
NEW DEVELOPMENT OF THE DEFORMATION METHOD

by

JIE LIU

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT ARLINGTON

May 2006

 ii

ACKNOWLEDGEMENTS

My deepest gratitude goes to my supervising professor Dr. Guojun Liao,

without whose advice, encouragement and support none of this would be possible.

Many thanks to Dr. Hristo Kojouharov, Dr. Jianzhong Su, Dr. Chaoqun Liu and Dr.

Yue Liu for taking their precious time to serve as my committee. I also want to thank

all the faculty and staff in the Mathematics Department at The University of Texas at

Arlington for their help and support through my graduate studies.

I would like to thank my parents for their support and guidance through my

whole life. Without their encouragement and selfless contribution, I wouldn’t even

think about a degree of Doctor of Philosophy. Special thanks to my brother and sister-

in-law. I could not have achieved this goal without their support. Finally, I want to

thank my husband Mingsheng for his love, support and encouragement. I also want to

thank my son Phillip (Chenxin) and my daughter Cindy (Xinyue) for all the joys they

brought to me.

April 11, 2006

 iii

ABSTRACT

NEW DEVELOPMENTS OF THE DEFORMATION METHOD

Publication No. ______

Jie Liu, PhD.

The University of Texas at Arlington, 2006

Supervising Professor: Guojun Liao

New developments of deformation method for grid generation are presented in

this work. Theorems for three different cases and different methods for implementing

deformation method are presented. One of the new developments is a 3D multi-block

moving grid method. In this version, a Poisson equation is solved by finite difference

method to get the vector field for moving grid. Special treatment applies to the common

boundary of different blocks. Another new development is a numerical method for

reconstructing a given differentiable transformations by solving a system of div-curl

equation directly formed from each point of the graph. The determinacy and ellipticity

of the system of the 3D div-curl equation are analyzed in detail. And the least-square

finite element method is used to solve the div-curl equation in order to reconstruct a

differentiable mapping. Both 2D and 3D implementations are presented in this work.

