⎣ ⎦

∑

∑

∑

−  (2.4) 

 

The above matrices need to be translated to the y′axis using the parallel axis theorem. 

Here, z R Cosθ= . Hence, the new stiffness matrices are given by: 

 

 

[ ]

[ ] [ ]

[ ] [ ] ( ) [ ]

'

'

2' 2

A A

B B R Cos A

D D R Cos B R Cos

θ

θ θ

⎡ ⎤ =⎣ ⎦

⎡ ⎤ = +⎣ ⎦

⎡ ⎤ = + +⎣ ⎦ A

 (2.5) 

 

Note that the stiffness matrices are in terms of R , where R  is the mid-thickness radius of 

the circular tube, 0 2 ply
nR R t= − . 

These matrices are then integrated over the entire θ  domain to evaluate the stiffness 

matrices of the tube at the section. 

 

2
'

0

2
'

0

2
'

0

A R A d

B R B d

D R D d

π

π

π

θ

θ

θ

⎡ ⎤⎡ ⎤ =⎣ ⎦ ⎣ ⎦

⎡ ⎤⎡ ⎤ =⎣ ⎦ ⎣ ⎦

⎡ ⎤⎡ ⎤ =⎣ ⎦ ⎣ ⎦

∫

∫

∫

 (2.6) 

Note that R  is not a function of θ  and is hence taken out of the integration.  

 12



 

Fig 2.1 Development of Analytic Solution using Laminated Plate Theory 

 

The above matrices can be expanded as: 

 

 

[ ]

[ ] [ ]

[ ] [ ] [ ]

2

0

2 2
2

0 0

2 2 2
2 3

0 0 0

2

A R A d

B R B d R A Cos d

D R D d R B Cos d R A Cos d

π

π π

π π π

θ

θ θ θ

2θ θ θ θ θ

⎡ ⎤ =⎣ ⎦

⎡ ⎤ = +⎣ ⎦

⎡ ⎤ = + +⎣ ⎦

∫

∫ ∫

∫ ∫ ∫

 (2.7) 
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2.3 Axial Stiffness 

The relationship between forces and moments on the tube and the mid-plane 

strains and curvatures are given by: 

oN A B

M B D

ε

κ

⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥= ⋅ ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

 

 o

T

a b N

Mb d

ε

κ

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥= ⋅⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎣ ⎦

 (2.8) 

oε and are the mid-plane strains and curvatures. κ

For an axial tensile case,  is the only applied load. Hence, the mid-plane axial 

deformation 

xN

x
oε is given by: 

 11
x
o a Nε x= ⋅  (2.9) 

Hence, the axial stiffness will be given by 
11

1
a

 

 

2.4 Torsional Stiffness 

 For a torsion case, only a moment xyM  (torque T ) is applied. Hence the mid-

plane angle of twist will be given by,  xyκ

 66xy xyd Mκ = ⋅  (2.10) 

 

Hence the torsional stiffness is given by 
66

1
d
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2.5 Smeared Property Approach 

 This approach is more often used for the calculation of extensional and bending 

stiffness of the tube. The equivalent or smeared moduli of the walled laminate of the tube 

is used. The stiffness of the tube is then calculated using the conventional formula that is 

commonly used for isotropic tubes as shown below.  

 Axial Stiffness ( )2 2
x x o iE A E R Rπ= ⋅ −  (2.11) 

Bending Stiffness ( )4 4

4x x o iE I E R Rπ
= ⋅ −  

xE  is the equivalent modulus of the tube in the  direction.  x

 

2.6 Bending Stiffness Comparison between the Approaches 

 In Ref [2], Chan and Demirhan calculated the bending stiffness of a composite 

tube and compared their results with the smear property approach as well as the finite 

element method, The model is also confirmed by experimental results [19]. 
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CHAPTER 3 

TAPERED TUBES UNDER AXIAL TENSION 

 

3.1 Analytical Solution for an Isotropic Tube 

Consider a uniform thickness tapered tube with a mid-thickness larger radius LR  

and a mid-thickness smaller radius  , where t  is the thickness of the tube as shown in 

Fig 3.1. Let 

SR

L  be the length of the tube.  

 

Fig 3.1 Dimensions of the Tapered Tube 

 

The area of the larger end of the tapered tube will be:  

 

 

2 2

2

2

L L L

L L

t tA R R

A R t

π

π

2
⎡ ⎤⎛ ⎞ ⎛ ⎞= + − −⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

=

 (3.1) 
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Similarly, the area at the smaller end of the tube will be given by: 

 

 2S SA R tπ=  (3.2) 

The mid-thickness radius of the tapered tube at a distance x  from the larger end, xR  will 

be given by: 

 tanx LR R x α= −  (3.3) 

Where α  is the taper angle of the tube and 
Rtan

L
α ∆
= ; R∆  is the difference between 

the large and small radii of the tube; 

L SR R R∆ = −  

Hence, the area of the section of the tube at a distance x  is given by: 

 

 
2
2 [ tan

x x

x L

A R t
A t R x ]

π
π α

=
= −

 (3.4) 

 
We know, the deformation of the tapered tube at a distance x , subjected to an axial force 

F  will be, 

 
( )

( )

0

0

0

2 ta

2 t

x

x
x

x

L

x

L

Fdx
EA

Fdx
Et R x

F dx
Et R x

δ

n

an

π α

π α

= ∫

= ∫
−

= ∫
−

 (3.5) 

 

The axial deformation of the tapered bar xδ at any section, distance x from the fixed end, 

will be hence given by: 
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( )

ln
2 tan tan

L
x

L

RF
E t R x

δ
π α α

⎛ ⎞
= ⎜⎜ −⎝ ⎠

⎟⎟  (3.6) 

 

For a limiting case of a cylindrical tube, where 0α =  the deformation can be found as: 

 

 
( )0 0

lim lim ln
2 tan tan

L
x

L

RF
E t R xα α

δ
π α α→ →

⎛ ⎞⎛ ⎞
= ⎜ ⎜⎜⎜ −⎝ ⎠⎝ ⎠

⎟⎟⎟⎟  (3.7) 

 

Using L’ Hospitale's rule, we can find out for an axial case, 

 
2x

L

Fx
E t R

δ
π

=  (3.8) 

The above equation can be verified from a solid mechanics text book. 

