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ABSTRACT 

 
ALGORITHM FOR ADAPTIVE GRID GENERATION USING 

GALERKIN FINITE ELEMENT METHOD 

 

Monalkumar Patel, M.S. 

 

The University of Texas at Arlington, 2009 

 

Supervising Professor:  Brian Dennis 

 The adaptive grid concept is developed in order to achieve more accurate and 

stable results for the numerical simulations of Partial Differential Equations (PDEs). There are 

two main types of strategies used for adaptive grids: local refinement by increasing the number 

of elements (h-refinement) and deforming grids where the number of elements remains fixed (r-

refinement) [2]. The h-refinement method requires inserting additional elements and nodes in a 

certain region of the mesh. This significantly affects the software data structure and makes 

programming more difficult. To maintain the same data structure, the method must delete the 

same number of nodes from another region. Again, this complicates the program. However, the 

deforming grid method works by simply moving the nodes of an existing mesh. The proposed 

method formulates this deformation as an unsteady problem where the position of the nodes 

can be determined from their velocities. For each time step, the node movement is controlled by 

a user defined error indicator or user desired target node distribution. The number of nodes and 

elements remains constant for each time step and this greatly simplifies the program structure 

compared to the r-method. During the deformation process, the element shape changes to 

achieve the desired distribution and solution accuracy at each time step. The current research 
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work focuses on the development of the algorithm for unstructured meshes and its application 

to the solution of unsteady elliptic PDEs solved by finite element (unstructured). The successful 

development of the Adaptive Grid Generation is achieved with the implementation of Galerkin 

Finite Element Method on Grid Deformation Method for unstructured and the results are 

validated with the structured grids results. It is also implemented on few model fluid problems. 
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CHAPTER 1 

INTRODUCTION 

 In field of Computational Fluid Dynamics (CFD) and Finite Element Analysis (FEA), 

physical problems can be solved by modeling it to the system of the Partial Differential 

Equations (PDEs). The solution of these PDEs can be found either analytically or numerically. It 

is very challenging to find the analytical solution for system of PDEs governing the physical 

phenomenon, such as, heat transfer problems, shock wave problems and boundary layer 

problems; therefore numerical solution of the PDEs is encouraged and the available 

computational technology makes it much faster to obtain.  

 The numerical solution of the PDE is dependent on grid generation for the given 

domain. The inappropriate grid generation can result in the unstable and inaccurate solution of 

the PDE. There are two types of grids available: structured grid and unstructured grid. In 

structured grid the nodes are distributed in structured fashion and each node is shared by the 

same number of the elements for the entire domain. The unstructured grid has random node 

distribution over the domain and each node is not shared by the same number of elements or 

we can say it say irregular element connectivity. The structured grids are useful for simple 

geometries and problems with no sudden variations during the solution. The unstructured grids 

are better choice than the structured grids as it provides more accurate and stable numerical 

solutions for complex geometries although they require complex data structure than structure 

grids. The structured or unstructured grids remain fixed (static) and the number of nodes is not 

changed throughout the computation. These static grids are not able to acquire accurate and 

stable results for the PDEs having sudden solution variations, such as boundary layer 

formation, flow separation or shock waves. To achieve more stable and accurate results for 
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such numerical simulations of the partial differential equations (PDEs), the adaptive grid 

concept has been used in the last three decades[3]. 

 There are main two types of strategies used to achieve adaptive grids: local refinement 

of the grid and deformation of the grid (also known as moving grid) [2]. The unique goal of the 

both strategies is to generate the fine grid over the region where the partial differential 

equations (PDEs) show the large solution variations and, generate coarse grid where solution is 

comparatively stable. Local refinement of the grid is achieved by inserting additional nodes 

and/or elements in certain region(s) of the grid where we need fine grid, and removing the same 

number of the nodes and/or elements from the region(s) where we need coarse grid. The 

deformation of grid achieves same refinement as local refinement, but the only difference is, it 

moves nodes closer to the certain region(s) where fine grid is desired, and nodes moves away 

from each other to the region(s) where solution doesn’t impact much. The deformation of grid 

works without changing number of nodes or element connectivity over the domain.  

 There are two main local refinement methods developed over the last couple of 

decades: h-refinement method and p-refinement method [2]. The h-refinement method works on 

insertion and elimination of the nodes, which significantly affects the data structure and makes it 

complex for the programming. It also requires higher storage memory and longer computational 

time. The p-refinement method works by changing the order of the basic polynomial function as 

per requirement during the computational time. These local refinement methods showed 

popularity when they are used with the Finite Element Method (FEM) to solve the PDEs 

governed by physical problems.  

A Moving Grid Finite Difference Method [3] is one of the techniques available for grid 

adaptation which works on the r-refinement strategy. The moving grid finite difference method is 

also known as the Grid Deformation Method developed by G. Liao and D. Anderson [4], which 

works on the idea of the Moser’s deformation method [3]. This method was improved by G. 

Liao, T. Pan and J. Su in [6].  The Grid Deformation Method formulates the deformation as an 
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unsteady problem where the position of the nodes can be determined from their velocities. For 

each time step, the node movement is controlled by a user defined error indicator or user 

desired target node distribution. This user define error indicator is known as “monitor function” in 

this method. The number of nodes and elements remains constant for each time step and this 

greatly simplifies the program structure compared to local refinement methods. It also requires 

less computational time as compared to the local refinement methods.  

In the present work, Grid Deformation Method is utilized. The grid deformation method 

deforms the grid at certain desired region due to movement of the nodes. This nodal movement 

happens due to the vector field generated by the solution of div-curl system of the PDE. The 

present work focuses on application of this Grid Deformation Method to the unstructured grids 

and solution of unsteady elliptic PDEs using Finite Element Method (FEM).  

