

ALGORITHM FOR ADAPTIVE GRID GENERATION USING

GALERKIN FINITE ELEMENT METHOD

by

MONALKUMAR PATEL

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN AEROSPACE ENGINEERING

THE UNIVERSITY OF TEXAS AT ARLINGTON

December 2009

Copyright © by Monalkumar Patel 2009

All Rights Reserved

iii

ACKNOWLEDGEMENTS

 I would like to express deepest gratitude for my supervising professor Dr. Brian Dennis

for his incredible support, patience and consistent guidance throughout my research work. I

would also like thank Dr. Guojun Liao and Dr. Mehmet Ali Akinlar for their invaluable support

and guidance to understand the basic concepts of grid deformation method and monitor

function utilized in my work. I also want to thank Dr. Kent Lawrence and Dr. Seiichi Nomura for

being part of my supervising committee members.

 I would like to recognize my CFD lab colleague and friend Harsh Shah for his valuable

support during my research work. He has provided me with really valuable suggestions and

insightful thoughts with my work. I would like to recognize Darshak Joshi and Kamal Chauhan

not only as CFD lab colleagues, but also for their valuable friendship and continuous support

throughout my work. I would also like to recognize my other CFD lab colleagues Dr. Rajeev

Kumar, Wei Han (Katie), Deval Pandya and Travis for their support and friendship.

 I am gratefully obliged to the SOAR-University Tutorial Department at UT Arlington for

providing me with a Graduate Assistantship to support my education. My sincere and personal

thanks to Robin Melton, Vivian Pham, Amy Fortlage, Beena and all my colleagues at SOAR for

their moral support and encouragement through this journey.

 Last but not least, I would like to acknowledge my parents Harikrishna Patel and

Kailasben Patel for their endless love, moral support, hard work and blessings. This work would

not have existed without their belief in me. A special word of appreciation goes to my younger

brother Krutagn for his encouragement and love.

November 24, 2009

iv

ABSTRACT

ALGORITHM FOR ADAPTIVE GRID GENERATION USING

GALERKIN FINITE ELEMENT METHOD

Monalkumar Patel, M.S.

The University of Texas at Arlington, 2009

Supervising Professor: Brian Dennis

 The adaptive grid concept is developed in order to achieve more accurate and

stable results for the numerical simulations of Partial Differential Equations (PDEs). There are

two main types of strategies used for adaptive grids: local refinement by increasing the number

of elements (h-refinement) and deforming grids where the number of elements remains fixed (r-

refinement) [2]. The h-refinement method requires inserting additional elements and nodes in a

certain region of the mesh. This significantly affects the software data structure and makes

programming more difficult. To maintain the same data structure, the method must delete the

same number of nodes from another region. Again, this complicates the program. However, the

deforming grid method works by simply moving the nodes of an existing mesh. The proposed

method formulates this deformation as an unsteady problem where the position of the nodes

can be determined from their velocities. For each time step, the node movement is controlled by

a user defined error indicator or user desired target node distribution. The number of nodes and

elements remains constant for each time step and this greatly simplifies the program structure

compared to the r-method. During the deformation process, the element shape changes to

achieve the desired distribution and solution accuracy at each time step. The current research

v

work focuses on the development of the algorithm for unstructured meshes and its application

to the solution of unsteady elliptic PDEs solved by finite element (unstructured). The successful

development of the Adaptive Grid Generation is achieved with the implementation of Galerkin

Finite Element Method on Grid Deformation Method for unstructured and the results are

validated with the structured grids results. It is also implemented on few model fluid problems.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ..iii

ABSTRACT ... iv

LIST OF ILLUSTRATIONS... viii

LIST OF TABLES .. ix

Chapter Page

1. INTRODUCTION……………………………………..………..….. 1

2. ADAPTIVE GRID BY GRID DEFORMATION METHOD ... 4

2.1 Introduction... 4

2.2 Grid Deformation Method ... 4

2.1.1 Grid Deformation Method Version 1 .. 4

2.1.2 Grid Deformation Method Version 2 .. 6

2.1.3 Grid Deformation Method Version 3 .. 7

2.3 The Monitor Function ... 9

3. THE FINITE ELEMENT METHOD AND ITS IMPLEMENTATION TO

ADAPTIVE GRID GENERATION ... 12

3.1 Overview: Finite Element Method .. 12

3.1.1 Method of Weighted Residuals .. 13

3.2 The Galerkin Finite Element Method ... 14

3.3 Numerical Implementation of Galerkin FEM to Grid Deformation

Method ... 17

3.3.1 The div-curl System ... 17

3.3.2 Galerkin FEM formulation to solve 2D Poisson Equation 19

vii

3.3.3 Boundary Condition Treatment .. 21

3.4 Solution of ODE ... 22

4. VALIDATION OF THE CODE AND NUMERICAL RESULTS...................................... 24

4.1 Adaptive Grid Code .. 24

4.1.1 Input Parameters .. 24

4.1.2 Adaptation of Grid .. 24

4.1.2 Output from the Program ... 25

4.2 Validation of the Code .. 25

4.2.1 Case I: Grid Refinement around sine Wave Curve 25

4.3 Numerical Example .. 29

4.3.1 Cluster the Grid around Circle ... 29

4.3.2 Heat Equation Solution using Adaptive Grid 32

5. SUMMARY AND FUTURE RECOMMENDATIONS .. 36

5.1 Concluding Remarks .. 36

5.2 Scope of the Future Work .. 36

APPENDIX

A. SHAPE FUNCTIONS, ELEMENTAL STIFFNESS MATRIX AND FORCE
VECTOR USED FOR LINEAR TRIANGULAR ELEMENT .. 38

B. NORMALIZATION OF MONITOR FUNCTION FOR LINEAR

TRIANGULAR ELEMENTS .. 42

REFERENCES ... 46

BIOGRAPHICAL INFORMATION .. 48

viii

LIST OF ILLUSTRATIONS

Figure Page

3.1 Roadmap for Adaptive Grid Generation using GFEM .. 23

4.1 Adaptive Grid at time t=0 (Unstructured) ... 26

4.2 Adaptive Grid at time t=0 (Structured) ... 26

4.3 Adaptive Grid at time t=0.5 (Unstructured) .. 27

4.4 Adaptive Grid at time t=0.5 (Structured) .. 27

4.5 Adaptive Grid at time t=1 (Unstructured) ... 28

4.6 Adaptive Grid at time t=1 (Structured) ... 28

4.7 Adaptive Grid for Circle at Initial time t=0 ... 30

4.8 Adaptive Grid for Circle at time t=0.5 ... 30

4.9 Adaptive Grid for Circle at final time t=1 .. 31

4.10 Adaptive Grid for Circle with different Intensity of Adaptation .. 32

4.11 (a) Unstructured grid with linear triangular elements (b) Temperature
distribution using linear triangular element grid as shown in (a) .. 33

4.12 (a) Unstructured grid with quadratic triangular elements (b) Temperature

distribution using quadratic triangular element grid as shown in (a) 33

4.13 (a) Unstructured grid with adaptive grid around the center section (b)

Temperature distribution using adaptive grid around center as shown in (a) 34

A.1 2D Linear Triangular Element39

B.1 2D Linear Triangular Element for Normalization Factor .. 44

ix

LIST OF TABLES

Table Page

3.1 The Methods produced by choices of the Weighting function [15] .. 14

1

CHAPTER 1

INTRODUCTION

 In field of Computational Fluid Dynamics (CFD) and Finite Element Analysis (FEA),

physical problems can be solved by modeling it to the system of the Partial Differential

Equations (PDEs). The solution of these PDEs can be found either analytically or numerically. It

is very challenging to find the analytical solution for system of PDEs governing the physical

phenomenon, such as, heat transfer problems, shock wave problems and boundary layer

problems; therefore numerical solution of the PDEs is encouraged and the available

computational technology makes it much faster to obtain.