 iv

TABLE OF CONTENTS

ACKNOWLEDGEMENTS... ii

ABSTRACT .. iii

LIST OF ILLUSTRATIONS... vi

Chapter

 1. INTRODUCTION……….. ... 1

 2. THE DEFORMATION METHOD .. 6

 2.1 Case 1... 7

 2.2 Case 2... 14

 2.3 Case 3... 15

 3. 3D MULTI-BLOCK DEFORMATION METHOD 19

 3.1 Numerical Implementation .. 19

 3.2 Numerical Example ... 19

 4. RECONSTRUCTION OF TRANSFORMATIONS..................................... 36

 4.1 Div-curl System... 37

 4.2 Least-square FEM.. 39

 4.3 Solve Div-curl System .. 42

 4.4 Numerical Examples ... 44

 5. CONCLUSION ... 61

 v

REFERENCES .. 63

BIOGRAPHICAL INFORMATION... 68

 vi

LIST OF ILLUSTRATIONS

Figure Page

3.1 Common boundary of two blocks ... 20

3.2 Finite difference using adjacent six points.. 22

3.3 Corner 1... 23

3.4 Edge 1.. 24

3.5 Face 1 .. 25

3.6 3D plot for time step 0l = ... 27

3.7 A slice extract at constant 0 .5z = for time step 0l = 27

3.8 3D plot for time step 5l = ... 28

3.9 A slice extract at constant 0 .5z = for time step 5l = 28

3.10 3D plot for time step 1 5l = ... 29

3.11 A slice extract at constant 0 .5z = for time step 1 5l = 29

3.12 3D plot for time step 2 0l = ... 30

3.13 A slice extract at constant 0 .5z = for time step 2 0l = 30

3.14 3D plot for time step 2 5l = ... 31

3.15 A slice extract at constant 0 .5z = for time step 2 5l = 31

3.16 3D plot for time step 2 8l = ... 32

3.17 A slice extract at constant 0 .5z = for time step 2 8l = 32

3.18 3D plot for time step 3 0l = ... 33

 vii

3.19 A slice extract at constant 0 .5z = for time step 3 0l = 33

3.20 3D plot for time step 3 5l = ... 34

3.21 A slice extract at constant 0 .5z = for time step 3 5l = 34

3.22 3D plot for time step 4 0l = ... 35

3.23 A slice extract at constant 0 .5z = for time step 4 0l = 35

4.1 Example 4.1 Given transformation with a Sine curve 47

4.2 Example 4.1 Reconstruction at time step 0t = ... 47

4.3 Example 4.1 Reconstruction at time step 5t = .. 48

4.4 Example 4.1 Reconstruction at time step 1 0t = 48

4.5 Example 4.2 Given transformation with a rectangle and an arc 49

4.6 Example 4.2 Reconstruction at time step 0t = ... 49

4.7 Example 4.2 Reconstruction at time step 5t = ... 50

4.8 Example 4.2 Reconstruction at time step 1 0t = 50

4.9 Example 4.3 Given transformation with a circle .. 51

4.10 Example 4.3 Reconstruction at time step 0t = ... 51

4.11 Example 4.3 Reconstruction at time step 5t = ... 52

4.12 Example 4.3 Reconstruction at time step 1 0t = 52

4.13 Example 4.4 Given transformation: A cube with a ball inside
 (cutaway plot).. 53

4.14 Example 4.4 Reconstruction ... 53

4.15 Example 4.4 Given transformation: A cube with a ball inside
 (A slice cut at 0.5z =) ... 54

 viii

4.16 Example 4.4 Reconstruction (A slice cut at 0.5z =)..................................... 54

4.17 Example 4.5 Given transformation: A cube with an ellipsoid inside
 (cutaway plot).. 55

4.18 Example 4.5 Reconstruction (cutaway plot) ... 55

4.19 Example 4.5 Given transformation: A cube with an ellipsoid inside
 (cutaway plot).. 56

4.20 Example 4.5 Reconstruction (cutaway plot) ... 56

4.21 Example 4.5 Given transformation: A cube with an ellipsoid inside
 (cutaway plot).. 57

4.22 Example 4.5 Reconstruction (cutaway plot) ... 57

4.23 Example 4.5 Given transformation: A cube with an ellipsoid inside
 (A slice cut at 0.5x =)... 58

4.24 Example 4.5 Reconstruction (A slice cut at 0.5x =) 58

4.25 Example 4.5 Given transformation: A cube with an ellipsoid inside
 (A slice cut at 0.5y =)... 59

4.26 Example 4.5 Reconstruction (A slice cut at 0.5y =) 59

4.27 Example 4.5 Given transformation: A cube with an ellipsoid inside
 (A slice cut at 0.5z =) ... 60

4.28 Example 4.5 Reconstruction (A slice cut at 0.5z =)..................................... 60

 1

CHAPTER 1

INTRODUCTION

In order to solve partial differential equations (PDEs) numerically, we first need

to discretize the continuous differential equation into a system of algebraic difference

equations. Accompanying with this, the solution field (physical domain) needs to be

discretized into elements or cells, i.e. grids (meshes) have to be generated. The grids

generated for solving PDEs are very crucial for the accuracy of the numerical solution

of PDEs, especially for problems with very rapid variations or sharp layers. Grid

generation becomes an important tool for the computational simulation of various

physical phenomena, like fluid flow, heat transfer, acoustic propagation, just name a

few. After J. Thompson et al. wrote the book [1] about grid generation in 1985, it has

been developed both technologically and analytically. Various grid generation codes

(GRIDGEN, TRIANGLE, etc.), free or commercial, are developed by researchers in

computational field simulation. Mathematical aspects of numerical grid generation are

discussed in [13] to provide a deeper understanding of different algorithms and their

limitations. General grid generation methods are discussed in the books by Knupp and

Steinberg [2], Carey [3], and Thompson [4]. In 1996, a reflection on grid generation

was done by J. Thompson [5] after two decades on its growth.

 2

Grid generation methods are typically grouped into two categories: structured

and unstructured. Structured grid utilizes quadrilateral (2D) and hexahedral (3D)

elements in a computationally rectangular array. The topology of the elements is fixed.

The connectivity among nodes in a structured grid is completely defined by the nodes

indices. For example, a node ,i jx in a 2D structured grid is connected with

1, 1, , 1, , ,i j i j i jx x x− + − and , 1i jx + , This type of connectivity allow us to use finite difference

method which is very efficient for solving PDEs. Classical methods for generating

structured grids are transfinite interpolation (TFI) [2] and solving elliptic (or

hyperbolic) systems of PDEs. Unstructured grid utilizes an arbitrary collection of

elements to fill the domain. Triangles and quadrilaterals are used in 2D and tetrahedral

and hexahedra for 3D. The number of edges sharing a node is not restricted. Algorithms

like Delaunay triangulation and Vornoi diagram are typically used to generate

unstructured grid. Finite element or Finite volume method are applied when we have

unstructured grids.

 Methods combining structured and unstructured grids are also developed.

Those include multiblock grids, hybrid grids, chimera grids and hierarchical grids.

Multiblock grids can be described as an unstructured collection of structured blocks.

The domain is decomposed into several blocks. The grid for each block is structured

while the connections between blocks are unstructured. Several block to block

connection methods have developed. These include point to point, many points to one

point and arbitrary connections. In first case, blocks must match topologically and

physically at the boundary. In the second case, the blocks must be topologically similar

 3

but not the same at the boundary. The third case is where the blocks must be physically

similar at the boundary but can have significant topological differences. Here are some

advantage and disadvantage of multi-block grids.

Advantage:

• Unstructured collection of structured blocks. It is unstructured in block

level and structured inside each block.

• Provide a measure of flexibility for complex geometrics.

• Allow different physical or mechanical models in different blocks.

• Allow different grid refinement strategies for different blocks.

• Leads to parallel computing with different blocks assigned to different

computer processors.

Disadvantage:

• Construction of a multi-block grid requires domain decomposition,

which is still an unsolved big problem in multi-block grid generation.

• Data communication between blocks is another challenge.

Comparison of advantages and drawbacks for different type of grids can be

found in [6]. Detailed information about existing grid types and generation techniques is

provided in [1],[2],[3],[4].

Accuracy of the solution and computational efficiency are the two main

concerns in computational grid generation area. For problems with shock waves,

boundary layers, etc. very fine grids over a small portion of the physical domain are

required in order to resolve the large solution variations. For fixed grid, adding grid

 4

points to the whole domain to improve accuracy will cost computational efficiency. To

improve computational efficiency by reduce grid points will reduce the accuracy. So in

order to improve accuracy and efficiency at the same time, we introduce adaptive grid.