The roadmap of this thesis is, chapter 1 reviewed over the adaptive grids and the 

techniques available to achieve these grid deformation. The chapter 2 describes about the 

adaptive grid generation by Grid Deformation Method and the construction of the monitor 

function for appropriate grid refinement. The chapter 3 talks about the Galerkin Finite Element 

Method and the numerical implementation of it in the Grid Deformation Method. The chapter 4 

describes the validation of the code and some more numerical examples with the use of this 

grid adaptation technique. Finally, chapter 5 outlines the summary of the work and future 

recommendations.  
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CHAPTER 2 

ADAPTIVE GRID BY GRID DEFORMATION METHOD  

  

2.1 Introduction 

 As we have discussed in the previous chapter the Grid Deformation Method developed 

by G. Liao and D. A. Anderson [4] is one of the moving grid methods available for the grid 

refinement. This method works on the movement of the nodes to certain desired region by 

providing them appropriate velocity and the element connectivity remains constant throughout 

the computation. This method was used for steady Euler flow calculations as well [7].  

 There are three versions available for this Grid Deformation Method and they are 

described with details in [8,9]. The “monitor function” is important parameter to achieve proper 

grid refinement in this method. It can be constructed on the gradient of solution or error 

indication from the solution. We will talk about the monitor function in later part of this chapter.  

   

2.2 Grid Deformation Method 

2.2.1 Grid Deformation Method Version 1 

 This is the very preliminary version of the grid deformation method, which has steady 

features in it. This method works in following steps as outlined in [8]. This method applies the 

adaptation on the old grid. 

 The first step in this method is to construct the monitor function  (see section 2.3 of this 

chapter for the details of monitor function). 

 This monitor function is normalized in this method such as it satisfies the following 

condition over the domain Ω.  
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0)1(  df ,                                                                                                       (2.1) 

Where,  is the normalized monitor function for the domain Ω. For 2D case Ω would be 

the area and in 3D case it would be volume of the domain.  

 Now, to achieve the grid refinement we have to find the transformation function 


 such 

that,  

fJ )(


           (2.2) 

Where, )(


J is Jacobian determinant of the transformation function 


 

 To find this transformation function 


, this method uses the div-curl equation system to 

find the velocity field )x(


u as following. 

1)x( 


fu    in Ω           (2.3) 

 on         0n̂u


                      (2.4) 

 From the solution of equation (2.3) using the boundary condition as equation (2.4) we 

can have the velocity field u


. Now, this velocity field can be used to find  

       1t0                  
)x()1(

  )x,( 


 




ftt

u
th                         (2.5) 

 The equation (2.5) is used to form the deformation ordinary differential equation (ODE) 

as follows and which can be solved using the initial condition as )x,()x,( 1


 kk tt   

1t0                              ))x,(,( 




tth
dt

d



        (2.6) 

It has been proved by J. Liu [9] with mathematical theorem, that the transformation 

function found from the equation (2.6) meets the criteria defined in the equation (2.2) 
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2.2.2 Grid Deformation Method Version 2  

 This is also preliminary version of the grid deformation method, which has steady 

features in it. In this method the Jacobian determinant is specified to the new grid coordinates 

before grid refinement occurs.  This version of the method has identical first steps as we have 

discussed in the previous version of this method.  The following steps show the remaining 

procedure to achieve desired refinement of the grid using this version and it is outlined in details 

in [8]. 

 This monitor function is normalized in this method such as it satisfies the following 

condition over the domain Ω.  

01
1









 d

f
        or        f

1
       (2.7) 

Where,  is the normalized monitor function. 

 In this version also we have to find the transformation function 


such that it will satisfy 

the equation (2.2). 

 Now, this version uses the following div-curl equation system to find the velocity field 

)(xu


, 

 on           
)x(

1
1 



f
u              (2.8) 

 on         0n̂u


          (2.9) 

 Compute the velocity field )x(


u  by solving equation (2.8) and (2.9). Now, this velocity 

field can be used to find  

1t0                     

)1(
))x,((

1

)x(
))x,(,( 





t
tf

t

u
tth








 ,                               (2.10) 
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 The equation (2.10) is used to form the deformation ordinary differential equation (ODE) 

as follows and which can be solved using the initial condition as )x,()x,( 1


 kk tt   , 

as described in the version 1 of the grid deformation method. 

2.2.3 Grid Deformation Method Version 3  

 This is most recent version of the grid deformation method, which is real time grid 

adaptation version. This version of the method also uses the monitor function like its previous 

two versions. This version of the method uses the same normalization conditions for the monitor 

function as used in the second version of this method. This method has difference in the div-curl 

system and solution of it. This method is used for the present work with little modification in the 

solution technique using Galerkin Finite Element Method. The following steps show that how the 

div-curl system has been formed and solved for the third version of the grid deformation 

method. 

 As we have previously discussed in first version and second version, the monitor 

function is formed with the use of the gradient of solution or error of the solution and it is 

normalized in such a way that it would satisfy the condition described in equation (2.7). 

Here, the monitor function is )x,(


tf , where x


represents the vector for the nodal 

coordinates. Thus, the monitor function in this version is function of space (nodal 

displacement) and time. 

 To find the transformation function 


, we use the following div-curl system of the 

equation to evaluate the velocity field )x(


u , 













 on                

1

ft
u


      (2.11) 

)0(      or                    on         0ˆ  unu


     (2.12) 
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To solve this div-curl system, it has been assumed that u


=. So, if we substitute this 

assumption into the equation (2.11), it becomes 













 in                      

1
)( 2

ft
     (2.13) 

The equation (2.12) becomes, 0ˆ  n  on                     (2.14) 

The equation (2.13) can be rewritten as the 






















ftyx

1
2

2

2

2 
 in Ω, which is the 

scalar Poisson equation if we consider the right hand side term as the source term in it. Now, in 

this version, this Poisson equation is solved using the iterative finite difference solution methods 

such as Successive Over Relaxation method (SOR) with appropriate relaxation factor in [10]. 

 The value of  is obtained by solving the above scalar Poisson equation. Now, this  is 

used to calculate the velocity field by substituting the value of  back in the assumption 

u


=. Thus, 
x

u






 &  

y
v







. Where, u is x-component of the velocity field and 

v  is y-component of the velocity field.   