 The numerical solution of the PDE is dependent on grid generation for the given

domain. The inappropriate grid generation can result in the unstable and inaccurate solution of

the PDE. There are two types of grids available: structured grid and unstructured grid. In

structured grid the nodes are distributed in structured fashion and each node is shared by the

same number of the elements for the entire domain. The unstructured grid has random node

distribution over the domain and each node is not shared by the same number of elements or

we can say it say irregular element connectivity. The structured grids are useful for simple

geometries and problems with no sudden variations during the solution. The unstructured grids

are better choice than the structured grids as it provides more accurate and stable numerical

solutions for complex geometries although they require complex data structure than structure

grids. The structured or unstructured grids remain fixed (static) and the number of nodes is not

changed throughout the computation. These static grids are not able to acquire accurate and

stable results for the PDEs having sudden solution variations, such as boundary layer

formation, flow separation or shock waves. To achieve more stable and accurate results for

2

such numerical simulations of the partial differential equations (PDEs), the adaptive grid

concept has been used in the last three decades[3].

 There are main two types of strategies used to achieve adaptive grids: local refinement

of the grid and deformation of the grid (also known as moving grid) [2]. The unique goal of the

both strategies is to generate the fine grid over the region where the partial differential

equations (PDEs) show the large solution variations and, generate coarse grid where solution is

comparatively stable. Local refinement of the grid is achieved by inserting additional nodes

and/or elements in certain region(s) of the grid where we need fine grid, and removing the same

number of the nodes and/or elements from the region(s) where we need coarse grid. The

deformation of grid achieves same refinement as local refinement, but the only difference is, it

moves nodes closer to the certain region(s) where fine grid is desired, and nodes moves away

from each other to the region(s) where solution doesn’t impact much. The deformation of grid

works without changing number of nodes or element connectivity over the domain.

 There are two main local refinement methods developed over the last couple of

decades: h-refinement method and p-refinement method [2]. The h-refinement method works on

insertion and elimination of the nodes, which significantly affects the data structure and makes it

complex for the programming. It also requires higher storage memory and longer computational

time. The p-refinement method works by changing the order of the basic polynomial function as

per requirement during the computational time. These local refinement methods showed

popularity when they are used with the Finite Element Method (FEM) to solve the PDEs

governed by physical problems.

A Moving Grid Finite Difference Method [3] is one of the techniques available for grid

adaptation which works on the r-refinement strategy. The moving grid finite difference method is

also known as the Grid Deformation Method developed by G. Liao and D. Anderson [4], which

works on the idea of the Moser’s deformation method [3]. This method was improved by G.

Liao, T. Pan and J. Su in [6]. The Grid Deformation Method formulates the deformation as an

3

unsteady problem where the position of the nodes can be determined from their velocities. For

each time step, the node movement is controlled by a user defined error indicator or user

desired target node distribution. This user define error indicator is known as “monitor function” in

this method. The number of nodes and elements remains constant for each time step and this

greatly simplifies the program structure compared to local refinement methods. It also requires

less computational time as compared to the local refinement methods.

In the present work, Grid Deformation Method is utilized. The grid deformation method

deforms the grid at certain desired region due to movement of the nodes. This nodal movement

happens due to the vector field generated by the solution of div-curl system of the PDE. The

present work focuses on application of this Grid Deformation Method to the unstructured grids

and solution of unsteady elliptic PDEs using Finite Element Method (FEM).

The roadmap of this thesis is, chapter 1 reviewed over the adaptive grids and the

techniques available to achieve these grid deformation. The chapter 2 describes about the

adaptive grid generation by Grid Deformation Method and the construction of the monitor

function for appropriate grid refinement. The chapter 3 talks about the Galerkin Finite Element

Method and the numerical implementation of it in the Grid Deformation Method. The chapter 4

describes the validation of the code and some more numerical examples with the use of this

grid adaptation technique. Finally, chapter 5 outlines the summary of the work and future

recommendations.

4

CHAPTER 2

ADAPTIVE GRID BY GRID DEFORMATION METHOD

2.1 Introduction

 As we have discussed in the previous chapter the Grid Deformation Method developed

by G. Liao and D. A. Anderson [4] is one of the moving grid methods available for the grid

refinement. This method works on the movement of the nodes to certain desired region by

providing them appropriate velocity and the element connectivity remains constant throughout

the computation. This method was used for steady Euler flow calculations as well [7].

 There are three versions available for this Grid Deformation Method and they are

described with details in [8,9]. The “monitor function” is important parameter to achieve proper

grid refinement in this method. It can be constructed on the gradient of solution or error

indication from the solution. We will talk about the monitor function in later part of this chapter.

2.2 Grid Deformation Method

2.2.1 Grid Deformation Method Version 1

 This is the very preliminary version of the grid deformation method, which has steady

features in it. This method works in following steps as outlined in [8]. This method applies the

adaptation on the old grid.

 The first step in this method is to construct the monitor function  (see section 2.3 of this

chapter for the details of monitor function).

 This monitor function is normalized in this method such as it satisfies the following

condition over the domain Ω.

5

0)1( df , (2.1)

Where,  is the normalized monitor function for the domain Ω. For 2D case Ω would be

the area and in 3D case it would be volume of the domain.

 Now, to achieve the grid refinement we have to find the transformation function 


 such

that,

fJ )(


 (2.2)

Where,)(


J is Jacobian determinant of the transformation function 


 To find this transformation function 


, this method uses the div-curl equation system to

find the velocity field)x(


u as following.

1)x(


fu in Ω (2.3)

 on 0n̂u


 (2.4)

 From the solution of equation (2.3) using the boundary condition as equation (2.4) we

can have the velocity field u


. Now, this velocity field can be used to find

 1t0
)x()1(

)x,(


 




ftt

u
th (2.5)

 The equation (2.5) is used to form the deformation ordinary differential equation (ODE)

as follows and which can be solved using the initial condition as)x,()x,(1


 kk tt 

1t0))x,(,(




tth
dt

d



 (2.6)

It has been proved by J. Liu [9] with mathematical theorem, that the transformation

function found from the equation (2.6) meets the criteria defined in the equation (2.2)

6

2.2.2 Grid Deformation Method Version 2

 This is also preliminary version of the grid deformation method, which has steady

features in it. In this method the Jacobian determinant is specified to the new grid coordinates

before grid refinement occurs. This version of the method has identical first steps as we have

discussed in the previous version of this method. The following steps show the remaining

procedure to achieve desired refinement of the grid using this version and it is outlined in details

in [8].