The idea is to always put dense grids on the part which has large variation and coarse

grids on the part which is smooth. For time dependent problems with salient features,

since the position of the part with large variation is changing in different time step, we

want to move the grid in order to keep track of the change of the solution in different

time step.

Local mesh refinement (h -refinement) and moving mesh (r -refinement) are

two main methods for generating adaptive grids. Local refinement method adapts the

grid by locally adding points to the part with large variation and removing points from

the part with low variation. This technique has gotten the most attention for the past

several decades since the refinement is easily prescribed and error analysis is easily

carried out [7]. The disadvantage of this method is that the data structure of the grid has

to be adjusted every time the grid is adapted. And consequently we have to change the

data structure of the solver. Moving grid methods relocate grid points to refine the grid

where needed. The total number of points and the connection between grid points are

always kept the same so that there is no need to change the data structure of the slover.

A number of techniques have been developed by researchers for generating moving

grids. Moving finite element methods where nodal points are driven by the residual of

the finite element approximation have been developed by Miller, Carson and Baines

(See [8][9][10][11][12]). In [14], a variety of approaches for generating moving

 5

adaptive methods are summarized and compared. In [19], a moving mesh method takes

the advantage from both h -refinement and r -refinement is proposed. A moving mesh

finite element method is designed to solve the incompressible Navier-Stokes equations

in [20].

Different numerical methods are combined with moving grid techniques.

Moving finite difference ([15],[16])and moving finite element ([17],[18])algorithms are

developed mainly in the past. Some adaptive moving techniques in finite element and

finite difference solutions of partial differential equations are reviewed in [21], In [22],

a moving mesh finite volume method is developed. Recently, the idea of meshless

adaptation is also implemented in [39][40]. An overview of the meshless methods can

be found in [41].

In this work, some new developments of the moving deformation method

developed by Liao et al ([28],[29]) are presented. Theorems for three different cases and

different methods for implementing deformation method are presented in chapter 2. A

3D multi-block moving grid method based on deformation method is developed in

chapter 3. In chapter 4, the div-curl system is analyzed. Least-square finite element

method is used to solve the div-curl equation in order to reconstruct a differentiable

mapping. The idea comes from the implementation of deformation method. This may

have potential applications in image registration and computer vision simulation, which

currently are currently hot research topics. Both 2D and 3D implementations are

presented in this work.

 6

CHAPTER 2

THE DEFORMATION METHOD

The deformation method is based on the idea of equivalent volume elements of

a compact Riemannian manifold [27]. In 1992, Liao and Anderson proposed this new

method in [29]. In this new approach a grid can be constructed by moving the grid

points such that specified cell volumes can be achieved. A monitor function is defined

and used to obtain a vector field by solving one linear Poisson equation. The grid points

are moved according to a velocity field related to the vector field obtained. The

mathematical principles behind this method guarantee that grid lines of the same grid

family will not cross each other. In [29], the transformation Jacobian determinant, and

consequently the cell volumes, was specified on the old grid before adaptation. In [32],

the method is improved so that cell volumes can be specified as functions of the new

grid after adaptation. In [31], this method is further extended into a real time moving

grid method and used for solving one-dimensional unsteady problems. Some 1D and 2D

applications and more analysis of adaptive moving grid by deformation method were

done in [30]. In [35], an adaptive deformation method is applied to solve the

compressible Euler equations for field flows. A least-square finite element deformation

method is developed in [37] and applied in [34] to a nonlinear problem. A 2D moving

 7

grid geometric deformable model using deformation method is developed by X. Han in

[36] for segmentation of image processing.

Let’s take a look at the following three versions of deformation method.

2.1 Case 1

This is one of the steady versions of deformation method where the

transformation Jacobian determinant is specified on the old grid ξ before adaptation.

Problem: Given a monitor function ()f ξ , find a mapping ()1φ ξ such that

 () () ()1 1detJ fφ φ ξ ξ= ∇ = (2.1)

We can use the following two steps to find such a mapping.

Step 1: Find a vector field ()V ξ that satisfies:

 () ()div 1V fξ ξ= − (2.2)

Step 2: Form
()1t

VV
t t f

=
+ −

, then find ()tφ ξ by solving the following ODE

 () () []0,1t
t t

d
V t

dt
φ ξ

φ= ∈ (2.3)

Here () (),t tφ ξ φ ξ= , and let () ()1 , 1tφ ξ φ ξ= = .

Now, let us show that ()1φ ξ found by this way satisfies (2.1):

In order to prove this, let

() ()() () ()()

()() () ()()

, 1

det 1

t t

t t

H t J t t f

t t f

ξ φ ξ φ ξ

φ ξ φ ξ

⎡ ⎤= + −⎣ ⎦

⎡ ⎤= ∇ + −⎣ ⎦

 (2.4)

 8

We can show

 0H
t

∂
=

∂
 (2.5)

Since () ()0 , 0tφ ξ φ ξ= = is the identity mapping, we have ()0det 1φ ξ∇ = and

()0φ ξ ξ=

So () ()() ()() ()0 00, detH f fξ φ ξ φ ξ ξ= ∇ = (2.6)

Also by (2.4) we have 1(1,) det ()H ξ φ ξ= ∇ (2.7)

Thus (2.1) follows by (2.5), (2.6) and (2.7).

In order to prove (2.5), we need to introduce Abel’s Lemma first.