 

3.2 Finite Element Model of an Isotropic Tube 

 

3.2.1 Geometry and Modeling 

A model of a tapered tube with dimensions LIR = 0.75 in, SIR = 0.25 in, and a 

total thickness t (6 plyt ) = 0.03 in is created using ANSYS. LIR  is the inner larger radius 

and SIR  is the inner smaller radius of the tube. 

Refer to Fig 3.2. Key points 11 (0, )LIR , 12 ( , 21 ( ,, )SIL R )S plyL R t+ , 

22 (0, )L plyR t+ , are created using K command on ANSYS. Areas are created using these 

key points using the A command. In a similar fashion, 6 areas are created by 

incrementing the y co-ordinate by plyt . These areas are then swept about a longitudinal 
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axis to create volumes using the VROTAT command. The VROTAT command 

necessitates that at least 2 volumes be created along the circumference. Thus a model of 

the tube, consisting of 12 volumes is created.  

AL 2024/T3 with properties, E  = 1.0498e7 and ν = 0.33 is used as the material of the 

tube.  

 

Fig 3.2 Development of the Finite Element Model  

 

3.2.2 Development of the Model 

To establish the correct mesh size, the model has to be checked for convergence 

of results. The convergence test for the tapered tube is carried out as follows. A model of 

an isotropic (Al 2024/T3) tapered tube with a geometry discussed in Section 3.2.1 is 

created. The element, SOLID 95, which has 20 nodes with 3 translational degrees of 

freedom ( andUZ ) at each node is used for meshing the model. The mesh size is 

varied from 720 to 9000 elements and an axial force of 500 lb is applied on the tube. The 

mesh size of the lines in the thickness direction is maintained constant, and is equal to 1 

element per line. The mesh sizes of the lines along the length and along the 

,UX UY
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circumference are varied. The axial deformation UX of the tube is noted for each mesh 

size and are tabulated in Table 3.1 

  

Table 3.1 Table showing the convergence of results with increase in the number of 
elements 

No. of Elements 
along Thickness 
 

No. of Elements 
along Length 

 

No. of Elements  
along 

Circumference 

Total No. of 
elements 

 

UX from Finite 
Element Method 

(in) 
6 10 12 720 2.990E-03 

6 20 20 2400 3.002E-03 

6 30 24 4320 3.007E-03 

6 40 24 5760 3.010E-03 

6 50 30 9000 3.010E-03 

 

Fig 3.3 shows the graph of axial deformation versus the number of elements in 

the model. From the plot, it can be seen that the results start converging at 5760 elements. 

A mesh size of 9000 elements with 50 elements per length, 30 per circumference is 

adopted in development of the model.   

 

3.2.3 Boundary Conditions: 

Fig 3.4 shows a model of the tapered tube with the boundary conditions. A 

MASS21 element is created at the master node (2) located at the center of the smaller end 

of the tube. Using CERIG command, a rigid region is created at the smaller end of the 

tube in order to ensure uniform displacement in a section. At the larger end, all the nodes 

are fixed in the ( ) direction. A force of 500 is applied on the master node in the 

axial ( ) direction.  

x FX lb

x
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Fig 3.3 Convergence Plot 

 

 

Fig 3.4 Finite Element Model of an Isotopic Tube with Boundary Conditions 
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3.3 Results Comparison 

Table 3.2 shows the comparison of the results between the analytic solution and the 

finite element method. The percentage difference was calculated using the percent value 

of the ratio of the difference between the analytical and FEM results to the FEM value. 

Fig 3.5 shows the graph of displacement of the tube in  direction, ‘UX ’ with respect to 

the distance from fixed end ‘ ’. It can be observed from the graph that the analytic 

solution is in excellent agreement with the finite element results. Thus the finite element 

model developed can make a good ground for comparison of the analytical model and 

hence can be used for modeling the composite tube. 

x

x

 
Table 3.2 Comparison of normalized axial deformation from analytical method and finite 

element method 
Distance from fixed 

end  x ( )in

Normalized Analytical 

Solution  ( / )in lb

Normalized FEM 

Solution  ( / )in lb
%  

Difference

1 6.83E-07 7.00E-07 2.58 

2 1.41E-06 1.44E-06 1.55 

3 2.20E-06 2.23E-06 1.17 

4 3.06E-06 3.09E-06 0.95 

5 3.99E-06 4.03E-06 0.85 

6 5.03E-06 5.07E-06 0.78 

7 6.18E-06 6.23E-06 0.72 

8 7.47E-06 7.53E-06 0.67 

9 8.96E-06 9.02E-06 0.65 

10 1.07E-05 1.08E-05 0.43 
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Fig 3.5 Graph of Normalized Displacement Vs Distance from Fixed End 

 

3.4 Analytical Model of the Composite Tube 

 

3.4.1 Geometry 

Consider a tapered tube with mid-thickness larger radius LR , mid-thickness smaller 

radius SR , Length L and a tube thickness . Consider a section of the tapered tube at a 

distance ‘

t

x ’ from the larger end, having a mid-thickness radius, xR . Note that  

as shown in Fig 3.6.  

6 plyt t=

 

3.4.2 Stiffness Matrices 

The composite tapered tube as we know does not have a uniform radius, but the 

radius varies linearly with the distance. Hence the stiffness matrices for the tube given in 
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equation 3.13 have to be written in terms of xR , where xR  is the mid-thickness radius of 

the tube at any section.  

 

2
'

0

2
'

0

2
'

0

x

x

x

A R A d

B R B d

D R D d

π

π

π

θ

θ

θ

⎡ ⎤⎡ ⎤ =⎣ ⎦ ⎣ ⎦

⎡ ⎤⎡ ⎤ =⎣ ⎦ ⎣ ⎦

⎡ ⎤⎡ ⎤ =⎣ ⎦ ⎣ ⎦

∫

∫

∫

 (3.9) 

 

 

Fig 3.6 Geometry of the Tapered Composite Tube 

 

The individual terms of the ,A B⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦  and D⎡ ⎤⎣ ⎦  are given in Appendix A. 
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Note that the reduced stiffness matrices ijQ of the plies are not only dependent on the 

fiber orientation angle β  and the elastic constants of the composite material, but are also 

dependent on the orientation angle θ  of the infinitesimal element with the axis. The 

orientation angle term, 

z

θ , however vanishes during the integration over the θ  domain.  