 This monitor function is normalized in this method such as it satisfies the following

condition over the domain Ω.

01
1









 d

f
 or  f

1
 (2.7)

Where,  is the normalized monitor function.

 In this version also we have to find the transformation function 


such that it will satisfy

the equation (2.2).

 Now, this version uses the following div-curl equation system to find the velocity field

)(xu


,

 on
)x(

1
1 



f
u (2.8)

 on 0n̂u


 (2.9)

 Compute the velocity field)x(


u by solving equation (2.8) and (2.9). Now, this velocity

field can be used to find

1t0

)1(
))x,((

1

)x(
))x,(,(





t
tf

t

u
tth








 , (2.10)

7

 The equation (2.10) is used to form the deformation ordinary differential equation (ODE)

as follows and which can be solved using the initial condition as)x,()x,(1


 kk tt  ,

as described in the version 1 of the grid deformation method.

2.2.3 Grid Deformation Method Version 3

 This is most recent version of the grid deformation method, which is real time grid

adaptation version. This version of the method also uses the monitor function like its previous

two versions. This version of the method uses the same normalization conditions for the monitor

function as used in the second version of this method. This method has difference in the div-curl

system and solution of it. This method is used for the present work with little modification in the

solution technique using Galerkin Finite Element Method. The following steps show that how the

div-curl system has been formed and solved for the third version of the grid deformation

method.

 As we have previously discussed in first version and second version, the monitor

function is formed with the use of the gradient of solution or error of the solution and it is

normalized in such a way that it would satisfy the condition described in equation (2.7).

Here, the monitor function is)x,(


tf , where x


represents the vector for the nodal

coordinates. Thus, the monitor function in this version is function of space (nodal

displacement) and time.

 To find the transformation function 


, we use the following div-curl system of the

equation to evaluate the velocity field)x(


u ,













 on

1

ft
u


 (2.11)

)0(or on 0ˆ  unu


 (2.12)

8

To solve this div-curl system, it has been assumed that u


=. So, if we substitute this

assumption into the equation (2.11), it becomes













 in

1
)(2

ft
 (2.13)

The equation (2.12) becomes, 0ˆ  n on  (2.14)

The equation (2.13) can be rewritten as the 






















ftyx

1
2

2

2

2 
 in Ω, which is the

scalar Poisson equation if we consider the right hand side term as the source term in it. Now, in

this version, this Poisson equation is solved using the iterative finite difference solution methods

such as Successive Over Relaxation method (SOR) with appropriate relaxation factor in [10].

 The value of  is obtained by solving the above scalar Poisson equation. Now, this  is

used to calculate the velocity field by substituting the value of  back in the assumption

u


=. Thus,
x

u






 &

y
v







. Where, u is x-component of the velocity field and

v is y-component of the velocity field.

 Here, the ODE would be formed as follows,

)x())x,(,(
)x,(

uttf
dt

td



 (2.15)

or it can be rewritten as,

fu
dt

dx
 & fv

dt

dy
 in terms of the nodal coordinates for 2D domain.

 The last step is the same for this version, as like previous two versions to solve the

ordinary differential equation with the initial condition same as described in the first

version.

9

The third version of grid deformation method is used in our work and the all three

versions of this grid deformation method repeats the steps described above until the final

adapted grid is generated.

2.3 The Monitor Function

We have talked about Grid Deformation Method in the section 2.2, the monitor function

is very important parameter for appropriate grid adaptation as it controls the movements of

nodes throughout computation. So, care must be taken while we choose the monitor function.

There are several ways to form the monitor function such as from the gradient approximation of

solution during computation, error calculations. D. A. Anderson used equidistribution principle

[11] to form this monitor function. G. Liao and De la Pena used the equidistribution principle

over the domain to construct this monitor function (See [10] for more details). As it is outlined in

[10], if we have some positive error estimator or gradient approximation of the property that

could be responsible for the rapid change in the solution or large variation during intermediate

computation time step),,(tyx , the monitor function  can be constructed as

),,(
),,(

tyx

C
tyxf


 (2.16)

where, C is the normalization factor such that it satisfies the following relation for each time

step during the computation (as we consider the third version of grid deformation method),












 01

),,(

1
d

tyxf
 or 


),,(

1

tyxf
 (2.17)

where,  is the volume of the domain (area in 2D). The monitor function  has some distinct

properties like it is small in the region where gradient or error in solution is large and it is large in

the region where gradient or error in solution is small. This property of the monitor function

leads the nodes pulled towards the region with large error or gradient of solution and pulled

10

away from the region with small error or gradient of solution. Thus, it starts adapting the grid in

the desired region where the solution changes rapidly. There is theorem presented by De la

Pena in [10], proves that this grid deformation with finite difference method ensures that the grid

will not fold onto itself throughout computation and adaptation of the grid.

 As we have talked in previous section, monitor functions are constructed from the use

of equidistribution principles. The equidistribution principle works on the assumption that

residuals, truncation errors and posteriori error estimates (if available during computation) are

equally distributed all over the domain and they are equally weighted [11]. The following are

some examples of monitor functions which can be constructed from the solution during

computation (i.e. gradient of solution).

If we want to construct the monitor function that can be used for the heat problems,

TC

C
f




21

1
 (2.18)

Where, 1C is the normalization factor and can be calculated from the normalization of

the monitor function and 2C is the constant for adaptation intensity and the gradient of the

temperature is T .

If the flow that can produce the shock wave during the solution the monitor function can be

constructed as,

2
21

1

PC

C
f


 or

MC

C
f




21

1
 (2.19)

 Where, P is the pressure and M is the Mach number for the given flow conditions. 1C

and 2C are the normalization factor and grid adaptation intensity constant respectively. We

can construct the appropriate monitor function using the parameter responsible for the rapid

change in solution during the computation using the equidistribution principles like above.

11

 The following example of the monitor function is constructed using some variable of

interest from solution and to make it better the gradient of that variable as well as the second

derivatives of the variable are also included. For example, equation (2.20) shows the monitor

function constructed for some unknown variable of interest v , such as in [10],

222
1 vvv

f






 (2.20)

Where,,  and  are the grid adaptation intensity constants for v , v and

v respectively.

 The monitor function  can also be constructed for the interface grid adaptation

problems or known shape geometry problems using the signed distance function d which can

be find using the level set deformation method as described in [10].

12

CHAPTER 3

THE FINITE ELEMENT METHOD AND ITS IMPLETMENTATION

TO ADAPTIVE GRID GENERATION

 The Finite Element Method is popular to solve fluid dynamics problems lately because

of its consistency to form mathematical formation and computer programming over the finite

difference and finite volume method. It is also capable to handle the complex geometry

problems which are sometimes difficult to handle with the finite difference schemes.

