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ABSTRACT

 

ONLINE ADAPTIVE OPTIMAL CONTROL FOR CONTINUOUS-TIME SYSTEMS 

 

DRAGUNA VRABIE 

The University of Texas at Arlington, 2009 

 

Supervising Professor: FRANK LEWIS 

 This work makes two major contributions.  

• First, in the field of computational intelligence, it develops reinforcement 

learning controllers (i.e. approximate dynamic programming algorithms) for 

continuous-time systems, whereas in the past, reinforcement learning has been 

mainly developed for discrete-time systems.  

• Second, in the field of control systems engineering, it develops on-line optimal 

adaptive controllers, whereas in the past, optimal control has been an off-line 

design tool, and on-line adaptive controllers have not been optimal. 

 The online algorithms presented herein are reinforcement learning schemes which 

provide online synthesis of optimal control for a class of nonlinear systems with 

unknown drift term. The results are direct adaptive control algorithms which converge 
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to the optimal control solution without using an explicit, a priori obtained, model of the 

drift dynamics of the system. 

 The online algorithms can be implemented while making use of two function 

approximation structures, in an Actor-Critic interconnection. In this continuous-time 

formulation the result is a hybrid control structure which involves a continuous-time 

controller and a supervisory adaptation structure which operates based on data sampled 

from the plant and from the continuous-time performance dynamics. Such control 

structure is unlike any standard form of controllers previously seen in the literature.  

 The research begins with the development of an adaptive controller which solves 

online the linear quadratic regulation (LQR) problem. The online procedure provides 

the solution of the algebraic Riccati equation (ARE) underlying the LQR problem 

while renouncing the requirement of exact knowledge on the drift term of the controlled 

system, while only using discrete measurements of the system’s states and performance. 

From the perspective of computational intelligence this algorithm is a new data-based 

continuous-time policy iteration (PI) approach to the solution of the optimization 

problem. 

 It became then interesting to develop an online method which provides control 

solutions for a system with nonlinear dynamics. In this case the theoretical development 

becomes a bit more complicated since the equation underlying the optimal control 

problem is the Hamilton-Jacobi-Bellman (HJB) equation, a nonlinear partial differential 

equation which is in general impossible to be solved analytically and most often does 

not have smooth solution. The new online data-based approach to adaptive optimal 
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control is extended to provide a local approximate optimal control solution for the case 

of nonlinear systems. The convergence guarantee of the online algorithm is given under 

the realistic assumption that the two function approximators involved in the online 

policy iteration procedure, namely actor and critic, do not provide perfect 

representations for the nonlinear control and cost functions. Also in this case the 

algorithm reaches to the solution without using any information on the form of the drift 

term in the dynamics of the system. 

 At each step of the online iterative algorithm, a generalized HJB (GHJB) equation 

is solved using measured data and a reinforcement learning technique based on 

temporal differences. Thus it became interesting to see if these GHJB equations can be 

solved by iterative means. This evolved into a new formulation for the PI algorithm that 

allowed developing the generalized policy iteration (GPI) algorithm for continuous-

time systems. The GPI represents a spectrum of algorithms which has at one end the 

exact policy iteration (PI) algorithm and at the other a variant of the value iteration (VI) 

algorithm. At the middle part of the spectrum lies the so called optimistic policy 

iteration (OPI) algorithm for CT systems. From this perspective the new continuous-

time GPI provides a unified point of view over the approximate dynamic programming 

(ADP) algorithms that deal with continuous-time systems.  

 The appropriate formulation of the Value Iteration algorithm in a continuous-time 

framework is now straightforward. Understanding the relation between the PI and VI 

algorithms is now of utmost importance. The analysis is done here for linear systems 

with quadratic cost index. The value iteration algorithm provides computational means 
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for a sequence of positive definite matrices which converges to the unique positive 

definite solution of the ARE. While the PI algorithm is a Newton method, the VI 

algorithm is a quasi-Newton method. The VI algorithm does not require solution of a 

Lyapunov equation at each step of the iteration thus the stringent requirement of an 

initial stabilizing control policy is not necessary.  

 The last result provides an online approach to the solution of zero-sum differential 

games with linear dynamics and quadratic cost index. It is known that the solution of 

the zero-sum differential game can be obtained by means of iteration on Riccati 

equations. Here we exploit our first result to find the saddle point of the game in an 

online fashion. This work provides the equilibrium solution for the game, in an online 

fashion, when either the control actor or the disturbance actor is actively learning. At 

every stage of the game one player learns online an optimal policy to counteract the 

constant policy of its opponent. The learning procedure takes place based only on 

discrete-time measurement information of the states of the system and of the value 

function of the game and without requirement of exact parametric information of the 

drift term of the system. 
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NOTATION AND TERMINOLOGY

 Reinforcement Learning – the class of methods which provide solution, in an online 

fashion, to optimal control problems by means of a reinforcement scalar signal 

measured from the environment which indicates the level of control performance. 

 Approximate Dynamic Programming – the class of algorithms that provide online 

solution to optimal control problems by using approximate representations of the value 

function to be minimized and of the control algorithm to be performed, and employing 

Bellman’s optimality principle, central in Dynamic Programming, to provide means for 

training online the two approximation structures based on measured data from the 

system. Being mathematically formulated, such algorithms allow development of 

rigorous proofs of convergence for the approximation based approaches. 

 Actor-Critic structure – the structural representation of approximate dynamic 

programming algorithms. It reflects the information interconnection between  

 - the Actor, which reacts in real-time to measurements from the system, and 

learns to adapt based on performance information from the Critic and  

 - the Critic which learns to approximate a value function based on performance 

data and state data measured from the system, and provides performance information 

relative to the presently used control policy to the Actor.  

 Adaptive Critics – all algorithms which provide means for learning optimal control 

policies in an online fashion while using an Actor-Critic structure. 
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 Adaptive Optimal Control – algorithms based on reinforcement learning that 

provide online synthesis of optimal control policies  

 Positive definite matrix - Let Σ  denote the linear space of all n n×  symmetric 

matrices. For any two matrices ,X Y ∈Σ  one can write X Y≥  if X Y−  is positive 

definite. 

 Hurwitz - For any matrix n nX R ×∈  the spectrum of X  will be denoted ( )Xσ . Let 

<£  denote the set of complex numbers with negative real part. A matrix X  is said to be 

Hurwitz if ( )Xσ <⊂ £ . 

 For any matrices , ,A B C  the pair ( , )A B  is stabilizable if ( )A BK−  is Hurwitz for 

some matrix K . The pair ( , )C A  is detectable if ( , )T TA C  is stabilizable. 
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CHAPTER 1 

INTRODUCTION

 This introductory chapter discusses motivation, background and contribution. The 

list of publications which resulted from this research is given in Section 1.5. 

1.1 Approaches to Optimal Control 

 In an environment in which a number of players compete for a limited resource, 

optimal behavior with respect to desired long term goals leads to long term advantages. 

In a control engineering framework the role of the environment is played by a system to 

be controlled (this ranges from industrial processes such as distillation columns and 

power systems, to airplanes, medical equipment and mobile robots); while the 

controller, equipped with sensors and actuators, plays the role of the agent which is able 

to regulate the state of the environment such that desired performances are obtained. An 

intelligent controller is able to adapt its actions to confront unforeseen changes in the 

system dynamics. Generally, if the controller has a fixed parametric structure, the 

change in control behavior is reflected by changes of the values of the controller’s 

parameters.  

 From a control engineering perspective, not every automatic control loop needs to 

be designed to exhibit intelligent behavior. In fact in industrial process control there 

exists a hierarchy of control loops which has at the lowest level the simplest and most 

robust regulation, which provides fast reaction in front of parametric and non-
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parametric disturbances without controller adaptation, while at the topmost end are 

placed the so called money-making loops, whose operation close to optimality has the 

greatest impact on maximization of income. In the latter case the control performance is 

not explicitly defined in terms of desired trajectories for the states and/or outputs of the 

system, instead it is implicitly expressed through a functional that captures the nature of 

the desired performance in a more general sense. Such an optimality criterion 

characterizes the system’s performance in terms of the control inputs and system states; 

it is in fact an implicit representation of a desired balance between the amount of effort 

invested in the control process and the resulting outputs.  

 Optimal control refers to a class of methods that can be used to synthesize a control 

policy which results in best possible behavior with respect to the prescribed criterion 

(i.e. control policy which leads to maximization of performance). The solutions of 

optimal control problems can be obtained either by using Pontryagin’s minimum 

principle, which provides a necessary condition for optimality, or by solving the 

Hamilton-Jacobi-Bellman (HJB), which is a sufficient condition (see e.g. [29], [40]). 

Although mathematically elegant, both approaches present a major disadvantage posed 

by the requirement of complete knowledge of the system dynamics. In the case when 

only an approximate model of the system is available, and solution of the problem is 

attainable via analytical or numerical methods, the optimal controller derived with 

respect to the system’s assumed model will not perform optimally when applied for the 

control of the real process. Thus, adaptation of the controller parameters such that 
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operation becomes optimal with respect to the behavior of the real plant is highly 

desired.  

 The class of techniques called adaptive control (e.g. see [30]) was developed in 

order to deal with the problem of designing controllers for systems with unknown or 

uncertain parameter models (e.g. systems for which parameters can drift slowly over 

time). The adaptive control techniques utilize a desired output signal and, comparing it 

to the actual system output, use the error difference to adapt the controller parameters in 

the sense of error minimization. However the controllers that will be generated will not 

produce trajectories that will minimize cost functions as defined in the optimal control 

framework, thus adaptive control is not optimal in a formal sense. 

 Adaptive optimal controllers have been developed either by adding optimality 

features to an adaptive controller (e.g. the adaptation of the controller parameters is 

driven by desired performance improvement reflected by an optimality criterion 

functional) or by adding adaptive features to an optimal controller (e.g. the optimal 

control policy is improved relative to the adaptation of the parameters of a model of the 

system).  

 From a different perspective, adaptive inverse optimization methods, extensively 

developed for nonlinear control (e.g. [21], [41], [34]), solve for control strategies that 

optimize a performance index without directly solving the underlying equation of the 

optimal control problem. However, this methodology restricts the choice of the 

performance index, which can no longer be freely specified by the designer; while at the 

same time requires knowledge of a stabilizing control law. 
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 For the purpose of obtaining optimal controllers that minimize a given cost 

function without making use of a model of the system to be controlled, a class of 

reinforcement learning (RL) techniques, namely adaptive critics, was developed in the 

computational intelligence community [57]. These are in effect adaptive control 

techniques in which the controller parameters are sequentially updated based on a scalar 

reinforcement signal measuring the controller performance. These algorithms provide 

an alternative to solving the optimal control problem by approximately solving 

Bellman’s equation for the optimal cost, and then computing the optimal control policy 

(i.e. the feedback gain for linear systems). Compared with adaptive control, the learning 

process does not take place at the controller tuning level alone but a new adaptive 

structure was introduced to learn cost functions like the ones specified in optimal 

control framework.  

 The reinforcement learning approach to direct adaptive optimal control [57], [56], 

was introduced and extensively developed in the computational intelligence and 

machine learning societies, generally to find optimal control policies for markovian 

systems with discrete state and action spaces [27]. The RL algorithms are constructed 

on the idea that successful control decisions should be remembered, by means of a 

reinforcement signal, such that they become more likely to be used a second time. 

Although the idea originates from experimental animal learning, where it has been 

observed that the dopamine neurotransmitter acts as a reinforcement informational 

signal which favors learning at the level of the neuronal cell (see e.g. [51], [18]), RL is 
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strongly connected from a theoretical point of view with direct and indirect adaptive 

optimal control methods. 

 The main advantage of using RL to solving the optimal control problems comes 

from the fact that a number of RL algorithms, e.g. Q-learning [61] (also known as 

action-dependent heuristic dynamic programming [63], [64]), do not require knowledge 

or identification/learning of the system dynamics. This is important since it is well 

known that modeling and identification procedures for the dynamics of a given 

nonlinear system is most often a time consuming iterative procedure which requires 

model design, parameter identification and model validation at each step of the 

iteration. This procedure is even more difficult when the system has hidden nonlinear 

dynamics which manifest only in certain operating regions. In the RL algorithms case 

the learning process is moved at a higher level having no longer as object of interest the 

system’s dynamics but a performance index which quantifies how close to optimality is 

the closed loop control system operating. In other words, instead of identifying a model 

of the plant dynamics, to be later used for the controller design, the RL algorithms 

require identification of the static map which describes the system performance 

associated with a given control policy. One sees now that, as long as enough 

information is available to describe the performance associated with a given control 

policy at all significant operating points of the control system, the system performance 

map can be easily learned, conditioned by the fact that the control system maintains 

stability properties. This is again advantageous compared with an open loop 

identification procedure which, due to the excitatory inputs required for making the 
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system dynamics visible in the measured system states, could have as result the 

instability of the system. 

 Even in the case when complete knowledge on the system dynamics is available, a 

second difficulty appears from the fact that the HJB equation, underlying the optimal 

control problem, is generally nonlinear and most often does not possess an analytical 

solution; thus the optimal control solution is regularly addressed by numerical methods, 

[28]. Also from this point of view, RL algorithms provide a natural approach to solve 

the optimal control problem, as they can be implemented my means of function 

approximation structures, such as neural networks, that can be trained to learn the 

solution of the HJB equation.  

 RL algorithms, such as the ones developed for online implementation in this work, 

are conceptually based on the approach to optimal behavior learning (i.e. the technique 

used by a learning agent to find the behavior which results in highest amount of long 

term reward), which makes use of the measured rewards over short time intervals. 

These algorithms are mathematically built around Bellman’s principle of optimality 

[40] which is the foundation of the mathematical dynamic programming approach to 

solving optimal control problems. Due to the fact that function approximation 

structures, such as neural networks [62], [63], are used for the implementation of these 

iterative learning algorithms, the approach to learning the optimal behavior has been 

addressed as approximate dynamic programming (ADP) [64] or even neuro-dynamic 

programming [10].  
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 RL algorithms are implemented on Actor-Critic structures which involve two 

function approximators, namely the actor, which parameterizes the control policy, and 

the critic, a parametric representation for the cost function which describes the 

performance of the control system. The solution of the optimal control problem will be 

provided in the form of the Actor neural network for which the associated cost, i.e. the 

output of the Critic neural network, has an extremal value. The recent work [65] 

reviews four generations of general-purpose learning designs for adaptive, approximate 

dynamic programming, which provide approximate solution to optimal control 

problems and include reinforcement learning as a special case. Werbos argues there the 

relevance of such methods not only for the general goal of replicating human 

intelligence but also for bringing solution of efficient regulation in electrical power 

systems. 

1.2 Motivation  

 Most previous research that develops approximate dynamic programming (ADP) 

methods for control engineering considers systems that operate in discrete-time (DT). 

Past successes include: 

• Rigorous formulation and development for DT linear systems. 

• Clear relations between these methods and known discrete-time control 

methodologies have been observed.  

• Available model-free variants. 

• Formulations for DT nonlinear systems are available. 

• Implementation results relevant to industry. 
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This work overlooks the following practical aspects: 

• The dynamics of a large class of human engineered systems unfold in 

continuous-time. 

• Discretized models of continuous-time nonlinear systems are generally not 

sufficiently accurate. 

• Sampling limits the control effectiveness. 

 Therefore, developing ADP methods in a continuous-time framework is of 

importance both in control engineering practice as well as from a control theory 

perspective. 

 At the same time continuous-time ADP results support and strengthen the idea that 

reinforcement learning is a framework-independent approach to adaptive optimal 

control, which has the potential of becoming the most deserving value-driven approach 

to controller design. 

1.3 Background  

 Within the ADP body of work, the technique called policy iteration, first 

formulated in the framework of stochastic decision theory [27], describes the class of 

algorithms consisting of a two-step iteration: policy evaluation and policy improvement. 

The method starts by evaluating the cost associated with a given initial policy and then 

uses this information to obtain a new improved control policy. The two steps are 

repeated until the policy improvement step no longer changes the actual policy which 

converges to the optimal one; as the policy evaluation step expresses the degree of 

optimality of the control policy. 
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 The policy iteration technique has been extensively studied and employed for 

finding the optimal control solution for Markov decision problems of all sorts. The 

references [66] and [10] give a comprehensive overview of the research status in this 

field. Although the algorithm often converges after a small number of iterations, the 

major drawback when it is applied to discrete state systems resides in the necessity of 

sweeping the entire state space before computing the cost associated with a given 

control policy. 

 Although ADP formulations have been given primarily for the case of Markovian 

systems with discrete state and action spaces, recently, as these algorithms have been 

introduced to the control engineering community, ADP has been formulated also for 

continuous-state systems, in both discrete-time and continuous-time frameworks. In 

particular discrete-time formulations of ADP algorithms, with convergence proofs, are 

abundant (see for example [12], [35], [4], [48], [52]). 

 Bradtke, Ydestie and Barto, [12], developed a policy iteration algorithm that 

converges to the state-feedback optimal solution of the discrete-time LQR problem 

using Q-functions. They gave a proof of convergence for Q-learning policy iteration for 

discrete-time systems, which, by virtue of using the so called Q-functions [61], [63], 

does not require any knowledge of the system dynamics. The recursive algorithm 

requires initialization with a stabilizing controller, the controller remaining stabilizing at 

every step of the iteration. 

 In the recent works by Landelius [35], and Al-Tamimi, Abu-Khalaf, and Lewis [3] 

iterative algorithms have been introduced with guaranteed convergence to the discrete-
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time H2 and H-infinity state-feedback control solution for linear systems without the 

requirement of a stabilizing controller at each iteration step. Using iterative algorithms 

to solve for the state feedback optimal control policy, while working with linear 

systems, is particularly affordable since a sweep of the entire state space is no longer 

necessary. In this case, the cost associated with a control policy can be easily 

determined using data along a single state trajectory, assuming that regular persistence 

of excitation conditions are satisfied. 

 It is beyond the purpose of this work to serve as a survey of ADP methods. Since it 

deals with ADP algorithms in a continuous-time framework, in the following we shall 

limit the referencing to the results related with the, slightly less numerous, continuous-

time formulations of ADP. 

 A first reinforcement learning attempt to determine optimal controllers for 

continuous-time systems with discrete-state space was the advantage updating 

algorithm [5] which adapts discrete-time reinforcement learning techniques to the case 

when the sampling time goes to zero. Another RL-based solution to the continuous-time 

optimal control problem has been given in [17].  

 For continuous-time and continuous-state linear systems, [45] presented two policy 

iteration algorithms, mathematically equivalent to Newton’s method. The convergence 

guarantee of the PI technique to the continuous-time LQR solution was given in [32]. 

These algorithms avoid the necessity of knowing the internal system dynamics either by 

evaluating the infinite horizon cost associated with a control policy along the entire 
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stable state trajectory, or by using measurements of the state derivatives to form the 

Lyapunov equations.  

 For nonlinear systems, the PI algorithm was introduced by Leake and Liu in 1967, 

[38]. Three decades later, PI is revisited by Beard, Saridis and Wen, in [9], and 

presented as a feasible adaptive optimal control solution to the CT optimal control 

problem. This is due to the fact that the Generalized HJB equations, a sort of Lyapunov 

equations for nonlinear systems, appearing at each iteration step, could be solved using 

successive Galerkin approximation algorithms. A neural-networks-based approach was 

later developed for the case of H2 and H-infinity control problems with constrained 

control in [1] and [2]. These are offline, model-dependent, policy iteration algorithms 

which solve the Hamilton-Jacobi-Bellman and Hamilton-Jacobi-Isaacs equations 

associated with the continuous-time nonlinear optimal control problem. Neural-

network-based Actor/Critic structures in a CT framework with neural network tuning 

laws have been given in [23].  

 This work introduces a new formulation of the PI algorithm for linear and nonlinear 

systems with continuous-time dynamics. This new formulation allows online adaptation 

(i.e. learning) of the continuous-time operating controller to the optimal state feedback 

control policy without requiring knowledge of the system’s drift dynamics. Knowledge 

regarding the input to state dynamics is still required, but from a system identification 

point of view this knowledge is relatively easier to obtain.  

 The new formulation of the PI algorithm results in a continuous-time formulation 

of generalized policy iteration. This is a spectrum of algorithms having at one end the 
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policy iteration and at the other end the proper formulation of the continuous-time 

heuristic dynamic programming (HDP) algorithm.  

 In all previous research on continuous-time reinforcement learning algorithms 

which provide an online approach to the solution of optimal control problems it was 

assumed that the system is not affected by disturbances. There exist however situations 

in which it is known that the system will be affected by disturbance signals. In these 

cases the control problem is formulated with the purpose of finding all admissible 

controllers which minimize the H-infinity norm. Such controllers counteract in an 

optimal sense the effects of the worst case disturbance which might affect the system. 

Suboptimal H-infinity controllers can be determined such that the H-infinity norm is 

less than a given prescribed bound which is larger than the minimum H-infinity norm.  

 It is known that finding a solution to this problem is equivalent with finding a 

solution of a Riccati equation with sign indefinite quadratic term, see e.g. [68], [19], 

[54], [8]. It is also known that the solution of the H-infinity problem is the saddle point 

solution of a two player zero-sum differential game. The solution of the Algebraic 

Riccati Equation arising in the H-infinity optimal control problem has been approached 

in [16], [15], [36]. In all cases the solution is approached in an iterative manner by 

means of a Newton-type of algorithm. These algorithms determine sequences of 

matrices which are monotonically convergent to the solution of the H-infinity ARE. In 

all cases exact knowledge of the system dynamics is required and the solution is 

obtained by means of offline computation. 
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 We were interested in developing online algorithms, which use reinforcement 

learning ideas, for finding the infinite horizon H-infinity state feedback optimal control 

for linear systems. Thus the last result presented in this thesis is a reinforcement 

learning approach to the saddle point solution of a two player zero-sum differential 

game associated with the mentioned problem. Similar to the previous algorithms, also in 

this case exact knowledge on the drift term of the system is not required. 

1.4 Contribution 

 This thesis makes two major contributions.  

• First, in the field of computational intelligence, it develops reinforcement 

learning controllers for continuous-time systems, whereas in the past, 

reinforcement learning has been mainly developed for discrete-time systems. 

• Second, in the field of control systems engineering, it develops on-line optimal 

adaptive controllers, whereas in the past, optimal control has been an off-line 

design tool, and on-line adaptive controllers have not been optimal. 

 This work presents, in a continuous-time framework, new formulations of online 

adaptive schemes which determine state-feedback control policies that optimize infinite 

horizon cost indices, for systems that are affine-in-the-inputs. The online algorithms 

presented herein are reinforcement learning schemes which reach the optimal control 

solution while using only partial knowledge regarding the system dynamics. More 

exactly knowledge of the drift term in the dynamics of the system is never required.  

 The contributions of this thesis are the following 
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1. An online adaptive optimal controller which uses reinforcement learning 

principles to solve the continuous-time LQR problem; the adaptive algorithm is 

a data-based approach to the solution of the ARE, underlying the optimal control 

problem, without using knowledge of the drift term part of the system dynamics. 

2. An online adaptive optimal controller for general affine in the inputs nonlinear 

systems; the algorithm provides local solution to the Hamilton-Jacobi-Bellman 

equation without using knowledge on the drift term part of the system dynamics. 

3. A new continuous-time formulation for the policy iteration algorithm; which 

results in a new online adaptive data-based approach to optimal control for 

nonlinear systems  

4. The continuous-time formulation of generalized policy iteration; a spectrum of 

algorithms which provides a bridge between continuous-time policy iteration 

and continuous-time value iteration (heuristic dynamic programming). 

5. An online adaptive optimal controller for continuous-time systems based on 

heuristic dynamic programming. 

6. An online adaptive approach to the saddle point solution of the two player linear 

differential game with infinite horizon quadratic cost. 

 The first two results are concerned with developing online versions of the policy 

iteration algorithm. First, the online policy iteration algorithm is formulated for the case 

when the optimal state feedback control is desired for linear systems, in state space 

form, with infinite horizon quadratic indices. Secondly, the online technique is extended 

to the case in which the controlled system has nonlinear dynamics. These online 
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techniques, based on PI, sequentially alternate between the steps of policy evaluation 

and policy improvement, until an update of the control policy will no longer improve 

the performance of the control system. Closed-loop dynamic stability is guaranteed 

throughout. The result is a set of direct adaptive control algorithms which converge to 

the optimal control solution without using an explicit, a priori obtained, model of the 

system internal dynamics. 

 The online algorithms can be implemented while making use of two function 

approximation structures, in an actor/critic interconnection. The actor structure serves as 

parametric representation for the control policy while the critic structure approximates 

the performance of the control system. The parameters of the two function 

approximators are adapted in an online fashion to become expressions of the optimal 

controller and optimal cost function. In this continuous-time formulation the result is a 

hybrid control structure which involves a continuous-time controller and a supervisory 

adaptation structure which operates based on data sampled from the plant and from the 

continuous-time performance dynamics. Such control structure is unlike any standard 

form of controllers previously seen in the literature.  

 The third result included in this thesis is a new formulation for the policy iteration 

algorithm. In this formulation the policy evaluation step is executed in an iterative 

manner by means of a contraction map. This continuous-time formulation of the policy 

iteration algorithm unfolds into an entire spectrum of iterative algorithms named 

generalized policy iterations. At one end of the spectrum lies the regular policy iteration 

(PI) algorithm while at the opposite side one encounters the continuous-time version of 
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value iteration (VI). A comparative analysis on the two PI and VI algorithms is then 

performed while considering the infinite horizon linear quadratic regulation problem. 

 The last result in this thesis illustrates the manner in which sequential approaches to 

the solution of the H-infinity control problem can be implemented online using the data-

based approach to learning. Also in this case knowledge on the drift term, part of the 

model of the controlled system, is not required. For the purpose of clarity the derivation 

is restricted to the case of linear systems with quadratic cost indices. 
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Unknown Internal Dynamics”, Proceedings of the 15th Mediterranean Conference on 
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1.6 Outline 

 Chapter 2 presents the formulation of the policy iteration algorithm which provides 

online solution for the linear quadratic regulation (LQR) problem. From a 

mathematical perspective the algorithm solves online the algebraic Riccati equation 

associated with LQR without requiring model information for the internal dynamics of 

the system. The effectiveness of the algorithm is shown while finding the optimal load-

frequency controller for a power system. 

 In Chapter 3 the online PI algorithm is formulated for the case of nonlinear 

systems. The convergence of the algorithm is proven under the realistic assumption that 

the two function approximators do not provide perfect representations for the nonlinear 

control and cost functions. Simulation results, obtained considering two second order 

nonlinear systems, are provided. 

 In Chapter 4 is introduced the generalized policy iteration (GPI) algorithm. This is 

derived starting from a new formulation of the continuous-time PI algorithm which 

involves an iterative process to solve for the value function at the policy evaluation step. 

It is shown that GPI represents in fact a spectrum of algorithms which has at one end 

the exact policy iteration algorithm and at the other the value iteration (VI) algorithm. 

At the middle part of the spectrum is formulated the optimistic policy iteration (OPI) 
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algorithm for continuous-time systems. From this perspective this chapter provides a 

unified point of view over the approximate dynamic programming (ADP) algorithms 

which have been developed for continuous-time systems.  