Abel’s Lemma:

Let M be a n n× matrix such that each element of the matrix is differentiable

on t . If ()d M AM
dt

= where A is a n n× matrix, then (det) (trace)(det)d M A M
dt

= .

This is a standard lemma, which can be found for in [26] or other standard ODE

books. For completeness, we outline its proof here.

Proof:

Let
11 1

1

n

n nn

m m
M

m m

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

"
" " "

"

Assume
11 1 11 1 11 1

1 1 1

' '

' '

n n n

n nn n nn n nn

m m a a m m
d M AM
dt

m m a a m m

⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟= = =⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

" " "
" " " " " " " " "

" " "

 9

Then ,
1

' (, 1,...,)
n

i j ik kj
k

m a m i j n
=

= =∑ (2.8)

11 12 1 11 12 1

21 22 2 21 22 2

1 2 1 2

11 12 1

21 22 2

1 2

' ' '
' ' '

(det)

...

' ' '

n n

n n

n n nn n n nn

n

n

n n nn

m m m m m m
m m m m m md M

dt
m m m m m m

m m m
m m m

m m m

= +

+ +

" "
" "

" " " " " " " "
" "

"
"

" " " "
"

 (2.9)

Plug (2.8) into (2.9) and do row equivalent operations to each of the

determinants, we can reduce (2.9) to

11 11 11 12 11 1 11 12 1

21 22 2 22 21 22 22 22 2

1 2 1 2

11 12 1

21 22 2

1 2

11 22

11 22

(det)

...

det det det

()det

()

n n

n n

n n nn n n nn

n

n

nn n nn n nn nn

nn

nn

a m a m a m m m m
m m m a m a m a md M

dt
m m m m m m

m m m
m m m

a m a m a m

a M a M a M

a a a M

traceA

= +

+ +

= + + +

= + + +

=

" "
" "

" " " " " " " "
" "

"
"

" " " "
"

…

…

(det)M

 ,

 10

Now let’s prove (2.5).

Proof:

()() () ()()()

()() () ()()

()() () ()()

det 1

det 1

det 1

t t

t t

t t

H t t f
t t

t t f
t

t t f
t

φ ξ φ ξ

φ ξ φ ξ

φ ξ φ ξ

∂ ∂ ⎡ ⎤= ∇ + −⎣ ⎦∂ ∂

∂ ⎡ ⎤ ⎡ ⎤= ∇ + −⎣ ⎦ ⎣ ⎦∂

∂ ⎡ ⎤+ ∇ + −⎣ ⎦∂

 (2.10)

Since () ()()() ()()t t
d d V V
dt dt φ

φφ φ ξ φ⎛ ⎞∇ = ∇ = ∇ = ∇ ∇⎜ ⎟
⎝ ⎠

, by Abel’s Lemma we

get:

 () ()()()det trace dettV
t φφ φ∂

∇ = ∇ ∇
∂

 (2.11)

31 2

1 1 1

31 2

2 2 2

31 2

3 3 3

t

VV V

VV VV

VV V

φ

φ φ φ

φ φ φ

φ φ φ

∂∂ ∂
∂ ∂ ∂

∂∂ ∂
∇ =

∂ ∂ ∂
∂∂ ∂

∂ ∂ ∂

So () 31 2

1 2 3

trace divt t
VV VV Vφ φφ φ φ
∂∂ ∂

∇ = + + =
∂ ∂ ∂

 (2.12)

Putting (2.12) into (2.11), we have

 () ()()det div dettV
t φφ φ∂

∇ = ∇
∂

 (2.13)

Plugging (2.13) into (2.10), we have:

 11

()() () () ()

()() () () ()()

() () () ()(){ }

div det 1 det 1

div det 1 det 1 1

det div 1 1 1

t

t t

t t

H V t t f t t f
t t

V t t f f t f V

V t t f f t f V

φ

φ

φ

φ φ

φ φ

φ

∂ ∂
= ∇ + − + ∇ + −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦∂ ∂

= ∇ + − + ∇ − + − ∇⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

= ∇ + − + − + − ∇⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

 (2.14)

By step 2, we have

()1t

VV
t t f

=
+ −

So ()1tV V t t f= + −⎡ ⎤⎣ ⎦

() () ()

() () ()

1 1

1 1

t t

t t

divV divV t t f V t f

divV t t f divV V t f

⇒ = + − + − ∇⎡ ⎤⎣ ⎦

⇒ + − = − − ∇⎡ ⎤⎣ ⎦

 (2.15)

Plugging (2.15) into (2.14), we get:

() () ()(){ }

()()

det 1 1 1

det 1

t t
H divV V t f f t f V
t

divV f

φ

φ

∂
= ∇ − − ∇ + − + − ∇⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦∂

= ∇ + −

 (2.16)

By step 1, plugging (2.2) into (2.16), we get

 ()()det 1 1 0H f f
t

φ∂
= ∇ − + − =

∂

 ,

Now, our main problem is how to implement step 1, that is how to find

()V ξ such that () ()div 1V fξ ξ= − . We have three different methods.

Method 1: Direct construction.

 12

Method 2: Solve the Poisson equation 1fωΔ = − forω , then letV ω= ∇ .

The V found out by this way satisfies

() 1divV div fω ω= ∇ = Δ = − .

Method 3: Solve the div-curl system
1

0
divV f
curlV

= −⎧
⎨ =⎩

. Least-square finite element

method is a good way to solve it.