 3.1 Overview: Finite Element Method

The finite element method is based on classical variational approach (i.e. Ritz method)

and weighted-residual method to solve the differential equation [12]. The general idea behind

these methods is to solve the differential equation in two steps. First we form the governing

equation into equivalent weighted-integral form and later on approximate the solution for the

whole domain with having an assumption that solution would be linear combination of the

assumed approximate functions (iN) and undetermined coefficients (ic). These undetermined

coefficients ic are calculated such that they satisfy the differential equation in weighted-integral

sense. The appropriate approximate functions iN should be chosen to satisfy the given

boundary conditions for the problem. This traditional variational weighted-residual approach has

drawback of forming the approximation function that satisfy boundary conditions for real-world

problems with complex geometries and different boundary conditions for different regions of the

whole domain. Thus, the finite element method is originated with idea of dividing the whole

domain into finite number of “sub-domains” which are simple geometrical shapes like triangles

or quadrilaterals also known as finite elements.

13

 It is comparatively easy to generate the systematic approximation functions iN , which

satisfy boundary conditions for the finite elements instead of whole domain by use of either

variational method or weighted-residual method. These approximate functions for the finite

elements are generally formed using interpolation theory or the geometrical shape of finite

elements so they are also known as the “interpolation functions” or “shape functions”.

 The following steps show general procedure to solve the problem using finite element

method as described in [12, 13, 14].

 Discretize the domain into set of finite elements (grid generation).

 Weighted-integral or weak formulation of the differential equation.

 Develop the finite element model for the physical problem using this weak form or weak

statement.

 Assemble all the finite element equations to obtain the global system of algebraic

equations.

 Apply appropriate boundary conditions.

 Solve this global system of algebraic equations (use direct solution method or iterative

solution method).

 Visualization of the results and post processing for the important parameters of the

physical problem.

3.1.1 Method of Weighted Residuals

 As we have seen in the section 3.1, the Method of Weighted Residuals (also known as

MWR) works in two steps. The first step is to find the approximation function that satisfies

boundary condition for the finite elements which is equivalent to the physical boundary

conditions. When we substitute this approximate solution into differential equation it may result

in some residuals. This residual needs to be minimized or vanished during the solution process

over the domain. The second step for this method is to solve the equations in such a way that

the residual from the first step would almost vanish or becomes zero. The following table shows

14

the list of the available methods with the choice of the interpolation functions iN and weighting

functions iw .

Table 3.1 The Methods produced by choices of the Weighting function [15]

Weighting Function,)(xwi Method

)()(ii xxxw  Collocation












 inside

 inside

i

i

i xw
0

1
)(

Finite Volume

(Subdomain)

i

i
u

R
xw

ˆ
)(






Least-Square

i

i xxw )(Method of Moments

)()(xNxw ii  Galerkin

)()(xxw ii  Petrov-Galerkin

The MWR methods most probably used to formulate the Galerkin Finite Element

Method as the weighting function is chosen as same as the interpolation function or

approximation function (i.e.)()(xNxw ii ).

3.2 The Galerkin Finite Element Method

We have seen in the MWR methods (table 3.1), the Galerkin finite element method

works on the basis that weighting functions for this method is same as the interpolation

functions i.e.)()(xNxw ii  . The approximate solution is expressed in form of the linear

combination of undetermined coefficients and these approximation functions)(xNi . Now, to

15

illustrate this method in detail let us take an example of the 1D Poisson Equation as outlined in

[13] with the boundary conditions as follows,

)(
2

2

xf
dx

d



 (3.1)

with the boundary conditions as, 1)(1 Ax  , 2)(2 Ax  . Where, 1x and 2x are the boundary

points. To find the solution using this Galerkin FEM method we follow the same procedure as

we described in the section 3.1. Now, to start with solution first we approximate the analytical

solution)(x by)(
~

x , which could be represented in the form of interpolation functions as

follows.





n

i

ii xN
1

)(
~

 (3.2)

where, n is the number of nodes per element. As we move to the next step for the solution

procedure, apply the weighting function to the equation (3.2) and form its integral form as

follows,

0)(

~

)(
2

1
2

2









 dxxf

dx

d
xN

x

x
i


 (3.3)

where, 1x and 2x are the starting and end points (boundary points) of the linear element

respectively. Now, by using the integration by parts for the equation (3.3) we have,

 
2

1

2

1

2

1

0)()(

~~
x

x
i

i
x

x

x

x

i dxxNxfdx
dx

dN

dx

d

dx

d
N


 (3.4)

The equation (3.4) is known as the weak form of the equation (3.3). Now, let us use the

equation (3.2) into the equation (3.4) we will have,

 )(

1

~
ei

i

n

i

i

dx

dN

dx

dN

dx

d















 (3.5)

16

where,  )(e
 is the column vector for the elemental nodal unknowns. Now, we know that

 must have
1C continuity in the original boundary value problem as must 

~
in the integral form

of the Galerkin method showed in equation (3.3). In the weak form requirement the continuity is

reduced to
0C from

1C for the 
~

. Now substitute the equation (3.5) into the weak form of the

differential equation (i.e. equation (3.4)) and with rearrangement of some terms,

   






 2

1

2

1

2

1

)()(

~
)(x

x
i

x

x

i

ei
x

x

i dxxNxf
dx

d
Ndx

dx

dN

dx

dN 
 , 2,1i (3.6)

As it is linear element, it has only two nodes. The first term on the right-hand side of the

equation (3.6) represents the natural boundary conditions. It is applied to global level after the

assembly of the global matrix system for the domain. So, at the element level the system of

equation is

     )()()(eee
FeKe  (3.7)

In equation (3.7),

  dx
dx

dN

dx

dN
Ke i

x

x

ie

 









2

1

)(

  
2

1

)()(
)(x

x
i

e
dxxNxfFe

where,  )(e
Ke and  )(e

Fe are elemental stiffness matrix and elemental force vector respectively.

Here, the elements are linear for 1D so, there are only 2 nodes for each element. So, the

elemental stiffness matrix and elemental force vector would be

  dx

dx

dN

dx

dN

dx

dN

dx

dN
dx

dN

dx

dN

dx

dN

dx

dN

Ke
x

x

e



















2

1 2212

2111

)(
 and   dx

fN

fN
Fe

x

x

e











2

1
2

1)(
 (3.8)

17

These elemental stiffness matrix and elemental force vectors are used to form the global

stiffness matrix and global force vector by assembling it for all elements of the domain. The

boundary condition term in the equation (3.6) would cancel at all interior nodes of the domain

during global assembly of the matrices. This global matrix system represents global system of

algebraic equation and afterwards it can be solved by direct inversion of the matrix with

application of the appropriate boundary condition. We will see the numerical implementation of

this method in the following section for adaptive grid generation.

3.3 Numerical Implementation of Galerkin FEM to Grid Deformation Method

 In the present work, the algorithm to generate adaptive grid is formed on the basis of

grid deformation method third version as described in section 2.2.3 of chapter 2. This section

describes the mathematical implementation of Galerkin Finite Element Method to generate

adaptive grids with the use of grid deformation method. The following subsections describe

systematic way to achieve new grid coordinates with application of Galerkin Finite Element

Method for grid deformation method.