 Chapter 5 presents the value iteration algorithm for the LQR problem. It is also 

presented a discussion which uncovers a new connection between the policy iteration 

algorithm and the value iteration algorithm. Thus it is shown that while the PI is a 

Newton method, the VI algorithm is a quasi-Newton method for solving the same 

Riccati equation. 

 Chapter 6 discusses the use of the online algorithm for finding online the solution 

of a two player zero-sum differential game with linear dynamics and infinite-horizon 

quadratic cost. As the solution of the game can be obtained by means of iteration on 

Riccati equations, we will exploit our first result to obtain online solution for the 

problem. In this context the regular Actor-Critic structure becomes a double actor – 

single critic structure. The two actors are the control actor or the disturbance actor. It is 

shown how the two actors can adapt online their behavior policies to reach the saddle 

point equilibrium of the game. The equilibrium can be obtained while only one of the 

two players is actively learning (leading the game). This work provides solution for the 

game, in an online fashion, while either the control actor or the disturbance actor is 

leading the game. At every stage of the game the leading player learns online an optimal 

policy to counteract the constant policy of its opponent. The learning procedure takes 

place based only on discrete-time measurement information of the states of the system 
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and of the value function of the game and without requirement of exact parametric 

information of the drift term of the controlled system.  

 Chapter 7 presents conclusions and future work ideas. 
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CHAPTER 2 

ADAPTIVE OPTIMAL CONTROL BASED ON POLICY ITERATION FOR 
CONTINUOUS-TIME LINEAR SYSTEMS 

2.1 Introduction 

 In this chapter is presented a new, partially model free, algorithm based on policy 

iterations which provides online solution to the optimal control problem for continuous-

time, linear, time-invariant systems.  

 It is well known that solving this problem is equivalent to finding the unique 

positive definite solution of the underlying algebraic Riccati equation (ARE). For this 

reason, considerable effort has been made to solve the ARE and the following 

approaches have been proposed and extended: 

− backwards integration of the differential Riccati equation; or Chandrasekhar 

equations [31], 

− eigenvector-based algorithms [43], [47] and the numerically advantageous Schur 

vector-based modification [37], 

− matrix sign-based algorithms [6], [11], [24], 

− Newton’s method [32], [22], [44], [7]. 

 All of these methods, and their numerically advantageous variants, are offline 

procedures which have been proved to converge to the desired solution of the ARE; 

however all of these techniques require exact knowledge of the state space description 
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of the system to be controlled, as they either operate on the Hamiltonian matrix 

associated with the ARE (eigenvector and matrix sign based algorithms) or require 

solving Lyapunov equations (Newton’s method). In either case a model of the system is 

required and a preceding identification procedure is always necessary. Furthermore, 

even if a model is available the state-feedback controller obtained based on it will only 

be optimal for the model approximation of the real system dynamics. 

 In this chapter is proposed a new policy iteration technique that will solve in an 

online fashion, along a single state trajectory, the LQR problem for continuous-time 

systems using only partial knowledge about the system dynamics (i.e. the internal 

dynamics of the system need not be known) and without requiring measurements of the 

state derivative. This is in effect a direct (no system identification procedure is 

employed) adaptive control scheme for partially unknown linear systems that converges 

to the optimal control solution. It will be shown that the new adaptive critic based 

control scheme is in fact a dynamic controller with the state given by the cost or value 

function. 

 The continuous-time policy iteration formulation for linear time-invariant systems 

is given in Section 2.2. Equivalence with iterating on underlying Lyapunov equations is 

proved. It is shown that the policy iteration is in fact a Newton method for solving the 

Riccati equation thus convergence to the optimal control is established. In Section 2.3 is 

developed the online algorithm that implements the policy iteration scheme, without 

knowing the plant matrix, in order to find the optimal controller. To demonstrate the 

capabilities of the proposed policy iteration scheme in Section 2.4 are presented 
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simulation results of applying the algorithm to find the optimal load-frequency 

controller for a power plant [60]. 

2.2 Continuous-time adaptive critic solution for the infinite horizon optimal control 
problem 

 In this section is developed the policy iteration algorithm, with the purpose of 

solving online the LQR problem without using knowledge regarding the system internal 

dynamics.  

The LQR problem 

 Consider the linear time-invariant dynamical system described by  

 ( ) ( ) ( )x t Ax t Bu t= +&  (2.1) 

where ( ) nx t ∈R , ( ) mu t ∈R  and ( , )A B  is stabilizable, and the infinite horizon quadratic 

cost function expressed as 

 
0

0 0( ( ), ) ( ( ) ( ) ( ) ( ))T T

t
V x t t x Qx u Ru dτ τ τ τ τ

∞
= +∫  (2.2) 

with 0, 0Q R≥ >  such that 1/2( , )Q A  detectable. The optimal control problem requires 

finding the control policy 

 

0

*
0 0( )

( ) arg min ( , ( ), ( ))
u t

t t

u t V t x t u t
≤ ≤∞

= . (2.3) 

 The solution of this optimal control problem, determined by Bellman’s optimality 

principle, is given by ( ) ( )u t Kx t=−  where  

 1 TK R B P−=  (2.4) 
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where the matrix P is the unique positive definite solution of the algebraic Riccati 

equation (ARE) 

 1 0T TA P PA PBR B P Q−+ − + = . (2.5) 

Under the detectability condition for 1/2( , )Q A  the unique positive semidefinite solution 

of the ARE determines a stabilizing closed loop controller given by (2.4). 

 It is known that the solution of the infinite horizon optimization problem can be 

obtained using the Dynamic Programming method and amounts to solving backwards in 

time a finite horizon optimization problem while extending the horizon to infinity. The 

following Riccati differential equation has to be solved 

 
1

( )
f

T T

f t

P A P PA PBR B P Q
P t P

−− = + − +
=

&
. (2.6) 

Its solution will converge to the solution of the ARE as ft →∞ . It is important to note 

that, in order to solve equation (2.5), complete knowledge of the model of the system is 

needed, i.e. both the system matrix A and control input matrix B must be known. Thus a 

system identification procedure is required prior to solving the optimal control problem, 

a procedure which most often ends with finding an approximate model of the system. 

For this reason, developing algorithms that will converge to the solution of the 

optimization problem without performing prior system identification and using explicit 

models of the system dynamics is of particular interest from the control systems point of 

view. 
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 In the following is presented a new policy iteration algorithm that will solve online 

for the optimal control gain, the solution of the LQR problem, without using knowledge 

regarding the system internal dynamics (i.e. the system matrix A). The result will in fact 

be an adaptive controller which converges to the state feedback optimal controller. The 

algorithm is based on an actor/critic structure and consists in a two-step iteration 

namely the critic update and the actor update. The update of the critic structure results 

in calculating the infinite horizon cost associated with the use of a given stabilizing 

controller. The actor parameters (i.e. the controller feedback gain) are then updated in 

the sense of reducing the cost compared to the present control policy. The derivation of 

the algorithm is given in section 2.2.1. An analysis is done and proof of convergence is 

provided in section 2.2.2. 

2.2.1 Policy iteration algorithm 

 Let K  be a stabilizing state-feedback gain for (2.1), under the assumption that 

( , )A B  is stabilizable, such that ( )x A BK x= −&  is a stable closed loop system. Then the 

corresponding infinite horizon quadratic cost is given by  

 ( ( )) ( )( ) ( ) ( ) ( )T T T

t
V x t x Q K RK x d x t Px tτ τ τ

∞
= + =∫  (2.7) 

where P is the real symmetric positive definite solution of the Lyapunov matrix 

equation  

 ( ) ( ) ( )T TA BK P P A BK K RK Q− + − =− +  (2.8) 

and ( ( ))V x t  serves as a Lyapunov function for (2.1) with controller gain K .  The cost 

function (2.7) can be written as 
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 ( ( )) ( )( ) ( ) ( ( ))
t T

T T

t
V x t x Q K RK x d V x t Tτ τ τ

+
= + + +∫  . (2.9) 

Based on (2.9), denoting ( )x t  with tx , with the parameterization ( ) T
t t tV x x Px= , and 

considering an initial stabilizing control gain 1K , the following policy iteration scheme 

can be implemented online: 

 ( )
t T

T T T T
t i t i i t T i t T

t
x P x x Q K RK x d x P xτ τ τ

+

+ += + +∫  (2.10) 

 1
1

T
i iK R B P−
+ = . (2.11) 

Equations (2.10) and (2.11) formulate a new policy iteration algorithm motivated by the 

work of Murray et al. [45]. Note that implementing this algorithm does not involve the 

plant matrix A. 

2.2.2 Proof of convergence 

 The next results will establish the convergence of the proposed algorithm. 

Lemma 2.1 Assuming that the system ix A x=& , with i iA A BK= − , is stable, solving for iP  

in equation (2.10) is equivalent to finding the solution of the underlying Lyapunov 

equation 

 ( )T T
i i i i i iA P P A K RK Q+ =− + . (2.12) 

Proof. Since iA  is a stable matrix and 0T
i iK RK Q+ >  then there exists a unique 

solution of the Lyapunov equation (2.12), 0iP > . Also, since ( ) T
i t t i tV x x P x= , tx∀ , is a 

Lyapunov function for the system ix A x=&  and 
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 ( ) ( ) ( )
T

T T T Tt i t
t i i i i t t i i t

d x P x x A P P A x x K RK Q x
dt

= + =− +  (2.13) 

then, 0T∀ > , the unique solution of the Lyapunov equation satisfies 

 
( )( )

t T t T T
T T i

i i
t t

T T
t i t t T i t T

d x P xx Q K RK x d d
d

x P x x P x

τ τ
τ τ τ τ

τ

+ +

+ +

+ =−

= −

∫ ∫  (2.14) 

i.e. equation (2.10). That is, provided that the system ix A x=&  is asymptotically stable, 

the solution of (2.10) is the unique solution of (2.12).     

Remark 2.1 Although the same solution is obtained whether solving (2.12) or (2.10), 

equation (2.10) can be solved without using any knowledge on the system matrix A. 

From Lemma 2.1 it follows that the iterative algorithm on (2.10) and (2.11) is 

equivalent to iterating between (2.12) and (2.11), without using knowledge of the 

system internal dynamics, if ix A x=&  is stable at each iteration. 

Lemma 2.2 Assuming that the control policy iK  is stabilizing, and ( ) T
i t t i tV x x P x=  is 

the cost associated with it, if (2.11) is used for updating the control policy then the new 

control policy will be stabilizing. 

Proof. Take the positive definite cost function ( )i tV x  as a Lyapunov function candidate 

for the state trajectories generated while using the controller 1iK + . Taking the derivative 

of ( )i tV x  along the trajectories generated by 1iK +  one obtains 

 1 1

1 1

( ) [ ( ) ( ) ]

[ ( ) ( ) ] [ ( ) ( ) ]

T T
i t t i i i i t

T T T T T
t i i i i t t i i i i i i t

V x x P A BK A BK P x

x P A BK A BK P x x P B K K K K B P x
+ +

+ +

= − + − =

= − + − + − + −

&
.(2.15) 
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The second term, using the update given by (2.11) and completing the squares, can be 

written as 

 1 1 1 1

1 1 1 1

[ ( ) ( ) ]

[ ( ) ( ) ]

T T T
t i i i i i i t
T T T T

t i i i i i i i i t

x K R K K K K RK x

x K K R K K K RK K RK x
+ + + +

+ + + +

− + − =

− − − − +
 

Using (2.12) the first term in (2.15) can be written as [ ]T T
t i i tx K RK Q x− +  and summing 

up the two terms one obtains 

 1 1

1 1

( ) [( ) ( )]

[ ]

T T
i t t i i i i t

T T
t i i t

V x x K K R K K x

x Q K RK x
+ +

+ +

=− − − −

− +

&
 (2.16) 

Thus, under the initial assumptions from the problem setup 0, 0Q R≥ > , ( )i tV x  is a 

Lyapunov function proving that the updated control policy 1iu K x+=− , with 1iK +  given 

by equation (2.11), is stabilizing.         

Remark 2.2 Based on Lemma 2.2 one can conclude that if the initial control policy 

given by 1K  is stabilizing, then all policies obtained using the iteration (2.10)-(2.11) 

will be stabilizing policies.  

 Denote with ( )iRic P  the matrix valued function defined as 

 1( ) T T
i i i i iRic P A P P A Q P BR B P−= + + −  (2.17) 

and let '
iPRic denote the Fréchet derivative of ( )iRic P  taken with respect to iP . The 

matrix function '
iPRic  evaluated at a given matrix M will thus be 

' 1 1( ) ( ) ( )
i

T T T
P i iRic M A BR B P M M A BR B P− −= − + − . 

Lemma 2.3 The iteration between (2.10) and (2.11) is equivalent to Newton’s method  
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1

' 1
1 1( ) ( )

ii i P iP P Ric Ric P
−

−
− −= −  (2.18) 

Proof. Equations (2.12) and (2.11) can be compactly written as 

 1
1 1( )T T

i i i i i iA P P A P BR B P Q−
− −+ =− + . (2.19) 

Subtracting 1 1
T

i i i iA P P A− −+  on both sides gives  

 1 1
1

1 1 1 1

( ) ( )

( )

T
i i i i i i

T T
i i i i

A P P P P A

P A A P P BR B P Q
− −

−
− − − −

− + − =

− + − +
 (2.20) 

which, making use of the introduced notations ( )iRic P  and '
iPRic , is the Newton 

method formulation (2.18).          

Theorem 2.4 (Convergence) Under the assumptions of stabilizability of ( , )A B  and 

detectability of 1/2( , )Q A , with 0, 0Q R≥ >  in the cost index (2.3), the policy iteration 

(2.10) and (2.11), conditioned by an initial stabilizing controller, converges to the 

optimal control solution given by (2.4) where the matrix P satisfies the ARE (2.5). 

Proof. In [32] it has been shown that Newton’s method, i.e. the iteration (2.12) and 

(2.11), conditioned by an initial stabilizing policy will converge to the solution of the 

ARE. Also, if the initial policy is stabilizing, all the subsequent control policies will be 

stabilizing (as by Lemma 2.2). Based on the proven equivalence between (2.12) and 

(2.11), and (2.10) and (2.11), we can conclude that the proposed new online policy 

iteration algorithm will converge to the solution of the optimal control problem (2.2) 

with the infinite horizon quadratic cost (2.3) – without using knowledge of the internal 

dynamics of the controlled system (2.1).       
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 Note that the only requirement for convergence to the optimal controller consists in 

an initial stabilizing policy that will guarantee a finite value for the cost 1 1( ) T
t t tV x x P x= . 

Under the assumption that the system to be controlled is stabilizable and 

implementation of an optimal state feedback controller is possible and desired, it is 

reasonable to assume that a stabilizing (though not optimal) state feedback controller is 

available to begin the iteration [32], [44]. In fact in many cases the system to be 

controlled is itself stable such that the initial controller can be chosen as zero.  

2.3 Online implementation of the adaptive optimal control algorithm without using 
knowledge of the system internal dynamics 

 For the implementation of the iteration scheme given by (2.10) and (2.11) one only 

needs to have knowledge of the B matrix as it explicitly appears in the policy update. 

The information regarding the system A matrix is embedded in the states ( )x t  and 

( )x t T+  which are observed online, and thus the system matrix is never required for the 

computation of either of the two steps of the policy iteration scheme. The details 

regarding the online implementation of the algorithm are discussed next. Simulation 

results obtained while finding the optimal controller for a power system are then 

presented. 

2.3.1 Online implementation of the adaptive algorithm based on policy iteration 

To find the parameters (i.e. matrix iP ) of the cost function associated with the policy iK  

in (2.10), the term ( ) ( )T
ix t Px t  is written as 

 ( ) ( ) ( )T T
i ix t P x t p x t=  (2.21) 
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where ( )x t  denotes the Kronecker product quadratic polynomial basis vector with the 

elements 1, ; ,{ ( ) ( )}i j i n j i nx t x t = =  and ( )p Pν=  with (.)ν  a vector valued matrix function 

that acts on symmetric matrices and returns a column vector by stacking the elements of 

the diagonal and upper triangular part of the symmetric matrix into a vector where the 

off-diagonal elements are taken as 2 ijP , see [13]. Using (2.21), equation (2.10) is 

rewritten as 

 ( ( ) ( )) ( )( ) ( )
t T

T T T
i i i

t
p x t x t T x Q K RK x dτ τ τ

+
− + = +∫ . (2.22) 

In this equation ip  is the vector of unknown parameters and ( ) ( )x t x t T− +  acts as a 

regression vector. The right hand side target function, denoted ( ( ), )id x t K  (also known 

as the reinforcement on the time interval [t,t+T]), 

 ( ( ), ) ( )( ) ( )
t T

T T
i i i

t
d x t K x Q K RK x dτ τ τ

+
≡ +∫  

is measured based on the system states over the time interval [ , ]t t T+ . Considering 

( ) ( ) ( ) ( ) ( )T TV t x t Qx t u t Ru t= +&  as a definition for a new state ( )V t , augmenting the 

system (2.1), the value of ( ( ), )id x t K  can be measured by taking two measurements of 

this newly introduced system state since ( ( ), ) ( ) ( )id x t K V t T V t= + − . This new state 

signal is simply the output of an analog integration block having as inputs the quadratic 

terms ( ) ( )Tx t Qx t  and ( ) ( )Tu t Ru t  which can also be obtained using an analog 

processing unit. 
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 At each iteration step, after a sufficient number of state-trajectory points are 

collected using the same control policy iK , a least-squares method can be employed to 

solve for the parameters ip  of the function ( )i tV x  (i.e. the critic), which will then yield 

the matrix iP . The parameter vector ip  is found by minimizing, in the least-squares 

sense, the error between the target function, ( ( ), )id x t K , and the parameterized left hand 

side of (2.22). Evaluating the right hand side of (2.22) at ( 1)/2N n n≥ +  (the number of 

independent elements in the matrix iP ) points ix  in the state space, over the same time 

interval T, the least-squares solution is obtained as 

 1( )T
ip XX XY−=   (2.23) 

where 

 

1 2

1 2

[ ... ]

( ) ( )

[ ( , ) ( , ) ... ( , )]

N

i i i

N T
i i i

X x x x

x x t x t T

Y d x K d x K d x K

∆ ∆ ∆

∆

=

= − +

=

. 

The least-squares problem can be solved in real-time after a sufficient number of data 

points are collected along a single state trajectory, under the regular presence of an 

excitation requirement. A flow chart of the algorithm is presented in Figure 1. 

 Alternatively, the solution given by (2.23) can be obtained also using recursive 

estimation algorithms (e.g. gradient descent algorithms or the recursive least squares 

algorithm) in which case a persistence of excitation condition is required. For this 

reason there are no real issues related to the algorithm becoming computationally 

expensive with the increase of the state space dimension. 
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Figure 1. Flow-chart for the online policy iteration algorithm for continuous-time linear systems 

 Relative to the convergence speed of the algorithm, it has been proven in [32] that 

Newton’s method has quadratic convergence; by the proven equivalence (Theorem 2.4) 

the online algorithm proposed in this paper has the same property in the case in which 

the cost function associated with a given control policy (i.e. equation (2.10)) is solved 

for in a single step (e.g. using a method such as using the exact least-squares described 

by equation (2.23)). For the case in which the solution of the equation (2.10) is obtained 

iteratively, the convergence speed of the online algorithm proposed in this paper will 

decrease. In this case at each step in the policy iteration algorithm (which involves 

solving equations (2.10) and (2.11)) a recursive gradient descent algorithm, which most 

often has exponential convergence, will be used for solving equation (2.11). From this 

perspective one can resolve that the convergence speed of the online algorithm will 
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depend on the chosen technique for solving equation (2.10); analysis along these lines 

are presented in details in the adaptive control literature (see e.g. [30]). 

 In relation with the choice of the value of the sample time T used for acquiring the 

data necessary in the iterations, it must be specified that this parameter does not affect 

in any way the convergence property of the online algorithm. It is however related to 

the excitation condition necessary in the setup of a numerically well posed least squares 

problem and obtaining the least squares solution (2.23).  

 At the same time, it must be observed that the data acquired in order to setup the 

least squares could be obtained by using different values of the sample time T for each 

element in the vectors X  and Y , as long as the information relating the target elements 

in the Y  vector is consistent with the state samples used for obtaining the corresponding 

elements in the X  vector. 

 The proposed policy iteration procedure requires only measurements of the states at 

discrete moments in time, t and t+T, as well as knowledge of the observed cost over the 

time interval [ , ]t t T+ , which is ( ( ), )id x t K . Therefore there is no required knowledge 

about the system A matrix for the evaluation of the cost or the update of the control 

policy. However the B matrix is required for the update of the control policy, using 

(2.11), and this makes the tuning algorithm only partially model-free. 
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 For the algorithms presented in [45], computing the cost of a given policy required 

either  

− several control experiments to be performed, considering different initial 

conditions, until the system states converged to zero (thus letting T →∞  in (2.10)) 

in order to have enough data to set up and solve a least-squares problem, or  

− directly solving a Lyapunov equation of the sort (2.12) and avoiding the use of A 

matrix by measuring the system states and also their derivatives.  

 On the other hand, the policy iteration algorithm proposed in this paper avoids the 

use of A matrix knowledge and at the same time does not require measuring the state 

derivatives. Moreover, since the control policy evaluation requires measurements of the 

cost function over finite time intervals, the algorithm can converge (i.e. optimal control 

is obtained) while performing measurements along a single state trajectory, provided 

that there is enough initial excitation in the system. In this case, the control policy is 

updated at time t+T, after observing the state ( )x t T+  and it is used for controlling the 

system during the time interval [ , 2 ]t T t T+ + ; thus the algorithm is suitable for online 

implementation from the control theory point of view. 

 The structure of the system with the adaptive controller is presented in Figure 2. 

Most important is that the system was augmented with an extra state ( )V t , defined as 

T TV x Qx u Ru= +& , in order to extract the information regarding the cost associated with 

the given policy. This newly introduced system dynamics is part of the adaptive critic 

based controller thus the control scheme is actually a dynamic controller with the state 
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given by the cost function V. One can observe that the adaptive optimal controller has a 

hybrid structure with a continuous time internal state followed by a sampler and discrete 

time update rule. 

xu

V

ZOH  T

0; xBuAxx +=&
System

RuuQxxV TT +=&

Critic

Actor
K−

T T

 

Figure 2. Structure of the system with optimal adaptive controller 

 It is shown that having little information about the system states, x  , and the 

augmented system state, V (controller dynamics), extracted from the system only at 

specific time values (i.e. the algorithm uses only the data samples ( )x t , ( )x t T+  and 

( ) ( )V t T V t+ −  over several time samples), the critic is able to evaluate the performance 

of the system associated with a given control policy. The control policy is improved 

after the solution given by (2.23) is obtained. In this way, over a single state trajectory 

in which several policy evaluations and updates have taken place the algorithm can 

converge to the optimal control policy. It is however necessary that sufficient excitation 

exists in the initial state of the system, as the algorithm iterates only on stabilizing 

policies which will make the states go to zero. In the case that excitation is lost prior to 

obtaining the convergence (the system reaches the equilibrium point) a new experiment 
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needs to be conducted having as a starting point the last policy from the previous 

experiment. 

 The critic will stop updating the control policy when the error between the 

performance of the system evaluated at two consecutive steps crosses below a designer 

specified threshold, i.e. the algorithm has converged to the optimal controller. Also, in 

the case that this error is bigger than the above mentioned threshold, a situation which 

can be caused for example by a change in the system parameters, the critic will take 

again the decision to start tuning the actor parameters to obtain an optimal control 

policy. In fact, if the dynamics described by the A matrix change suddenly, as long as 

the current controller is stabilizing for the new A matrix, the algorithm will converge to 

the solution to the corresponding new ARE. 

 It is observed that the updates of both the actor and the critic are performed at 

discrete moments in time. However, the control action is a full-fledged continuous-time 

control, only that its constant gain is updated only at certain points in time. Moreover, 

the critic update is based on the observations of the continuous-time cost over a finite 

sample interval. As a result, the algorithm converges to the solution of the continuous-

time optimal control problem, as was proven in Section 2.2. 

 The next two figures provide a visual overview of the online policy iteration 

algorithm. Figure 3 shows that over the time intervals 1[ , ]i i+Τ Τ  the system is controlled 

using a state-feedback control policy which has a constant gain iK . During this time 

interval a reinforcement learning procedure, that uses data measured from the system, is 

employed to determine the value associated with this controller. The value is described 
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by the parametric structure iP . Once the learning procedure results in convergence to 

the value iP , this result is used for calculating a new gain for the state-feedback 

controller, namely iK . The length of the interval 1[ , ]i i+Τ Τ  is given by the end of the 

learning procedure, in the sense that 1i+Τ  is the time moment when convergence of the 

learning procedure has been obtained and the value iP  has been determined. In view of 

this fact, we must emphasize that the time intervals 1[ , ]i i+Τ Τ  need not be equal with 

each other and their length is not a design parameter. 
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Figure 3. Representation of the online policy iteration algorithm 

 At every step in the iterative procedure it is guaranteed that the new controller 1iK +  

will result in a better performance, i.e. smaller associated cost, than the previous 

controller. This will result in a monotonically decreasing sequence of cost functions, 

{ }iP , that converges to the smaller possible value, i.e. optimal cost *P , associated with 

the optimal control policy *K . 
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 Figure 4 presents sets of data that are required for online learning of the value 

described by iP . We denoted with T the smallest sampling time that can be used to 

make measurements of the state of the system. A data point that will be used for the 

online learning procedure is given, in a general notation, by the quadruple 

( ), , ,k k j k k jx x V V+ + . Denoting with ( , , )k k j i k j kd x x K V V+ += −  the reinforcement over the 

time interval, where *j∈¥ , then ( , , ( , , ))k k j k k j ix x d x x K+ +  is a data point of the sort 

required for setting up the solution given by (2.23). It is emphasized that the data that 

will be used by the learning procedure need not be collected at fixed sample time 

intervals. 

iΤ 1i+Τ{
 sample timeT − i kTΤ +

( 1)i k TΤ + +

kx 1kx +

kV 1kV +

sets of data used for one step in the online learning procedure

jkx
jk jx +

jkV
jk jV +

i jk TΤ + ( )i jk j TΤ + +

 samplesj
14243

iΤ 1i+Τ{
 sample timeT − i kTΤ +

( 1)i k TΤ + +

kx 1kx +

kV 1kV +

sets of data used for one step in the online learning procedure

jkx
jk jx +

jkV
jk jV +

i jk TΤ + ( )i jk j TΤ + +

 samplesj
14243

 

Figure 4. Data measurements used for learning of the value described by iP over the time interval 

1[ , ]i i+Τ Τ , while the state feedback gain is iK  

2.4 Online load-frequency controller design for a power system 

 In this section are presented the results that were obtained in simulation while 

finding the optimal controller for a power system. The plant that was considered is the 

linearized model of the power system presented in [60].  
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 Even though power systems are characterized by nonlinearities, linear state-

feedback control is regularly employed for load-frequency control at a certain nominal 

operating points which are characterized by small variations of the system load around a 

constant value. Although this assumption seems to have simplified the design problem 

of a load-frequency controller, a new problem appears from the fact that the parameters 

of the actual plant are not precisely known and only the range of these parameters can 

be determined. For this reason it is particularly advantageous to apply model free 

methods to obtain the optimal LQR controller for a given operating point of the power 

system.  