 Here, the ODE would be formed as follows,  

)x( ))x,(,(
)x,( 

uttf
dt

td



                                  (2.15) 

or it can be rewritten as,  

fu
dt

dx
       &       fv

dt

dy
         in terms of the nodal coordinates for 2D domain. 

 The last step is the same for this version, as like previous two versions to solve the 

ordinary differential equation with the initial condition same as described in the first 

version. 
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The third version of grid deformation method is used in our work and the all three 

versions of this grid deformation method repeats the steps described above until the final 

adapted grid is generated.  

 

2.3 The Monitor Function  

We have talked about Grid Deformation Method in the section 2.2, the monitor function 

is very important parameter for appropriate grid adaptation as it controls the movements of 

nodes throughout computation. So, care must be taken while we choose the monitor function. 

There are several ways to form the monitor function such as from the gradient approximation of 

solution during computation, error calculations. D. A. Anderson used equidistribution principle 

[11] to form this monitor function. G. Liao and De la Pena used the equidistribution principle 

over the domain to construct this monitor function (See [10] for more details). As it is outlined in 

[10], if we have some positive error estimator or gradient approximation of the property that 

could be responsible for the rapid change in the solution or large variation during intermediate 

computation time step ),,( tyx , the monitor function  can be constructed as  

),,(
),,(

tyx

C
tyxf


          (2.16) 

where, C is the normalization factor such that it satisfies the following relation for each time 

step during the computation (as we consider the third version of grid deformation method),  












 01

),,(

1
d

tyxf
 or 


),,(

1

tyxf
                              (2.17) 

where,  is the volume of the domain (area in 2D). The monitor function  has some distinct 

properties like it is small in the region where gradient or error in solution is large and it is large in 

the region where gradient or error in solution is small. This property of the monitor function 

leads the nodes pulled towards the region with large error or gradient of solution and pulled 
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away from the region with small error or gradient of solution. Thus, it starts adapting the grid in 

the desired region where the solution changes rapidly. There is theorem presented by De la 

Pena in [10], proves that this grid deformation with finite difference method ensures that the grid 

will not fold onto itself throughout computation and adaptation of the grid.  

 As we have talked in previous section, monitor functions are constructed from the use 

of equidistribution principles. The equidistribution principle works on the assumption that 

residuals, truncation errors and posteriori error estimates (if available during computation) are 

equally distributed all over the domain and they are equally weighted [11]. The following are 

some examples of monitor functions which can be constructed from the solution during 

computation (i.e. gradient of solution). 

If we want to construct the monitor function that can be used for the heat problems, 

TC

C
f




21

1
                                                         (2.18) 

Where, 1C  is the normalization factor and can be calculated from the normalization of 

the monitor function and 2C  is the constant for adaptation intensity and the gradient of the 

temperature is T . 

If the flow that can produce the shock wave during the solution the monitor function can be 

constructed as,  

2
21

1

PC

C
f


      or    

MC

C
f




21

1
   (2.19) 

 Where, P is the pressure and M is the Mach number for the given flow conditions. 1C  

and 2C  are the normalization factor and grid adaptation intensity constant respectively. We 

can construct the appropriate monitor function using the parameter responsible for the rapid 

change in solution during the computation using the equidistribution principles like above.  
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 The following example of the monitor function is constructed using some variable of 

interest from solution and to make it better the gradient of that variable as well as the second 

derivatives of the variable are also included. For example, equation (2.20) shows the monitor 

function constructed for some unknown variable of interest v , such as in [10],  

222
1 vvv

f






                              (2.20) 

Where,,  and  are the grid adaptation intensity constants for v , v  and 

v respectively.  

 The monitor function  can also be constructed for the interface grid adaptation 

problems or known shape geometry problems using the signed distance function d which can 

be find using the level set deformation method as described in [10]. 
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CHAPTER 3 

 
THE FINITE ELEMENT METHOD AND ITS IMPLETMENTATION 

TO ADAPTIVE GRID GENERATION 
 

 The Finite Element Method is popular to solve fluid dynamics problems lately because 

of its consistency to form mathematical formation and computer programming over the finite 

difference and finite volume method. It is also capable to handle the complex geometry 

problems which are sometimes difficult to handle with the finite difference schemes.  

 

 3.1 Overview: Finite Element Method 

The finite element method is based on classical variational approach (i.e. Ritz method) 

and weighted-residual method to solve the differential equation [12]. The general idea behind 

these methods is to solve the differential equation in two steps. First we form the governing 

equation into equivalent weighted-integral form and later on approximate the solution for the 

whole domain with having an assumption that solution would be linear combination of the 

assumed approximate functions ( iN ) and undetermined coefficients ( ic ). These undetermined 

coefficients ic are calculated such that they satisfy the differential equation in weighted-integral 

sense. The appropriate approximate functions iN  should be chosen to satisfy the given 

boundary conditions for the problem. This traditional variational weighted-residual approach has 

drawback of forming the approximation function that satisfy boundary conditions for real-world 

problems with complex geometries and different boundary conditions for different regions of the 

whole domain. Thus, the finite element method is originated with idea of dividing the whole 

domain into finite number of “sub-domains” which are simple geometrical shapes like triangles 

or quadrilaterals also known as finite elements.  
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 It is comparatively easy to generate the systematic approximation functions iN , which 

satisfy boundary conditions for the finite elements instead of whole domain by use of either 

variational method or weighted-residual method.  These approximate functions for the finite 

elements are generally formed using interpolation theory or the geometrical shape of finite 

elements so they are also known as the “interpolation functions” or “shape functions”.  

 The following steps show general procedure to solve the problem using finite element 

method as described in [12, 13, 14]. 

 Discretize the domain into set of finite elements (grid generation). 

 Weighted-integral or weak formulation of the differential equation. 

 Develop the finite element model for the physical problem using this weak form or weak 

statement. 