Fig 3.7 shows a flow chart of the complete procedure of finding the analytical model for 

axial and torsion deformation for a tapered laminated composite tube. Note that the order 

of the transformation has no effect on the final stiffness matrices of the tube. 

 

Fig 3.7 Development of the Analytical Model from the Laminated Plate Theory 
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3.4.3 Axial stiffness and Stress Distribution 

From equation 2.8, we saw that the axial deformation for a uniform laminated 

composite tube is given by 

 110
x

xa Nε =  (3.10) 

Where,  is the total force in the direction.  xN x

For a tapered tube, the axial deformation has to be integrated with respect to  

since 

x

11a  is a function of . The total axial deformation is thus given by: x

 

Fig 3.8 Flow Chart of the Development of the Analytical model 
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 11
0

x

x F a dXδ = ∫  (3.11) 

Note that the deformation remains the same at all points in a cross sectional plane.  

    

From the equation for  as given in Appendix A, we can see that the term  

has a unit lb . Hence  is of the unit, 

11A 11A

11a 1
lb

. The product of force and  which is 

dimensionless is integrated with respect to . Thus we can see that the equation on the 

right has a dimension of .  

F 11a

x

in

 

For a tube of uniform wall thickness, the B⎡ ⎤⎣ ⎦  matrix will be zero, irrespective of 

whether the lay-up is symmetric or asymmetric implying that there is no extension-

bending coupling in a laminated tube. Hence, 
1

a A
−

⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦ . Since, A⎡ ⎤⎣ ⎦  is a function of 

the laminate constants and xR , xR  can be taken out and the laminated constants can be 

substituted to give 11a  in the form of 1

xR
 multiplied by constant.  

11
1

x

a C
R

= ⋅  

The constant can be found out by substituting the elastic constants in the C A  terms and 

then obtaining the first row, first column term of the matrix,  a⎡ ⎤⎣ ⎦ . Thus the axial 

deformation of the tube can be written as: 
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( )

ln
tan tan

L
x

L

RFC
R x

δ
α α

⎛ ⎞
= ⎜⎜ −⎝ ⎠

⎟⎟  (3.12) 

 

Note that the  term is a function of11a xR , which is given by: 

tanx LR R x α= −  

The equation 3.11 is analogous to the equation for an isotropic tube given in Section 3.1, 

where  is replaced by 11a 1

xE A
. Note that the  term takes into account the material 

properties and the effect of curvature.  

11a

 

3.4.4 Calculation of the Stresses from Analytical Solution 

 The analytical model developed is further validated for stresses in the layers. The 

stresses are computed as follows. 

 

We know that, 

 0
T

a b N
Mb d

ε
κ

⎡ ⎤⎡ ⎤ ⎡
= ⋅⎢ ⎥

⎤
⎢ ⎥

⎢ ⎥
⎢ ⎥

⎣ ⎦ ⎣⎣ ⎦ ⎦
 (3.13) 

. 
 

For a laminate tube with uniform thickness, 0b⎡ ⎤ =⎣ ⎦ . For the tension case, only  will 

be applied. Hence, [

xN

] 0κ =  and [ ] [ ]0 a Nε ⎡ ⎤= ⋅⎣ ⎦ . Hence, for any section, stresses in the 

global co-ordinate system are given by: 
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[ ] [ ]1 2 x y
Q aσ

− −
⎡ ⎤⎡ ⎤= ⋅ ⋅⎣ ⎦ ⎣ ⎦ N  

 

The a⎡ ⎤⎣ ⎦ matrix is a function of xR and can be found out for different sections by 

changing  from 0 to x L .   

 

3.5 Finite Element Model of the Composite Tapered Tube 

 

3.5.1 Geometry of the tube 

A tube made of 6 / 3501 6IM − Graphite Epoxy composite with a lay-up [ ]45/ 0
S

±  

is  considered. The dimensions of the tube are same as the isotropic case as described in 

Section 3.2.1. The ply thickness = 0.005 in plyt

The composite material 6 / 3501 6IM −  has the following properties. 

 

1 2 3

12 23 13

12 23 13

22.8 6 ; 1.35 6 ; 1.35 6

0.3; 0.34; 0.3;

0.83 6 ; 0.504 6 ; 0.83 6

E E psi E E psi E E psi

G E psi G E psi G E psi

ν ν ν

= = =

= = =

= = =

 

 

3.5.2 Meshing the model 

 

3.5.2.1 Element Description 

The element used for meshing is SOLID 191, which is the layered version of 

SOLID95 element. The element has 20 nodes, with and UZ degrees of freedom ,UX UY
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at each node. The element allows up to 100 layers. If more layers have to be input, 

elements have to be stacked. Fig 3.9 shows the geometry of the Solid 191 Element.  

 

The material properties can be input in two ways. The first method is to input the 

material constants and defining the lay-up of the laminate. The second method is to input 

the laminate constitutive matrix, which is computed by an external program.  

While creating the model, care has to be taken in order to insure that the co-ordinate is 

oriented along the thickness.  

z

 

 

Fig 3.9 Solid 191 Element Geometry 

 

3.5.2.2 Generation of the Model 

6 volumes, corresponding to 6 plies are created in the model. A real constant set is 

defined for each ply and assigned to the corresponding volume using the VAT  

command. The volumes are naturally glued to each other because of the method of 

T
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creation of volumes. The mesh sizes, obtained from the convergence test are specified in 

order to ensure that correct results are obtained from finite element method.  

 

3.5.3 Boundary Conditions 

The model is constrained at the larger (left) end for UX only. A rigid region is 

created at the smaller end using the CERIG command. A force of 500 lb is applied 

on the master node.  

FX

 

3.6 Results Comparison 

Since a rigid region is created, all nodes in a section have the same displacement. 