 The state vector of the system is  

 [    ]Tg gx f P X E= ∆ ∆ ∆ ∆  (2.24) 

where the state components are the incremental frequency deviation f∆ (Hz), 

incremental change in generator output gP∆  (p.u. MW), incremental change in 

governor value position gX∆ (p.u. MW) and the incremental change in integral control 

E∆ . The matrices of the linearized nominal model of the plant, used in [60], are  

 

[ ]

-0.0665     8          0             0
     0      -3.663    3.663        0
 -6.86        0      -13.736   -13.736
    0.6        0          0             0 

 0    0     13.736    0

nom

T

A

B

 
 
 =
 
 
 

=

. (2.25) 

Having the model of the system matrices one can easily calculate the LQR controller 

which is 
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 [ ]0.8267   1.7003   0.7049   0.4142 K = . (2.26) 

 The iterative algorithm can be started while using this controller, that was 

calculated for the nominal model of the plant. The parameters of the controller will then 

be adapted in an online procedure, using reinforcement learning, to converge to the 

parameters of the optimal controller for the real plant.  

 For this simulation it was considered that the linear drift dynamics of the real plant 

is given by  

 

 -0.0665   11.5       0           0
      0        -2.5       2.5         0
   -9.5        0        -13.736  -13.736
    0.6        0           0           0 

A

 
 
 =
 
 
 

. (2.27) 

Notice that the drift dynamics of the real plant, given by (2.27), differ from the nominal 

model used for calculation of the initial stabilizing controller, given in (2.25). In fact it 

is the purpose of the reinforcement learning adaptation scheme to find the optimal 

control policy for the real plant while starting from the “optimal” controller 

corresponding to the nominal model of the plant. 

 The simulation was conducted using data obtained from the system at every 0.05s. 

For the purpose of demonstrating the algorithm the closed loop system was excited with 

an initial condition of 0.1 MW incremental change in generator output, the initial state 

of the system being [ ]0  0   0.1   0   0x = . The cost function parameters, namely the Q 

and R matrices, were chosen to be identity matrices of appropriate dimensions. 
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 In order to solve online for the values of the P matrix which parameterizes the cost 

function, before each iteration step a least-squares problem of the sort described in 

Section 2.3.1, with the solution given by (2.23), was setup. Since there are 10 

independent elements in the symmetric matrix P the setup of the least-squares problem 

requires at least 10 measurements of the cost function associated with the given control 

policy and measurements of the systems states at the beginning and the end of each time 

interval, provided that there is enough excitation in the system.  

 In this case, since the system states are not continuously excited and because 

resetting the state at each step is not an acceptable solution for online implementation, 

in order to have consistent data necessary to obtain the solution given by (2.23) one has 

to continue reading information from the system until the solution of the least-squares 

problem is feasible. A least squares problem was solved after 20 sample data were 

acquired and thus the controller was updated every 1 sec. The trajectory of the state of 

the system for the duration of the online experiment is presented in Figure 5. 

 It is clear that the cost function (i.e. critic) parameters converged to the optimal 

ones – indicated on the figure with star shaped points – which were placed for ease of 

comparison at t=5s. The values of the P matrix parameters at t=0s correspond to the 

solution of the Riccati equation that was solved, considering the approximate model of 

the system, to find the initial controller (2.26).  

 The values of the cost function parameters, i.e. the cost for using this initial 

controller given by (2.26), were calculated using the least squares based on the online 
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measurements of the augmented system states (including ( )V t ) and are indicated by the 

points placed at t=1s.  
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Figure 5. State trajectories of the linear closed loop power system over the duration of the experiment 

 The result of applying the algorithm for the power system is presented in Figure 6.  
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Figure 6. Evolution of the parameters of the P matrix for the duration of the experiment 



 

44 

 The optimal controller, close in the range of 10-4 to the solution of the Riccati 

equation, was obtained at time t=4s, after four updates of the controller parameters. 

Figure 4 clearly ilustrates the fact that when the parameters of the cost function are 

close to the optimal ones the convergence rate of the algorithm is quadratic. This is a 

feature of the policy iteration algorithm, [32], which is retained by its online version. 

 The P matrix obtained online using the adaptive critic algorithm, without knowing 

the plant internal dynamics, is  

 

0.4599    0.6910    0.0518    0.4641
0.6910    1.8665    0.2000    0.5798
0.0518    0.2000    0.0532    0.0300
0.4641    0.5798    0.0300    2.2105

P

 
 
 =
 
 
 

. (2.28) 

 The solution that was obtained by directly solving the algebraic Riccati equation 

considering the real plant internal dynamics (2.27) is 

 

 0.4600    0.6911    0.0519    0.4642
 0.6911    1.8668    0.2002    0.5800
 0.0519    0.2002    0.0533    0.0302
 0.4642    0.5800    0.0302    2.2106

P

 
 
 =
 
 
 

. (2.29) 

One can see that the error difference between the parameters of the two matrices is in 

the range of 10-4.  

 In practice, the convergence of the algorithm is considered to be achieved when the 

difference between the measured cost and the expected cost crosses below a designer 

specified threshold value. It is important to note that after the convergence to the 

optimal controller was attained, the algorithm need not continue to be run and 

subsequent updates of the controller need not be performed. 
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 In Figure 7 is presented a detail of the system state trajectories for the first two 

seconds of the simulation. The state values that were actually measured and 

subsequently used for the critic update computation are represented by the points on the 

state trajectories. Note that the control policy was updated at time t=1s. 
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Figure 7. System state trajectories (lines), and state information that was actually used  

for the critic update (dots on the state trajectories) 

Although in this case we had available a nominal model of the system and this allowed 

us to calculate a stabilizing controller to initialize the adaptive algorithm, it is important 

to point out that in the case when the system is itself stable this allows starting the 

iteration while using no controller (i.e. the initial controller is zero and no identification 

procedure needs to be performed). 

 In Figure 6 is presented the convergence result for the case the adaptive optimal 

control algorithm was initialized with no controller. The Critic parameters converged to 
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the optimal ones at time t=7s after seven updates of the controller parameters. The P 

matrix calculated with the adaptive algorithm is  

 

 0.4601    0.6912    0.0519    0.4643
 0.6912    1.8672    0.2003    0.5800
 0.0519    0.2003    0.0533    0.0302
 0.4643    0.5800    0.0302    2.2107

P

 
 
 =
 
 
 

. (2.30) 

The error difference between the parameters of the solution (2.30) obtained iteratively 

and the optimal solution (2.29) is in the range of 10-4. 
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Figure 8. Evolution of the parameters of the P matrix for the duration of the experiment when the 
adaptive algorithm was started without controller for the power system 

2.5 Conclusions 

 In this chapter was presented a new policy iteration technique which solves online 

the continuous time LQR problem without using knowledge about the system’s internal 

dynamics (system matrix A). The algorithm is an online adaptive optimal controller 

based on an adaptive critic scheme in which the actor performs continuous time control 
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while the critic incrementally corrects the actor’s behavior at discrete moments in time 

until best performance is obtained.  The critic evaluates the actor performance over a 

period of time and formulates it in a parameterized form. Based on the critic’s 

evaluation the actor behavior policy is updated for improved control performance. 

 The result can be summarized as an algorithm which effectively provides solution 

to the algebraic Riccati equation associated with the optimal control problem without 

using knowledge of the system matrix A. Convergence to the solution of the optimal 

control problem, under the condition of initial stabilizing controller, has been 

established by proving equivalence with the algorithm presented by Kleinman in [32]. 

The convergence results obtained in simulation for load-frequency optimal control of a 

power system generator have also been provided. 
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CHAPTER 3 

REINFORCEMENT LEARNING APPROACH BASED ON POLICY ITERATION 
TO CONTINUOUS-TIME DIRECT ADAPTIVE OPTIMAL CONTROL FOR 

PARTIALLY UNKNOWN NONLINEAR SYSTEMS

3.1 Introduction 

In this chapter is presented an adaptive method, which uses approximation structures 

in an actor-critic configuration, for solving online the optimal control problem for the 

case of nonlinear systems, in a continuous-time framework, without making use of 

explicit knowledge on the internal dynamics of the nonlinear system. The method is 

based on policy iteration (PI), a RL algorithm which iterates between the steps of policy 

evaluation and policy improvement. The PI method starts by evaluating the cost of a 

given admissible initial policy and then uses this information to obtain a new control 

policy, which is improved in the sense of having a smaller associated cost compared 

with the previous policy, over the domain of interest in the state space. The two steps are 

repeated until the policy improvement step no longer changes the present policy; this 

indicating that the optimal control behavior was obtained.  

In the case of continuous-time systems with linear dynamics, PI was employed for 

finding the solution of the state feedback optimal control problem (i.e. LQR) in [45], 

while the convergence guarantee to the LQR solution was given in [32]. The PI 

algorithm, as used by Kleinman [32], requires repetitive solution of Lyapunov equations, 
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which involve complete knowledge of the system dynamics (i.e. both the input-to-state 

and internal system dynamics specified by the plant input and system matrices). Chapter 

2 of this work presented the online PI algorithm which provides solution of the LQR 

problem using data measured along a single state trajectory, without requiring 

knowledge on the system’s internal dynamics. 

For nonlinear systems, the PI algorithm was first developed by Leake and Liu, [38], 

but at that time the mathematical techniques required for real implementation had not 

been developed. Three decades later PI was revisited and presented in [9] as a feasible 

adaptive solution to the CT optimal control problem. The main contribution of [9] 

resides in the fact that the Generalized HJB equations (a sort of nonlinear Lyapunov 

equations), which appear in the PI algorithm, could now be solved using successive 

Galerkin approximation algorithms. A neural-networks-based approach was developed 

and extended to the cases of H2 and H-infinity with constrained control in [2], [1]. 

Neural-network-based actor-critic structures, in a continuous-time framework, with 

neural network tuning laws have been given in [23]. All of the above mentioned 

methods require complete knowledge of the system dynamics. 

In this Chapter is given a new formulation of the PI algorithm for continuous-time 

nonlinear systems. This new formulation allows online adaptation (i.e. learning) of the 

continuous-time operating controller to the optimal state feedback control policy, 

without requiring knowledge on the system internal dynamics. Knowledge regarding the 
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input-to-state dynamics is still required, but from a system identification point of view 

this knowledge is relatively easier to obtain.  

In Section 3.3 the proof of convergence of the online PI algorithm is first given 

under the assumption the two function approximators in the actor/critic structure can 

provide exact representations of the control and cost functions. This shows the validity 

of the approach to online learning. However, the assumption of exact representation of 

the cost functions which have to be learned is not realistic. Thus the convergence results 

are then extended for the function-approximators–based algorithm, taking into account 

the existing approximation errors between the actor/critic structures and the control and 

cost functions respectively. The algorithm converges online to the optimal control 

solution without knowledge of the internal system dynamics. Closed-loop dynamic 

stability is guaranteed throughout.  

The end result is a control and adaptation structure which is a hybrid combination 

between a continuous-time controller and a learning structure which operates based on 

discrete sampled data from the system and from the continuous-time dynamics reflecting 

the performance of the system. Such structure is unlike any of the standard forms of 

controllers appearing in the literature.  

 In the next section is given an overview of the optimal control problem for 

nonlinear systems. The proposed Policy Iteration algorithm which solves the HJB 

equation without requiring knowledge of the internal dynamics of the system is 

presented in Section 3.3. Convergence of the algorithm is proved by showing 
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equivalence with the general PI algorithm for nonlinear systems. The formulation of the 

introduced algorithm using approximation structures is discussed in Section 3.4. 

Convergence of the adaptive critic-based algorithm, while considering the error 

between the cost function and its approximation, is then provided. Section 3.5 gives a 

flowchart of the online algorithm and discusses the online implementation on an 

Actor/Critic structure, while commenting also on the relations between the proposed 

online algorithm and certain learning mechanisms in the mammal brain. Section 3.6 

presents simulation results considering two nonlinear systems with quadratic and 

quartic cost functions. 

3.2 Background in nonlinear optimal control  

 This section presents the formulation of the nonlinear optimal control problem.  

 Consider the time-invariant affine in the input dynamical system given by 

 ( ) ( ( )) ( ( )) ( ( ))x t f x t g x t u x t= +& ; 0(0)x x=  (3.1) 

with ( ) nx t R∈ , ( ( )) nf x t R∈ , ( ( )) n mg x t R ×∈  and the input ( ) mu t U∈ ⊂ R . Is assumed 

that (0) 0f = , that ( ) ( )f x g x u+  is Lipschitz continuous on a set nΩ⊆R  which 

contains the origin, and that the dynamical system is stabilizable on Ω , i.e. there exists 

a continuous control function ( )u t U∈  such that the system is asymptotically stable on 

Ω .  

 We note here that although global asymptotic stability is guaranteed in a linear 

system case, it is generally difficult to guarantee in a general continuous-time nonlinear 

system problem setting. This is due to the non-smooth nature of a nonlinear system 
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dynamics; at the points in which there exist discontinuities of x& , there will also exist 

discontinuities of the gradient of the cost function. For this reason the discussion is 

restricted to the case in which asymptotic stability is desired and sought for only in a 

region nΩ⊆R  in which the cost function is continuously differentiable. 

 The infinite horizon integral cost associated with the control input { ( ); }u tτ τ ≥  is 

defined as 

 ( ( )) ( ( ), ( ))u

t
V x t r x u dτ τ τ

∞
= ∫  (3.2) 

where ( )x τ  denotes the solution of (3.1) for initial condition ( )x t ∈Ω  and input 

{ ( ); }u tτ τ ≥ , ( , ) ( ) Tr x u Q x u Ru= +  with ( )Q x  positive definite, i.e. 0, ( ) 0x Q x∀ ≠ >  and 

0 ( ) 0x Q x= ⇒ = , and m mR ×∈R  a positive definite matrix.  

 Definition 3.1 [9] (Admissible (stabilizing) policy)  

A control policy ( )xµ  is defined as admissible with respect to (3.2) on Ω , denoted by 

( )µ∈Ψ Ω , if ( )xµ  is continuous on Ω , (0) 0µ = , ( )xµ  stabilizes (3.1) on Ω  and 

0( )V x  is finite 0x∀ ∈Ω .  

 The cost function associated with any admissible control policy ( )µ∈Ψ Ω  is  

 ( ( )) ( ( ), ( ( )))
t

V x t r x x dµ τ µ τ τ
∞

= ∫ . (3.3) 

( )V xµ  is 1C . The infinitesimal version of (3.3) is 

 0 ( , ( )) ( ) ( ( ) ( ) ( )), (0) 0T
xr x x V f x g x x Vµ µµ µ= + ∇ + =  (3.4) 



 

53 

where xV µ∇  (a column vector) denotes the gradient of the cost function V µ  with 

respect to x , as the cost function does not depend explicitly on time. Equation (3.4) is a 

Lyapunov equation for nonlinear systems which, given the controller ( ) ( )xµ ∈Ψ Ω , can 

be solved for the cost function ( )V xµ  associated with it. Given that ( )xµ  is an 

admissible control policy, if ( )V xµ  satisfies (3.4), with ( , ( )) 0r x xµ ≥ , then ( )V xµ  is a 

Lyapunov function for the system (3.1) with control policy ( )xµ .  

 The optimal control problem can now be formulated:  

Given the continuous-time system (3.1), the set ( )u∈Ψ Ω  of admissible control policies, 

and the infinite horizon cost functional (3.2), find an admissible control policy such that 

the cost index (3.2) associated with the system (3.1) is minimized. 

 Defining the Hamiltonian of the problem  

 ( , , ) ( ( ), ( )) ( ) ( ( ( )) ( ( )) ( ))T
x xH x u V r x t u t V f x t g x t u t= + ∇ + , (3.5) 

the optimal cost function *( )V x  satisfies the HJB equation  

 *
( )

0 min [ ( , , )]xu
H x u V

∈Ψ Ω
= ∇ . (3.6) 

 Assuming that the minimum on the right hand side of the equation (3.6) exists and 

is unique then the optimal control function for the given problem is  

 * 1 *1
2( ) ( )T

xu x R g x V−=− ∇ . (3.7) 

 Inserting this optimal control policy in the Hamiltonian we obtain the formulation 

of the HJB equation in terms of *
xV∇  
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 * * 1 * *10 ( ) ( ) ( ) ( ) ( ) ( ) , (0) 0
4

T T T
x x xQ x V f x V g x R g x V V−= + ∇ − ∇ ∇ = . (3.8) 

 This is a sufficient condition for the optimal cost function (Kirk, 2004). For the 

linear system case, considering a quadratic cost functional, the equivalent of this HJB 

equation is the well known Riccati equation. 

 In order to find the optimal control solution for the problem one only needs to solve 

the HJB equation (3.8) for the cost function and then substitute the solution in (3.7) to 

obtain the optimal control. However, solving the HJB equation is generally difficult. It 

also requires complete knowledge of the system dynamics (i.e. the functions ( ), ( )f x g x  

need to be known). 

3.3 Policy iteration algorithm for solving the HJB equation 

 In the following is presented a new online iterative algorithm which will adapt the 

parameters of the state feedback controller such that it will solve the infinite horizon 

optimal control problem without using knowledge regarding the system internal 

dynamics (i.e. the system function ( )f x ). Convergence of the algorithm to the optimal 

control function is then provided. 

3.3.1 Policy iteration algorithm 

 Let (0) ( ( )) ( )x tµ ∈Ψ Ω  be an admissible policy, and 0T >  such that as ( )x t ∈Ω  also 

( )x t T+ ∈Ω  (the existence of such 0T >  is guaranteed by the admissibility of (0) (.)µ  on 

Ω ), then the iteration between:  

1. (policy evaluation step) solve for 
( )

( ( ))
i

V x tµ  using 
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( ) ( )( )( ( )) ( ( ), ( ( ))) ( ( ))
i i

t T
i

t
V x t r x s x s ds V x t Tµ µµ

+
= + +∫  with 

( )
(0) 0

i
V µ = , (3.9) 

and 

2. (policy improvement step) update the control policy using 

 
( )( 1)

( )
arg min[ ( , , )]

ii
x

u
H x u V µµ +

∈Ψ Ω
= ∇ , (3.10) 

which explicitly is  

 
( )( 1) 11

2( ) ( )
ii T

xx R g x V µµ + −=− ∇ , (3.11) 

converges to the optimal control policy * ( )µ ∈Ψ Ω  with corresponding cost  

*
0

0
( ) min( ( ( ), ( ( ))) )V x r x x d

µ
τ µ τ τ

∞
= ∫ . 

 Equations (3.9) and (3.11) give a new formulation for the Policy Iteration algorithm 

which allows solving the optimal control problem without making use of any 

knowledge of the internal dynamics of the system, ( )f x . This algorithm is an online 

version of the offline algorithms proposed in [2] and [9], motivated by the success of 

the online adaptive critic techniques proposed by computational intelligence researchers 

[45], [48], [10]. In the spirit of reinforcement learning algorithms, the integral term in 

(3.9) can be addressed as the reinforcement over the time interval [ , )t t T+ . 

 Equation (3.9) is a discretized version of 
( ) ( )( ( )) ( ( ), ( ( )))
i i

t
V x t r x x dµ τ µ τ τ

∞
= ∫  and it 

can be viewed as a Lyapunov equation for nonlinear systems. In this paper we shall 

refer to it also as 
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( ) ( ) ( )( )( ( ( ))) ( ( ), ( ( ))) ( ( )) ( ( ))
i i i

t T
i

t
LE V x t r x s x s ds V x t T V x tµ µ µµ

+
+ + −∫@   

with 
( )

(0) 0
i

V µ = . 

 The convergence of the new PI algorithm is given in the next subsection. The 

implementation of the algorithm using approximation structures will be discussed in 

Section 3.4. 

3.3.2 Convergence of the policy iteration algorithm 

 It has been shown that if ( ) ( )iµ ∈Ψ Ω  and 
( ) 1( ( )) ( )
i

V x t Cµ ∈ Ω  satisfy equation (3.9) 

then one can show the new control policy ( 1)iµ + , determined based on equation (3.10), 

is admissible for the system (3.1). (for proof see [2] and [9])  

 The following result is required in order to prove the convergence of the proposed 

policy iteration algorithm. 

Lemma 3.1 Solving for 
( )i

V µ in equation (3.9) is equivalent with finding the solution of  

 
( ) ( )( ) ( )0 ( , ( )) ( ) ( ( ) ( ) ( )), (0) 0
i ii T i

xr x x V f x g x x Vµ µµ µ= + ∇ + = . (3.12) 

The proof is given in Appendix A.  

Remark 1 Although the same solution is obtained solving either equation (3.9) or 

(3.12), solving equation (3.9) does not require any knowledge on the system dynamics 

( )f x , which in turn appears explicitly in (3.12). 

 From Lemma 3.1 it follows that the algorithm (3.9) and (3.11) is equivalent to 

iterating between (3.12) and (3.11), without using knowledge of the system internal 

dynamics ( )f x . 
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Theorem 3.1 (convergence) The policy iteration (3.9) and (3.11) converges uniformly 

to the optimal control solution on the trajectories originating in Ω , i.e. 

 ( )

0 0

* ( ) *

0 :

sup ( ) ( ) , sup ( ) ( ) .
i i

x x

i i i

V x V x x u xµ

ε

ε µ ε
∈Ω ∈Ω

∀ > ∃ ∀ ≥

− < − <
 (3.13) 

Proof In [9] and [2] it was shown that iterating on equations (3.12) and (3.11), 

conditioned by an initial admissible policy (0) ( )xµ , all the subsequent control policies 

will be admissible and the iteration (3.12) and (3.11) will converge to the solution of the 

HJB equation, i.e. equation (3.13) is satisfied.  

 Based on the proven equivalence between the equations (3.9) and (3.12) one 

concludes that the proposed online adaptive optimal control algorithm will converge to 

the solution of the optimal control problem (3.2), on Ω , without using knowledge on 

the internal dynamics of the controlled system (3.1).      

3.4 Adaptive critics solution of the HJB equation 

 For the implementation of the iteration scheme given by (3.9) and (3.11) one only 

needs to have knowledge of the input-to-state dynamics, i.e. the function ( )g x , which is 

required for the policy update in equation (3.11). One can see that knowledge on the 

internal state dynamics, described by ( )f x , is not required. The information regarding 

the system ( )f x  matrix is embedded in the states ( )x t  and ( )x t T+  which are sampled 

online. 
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3.4.1 Approximate representation of the cost function 

 Equation (3.9) is solved making use of a structure which will approximate the cost 

function solution for any x∈Ω . In here is considered that a linear combination of a 

finite set of basis functions can be determined such that it closely approximates the cost 

function 
( )

( )
i

V xµ , for x∈Ω . Thus the cost function can be represented as  

 
( ) ( ) ( )

1
( ) ( ) ( ) ( )

i i iL
T

L j j L L
j

V x w x xµ µ µφ
=

= =∑ w φ . (3.14) 

 Note that given an infinite set of linearly independent activation functions 

1{ ( )}j xφ ∞ , such that 1( ) ( ), (0) 0, 1,j jx C jφ φ∈ Ω = = ∞ , which satisfy the completeness 

property (i.e. any function 1( ) ( ), (0) 0f x C f∈ Ω =  can be represented as a linear 

combination of a subset of 1{ ( )}j xφ ∞ ) , then the exact solution of equation (3.9) can be 

expressed as 

 
( ) ( ) ( )

1
( ) ( ) ( ) ( )

i i i T
j j

j
V x c x xµ µ µφ

∞

∞ ∞
=

= =∑ c φ , (3.15) 

where ( )x∞φ  is the vector of activation functions and 
( )iµ

∞c  denotes the weight vector. 

 Using the approximate description for the cost function, equation (3.14), (3.9) can 

be written as  

 
( ) ( )( )( ( )) ( , ( )) ( ( )).
i i

t T
T i T

L L L L
t

x t r x x d x t Tµ µµ τ
+

= + +∫w φ w φ  (3.16) 

 As the cost function was replaced with its approximation, (3.16) will have the 

residual error  
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( ) ( )( )( ( ), ) ( , ( )) [ ( ( )) ( ( ))].
i i

t T
i T

L L LL
t

x t T r x x d x t T x tµ µδ µ τ
+

= + + −∫ w φ φ  (3.17) 

 From the perspective of temporal difference learning methods (e.g. [5], [17]) this 

error can be viewed as a temporal difference residual error for continuous-time systems. 

 To determine the parameters of the function that is approximating the cost function 

( )i

LV µ , in the least-squares sense, we use the method of weighted residuals. Thus the 

parameters 
( )i

L
µw  of the cost function approximation 

( )i

LV µ  are adapted such that to 

minimize the objective  

 
( ) ( )

( , ) ( , )
i i

L LS x T x T dxµ µδ δ
Ω

= ∫ . (3.18) 

This amounts to 
( )

( )

( )

( , )
( , ) 0

i
i

i
L

L
L

d x T
x T dx

d

µ
µ

µ

δ
δ

Ω
=∫

w
. Using the inner product notation for the 

Lebesgue integral one can write  

 
( )

( )

( , )
, ( , ) 0

i

i
iL
L

L

d x T
x T

d

µ

µ

δ
δ

Ω

=
w

 (3.19) 

which is 

 

( )

( )

[ ( ( )) ( ( ))],[ ( ( )) ( ( ))]

[ ( ( )) ( ( ))], ( ( ), ( ( ))) 0

iT
L L L L L

t T
i

L L
t

x t T x t x t T x t

x t T x t r x s x s ds

µ

µ

Ω

+

Ω

+ − + − +

+ + − =∫

φ φ φ φ w

φ φ
 (3.20) 

Conditioned by [ ( ( )) ( ( ))],[ ( ( )) ( ( ))]TL L L Lx t T x t x t T x t
Ω

Φ = + − + −φ φ φ φ  being invertible, 

then the solution is  
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( ) 1 ( )[ ( ( )) ( ( ))], ( ( ), ( ( )))
i

t T
i

L L L
t

x t T x t r x s x s dsµ µ
+

−

Ω

=−Φ + − ∫w φ φ  (3.21) 

To show that Φ  can be inverted the following technical results are needed. 

Definition 3.2 (linearly independent set of functions) [33] 

A set of functions { }1

N
jφ  is said to be linearly independent on a set Ω  if 

1
( ) 0

N

j j
j

c xφ
=

=∑  

a.e. on Ω  implies that 1 0Nc c= = =L . 

Lemma 3.2 If the set { }1

N
jφ is linearly independent and ( )u∈Ψ Ω  then the set 

{ }1
( )

NT
j f guφ∇ + is also linearly independent. 

The proof is given in [9]. 

The next technical lemma shows that Φ can be inverted. 

Lemma 3.3 Let ( ) ( )xµ ∈Ψ Ω  such that ( ) ( ) ( )f x g x xµ+  is asymptotically stable. Given 

that the set { }1

N
jφ  is linearly independent then 0T∃ >  such that ( ) {0},x t∀ ∈Ω−  the set 

{ }1
( ( ), ) ( ( )) ( ( ))

N
j j jx t T x t T x tφ φ φ= + −  is also linearly independent.  

The proof is by contradiction and is presented in Appendix A. 