 Assemble all the finite element equations to obtain the global system of algebraic 

equations.  

 Apply appropriate boundary conditions. 

 Solve this global system of algebraic equations (use direct solution method or iterative 

solution method).  

 Visualization of the results and post processing for the important parameters of the 

physical problem. 

3.1.1 Method of Weighted Residuals 

 As we have seen in the section 3.1, the Method of Weighted Residuals (also known as 

MWR) works in two steps. The first step is to find the approximation function that satisfies 

boundary condition for the finite elements which is equivalent to the physical boundary 

conditions. When we substitute this approximate solution into differential equation it may result 

in some residuals. This residual needs to be minimized or vanished during the solution process 

over the domain. The second step for this method is to solve the equations in such a way that 

the residual from the first step would almost vanish or becomes zero.  The following table shows 
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the list of the available methods with the choice of the interpolation functions iN and weighting 

functions iw . 

Table 3.1 The Methods produced by choices of the Weighting function [15] 

Weighting Function, )(xwi  Method 

)()( ii xxxw   Collocation 












    inside    

      inside    

i

i

i xw
0

1
)(  

Finite Volume 

(Subdomain) 

i

i
u

R
xw

ˆ
)(




  

Least-Square 

i

i xxw )(  Method of Moments 

)()( xNxw ii   Galerkin 

)()( xxw ii   Petrov-Galerkin 

 

The MWR methods most probably used to formulate the Galerkin Finite Element 

Method as the weighting function is chosen as same as the interpolation function or 

approximation function (i.e. )()( xNxw ii  ). 

 

3.2 The Galerkin Finite Element Method 

We have seen in the MWR methods (table 3.1), the Galerkin finite element method 

works on the basis that weighting functions for this method is same as the interpolation 

functions i.e. )()( xNxw ii  . The approximate solution is expressed in form of the linear 

combination of undetermined coefficients and these approximation functions )(xNi . Now, to 
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illustrate this method in detail let us take an example of the 1D Poisson Equation as outlined in 

[13]  with the boundary conditions as follows,  

)(
2

2

xf
dx

d



                              (3.1) 

with the boundary conditions as, 1)( 1 Ax  , 2)( 2 Ax  . Where, 1x and 2x are the boundary 

points. To find the solution using this Galerkin FEM method we follow the same procedure as 

we described in the section 3.1. Now, to start with solution first we approximate the analytical 

solution )(x by )(
~

x , which could be represented in the form of interpolation functions as 

follows.  





n

i

ii xN
1

)(
~

                 (3.2) 

where, n  is the number of nodes per element. As we move to the next step for the solution 

procedure, apply the weighting function to the equation (3.2) and form its integral form as 

follows,  

0)(

~

)(
2

1
2

2









 dxxf

dx

d
xN

x

x
i


          (3.3) 

where, 1x and 2x are the starting and end points (boundary points) of the linear element 

respectively. Now, by using the integration by parts for the equation (3.3) we have,  

 
2

1

2

1

2

1

0)()(

~~
x

x
i

i
x

x

x

x

i dxxNxfdx
dx

dN

dx

d

dx

d
N


       (3.4) 

The equation (3.4) is known as the weak form of the equation (3.3). Now, let us use the 

equation (3.2) into the equation (3.4) we will have,  

  )(

1

~
ei

i

n

i

i

dx

dN

dx

dN

dx

d















            (3.5) 
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where,   )(e
 is the column vector for the elemental nodal unknowns. Now, we know that 

 must have 
1C continuity in the original boundary value problem as must 

~
in the integral form 

of the Galerkin method showed in equation (3.3). In the weak form requirement the continuity is 

reduced to 
0C from 

1C for the 
~

. Now substitute the equation (3.5) into the weak form of the 

differential equation (i.e. equation (3.4)) and with rearrangement of some terms,  

   






 2

1

2

1

2

1

)()(

~
)( x

x
i

x

x

i

ei
x

x

i dxxNxf
dx

d
Ndx

dx

dN

dx

dN 
     , 2,1i            (3.6) 

As it is linear element, it has only two nodes. The first term on the right-hand side of the 

equation (3.6) represents the natural boundary conditions. It is applied to global level after the 

assembly of the global matrix system for the domain. So, at the element level the system of 

equation is  

      )()()( eee
FeKe             (3.7) 

In equation (3.7),  

  dx
dx

dN

dx

dN
Ke i

x

x

ie

 









2

1

)(
 

  
2

1

)()(
)( x

x
i

e
dxxNxfFe    

where,   )(e
Ke and   )(e

Fe are elemental stiffness matrix and elemental force vector respectively. 

Here, the elements are linear for 1D so, there are only 2 nodes for each element. So, the 

elemental stiffness matrix and elemental force vector would be  

  dx

dx

dN

dx

dN

dx

dN

dx

dN
dx

dN

dx

dN

dx

dN

dx

dN

Ke
x

x

e



















2

1 2212

2111

)(
   and    dx

fN

fN
Fe

x

x

e











2

1
2

1)(
               (3.8) 
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These elemental stiffness matrix and elemental force vectors are used to form the global 

stiffness matrix and global force vector by assembling it for all elements of the domain. The 

boundary condition term in the equation (3.6) would cancel at all interior nodes of the domain 

during global assembly of the matrices. This global matrix system represents global system of 

algebraic equation and afterwards it can be solved by direct inversion of the matrix with 

application of the appropriate boundary condition. We will see the numerical implementation of 

this method in the following section for adaptive grid generation. 

 

3.3 Numerical Implementation of Galerkin FEM to Grid Deformation Method 

 In the present work, the algorithm to generate adaptive grid is formed on the basis of 

grid deformation method third version as described in section 2.2.3 of chapter 2. This section 

describes the mathematical implementation of Galerkin Finite Element Method to generate 

adaptive grids with the use of grid deformation method. The following subsections describe 

systematic way to achieve new grid coordinates with application of Galerkin Finite Element 

Method for grid deformation method. 