We will discuss method 2 in the application of Chapter three for multi-block

moving grid. In Chapter four we use method 3 to reconstruct a mapping. Here let us see

some details about method 1.

In 2D, we need to find a vector field ()1 2,V V V on [] []0,1 0,1Ω = × such

that div 1V f g= − = for a normalized monitor function 1f
Ω

=∫∫

Let () ()1

1 2 20
, ,

x
G x x g t x dt= ∫

Define:
() () () ()

() () ()2

1 1 2 1 2 1 2

2 1 2 1 0

, , 1,
:

, ' 1, ,
x

V x x G x x h x G x
V

V x x h x G t dt

⎧ = −⎪
⎨

=⎪⎩ ∫
 (2.17)

where ()1h x is a function satisfying (0) 0h = , (1) 1h = and '(0) '(1) 0h h= = . For

example: ()1() 1 cos
2

h t tπ= − . Then

 13

() () () () ()

() () () () ()
()
()

1 2

2

1 2

1 2 1 2 1 0
1 2

1 2 1 2 1 2

1 2

1 2

, 1, ' 1,

, ' 1, ' 1,

,

, 1.

x x

x

divV V V

G x x h x G x h x G t dt
x x

g x x h x G x h x G x

g x x

f x x

= +

∂ ∂ ⎡ ⎤= − +⎡ ⎤⎣ ⎦ ⎢ ⎥⎣ ⎦∂ ∂

= − +

=

= −

∫

So the vector constructed by (2.17) satisfies.

In 3D, we need to find a vector field ()1 2 3, ,V V V V such that 1divV f= − .

Define:

() () () ()

() () () () ()()
() () () ()

1

2

3

1

1 1 2 3 1 2 3 1 1 1 2 3 10 0

1 1 1

2 1 2 3 1 1 2 3 1 2 2 1 2 3 1 20 0 0 0

1 1

3 1 2 3 1 2 1 2 3 1 2 30 0 0

, , , , , ,

: , , ' , , , ,

, , ' ' , , ,

x

x

x

V x x x g t x x dt h x g t x x dt

V V x x x h x g t t x dt dt h x g t t x dt dt

V x x x h x h x g t t x dt dt dt

⎧ = −⎪
⎪

= −⎨
⎪
⎪ =⎩

∫ ∫

∫ ∫ ∫ ∫

∫ ∫ ∫

 where ()1h x , ()2h x are functions satisfying (0) 0h = , (1) 1h = , and

'(0) '(1) 0h h= = .

() () () () ()

() () () () () ()

()

()

1 2 31 2 3

1 1

1 2 3 1 1 2 3 1 1 1 2 3 10 0

1 1 1 1

1 2 1 2 3 1 2 1 2 1 2 3 1 20 0 0 0

1 2 3

1 2 3

, , ' , , ' , ,

' ' , , ' ' , ,

, ,

, , 1

x x xdivV V V V

g x x x h x g t x x dt h x g t x x dt

h x h x g t t x dt dt h x h x g t t x dt dt

g x x x

f x x x

= + +

= − +

− +

=

= −

∫ ∫

∫ ∫ ∫ ∫

 14

Another interesting direct construction method is worked out by Liao and Su in

[28].

2.2 Case 2

This is another static version of deformation method where the transformation

Jacobian determinant is specified on the new grid ()φ ξ before adaptation.

Problem: Given g and f (properly normalized), find a transformation

:φ ∂Ω→ ∂Ω such that

 () ()() ()() ,g J fξ φ ξ φ ξ ξ= ∈Ω (2.18)

g and f must satisfy 1 1
f gΩ Ω
=∫ ∫ .

We can use the following three steps to find such a transformation.

Step 1. Compute V such that

1 1(())
() ()

div V
g f

ξ
ξ ξ

= − in Ω , and () 0,V nξ ξ⋅ = ∈∂ΩK .

Step 2. For each fixed node ξ , solve the ODE

() ()(),
, , 0 1

t
t t t

t
ϕ ξ

η ϕ ξ
∂

= ≤ ≤
∂

with (),0 ,ϕ ξ ξ= where () ()

() () ()

, 1 11

V x
x t

t t
f x g x

η =
− −

Step 3. Define () (),1φ ξ ϕ ξ= , then φ will be the solution.

Now, let’s show that the φ found out by these three steps satisfies (2.18).

 15

Let () ()()() ()() () ()()
1 1, , 1

, ,
H t J t t t

f t g t
ξ ϕ ξ

ϕ ξ ϕ ξ

⎛ ⎞
= + −⎜ ⎟⎜ ⎟

⎝ ⎠
 (2.19)

If we can show (2.19) is independent of t , i.e.

 0H
t

∂
=

∂
 (2.20)

then () ()() ()() ()1,0 ,0 1/
,0

H J g
g

ξ ϕ ξ ξ
ϕ ξ

= = and

() ()()() ()() ()()1,1 ,1 /
,1

H J J f
f

ξ ϕ ξ φ ξ
ϕ ξ

= =

() () () ()()0 ,0 ,1 1/ /H H H g J f gJ f
t

ξ ξ ξ φ ξ∂
= ⇒ = ⇒ = ⇒ =

∂

The proof of (2.20) is very similar to the proof of the first case. Detailed proof

can be found in [43].