 Based on the result of Lemma 3.3, there exist values of T such that Φ  is invertible 

and the parameters 
( )i

L
µw  of the cost function 

( )i

LV µ  can be calculated. Having solved 

for the cost function 
( )i

LV µ  associated with the control policy ( )iµ , the policy update 

step can be executed. The new control policy will thus be 
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( )( 1) 11

2( ) ( ) ( )
ii T T

L Lx R g x x µµ + −=− ∇φ w . (3.22) 

 Equation (3.22) gives the output of the actor structure. Note that in this 

implementation the controller (actor) can be seen as an approximation structure, which 

has the same weight parameters as the critic, but whose basis set of functions depend on 

the gradients of those in the critic. 

3.4.2 Convergence of 
( )

( )
i

LV xµ  to the exact solution of the Lyapunov equation 
( )

( )
i

V xµ  

 The convergence of the method of least squares is now discussed for the case in 

which equation (3.9) is solved using a cost function approximator. 

Definition 3.3 (Convergence in the mean) A sequence of Lebesgue integrable functions 

on a set Ω , 2{ ( )} ( )nf x L∈ Ω , is said to converge in the mean to 2( ) ( )f x L∈ Ω  if 

0, ( )Nε ε∀ > ∃  such that 
2 ( )( ), ( ) ( )n Ln N f x f xε εΩ∀ > − < , where 

2

2
( )( ) ,Lf x f fΩ = . 

 Equation (3.9) can be written using a linear operator A defined on the Hilbert space 

of continuous and differentiable functionals on Ω  

 

( , ( ), )

( ( )) ( ( )) ( ( ), ( ( )))

d x x TAV

t T

t
V x t V x t T r x s x s ds

µ µ

µ µ µ
+

− + = ∫

64444744448 644474448

. (3.23) 

 Function approximators which are defined such that the basis functions are power 

series of order m are differentiable and can uniformly approximate a continuous 

function with all its partial derivatives, up to order m, by differentiating the series term-

wise. This type of series is m-uniformly dense as shown in Lemma 3.4. 
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Lemma 3.4 (Higher order Weierstrass approximation theorem) [26].  

Let ( ) ( )mf x C∈ Ω , then there exists a polynomial ( )P x  such that it converges uniformly 

to ( )f x , and all its partial derivatives up to order m converge uniformly.  

 The following facts hold under the stated standard conditions in optimal control. 

Fact 1 The solution of (3.9) is positive definite. This is guaranteed when the system has 

stabilizable dynamics and when the performance functional satisfies zero state 

observability (i.e. observability of the system state through the cost function). [59] 

Fact 2 The system dynamics and the performance integrand ( ( ), ( ( )))r x s x sµ  are such 

that the solution of (3.9) is continuous and differentiable on Ω . 

Fact 3 A complete set 1
1{ } ( )j Cφ ∞∈ Ω  can be chosen such that the solution 1( )V C∈ Ω  

and V∇  can be uniformly approximated by the infinite series built based on 1{ }jφ ∞ . 

Fact 4 The sequence 1{ ( ( ), ) ( ( )) ( ( ))}j j jx t T x t T x tφ φ φ ∞= + −  is linearly independent and 

complete.  

Proof The linear independence results from Lemma 3.3, being conditioned by certain 

values of the sample time T . The completeness relies on the high-order Weierstrass 

approximation theorem. 

 , , LV Lε∀ ∃ w  such that LV V ε− < . This implies that as L→∞  

2 ( )sup 0 0L L L
x

AV AV AV AV Ω
∈Ω

− → ⇒ − →  which proves completeness of 

1{ ( ( ), ) }j jx t T Aφ φ ∞= . 
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 The first three assumptions are standard in optimal control, and we have proven the 

fourth herein. The next result is required. 

Lemma 3.5 Given a set of N linearly independent functions 1{ ( )}N
jf x  defined on Ω  

then 

 
22

2 2

( )
0 0T

N N N lL Ω
→ ⇔ →α f α . (3.24) 

A proof is given in [2]. 

 The next main result shows convergence in the mean. 

Theorem 3.2 Given that the Facts 1-4 hold, then approximate solutions exist for (3.9) 

using the method of least squares and are unique for each L. In addition, as L→∞ , 

R1.
( ) ( )

2 ( )
( ( )) ( ( )) 0

i i

L
L

LE V x LE V xµ µ

Ω
− → ,  

where ( ( ))LE V x  is defined in section 3.3.1, 

R2.
( ) ( )

2 ( )
( ) ( ) 0

i i

L
L

V x V xµ µ

Ω
− → , 

R3. 
( ) ( )

2 ( )
( ) ( ) 0

i i

L
L

V x V xµ µ

Ω
∇ −∇ → , 

R4. 
2

( ) ( )
( )

( ) ( ) 0i i
L L

x xµ µ
Ω

− → . 

Proof. The least squares sense solution 
( )i

LV µ of (3.9) is the solution of the minimization 

problem 

 
( ) 2 2( ) ( )( , , ) min ( ) ( , , )
i

L

i T i
L LAV d x T x d x Tµ µ µ− = −

w
w φ . (3.25) 
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The uniqueness of the solution follows directly from the linear independence of 

1{ ( ( ), )}L
j x t Tφ . R1 follows from the completeness of 1{ ( ( ), ) }j jx t T Aφ φ ∞= .  

 R2 is next proved. 

 
( ) ( )

( ( )) ( ( )) ( , ) ( , ) ( , )
i i T T

L L L LLE V x LE V x x T x T x Tµ µ ε∞ ∞− = − =w φ c φ , (3.26) 

 
1

( ) ( , ) ( , ) ( , ) ( , ) ( , )T
L L L L j j L L

j L
x T x T c x T x T e x Tε φ ε

∞

= +
− = + = +∑w c φ . (3.27) 

( , )Le x T  converges uniformly to zero due to the high-order Weierstrass approximation 

theorem (this implies convergence in the mean) and ( , )L x Tε  converges in the mean to 

zero due to R1. Then 

 22

2 2

2 2
( )( )

2 2
( ) ( )

( ) ( , ) ( , ) ( , )

2 ( , ) 2 ( , ) 0

T
L L L L L LL

L LL L

x T x T e x T

x T e x T

ε

ε

ΩΩ

Ω Ω

− = +

≤ + →

w c φ
. (3.28) 

Since ( , )L x Tφ  is linearly independent then, based on Lemma 3.5, one sees that 

2

2( ) 0L L l− →w c . As the set 1{ }L
jφ  is linearly independent, it follows from Lemma 3.5 

that 
2

2

( )
( ) ( ) 0T

L L L L
x

Ω
− →w c φ . It thus follows that, as L→∞ , 

( ) ( )

2

2

( )
0

i i

L
L

V Vµ µ

Ω
− → .  

 Similarly, since 
1

L
jd

dx
φ 

 
 

is linearly independent, from Lemma 3.5 results that 

2

2

( )
( ) ( ) 0T

L L L L
x

Ω
− ∇ →w c φ , from which follows R3, 

( ) ( )

2

2

( )
0

i i

L
L

V Vµ µ

Ω
∇ −∇ → .  
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 R4 follows immediately from R3 given that  

 

( 1) ( 1)

2 2

( 1) ( 1)

2 2

22( ) ( ) 1
( ) ( )

221
( ) ( )

( ) ( ) ( )( ( ) ( ))

( ) ( ) ( ) 0

i i

i i

i i T
L LL L

T
LL L

x x R g x V x V x

R g x V x V x

µ µ

µ µ

µ µ
− −

− −

−
Ω Ω

−
Ω Ω

− = − ∇ −∇

≤ − ∇ −∇ →

. (3.29) 

 
Based on the result in Theorem 3.2 the following stronger result of uniform 

convergence can be shown. 

Corollary 3.1 If the results from Theorem 3.2 hold then 

( ) ( )
sup ( ) ( ) 0

i i

L
x

V x V xµ µ

∈Ω
− → ,  

( ) ( )
sup ( ) ( ) 0

i i

L
x

V x V xµ µ

∈Ω
∇ −∇ →  and  

( ) ( )sup ( ) ( ) 0i i
L

x
x xµ µ

∈Ω
− → . 

For proof see [2]. 

 The next result shows that, given an initial admissible control policy, (0) ( )xµ , the 

control policy at each step i of the Policy Iteration algorithm, with value function 

approximation, ( ) ( )i
L xµ  is admissible provided that the number of the basis functions in 

the approximation structure is sufficiently large. 

Corollary 3.2 (Admissibility of ( ) ( )i
L xµ ) 0L∃ such that ( )

0 , ( )i
LL L µ∀ > ∈Ψ Ω . 

The proof is given in Appendix A. 

Corollary 3.3 ( ) ( ) ( ) ( )sup ( ) ( ) 0 sup ( ) ( ) 0i i i i
L L

x x
x x V x V xµ µ

∈Ω ∈Ω
− → ⇒ − → . 
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3.4.3 Convergence of the method of least squares to the solution of the HJB equation 

 In this section we show that the successive least squares solution using neural 

networks converges to the solution of the HJB equation (3.8). 

 

Theorem 3.3 Under the assumptions of Theorem 3.2 the following is satisfied 0i∀ ≥  

i. ( ) ( )sup ( ) ( ) 0i i
L

x
V x V x

∈Ω
− →  

ii. ( 1) ( 1)sup ( ) ( ) 0i i
L

x
x xµ µ+ +

∈Ω
− →  

iii. ( )
0 0: ( ) ( )i

LL L L xµ∃ ∀ ≥ ∈Ψ Ω  

 A proof by induction and is presented in [2]. 

Theorem 3.4 0 0 0 00, , : ,i L i i L Lε∀ ≥ ∃ ∀ ≥ ≥   

i. ( ) *sup ( ) ( )i
L

x
V x V x ε

∈Ω
− < , 

ii. ( 1) *sup ( ) ( )i
L

x
x u xµ ε+

∈Ω
− < , 

iii. ( ) ( ) ( )i
L xµ ∈Ψ Ω . 

 The proof follows directly from Theorems 3.1 and 3.3. 

3.5 Online algorithm on an actor-critic structure 

 This section discusses the implementation of the adaptive algorithm on the 

actor/critic structure. The main features of the online adaptive critic structure are 

presented while noting similarities with learning mechanisms in the mammal brain. 
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3.5.1 Actor-critic structure for online implementation of the adaptive optimal control 
algorithm 

 The structure of the system with the adaptive controller is presented in Figure 9. It 

is important to note that the adaptation structure has dynamics consisting of the state 

( )V t , i.e. the value, which evolves based on ( ) TV Q x u Ru= +& . This provides a dynamic 

memory that enables one to extract the information regarding the cost associated with 

the given policy. If one resets ( )V t  to zero at the beginning of each sample interval 

[ , )t t T+ , then the measurement ( )V t T+  gives the reinforcement over time interval 

[ , )t t T+  required to implement the policy evaluation step in (3.9), i.e. ( )V t T+  gives the 

integral reinforcement term in (3.9). From this perspective the result is a dynamic 

controller whose memory is exactly the value ( )V t  of using the current policy. 

xu

V

ZOH  T

0( ) ( ) ;x f x g x u x= +&
System

( ) TV Q x u Ru= +&

Cost function

Actor

( )xµ

T T

Controller

Critic
( )V x

xu

V

ZOH  T

0( ) ( ) ;x f x g x u x= +&
System

( ) TV Q x u Ru= +&

Cost function

Actor

( )xµ

T T

Controller

Critic
( )V x

 

Figure 9. Structure of the system with adaptive controller  

 The policy iteration technique in this paper has led us to a control system structure 

that allows one to perform optimal control in an adaptive fashion online without 

knowing the internal dynamics of the system. We term this optimal adaptive control. 

This structure is not a standard one in the control systems literature. It is a hybrid 
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continuous-time/discrete-time adaptive control structure which has continuous-time 

dynamics, and a discrete-time sampled data portion for policy evaluation.  

 The algorithm is suitable for online implementation from the control theory point 

of view since the control policy ( 1) ( )i
L xµ + , updated at time 1it +  after observing the state 

1( )ix t + , will be used for controlling the system during the time interval 1 1( , ]i it t T+ + + . 

 The flowchart of the online algorithm is presented in Figure 10. 

 

Figure 10. Flowchart of the online policy iteration algorithm 

 All the calculations involved are performed at a supervisory level which operates 

based on discrete–time data measured from the system. This high level intelligent 

control structure implements the policy iteration algorithm and uses the critic neural 

network to parameterize the performance of the continuous-time control system 

associated with a certain control policy. The high level supervisory structure makes the 
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decisions relative to the discrete-time moments at which both the actor and the critic 

parameters will be updated. The actor neural network is part of the control system 

structure and performs continuous-time control, while its constant gain is updated at 

discrete moments in time. The algorithm converges to the solution of the continuous-

time optimal control problem, as proved in Section 3.4, since the critic’s update is based 

on the observations of the continuous-time cost over a finite sample interval. The net 

result is a continuous-time controller incorporated in a continuous-time/discrete-time 

adaptive structure, which includes the continuous time dynamics of the cost function 

and operates based on sampled data, to perform the policy evaluation and policy update 

steps at discrete moments in time. 

 The cost function solution, given by (3.21), can be obtained in real-time after a 

sufficient number of data points are collected along state trajectories in the region of 

interest Ω . In practice, the matrix inversion in (3.21) is not performed, the solution of 

the equation being obtained using algorithms that involve techniques such as Gaussian 

elimination, backsubstitution, and Householder reflections. Also, the least squares 

method for finding the parameters of the cost function can be replaced with any other 

suitable, recursive or not recursive, method of parameter identification. 

 The iterations will be stopped (i.e. the critic will stop updating the control policy) 

when the error between the system performance evaluated at two consecutive steps will 

cross below a designer specified threshold. Also, when this error becomes bigger than 

the above mentioned threshold, indicating a change in the system dynamics, the critic 

will take again the decision to start tuning the actor parameters. 
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 We note again that there is no required knowledge about the system dynamics 

( )f x  for the evaluation of the cost or the update of the control policy. However 

knowledge on the ( )g x  function is required for the update of the control policy, using 

(3.22), and this makes the online tuning algorithm only partially model free. 

3.5.2 Relation of the adaptive critic control structure to learning mechanisms in the 
mammal brain 

 It is interesting to note the rough similarity between the above mentioned adaptive 

controller structure and learning mechanisms in the mammal brain. The critic structure 

learns, in an episodic manner and based on samples of the reward signal from the 

environment, the parameters of a function which describes the actor performance. Once 

a performance evaluation episode was completed, the critic passes this information to 

the actor structure which will use it to adapt for improved performance. At all times the 

actor must perform continuous-time control for the system (the environment in which 

optimal behavior is sought). This description of the way in which the actor/critic 

structure works while searching for continuous-time optimal control policies points out 

the existence of two time scales for the mechanisms involved: 

− a fast time scale which characterizes the continuous-time control process, and 

− a slower time scale which characterizes the learning processes at the levels of 

the critic and the actor.  

 Thus the actor and critic structures perform tasks at different operation frequencies 

in relation with the nature of the task to be performed (i.e. learning or control). 

Evidence regarding the oscillatory behavior naturally characterizing biological neural 
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systems is presented in a comprehensive manner in [39]. Different oscillation 

frequencies are connected with the way in which different areas of the brain perform 

their functions of processing the information received from the sensors. Low level 

control structures must quickly react to new information received from the environment 

while higher level structures slowly evaluate the results associated with the present 

behavior policy. 

 In Section 3.4 it was shown that having little information about the system states 

measured from the sensors, x, and the augmented system state, i.e. V, extracted from the 

system only at specific time values (i.e. ( ), ( )x t x t T+  and ( ) ( )V t T V t+ − ), the Critic is 

able to evaluate the infinite horizon continuous-time performance of the system 

associated with a given control policy described in terms of the Actor parameters. The 

critic learns the cost function associated with a certain control behavior based on a 

computed temporal difference (TD) error signal, given by ( ) ( )V t T V t+ − .  

 It is interesting to mention here that in a number of reports, e.g. [49], [50], it is 

argued that the temporal difference error between the received and the expected rewards 

is physically encoded in the dopamine signal produced by basal ganglia structures in the 

mammal brain. At the same time, it is known that the dopamine signal encoding the 

temporal error difference favors the learning process by increasing the synaptic 

plasticity of certain groups of neurons.  

 The next section presents simulation results which were obtained considering two 

second order nonlinear systems. 
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3.6 Simulation examples 

 In this section the adaptive optimal control algorithm is tested in simulation 

considering two nonlinear systems for which the optimal cost function and optimal 

controller are known. The nonlinear system examples were developed using the 

converse HJB approach, [46], which allows construction of nonlinear systems, specified 

initially in a general form, starting from the known optimal cost function. In effect it 

solves conversely the HJB equation, given the optimal cost function, for the dynamics 

of the nonlinear system. 

3.6.1 Example 1 

 The first nonlinear system is given by the equations 

 1 1 2

2 ( ) ( )
x x x
x f x g x u

=− +
 = +

&
&

 (3.30) 

with 2
1 2 2 1 1

1 1( ) ( ) sin ( ), ( ) sin( )
2 2

f x x x x x g x x=− + + = . 

 If the infinite horizon cost function to be minimized is 2( ( )) ( ( ) )u

t
V x t Q x u dτ

∞
= +∫ , 

with 2 2
1 2( )Q x x x= + , then the optimal cost function for this system is * 2 2

1 2
1( )
2

V x x x= +  

and the optimal controller is *
1 2( ) sin( )u x x x=− . 

 The simulation was conducted using data obtained from the system at every 0.1s. 

We note here that the value of this sample time is not relevant for the cost function 

identification procedure. In fact data does not have to be measured with a fixed sample 

time, as long as it is suitable for learning (i.e. caries new information on the cost 
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function to be identified). In this sense, as long as the measured signals did not reach 

steady state values, meaning that the measured data is not redundant, the sampling 

could be executed as fast the hardware permits it. At the same time, as we used a batch 

method for identifying the cost function parameters in the least squares sense a larger 

number of samples will lead to better approximation of the cost function. However this 

batch procedure can be replaced with a recursive one, or a recursive procedure on time 

windows, such that the parameters of the cost function will be adapted over time as 

more data is acquired.  

 For the purpose of demonstrating the algorithm the initial state of the system is 

taken to be different than zero. For each iteration we considered data measured along 

five trajectories defined by five different initial conditions chosen randomly in 

{ }1 1; 1,2ix iΩ= − ≤ ≤ = . The initial stabilizing controller was taken as 

(0)
1 1 2

3( ) sin( )( )
2

x x x xµ =− + . The cost function 
( )

( )
i

V xµ  was approximated by the 

following smooth function, for x∈Ω , 
( ) ( )

( ) ( ) ( )
i i T

L L LV x xµ µ= w φ  with 3L= , 

( ) ( ) ( ) ( )

3 1 2 3
i i i i T

w w wµ µ µ µ =  
w  and 2 2

3 1 1 2 2( )
T

x x x x x = φ . 

 In order to solve online for the parameters 
( )

3
iµw  of the cost function, at each 

iteration step we setup a least squares problem with the solution given by (3.21). At 

each iteration step we solved for 
( )

3
iµw  using 30 data points consisting of the measured 

the cost function associated with a given control policy over 30 time intervals T=0.1s, 

the initial state and the system state at the end of each time interval, 6 points measured 
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over each of the 5 trajectories in the state space. In this way, every 3s, the cost function 

was solved for and a policy update was performed. The result of applying the algorithm 

is presented in Figure 11. 
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Figure 11. Convergence of the critic parameters 

 One can see from the figure that the parameters of the critic converged to the 

coefficients of the optimal cost function * 2 2
1 2

1( )
2

V x x x= + , i.e. [ ]
*

3 0.5 0 1 Tu =w . 

3.6.2 Example 2 

 In this example we present the results obtained for a system which has stronger 

nonlinearities and quartic cost. We consider the nonlinear system given by the equations 

 
3

1 1 2 2

2

2
( ) ( )

x x x x
x f x g x u

 =− + +


= +

&
&

 (3.31) 
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with 2 2
1 2 2 2 1 1

1 1( ) ( ) (1 2 )sin ( ), ( ) sin( )
2 2

f x x x x x x g x x=− + + + = . If we define 

2 2 4
1 2 2( ) 2Q x x x x= + +  the infinite horizon cost function to be minimized then the optimal 

cost function for this system is * 2 2 4
1 2 2

1( )
2

V x x x x= + +  and the optimal controller is 

* 3
1 2 2( ) sin( )( 2 )u x x x x=− + . 

 The simulation was conducted using data obtained from the system at every 0.1s. 

For each iteration we considered data measured along five trajectories defined by five 

different initial conditions chosen randomly in { }1 1; 1,2ix iΩ= − ≤ ≤ = . The initial 

stabilizing controller was taken as (0) 2 3
1 2 1 2 2

1( ) sin( )(3 0.2 12 )
2

x x x x x xµ =− − + . The cost 

function 
( )

( )
i

V xµ  was approximated on Ω  as 
( ) ( )

( ) ( ) ( )
i i T

L L LV x xµ µ= w φ  with 8L= , 

( ) ( ) ( )

8 1 8...
i i i T

w wµ µ µ =  
w  and 

2 2 4 3 2 2 3 4
8 1 1 2 2 1 1 2 1 2 1 2 2( )

T
x x x x x x x x x x x x x = φ . 

 At each iteration step we solved for 
( )

8
iµw  using 40 data points, i.e. 8 points 

measured on each of the 5 trajectories in Ω . Each data point consists of the measured 

the cost function associated with the present control policy, over a time interval T=0.1s, 

and the system state at both ends of this interval. In this way, at every 4s, the cost 

function was solved for and a policy update was performed. One notes that each data 

point set measured on each trajectory is sufficient to identify the parameters of the cost 

function corresponding to that given trajectory. However it is often not the case that 
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cost function parameters associated with one trajectory are equal to the cost function 

parameters associated with another trajectory. The result of applying the algorithm is 

presented in Figure 12. 
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Figure 12. Convergence of the critic parameters 

The figure clearly shows that the parameters of the critic neural network converged to 

the coefficients of the optimal cost function * 2 2 4
1 2 2

1( )
2

V x x x x= + + , i.e. 

[ ]
*

8 0.5 0 1 0 0 0 0 1 Tu =w . One observes that after 3 iteration steps the 

parameters of the controller, obtained based on the update equation (3.22), are very 

close to the parameters of the optimal controller * 3
1 2 2( ) sin( )( 2 )u x x x x=− + . 

3.7 Conclusion 

 In this chapter was presented a continuous-time adaptive controller, based on 

Policy Iteration, which adapts online to learn the continuous-time optimal control policy 
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without using knowledge about the internal dynamics of the nonlinear system. 

Convergence of the proposed algorithm, under the condition of initial stabilizing 

controller, to the solution of the optimal control problem has been established. Proof of 

convergence for the online version of the algorithm, while taking into account the 

approximation error, was also provided. The simulation results support the effectiveness 

of the online adaptive optimal controller. 



 

78 

CHAPTER 4 

GENERALIZED POLICY ITERATION FOR CONTINUOUS-TIME SYSTEMS

 In this chapter is introduced, in a continuous-time framework, a class of ADP 

algorithms which, in the spirit of [56], will be named generalized policy iteration (GPI). 

The new class of algorithms is developed here for affine in the inputs nonlinear 

systems. The basis of the development is a new, partially model free (i.e. the internal 

dynamics of the nonlinear system need not be known), formulation for the policy 

iteration (PI) approach to optimal control. The new formulation of the PI algorithm 

allows formulation of the GPI and shows that it represents a spectrum of iterative 

algorithms which in effect includes at one end the PI algorithm and at the other the 

value iteration (VI) algorithm. 

 The first section of this chapter reviews the standard PI approach to the solution of 

the infinite horizon optimal control problem for nonlinear systems, i.e. the optimal 

control problem discussed in Section 3.2. Section 4.2 presents the main result: a new 

formulation for the PI algorithm, with convergence proof, followed by the general 

description of the GPI class of algorithms. Section 4.3 briefly discusses the 

implementation aspects of the GPI algorithms using function approximators in an actor-

critic structure while Section 4.4 presents simulation results obtained first for a LQR 

problem and second for the case of a nonlinear system. 
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4.1 Policy Iteration Algorithm 

4.1.1 CT PI Algorithm 1: Standard PI  

The standard Policy Iteration algorithm for CT systems is described as  

1. Select 0 ( )u ∈Ψ Ω  

2. (policy evaluation step) Solve for iV  

 1( , , ) 0i
i xH x u V− ∇ = . (4.1) 

3. (policy improvement step) Find iu  which satisfies  

 
( )

arg min[ ( , , )]i
i x

v
u H x v V

∈Ψ Ω
= ∇ .  (4.2) 

Conditioned by a suitable initialization, i.e. admissible initial policy, PI provides 

solution of the optimal control problem based on recursively solving equations (4.1) and 

(4.2) as the index i→∞ . The solution iV of (4.1) represents the value function 

associated with using the control policy 1iu − . In order to obtain the solution of (4.1), 

which can be explicitly written as 

 1 1( ( ), ( )) ( ) ( ( ( )) ( ( )) ( )) 0i T
i x ir x t u t V f x t g x t u t− −+ ∇ + = , (4.3) 

exact knowledge on the system dynamics, i.e. ( ( )), ( ( ))f x t g x t is required. Knowledge 

on the system’s input-to-state dynamics ( )g x  is always required as it is part of the 

closed form solution of (4.2) which is 

 11
2( ) ( )T i

i xu x R g x V−=− ∇ . (4.4) 
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4.1.2 CT PI Algorithm 2: Based on the integral over a time interval 

 In order to avoid the necessity of knowing the internal dynamics of the system, 

( )f x , and to allow online implementation, in Chapter 3 has been developed an 

equivalent formulation of the PI algorithm as  

1. Select 0 ( )u ∈Ψ Ω  

2. (policy evaluation step) Solve for iV  

 
0

01( , ) ( ) ( ) 0, (0) 0
t T

i i i
i t T t

t
r x u d V x V x Vτ

+

− ++ − = =∫ .  (4.5) 

3. (policy improvement step) Find iu  which satisfies 

 
( )

arg min[ ( , , )]i
i x

v
u H x v V

∈Ψ Ω
= ∇ .  (4.6) 

 In (4.5), tx  and 
0t Tx +  are short notations for ( )x t  and 0( )x t T+ , where ( )x τ  is the 

solution of (2.1) for initial condition ( )x t  and input 1{ ( ); }iu tτ τ− ≥ . 

 It was proved in Chapter 3 that the two equations (4.1) and (4.5), corresponding to 

the policy evaluation step, have the same solution. The advantage of using (4.5) stands 

in the fact that this equation can be solved based on online measurements, without any 

requirement of knowing the system internal dynamics. Online approaches to policy 

iterations make use of function approximators as support for the solutions of (4.5) and 

(4.6) in an actor-critic type of structure. Implementation details will be discussed in 

Section 4.4. 
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4.2 Generalized Policy Iteration 

 In this section are formulated the generalized policy iteration (GPI) algorithms for 

continuous-time systems. In the first subsection are introduced the mathematical tools 

which will provide basis for the PI and GPI algorithm formulation which are given in 

Subsections 4.2.2 and 4.2.3.  

4.2.1 Preliminaries 

 Let Χ  denote the space of bounded functionals (.):V Ω→¡  with 

( ) 0, , (0) 0t tV x x V> ∀ ∈Ω = . Χ  is a Banach space with the norm sup ( )
x

V V x
∈Ω

= . 