3.3.1 The div-curl System

 The original div-curl system is given as follows from the third version of grid deformation

method,















ft
u

1
 in Ω (3.9)

0 u


 (3.10)

This system of equation can be rewritten as follows for 2D case. Let’s take u and v as the x-

component and y-component of the velocity field u


.

 Thus, jviuu ˆˆ 


18

The equation (3.9) becomes, 






















fty

v

x

u 1
 (3.11)

The equation (3.10) can be broken down to 0









y

u

x

v
 (3.12)

The boundary condition is 0ˆ nu


 (3.13)

In this algorithm we solved the div-curl system represented in equation (3.11) and equation

(3.12) with reformation as following,

Let us say 













ft

1
 (3.14)

Now, substitute the equation (3.14) into the equation (3.11) and differentiate it with respect to x

xyx

v

x

u













 2

2

2

 (3.15)

Let, differentiate equation (3.12) with respect to y , we have

0
2

22











y

u

xy

v
 (3.16)

Now subtracting the equation (3.16) from equation (3.15) we have,

xy

u

x

u














2

2

2

2

 (3.17)

which is similar form of the scalar Poisson Equation for u with the right hand side is space

dependent. Similarly, the Poisson Equation for v can be obtained by differentiating the

equation (3.11) with respect to y and then adding the differentiation of the equation (3.12) with

respect to x ,

yy

v

x

v














2

2

2

2

 (3.18)

19

The equation (3.17) and equation (3.18) are same as the div-curl system of equations defined in

the equation (3.9) and equation (3.10) with boundary conditions as 0ˆ nu


. By solving

equation (3.17) and equation (3.18), we can directly have velocity field for the given domain. To

solve these two Poisson Equations in 2D, Galerkin FEM method is used. The following section

describes the Galerkin FEM method formulation for these two equations.

3.3.2 Galerkin FEM formulation to solve 2D Poisson Equation

 This section of chapter talks about the solution of 2D Poisson equation with the use of

Galerkin Finite Element Method. The equation (3.17) and equation (3.18) are almost identical

and having same Dirichlet boundary conditions. The Neumann boundary conditions are applied

to different boundaries for x-component of velocity and y-component of velocity. Thus, we will

take one of these two equations for demonstration and repeat same procedure for the other

one. Let’s consider the equation (3.17) ,

x
u




2

Now, apply Galerkin method to the above 2D Poisson equation,

02 














x

uw (3.19)

Now, with the use of integration by parts,





  



d
x

wudwuwn)(ˆ (3.20)

Now Galerkin FEM method uses same weight function as the approximation function, i.e. we

can have 



n

i

ii Nuw
1

, 



n

i

ii Nuu
1

and 



n

i

ii N
1

(n is the number of nodes in element).

The final variational form can be written as after the Neumann boundary condition (the velocity

in normal direction is zero at x-direction boundaries for u or 0ˆ nu


) applied to the equation

(3.20),

20





  

d
x

wudw (3.21)

The equation (3.21) can be rewritten as follows in matrix form,

     )()(ee
CXuK  (3.22)

Where,        dNNK
T

 (3.23a)

     











  d

x

N
NCX

T

 (3.23b)

 The formulation of the equation (3.18) would be exactly same as the formulation

described above. The following equations shows the final weak form and matrix form for

equation (3.18)





  

d
y

wvdw (3.24)

The equation (3.24) can be rewritten as following in matrix form,

     )()(ee
CYvK  (3.25)

Where,        dNNK
T

 (3.26a)

    











  d

y

N
NCY

T

 (3.26b)

In equation (3.22) and equation (3.25), the value of  can be found explicitly from its

assumption made in the equation (3.14). The Appendix B shows the normalization of monitor

function for linear triangular element. Here, Euler forward difference scheme is used in time to

find value of  , using the Normalized monitor function  , as following formula,


























t

ff nn

11
1

 (3.27)

21

We need to note that the value of  is negative in the equation (3.27) and which will cancel out

the negative sign on the left hand side of the equation (3.21). The equation (3.23a) and

equation (3.26a) are known as the elemental stiffness matrices and they would be used to

construct global stiffness matrices by assembling all other elemental stiffness matrices. The

equation (3.22) and equation (3.25) are solved in MATLAB with the use of invert matrix method

with the application of appropriate Dirichlet boundary condition. See the Appendix A for details

of shape functions, elemental stiffness matrices and elemental force vectors used for linear

triangular elements.

3.3.3 Boundary Condition Treatment

 To solve this Poisson equation we need to apply boundary conditions. There are main

two types of boundary conditions needed to make it well posed problem: Neumann (Natural)

Boundary condition and Dirichlet Boundary Condition. As we have seen in the previous section,

the Natural boundary condition is automatically applied during the Galerkin finite element

formulations. So, now we need to apply the Dirichlet boundary conditions in order to solve

system of algebraic equations.

In our case the problem is posed such that all the boundary nodes remain stick on the

boundary throughout the computation. Thus, the boundary nodes are allowed to have tangential

velocity but not the normal velocity. The normal velocity of the boundary nodes are fixed as zero

by applying the Neumann boundary conditions. The corner nodes are on both x-direction and y-

direction boundaries, so they need to be fixed in both directions (i.e. tangential and normal

velocity for them are zero). Thus, when we solve for the global system of algebraic equations

we can treat this requirement as our Dirichlet boundary condition to solve the problem. We are

solving the matrix form obtained in equation (3.22) and equation (3.25) by enforcing the

boundary condition as all the corner nodes are fixed.

22

3.4 Solution of Deformation ODE

 The above section describes that how to implement Galerkin finite element method to

solve 2D Poisson equation formed with the use of the div-curl system. So, at the end of above

step we already found the velocity components (i.e. u and v) for each node. To find new

locations of nodes we need to form the ordinary differential equation (ODE). Here, we can form

directly two ODEs as follows,

fu
dt

dx
 (3.28a)

fv
dt

dy
 (3.28b)

 The equations (3.28a) and (3.28b) can be solved using Euler’s first order method or

Runge-Kutta method (either 2
nd

 order or 4
th
 order as per accuracy requirement). Here, we used

Euler’s first order method to solve these ODEs. The formulation is as follows,

fudtxx n

i

n

i *1 

fvdtyy n

i

n

i *1 

Where,
1n

ix and
1n

iy represent the new node coordinates for i th
node at)1(n th

 time step

and similarly
n

ix and
n

iy are the coordinates of node at)(n th
 time step.

 The procedure described in this chapter can be represented as the following flow chart

and it could be repeated for the sufficient number of time steps to achieve the desired

refinement (adaptation) of the grid. This procedure can be terminated when desired grid

refinement achieved or the time can be defined in proportion of actual governing equation’s time

step.

23

Define the monitor function and Evaluate (only if it’s not

dependent on solution or error)

Normalize the monitor function using appropriate

normalization criteria

Solve the Poisson equations (eq 3.17 & 3.18) to find the velocity

components using Galerkin FEM with proper Boundary Conditions

Solve the Ordinary Differential Equations to obtain new coordinates (Eq.

3.28a and 3.28b) Use Euler’s method or RK-2/4 order method

Replace these new coordinates with the previous time step coordinates

Desired grid

Adaption resulted ?