The values of UX, which is the deformation in direction at 11 different sections are 

tabulated and compared with the analytical solution. Table 3.3 gives the comparison 

between the analytic solution results and the finite element results. Fig 3.10 shows the 

graph of normalized axial deformation versus distance from fixed end 

x

 

Fig 3.11 shows the axial deformation of the tapered tube at its tip. It is shown that 

unlike a uniform tube, non linear deformation along the length direction is obtained. 
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Table 3.3 Comparison of normalized axial deformation from analytical method and finite 
element method for a composite tube 

 

Distance from 
Fixed End (in) 

Normalized UX- 
FEM (in/lb) 

Normalized UX- Analytic 
(in/lb) 

%  
Difference 

1 7.94E-07 8.14E-07 2.52 

2 1.60E-06 1.71E-06 6.88 

3 2.47E-06 2.65E-06 7.29 

4 3.41E-06 3.68E-06 7.80 

5 4.45E-06 4.80E-06 7.98 

6 5.58E-06 6.06E-06 8.57 

7 6.85E-06 7.44E-06 8.65 

8 8.28E-06 9.00E-06 8.75 

9 9.92E-06 1.08E-05 8.91 

10 1.18E-05 1.29E-05 9.05 
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Fig 3.10 Graph of axial deformation vs. distance from fixed end for the composite tube 
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Fig 3.11 Plot showing the displacement of the tip of the tapered tube 

 

 

Fig 3.12 Stresses along the direction in the ply x 045+
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Fig 3.13 Stresses along the direction in the ply  x 045−

 

 

Fig 3.14 Stresses along the direction in the ply  x 00
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Figs. 3.12, 3.13 and 3.14 show the stresses along the  direction in , 

and plies starting from the innermost layer. It can be seen that the maximum 

stresses occur at the smallest cross section. This is however not the tip of the tube, since 

after deformation, the area of the tip of the tube is enlarged. It can be observed that the 

maximum stresses of the and the  plies are close; Comparing figures 3.12, 3.13 

and 3.14 we can find that the  layer has the highest maximum stresses.  

x 045+

045− 00

045+ 045−

00

 

3.6.1 Comparison of Axial Stresses 

 Stresses are calculated in the layer using the analytical model developed in 

Section 3.5.1 and are compared with the finite element results. The results are tabulated 

in Table 3.4  

045+

 

Table 3.4 Comparison of stresses 

Stresses Analytical solution (psi) Finite element method (psi) 

x =5 1463 1468.5 

x =10 3155.3 3187.9 
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CHAPTER 4 

TAPERED TUBES UNDER TORSION 

 

4.1 Analytical Solution for an Isotropic Tube 

Consider a tapered tube with geometry as mentioned in Section 3.1. The radius of 

the tube at a distance  from the fixed end x xR  is given by: 

tanx LR R x α= − , 

Where α  the taper is angle of the tube and tan R
L

α ∆
= ; R∆  is the difference between the 

radii of the tube; 

  L SR R R∆ = −  

The polar moment of inertia  at the large section of the tube will be given by: LJ

 
4 4

2 2 2L L L
tJ R Rπ t⎡ ⎤⎛ ⎞ ⎛ ⎞= + − −⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦
 (4.1) 

 

It can be simplified to form 

 34
2L L LJ R t R 3tπ ⎡ ⎤= +⎣ ⎦  (4.2) 

 

Similarly the polar moment of inertia of the tube at a section  from the fixed end is 

given by 

x
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 34
2x x x

3J R t R tπ ⎡ ⎤= +⎣ ⎦  (4.3) 

 
The angle of twist of a bar with varying cross section at a section, distance  

from the fixed end is given by: 

x

  

 
0

x

x
x

T dX
G J

φ = ∫  (4.4) 

 
After integration, the angle of twist of the bar at any section is given by: 

 

 
( )( )

( )( )

22 2

3 2 2

4 tan
ln

tan 4 tan

L L
x

L L

R t R xT
G t t R R x

α
φ

π α α

⎛ ⎞+ −⎜= ⋅ ⎜ + −⎜ ⎟
⎝ ⎠

2
⎟
⎟  (4.5) 

For the limiting case of a cylinder, tan 0α = . Hence using L’Hospitale’s rule, we can 

find the twisting angle as: 

 
( )3 34

2

Tx

G R t Rt
φ π=

⋅ +
  

This can be verified from a solid mechanics text book.  

A MATHEMATICA program (Appendix C) is used to calculate the angle of twist 

of a tapered tube with the following dimensions: LR  = 0.765 in; SR = 0.265 in; L = 10 in; 

 = 0.03 in;  t

The results are compared with finite element results and tabulated in Table 4.1. 
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4.2 Finite Element Model of an Isotropic Tube 

A tapered tube of dimensions, LR = 0.765 in ; SR = 0.265 in, L  = 10 in and t = 

0.03 in is modeled in the same fashion as described in Section 3.2. Appendix (E) shows 

the ANSYS batch file used for the generation of the model. Fig 4.1 shows the finite 

element model of the tapered tube along with the boundary conditions and loads.  

 

4.2.1 Meshing the Model 

The same model as described in Section 3.7 is adopted.  The model is fixed at the 

large end for all degree of freedom as shown in Fig 4.1. At the smaller end, a rigid region 

is created using CERIG command. A torque (MX) of 280 lb-in is applied at the master 

node. 

 

Fig 4.1 Finite Element Model of a Tapered Isotropic Tube under Torsion with Boundary 
Conditions 
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4.3 Results Comparison 

  Table 4.1 shows the comparison of the results obtained from FEM and Analytical 

solution. Fig 4.2 shows a graph of normalized angle of twist results versus distance from 

the fixed end. It can be observed that the finite element model results are very close to the 

analytical results with a low percentage error of 0.6. 

 

Table 4.1 Comparison of angle of twist results from analytical method and finite element 
method for an isotropic tube 

 
Distance from the 
fixed End ( )x in  

Normalized angle of 
twist- FEM ( /  )in lb

Normalized angle of 
twist -Analytic ( / )in lb

%  
Difference 

1 3.32E-06 3.32E-06 0.00 

2 7.43E-06 7.42E-06 0.13 

3 1.25E-05 1.25E-05 0.00 

4 1.91E-05 1.91E-05 0.00 

5 2.77E-05 2.76E-05 0.36 

6 3.92E-05 3.91E-05 0.26 

7 5.51E-05 5.50E-05 0.18 

8 7.80E-05 7.78E-05 0.26 

9 1.13E-04 1.12E-04 0.89 

10 1.69E-04 1.68E-04 0.60 
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Fig 4.2 Graph showing the normalized angle of twist from analytical and finite element 
method Vs distance from fixed end 

 
 

4.4 Analytical Model of the Composite Tube 

In Section 3.3, we derived the laminate stiffness equations of the tube 

,A B⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ and D⎡ ⎤⎣ ⎦  at any section of radius xR  (2.7). We know that the mid-plane strains 

and curvatures of a laminate are given by: 