Define the dynamic programming operator :Tµ Χ→Χ  

 
0

0
( ) ( , ) ( ),

t T

t t T
t

T V x r x d V xµ µ τ
+

+= +∫  (4.7) 

where 
0t Tx +  is the value of ( )x τ  at 0t Tτ = + , with ( )x τ  the solution of (2.1) for initial 

condition ( )x t  (denoted tx ) and input { ( ); }tµ τ τ ≥ .  

Also, define the operator :T Χ→Χ  

 
0

0( )
( ) min ( , ) ( )

t T

t t Tu t
TV x r x u d V xτ

+

+
∈Ψ Ω

  = + 
  

∫ . (4.8) 

 The first operator, :Tµ Χ→Χ , maps the cost functional (.)V ∈Χ  into the cost 

functional denoted (.)T Vµ ∈Χ , while using the control policy ( )µ∈Ψ Ω  over the time 

interval 0[ , ]t t T+ . The sample period 0T  must be chosen such that tx∀ ∈Ω  the solution 
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of (2.1) at time 0t T+ , using the control policy µ , satisfies 
0 1t Tx + ∈Ω ⊆Ω . Note that if 

( )µ∈Ψ Ω  there exists a lower bound lT  such that 0 lT T∀ ≥  and tx∀ ∈Ω  then 
0t Tx + ∈Ω .  

 The formulation of the operator Tµ  when the state feedback optimal control 

problem for linear systems with quadratic performance index, i.e. LQR, is considered is 

given now. Using the parametric description of the value function 

( ) ,T nV x x Px x= ∀ ∈¡  and 1( ) ,T nT V x x P x xµ
µ = ∀ ∈¡ , and the control policy 

( )x K xµµ =− , this operator can be written as 

 

0

1

0 0( ) ( )

( )[ ( ) ] ( )

T

t T
T T T
t t

t
A BK T A BK TT

t t

x P x x Q K RK x d

x e Pe x
µ µ

µ µ µτ τ τ
+

− −

= + +

+

∫ . (4.9) 

Let PX  denote the set of all positive definite matrices which can serve as parametric 

representations of quadratic value functions. Denoting with 0 0( )T A BK T
dA e

µ−@  the 

discrete version of the continuous-time dynamics of the linear system, when a sampling 

period of 0T  was used, and writing the integral term as  

 
0

( )[ ( ) ] ( )
t T

T T T
t t

t
x M x x Q K RK x dµ µ µτ τ τ

+

≡ +∫ ,  

with 0M µ > , then it can be introduced the operator : P PTµ′ Χ →Χ  defined as  

 0 0
1 ( )T TT

d dT P P M A PAµ µ
µ′ = = + . (4.10) 
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 kPµ  denotes the composition of k  copies of Tµ′  applied on the parametric 

representation of the quadratic cost function ( ) ,T nV x x Px x= ∈¡ , i.e. matrix P . 

 The operator defined by (4.8), :T Χ→Χ , maps the cost functional (.)V ∈Χ  into the 

cost functional denoted (.)TV ∈Χ , while using over the time interval 0[ , ]t t T+  the 

control policy u  which is solution to the finite horizon optimal control problem defined 

by the right hand side of (4.8).  

 It is important to see that the control solution of (4.8) is not the same as 

( )
arg min[ ( , , )]x
v

u H x v V
∈Ψ Ω

= ∇ ; in the first case a time varying control policy is obtained 

while in the latter case the resulting policy is time invariant. For example, in a linear 

system case with quadratic cost function the control solution given by (4.8) is 

1( , ) ( )Tu x R B P xτ τ−=−  where ( )P τ  is the solution of the differential Riccati equation 

over the time interval 0[ , ]t t T+  with final condition 
0t TP P+ = . On the other hand, the 

solution obtained using 
( )

arg min[ ( , , )]x
v

u H x v V
∈Ψ Ω

= ∇  is 1( ) Tu x R B Px−=− . Thus, one can 

see that using (4.8) as basis for the policy improvement step would lead to a significant 

modification of the policy iteration algorithm. 

Using the introduced operators we can also write  

 { }
( )

( ) min ( )t u tu
TV x T V x

∈Ψ Ω
=  . (4.11) 

Also, Bellman’s optimality principle can be formulated as 

 { }* * *
( )

( ) min ( ) ( )t u t tu
TV x T V x V x

∈Ψ Ω
= = . (4.12) 
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In the following kT  and k
uT  will denote the composition of k  copies of T  and uT . 

4.2.2 A new CT formulation of policy iteration  

 Two equivalent formulations of continuous-time PI were given as Algorithm 1, 

equations (4.1), (4.2), and Algorithm 2, equations (4.5), (4.6). In this section are 

presented results which allow a third formulation of the policy iteration algorithm based 

on the functional mapping operators which were introduced in the previous section. The 

following results are required. 

Lemma 4.1 Let ( )µ∈Ψ Ω . Then V µ ∈Χ  is a fixed point of the mapping :Tµ Χ→Χ .  

Proof Let V µ  denote the cost associated with the policy µ . Then, using the definition 

in (4.7), we have 

 
0

0
( ) ( , ) ( )

t T

t t T
t

T V x r x d V xµ µ
µ µ τ

+

+= +∫   (4.13) 

which is 

 ( ) ( )t tT V x V xµ µ
µ =  (4.14)  

thus ( )tV xµ  is a fixed point of the mapping Tµ .      ⁭ 

 Note that the equation 

 
0

0
( ) ( , ) ( ) ( )

t T

t t T t
t

T V x r x d V x V xµ µ τ
+

+= + =∫   (4.15) 

has a unique solution denoted by ( )tV xµ , which is also the solution of 

( , , ) 0xH x Vµ ∇ = . 
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Lemma 4.2 Let ( )µ∈Ψ Ω . Then :Tµ Χ→Χ is a contraction mapping on Χ . 

Proof Let ,V W ∈Χ , then  

 
0

0
( ) ( , ) ( )

t T

t t T
t

T V x r x d V xµ µ τ
+

+= +∫  (4.16) 

 
0

0
( ) ( , ) ( )

t T

t t T
t

T W x r x d W xµ µ τ
+

+= +∫ . (4.17) 

Subtracting the two equations one gets 

 
0 0

( ) ( ) ( ) ( )t t t T t TT V x T W x V x W xµ µ + +− = − . (4.18) 

 0T  is chosen such that tx∀ ∈Ω  and 
0 1t Tx + ∈Ω ⊆Ω .  

Then  

 
1

sup( )( ) sup( )( )V W x V W x
Ω Ω

− ≤ −   (4.19) 

which together with (26) gives  

 sup( )( ) sup( )( )T V T W x V W xµ µ
Ω Ω

− ≤ − .   

This is,  

 T V T W V Wµ µ− ≤ − . (4.20) 

This proves the lemma.        ⁭ 

 Subtracting (4.13) from (4.16), and making use of (4.14), one obtains 

 
0 0

( ) ( ) ( ) ( )t t t T t TT V x V x V x V xµ µ
µ + +− = −   

which has as result  
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 ,T V V V V Vµ µ
µ − ≤ − ∀ ∈Χ . (4.21) 

 The next corollary of Lemma 4.2 considers the formulation of the infinite horizon 

optimal control problem for linear systems with quadratic performance index, i.e. the 

LQR problem. In this case it is known that the value function associated with a given 

admissible state feedback policy can be exactly represented by the parametric 

description ( ) ,T nV x x Px x= ∀ ∈¡ . The operator Tµ′  defined by equation (4.10) is now 

used. PΧ , equipped with the spectral radius matrix norm defined as 

( ) max( )i
i

A A ρρ λ≡ @ , where iλ  the eigenvalues of A , is a Banach space. 

Corollary 4.1 : P PTµ′ Χ →Χ  is a contraction map on PΧ . 

The proof is given in Appendix A. 

Lemma 4.3 The mapping :Tµ Χ→Χ  has a unique fixed point on Χ  which is can be 

obtained using  

 ( ) lim ( )k
t tk

V x T V xµ
µ

→∞
=  ( )tV x∀ ∈Χ . (4.22) 

Proof Using the Banach fixed point theorem, since :Tµ Χ→Χ  is a contraction on 

Χ (Lemma 4.2) then its fixed point V µ ∈Χ  (Lemma 4.1) is the unique fixed point. 

Moreover, the unique fixed point can be determined as the limit of the iterative 

sequence defined by 0 01(.) (.) (.), 1, (.) (.)k
k kV T V T V k V Vµ µ µ µ

µ µ−= = ≥ = ∈Χ , i.e. 

( ) lim ( )k
t tk

V x T V xµ
µ

→∞
=  ( )tV x∀ ∈Χ .        ⁭ 
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4.2.3 Continuous-time PI Algorithm 3: Iterative solution of the policy evaluation step 

 Using the result in Lemma 4.3 now is given a third formulation for the policy 

iteration algorithm which makes use of the operator defined by (4.7). Thus 

1. Select 0 ( )u ∈Ψ Ω  

2. (policy evaluation step) Solve for 1 ( )iu
tV x−  (denoted with ( )i

tV x ) using the iteration 

 
1

( ) lim ( )
i

i k
t u tk

V x T V x
−→∞

=  (4.23) 

 starting with any ( )tV x ∈Χ , and Tµ  defined by (4.7). 

3. (policy improvement step) Find iu  which satisfies 

 
( )

arg min[ ( , , )]i
i x

v
u H x v V

∈Ψ Ω
= ∇ . (4.24) 

 A variant of the above policy iteration algorithm is obtained when one starts the 

policy evaluation step for 1 ( ) ( )iu i
t tV x V x− =  with the cost functional obtained at the 

previous step 2 1( ) ( )iu i
t tV x V x− −= , i.e. (4.23) becomes 

 
1

1( ) lim ( )
i

i k i
t u tk

V x T V x
−

−

→∞
= . (4.25) 

4.2.4 Generalized policy iteration – a continuous-time formulation 

 The formulation of the generalized policy iteration (GPI) algorithm for continuous-

time systems with continuous state and action space is now given.  

GPI for CT systems 

1. Select 0 ( )u ∈Ψ Ω  
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2. (approximate policy evaluation step) Approximately solve for ( )i
tV x  using the 

iteration 

 
1

( ) ( ) ( )
i

i i k
t k t u tV x V x T V x

−
=@  (4.26) 

starting with any ( )tV x ∈Χ , for some 1k ≥ . 

 Note that this step can also be replaced with 

 
1

1( ) ( ) ( )
i

i i k i
t k t u tV x V x T V x

−

−=@ . (4.27) 

3. (policy improvement step) Find iu  which satisfies 

 
( )

arg min[ ( , , )]i
i x

v
u H x v V

∈Ψ Ω
= ∇ . (4.28) 

 One clearly sees that when k →∞  in (4.22) we encounter the regular PI algorithm 

with the policy evaluation step given by (4.23).  

 For the case of 1k∞> ≥ , one obtains the so called optimistic policy iteration [56], 

with the policy evaluation step given by 

 
1

( ) ( )
i

i k
o t u tV x T V x

−
= . (4.29) 

In this “optimistic” case the policy update step is executed prior to the convergence to 

the true value associated with the current control policy. In (4.29) the notation (.)i
oV  

was used to make the point that the value resulting from (4.26) is not the true value 

associated with the current control policy 1( )iu x− , i.e. (.)iV . 

CT value iteration variant with initial stabilizing policy 

When 1k = , the GPI becomes a variant of the value iteration algorithm given next. 
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1. Select 0 ( )u ∈Ψ Ω  

2. (Value function update step) Solve for ( )i
tV x  using only one value update step  

 
1

1( ) ( )
i

i i
t u tV x T V x

−

−= . (4.30) 

3. (policy update step) Find iu  which satisfies 

 
( )

arg min[ ( , , )]i
i x

v
u H x v V

∈Ψ Ω
= ∇ . (4.31) 

 The key difference between this GPI with 1k =  and the value iteration algorithm is 

that in the latter case the requirement of 0 ( )u ∈Ψ Ω is removed, i.e. the initial policy in 

VI need not be stabilizing.  

 The flowchart of the GPI algorithm is presented in Figure 13. 
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1 1( ) ( )
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Figure 13. Flow chart of the generalized policy iteration (GPI) algorithm 
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4.3 Online implementation of generalized policy iteration 

 The online learning GPI algorithm is implemented on an actor-critic structure. In a 

general case the two structures can be neural networks (NN) which are universal 

approximators, [26]. 

 For value function approximation the cost ( )iV x ∈Χ  will be represented as  

 
1

( ) ( ) ( ) ( )
L

i i i T
j j L L

j
V x w x xφ

=
= =∑ w φ . (4.32) 

This could be seen as a neural network with L neurons on the hidden layer and 

activation functions 1( ) ( ), (0) 0j jx Cφ φ∈ Ω = . ( )L xφ  denotes the vector of activation 

functions and i
Lw the vector of the parameters of the neural network, with i

jw  the 

weights of the neural network. The activation functions should be selected to provide a 

complete basis for the space of value functions over Ω .  

 In order to solve for the cost function ( )iV x  in equation (4.27), the j-th step of the 

value function update, which is  

 
1

1 1
1 0( ) ( ), ,1

i

i i i i
j t u j tV x T V x V V j k

−

− −
−= = ≤ ≤ ,  (4.33) 

can be written as 

 
0

1( ) ( ) ( , ( )) ( ) ( )
t T

j T j T
L L t i L L t T

t
x r x u x d xτ

+
−

+= +∫w φ w φ  (4.34) 
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with ( ) ( ) ( )i k T
t L L tV x x= w φ . The parameters of the value function approximation will 

be tuned, at each iterative step (4.33) of (4.27), to minimize, in the least-squares sense, 

the objective  

 
{ }0

( ) ( )ui
x n

j j
L LS x x dxδ δ

Ω
= ∫  . (4.35) 

 In (4.35) { }0

ui
x n

Ω  denotes a set of trajectories generated by the policy iu , from the 

initial conditions 0{ }nx ⊂Ω , and 

 
0

1( ) ( , ( )) ( ) ( ) ( ) ( ).
t T

j j jT T
t i L t T L tL L L

t
x r x u x d x xδ τ

+
−

+= + −∫ w φ w φ  

 The quantity ( )j
tL xδ  can be viewed as the temporal difference residual error. 

 Using the inner product notation for the Lebesgue integral, the least squares 

solution of (4.34) is  

 
0

{ }0

11 ( ), ( , ( ) ( ) ( )
ui

x n

t T
jj T

L L t i L t TL
t

x r x u x d xτ
+

−−
+

Ω

=−Φ +∫w φ w φ  (4.36)  

where 
{ }0

( ), ( )
ui

x n

T
L t L tx x

Ω
Φ = φ φ . 

 After updating the value function to solve equation (4.34) k times, i.e. once the 

approximate solution of (4.27) had been obtained, the policy update step, given by 

(4.28), is 

 1
1

( )( ) ( )
T

T iL
i L

xu x R g x
x

ϕ−
+

∂ =−  ∂ 
w . (4.37) 
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 Note that in this implementation, after the policy update step is executed, the 

parameters of the two approximation structures, namely actor and critic, are the same.  

 Finally, it is noted that all ADP algorithms are developed on the assumption that 

correct estimation of the value function is possible. This means that, in order to 

successfully apply the online learning algorithm, enough excitation must be present in 

the system to guarantee correct estimation of the value function at each value update 

step. In relation with this, one must also note that the greedy policies obtained at the 

policy update steps are admissible policies and thus not excitatory. This is the well 

known exploration/exploitation dilemma, [56], which characterizes adaptive controllers 

that have simultaneous conflicting goals such as optimal control and fast and effective 

adaptation/learning. 

4.4 Simulation Examples  

4.4.1 Example 1 - a linear system 

 In this section are presented comparative simulation results using the GPI approach 

to solving the LQR problem considering the linear model of the F16 short period 

dynamics given in [53]. 

 The description of the linear system is given by matrices 

 
-1.01887 0.90506 -0.00215 0
0.82225 -1.07741   -0.1755 , 0

0 0 -20.2 20.2
A B

   
   = =   
      

. 

 The infinite horizon quadratic cost function to be minimized is characterized by the 

identity matrices Q and R of appropriate dimensions. The optimal value function 

obtained by solving the ARE is  
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1.4116 1.1539 0.0072
1.1539 1.4191 0.0087
0.0072 0.0087 0.0206

P
− 

 = − 
 − − 

. 

 Figure 14 presents a comparative view of the results obtained with the various GPI 

algorithms (for different values of the parameter k) in terms of the norm of the cost 

function matrix P, considering the F-16 system.  
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Figure 14. Comparative view of the results obtained while using the GPI algorithm for different values 
of the parameter k in terms of the norm of the critic parameters given by matrix P; the relevant values are 

indicated by the marker points while the connecting lines are only intended to provide ease of 
visualization 

 As the system is stable, the GPI algorithms (applied for different values of k) were 

initialized using the state-feedback controller 0 0K = . The simulation was conducted 

using data obtained from the system at every 0.05s. In this way, at each 0.3s, enough 

data is collected from the system to solve for the value of the matrix P and perform a 
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value function update, as there are six independent elements in the symmetric matrix P 

which parameterizes the value function associated with any admissible state feedback 

controller. After a number of k updates the solution given by (4.27) is used to perform a 

policy update step.  

 One can see from Figure 14 that the number of iterative steps (i.e. value function 

and policy update steps) required for the GPI algorithm to converge is inversely 

proportional to the number of iterative updates used to solve the value function update 

step (i.e. parameter k of the GPI algorithm). 

4.4.2 Example 2 - a nonlinear system 

 We now consider the nonlinear system described by the equation 

 
1 1 2

2
2 1 2 1 1

1 1 ((1 (cos(2 ) 2) )) (cos(2 ) 2))
2 2

x x x

x x x x x u

= − +



= − − − + + +

&

&
 (4.38) 

 This system was designed, using the converse HJB approach, such that, when the 

cost function to be minimized is described by ( , ) T Tr x u x Qx u Ru= + , with ,Q R  identity 

matrices of appropriate dimensions, the optimal cost function is * 2 2
1 2

1( )
2

V x x x= + . 

 The critic is given by the equation 

 
1

2 2
1 2 3 1 1 2 2( ) [ ][ ] ( )T

WV x w w w x x x x xε= +  (4.39) 

 The next three figures show the convergence of the parameters of the critic when 

the sequential GPI algorithm was used. The number of iterative steps to solve for the 

value function using iteration (4.27) were 1K =  (i.e. HDP algorithm), 5K =  and 

50K = .  
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Figure 15. Convergence of the critic parameters to the optimal values using sequential GPI with K=1 
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Figure 16. Convergence of the critic parameters to the optimal values using sequential GPI with K=5 
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Figure 17. Convergence of the critic parameters to the optimal values using sequential GPI with K=50 

 All the results were obtained while measuring data from the system using a 

sampling time interval 0 0.1secT = . At each iterative step, (4.34) was solved in the least 

squares sense using 36 discrete-time measurements from the system along 6 different , 

randomly chosen, trajectories in  

1 2 1 2{( , ); 1 1, 1 1}x x x xΩ = − ≤ ≤ − ≤ ≤ .  

 The number of points and of trajectories used to solve (4.34) are a matter of fine 

tuning the algorithm and depends on the experience of the engineer relative to the 

system dynamics, in a similar manner with the choice of the sample time 0T . 

 Comparing the results in Figures 15-17, one observes that increasing the number of 

steps in the iterative algorithm used at the critic training phase leads to an increase in 

the time until the critic converges to the optimal critic. Nonetheless, in all instances the 
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sequential GPI algorithm leads to convergence to the optimal cost and optimal control 

policy. 

4.5 Conclusions 

 In this chapter was given the formulation of generalized policy iteration algorithms 

in a continuous-time framework. It was argued that GPI is in fact a spectrum of iterative 

algorithms which has at one end the policy iteration algorithm and at the other a variant 

of the value iteration algorithm. The algorithms can be implemented in a partially model 

free setup using function approximators on an actor-critic structure. 

 The new PI algorithm (GPI with k →∞ ), which is known to converge to the 

optimal control solution, could prove useful in relation to showing the convergence of 

the continuous-time value iteration algorithm (i.e. GPI with 1k = ). At the same time the 

GPI formulation could lead to a continuous-time formulation of the Q-function. This is 

an important step which would have as result a set of model-free direct adaptive optimal 

control algorithms for continuous-time systems. 
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CHAPTER 5 

ADAPTIVE OPTIMAL CONTROL BASED ON HDP FOR CONTINUOUS-TIME 
LINEAR SYSTEMS  

 The investigation of the ADP method for the case of linear systems is relevant for 

real world control applications. Even though generally the controlled system has 

nonlinear dynamics, it is often required to be controlled for best performance around a 

specific operating point where a linear model regularly offers a good approximate 

description of the system. It is also the case that at such point the exact values of the 

model parameters (i.e. matrix A) are not easy to find, requiring a tedious identification 

procedure, and also these values can drift over time. Systems that fit this description 

could be chemical plants, airplanes and power systems. 

 In this chapter is formulated the heuristic dynamic programming (HDP) algorithm 

which provides solution to the continuous-time LQR problem with infinite horizon cost 

index. The formulation for the particular LQR problem allows easy comparison 

between the policy iteration algorithm (i.e. Newton’s method) and the HDP (value 

iteration) algorithm, while providing some insight relative to the convergence of the 

algorithm. 

5.1 Introduction 

 Approximate dynamic programming is a combination between reinforcement 

learning designs and dynamic programming that determines an approximate solution 
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for the optimal control problem using a forward-in-time computation based on real-time 

data. Reinforcement learning structures, namely adaptive critics, were first proposed by 

Werbos [62]. The ADP methods are iterative procedures of updating the control policy 

and value function estimate in order to bring them closer to the optimal control policy 

and the corresponding optimal value function. Each iteration step consists of an update 

of the value function estimate based on the current control policy, followed by a greedy 

update of the control policy based on the new value function estimation. 

 Initially developed for systems with finite state and action spaces the ADP methods 

were based on Werbos’ heuristic dynamic programming (HDP) [62], Sutton’s temporal 

difference method [55], Watkins’s Q-learning [61]. For the case of discrete-time 

systems with continuous state and action spaces different adaptive critic architectures 

were reported, with successful implementations and rigorous proofs; an incomplete list 

being [35], [42], [20], [45].  

 As the ADP techniques have been introduced and developed in the computational 

intelligence community, most results have been focused on the control of discrete-time 

systems. The equivalent ADP formulation, for systems with continuous state spaces and 

continuous-time dynamics, can not be obtained in a straight forward manner as an 

extension of the existent discrete-time techniques. For continuous-time systems there 

are difficult issues related to sampling times, and requirements for knowing the system 

dynamical equations. It is known, for instance, that as the sampling time becomes small, 

discrete-time ADP does not provide the optimal control solution for continuous-time 

systems [5]. Also, unlike the discrete-time Hamiltonian, central in the discrete-time 
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ADP techniques, which does not involve the dynamics of the discrete-time system, the 

Hamiltonian for continuous-time systems immediately involves the system dynamics, 

[40], which must therefore be known. This is making much more difficult the 

formulation of a mathematical approach which will not require the system model 

knowledge for continuous-time systems.  

 For continuous-time systems a dynamic programming-based reinforcement 

learning scheme, formulated using a so-called advantage function, was introduced in 

[5]. Reinforcement learning techniques based on the temporal difference method were 

proposed in [17].  

 In this chapter, bringing together concepts from ADP and control systems theory, 

and based on the formulation of the GPI algorithm introduced in Chapter 4, we 

formulate and analyze an ADP technique which offers solution, obtained online in a 

forward-in-time fashion, to the continuous-time infinite horizon optimal control 

problem for linear systems. The online learning method makes use only of partial 

knowledge on the system dynamics (i.e. the drift dynamics, specified by the system 

matrix A need not be known).  

 This technique is a continuous-time approach to HDP (CT-HDP) for linear 

systems. The adaptive critic is solving online for the continuous-time version of the 

optimal value function - an approach also known as V-learning. It will be shown that 

the proposed iterative ADP algorithm is in fact a quasi-Newton method to solve the 

algebraic Riccati equation (ARE) underlying the optimal control problem. Unlike in the 

case of the policy iteration algorithm, this time an initial gain that determines a 
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stabilizing control policy is no longer required. It is thus obtained a online direct 

adaptive control algorithm which determines the optimal control solution without 

knowing the system A matrix. 

 The CT-HDP algorithm is presented next. A mathematical formulation of the 

algorithm is given proving the equivalence of the ADP iteration with a Quasi-Newton 

method. The algorithm is then tested in simulation and the optimal controller for a 

linear power system model is obtained without making use of any knowledge regarding 

the system matrix A. 

5.2 Continuous-time Heuristic Dynamic Programming for the LQR problem 

 We consider the linear quadratic regulation problem described in Section 2.2. As 

discussed in Chapter 2, the LQR problem can be solved using online policy iteration. It 

is an online version of the underlying Newton method, which requires that the iteration 

is initialized by a stable state-feedback control policy [32]. The resulting iterative 

algorithm is: 

Given 0K  such that 0 0A A BK= −  is Hurwitz, a sequence 1{ }i iP ≥  can be determined by 

solving successively the Lyapunov equation 

 1
1 10 T T

i i i i i iA P P A Q PBR B P−
+ += + + +  (5.1) 

where 1 T
i iA A BR B P−= − . Kleinman showed that the sequence 1{ }i iP ≥  is monotonically 

decreasing and lower bounded by the unique positive definite solution of the ARE.  

Equation (5.1) can be expressed in a Newton’s method-like setting as 

 ' 1
1 ( ) ( )

ii i P iP P Ric Ric P−
+ = −  (5.2) 
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where  

 1( ) T T
i i i i iRic P A P P A Q PBR B P−= + + −  (5.3) 

and '
iPRic denotes the Frechet derivative of ( )iRic P  taken with respect to iP . The matrix 

function '
iPRic  evaluated at a given matrix M will thus be ' ( )

i

T
P i iRic M A M MA= + . 

5.2.1 Continuous-time HDP formulation 

 Based on the results obtained in Chapter 4 we can formulate the heuristic dynamic 

programming approach to ADP for continuous-time systems.  

 Let :Tµ Χ→Χ  be the dynamic programming operator defined as 

 
0

0
( ) ( , ) ( ),

t T

t t T
t

T V x r x d V xµ µ τ
+

+= +∫  (5.4) 

where 
0t Tx +  is the value of ( )x τ  at 0t Tτ = + , with ( )x τ  the solution of (2.1) for initial 

condition ( )x t  (denoted tx ) and input { ( ); }tµ τ τ ≥ .  

CT value iteration (heuristic dynamic programming) 

1. Select 0 0( ): ; (.)tV x VΩ→ ⊂ Χ¡ , 0i =  

2. (policy update step) Find iu  which satisfies 

 
( )

arg min[ ( , , )]i
i x

v
u H x v V

∈Ψ Ω
= ∇ . (5.5) 

3. (Value function update step) Solve for ( )i
tV x  using  

 1( ) ( )
i

i i
t u tV x T V x+ = . (5.6) 
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 The key difference between the GPI with 1k =  and the Value Iteration algorithm is 

that in the latter case the requirement of 0 ( )u ∈Ψ Ω is removed, i.e. the initial policy 

need not be admissible.  