Adaptive Grid

Generated

YES

NO

 Figure 3.1: Roadmap for Adaptive Grid Generation using GFEM

24

CHAPTER 4

VALIDATION OF THE CODE AND NUMERICAL RESULTS

 The present chapter discusses the construction and validation of the code developed

using the Galerkin Finite Element Method (GFEM) to generate the adaptive grid around region

of interest inside domain as we have discussed in the chapter 3.

4.1 Adaptive Grid Code

 The code is developed with use of MATLAB. It is capable of generating 2D adaptive

grids for specified monitor function. A moving grid to this adapted grid is added as extra feature

to this code.

4.1.1 Input Parameters

 This code needs the initial grid data (i.e. Nodal coordinates and Element connectivity)

as input parameter. This work used initial grid data as grid generated from GAMBIT

(commercial grid generation package). We can generate our own grid to consider as input grid

data but it would be easier if we want to start with structured grid. The unstructured grid

generation is bit difficult and takes much time so, we directly use it from the commercial grid

generation packages and use the grid data for our work.

The code also requires the monitor function to be defined. Here, we used the model

cases to validate the code and for that the monitor function is constructed on the basis of the

distance function d which was used from the reference [10]. This code defines monitor function

as a separate function file.

4.1.2 Adaptation of Grid

This part of the code solves two scalar Poisson equations as formed in the previous

chapter with using boundary condition as also discussed in the previous chapter. The result of

25

these Poisson equations gives two components of the velocity field (u and v). Now, these

components are used to solve two ordinary differential equations (ODEs) to find the new nodal

coordinates. As described in the chapter 3, these ODEs are solved by using the forward Euler

scheme in time with same size of time-step used to solve Poisson equations. Thus, we have

new coordinates at the end of this part of code and they would be replaced as new coordinates

for next time step before we move on to output part of the code.

4.1.3 Output from the Program

 The output from this program is generated as Tecplot file format with grid adapted in

the region of the large solution variation or region where we are interested to refine grid as per

requirement. The new node coordinates file could be also generated as the program output if

we need it to use for real flow problems. The result Tecplot file is visualized using Tecplot 9,

which is available at Computational Fluid Dynamics (CFD) lab at The University of Texas at

Arlington.

4.2 Validation of the code

4.2.1 Case I: Grid Refinement around sine Wave Curve

To validate the code for adaptive grid generation, the example is taken with use of

uniform grid for 27 x 27 (729 nodes) over domain of [0,1] x [0,1] and the grid is clustered around

sine wave curve with the use of following d and monitor function as used in [10].

)2sin(
4

1

2

1
xd  10  t

 
 






















21.01

1.0)1()(73.0

1.0)1()(73.0

1.001

yd

dydttdy

dydttdy

dy

f

26

The grid is clustered around the sine wave in time 0 to 1 with using grid deformation

method and the div-curl system solved using finite difference method (SOR method was used).

The initial unstructured grid is created in GAMBIT with having almost same number of nodes

(753 nodes) as in structured grid over the same domain [0,1] x [0,1]. The figure 4.1 and figure

4.2 shows initial grid for the unstructured grid and structured grid respectively.

x

y

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4.1: Adaptive Grid at time t=0 (Unstructured)

x

y

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4.2: Adaptive Grid at time t=0 (Structured)

27

 The figure 4.3 and figure 4.4 shows comparison between unstructured grid deformation

using present work and the grid deformation using finite difference method for structured grid as

demonstrated by De la Pena in [10] at total time t=0.5. Here, the time step size is kept same for

both cases to validated results. From the figures we can verify that the results are pretty much

in agreement at present total time t=0.5.

x

y

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4.3: Adaptive Grid at time t=0.5 (Unstructured)

x

y

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4.4: Adaptive Grid at time t=0.5 (Structured)

28

x

y

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4.5: Adaptive Grid at time t=1 (Unstructured)

x

y

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4.6: Adaptive Grid at time t=1 (Structured)

29

 The figure 4.5 shows final adapted or clustered grid around sine wave curve at final

time step t=1 using present work. The figure 4.6 represents final clustered grid using finite

difference method for structured grids. The comparison of both figures validates that present

work gives almost same results as derived with use of finite difference method to solve div-curl

system by De la Pena in [10].

4.3 Numerical Example

4.3.1 Cluster the Grid around Circle

 This example shows the demonstration of adaptive grid generation by showing the grid

refinement at final time around particular region. Here, for shake of simplicity we clustered the

grid around circular shape with a center (0.5,0.5) and radius of 0.15. The initial grid used is

exported from GAMBIT and having 753 nodes and 1404 elements over the domain of [0,1] x

[0,1]. The final time is defined as 1 and the time step size used is 0.1 for the adaptation. The

monitor function used here is constructed using the distance function d defined [10] as follows,

222)()(rbyaxd 

Where,),(ba is the center coordinate of circle and r is the radius of circle.),(yx is the

coordinates for node. Thus, it finds distance of each node from the center of circle and then use

the following real-time monitor function in order to refine grid in desired region.

















10

100 9101

0 1

2

1

. dc

.d d).t(t

 d tct

f

where, 1c and 2c are size controlling parameters for grid adaptation intensity and they can be

decided manually by using trial-error method as per refinement requirement. 1c controls

intensity of grid adaptation inside the boundary region and 2c controls intensity of grid

30

adaptation outside the boundary region. The following results shows with the value of 1c =0.3

and 2c =1.2.

x

y

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4.7: Adaptive grid for circle at initial time t=0

x

y

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4.8: Adaptive grid for circle at time t=0.5

31

x

y

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4.9: Adaptive grid for circle at final time t=1

The figure 4.7 shows initial grid used to adapt the circle with above mentioned center

and radius. This grid was exported from GAMBIT and grid data are used as input for present

grid adaptation code. The figure 4.8 shows adaptive grid for clustering around the circle at total

time =0.5. It is clearly visible that center nodes stared refining towards circular region and its

outer boundary. The figure 4.9 shows adapted grid at final time step of the prescribed time for

adaptive grid generation. Here, we can clearly see that the grid is adapted in circular region and

the circular boundary shows fine refinement as per appropriately chosen 1c and 2c . We can

change this refinement by changing the 1c and 2c values. The figure 4.10 is one of the

examples of such change in grid adaptation intensity.