 

 0

T

a b N

Mk b d

ε ⎡ ⎤⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪⎢ ⎥= ⎪
⎨ ⎬ ⎨

⎢ ⎥
⎬

⎪ ⎪⎪ ⎪ ⎩ ⎭⎩ ⎭ ⎣ ⎦
 (4.6) 

where, 

1

T

a b A B

B Db d

−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

 

Now, expanding the above matrix for xyκ , we have 

 16 26 61 62 6666xy x y xy x y xyk b N b N b N d M d M d M= + + + + +  (4.7) 
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Since in the problem, we are applying only a torque T ( xyM in composite terminology), 

all the terms except 66 xyd M are reduced to zero. Hence, 

 66xy xyd Mκ =  (4.8) 

For the tapered tube, the above equation has to be integrated with respect to , since the 

area of the tube varies linearly with respect to . Hence, the angle of twist at any section, 

x

x

xφ  ( in composite terminology) is given by: xyκ

 66

0

x

x T d dxφ = ∫  (4.9) 

 Where andxyT M= x xyφ κ= .  

Since 0B⎡ ⎤ =⎣ ⎦ for a tube of uniform thickness,  

1
d D

−
⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦  

All the constants are plugged into the D  matrix terms and then an inverse of the 

matrix is computed. The 66d term is then a function of 3
xR  and xR . This is further used in 

the integration to compute the angle of twist at any section. Note that in case of a 

laminate, xyM has a unit of inlb
in

− , but in case of the tapered tube, T or xyM has units 

. Note that term lb in− 66d has a unit of, 2

1
lb in−

.Thus the angle of twist has a unit of 

.  rad
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4.4.1 Stress Calculations 

 For a tube of uniform laminate, 0B⎡ ⎤ =⎣ ⎦ . Hence, from equation 3.13, 

[ ] [ ]d Mκ ⎡ ⎤= ⋅⎣ ⎦ . In the torsion case only xyM is present. Hence, the stresses, can be found 

as: 

 [ ] [ ]k
kx y k

Q z d Mσ
−

⎡ ⎤ ⎡ ⎤= ⋅ ⋅ ⋅⎣ ⎦ ⎣ ⎦  (4.10) 

Using this method, stresses are calculated for the plies. Note that in the above equation, 

 is the distance of the surface from the mid-section of the tube.  kz

 

4.5 Finite Element Model of the Composite tube 

The tapered tube model generated in Section 3.7 is used in the torsion case as 

well. The boundary conditions applied are however different in this case. The tube is 

fixed for all DOF at the larger end as shown in Fig 4.1. At the smaller end, a rigid region 

is created using command. A torque CERIG 280T lb in= − is applied on the master node. 

The model is then solved for its stresses and strains.  
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Fig 4.3 Calculation of the Angle of twist from Finite Element Model 

 

4.5.1 Post Processing and Results Comparison  

 The angle of twist φ  can be obtained from the post processor as nodal solution 

for . However, these results are not calculated at every node. Hence a manual 

method for calculation of 

ROTX

φ  is adopted.  

Refer to Fig 4.3. Under the application of a torque, the point on the circumference moves 

from A  to A′ . The angle swept is the angle of twistφ  and is the arc length. Now, we 

know that the arc length is given by,

S

S R φ= , where R is the radius. The arc length will 

be approximately equal to the hypotenuse

S

AA′ . Hence, 2~S UY UZ+ 2 . Thus angle of 

twist, 
2 2

~
UY UZ

R
φ

+
. and are the displacements in Y and UY UZ Z respectively, 

obtained from the post processor.  
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 Table 4.2 shows the results comparison between analytic solution and Finite 

Element Method for the angle of twist of a laminated tapered tube. Fig 4.4 shows the 

comparison of the angle of twist solution between analytical and finite element methods 

for different sections of the tube.  

 

Table 4.2 Comparison of angle of twist results from analytical method and finite element 
method for a composite tube 

 
Distance from fixed 

End (in) x
Normalized φ  from FEM

( /rad lb in− ) 
Normalized φ  from 

Analytic ( /rad lb in− ) 
%  

Difference 
1 3.771E-06 3.929E-06 4.16 

2 8.312E-06 8.679E-06 4.41 

3 1.404E-05 1.471E-05 4.78 

4 2.137E-05 2.250E-05 5.29 

5 3.092E-05 3.286E-05 6.23 

6 4.372E-05 4.714E-05 7.83 

7 6.140E-05 6.679E-05 8.76 

8 8.680E-5 9.482E-05 9.24 

9 1.252E-04 1.386E-04 9.28 

10 1.865E-04 2.089E-04 11.63 
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Fig 4.4 Graph of normalized angle of twist vs. Distance from fixed End 

 

 

 

Fig 4.5 Shear stresses on the ply 045+
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Fig 4.6 Shear stresses on the ply 045−
 

 

Fig 4.7 Shear stresses on the ply 00
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Fig.s 4.5, 4.6 and 4.7 show the shear stress plots of the , and plies. It can be 

seen that the and the plies have nearly the same maximum stresses. Also, the 

layer has lesser maximum stress than the and the layers. This can be 

explained because the  layer has lesser equivalent shear modulus; hence higher shear 

deformation and hence lesser stresses.  

045+ 045− 00

045+ 045−

00 045+ 045−

00

 

4.5.2 Comparison of Shear Stresses ( xyτ ) 

Stresses from the analytical method are found using 4.10. Stresses are evaluated 

for the (innermost) layer at two different sections. Table 4.3 shows the comparison 

of shear stresses between the analytical and FEM results.  

045+

 

Table 4.3 Comparison of Shear stresses 

Stresses Analytical solution (psi) Finite element method (psi) 

x =5 5998 6041 

x =10 22576 22684 

 

It can be seen from the table that the results are in good agreement with each other.  
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CHAPTER 5 

PARAMETRIC STUDIES 

 

  The geometry of the tube, stacking sequence, taper angle, fiber orientation etc. 

play an important role in the stiffness of composite tubes. In this study, an effort has to be 

done to study the effects of these on the deformations of the tube. IM6/3501-6 Graphite 

Epoxy composite is used for these studies. A tube with dimensions as described in 

Section 3.6.1 is considered for the analysis.  