 For the case of the LQR problem the value iteration scheme is  

1. Select 0 0P ≥  such that 0 0 0( ): ; ( ) 0n T
t t t tV x V x x P x→ = ≥¡ ¡ , 0i =  

2. (policy update step) Find iu  which satisfies 

 1 T
i i iu R B Px K x−= − =  (5.7) 

3. (Value function update step) Solve for 1( )i tV x+  using 

 
0

1 0( ( )) ( ) ( ( ))
t T

T T
i i i i

t

V x t x Qx u Ru d V x t Tτ
+

+ = + + +∫  (5.8) 

with the V-function parameterized as ( ) T
i iV x x Px= , then make 1i i→ + .  

 Equation (5.8) can be explicitly written in parametric form as 

 
0

1 0 0( ) ( ) ( ) ( ) ( )
t T

T T T T
i i i i

t

x t P x t x Qx u Ru d x t T Px t Tτ
+

+ = + + + +∫  (5.9) 

and the ADP value function update amounts to the update of the kernel matrix iP . 

 A restriction on the initial matrix 0P  such that the corresponding 0K  be a 

stabilizing controller is not required. In fact the algorithm can simply be initialized with 

0 0P = . 

5.2.2 Online tuning based on V-learning algorithm for partially unknown systems 

 The algorithm can be implemented online without having any knowledge about the 

plant internal dynamics, i.e. the A matrix need not be known (matrix B is required), and 
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without starting with an initial stabilizing policy. The information on the A matrix of the 

system is embedded in the states ( )x t  and 0( )x t T+  which are observed online. 

To find the parameters of 1iV +  in (5.8), the left-hand side of (5.9) is written as 

 1 1 1 1( ( ), ) ( ) ( ) ( )T T
i i i iV x t p x t P x t p x t+ + + += =  (5.10) 

where ( )x t  denotes the Kronecker product quadratic polynomial basis vector with the 

elements 1, ; ,{ ( ) ( )}i j i n j i nx t x t = =  and ( )p Pν= , where (.)ν  is a vector valued matrix 

function that acts on n×n matrices and gives a column vector by stacking the elements 

of the symmetric matrix into a vector with the off-diagonal elements summed as 

ij jiP P+ , (Brewer, 1978).The right-hand side of (5.8), using (5.7), is 

 
0

1
0( ( ), ) ( ) ( ) ( ) ( )

t T
T T T

i i i i
t

d x t P x Q PBR B P x d p x t Tτ τ τ
+

−= + + +∫ . (5.11) 

Denoting with  

 
0

1
0( ( ), , ) ( )( ) ( )

t T
T T

i i i
t

r x t P T x Q PBR B P x dτ τ τ
+

−= +∫ . (5.12) 

the observed reward over the sample time interval 0[ , ]t t T+  and equating (5.10) and 

(5.11), then the iteration (5.8) and (5.7) can be written as 

 1 0 0( ) ( ( ), , ) ( )T T
i i ip x t r x t P T p x t T+ = + + . (5.13) 

At each iteration step, after a sufficient number of state-trajectory points are collected 

using the same control policy iK , a least-squares method is employed to solve for the 

V-function parameters, 1ip + , which will then yield 1iP+ . The parameter vector 1ip +  is 

found by minimizing, in the least-squares sense, the error between the target function 
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given by (5.11) and the parameterized relation (5.10) over a compact set nRΩ ⊂ . 

Evaluating (5.13) at ( 1) / 2N n n≥ +  points ix  in the data space, the least-squares 

solution is obtained as 

 1
1 ( )T

ip XX XY−
+ =  (5.14) 

where 1 2[ ... ]NX x x x=  and 1 2[ ( , ) ( , ) ... ( , )]N T
i i iY d x P d x P d x P= . 

 To obtain a solution for the least-squares problem (5.14) one requires at least 

( 1) / 2N n n= +  points, which is the number of independent elements in the matrix P . 

The least-squares problem can be solved in online after a sufficient number of data 

points are collected along a single state trajectory. The solution of equation (5.13) can 

also be obtained using the recursive least squares algorithm (RLS) in which case a 

persistence of excitation condition is required. 

 This procedure requires only measurements of the states at discrete moments in 

time, t and t+ 0T , as well as knowledge of the observed reward over the sample time 

interval 0[ , ]t t T+ . Therefore there is no required knowledge about the system A matrix 

for the update of the critic or the action. However the B matrix is required for the update 

of the control policy (actor), using (5.7), and this makes the tuning algorithm only 

partially model free. 

 It has to be observed that the update of both the actor and the critic is performed at 

discrete moments in time. However, the control action (5.7) is a continuous-time 

control, with gain updated at the sample points. Moreover, the critic update is based on 
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the observations of the continuous-time cost over a finite sample interval. As a result, 

the algorithm converges to the solution of the continuous-time optimal control problem.  

5.3 Mathematical formulation of the ADP algorithm 

 In this section the HDP algorithm is analyzed and placed in relation with known 

results form optimal control theory. 

Lemma 5.1 The ADP iteration between (5.7) and (5.8) is equivalent to the quasi-

Newton method 

 ( )0 0' 1
1 ( ) ( ) ( ) ( )i i

i

AT A TT
i i P i iP P Ric Ric P e Ric P e−
+ = − − . (5.15)  

Proof: 

Differentiating (5.8) with respect to time one obtains 

 
1

0 0 0 0

0

( ( )) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ( ))

T T
i i i

T T
i i

i

V x t x t Qx t u t Ru t
x t T Qx t T u t T Ru t T
V x t T

+ = − − +

+ + + + + +

+ +

&

&
 (5.16) 

which can be written as 

 
0 0

1 1

( ) ( )1

( ) ( )

( ) ( )i i

T T
i i i i i i

A BK T A BK TT T T
i i i i

A BK P P A BK K RK Q

e A P P A PBR B P Q e
+ +

+ +−

+ + + + + =

= + − +
 (5.17) 

Adding and subtracting T
i i i iA P P A+  and making use of (5.3), (5.17) becomes 

 0 0
1 1( ) ( ) ( ) ( ) ( )i iA T ATT T

i i i i i i i iA P P P P A Ric P e Ric P e+ +− + − = − +  (5.18) 

and can be written in a Quasi-Newton formulation as 

 ( )0 0' 1
1 ( ) ( ) ( ) ( )i i

i

AT A TT
i i P i iP P Ric Ric P e Ric P e−
+ = − − . ⁭ 
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Remark 5.1 If i iA A BK= + is stable and 0T → ∞ one may recover from (5.15) the 

standard Newton method, (5.2), to solve the ARE, for which Kleinman, [32], proved 

convergence conditioned by an initial stabilizing control gain 0K . It seems that the last 

term, appearing in the formulation of the new ADP algorithm, compensates for the need 

of an initial stabilizing gain. 

Equations (5.7) and (5.8) can be written as 

 
0

0 01
1

0

( ) ( ) ( )i i i i

T
A t A t AT ATT T T

i i i iP e Q PBR B P e dt e Pe−
+ = + +∫  (5.19) 

so that we obtain the next result. 

Lemma 5.2 Iteration (5.19) is equivalent to 

 
0

1
0

( ) ( )i i

T
A t A tT

i i iP P e Ric P e dt+ = + ∫ . (5.20) 

Proof: 

From matrix calculus one may write 

 
0

0 0

0

( ) ( ) ( )i i i i

T
AT AT A t A tT T T

i i i i i iP e Pe e A P P A e dt− = − +∫  (5.21) 

From (5.19) and (5.21) follows (5.20).  ⁭ 

Note that (5.20) is just a different way of writing (5.19). 

Remark 5.2 As 0 0T → , (5.20) becomes 

 
1

0(0)

T TP A P PA PBR B P Q
P P

−= + − +
=

&
 (5.22) 
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which is a forward-in-time computation of the ARE solution, with the terminal 

boundary condition considered at the starting time, 0ftP P= .  

Remark 5.3 The term 0iATe  is the discrete-time version, obtained for the sample time 

0T , of the closed-loop system matrix iA . Therefore (5.19) is the expression of a hybrid 

discrete-time/continuous-time Riccati equation recursion.  

Lemma 5.3 Let the ADP algorithm converge so that *
iP P→ . Then 

*P satisfies *( ) 0Ric P = , i.e. *P is the solution the continuous-time ARE. 

Proof: 

If { }iP  converges, then taking the limit in (5.20), 

 
0

* *1
0

lim ( ) lim ( )i i

i i

T
A t A tT

i i i
P P P P

P P e Ric P e dt+
→ →

− = ∫ . (5.23) 

This implies 

 
0

* **

0

( ) ( ) 0
T

A t T A te Ric P e dt =∫  (5.24) 

with * 1 *TA A BR B P−= − , and thus *( ) 0Ric P = . ⁭ 

5.4 Simulation result illustrating the online CT HDP design for a power system 

5.4.1 System model and motivation 

In this section the continuous-time V-learning ADP algorithm is used to determine an 

optimal controller for the power system introduced in Section 2.4. As previously 

discussed the nonlinearity in the dynamics of such systems is determined by the load 

value, which under normal operation is constant. At the same time the values of the 
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parameters defining the linear model of the actual plant are not precisely known. In 

view of these facts the presented HDP design technique presented is a good candidate 

for the design of the desired LQR controller, for a given operating point of the system.  

The model of the system [60] is 

 ( ) ( )x Ax t Bu t= +&  (5.25) 

where  

 

[ ]

( ) [ ( ) ( ) ( ) ( )]

1/ / 0 0
0 1/ 1/ 0

1/ 0 1/ 1/
0 0 0

0 0 1/ 0

T
g g

p p p

T T

G G G

E

T
G

x t f t P t X t E t

T K T
T T

A
RT T T

K

B T

= ∆ ∆ ∆ ∆

− 
 − =
 − − −
 
 

=

  

The system states are: ( )f t∆ - incremental frequency deviation (Hz), ( )gP t∆  - 

incremental change in generator output (p.u. MW), ( )gX t∆  - incremental change in 

governor position (p.u. MW), ( )E t∆  - incremental change in integral control; and the 

system parameters are: GT  - the governor time constant, TT - turbine time constant, PT - 

plant model time constant, PK - plant model gain, R - speed regulation due to governor 

action, EK - integral control gain. 

5.4.2 Simulation setup and results 

 In the simulation, only the time constant GT  of the governor, which appears in the B 

matrix, is considered to be known, while the values for all the other parameters 

appearing in the system A matrix are not known. 
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 The system parameters, necessary for simulating the system behavior are picked 

randomly before the simulation is started in some realistic ranges, as specified in [60], 

such that: 

1/ [0.033,0.1]

/ [4,12]

1/ [2.564,4.762]
1/ [9.615,17.857]
1/ [3.081,10.639]

p

p p

T

G

G

T
K T

T
T
RT

∈

∈

∈
∈

∈

 

 Note that, even if the values of the parameters are known to be in the above 

mentioned ranges, the algorithm does not make use of any of this knowledge, only the 

exact value of GT  being necessary. Also, although the values of the controller 

parameters EK  and R  are known, as they are specified by the engineer, this 

information is not used by the CT HDP algorithm to determine the optimal controller. 

 The simulation results that are presented next were obtained considering a 

randomly picked set of values (in the above mentioned ranges) for the systems 

unknown parameters, i.e. matrix A. In all the simulations the B matrix is 

[0 0 13.7355 0]B =  and it is considered to be known. For the purpose of 

demonstrating the CT-HDP algorithm the initial state of the system is taken different 

than zero, 0 [0 0.1 0 0]x = , and the matrix 0 0P = .  

 The online implementation requires the setup of a least-squares problem of the kind 

presented in Section 5.2 to solve for the values of the critic parameters, the matrix iP , at 

each iteration step i. In the simulations the matrix iP  is determined after collecting 12 
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points for each least-squares problem. Each such point is calculated after observing the 

value of the reward over a time interval of 0.1sT = . Therefore a least-squares problem 

is solved and the critic is updated at each 1.2 s. The simulations were performed over a 

time interval of 50 s. As such, a number of 41 iterations were performed during each 

simulation experiment. 

 For the simulation the unknown values of the system parameters were randomly 

picked in the specified ranges and the system matrix was 

 

0.0596 5.0811 0 0
0 3.0938 3.0938 0

10.0912 0 13.7355 13.7355
0.6 0 0 0

A

− 
 − =
 − − −
 
 

. 

The algorithm was run and at each iteration step a solution of (18), explicitly given by 

(19), was obtained. The convergence of few of the critic parameters (1,1)P , (1,3)P , 

(2,4)P  and (4,4)P  is presented in Figure 18. 

 The solution of the ARE for this given matrix A and 4 , 1Q I R= =  is 

 

0.6920 0.5388 0.0551 0.6398
0.5388 0.7361 0.1009 0.4173
0.0551 0.1009 0.0451 0.0302
0.6398 0.4173 0.0302 2.3550

P

 
 
 =
 
 
 

. 

After 41 iteration steps the critic is characterized by 

 41

0.6914 0.5381 0.0551 0.6371
0.5381 0.8922 0.1008 0.4144
0.0551 0.1008 0.0451 0.0299
0.6371 0.4144 0.0299 2.3442

P

 
 
 =
 
 
 

. 
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Figure 18. Convergence of P matrix parameters in online CT-HDP 

 Comparing the values of the two matrices it can be noted that after 41 iteration 

steps the error between their parameters is of order 310− , i.e. the algorithm converged to 

the solution of the ARE. 

 In Figure 19 is presented the evolution of the states of the system during the 

simulation. In Figure 20 the system states are showed in detail during the first 6 

seconds, i.e. the first 5 iteration steps of the simulation. The control signal that was 

applied to the system during the CT HDP tuning is presented in Figure 21. 
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Figure 19. System states during the simulation 
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Figure 20. System states during the first 5 iteration steps 



 

114 

0 10 20 30 40 50
-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005
Control signal

Time (s)  

Figure 21. Control signal for simulation of online CT HDP 

 
5.4.3 Comments on the convergence of CT HDP algorithm 

 The relation between the time period T over which the value function is observed at 

each step and the algorithm convergence is investigated in the following. 

 Figure 22 shows the convergence of the critic parameters, in the case of the second 

simulation setup, when the time period is taken 0.2 sT = . Over the 50 s duration of the 

simulation only 20 iterations are performed, the necessary data (12 points) for solving 

each least-squares problem being collected over an interval of 2.4 s. 

 By comparing the results plotted in Figure 18 with the ones presented in Figure 22 

it becomes clear that the amount of time necessary for convergence is not dependent on 

the sample period that is used for observation. However, the number of iteration steps 

that are required for convergence is reduced when a large sample period is considered. 
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The reason is that, in case a larger observation sample is used, an increased amount of 

information regarding the system is carried in the data points collected for the critic 

update. As such, at each step of the iteration the critic improvement is larger when the 

time period is increased. 
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Figure 22. Convergence of P matrix parameters in online CT HDP for T=0.2s 

5.5 Conclusion 

 In this chapter was presented a continuous-time ADP scheme which solves the 

continuous-time infinite horizon optimal control problem.  

 The control signal is applied to the system in a continuous time fashion. The actor’s 

continuous time performance is measured over given time intervals and, based on this 

acquired information data, the critic reevaluates the infinite horizon cost and updates the 

actor’s parameters (i.e. the continuous time system controller) in the sense of improving 

the over all system performance (i.e. to minimize the infinite horizon continuous-time 
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cost). As such, the system performance informational loop, which involves the critic 

entity, handles discrete information regarding the continuous time performance while 

the system control loop, which involves the actor, operates entirely in continuous time. 

The algorithm, equivalent to a quasi-Newton method, solves the continuous-time ARE 

and obtains the optimal controller in an online, forward in time iteration without using 

knowledge of the internal dynamics of the plant and without starting with an initial 

stabilizing policy.  
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CHAPTER 6  

ONLINE ADAPTIVE APPROACH BASED ON REINFORCEMENT LEARNING TO 
CONTINUOUS-TIME LINEAR DIFFERENTIAL ZERO-SUM GAMES

6.1 Introduction 

 This chapter will describe the manner in which the reinforcement learning approach 

to optimal control presented in Chapter 2 can be used to determine in an online fashion 

the saddle point solution of linear differential zero-sum games. Here will be considered 

the infinite horizon, state-feedback, linear-quadratic case of the problem.  

 The solution of the problem is connected with the unique positive definite solution 

of a Riccati equation that has a sign indefinite quadratic term. One approach to solving 

this equation is the Newton procedure. In this approach the solution of the problem of 

our interest is obtained as the limit of a sequence of matrices. Every matrix in this 

sequence is determined while solving a Riccati equation with sign definite quadratic 

term of the sort associated with the optimal control problem presented in Chapter 2. 

 The online algorithms which will be described here are built on two known results, 

namely the one in [36], and the one introduced in [59] and further developed in [2], 

which involve solving a sequence of Riccati equations with sign definite quadratic term. 

It will also be shown using a common formulation that the two iterative approaches to 

the solution of the problem are in fact two faces of the same coin. The complementarity 

of the two algorithms becomes obvious from a game theoretical perspective. 
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 We begin our investigation by looking at the formulation of the problem. 

6.1.1 Formulation of the problem 

 Consider the linear system 

 
2x Ax Dw B u

Cx
z

u

= + +


  =  
 

&
 (6.1) 

where w  denoted the disturbance signal affecting the dynamics of the linear system. 

 Here we will give the formulation of the zero-sum game problem in connection to 

the H-infinity control problem as the solution of both problems satisfies the same 

underlying Riccati equation. We first give the definition of the H-infinity norm which 

will be used to measure the performance of the control system.  

 We note that the H-infinity norm of a system has been first defined from a 

frequency domain perspective and consequently, based on the original definition, the 

concept can not be directly extended for the case of nonlinear systems. For this reason 

in the following we prefer to use the time domain equivalent of the H-infinity norm (the 

2L -gain) which can be used also for the case of nonlinear systems.  

Definition 6.1 Let 0γ ≥  and u Kx= . The system (6.1) is said to have 2L  gain less than 

or equal to γ  if 

 2 22

0 0

( ) ( )z t dt w t dtγ
∞ ∞

≤∫ ∫  (6.2) 

for all 2 (0, )w L∈ ∞ , where 2 Tw w w= . The system has an 2L  gain less than γ  if there 

exists γ% , 0 γ γ≤ <%  such that (6.2) holds for γ% . 
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 Let γ ∗  denote the smallest 2L  gain of the system (6.1). Then the linear infinite 

horizon state-feedback H-infinity optimal control problem is formulated as follows: 

Definition 6.2 Linear state-feedback H-infinity optimal control problem. Find the 

smallest value * 0γ ≥  such that for any γ γ ∗>  there exists a state-feedback control law 

u Kx=  such that the 2L  gain from w to z is less than or equal to γ  and the closed loop 

system is asymptotically stable.  

 It has been shown in the literature (see e.g. [67], [8]) that the H-infinity control 

solution is connected with the solution of a matrix equation of Riccati type which has a 

sign indefinite quadratic term. To obtain the H-infinity optimal controller, given that the 

smallest 2L  gain γ ∗  is known, one needs to find the solution of the Algebraic Riccati 

Equation 

 2 2 *2

10 ( )T T T TA P PA C C P B B DD P
γ

= + + − −  (6.3) 

 To simplify the mathematical notation in the Riccati equation (6.3) in the following 

we will denote 1 *

1B D
γ

= . Thus (6.3) will be written as 

 2 2 1 10 ( )T T T TA P PA C C P B B B B P= + + − − . (6.4) 

 For any γ γ ∗> , one can find a suboptimal H-infinity state-feedback controller, 

which admits a performance level of at least γ , by solving  

 2 2 2

10 ( )T T T TA P PA C C P B B DD P
γ

= + + − − . (6.5) 
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In [8] is given the following result which states that the Riccati equation (6.5) has a 

unique positive definite solution for every γ γ ∗> . 

Theorem 6.1 For the infinite horizon H-infinity control problem with closed-loop 

perfect state information, let (A, B) be stabilizable and (A, C) detectable. Let λ∗  be the 

smallest positive scalar with the property that for all λ λ∗>  the algebraic Riccati 

equation  

 2 2 2

10 ( )T T T TA P PA C C P B B DD P
λ

= + + − −  (6.6) 

admits a minimal positive definite solution Pλ . Then *λ γ∗ =  and for all λ λ∗>  the 

feedback control policy  

 2
Tu B P xλ= −  (6.7) 

delivers a performance level of at least λ , and under it the linear system  

 2 2( )Tx A B B P x Dwλ= − +&  (6.8) 

is bounded input bounded state (BIBS) stable. 

 This theorem relates the solvability of a Riccati equation (6.6), that has a sign 

indefinite quadratic term and 0λ > , with the 2L  gain characterization of the linear 

system given in definition 6.1. 

 The H-infinity optimal control problem can also be formulated as the two-player 

zero-sum differential game.  

 Consider the system 

 1 2x Ax B w B u
y Cx

= + +
 =

&
 (6.9) 
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with the performance index 

 0
0

( , , ) ( )T T T TV x u w u u x C Cx w w dt
∞

= + −∫ . (6.10) 

The control policy player desires to minimize the performance index while the 

disturbance policy player desires to maximize it. The goal is to determine the saddle 

point solution.  

 We will refer to (6.4) as game algebraic Riccati equation (GARE).  

 Denoting with Π  the unique positive definite solution of (6.4) the saddle point of 

the Nash game is  

 
2

1

0 0 0( , , )

T

T

T

u B x
w B x
V x u w x x

= − Π

= Π

= Π

. (6.11) 

 We shall use the notations u Kx=  and w Lx=  for the state feedback control and 

respectively disturbance policies. We say that K  is the gain of the control policy and L  

is the gain of the disturbance policy. The meaning of the saddle point solution of the 

Nash differential game is that for any state feedback control policy u Kx= %%  and any 

state-feedback disturbance policy w Lx= %% , different than the ones in (6.11), the value of 

the game will satisfy 

 0 0 0( , , ) ( , , ) ( , , )V x u w V x u w V x u w≥ ≥% % . (6.12) 

6.1.2 Online approach to the solution of the differential game and secondary 
contributions 

 Based on the results presented in the previous subsection it is clear that finding the 

saddle point equilibrium solution of the two player zero-sum differential game, or that 
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of the H-infinity optimal control problem, is equivalent with finding the unique positive 

definite solution of the Riccati equation (6.4). The goal of this chapter is to provide an 

online, data-based, approach to the solution of the problem.  

 In the next section we use the same framework to formulate the two iterative 

algorithms given in [36] and [59] which find the solution of the GARE (6.4). Both 

algorithms are iterative procedures that, by means of finding solution for a sequence of 

sign definite Riccati equations, build a sequence of symmetric positive definite matrices 

which converges to the solution of the sign indefinite Riccati equation associated with 

the zero-sum differential game. In Section 6.3 it will be shown how to use 

reinforcement learning techniques to implement each of the two algorithms online, 

based on measured data from the system. 

 This chapter has two secondary achievements:  

• It shows, using a unified framework, that the two algorithms are 

complementary to each other. One approaches the solution of the equation 

(6.4) by building a monotonically increasing and upper bounded sequence 

while the other one build a monotonically decreasing and lower bounded 

one. In both cases the bound is given by the unique positive definite 

solution of (6.4). 

• From the perspective of game theory it is shown that each of the two 

algorithms leads to the equilibrium solution of the Nash game while only 

one of the two players learns to optimize its actions and the other player is 

passive. Specifically, in the case of the algorithm presented in [36] the 
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optimizing player is the controller, while in the case of the algorithm 

presented in [59] and [2] the optimizing player is the disturbance. 

 The next section presents the two iterative algorithms using the framework 

developed in [36] and thus includes the first secondary achievement of this chapter.  

6.2 Iterative approaches to the H-infinity control solution 

 In this section are discussed, using the same formulation framework, namely the 

one used by Lanzon et al. in their 2008 paper, two iterative approaches to finding the 

saddle point solution of the two payer zero-sum differential game. From this point 

forward we will look at the problem only from the perspective of game theory. This 

perspective provides an interesting interpretation regarding the active or passive 

behavior with respect to learning of the two payers. A discussion from this perspective 

will be included in the third section of this chapter. 

6.2.1 Iterations on the control policy 

 In [36] has been introduced the following iterative method for solving the game 

algebraic Riccati equation (GARE) (6.4).  

Algorithm 6.1 – iterations on the control policy. 

0. Start with  

 0 0uP = . (6.13) 

1. Solve  

 
1 1 1 1

1 1 2 2 1 1 2 2
1

2 2

0 ( ) ( )

( )

i T i T i T T i T i i
u u u u u u

i T i i
u u u

Z A B B P B B P A B B P B B P Z
Z B B Z F P

− − − −

−

= + − + + −

− +
. (6.14) 

2. Update  
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 1i i i
u u uP P Z−= + . (6.15) 

 The convergence of the algorithm to the unique positive definite solution of the 

GARE (6.4) is proven based on the following three results given and proved in [36]. 

Lemma 6.1 Given real matrices 1 2, , ,A B B C  with compatible dimensions, define 

 
2 2 1 1

:
( ) ( )

n n n n

T T T T

F
F P A P PA C C P B B B B P

× ×→

= + + − −

¡ ¡
 (6.16) 

Given n nP ×∈¡  and n nZ ×∈¡  symmetric matrices then  

 2 2 1 1 2 2 1 1

2 2 1 1

( ) ( ) ( )

( ) ( )

T T T T T

T T

F P Z A B B P B B P Z Z A B B P B B P
F P Z B B B B Z

+ = − + + − + +

+ − −
 (6.17) 

It directly follows that if  

 2 2 1 1 2 2 1 1 2 2( ) ( ) ( ) 0T T T T T TA B B P B B P Z Z A B B P B B P F P ZB B Z− + + − + + − =  (6.18) 

then 

 1 1( ) TF P Z ZB B Z+ = . (6.19) 

Lemma 6.2 Given real matrices 1 2, , ,A B B C  with compatible dimensions, n nP ×∈¡  and 

n nZ ×∈¡  satisfying (6.17), and 0Π >  a stabilizing solution of (6.4), such that  

 2 2 1 10 ( )T T T TA A C C B B B B= Π + Π + − Π − Π . (6.20) 

 a. If 2 2 1 1
T TA B B B B P− Π +  is Hurwitz then P ZΠ ≥ + . 

 b. If P ZΠ ≥ +  then 2 2 1 1 ( )T TA B B B B P Z− Π + +  is Hurwitz. 

Proof: The proof, given in [36], uses the sum of (6.18) with (6.19) and (6.20) and a 

Lyapunov argument. 
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Theorem 6.2 Given real matrices 1 2, , ,A B B C  with compatible dimensions, such that all 

unobservable modes of ( , )C A  are strictly stable and 2( , )A B stabilizable, define the map 

F as in (6.16). Suppose that there exists a stabilizing solution 0Π >  of (6.4).  

Then 

(I) there exist two square matrix series i n n
uP ×∈¡  and i n n

uZ ×∈¡ for all i ∈¥  

satisfying Algorithm 6.1. 

(II) the elements of the two series, defined recursively, have the following 

properties: 

a. 1 1 2( , )T i
uA B B P B+  is stabilizable for all i ∈¥ . 

b. 0i
uZ i≥ ∀ ∈¥  

c. 1
1 1( )i i T i

u u uF P Z B B Z+ = i∀ ∈¥  

d. 1
1 1 2 2

T i T i
u uA B B P B B P ++ −  is Hurwitz i∀ ∈¥  

e. 1 0i i
u uP P+Π ≥ ≥ ≥ i∀ ∈¥  

(III) let lim 0i
u ui

P P∞

→∞
= ≥  

        then uP∞ = Π . 