2.3 Case 3

This is the version of deformation method with real time adaptation.

Problem: Given a monitor function (),f tξ (normalized with

1 , where is the volume of the domain
f
= Ω Ω∫), find a transformation 1 2:φ Ω →Ω

such that:

 ()() ()(), , ,J t f t tφ ξ φ ξ= for 0t > (2.21)

(assuming it is true at 0t = .)

 16

where ()() (), det ,J t tφ ξ φ ξ= ∇ is the Jacobian determinant of the

transformation.

The transformation φ can be found by the following two steps.

Step 1: Find a vector field (),V tφ such that:

() () ()1div , ,
,

V t g t
t f t tφ φ φ

φ
∂ ∂

= − = −
∂ ∂

,

where ()() ()()
1, ,

, ,
g t t

f t t
φ ξ

φ ξ
= .

Step 2: Solve the ODE for the transformation (), tφ ξ :

 () () () (),
, , ,

t
f t V t t

t
φ ξ

φ φ η φ
∂

= =
∂

We can show that the (,)tφ ξ found by this way satisfies (2.21):

In order to prove this, let:

()() ()() ()
()

,
det , , ,

,
J t

H t g t t Jg
f t
φ

φ ξ φ ξ
φ

= ∇ = = .

If we can show 0H
t

∂
=

∂
, then constJH

f
= = .

Proof:

 ()() ()(), ,
, ,

g t tH J g t t J
t t t

φ ξ
φ ξ

∂∂ ∂
= +

∂ ∂ ∂
 (2.22)

By Abel’s Lemma,

since () () ()()()t t tξ ξ φ ξ φ ξ
φ φφ φ η φ∂ ∂ ⎛ ∂ ⎞⎛ ⎞ ⎛ ⎞∇ = ∇ = ∇ ∇ = ∇ ∇⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠

, we get

 17

() ()()()()

()()() () ()()()

() ()() () ()

det trace , det

div , det div , ,

, div , , , ,

,

J t
t t

t f t V t J

f t V t f t V t J

gf f V J
t

φ

φ φ

φ φ

φ

φ η φ φ

η φ φ φ φ

φ φ φ φ

∂ ∂
= ∇ = ∇ ∇

∂ ∂

= ∇ =

⎡ ⎤= + ∇⎣ ⎦

∂⎡ ⎤= − + ∇⎢ ⎥∂⎣ ⎦

That is ,J gf f V J
t t φ

∂ ∂⎡ ⎤= − + ∇⎢ ⎥∂ ∂⎣ ⎦
 (2.23)

Also we have (),
,

g t gg
t t tφ

φ φ∂ ∂ ∂
= ∇ +

∂ ∂ ∂
 (2.24)

Plugging (2.23) and (2.24) into (2.22), we get:

()

, ,

, , (note: is used)

1, , (note: 1 is used)

, note: 1 () 0

H g gf f V Jg J g
t t t t

g gJ fg f V g g fV fV
t t t

g gJ f V g f g V g fg
t t f

J g f f g V fg fg g f f g

φ φ

φ φ

φ φ

φ φ

φ

φ

∂ ∂ ⎛ ∂ ∂ ⎞⎡ ⎤= − + ∇ + ∇ +⎜ ⎟⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦ ⎝ ⎠

∂ ∂ ∂⎡ ⎤= − + ∇ + ∇ + =⎢ ⎥∂ ∂ ∂⎣ ⎦

∂ ∂⎡ ⎤= − + ∇ + ∇ + = ⇒ =⎢ ⎥∂ ∂⎣ ⎦

⎡ ⎤= ∇ + ∇ = ⇒∇ = ∇ + ∇ =⎣ ⎦ ()is used

0,

0

J V= ⎡ ⎤⎣ ⎦

=
,

 18

The numerical implementations for all the three cases are similar. The method

discussed in case1 works after adjusting the right hand side of the equation corresponds

to the certain case.

 19

CHAPTER 3

3-D MULTI-BLOCK DEFORMATION METHOD

In this chapter we apply the deformation method to 3D multi-block structured

grids. A 2D implementation can be found in [38].

3.1 Numerical Implementation

It is hard to apply structured grid on complex domains. A domain can be

decomposed into different blocks so that we can take advantage of structured grid on

each block. When we implement deformation method in multi-block setting, a monitor

function is defined for the entire domain. After normalizing the monitor function for the

whole domain [38], we implement deformation method by solving a Poisson equation

on each block by using finite difference method. And then take the gradient on the

solution to get the vector field for moving the grid points.

3.2 Numerical Example

In this example, a 3D back-step is decomposed into two blocks. The first block

is a [] [] []0,1 0, 2 0,1× × column. A 20×40×20 initial uniform grid is generated on it. The

Second block is a [] [] []1, 2 0,1 0,1× × cube. The initial uniform structured grid on it is

20×20×20. These two blocks have a common boundary at 1x = , []0,1y∈ and []0,1z∈ .

(See figure 3.1). The initial grid is deformed into a moving grid concentrated around a

 20

ball of radius 0.2r = . The ball keeps the same radius and moves from the first block to

the second block gradually through the interface of the two blocks.