 

5.1 Stacking Sequence Effect 

 

5.1.1 Axial Case  

In this section, the effect of stacking sequence on the axial deformation of the 

tube is studied. To examine the effects, three laminates having the same fiber 

orientations, but different arrangement is considered. [ ]45/ 0
S

± , [ ]0 / 45
S

± and 

[ ]45/ 0 / 45+ −  are the three lay-ups considered. The variation of the analytical solution 

for the three lay-ups is seen. MATHEMATICA program (Appendix D) is used for the 

calculation of the results, which are tabulated in Table 5.1 
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Table 5.1 Variation of axial deformation with stacking sequence 

Lay-Up Normalized Axial Deformation ‘ / Fδ ’ (in/lb) 

[ ]45 / 0
S

±  1.294E-4 

[ ]0 / 45
S

±  1.294E-4 

[ ]45/ 0 / 45+ −  1.294E-4 

 

It can be seen that the stacking sequence has no effect on the axial deformation of 

the tapered tube. This can be explained, because the extensional stiffness matrix of the 

tube A⎡ ⎤⎣ ⎦  does not vary with the arrangement of the plies.  

 

5.1.2 Torsion Case 

 Here, the effects of stacking sequence on the torsion deformation (twisting angle) 

are studied. The same lay-ups as in Section 5.1.1 are considered.  The results are 

generated using the MATHEMATICA code (Appendix D). Table 5.2 shows the angle of 

twist results for the different lay-ups. 

 

Table 5.2 Variation of angle of twist with stacking sequence 

Lay-Up 
 

Normalized Angle of twist /Tφ (rad/lb-in) 

[ ]45 / 0
S

±  3.2646E-04 

[ ]0 / 45
S

±  3.2676E-04 

[ ]45/ 0 / 45+ −  3.2675E-04 
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It can be observed from the table that stacking sequence has little effect on the 

angle of twist of the tapered tube. The twisting angle is dependent on the torsional 

stiffness of the tube cross section. The torsional stiffness of the laminate 
66

1
d

does not 

depend on the stacking sequence. However, the torsional stiffness of the tube is 

predominant by the A⎡ ⎤⎣ ⎦  matrix, which is independent of stacking sequence. As a result, 

the twisting angle has little effect on the stacking sequence of the laminate.  

 

5.2 Effect of Fiber Orientation 

 

5.2.1 Axial case 

 One of the important properties of laminated composite materials is their 

directional dependence, which facilitates a design which can be tailored to the 

application. This property is exploited in almost all the applications of laminated 

composites.  In the current study, symmetric lay-ups with θ+ o , θ− o  and 0 plies are 

considered. 

o

θ  values are changed from 15  to 75  with an increment of 15 . The 

MATHEMATICA code (Appendix D) is used to calculate the results. Results are 

tabulated in Table 5.3 

o o o
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Table 5.3 Variation of axial deformation with fiber orientation 

Lay-Up Normalized Axial Deformation 
/ Fδ (in/lb) 

[ ]15 / 0
S

±  5.888E-6 

[ ]30 / 0
S

±  9.982E-6 

[ ]45 / 0
S

±  1.295E-5 

[ ]60 / 0
S

±  1.383E-5 

[ ]75 / 0
S

±  1.405E-5 

 

4.00E-06

6.00E-06

8.00E-06

1.00E-05

1.20E-05

1.40E-05

1.60E-05

0 10 20 30 40 50 60 70 80

Angle (Deg)

N
or

m
al

iz
ed

 a
xi

al
 d

ef
or

m
at

io
n 

(in
/lb

)

 

Fig 5.1 Variation of axial deformation with fiber orientation 

 

 It can be observed from the table that the deformation is smallest for the 15  

orientation and increases with the fiber orientation. This can be accounted for by the fact 

that a 15  orientation is stiffer in the  direction, since fiber direction and loading 

directions are separated by a small angle. As the fiber orientation increases the fiber 

direction becomes almost transverse to the loading direction and hence the stiffness in 

loading direction ( ) becomes less.  

o

o x

x
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5.2.2 Torsion Case 

 The effects of fiber orientation are studied in this section. The same fiber 

orientations as in Section 5.2.1 are considered. Normalized angle of twist are computed 

using the MATHEMATICA code (Appendix D) for the different orientations. The results 

are tabulated in Table 5.4 

 

Table 5.4 Variation of angle of twist with fiber orientation 

Lay-Up Normalized angle of twist /Tφ (rad/lb) 

[ ]15 / 0
S

±  1.017E-4 

[ ]30 / 0
S

±  4.709E-5 

[ ]45 / 0
S

±  3.712E-5 

[ ]60 / 0
S

±  4.709E-5 

[ ]75 / 0
S

±  1.017E-4 

 

From Fig 5.2, we can observe that the angle of twist is the least for the  orientation. 

Also, the angle of twist is the same for complementary angle orientations ( ); 

For eg., 30  and 60 orientations have the same angle of twist. 

45o

1 2 90θ θ+ = o

o o

 This can be explained by the fact that the equivalent shear modulus  is the 

least for 45 orientation as shown in Fig. 5.3. 

xyG

o
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Fig 5.2 Variation of angle of twist with fiber orientation 
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Fig. 5.3 Equivalent shear modulus plot 
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5.3 Effect of the Taper Angle 

5.3.1 Axial case 

 In this section, the effects of taper angle, α  on the deformations of the tube are 

studied. For a large taper angle, the fiber orientation in the ply does not remain uniform, 

which results in erroneous results. The MATHEMATICA code given in Appendix D is 

used for the calculation; the results are tabulated in Table 5.5. For the calculation, the 

larger radius LR  is kept constant and the smaller radius SR varied accordingly.  

 

Table 5.5 Variation of axial deformation with taper angle α  

Taper angle  ( )rad Deg Normalized Axial Deformation ( ) /in lb

0.099 (5.67) 9.713E-06 

0.162 (9.28) 1.107E-05 

0.219 (12.55) 1.219E-05 

0.275 (15.76) 1.315E-05 

0.328 (18.79) 1.402E-05 

0.381 (21.83) 1.476E-05 

0.433 (24.81) 1.544E-05 

0.485 (27.79) 1.606E-05 

 

Fig 5.4 shows the graph of variation of deformation with radius ratio. It can be 

seen that for tubes with low taper angles, the deformation of the bar is less. This is 

because tubes with low taper angles are nearly cylindrical in nature and are stiffer than 

tubes with high taper angle.  
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Fig 5.4 Variation of normalized axial deformation with taper angle 

 

5.3.2 Torsion case 

The variation of angle of twist for tapered tubes with different taper angles α  is 

studied here. For the calculations, the larger radius LR  is kept constant and the smaller 

radius SR varied accordingly. Taper angles varying from 0.099 to 0.485 are used to 

compute the normalized angle of twist. The results are tabulated in Table 5.6. 