The proof, given in [36], uses the results of the two lemmas with an inductive argument. 

 We now introduce two propositions which provide equivalent formulations for 

Algorithm 6.1. We are introducing them here in order to bring meaning to every of the 

iterative algorithm. 
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Proposition 6.1 The iteration between (6.14) and (6.15) in Algorithm 6.1 can be written 

as 

 1 1 1 1
1 1 1 1 2 2 1 1( ) ( ) 0i T i T i T i i T i i T i T

u u u u u u u uP A B B P A B B P P P B B P P B B P C C− − − −+ + + − − + = .(6.21) 

This result was obtained by writing compactly the two equations and making use of the 

definition of the map F. 

Proposition 6.2 The iteration between (6.14) and (6.15) in Algorithm 6.1 can be written 

as 

 
1 1 1 1 1 1

1 1 2 2 1 1 2 2
1 1 1 2 1 2

2 2 1 1

0 ( )( ) ( ) ( )

( ) ( ) ( ) ( )

i i T i T i T i T i T i i
u u u u u u u u

i i T i i i i T i i
u u u u u u u u

P P A B B P B B P A B B P B B P P P
P P B B P P P P B B P P

− − − − − −

− − − − − −

= − + − + + − −

− − − + − −
 

  (6.22) 

This results directly from (6.14), (6.15) and (6.19). 

 It is important to notice at this point that the result given in Proposition 6.2 includes 

three instances of the index of the sequence 0{ }iu iP ≥ , namely 2 1, ,i i i
u u uP P P− − . For this 

reason it can only be used for calculating the values 2{ }iu iP ≥  provided that the first two 

elements in the sequence are available. 

 The next two propositions formulate optimal control problems which are associated 

with the Riccati equations (6.21) and (6.22). This is important since they attach meaning 

to the recursive algorithm enhancing both the reinforcement learning perspective and 

the game theoretical reasoning. 

Proposition 6.3 Solving the Riccati equation (6.21) is equivalent to finding solution for 

the following optimal control problem: 
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 “For the system 1 1 2i ix A B w B u−= + +&  let the state-feedback disturbance policy 

gain be 1 1
1

i T i
u uL B P− −=  such that 1

1 1
T i

i uw B P x−
− = . Determine the state-feedback 

control policy iu  such that the infinite horizon quadratic cost index  

1 1
0

[ ]T T T T
i i i ix C Cx w w u u dt

∞

− −− +∫  is minimized.” 

Let 1 1
0 0 1 1

0

min [ ( ) ]
i

T i T T i T i T
u u u i iu

x P x x C C P B B P x u u dt
∞

− −= − +∫  then the optimal control policy 

is given by 2
i T i
u uK B P= −  such that the optimal state-feedback control is 2

T i
i uu B P x= − . 

Proposition 6.4 Solving the Riccati equation (6.22) is equivalent to finding solution for 

the following optimal control problem: 

 “For the system 1 1 2 1 ˆ( )i i ix A B w B u u− −= + + +&  let the state-feedback disturbance 

policy be 1
1 1

T i
i uw B P x−
− =  and the base state-feedback control policy be 

1
1 2

T i
i uu B P x−
− = − . Determine the correction for the state-feedback control policy, ˆiu , 

which minimizes the infinite horizon quadratic cost index  

1 2 1 2
1 1

0

ˆ ˆ[ ( ) ( ) ]T i i T i i T
u u u u i ix P P B B P P x u u dt

∞
− − − −− − +∫ .” 

Let 1 2 1 2
0 0 1 1ˆ

0

ˆ ˆmin [ ( ) ( ) ]
i

T i T i i T i i T
u u u u u i iu

x Z x x P P B B P P x u u dt
∞

− − − −= − − +∫  then the optimal 

control policy 1 ˆi i iu u u−= +  is 1
2 ( )T i i

i u uu B P Z x−= − + . 

6.2.2 Iterations on the disturbance policy 
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 The next algorithm provides a new formulation, using the framework used in [36], 

for the algorithm which was introduced in [59] and used in [2] to find solution for the 

Hamilton-Jacobi-Isaacs equation underlying the H-infinity optimal control problem for 

nonlinear systems.  

 We note that a formulation for the linear case has not been previously given and is 

introduced in this work. 

Algorithm 6.2 – iterations on the disturbance policy 

0. Start with  

 0
wP  such that 0

2 2
T

wA B B P−  and 0
2 2 1 1

T T
wA B B P B B− + Π  are Hurwitz and 0

wP ≥ Π . (6.23) 

1. Solve  

 
1 1 1 1

1 1 2 2 1 1 2 2
1

1 1

0 ( ) ( )

( )

i T i T i T i T i T i
w w w w w w

i T i i
w w w

Z A B B P B B P A B B P B B P Z
Z B B Z F P

− − − −

−

= + − + + −

− −
  (6.24) 

2. Update 

 1i i i
w w wP P Z−= − .  (6.25) 

 The next three results, which we developed, provide assurance for the convergence 

to the solution of the ARE. It is important to mention that we structured our results such 

that they mirror the structure of the results given in [36]. This will allow the reader to 

clearly notice the similarity between the two algorithms.  

 As these results make use of the definition of the operator F, introduced in Lemma 

6.1, we view our next result as a corollary to Lemma 6.1. 

Corollary 6.1 Using the definition in Lemma 6.1, it directly follows that if  

 2 2 1 1 2 2 1 1 1 1( ) ( ) ( ) 0T T T T T TA B B P B B P Z Z A B B P B B P F P ZB B Z− + + − + − − =  (6.26) 
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then 

 2 2( ) TF P Z ZB B Z− = − . (6.27) 

 The next Lemma will prove valuable for showing lower boundedness for the matrix 

sequence which is constructed by the algorithm.  

Lemma 6.3 Given real matrices 1 2, , ,A B B C  with compatible dimensions, n nP ×∈¡  and 

n nZ ×∈¡  satisfying  

 2 2 1 1 2 2 1 1 1 1( ) ( ) ( ) 0T T T T T TA B B P B B P Z Z A B B P B B P F P ZB B Z− + + − + − − =  (6.28) 

and 0Π >  a stabilizing solution of the GARE (6.4). 

 a. If 2 2 1 1
T TA B B P B B− + Π  is Hurwitz then P ZΠ ≤ − . 

 b. If P ZΠ ≤ −  then 2 2 1 1( )T TA B B P Z B B− − + Π  is Hurwitz. 

The proof, given in the Appendix, uses the sum of (6.28) with (6.20) and (6.27) and a 

Lyapunov argument. 

 The next proposition provides an equivalent formulation for Algorithm 6.2 which 

will be used as the base for proving its convergence.  

Proposition 6.5 The iteration between (6.24) and (6.25) can be written as 

 1 1 1 1
2 2 2 2 1 1 2 2( ) ( ) 0i T i T i T i i T i i T i T

w w w w w w w wP A B B P A B B P P P B B P P B B P C C− − − −− + − + + + = .  

  (6.29) 

This result follows directly when writing compactly the two equations and making use 

of the definition of the map F. 
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 The next lemma provides an iterative approach to the solution of (6.29) that will be 

used as a base for the online implementation of the algorithm. Moreover the results will 

prove useful in showing convergence of the resulting sequence. 

Lemma 6.4 Let 1 1
2 2

i T i T i
w wQ C C P B B P− −+@ , 1

2 2
T i

wA B B P −− - Hurwitz, 1
2 2 1( , )T i

wA B B P B−−  

controllable and 1
2 2( , )i T i

wQ A B B P −−  detectable (i.e. all its unobservable modes are in 

the left half of the complex plane).  

Then the unique positive definite solution of  

 1 1 1 1
2 2 2 2 1 1 2 2( ) ( ) 0i T i T T i i T i T i i T i

w w w w w w w wP A B B P A B B P P C C P B B P P B B P− − − −− + − + + + = (6.30) 

such that 1
2 2 1 1( )T i T i

w wA B B P B B P−− +  is Hurwitz, can be determined using the policy 

iteration algorithm  

a) ( ) 1 ( 1) 1 ( 1) ( ) ( 1) ( 1)
2 2 1 2 2 1( ) ( ) ( ) 0i k T i k T i k T i k i k T k

w w w wP A B B P B L A B B P B L P Q L L− − − − − −− + + − + + − =

  (6.31) 

b) ( ) ( )
1

k T i k
wL B P= , (6.32) 

where (0) 0L = . 

Moreover, 2 2
T i

wA B B P−  is Hurwitz and the available storage function of the system 

2 2 1( )T i
wx A B B P x B d= − +& , i.e. the solution of (6.30) for 1i i→ + , is such that 1i i

w wP P+ ≤ . 

The proof is given in the appendix section. 

 The next lemma summarizes the properties of Algorithm 6.2. 
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Lemma 6.5 Given real matrices 1 2, , ,A B B C  with compatible dimensions, such that all 

unobservable modes of ( , )A C  are stable and 1( , )A B  stabilizable, define the map F as 

in (6.16). Suppose that there exists a stabilizing solution 0Π >  of (6.4).  

Then 

(I) there exist two square matrix series i n n
wP ×∈¡  and i n n

wZ ×∈¡ for all i ∈¥  

satisfying Algorithm 6.2.  

(II) the elements of the two series, defined recursively, have the following 

properties: 

a. 2 2
T i

wA B B P−  is Hurwitz for all i ∈¥ . 

b. 2 2 1( , )T i
wA B B P B−  is stabilizable for all i ∈¥ . 

c. *0i
wZ i≥ ∀ ∈¥  

d. 1
2 2( )i i T i

w w wF P Z B B Z+ = − i∀ ∈¥  

e. 1
2 2 1 1

T i T i
w wA B B P B B P +− +  is Hurwitz i∀ ∈¥  

f. 10 i i
w wP P+≤ Π ≤ ≤ i∀ ∈¥  

(III) let lim 0i
w wi

P P∞

→∞
= ≥  

        then wP∞ = Π . 

 A proof by induction along the lines of the proof of the Theorem 6.2, which uses 

the results in Corollary 6.1, Lemma 6.3, Lemma 6.4 and Proposition 6.5, is 

straightforward and is omitted here. The reader is referred also to the [2] for a proof 

concerning the nonlinear version of the GARE, the HJI equation. 
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Proposition 6.6 The iteration in Algorithm 6.2 can be written as 

 
1 1 1 1 1 1

1 1 2 2 1 1 2 2
1 2 1 2 1 1

2 2 1 1

0 ( )( ) ( )( )

( ) ( ) ( ) ( )

i i T i T i T T i T i i i
w w w w w w w w

i i T i i i i T i i
w w w w w w w w

P P A B B P B B P A B B P B B P P P
P P B B P P P P B B P P

− − − − − −

− − − − − −

= − + − + + − −

+ − − − − −
. 

  (6.33) 

This results directly from (6.24), (6.25) and (6.27). 

Proposition 6.7 Solving the equation (6.29) is equivalent to finding solution for the 

following optimization problem: 

 “For the system 1 2 1i ix A B w B u −= + +&  let the state-feedback control policy gain 

be 1 1
2

i T i
w wK B P− −= −  such that 1

1 2
T i

i wu B P x−
− = − . Determine the state feedback 

disturbance policy iw  such that the infinite horizon quadratic cost index 

1 1
2 2

0

[ ( ) ]T T i T i T
w w i ix C C P B B P x w w dt

∞
− −+ −∫  is maximized.” 

Let 1 1
0 0 2 2

0

max [ ( ) ]
i

T i T T i T i T
w w w i iw

x P x x C C P B B P x w w dt
∞

− −= + −∫  then the disturbance state-

feedback policy which maximizes the cost index is 1
i T i

i w ww L x B P x= = . 

Proposition 6.8 Solving equation (6.33) is equivalent to finding solution for the 

optimization problem: 

 “For the system 1 1 2 1ˆ( )i i ix A B w w B u− −= + + +&  let the state-feedback control 

policy be given by 1 1
1 2

i T i
i w wu K x B P x− −
− = = −  and the state feedback disturbance 

policy be given by the gain 1 1
1 2

i T i
i w ww L x B P x− −
− = = − . Determine the state-feedback 
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corrective disturbance policy such that the infinite horizon quadratic cost index 

1 2 1 2
2 2

0

ˆ ˆ[ ( ) ( ) ]T i i T i i T
w w w w i ix P P B B P P x w w dt

∞
− − − −− − +∫  is maximized.” 

Let 1 2 1 2
0 0 2 2ˆ

0

ˆ ˆmax [ ( ) ( ) ]
i

T i T i i T i i T
w w w w w i iw

x Z x x P P B B P P x w w dt
∞

− − − −= − − +∫  then the optimal 

disturbance policy 1 ˆi i iw w w−= −  is 1
1 ( )T i i

i w ww B P Z x−= − − . 

 We now summarize the features of the two algorithms. 

• The first algorithm has the advantage of simple initialization however it does not 

guarantee the stability property of the system 1 1( ) ,T i
ux A B B P x i= + ∀ ∈& ¥ . This 

will introduce difficulties in finding online the solution of the Riccati equation 

(6.18) while using the online reinforcement learning - based Policy Iteration 

algorithm which requires knowledge of an initial stabilizing control gain. 

• The initialization of the second algorithm is slightly more involving, however , 

when properly done, the stability of 1 1( )T i
ux A B B P x= +&  is guaranteed i∀ ∈¥ . 

This makes the algorithm more feasible for online implementation using 

reinforcement learning algorithms. 

6.3 Online adaptive optimal approach to the solution of the two-player zeros sum game 

 The two iterative algorithms discussed in the previous section can be used as the 

backbone for the online approach to the saddle point solution of the zero-sum 

differential game. In this chapter we will describe the online algorithms. It is 

appropriate here to give a brief review of the online approaches for solving Riccati 

equations with sign definite quadratic term introduced in Chapters 2 and 5. 
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6.3.1 Online approaches to the solution of algebraic Riccati equations 

 The goal of this section is to present the two online algorithms which use 

reinforcement learning ideas to solve the ARE 

 1 0T TA P PA Q PBR B P−+ + − = . 

 A. Online Policy Iteration algorithm 

 Let 1K  be an initial stabilizing control gain. Denote the state measured at time t  

with tx . The following reinforcement learning based policy iteration algorithm 

a) 
0

0 0
( )

t T
T T T T

t i t i i t T i t T
t

x P x x Q K RK x d x P xτ τ τ
+

+ += + +∫  (6.34) 

b) 1
1

T
i iK R B P−
+ = . (6.35) 

can be implemented online as follows. 

 In the step a) is desired to find the parameters (i.e. matrix iP ) of the cost function 

associated with the policy iK . The term T
t i tx Px  is written as 

 T T
t i t i tx P x p x=  (6.36) 

where tx  denotes the Kronecker product quadratic polynomial basis vector with the 

elements 1, ; ,{ ( ) ( )}i j i n j i nx t x t = =  and ( )p Pν=  with (.)ν  a vector valued matrix function 

that acts on symmetric matrices and returns a column vector by stacking the elements of 

the diagonal and upper triangular part of the symmetric matrix into a vector where the 

off-diagonal elements are taken as 2 ijP  [13]. Denote the reinforcement over the time 

interval 0[ , ]t t T+  by  
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0

( , ) ( )( ) ( )
t T

T T
t i i i

t
d x K x Q K RK x dτ τ τ

+

≡ +∫ . 

Then the first equation is rewritten as 

 
0

( ) ( , )T
i t t T t ip x x d x K+− = . (6.37) 

The vector of unknown parameters is ip , and ( ) ( )x t x t T− +  acts as a regression vector. 

The right hand side target reinforcement function is measured based on the state 

trajectories over the time interval 0[ , ]t t T+ . Considering ( ) ( ) ( ) ( ) ( )T TV t x t Qx t u t Ru t= +&  

as a definition for a new state ( )V t , the value of ( ( ), )id x t K  can be obtained by taking 

two measurements of this newly introduced system state since 

( ( ), ) ( ) ( )id x t K V t T V t= + − . This new state signal is simply the output of an analog 

integration block having as inputs the quadratic terms ( ) ( )Tx t Qx t  and ( ) ( )Tu t Ru t  

which can also be obtained using an analog processing unit. 

 The parameter vector ip  is found by minimizing, in the least-squares sense, the 

error between the target reinforcement function, ( ( ), )id x t K , and the parameterized left 

hand side of (6.37). Evaluating the right hand side of (6.37) at ( 1)/2N n n≥ +  (the 

number of independent elements in the matrix iP ) points ix  in the state space, over the 

same time interval T, the batch least-squares solution is 

 1( )T
ip XX XY−=   (6.38) 

where  
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1 2

1 2

[ ... ]

( ) ( )

[ ( , ) ( , ) ... ( , )]

N

i i i

N T
i i i

X x x x

x x t x t T

Y d x K d x K d x K

∆ ∆ ∆

∆

=

= − +

=

. 

 The least-squares problem can be solved in real-time after a sufficient number of 

data points are collected along a single state trajectory, under the regular presence of an 

excitation requirement.  

 Alternatively, the solution given by (6.38) can also be obtained by means of 

recursive estimation algorithms (e.g. gradient descent algorithms or the recursive least 

squares algorithm) in which case a persistence of excitation condition is required. For 

this reason there are no real issues related to the algorithm becoming computationally 

expensive with the increase of the state space dimension. 

 B. Online value iteration algorithm 

 The reinforcement learning-based value iteration algorithm is the following:  

Let 0 0P =  and 0K  a state-feedback control policy (not necessarily stabilizing). Iterate 

between 

a) 
0

0 01 ( )
t T

T T T T
t i t i i t T i t T

t
x P x x Q K RK x d x P xτ τ τ

+

+ + += + +∫  (6.39) 

b) 1
1 1

T
i iK R B P−
+ +=  (6.40) 

until convergence. 

The online implementation of the algorithm is given next. 

 In the step a) is desired to find the parameters of the matrix 1iP+  of the cost 

function. The two quadratic cost functions will be written as in (6.36) and we will use 
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the same notation ( , )t id x K  for the reinforcement signal over the interval 0[ , ]t t T+ . 

Based on these notations and structures the first equation is rewritten as 

 
01 ( , )T T

i t t i i t Tp x d x K p x+ += + . (6.41) 

The vector of unknown parameters is 1ip + , and tx  acts as a regression vector. The right 

hand side target reinforcement function is measured based on the state trajectories over 

the time interval 0[ , ]t t T+  and the state value at 0t T+ , 
0t Tx + .  

 The parameter vector 1ip +  is found by minimizing, in the least-squares sense, the 

error between the target expected cost over the infinite horizon, which is the sum 

between the measured reinforcement over the time interval and the expected cost based 

on the present cost model, 
0

( , ) T
t i i t Td x K p x ++ , and the parameterized left hand side of 

(6.41). The solution can be obtained using batch least squares or the recursive least 

squares algorithms. 

 Both the online policy iteration and online value iteration algorithms are data-based 

approaches, which use reinforcement learning ideas to find the solution of the algebraic 

Riccati equation with sign definite quadratic term, that do not require explicit 

knowledge on the model of the drift dynamics of the controlled system.  

 In the following we formulate the iterative algorithms which provide the saddle 

point solution of the two-player zero-sum differential game in terms of iterations on 

Riccati equations with sign definite quadratic term. At every step these Riccati 

equations can be solved by means of one of the online reinforcement learning 

algorithms, namely online policy iteration or value iteration. The end results is an online 
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algorithm which leads to the saddle point solution of the differential game while neither 

of the two players uses any knowledge on the drift dynamics of the environment.  

 We will name the two players controller player and disturbance player. The 

solution of the game is found online while the game is played. We shall see that in the 

case of both algorithms only one of the payers is learning and optimizing his behavior 

strategy while the other is playing based on fixed policies. We shall say that the 

learning player is “leading the game” while his opponent is a passive player. The 

passive player will change his behavior policy only based on information regarding his 

opponent’s optimal strategy. In this case the passive player will simply adopt his 

opponent’s strategy as his own. From this perspective, depending on which one of the 

two players is leading the game, one obtains one or the other online algorithm.  

6.3.2 Online policy iteration algorithm on the control policy  

 In this section we present the online approach to the solution of the zero-sum 

differential game by means of reinforcement learning. We shall see that in this case the 

reinforcement learning technique is employed only by the Controller. First we formulate 

algorithm 6.1. as an iteration on Riccati equations.  

Algorithm 6.1 – A 

1. Let 0 0uP =  

2. Solve online the Riccati equation  

1 1 1 1
2 2 0T T T

u u u uP A A P P B B P C C+ − + = . 

Let 1 1
u uZ P= . 

3. For 2i ≥ solve online the Riccati equation 



 

139 

1 1 1 1
1 1 2 2 1 1 2 2

1 1
2 2 1 1

0 ( ) ( )i T i T i T i T i T i
u u u u u u

i T i i T i
u u u u

Z A B B P B B P A B B P B B P Z
Z B B Z Z B B Z

− − − −

− −

= + − + + −

− +
 

1i i i
u u uP P Z−= + . 

 At every step the Riccati equations can be solved using the online data-based 

approaches reviewed in section 6.3.1 without using exact knowledge on the drift term in 

the system dynamics.  

 Explicitly one can write 

Algorithm 6.1 – B 

1. Let 0 0uP =  

2. Let 0(0)
uK  be such that 0(0)

2 uA B K+  is Hurwitz, let k=0 

a. solve 

0( 1) 0( ) 0( ) 0( 1) 0( ) 0( )
2 2( ) ( ) ( ) 0k k k T k k T k T

u u u u u uP A B K A B K P K K C C+ ++ + + + + =  

b. update 0( 1) 0( 1)
2

k T k
u uK B P+ += − , 1k k= +  

c. until 0( ) 0( 1)k k
u uP P ε−− < . 

3. 1 0( )k
u uP P= , 1 1

u uZ P=  

4. For 2i ≥  

a. let 1(0)i
uK −  be such that 1 1(0)

1 1 2
T i i

u uA B B P B K− −+ +  is Hurwitz, let k=0 

b. solve  

( 1) 1 1( ) 1 1( ) ( 1)
1 1 2 1 1 2

1( ) 1( ) 1 1
1 1

( ) ( )

( ) 0

i k T i i k T i i k T i k
u u u u u u

i k T i k i T i
u u u u

Z A B B P B K A B B P B K Z
K K Z B B Z

+ − − − − +

− − − −

+ + + + +

+ + =
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c. update 1( 1) 1( ) ( 1)
2

i k i k T i k
u u uK K B Z− + − += − , 1k k= +  

d. until ( ) ( 1)i k i k
u uZ Z ε−− < . 

5. ( )i i k
u uZ Z= , 1i i i

u u uP P Z−= +  

6. until 1i i
u u PP P ε−− < . 

 From the perspective of two-player zero-sum games, the algorithm translates as 

follows: 

1. Let the initial disturbance policy be zero, 0w = .  

2. Let 0(0)
uK  be a stabilizing control policy for the system (6.1) with zero 

disturbance 0w = , and let k=0. 

a. Find the value associated with the stabilizing controller 0( )k
uK ; 

b. update the control policy, 1k k= + ; (Note that the new controller will 

have a higher value.) 

c. until the controller with the highest value (minimum cost) has been 

obtained. 

3. Update the disturbance policy using the gain of the control policy. 

4. For 2i ≥  

a. Let 1(0)i
uK −  be a stabilizing policy for the system (6.1) with disturbance 

policy 1
1
T i

uw B P x−= , let k=0 

i. find the added value associated with the change in the control 

policy 
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ii. update the control policy, 1k k= +  

iii. until the controller with the highest value has been obtained. 

5. Go to step 3 until the control policy and disturbance policy have the same gain. 

Concisely the game is played as follows. 

1. The game starts while the disturbance player does not play. 

2. The controller player plays the game without opponent and uses reinforcement 

learning to find the optimal behavior which minimizes his costs; then informs 

his opponent on his new behavior policy.  

3. The disturbance player starts playing using the behavior policy of his opponent. 

4. The controller player corrects iteratively his behavior using reinforcement 

knowledge such that his costs are again minimized; then informs his opponent 

on his new behavior policy. 

5. The two players execute successively steps 3 and 4 until the controller player 

can no longer lower his costs by changing his behavior policy. The saddle point 

equilibrium has been obtained. 

The online setting of the algorithm is given next. 

Algorithm 6.1 – C 

1. Let 0 0uP =  

2. Let 0(0)
uK  be such that 0(0)

2 uA B K+  is Hurwitz, let k=0 

a. solve online 

0

0 0

0( 1) 0( ) 0( ) 0( 1)( )
t T

T k T T k T k T k
t u t u u t T u t T

t
x P x x C C K RK x d x P xτ τ τ

+
+ +

+ += + +∫  
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b. update 0( 1) 0( 1)
2

k T k
u uK B P+ += − , 1k k= +  

c. until 0( ) 0( 1)k k
u uP P ε−− < . 

3. 1 0( )k
u uP P= , 1 1

u uZ P=  

4. For 2i ≥  

a. let 1(0)i
uK −  be such that 1(0) 1 1(0)

1 1 2
i T i i
u u uA A B B P B K− − −= + +  is Hurwitz, let 

k=0. Denote 1( ) 1 1( )
1 1 2

i k T i i k
u u uA A B B P B K− − −= + +  and let xτ  be the solution 

of 1( )i k
ux A x−=&  with initial condition tx  over the interval 0[ , ]t t T+ . 

b. solve online for the value of ( 1)i k
uZ +  using either 

i. policy iteration  

0

0 0

( 1) 1 1 1( ) 1( ) ( 1)
1 1( )

t T
T i k T i T i i k T i k T i k

t u t u u u u t T u t T
t

x Z x x Z B B Z K K x d x Z xτ τ τ
+

+ − − − − +
+ += + +∫  

ii. or value iteration  

0

0 0

( 1) 1 1 1( ) 1( ) ( )
1 1( )

t T
T i k T i T i i k T i k T i k

t u t u u u u t T u t T
t

x Z x x Z B B Z K K x d x Z xτ τ τ
+

+ − − − −
+ += + +∫  

c. update 1( 1) 1( ) ( 1)
2

i k i k T i k
u u uK K B Z− + − += − , 1k k= +  

d. until ( ) ( 1)i k i k
u uZ Z ε−− < . 

5. ( )i i k
u uZ Z= , 1i i i

u u uP P Z−= +  

6. until 1i i
u u PP P ε−− < . 
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6.3.3 Online policy iteration algorithm on the disturbance policy  

 This section introduces a second online approach to the solution of the zero-sum 

differential game by means of reinforcement learning. From a game theoretic 

perspective, in this case the reinforcement learning technique which leads to the saddle 

point solution of the differential game is employed only by the Disturbance player. First 

we give formulation of algorithm 6.2. as an iteration on Riccati equations.  

Algorithm 6.2 – A 

1. Let 0
wP  be such that 0

2 2
T

wA B B P−  and 0
2 2 1 1

T T
wA B B P B B− + Π  are Hurwitz and 

0
wP ≥ Π  

2. For every 1i ≥  solve online the Riccati equation  

1 1 1 1
2 2 2 2 1 1 2 2( ) ( ) 0i T i T i T i i T i i T i T

w w w w w w w wP A B B P A B B P P P B B P P B B P C C− − − −− + − + + + =  

using the reinforcement learning technique which solves introduced in Chapter 2 

making use of the Policy Iteration algorithm given in Lemma 6.4. 