Let l denote the time step. The coordinate values of the center of the moving

ball (), ,a b c are defined as:

0.5
1.5 0.05 0 20
0.5

0.5 0.05(20)
0.5 20 40
0.5

a
b l when l
c

a l
b when l
c

=⎧
⎪ = − ≤ ≤⎨
⎪ =⎩

= + −⎧
⎪ = < ≤⎨
⎪ =⎩

O1

O2 O3

x

y

z

Block 1

Block 2

Figure 3.1 Two block of a 3D back-step

That means the center of the sphere starts at ()1 0.5,1.5,0.5O and then drop to

()2 0.5,0.5,0.5O when 0 20l≤ ≤ . After that, when 20 40l< ≤ , the center keeps on

moving through the interface of the two blocks and then reaches ()3 1.5,0.5,0.5O .

The computation includes two steps in our example:

 21

Step 1: For 0 0.5t≤ ≤ , we form a grid adapted to the sphere at ()1 0.5,1.5,0.5O

with 0.2r = .

Step 2: For 0 20l≤ ≤ , the sphere goes to ()2 0.5,0.5,0.5O and for 20 40l< ≤

the sphere moves to ()3 1.5,0.5,0.5O gradually (See figure 3.1).

Now, let us define a monitor function on the entire domain.

To define the monitor function, a level set function d is introduced, which

vanishes on the moving ball.

()2 2 2 2() () () 0.2d x a y b z c r r= − + − + − − =

Then, the monitor function for 0 0.5t≤ ≤ can be defined as:

1 0.05
1 2 2 (0.2 8) 0.05 0
1 2 2 (0.2 8) 0 0.05
1 0.05

d
t t d d

f
t t d d

d

< −⎧
⎪ − + − − ≤ <⎪= ⎨ − + + ≤ <⎪
⎪ ≥⎩

�

This is the monitor function before normalization. We find the normalized

monitor function f by

1f dA
ff

Ω
=

Ω

∫� �
.

After we obtain the normalized monitor function, we calculate the right hand

side of the Poisson equation

1 in
t f

ω
⎛ ⎞∂

Δ = − Ω⎜ ⎟∂ ⎝ ⎠

 22

0 on
n
ω∂
= Γ

∂

by () ()
1 1
, ,1 f t dt f t

t f dt

−
+⎛ ⎞∂

=⎜ ⎟∂ ⎝ ⎠

x x
.

After the right hand sides of the Poisson equation for both block 1 and block 2

are set up, now we discretize the Poisson equation using the adjacent six points. The

finite difference representation of the Poisson equation is (See figure 3.2):

1, , , , 1, , , 1, , , , 1, , , 1 , , , , 1
, ,2 2 2

2 2 2i j k i j k i j k i j k i j k i j k i j k i j k i j k
i j krhs

x y z
ω ω ω ω ω ω ω ω ω− + − + − +− + − + − +

+ + =
Δ Δ Δ

Figure 3.2 Finite difference using adjacent six points

Here, we assume x y z hΔ = Δ = Δ = , then for all the interior points we have

()2
, , 1, , 1, , , 1, , 1, , , 1 , , 1 , ,

1
6i j k i j k i j k i j k i j k i j k i j k i j kh rhsω ω ω ω ω ω ω− + − + − += + + + + + − × .

The resulting system of linear algebraic equations is then solved by using

successive overrelaxation (SOR) method in the following two steps.

()2
, , 1, , 1, , , 1, , 1, , , 1 , , 1 , ,

1
6

new old new old new new
i j k i j k i j k i j k i j k i j k i j k i j kh rhsω ω ω ω ω ω ω− + − + − += + + + + + − ×�

 (i, j, k)

 (i, j-1, k)

 (i, j+1, k)

 (i-1, j, k)

 (i, j, k-1)

 (i, j, k+1)

 23

(), , , , , ,1new old
i j k i j k i j kω λ ω λω= − + �

On the boundary, Neumann boundary condition is implemented by

0 on
n
ω∂
= Γ

∂
.

The boundary includes 8 corners, 12 edges and 6 faces for each block.

For corner 1 (See Figure 3.3):

Figure 3.3 Corner 1

1,0,0 1,0,0
1,0,0 1,0,00

2 x
ω ω

ω ω−
−

−
= ⇒ =

Δ

0,1,0 0, 1,0
0,1,0 0, 1,00

2 y
ω ω

ω ω−
−

−
= ⇒ =

Δ

0,0,1 0,0, 1
0,0,1 0,0, 10

2 z
ω ω

ω ω−
−

−
= ⇒ =

Δ

()

()

2
0,0,0 1,0,0 0,1,0 0,0,1 0,0,001,0,0

2
1,0,0 0,1,0 0,0,1

0

0,0,0

,, , 11, 00
1
6
1 2 2 2
6

h rhs

h rhs

ωω ω ω ω

ω ω

ω ω

ω

−−−= + + + + + − ×

= + + − ×

Other corner points are implemented in a similar way.

 (0,0,0)

 (0,-1,0)

 (1,0,0)

 (0,0,-1)

 (0,1,0)

 (0,0,1)

 (-1,0,0)

 24

For edge 1 (See figure 3.4):

Figure 3.4 Edge 1

,1,0 , 1,0
,1,0 , 1,00

2
i i

i iy
ω ω

ω ω−
−

−
= ⇒ =

Δ

,0,1 ,0, 1
,0,1 ,0, 10

2
i i

i iz
ω ω

ω ω−
−

−
= ⇒ =

Δ

()

()

()

2
,0,0 1,0,0 1,0,0 0,1,0 0,0,1 0,0,0

2
1

0, 1,0

0,1,,0,0 1,0,0 0,1,0 0,0,1 0,0,0

2
1,0,0 1,0,0 0,1,0 0,0,1 ,0,0

0,0,

0

1

0,0,1

1
6
1
6
1 2 2
6

i i i

i i

i i i

h rhs

h rhs

h rhs

ω ω ω ω ω

ω ω ω ω

ω ω

ω

ω

ω ω

ω

ω

− +

− +

−

− +

−= + + + + + − ×

= + + + + + − ×

= + + + − ×

Other boundary edges are implemented in the similar way.