32

x

y

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 Figure 4.10: Adaptive grid for circle with different intensity of adaptation

The parameters used to generate adaptive grid shown in figure 4.10 are as follows,

Center coordinates = (0.75,0.5)

Radius of the circle = 0.1

1c = 0.1

2c = 1.2

4.3.2 Heat Equation Solution using Adaptive Grid

 This section demonstrates use of this adaptive grid to solve the steady state heat

equation with constant source term Q=10. In this part first, adaptive grid is generate over the

given domain [0,1] x [0,1]. The initial grid is generated in GAMBIT with the 136 nodes and 234

elements for triangular shape elements. The grid is clustered around the center region of this

linear triangular mesh. The final grid data is used to solve the steady state heat equation and

33

results are compared with solution of the steady state heat equation using same initial grid

without adaptation as well as the same size of grid generated using quadratic triangular

elements. The figure 4.11(a) shows initial grid using linear triangular elements and the figure

4.11(b) shows temperature distribution over the domain with use of grid shown in figure 4.11(a).

x

y

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Temp

10.6852

10.6395

10.5938

10.5481

10.5024

10.4568

10.4111

10.3654

10.3197

10.2741

10.2284

10.1827

10.137

10.0914

10.0457

(a) (b)

Figure 4.11: (a) Unstructured grid with linear triangular elements (b) Temperature distribution
using linear triangular element grid as shown in (a)

x

y

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Temp

10.6906

10.6446

10.5985

10.5525

10.5065

10.4604

10.4144

10.3683

10.3223

10.2763

10.2302

10.1842

10.1381

10.0921

10.046

(a) (b)

Figure 4.12: (a) Unstructured grid with quadratic triangular elements (b) Temperature
distribution using quadratic triangular element grid as shown in (a)

34

x

y

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Temp

10.6886

10.6427

10.5968

10.5509

10.505

10.4591

10.4132

10.3673

10.3214

10.2754

10.2295

10.1836

10.1377

10.0918

10.0459

(a) (b)

Figure 4.13: (a) Unstructured grid with Adaptive grid around the center section (b) Temperature
distribution using Adaptive grid around center as shown in (a)

The figure 4.12(a) shows grid using triangular quadratic elements (triangular element

with 6 nodes instead of 3). The figure 4.12(b) shows the temperature distribution with use of the

grid shown in figure 4.12(a). From the comparison of temperature distributions in figure 4.11(b)

and figure 4.12(b), it is clearly visible that the temperature distribution is very good with use of

quadratic triangular elements instead of linear triangular elements in the grid. The only

disadvantage to use these quadratic triangular elements is, as it has 6 nodes in each element it

makes programming complex. It is also complicated to formulate stiffness matrix during solution

process. Thus, quadratic triangular element grid requires more computation time than linear

triangular element grid for all other parameters remained fixed.

Now, we use adaptive grid for the same problem. We adapted grid around center of the

region (we can adapt grid around any region of interest. It was clustered at center just as an

example). The results with use of the adapted grids are shown in the figure 4.13(b) and the

adapted grid is shown in figure 4.13(a). Now, if we compare results from figure 4.13(b) and

figure 4.11(b), it shows that there is much more improvement in the temperature distribution

over the adapted region. If we compare these results with the temperature distribution obtained

35

with use of quadratic triangular element grid, we can conclude that it gives as much as efficient

result around adapted grid region although it doesn’t give that much good for the non adapted

region as in quadratic triangular element grid. This takes just little more time than the time

required to solve this problem without adaptation as presented in figure 4.11(a) & (b).

Thus, we can conclude that adaptive grid gives the same order of accuracy in

adaptation region as the grid with quadratic triangular elements at less computational time than

quadratic triangular element grid. The only possible limitation is accuracy level changes from

refined grid region to non-refined grid region.

36

CHAPTER 5

SUMMARY AND FUTURE RECOMMENDATIONS

5.1 Concluding Remarks

 An algorithm is developed to generate adaptive grid with the use of Galerkin Finite

Element Method and Grid Deformation Method. The Grid Deformation Method was originally

developed by G. Liao and D. A. Anderson [4] for finite difference schemes and later on used by

X. Cai et al. [16] and Tilak [17] with LSFEM (Least Square FEM) method. A mesh adaptation

algorithm based on div-curl system [17] was successfully used with some modification to solve

the system of equations and also validated.

 The proposed algorithm successfully demonstrated the use of the Grid Deformation

Method with the triangular elements and Galerkin Finite Element Method. The numerical

computation for the steady state Heat equation is carried out with use of this adaptive mesh

using triangular elements and compared it with the solution carried out by using triangular

quadratic elements. The ℓ
2

–norm of truncation error in the grid refined region with triangular

element almost showed the same result as the static grid with use of triangular quadratic

elements. Thus, it proves that this method can produce efficient results where the solutions

show large variation with less computational efforts and less computational time.

 The moving of this adapted grid with change in the behavior of the solution is also

achieved up to certain limitation such as it allows moving this adapted grid by small amount of

distance per time step.

5.1 Scope for Future Work

 This method uses div-curl system of equations as defined in the chapter 3 and it adapts

the grid by using monitor function which could be constructed as discussed in section 2.3. This

37

div-curl system shows that the field is not truly irrotational as we use 0 u


 and the actual

velocity which is used to find new coordinates (for next time step) of nodes in ODE is u


. So,

there could be some rotation found in the nodal coordinates even if we choose slight wrong

monitor function or even if it is not properly normalized over the domain. The method can be

constructed as completely irrotational if the div-curl equation system would be modified in such

a way that it uses 0)( uf


 instead of 0 u


and then solve this new modified div-curl

system of equation to achieve the refined grid. The formation of this new modified method

requires more skillful work to form the weak form and then in assembly of the global stiffness

matrix compared to one used in present work. The use of higher order elements can be also

future recommendation for this method and it needs to be tested on more real problems, before

it could be applicable to general problems.

 There is no direct control over skewness of the elements with using this grid adaptation

method. The skewness problems only appeared when we used triangular elements. Thus, there

should be some work possible to control skewness of elements during grid adaptation process.

38

APPENDIX A

SHAPE FUNCTIONS, ELEMENTAL STIFFNESS MATRIX AND FORCE VECTOR USED FOR
LINEAR TRIANGULAR ELEMENT

39

The present works used 2D linear triangular element for unstructured grid generation. The

following figure shows the linear triangular element.

 1(x1, y1)

 A

 (x3, y3)3 2(x2, y2)

Figure A.1: 2D linear triangular element

The area of the above triangle can be computed as,

33

22

11

1

1

1

2

1

yx

yx

yx

A  (A.1)

The shape function N is defined as follows,

 


















3

2

1

L

L

L

N (A.2)

Where, 321 ,, LLL are natural coordinates of any point on the triangular element and they can be

written as linear function of x and y as follows,

3,2,1),(
2

1
 iycxba

AA

A
L iii

i
i (A.3)

where, A is area of the linear triangular element and the other parameters are defined as

follows,

)(2332

33

22

1 yxyx
yx

yx
a )(

1

1
32

3

2

1 yy
y

y
b )(

1

1
23

3

2

1 xx
x

x
c 

40

)(3113

11

33

2 yxyx
yx

yx
a )(

1

1
13

1

3

2 yy
y

y
b )(

1

1
31

1

3

2 xx
x

x
c 

)(1221

22

11

3 yxyx
yx

yx
a )(

1

1
21

2

1

3 yy
y

y
b )(

1

1
12

2

1

3 xx
x

x
c 

Now, the elemental stiffness matrix used for present work as mentioned in equations (3.23a)

and equation (3.26a) can be obtained by substituting the shape function defined in equation

(A.2). The stiffness matrix for linear triangular elements is obtained as following,

 























2

1

2

132323131

3232

2

1

2

12121

31312121

2

1

2

1

4

1

cbccbbccbb

ccbbcbccbb

ccbbccbbcb

A
K (A.4)

The elemental force vector used to solve the matrix system described in equation (3.22) and

defined in the equation (3.23b) can be expressed as follows,

 


















321

321

321

6

1

bbb

bbb

bbb

CX (A.5)

The elemental force vector used to solve the matrix system described in equation (3.25) and

defined in the equation (3.26b) can be expressed as follows,

 


















321

321

321

6

1

ccc

ccc

ccc

CY (A.6)

The following formula is used to find the integration for equations (3.23a), (3.23b), (3.26a) and

(3.26b),

)!1(

)(!!! 12

2

1



 cba

xxcba
dxcb

x

x

a  or A
cba

cba
dAcba

)!1(

!!!