 At every step the Riccati equations can be solved using the online data-based 

approaches reviewed in section 6.3.1 without using exact knowledge on the drift term in 

the system dynamics.  

 Explicitly one can write 

Algorithm 6.2 – B 

1. Let 0
wP  be such that 0

2 2
T

wA B B P−  and 0
2 2 1 1

T T
wA B B P B B− + Π  are Hurwitz and 

0
wP ≥ Π  

2. For 2i ≥  
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3. Let (0) 0i
wL = , as 1

2 2
T i

wA B B P −−  is Hurwitz, k=0  

a. solve the Lyapunov equation 

( ) 1 ( 1) 1 ( 1) ( )
2 2 1 2 2 1

( 1) ( 1)

( ) ( )

( ) 0

i k T i i k T i i k T i k
w w w w

i i k T i k

P A B B P B L A B B P B L P
Q L L

− − − −

− −

− + + − +

+ − =
 

b. update ( ) ( )
1

i k T i k
wL B P= , 1k k= +  

c. until ( ) ( 1)i k i k
w wP P ε−− < . 

4. until 1i i
w w PP P ε−− < . 

 From the perspective of two-player zero-sum games, the game is played as follows. 

1. The controller player starts by selecting a stabilizing control policy such that 

initial requirements are satisfied. 

2. The disturbance player plays the game to find the optimal behavior which 

maximizes his long term goal; then informs his opponent on his new behavior 

policy.  

3. The controller player starts playing using the behavior policy of his opponent 

having guarantees that this new policy is a stabilizing one. 

4. The two players execute successively steps 2 and 3 until the disturbance player 

can no longer increase his long term benefits by changing his behavior policy. 

This means that the saddle point equilibrium has been obtained. 
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The online version of the algorithm is given next. 

Algorithm 6.2 – C 

1. Let 0
wP  be such that 0

2 2
T

wA B B P−  and 0
2 2 1 1

T T
wA B B P B B− + Π  are Hurwitz and 

0
wP ≥ Π  

2. For 2i ≥  

3. Let (0) 0i
wL = , as 1

2 2
T i

wA B B P −−  is Hurwitz, k=0. Denote with xτ  the solution to 

1 ( 1)
2 2 1( )T i i k

wx A B B P B L x− −= − +&  over the time interval 0[ , ]t t T+  given the initial 

condition tx . 

a. solve online for the value of ( )i k
wP  using either 

i. policy iteration  

0

0 0

( ) ( 1) ( 1) ( )( ( ) )
t T

T i k T i i k T i k T i k
t w t t T w t T

t
x P x x Q L L x d x P xτ τ τ

+
− −

+ += − +∫  

ii. or value iteration  

0

0 0

( ) ( 1) ( 1) ( 1)( ( ) )
t T

T i k T i i k T i k T i k
t w t t T w t T

t
x P x x Q L L x d x P xτ τ τ

+
− − −

+ += − +∫  

b. update ( ) ( )
1

i k T i k
wL B P= , 1k k= +  

c. until ( ) ( 1)i k i k
w wP P ε−− < . 

4. until 1i i
w w PP P ε−− < . 
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6.4 Conclusion 

 This chapter introduces an online data-based approach that makes use of 

reinforcement learning techniques to provide online solution to the two-player zero-sum 

differential game with linear dynamics. The result is based on two existing algorithms 

which involve iterations on Riccati equations to build a sequence of controllers (and 

respectively disturbance policies) which converges monotonically to the state-feedback 

saddle point solution of the two-player zero-sum differential game.  

 The Riccati equation appearing at each step of the iteration can be solved using 

online measured data using either the online policy iteration algorithm presented in 

Chapter 2 or the value iteration algorithm discussed in Chapter 5. In this way the H-

infinity state-feedback optimal controller, or the solution of the differential game, can 

be obtained online without using exact knowledge on the drift dynamics of the system. 

 The chapter provides two secondary achievements. First it gives formulation of the 

two iterative algorithms such that the duality of the two approaches became obvious. 

Second it discusses the two algorithms from the perspective of game theory. 
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CHAPTER 7  

CONCLUSIONS AND FUTURE WORK

 In this thesis have been developed algorithms which use reinforcement learning 

ideas to solve in an online manner continuous-time state-feedback optimal control 

problems. The algorithms make use of discrete-time state information and only partial 

knowledge regarding the system dynamics (i.e. exact knowledge on the drift term in the 

system dynamics is not required).  

 1. First a reinforcement learning based procedure has been developed to solve 

online the continuous-time LQR problem with infinite horizon cost.  

 2. A second algorithm generalizes the first results to obtain a suboptimal controller 

for affine in the inputs nonlinear systems. In this case the algorithm provides local 

solution to the continuous-time Hamilton-Jacobi-Bellman equation without using 

knowledge on the drift term part of the system dynamics. 

 3. The third result is a new continuous-time formulation for the policy iteration 

algorithm; which results in a new online data-based approach to optimal control for 

nonlinear systems.  

 4. The generalized policy iteration algorithm for continuous-time systems is then 

given. It is in fact a spectrum of algorithms which provides a bridge between 
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continuous-time policy iteration and continuous-time value iteration (heuristic dynamic 

programming). 

 5. The continuous-time value iteration algorithm is given. An analysis for the case 

of LQR is provided. This new online approach to learning the optimal control policy 

does not need initialization with a stabilizing controller thus reducing even further the 

amount of knowledge required for solving the optimal control problem. 

 6. Online reinforcement learning based approaches to the saddle point solution of 

linear differential zero-sum games with infinite horizon quadratic indices have also 

been given. 

 

 The results presented in this thesis: 

- bring reinforcement learning ideas into control systems theory allowing 

formulation of new adaptive optimal control strategies for systems with 

continuous-time dynamics, 

- provide connection between the reinforcement learning methods, which solve the 

continuous-time optimal control problems in an online manner based on measured 

data, and known iterative techniques which provide offline solution for the same 

problem based on complete and exact knowledge on the system dynamics, 

- provide new arguments for the idea that approximate dynamic programming, 

previously developed mainly for systems with discrete-time dynamics, is a 

framework independent approach to optimization. 
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 The following are some of the directions for continuation of this work. 

1. Providing proof of convergence for the value iteration (VI) algorithm - a 

generalized policy iteration variant which does not require initial stabilizing 

control policy. 

2. Giving a continuous-time formulation for the Q-function and making use of it to 

develop model-free online adaptive optimal controllers. 

3. Developing online adaptive optimal controllers which use reinforcement 

learning principles to find the H-infinity solution for nonlinear systems 

4. Online adaptive optimal controllers for systems with periodic dynamics. 

5. Online adaptive optimal controllers using output feedback. 
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APPENDIX A 

 
PROOFS FOR SELECTED RESULTS 
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Proofs for selected results from Chapter 3 

Lemma 3.1 Solving for 
( )i

V µ in equation (3.9) is equivalent with finding the solution of  

 
( ) ( )( ) ( )0 ( , ( )) ( ) ( ( ) ( ) ( )), (0) 0
i ii T i

xr x x V f x g x x Vµ µµ µ= + ∇ + = . (3.12) 

Proof Since ( ) ( )iµ ∈Ψ Ω , then 
( ) 1( )
i

V Cµ ∈ Ω , defined as 

( ) ( )( ( )) ( ( ), ( ( )))
i i

t
V x t r x s x s dsµ µ

∞
= ∫ , is a Lyapunov function for the system 

( )( ) ( ( )) ( ( )) ( ( ))ix t f x t g x t x tµ= +& . 
( ) 1( )
i

V Cµ ∈ Ω  satisfies  

 
( ) ( ) ( )( ) ( ( ) ( ) ( )) ( ( ), ( ( )))
i T i i

xV f x g x x r x t x tµ µ µ∇ + =−   (A.1) 

with ( )( ( ), ( ( ))) 0; ( ) 0ir x t x t x tµ > ≠ . Integrating (A.1) over the time interval [ , ]t t T+  one 

obtains  

 
( ) ( )( )( ( )) ( ( ), ( ( ))) ( ( ))
i i

t T
i

t
V x t r x s x s ds V x t Tµ µµ

+
= + +∫ . (A.2) 

This means that the unique solution of (3.12), 
( )i

V µ , satisfies also (A.2).  

 To complete de proof uniqueness of solution of equation (A.2) must be established. 

The proof is by contradiction. 

Thus, assume that there exists another cost function 1( )V C∈ Ω  which satisfies (14) with 

the end condition (0) 0V = . This cost function also satisfies 

( )( ( )) ( ( ), ( ( )))iV x t r x t x tµ=−& . Subtracting this from (A.2) we obtain  
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( ) ( )

( )[ ( ( )) ( ( ))] [ ( ( )) ( ( ))]( ) ( )( ( ( )) ( ( )) ( ( ))) 0
i iT T

id V x t V x t d V x t V x tx f x t g x t x t
dx dx

µ µ
µ

− −
= + =&  

  (A.3) 

which must hold for any x  on the system trajectories generated by the stabilizing policy 

( )iµ . Thus 
( )

( ( )) ( ( ))
i

V x t V x t cµ= + . As this relation must hold also for x(t)=0 then  

( )
(0) (0) 0

i
V V c cµ= + ⇒ =  and thus 

( )
( ( )) ( ( ))

i
V x t V x tµ= , i.e. equation (3.9) has a unique 

solution which is equal with the unique solution of (3.12).     

Lemma 3.3 Let ( ) ( )xµ ∈Ψ Ω  such that ( ) ( ) ( )f x g x xµ+  is asymptotically stable. Given 

that the set { }1

N
jφ  is linearly independent then 0T∃ >  such that ( ) {0},x t∀ ∈Ω−  the set 

{ }1
( ( ), ) ( ( )) ( ( ))

N
j j jx t T x t T x tφ φ φ= + −  is also linearly independent.  

Proof The proof is by contradiction. 

 The vector field ( ) ( ) ( )x f x g x xµ= +&  is asymptotically stable. Denote with 

( ; ( ), ), ( )x t x tη τ µ ∈Ω  the system trajectories obtained using the policy ( )xµ  for any 

( )x t ∈Ω . Then, along the system trajectories, we have that  

 ( ( )) ( ( )) ( )( ( ; ( ), ))
t T

T
x

t
x t T x t f g x t dφ φ φ µ η τ µ τ

+
+ − = ∇ +∫ . (A.4) 

Suppose that the result is not true, then 0T∀ >  there exists a nonzero constant vector 

Nc∈R  such that ( )x t∀ ∈Ω  [ ( ( )) ( ( ))] 0Tc x t T x tφ φ+ − ≡ . This implies that 0T∀ > , 

( )( ( ; ( ), )) 0
t T

T T
x

t
c f g x t dφ µ ϕ τ µ τ

+
∇ + ≡∫  and thus, ( )x t∀ ∈Ω , 
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( )( ( ; ( ), )) 0T T
xc f g x tφ µ ϕ τ µ∇ + ≡ . This means that { }1

( )
NT

j f guφ∇ + is not linearly 

independent contradicting Lemma 3.2. Thus, 0T∃ >  such that 0( )x t∀ ∈Ω  the set 

{ }0 1
( ( ), )

N
j x t Tφ is also linearly independent.        

Corollary 3.2 (Admissibility of ( ) ( )i
L xµ ) 0L∃ such that ( )

0 , ( )i
LL L µ∀ > ∈Ψ Ω . 

Proof Consider the function 
( )i

V µ , which is a Lyapunov function for the system (3.1) 

with control policy ( )iµ . Taking derivative of 
( )i

V µ  along the trajectories generated by 

the controller ( 1) ( )i
L xµ +  one obtains 

 
( ) ( ) ( 1)( ) ( ( ) ( ) ( ))
i i T i

x LV V f x g x xµ µ µ += ∇ +& . (A.5) 

We also have that 
( ) ( ) ( ) ( ) ( )( ) ( ( ) ( ) ( )) ( ) ( ( )) ( )
i i T i i T i

xV V f x g x x Q x x R xµ µ µ µ µ= ∇ + =− −&  

and thus 
( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ( )) ( )
i iT T i i T i

x xV f x V g x x Q x x R xµ µ µ µ µ∇ =− ∇ − − . With this, 

(A.5) becomes 

 
( ) ( )( ) ( ) ( ) ( 1)( ) ( ( )) ( ) ( ) ( )( ( ) ( ))
i ii T i T i i

x LV Q x x R x V g x x xµ µµ µ µ µ +=− − − ∇ −& . (A.6) 

Using the controller update 
( )( 1) 11

2( ) ( )
ii T

xx R g x V µµ + −=− ∇  we can write 

( ) ( 1)( ) ( ) 2 ( )
i T i

xV g x R xµ µ +∇ = . Thus (A.6) becomes 

 

( ) ( ) ( ) ( 1) ( ) ( 1)

( ) ( 1) ( ) ( 1) ( 1) ( 1)

( 1) ( 1) ( 1) ( 1)

( ) 2 ( )

( ) ( ) ( )

( ) ( )

i i T i i i i
L

i i T i i i T i
L L

i i T i i
L L

V Q R R

Q R R

R

µ µ µ µ µ µ

µ µ µ µ µ µ

µ µ µ µ

+ +

+ + + +

+ + + +

=− − − −

=− − − − − +

+ − −

&

 (A.7) 
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Since ( ) ( )sup ( ) ( ) 0i i
L

x
x xµ µ

∈Ω
− →  as L→∞  then there exists a 0L  such that 0L L∀ > , 

( )
0

i
V µ <& , which means that 

( )i
V µ  is a Lyapunov function for the system with control 

policy  ( 1) ( )i
L xµ + , which proves the corollary.      

Proofs for selected results from Chapter 4 

Corollary 4.1 : P PTµ′ Χ →Χ  is a contraction map on PΧ . 

Proof The fixed point of  0 0
1 ( )T TT

d dT P P M A PAµ µ
µ′ = +@  is the unique positive definite 

solution of the discrete-time Lyapunov equation 

 0 0( )T TT
d dP M A P Aµ µ µ= + .  (A.8) 

Using the recursion k  times, with 0P Pµ =  we have 

 0 0
1( )k k

T TT
d dP M A P Aµ µ µ

−= +   (A.9) 

Subtracting (A.8) from (A.9)  

 0 0
1( ) ( )k k

T TT
d dP P A P P Aµ µ µ µ

−− = −  (A.10) 

Using the norm operator (A.10) becomes 

 0
1

2
k k

T
dP P A P Pµ µ µ µ

ρ ρρ
−− ≤ −  (A.11) 

Since 0T
dA  is a discrete version of the closed loop continuous-time system stabilized by 

the state feedback control policy ( )x K xµµ =− , then 00 ( ) 1T
dAρ< < . Thus Tµ′  is a 

contraction map on ( , )P
ρΧ         ⁭ 
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Proofs for selected results from Chapter 6 

Lemma 6.3 Given real matrices 1 2, , ,A B B C  with compatible dimensions, n nP ×∈¡  and 

n nZ ×∈¡  satisfying  

 2 2 1 1 2 2 1 1 1 1( ) ( ) ( ) 0T T T T T TA B B P B B P Z Z A B B P B B P F P ZB B Z− + + − + − − =  (6.29) 

and 0Π >  a stabilizing solution of the GARE (6.4) 

a. If 2 2 1 1
T TA B B P B B− + Π  is Hurwitz then P ZΠ ≤ − . 

b. If P ZΠ ≤ −  then 2 2 1 1( )T TA B B P Z B B− − + Π . 

Proof Adding (6.29) with (6.20) and rearranging one writes 

 2 2 1 1 2 2 1 1

1 1 2 2

( ) ( ) ( )( )

( ) ( ) ( ) ( )

T T T T T

T T

A B B P B B P Z P Z A B B P B B
P Z B B P Z P B B P

− + Π − − Π + − − Π − + Π

= − − − Π − − Π − − Π − Π
 (A.12) 

As, by assumption, 2 2 1 1( )T TA B B P B B− + Π - Hurwitz then P Z− ≥ Π . 

Using the notation 
2

1

2

( )
( )

T

T

T

B P Z
W B P Z

B Z

 − − Π
 = − − Π 
  

, (A.12) can be brought to the form  

 2 2 1 1 2 2 1 1( ( ) ) ( ) ( )( ( ) )T T T T T

T

A B B P Z B B P Z P Z A B B P Z B B
W W
− − + Π − − Π + − − Π − − + Π

= −
 

  (A.13) 

One can see that 2 2 1 1( , ( ( ) ))T TW A B B P Z B B− − + Π  is observable since 

[ ]2 2 1 1 2 2 2 1 1( ) 0 0T T T TA B B P Z B B B W A B B B B− − + Π + = − Π + Π  is Hurwitz. 

As 0P Z− − Π ≥ , 0TW W ≥  and 2 2 1 1( , ( ( ) ))T TW A B B P Z B B− − + Π - observable then 

2 2 1 1( )T TA B B P Z B B− − + Π  is Hurwitz.      ⁭ 
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Lemma 6.4 Let 2 2
i T i T i

w wQ C C P B B P+@ , 2 2
T i

wA B B P−  - Hurwitz, 2 2 1( , )T i
wA B B P B− - 

controllable and 2 2( , )i T i
wQ A B B P−  - detectable (i.e. all its unobservable modes are in 

the left half of the complex plane).   

Then the unique positive definite solution of  

 1 1 1 1
2 2 2 2 1 1 2 2( ) ( ) 0i T i T T i i T i T i i T i

w w w w w w w wP A B B P A B B P P C C P B B P P B B P− − − −− + − + + + =   

such that 1
2 2 1 1( )T i T i

w wA B B P B B P−− +  is Hurwitz, can be determined using the policy 

iteration algorithm  

a) ( ) 1 ( 1) 1 ( 1) ( ) ( 1) ( 1)
2 2 1 2 2 1( ) ( ) ( ) 0i k T i k T i k T i k i k T k

w w w wP A B B P B L A B B P B L P Q L L− − − − − −− + + − + + − =

  (6.31) 

b) ( ) ( )
1

k T i k
wL B P=  (6.32) 

where (0) 0L = . 

Proof For 1k =  the first step in the algorithm can be executed and it is equivalent to 

solving the Lyapunov equation (1) 1 1 (1)
2 2 2 2( ) ( ) 0i T i T i T i i

w w w wP A B B P A B B P P Q− −− + − + = . 

Thus (1) 0i
wP ≥ . 

Assume that (a) is satisfied at step k-1, 

( 1) 1 ( 2) 1 ( 2) ( 1)
2 2 1 2 2 1

( 2) ( 2)

( ) ( )

( ) 0

i k T i k T i k T i k
w w w w

i k T k

P A B B P B L A B B P B L P

Q L L

− − − − − −

− −

− + + − + +

+ − =
 

then it can be written as 

( 1) 1 ( 2) ( 1) ( 2)
2 2 1 1 1

1 ( 2) ( 1) ( 2) ( 1) ( 2) ( 2)
2 2 1 1 1

( )

( ) ( ) 0

i k T i k k k
w w

T i k k k T i k i k T k
w w

P A B B P B L B L B L
A B B P B L B L B L P Q L L

− − − − −

− − − − − − −

− + + − +

+ − + + − + − =
. 

This is  
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( 1) 1 ( 1) 1 ( 1) ( 1)

2 2 1 2 2 1
( 1) ( 2) ( 1) ( 2) ( 1) ( 1) ( 2) ( 2)

1 1

( ) ( )

( ) ( ) ( ) 0

i k T i k T i k T i k
w w w w

i k k k k k T T i k i k T k
w w

P A B B P B L A B B P B L P
P B L L L L B P Q L L

− − − − − −

− − − − − − − −

− + + − +

+ − + − + − =
 

which, making use ( ) ( )
1

k T i k
wL B P= , becomes 

 
( 1) 1 ( 1) 1 ( 1) ( 1)

2 2 1 2 2 1
( 2) ( 1) ( 2) ( 1) ( 1) ( 1)

( ) ( )

( ) ( ) ( ) 0

i k T i k T i k T i k
w w w w

k k T k k i k T k

P A B B P B L A B B P B L P
L L L L Q L L

− − − − − −

− − − − − −

− + + − +

− − − + − =
. 

Subtracting the equation at step k 

 ( ) 1 ( 1) 1 ( 1) ( ) ( 1) ( 1)
2 2 1 2 2 1( ) ( ) ( ) 0i k T i k T i k T i k i k T k

w w w wP A B B P B L A B B P B L P Q L L− − − − − −− + + − + + − =   

from this last result, one obtains 

 
( 1) ( ) 1 ( 1) 1 ( 1) ( 1) ( )

2 2 1 2 2 1
( 2) ( 1) ( 2) ( 1)

( )( ) ( ) ( )

( ) ( ) 0

i k i k T i k T i k T i k i k
w w w w w w

k k T k k

P P A B B P B L A B B P B L P P
L L L L

− − − − − −

− − − −

− − + + − + −

− − − =
 

As 1 ( 1)
2 2 1

T i k
wA B B P B L− −− +  is Hurwitz then ( 1) ( ) 0i k i k

w wP P− − ≤ .  

Thus the sequence ( 1){ }i k
wP −  is monotonically increasing and positive definite since its 

first element (1) 0i
wP ≥ .  

 Next we will show that the sequence is also upper bounded. We rewrite  

 1 1 1 1
2 2 2 2 1 1 2 2( ) ( ) 0i T i T T i i i T i i T i

w w w w w w w wP A B B P A B B P P Q P B B P P B B P− − − −− + − + + + =  

as 

 
1 ( 1) 1 ( 1)

2 2 1 2 2 1
( 1) ( 1) ( 1) ( 1)

1 1 1 1

( ) ( )

( ) ( ) 0

i T i k T i k T i
w w w w

i i k T T i i k i i k T i k
w w w w w w

P A B B P B L A B B P B L P
P P B B P P Q P B B P

− − − −

− − − −

− + + − +

+ − − + − =
. 

Subtracting  

 ( ) 1 ( 1) 1 ( 1) ( ) ( 1) ( 1)
2 2 1 2 2 1( ) ( ) ( ) 0i k T i k T i k T i k i k T k

w w w wP A B B P B L A B B P B L P Q L L− − − − − −− + + − + + − =  

one obtains 
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( ) 1 ( 1) 1 ( 1) ( )

2 2 1 2 2 1
( 1) ( 1)

1 1

( )( ) ( ) ( )

( ) ( )

i i k T i k T i k T i i k
w w w w w w

i i k T T i i k
w w w w

P P A B B P B L A B B P B L P P
P P B B P P

− − − −

− −

− − + + − + −

= − − −
 

As 1 ( 1)
2 2 1

T i k
wA B B P B L− −− +  is Hurwitz then ( ) 0i i k

w wP P− ≥ . 

 It is now left to prove that 1 ( )
2 2 1

T i k
wA B B P B L−− +  is Hurwitz.  

One can write 

 

( ) 1 ( ) 1 ( ) ( )
2 2 1 2 2 1

( 1) ( 1) ( ) ( 1) ( )
1 1 1

( 1) ( ) ( )
1

( )( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

i i k T i k T i k T i i k
w w w w w w

i i k T T i i k i i k k k
w w w w w w

k k T T i i k
w w

P P A B B P B L A B B P B L P P
P P B B P P P P B L L

L L B P P

− −

− − −

−

− − + + − + −

= − − − − − −

− − −

 

which is 

 
( ) 1 ( ) 1 ( ) ( )

2 2 1 2 2 1
( ) ( ) ( 1) ( ) ( 1) ( )

1 1

( )( ) ( ) ( )

( ) ( ) ( ) ( )

i i k T i k T i k T i i k
w w w w w w

i i k T T i i k k k T k k
w w w w

P P A B B P B L A B B P B L P P
P P B B P P L L L L

− −

− −

− − + + − + −

= − − − − − −
. 

Using the notation 
( )

( ) 1
( 1) ( )

1

( )
( )

T i i k
i k w w

w T i k i k
w w

B P P
W

B P P−

 −
=  − 

 then 

( ) 1 ( ) 1 ( ) ( ) ( ) ( )
2 2 1 2 2 1( )( ) ( ) ( ) ( )i i k T i k T i k T i i k i k T i k

w w w w w w w wP P A B B P B L A B B P B L P P W W− −− − + + − + − = −
. 

( ) 1 ( )
2 2 1( , )i k T i k

w wW A B B P B L−− +  is detectable since  

1 ( ) ( ) 1
2 2 1 2 2 1 1

T i k i k T i T i
w w w wA B B P B L FW A B B P B B P− −− + + = − +  for 1[ 0]F B=  and 

1
2 2 1 1

T i T i
w wA B B P B B P−− +  is Hurwitz since i

wP  is the stabilizing solution for the equation 

1 1 1 1
2 2 2 2 1 1 2 2( ) ( ) 0i T i T T i i i T i i T i

w w w w w w w wP A B B P A B B P P Q P B B P P B B P− − − −− + − + + + = . 

Since ( ) 0i i k
w wP P− ≥  and ( ) 1 ( )

2 2 1( , )i k T i k
w wW A B B P B L−− +  is detectable then 

1 ( )
2 2 1

T i k
wA B B P B L−− +  is Hurwitz.  
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Consequently the iterations can be continued, and ( 1) 0i k
wP + ≥  can be determined. 

 The iteration of the two equations generates the monotonically increasing and 

upper bounded sequence of positive definite matrices ( 1){ }i k
wP − . Let ( )limi i k

w wk
P P

→∞
= and 

thus the controller is 1
i T i
w wL B P= . Using this controller in equation 

1 1
2 2 1 2 2 1( ) ( ) ( ) 0i T i i T i i T i i i T i

w w w w w w w wP A B B P B L A B B P B L P Q L L− −− + + − + + − =  shows that i
wP  

is a positive definite solution (unique and stabilizing such that 1
2 2 1 1

T i T i
w wA B B P B B P−− +  

is Hurwitz) of  

1 1 1 1
2 2 2 2 1 1 2 2( ) ( ) 0i T i T T i i T i T i i T i

w w w w w w w wP A B B P A B B P P C C P B B P P B B P− − − −− + − + + + =        

 Next we show that 2 2
T i

wA B B P−  is Hurwitz. We will show that ( ) T i
wV x x P x=  is a 

Lyapunov function for the system 2 2( )T i
wx A B B P x= −& . Thus one writes  

 2 2 2 2
1 1

2 2 1 1 2 2

( ) ( )

( ) ( )

i T i T i T i
w w w w

T i T i i T i i i T i i
w w w w w w w w

P A B B P A B B P P
C C P B B P P B B P P P B B P P− −

− + −

= − − − − − −
, 

which proves that 2 2
T i

wA B B P−  is Hurwitz.            

We finally note that since i
wP  is a storage function for the system 

2 2 1( )T i
wx A B B P x B d= − +&  then the available storage function corresponding to this 

system, which solves the Riccati equation 

 1 1 1 1
2 2 2 2 1 1 2 2( ) ( ) 0i T i T T i i T i T i i T i

w w w w w w w wP A B B P A B B P P C C P B B P P B B P+ + + +− + − + + + =  

 must satisfy 1i i
w wP P+ ≤ .              ⁭ 
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