3.3.1 The div-curl System 

 The original div-curl system is given as follows from the third version of grid deformation 

method,  















ft
u

1
   in Ω           (3.9) 

0 u


                               (3.10) 

This system of equation can be rewritten as follows for 2D case. Let’s take u and v as the x-

component and y-component of the velocity field u


. 

 Thus, jviuu ˆˆ 

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The equation (3.9) becomes, 






















fty

v

x

u 1
            (3.11) 

The equation (3.10) can be broken down to 0









y

u

x

v
           (3.12) 

The boundary condition is 0ˆ nu


                (3.13) 

In this algorithm we solved the div-curl system represented in equation (3.11) and equation 

(3.12) with reformation as following,  

Let us say 













ft

1
            (3.14) 

Now, substitute the equation (3.14) into the equation (3.11) and differentiate it with respect to x  

xyx

v

x

u













 2

2

2

               (3.15) 

Let, differentiate equation (3.12) with respect to y , we have 

0
2

22











y

u

xy

v
         (3.16) 

Now subtracting the equation (3.16) from equation (3.15) we have,  

xy

u

x

u














2

2

2

2

         (3.17) 

which is similar form of the scalar Poisson Equation for u with the right hand side is space 

dependent. Similarly, the Poisson Equation for v  can be obtained by differentiating the 

equation (3.11) with respect to y and then adding the differentiation of the equation (3.12) with 

respect to x , 

yy

v

x

v














2

2

2

2

         (3.18) 
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The equation (3.17) and equation (3.18) are same as the div-curl system of equations defined in 

the equation (3.9) and equation (3.10) with boundary conditions as 0ˆ nu


. By solving 

equation (3.17) and equation (3.18), we can directly have velocity field for the given domain. To 

solve these two Poisson Equations in 2D, Galerkin FEM method is used. The following section 

describes the Galerkin FEM method formulation for these two equations.  

3.3.2 Galerkin FEM formulation to solve 2D Poisson Equation 

 This section of chapter talks about the solution of 2D Poisson equation with the use of 

Galerkin Finite Element Method. The equation (3.17) and equation (3.18) are almost identical 

and having same Dirichlet boundary conditions. The Neumann boundary conditions are applied 

to different boundaries for x-component of velocity and y-component of velocity. Thus, we will 

take one of these two equations for demonstration and repeat same procedure for the other 

one. Let’s consider the equation (3.17) ,  

x
u




2

 

Now, apply Galerkin method to the above 2D Poisson equation,  

02 














x

uw                 (3.19) 

Now, with the use of integration by parts,  





  



d
x

wudwuwn )(ˆ       (3.20) 

Now Galerkin FEM method uses same weight function as the approximation function, i.e. we 

can have 



n

i

ii Nuw
1

, 



n

i

ii Nuu
1

and 



n

i

ii N
1

( n is the number of nodes in element). 

The final variational form can be written as after the Neumann boundary condition (the velocity 

in normal direction is zero at x-direction boundaries for u or 0ˆ nu


) applied to the equation 

(3.20), 
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



  

d
x

wudw         (3.21) 

The equation (3.21) can be rewritten as follows in matrix form,  

      )()( ee
CXuK          (3.22) 

Where,        dNNK
T

                 (3.23a) 

               











  d

x

N
NCX

T

                 (3.23b) 

 The formulation of the equation (3.18) would be exactly same as the formulation 

described above. The following equations shows the final weak form and matrix form for 

equation (3.18) 





  

d
y

wvdw         (3.24) 

The equation (3.24) can be rewritten as following in matrix form,  

      )()( ee
CYvK          (3.25) 

Where,        dNNK
T

                 (3.26a) 

    











  d

y

N
NCY

T

                 (3.26b) 

In equation (3.22) and equation (3.25), the value of  can be found explicitly from its 

assumption made in the equation (3.14). The Appendix B shows the normalization of monitor 

function for linear triangular element. Here, Euler forward difference scheme is used in time to 

find value of  , using the Normalized monitor function  , as following formula,  


























t

ff nn

11
1

             (3.27) 
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We need to note that the value of  is negative in the equation (3.27) and which will cancel out 

the negative sign on the left hand side of the equation (3.21). The equation (3.23a) and 

equation (3.26a) are known as the elemental stiffness matrices and they would be used to 

construct global stiffness matrices by assembling all other elemental stiffness matrices. The 

equation (3.22) and equation (3.25) are solved in MATLAB with the use of invert matrix method 

with the application of appropriate Dirichlet boundary condition. See the Appendix A for details 

of shape functions, elemental stiffness matrices and elemental force vectors used for linear 

triangular elements. 

3.3.3 Boundary Condition Treatment 

 To solve this Poisson equation we need to apply boundary conditions. There are main 

two types of boundary conditions needed to make it well posed problem: Neumann (Natural) 

Boundary condition and Dirichlet Boundary Condition. As we have seen in the previous section, 

the Natural boundary condition is automatically applied during the Galerkin finite element 

formulations. So, now we need to apply the Dirichlet boundary conditions in order to solve 

system of algebraic equations.  

In our case the problem is posed such that all the boundary nodes remain stick on the 

boundary throughout the computation. Thus, the boundary nodes are allowed to have tangential 

velocity but not the normal velocity. The normal velocity of the boundary nodes are fixed as zero 

by applying the Neumann boundary conditions. The corner nodes are on both x-direction and y-

direction boundaries, so they need to be fixed in both directions (i.e. tangential and normal 

velocity for them are zero). Thus, when we solve for the global system of algebraic equations 

we can treat this requirement as our Dirichlet boundary condition to solve the problem. We are 

solving the matrix form obtained in equation (3.22) and equation (3.25) by enforcing the 

boundary condition as all the corner nodes are fixed.  
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3.4 Solution of Deformation ODE 

 The above section describes that how to implement Galerkin finite element method to 

solve 2D Poisson equation formed with the use of the div-curl system. So, at the end of above 

step we already found the velocity components (i.e. u  and v ) for each node. To find new 

locations of nodes we need to form the ordinary differential equation (ODE). Here, we can form 

directly two ODEs as follows,  

fu
dt

dx
                       (3.28a) 

fv
dt

dy
                     (3.28b) 

 The equations (3.28a) and (3.28b) can be solved using Euler’s first order method or 

Runge-Kutta method (either 2
nd

 order or 4
th
 order as per accuracy requirement). Here, we used 

Euler’s first order method to solve these ODEs. The formulation is as follows,  

fudtxx n

i

n

i *1 
 

fvdtyy n

i

n

i *1 
 

Where, 
1n

ix  and 
1n

iy  represent the new node coordinates for i th 
node at )1( n th

 time step 

and similarly 
n

ix  and 
n

iy  are the coordinates of node at )(n th
 time step.  