  (A.7)

41

The matrices represented in equations (A.4), (A.5) and (A.6) are the elemental matrices. The

global matrices can be obtained by assembling all elemental matrices together.

42

APPENDIX B

NORMALIZATION OF MONITOR FUNCTION FOR LINEAR TRIANGULAR ELEMENTS

43

The normalization of the monitor function is necessary in order to achieve the stable

results for grid refinement. The present work uses grid deformation method third version. So,

monitor function must satisfy the condition shown in equation (2.7) in order to be normalized

over the domain. The way we normalize the monitor function for linear triangular unstructured

grid is different than the normalization in structured grid. The structure grid has regular node

distribution and regular element connectivity over the entire domain. Thus, areas of all the

elements are same at the initial time step for structured grids. The unstructured grids have

random node distribution over the domain. We are using linear triangular elements for

unstructured grid which has different area for each element. This makes the normalization little

more complex and it can be carried out in the following way.

We have the non-normalized function value at each node to begin with. Let say the

non-normalized function is denoted by f
~

and normalized values are denoted by f . We have to

find the integral of the non-normalized monitor functions over the domain as normalization factor

to satisfy the equation (2.7). The following equation can be used to find the integral of non-

normalized monitor function over the domain.

i

m

i i

A
f

d
f





1

~
1

~
1

 (B.1)

where, m is total number of elements for the given domain, if
~

is non-normalized monitor

function for i th
 element and iA is the elemental area for i th

element.

 The if
~

 can be found for each element by using following method. We will see the

procedure for one element with having the following nodal coordinates as shown in figure B.1.

44

 1(x1, y1)
 P(x,y)

 A2 A3

A1
 (x3, y3)3 2(x2, y2)

Figure B.1: 2D linear triangular element for normalization factor

We have centroid of triangle P is located as shown in figure with having its coordinates (x,y).

We have value of monitor function for the nodes 1, 2 and 3. If we can find the value of monitor

function at centroid, we can have the normalization factor by using area integral method for

each element over the domain. To find the value of monitor function at centroid we need to find

the areas for triangles produced by connecting nodes to the centroid as shown in figure B.1 (i.e.

A1, A2, and A3). These areas can be found using following formulas.

33

221

1

1

1

2

1

yx

yx

yx

A 

11

332

1

1

1

2

1

yx

yx

yx

A 

22

113

1

1

1

2

1

yx

yx

yx

A  (B.2)

where,

3

321 xxx
x


 and

3

321 yyy
y


 (B.3)

Now if we have non-normalized monitor function values at nodes 1,2 and 3 as 1

~
f , 2

~
f and 3

~
f

respectively. To find the value of non-normalized monitor function for element we can use the

following interpolation formula,

3

3

2

2

1

1
~
1

~
1

~
1

~
1

fA

A

fA

A

fA

A

f
 (B.4)

45

In equation (B.4), the A is elemental area and that can be found using equation (A.1). Now, we

can have the value of non-normalized function for each element by using the equation (B.4) for

each element over the domain. Now substitute these all elemental non-normalized function

values in equation (B.1) and we will find the integration of non-normalized function over the

domain which is normalization factor. Now we multiply this normalization factor to the non-

normalized monitor function. The result would be the normalized monitor function f and it can

be represented as following,














 



i

m

i i

jj A
f

ff
1

~
1

*
~

 (B.5)

where, j designate the node number.

46

REFERENCES

[1] T. J. Baker, “Mesh Adaptation Strategies for problems in Fluid Dynamics”, (1997), Finite

Elements in Analysis and Design, 25.

[2] http://www.cfd-online.com/Wiki/Mesh_adaptation

[3] G. Liao, Zhong Lei, Gary C. de la Pena and D. Anderson (2002), A Moving Grid Finite

Difference Method for Partial Differential Equations.

[4] G. Liao and D. A. Anderson (1992), A new approach to grid generation. Appl. Anal., 44.

[5] J. Moser, Volume elements of a Rieman Manifold (1965), Trans AMS, 120.

[6] G. Liao, T. Pan, and J. Su “Numerical Grid Generator Based on Moser’s Deformation

Method”,(1994), Numer. Math. PDE, 10, 21.

[7] F. Liu, S. Ji, and G. Liao, “An Adaptive Grid Method and its Application to Steady Euler Flow

Calculations”, (1998), SIAM J. Sci. Comp., 20

[8] M. A. Akinlar, “A New method for Nonrigid Registration of 3D Images”, (2009), The

University of Texas at Arlington.

[9] J. Liu, “New Development of the Deformation Method”, (2006), The University of Texas at

Arlington.

[10] G.L.A.C.De la Pena, “Adaptive Grid Generation”, (1998), The University of Texas at

Arlington.

[11] D.A. Anderson, “Equidistribution Schemes, Poisson Generators, and Adaptive Grids”,

(1987), Applied Math. and Comp., 24.

[12] J. N. Reddy and D.K. Gartling, “The Finite Element Method in Heat Transfer and Fluid

Dynamics”, (2001), Second Edition, CRC Press.

http://www.cfd-online.com/Wiki/Mesh_adaptation

47

[13] K. H. Huebner, D. L. Dewhirst, D. E. Smith, T. G. Byrom, “The Finite Element Methods for

Engineers”, (2001), Fourth Edition, John Wiley & Sons.

[14] O.C. Zienkiewicz, R. L. Taylor & P. Nithiarasu, “The Finite Element Method for Fluid

Dynamics”, (2005), Sixth Edition.

[15] R. Kumar, “A least-squares/ galerkin split finite element method For incompressible and

compressible Navier-stokes equations”, (2008), The University of Texas at Arlington.

[16] X. Cai, B. Jiang, and G. Liao, “Adaptive Grid Generation based on the Least-Square Finite-

Element Method”, (2004), Computers and Mathematics with Applications, Elsevier.

[17] A. Tilak, “Solution Adaptive Mesh using Moving Mesh Method”, (2003), The University of

Texas at Arlington.

48

BIOGRAPHICAL INFORMATION

Monalkumar Patel received his Bachelors degree in Aeronautical Engineering from

Gujarat University, Gujarat, India in 2007. He worked as Project Graduate Trainee at National

Aerospace Laboratories (NAL), Bangalore, India during his senior project. He has started

working on his Master of Science in Aerospace Engineering at UT Arlington in Fall 2007. His

current research of interest includes Adaptive grid generation using Finite Element Methods and

its application to CFD problems.