 

From the Fig 5.5, we can observe that the twisting angle increases with the 

increase in the ratio. Low taper angle tubes are stiffer than high taper angle tubes and 

hence have lesser deformation.  
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Table 5.6 Variation of angle of twist with taper angle α  

Taper angle  ( )rad Deg Normalized Angle of twist /Tφ (rad/lb) 

0.099 (5.67) 1.092E-04 

0.162 (9.28) 1.748E-04 

0.219 (12.55) 2.548E-04 

0.275 (15.76) 3.494E-04 

0.328 (18.79) 4.607E-04 

0.381 (21.83) 5.822E-04 

0.433 (24.81) 7.204E-04 

0.485 (27.79) 8.730E-04 
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  Fig 5.5 Variation of normalized angle of twist with taper angle 
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CHAPTER 6 

CONCLUSIONS  

 

 An analytical model for the deformation of tapered laminated composite tubes 

under axial tension and torsion was developed in this research. The derivation was based 

on the Laminated Plate approach. The results from analytical model are compared with 

the results from finite element method. From this research, the following conclusions can 

be made.  

 

 The axial deformation and the twisting angle for composite tube under axial load 

and twisting moment respectively predicted by the current developed method 

agree well with the results obtained from finite element analysis. 

 The axial stresses and the shear stress for each ply are also in excellent agreement 

with the results obtained from the finite element method. 

 Angle of twist can be minimized by incorporating 45o plies. 

 Axial deformation of composite tubes can be minimized by incorporating near 0o 

plies. 

 Given the set of plies, they can be stacked in any order since the sequence does 

not affect the deformations significantly. 

 Tubes with less taper angle can be employed to minimize the deformations in 

structural applications. 
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APPENDIX A 
 

TERMS OF THE STIFFNESS MATRICES 
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APPENDIX B 

 
MATHEMATICA CODE FOR THE ANALYTICAL SOLUTION OF AXIAL 

DEFORMATION OF AN ISOTROPIC TUBE 
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Off@General ::spell D

tanalpha =
RL − Rs

L
;

Rx = Rs + HL − xL tanalpha ;

Ax = π JJRx +
t
2
N

2
−JRx −

t
2
N

2
N;

Def = J F
Y

 ‡
Åx
Ax

N

 
−

F L Log@2 π t HHL− xL RL + x RsLD
2 π t Y RL − RsH L  

v1 = Def ê. 8RL → 0.765 , Rs → 0.265 , L → 10, t → 0.03 , F → 500, Y → 1.0498 107<;

v2 = Table B Hv1 ê. x → iL−Hv1 ê. x → 0L
500

, 8i, 10<F êê ColumnForm
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APPENDIX C 
 

MATHEMATICA CODE FOR THE ANALYTICAL SOLUTION OF ANGLE OF 
TWIST OF AN ISOTROPIC TUBE 
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t = 0.030; Rs = 0.265; R = 0.765;

L = 10;

tanaplha =
R− Rs

L
;

T = 280; Y = 10.498106; ν = 0.33;

G =
Y

2H1+nL ;

H*Rx=R- x tanaplha;*L

φ =
T

π Gt3 tanaplha
LogA R2 Ht2 + 4HR− xtanaplhaL2L

Ht2 + 4 R2L HR− xtanaplhaL2
E ê.x → 10
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APPENDIX D 

 

MATHEMATICA CODE FOR THE ANALYTICAL SOLUTION OF AXIAL 
DEFORMATION AND ANGLE OF TWIST OF A TAPERED  

COMPOSITE TUBE 
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H∗ Closed form solution for stiffness of composite tube∗L
Off@General::spellD
E1= 22.8106; E2= 1.35106; G12= 0.83106; ν12= 0.3;tply = 0.005;

ν21=
E2ν12

E1
;

H∗ Reduced Stiffness matrix of angle plies∗L

Q11=
E1

1− ν12ν21
; Q22=

E2
1− ν12ν21

;Q12 = Q21 =
E2ν12

1− ν12ν21
; Q66= G12;

Q1−2 =88Q11, Q12, 0<, 8Q21, Q22, 0<, 80, 0, Q66<<;
R = 0.765; RS = 0.265; L = 10; F= 500;

H∗Transformation about X axis∗L
mx= Cos@αD;
tsigma= 981, 0, 0<, 90, HmxL2, 0=, 80, 0, mx<=;

tepsilon= 981, 0, 0<, 90, HmxL2, 0=, 80, 0, mx<=;

HQbarx−y,1 = Qbarx−y,4 = tsigma.Q1−2.tepsilonL êê MatrixForm;
HQbarx−y,2 = Qbarx−y,5 = tsigma.Q1−2.tepsilonL êê MatrixForm;
HQbarx−y,3 = Qbarx−y,6 = tsigma.Q1−2.tepsilonL êê MatrixForm;

H∗Transformation about Z axis∗L
m@θ_D:= Cos@θD;n@θ_D := Sin@θD
Tσ@θ_D := 99m@θD2, n@θD2, 2 m@θDn@θD=, 9n@θD2, m@θD2, −2 m@θDn@θD=,

9−m@θDn@θD, m@θDn@θD, m@θD2 − n@θD2==
T∂@θ_D :=99m@θD2, n@θD2, m@θDn@θD=, 9n@θD2, m@θD2, −m@θDn@θD=,

9−2 m@θDn@θD, 2 m@θDn@θD, m@θD2 − n@θD2==
JQx−y,1 = Qx−y,4 = Tσ@−θD.Qbarx−y,1.T∂@θD ê. θ →

π

4
N êê MatrixForm;

JQx−y,2 = Qx−y,5 = Tσ@−θD.Qbarx−y,2.T∂@θD ê. θ →
−π

4
N êê MatrixForm;

HQx−y,3 = Qx−y,6 = Tσ@−θD.Qbarx−y,3.T∂@θD ê. θ → 0L êê MatrixForm;

tanphi =
HR− RSL

L
;