 The procedure described in this chapter can be represented as the following flow chart 

and it could be repeated for the sufficient number of time steps to achieve the desired 

refinement (adaptation) of the grid. This procedure can be terminated when desired grid 

refinement achieved or the time can be defined in proportion of actual governing equation’s time 

step. 
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Define the monitor function and Evaluate (only if it’s not 

dependent on solution or error)

Normalize the monitor function using appropriate 

normalization criteria

Solve the Poisson equations (eq 3.17 & 3.18) to find the velocity 

components using Galerkin FEM with proper Boundary Conditions

Solve the Ordinary Differential Equations to obtain new coordinates (Eq. 

3.28a and 3.28b) Use Euler’s method or RK-2/4 order method

Replace these new coordinates with the previous time step coordinates

Desired grid 

Adaption resulted ?

Adaptive Grid 

Generated

YES

NO

 Figure 3.1: Roadmap for Adaptive Grid Generation using GFEM 
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CHAPTER 4 

VALIDATION OF THE CODE AND NUMERICAL RESULTS 

 The present chapter discusses the construction and validation of the code developed 

using the Galerkin Finite Element Method (GFEM) to generate the adaptive grid around region 

of interest inside domain as we have discussed in the chapter 3.  

 

4.1 Adaptive Grid Code 

 The code is developed with use of MATLAB. It is capable of generating 2D adaptive 

grids for specified monitor function. A moving grid to this adapted grid is added as extra feature 

to this code.  

4.1.1 Input Parameters     

 This code needs the initial grid data (i.e. Nodal coordinates and Element connectivity) 

as input parameter. This work used initial grid data as grid generated from GAMBIT 

(commercial grid generation package). We can generate our own grid to consider as input grid 

data but it would be easier if we want to start with structured grid. The unstructured grid 

generation is bit difficult and takes much time so, we directly use it from the commercial grid 

generation packages and use the grid data for our work.  

The code also requires the monitor function to be defined. Here, we used the model 

cases to validate the code and for that the monitor function is constructed on the basis of the 

distance function d  which was used from the reference [10]. This code defines monitor function 

as a separate function file.  

4.1.2 Adaptation of Grid  

This part of the code solves two scalar Poisson equations as formed in the previous 

chapter with using boundary condition as also discussed in the previous chapter. The result of 
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these Poisson equations gives two components of the velocity field ( u and v ). Now, these 

components are used to solve two ordinary differential equations (ODEs) to find the new nodal 

coordinates. As described in the chapter 3, these ODEs are solved by using the forward Euler 

scheme in time with same size of time-step used to solve Poisson equations. Thus, we have 

new coordinates at the end of this part of code and they would be replaced as new coordinates 

for next time step before we move on to output part of the code.  

4.1.3 Output from the Program 

  The output from this program is generated as Tecplot file format with grid adapted in 

the region of the large solution variation or region where we are interested to refine grid as per 

requirement. The new node coordinates file could be also generated as the program output if 

we need it to use for real flow problems. The result Tecplot file is visualized using Tecplot 9, 

which is available at Computational Fluid Dynamics (CFD) lab at The University of Texas at 

Arlington.  

 

4.2 Validation of the code 

4.2.1 Case I: Grid Refinement around sine Wave Curve  

To validate the code for adaptive grid generation, the example is taken with use of 

uniform grid for 27 x 27 (729 nodes) over domain of [0,1] x [0,1] and the grid is clustered around 

sine wave curve with the use of following d  and monitor function as used in [10]. 
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The grid is clustered around the sine wave in time 0 to 1 with using grid deformation 

method and the div-curl system solved using finite difference method (SOR method was used). 

The initial unstructured grid is created in GAMBIT with having almost same number of nodes 

(753 nodes) as in structured grid over the same domain [0,1] x [0,1]. The figure 4.1 and figure 

4.2 shows initial grid for the unstructured grid and structured grid respectively.  
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Figure 4.1: Adaptive Grid at time t=0 (Unstructured) 
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Figure 4.2: Adaptive Grid at time t=0 (Structured) 
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 The figure 4.3 and figure 4.4 shows comparison between unstructured grid deformation 

using present work and the grid deformation using finite difference method for structured grid as 

demonstrated by De la Pena in [10] at total time t=0.5. Here, the time step size is kept same for 

both cases to validated results. From the figures we can verify that the results are pretty much 

in agreement at present total time t=0.5.  
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Figure 4.3: Adaptive Grid at time t=0.5 (Unstructured) 
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Figure 4.4: Adaptive Grid at time t=0.5 (Structured) 
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Figure 4.5: Adaptive Grid at time t=1 (Unstructured) 
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Figure 4.6: Adaptive Grid at time t=1 (Structured) 
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 The figure 4.5 shows final adapted or clustered grid around sine wave curve at final 

time step t=1 using present work. The figure 4.6 represents final clustered grid using finite 

difference method for structured grids. The comparison of both figures validates that present 

work gives almost same results as derived with use of finite difference method to solve div-curl 

system by De la Pena in [10]. 

 

4.3 Numerical Example 

4.3.1 Cluster the Grid around Circle 

 This example shows the demonstration of adaptive grid generation by showing the grid 

refinement at final time around particular region. Here, for shake of simplicity we clustered the 

grid around circular shape with a center (0.5,0.5) and radius of 0.15. The initial grid used is 

exported from GAMBIT and having 753 nodes and 1404 elements over the domain of [0,1] x 

[0,1]. The final time is defined as 1 and the time step size used is 0.1 for the adaptation. The 

monitor function used here is constructed using the distance function d defined [10] as follows,  

222 )()( rbyaxd   

Where, ),( ba  is the center coordinate of circle and r is the radius of circle. ),( yx is the 

coordinates for node. Thus, it finds distance of each node from the center of circle and then use 

the following real-time monitor function in order to refine grid in desired region.  
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where, 1c and 2c are size controlling parameters for grid adaptation intensity and they can be 

decided manually by using trial-error method as per refinement requirement. 1c controls 

intensity of grid adaptation inside the boundary region and 2c controls intensity of grid 
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adaptation outside the boundary region. The following results shows with the value of 1c =0.3 

and 2c =1.2. 
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Figure 4.7: Adaptive grid for circle at initial time t=0 
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Figure 4.8: Adaptive grid for circle at time t=0.5 
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Figure 4.9: Adaptive grid for circle at final time t=1 
 
  
 

The figure 4.7 shows initial grid used to adapt the circle with above mentioned center 

and radius. This grid was exported from GAMBIT and grid data are used as input for present 

grid adaptation code. The figure 4.8 shows adaptive grid for clustering around the circle at total 

time =0.5. It is clearly visible that center nodes stared refining towards circular region and its 

outer boundary. The figure 4.9 shows adapted grid at final time step of the prescribed time for 

adaptive grid generation. Here, we can clearly see that the grid is adapted in circular region and 

the circular boundary shows fine refinement as per appropriately chosen  1c and 2c . We can 

change this refinement by changing the 1c and 2c values. The figure 4.10 is one of the 

examples of such change in grid adaptation intensity.  
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               Figure 4.10: Adaptive grid for circle with different intensity of adaptation 
 

The parameters used to generate adaptive grid shown in figure 4.10 are as follows,  

Center coordinates = (0.75,0.5) 

Radius of the circle = 0.1 

1c = 0.1 

2c = 1.2 

4.3.2 Heat Equation Solution using Adaptive Grid 

 This section demonstrates use of this adaptive grid to solve the steady state heat 

equation with constant source term Q=10. In this part first, adaptive grid is generate over the 

given domain [0,1] x [0,1]. The initial grid is generated in GAMBIT with the 136 nodes and 234 

elements for triangular shape elements. The grid is clustered around the center region of this 

linear triangular mesh. The final grid data is used to solve the steady state heat equation and 
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results are compared with solution of the steady state heat equation using same initial grid 

without adaptation as well as the same size of grid generated using quadratic triangular 

elements. The figure 4.11(a) shows initial grid using linear triangular elements and the figure 

4.11(b) shows temperature distribution over the domain with use of grid shown in figure 4.11(a).  
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(a)                                                               (b) 

Figure 4.11: (a) Unstructured grid with linear triangular elements (b) Temperature distribution 
using linear triangular element grid as shown in (a) 
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(a)                                                               (b) 

Figure 4.12: (a) Unstructured grid with quadratic triangular elements (b) Temperature 
distribution using quadratic triangular element grid as shown in (a) 
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(a)                                                               (b) 

Figure 4.13: (a) Unstructured grid with Adaptive grid around the center section (b) Temperature 
distribution using Adaptive grid around center as shown in (a) 

 
The figure 4.12(a) shows grid using triangular quadratic elements (triangular element 

with 6 nodes instead of 3). The figure 4.12(b) shows the temperature distribution with use of the 

grid shown in figure 4.12(a). From the comparison of temperature distributions in figure 4.11(b) 

and figure 4.12(b), it is clearly visible that the temperature distribution is very good with use of 

quadratic triangular elements instead of linear triangular elements in the grid. The only 

disadvantage to use these quadratic triangular elements is, as it has 6 nodes in each element it 

makes programming complex. It is also complicated to formulate stiffness matrix during solution 

process. Thus, quadratic triangular element grid requires more computation time than linear 

triangular element grid for all other parameters remained fixed.  

Now, we use adaptive grid for the same problem. We adapted grid around center of the 

region (we can adapt grid around any region of interest. It was clustered at center just as an 

example). The results with use of the adapted grids are shown in the figure 4.13(b) and the 

adapted grid is shown in figure 4.13(a). Now, if we compare results from figure 4.13(b) and 

figure 4.11(b), it shows that there is much more improvement in the temperature distribution 

over the adapted region. If we compare these results with the temperature distribution obtained 
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with use of quadratic triangular element grid, we can conclude that it gives as much as efficient 

result around adapted grid region although it doesn’t give that much good for the non adapted 

region as in quadratic triangular element grid. This takes just little more time than the time 

required to solve this problem without adaptation as presented in figure 4.11(a) & (b).  

Thus, we can conclude that adaptive grid gives the same order of accuracy in 

adaptation region as the grid with quadratic triangular elements at less computational time than 

quadratic triangular element grid. The only possible limitation is accuracy level changes from 

refined grid region to non-refined grid region.   
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CHAPTER 5 

SUMMARY AND FUTURE RECOMMENDATIONS 

5.1 Concluding Remarks 

 An algorithm is developed to generate adaptive grid with the use of Galerkin Finite 

Element Method and Grid Deformation Method. The Grid Deformation Method was originally 

developed by G. Liao and D. A. Anderson [4] for finite difference schemes and later on used by 

X. Cai et al. [16] and Tilak [17] with LSFEM (Least Square FEM) method. A mesh adaptation 

algorithm based on div-curl system [17] was successfully used with some modification to solve 

the system of equations and also validated.  