RX = R − HxtanphiL;T = 280;

H∗ Distance from Mid planes∗L
h= Table@i, 8i, −3, 3<D tply;

H∗ A B D matrices ∗L
i

k
jjjjA= ‚

k=1

6
Qx−y,kHh@@k+ 1DD −h@@kDDL êêChop

y

{
zzzz êê MatrixForm;

ijjjjB=
1

k 2
‚
k=1

6
Qx−y,kIh@@k+ 1DD2 − h@@kDD2M êê Chop

yzzzz êê MatrixForm;
{  
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i

k
jjjjDbs =

1
3

 ‚
k=1

6
Qx−y,k Ih@@k+ 1DD3 − h@@kDD3M êêChop

y

{
zzzz êê MatrixForm;

Ad = A;
Bd = B + RX Cos@αDA;
Dd = Dbs + 2 RXCos@αD B + HRXL2 HCos@αDL2A;

A = RX ‡
0

2 π

Ad Åαêê Chop;

i

k

jjjjjB = RX‡
0

2 π

BdÅα
y

{

zzzzz êê Chopêê MatrixForm;

D = RX‡
0

2 π

Dd Åαêê Chop;

Ia= Inverse@AD êê SimplifyM êê MatrixForm

δ = F ‡
0

10

a@@1, 1DD Åx

H∗δ= F a@@1,1DD
tanalpha

LogA R
R−x tanalpha

Eê.x→10∗L

d= Inverse@DD;
u= Apart@d@@3, 3DDD;
φ = TChop Sum Integrate u i , x, 0, 10 , i, Length u@ @ @ @@ DD 8 <D 8 @ D<DD  
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APPENDIX E 
 

ANSYS BATCH FILE FOR THE GENERATION OF THE FINITE ELEMENT 
MODEL 
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!* COMPOSITE TAPERED TUBE MADE OF 1M6/3501-6 WITH LAY-UP [45/-45/0]S
 
/PREP7 
!* 
MP,EX,1,22.8E6 
MP,EY,1,1.35E6 
MP,EZ,1,1.35E6 
MP,PRXY,1,0.3 
MP,PRYZ,1,0.3 
MP,PRXZ,1,0.3 
MP,GXY,1,0.83E6 
MP,GYZ,1,0.83E6 
MP,GXZ,1,0.83E6 
!* 
ET,1,SOLID46 
!* 
KEYOPT,1,2,0 
KEYOPT,1,1,0 
KEYOPT,1,3,0 
KEYOPT,1,4,0 
KEYOPT,1,5,0 
KEYOPT,1,6,0 
KEYOPT,1,8,1 
KEYOPT,1,9,0 
KEYOPT,1,10,0 
!* 
!* LAYER 1 
R,1 
RMODIF,1,1,1,0,0,0 
RMODIF,1,7,0 
!* 
RMODIF,1,13,1,45,0.005 
!* 
!* LAYER 2 
R,2 
RMODIF,2,1,1,0,0,0 
RMODIF,2,7,0 
!* 
RMODIF,2,13,1,-45,0.005 
!* 
!* LAYER 3 
R,3 
RMODIF,3,1,1,0,0,0 
RMODIF,3,7,0 
!* 
RMODIF,3,13,1,0,0.005 

 69



!* 
!* LAYER 4 
R,4 
RMODIF,4,1,1,0,0,0 
RMODIF,4,7,0 
!* 
RMODIF,4,13,1,45,0.005 
!* 
!* LAYER 5 
R,5 
RMODIF,5,1,1,0,0,0 
RMODIF,5,7,0 
!* 
RMODIF,5,13,1,-45,0.005 
!* 
!* LAYER 6 
R,6 
RMODIF,6,1,1,0,0,0 
RMODIF,6,7,0 
!* 
RMODIF,6,13,1,0,0.005 
!* 
!* 
ET,2,MASS21 
!* 
!*   
KEYOPT,1,1,0 
KEYOPT,1,2,0 
KEYOPT,1,3,0 
!*   
!*   
R,7,1,1,1, , , , 
!* 
!*CREATING KEYPOINTS 
!* 
*DO,I,1,7,1 
 
K,I*10+1,0,0.75+(I-1)*0.005,0 
K,I*10+2,10,0.25+(I-1)*0.005,0 
 
*ENDDO 
!* 
!*CREATING AREAS USING KEYPOINTS 
!* 
*DO,I,1,6,1 
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A,11+(I-1)*10,12+(I-1)*10,12+(I*10),11+(I*10) 
 
*ENDDO 
 
AGLUE,ALL 
 
K,13,0,0,0 
K,14,10,0,0 
!* 
!* ROTATE AREAS TO FORM VOLUMES 
!* 
VROTAT,ALL,,,,,,13,14,,2 
 
VGLUE,ALL 
!* 
!* CHANGING ATTRIBUTES OF VOLUMES TO LAYER PROPERTIES 
*DO,K,1,6,1 
  
 VSEL,S,VOLU,,K 
 VATT,1,K,1,0 
*ENDDO 
 
*DO,K,1,6,1 
  
 VSEL,S,VOLU,,K+6 
 VATT,1,K,1,0 
*ENDDO 
!* 
!*DEFINING ELEMENT SIZES FOR LINES 
!* 
LSEL,S,LENGTH,,0.005,,,0 
LESIZE,ALL,,,1 
CM,THICKNESSLINE,LINE 
 
LSEL,S,LENGTH,,10.012,,,0 
LESIZE,ALL,,,40 
CM,LENGTHLINE,LINE 
 
ALLSEL,ALL,LINE 
LSEL,U,LENGTH,,0.005,,,0 
LSEL,U,LENGTH,,10.012,,,0 
LESIZE,ALL,,,12 
!* 
!* CREATING NODES ON KEYPOINTS 13 AND 14 
!* 
NKPT,,13 
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NKPT,,14 
!* 
!* CREATING A MASS21 ELEMENT FOR MASTER NODE 
!* 
TYPE,2 
REAL,7 
E,2 
!* 
!* MESHING THE VOLUMES 
!* 
VSEL,S,VOLU,,ALL 
VPLOT 
VMESH,ALL 
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