 The proposed algorithm successfully demonstrated the use of the Grid Deformation 

Method with the triangular elements and Galerkin Finite Element Method. The numerical 

computation for the steady state Heat equation is carried out with use of this adaptive mesh 

using triangular elements and compared it with the solution carried out by using triangular 

quadratic elements. The ℓ
2 

–norm of truncation error in the grid refined region with triangular 

element almost showed the same result as the static grid with use of triangular quadratic 

elements. Thus, it proves that this method can produce efficient results where the solutions 

show large variation with less computational efforts and less computational time.  

 The moving of this adapted grid with change in the behavior of the solution is also 

achieved up to certain limitation such as it allows moving this adapted grid by small amount of 

distance per time step.  

5.1 Scope for Future Work 

 This method uses div-curl system of equations as defined in the chapter 3 and it adapts 

the grid by using monitor function which could be constructed as discussed in section 2.3. This 
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div-curl system shows that the field is not truly irrotational as we use 0 u


 and the actual 

velocity which is used to find new coordinates (for next time step) of nodes in ODE is u


. So, 

there could be some rotation found in the nodal coordinates even if we choose slight wrong 

monitor function or even if it is not properly normalized over the domain. The method can be 

constructed as completely irrotational if the div-curl equation system would be modified in such 

a way that it uses 0)(  uf


 instead of 0 u


and then solve this new modified div-curl 

system of equation to achieve the refined grid. The formation of this new modified method 

requires more skillful work to form the weak form and then in assembly of the global stiffness 

matrix compared to one used in present work. The use of higher order elements can be also 

future recommendation for this method and it needs to be tested on more real problems, before 

it could be applicable to general problems. 

 There is no direct control over skewness of the elements with using this grid adaptation 

method. The skewness problems only appeared when we used triangular elements. Thus, there 

should be some work possible to control skewness of elements during grid adaptation process.  
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APPENDIX A 

 
 

SHAPE FUNCTIONS, ELEMENTAL STIFFNESS MATRIX AND FORCE VECTOR USED FOR 
LINEAR TRIANGULAR ELEMENT 
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The present works used 2D linear triangular element for unstructured grid generation. The 

following figure shows the linear triangular element.  

          1(x1, y1) 
 
 
 
                A 
 
 
                                            (x3, y3)3   2(x2, y2) 
 
 

Figure A.1: 2D linear triangular element 
 

The area of the above triangle can be computed as,  
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The shape function N is defined as follows,  

 


















3

2

1

L

L

L

N             (A.2) 

Where, 321 ,, LLL are natural coordinates of any point on the triangular element and they can be 

written as linear function of x and y as follows, 
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where, A is area of the linear triangular element and the other parameters are defined as 

follows, 
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Now, the elemental stiffness matrix used for present work as mentioned in equations (3.23a) 

and equation (3.26a) can be obtained by substituting the shape function defined in equation 

(A.2). The stiffness matrix for linear triangular elements is obtained as following, 
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The elemental force vector used to solve the matrix system described in equation (3.22) and 

defined in the equation (3.23b) can be expressed as follows,  
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The elemental force vector used to solve the matrix system described in equation (3.25) and 

defined in the equation (3.26b) can be expressed as follows,  
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The following formula is used to find the integration for equations (3.23a), (3.23b), (3.26a) and 

(3.26b), 
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The matrices represented in equations (A.4), (A.5) and (A.6) are the elemental matrices. The 

global matrices can be obtained by assembling all elemental matrices together. 
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APPENDIX B 
 
 

NORMALIZATION OF MONITOR FUNCTION FOR LINEAR TRIANGULAR ELEMENTS
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The normalization of the monitor function is necessary in order to achieve the stable 

results for grid refinement. The present work uses grid deformation method third version. So, 

monitor function must satisfy the condition shown in equation (2.7) in order to be normalized 

over the domain. The way we normalize the monitor function for linear triangular unstructured 

grid is different than the normalization in structured grid. The structure grid has regular node 

distribution and regular element connectivity over the entire domain. Thus, areas of all the 

elements are same at the initial time step for structured grids. The unstructured grids have 

random node distribution over the domain. We are using linear triangular elements for 

unstructured grid which has different area for each element. This makes the normalization little 

more complex and it can be carried out in the following way. 

We have the non-normalized function value at each node to begin with. Let say the 

non-normalized function is denoted by f
~

and normalized values are denoted by f . We have to 

find the integral of the non-normalized monitor functions over the domain as normalization factor 

to satisfy the equation (2.7). The following equation can be used to find the integral of non-

normalized monitor function over the domain.  
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f

d
f
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1

~
1

~
1

           (B.1) 

where, m is total number of elements for the given domain, if
~

is non-normalized monitor 

function for i th
 element and iA is the elemental area for i th 

element.  

 The if
~

 can be found for each element by using following method. We will see the 

procedure for one element with having the following nodal coordinates as shown in figure B.1.  
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Figure B.1: 2D linear triangular element for normalization factor 
 

We have centroid of triangle P is located as shown in figure with having its coordinates (x,y). 

We have value of monitor function for the nodes 1, 2 and 3. If we can find the value of monitor 

function at centroid, we can have the normalization factor by using area integral method for 

each element over the domain. To find the value of monitor function at centroid we need to find 

the areas for triangles produced by connecting nodes to the centroid as shown in figure B.1 (i.e. 

A1, A2, and A3). These areas can be found using following formulas. 
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where, 
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Now if we have non-normalized monitor function values at nodes 1,2 and 3 as 1

~
f , 2

~
f and 3

~
f  

respectively. To find the value of non-normalized monitor function for element we can use the 

following interpolation formula,  
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In equation (B.4), the A is elemental area and that can be found using equation (A.1). Now, we 

can have the value of non-normalized function for each element by using the equation (B.4) for 

each element over the domain. Now substitute these all elemental non-normalized function 

values in equation (B.1) and we will find the integration of non-normalized function over the 

domain which is normalization factor. Now we multiply this normalization factor to the non-

normalized monitor function. The result would be the normalized monitor function f and it can 

be represented as following,  
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where, j designate the node number.  
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