For face 1 (See figure 3.5):

,1, , 1,
,1, , 1,0

2
i j i j

i j i jy
ω ω

ω ω−
−

−
= ⇒ =

Δ

 (i,0,0)

 (i,-1,0)

 (i+1,0,0)

 (i,0,-1)

 (i,1,0)

 (i,0,1)
 (i-1,0,0)

 25

()

()

()

, 1,

,1,

2
,0, 1,0, 1,0, ,1, ,0, 1 ,0, 1 ,0,

2
1,0, 1,0, ,1, ,0, 1 ,0, 1 ,0,

2
1,0, 1,0, ,1, ,0, 1 ,0, 1 ,0,

1
6
1
6
1 2
6

i j i j i j i j i j i j i j

i j i j i j i j i j i j

i j i j i j i j i j i

i

j

i j

j

h rhs

h rhs

h rhs

ω ω ω ω ω ω

ω ω ω ω ω

ω ω ω

ω

ω

ω ω

− + − +

− + − +

− + −

−

+

= + + + + + − ×

= + + + + + − ×

= + + + + − ×

Figure 3.5 Face 1

Other boundary faces are implemented in the similar way.

Special cares need to be taken for common boundary points. Notice, part of the

boundary of each block actually is not really the boundary for the whole domain. The

common boundary (interface) of the two blocks (Shaded part of figure 3.1, includes: 4

corners, 4 edges and 1 face) is the part which we need to pass data to each other block.

Neumann boundary condition does not apply here as for other boundary part. For the

points on the interface, we have to use points from the neighbor block. For example, for

1 1,1 1j my k mz< < − < < − , when we calculate for block 1:

()2
, , 1, , 1, , , 1, , 1, , , 1 , , 1 , ,

1
6mx j k mx j k j k i j k i j k i j k i j k i j kA A B A A A A h rhsω ω ω ω ω ω ω− − + − += + + + + + − × .

When we calculate for block 2:

 (i,-1,j)

 (i+1,0,j)

 (i,1,j)

 (i,0,j+1)

 (i,0,j)

 (i,0,j-1)

 (i-1,0,j)

 26

()2
0, , 1, , 0, , , 1, , 1, , , 1 , , 1 , ,

1
6j k mx j k j k i j k i j k i j k i j k i j kB A B B B B B h rhsω ω ω ω ω ω ω− − + − += + + + + + − × .

The 4 corners and 4 edges on the interface are implemented in the similar way

by borrowing points from each block. For example:

()2
,0,0 ,0,0 1,0,0 1,0,0 ,1,0 ,0,1 ,0,0

1 2
6mx mx mx mx mx mxA A B A A A h rhsω ω ω ω ω ω−= + + + + − ×

()2
0,0,0 0,0,0 1,0,0 1,0,0 0,1,0 0,0,1 0,0,0

1 2
6 mxB B A B B B h rhsω ω ω ω ω ω−= + + + + − ×

()2
,0, 1,0, 1,0, ,0, 1 ,0, 1 ,1, ,0, ,0,0

1
6mx k mx k k mx k mx k mx k mx k mxA A B A A A A h rhsω ω ω ω ω ω ω− + −= + + + + + − ×

()2
0,0, 1,0, ,0, 0,0, 1 0,0, 1 0,1, 0,0, ,0,0

1
6k k mx k k k k k mxB B A B B B B h rhsω ω ω ω ω ω ω+ −= + + + + + − ×

Here, Aω is for values in block 1, Bω is for values in block 2. Other points are

implemented in the similar way.

After boundary points are carefully taken care of. We solve the Poisson

equation for each block.

Then we compute the vector field V , i.e. the nodal velocities by:

V ω= ∇

At last, the new position of grid points are computed by the following

deformation ODE.

f V
t
φ∂
=

∂

The results are shown through Figure 3.6 to Figure 3.23. The implementation of

more blocks can be done in the similar way as this two-block example.

 27

0

0.5

1

V
3

0

0.5

1

1.5

2

V1

0

0.5

1

1.5

2

V2

X Y

Z

Figure 3.6 3D plot for time step 0l = (Cutaway plot)

X

Y

Z

Figure 3.7 A slice extract at constant 0 .5z = for time step 0l =

 28

0

0.5

1

V
3

0

0.5

1

1.5

2

V1

0

0.5

1

1.5

2

V2

X Y

Z

Figure 3.8 3D plot for time step 5l = (Cutaway plot)

X

Y

Z

Figure 3.9 A slice extract at constant 0 .5z = for time step 5l =

 29

0

0.5

1

V
3

0

0.5

1

1.5

2

V1

0

0.5

1

1.5

2

V2

X Y

Z

Figure 3.10 3D plot for time step 1 5l = (Cutaway plot)

X

Y

Z

Figure 3.11 A slice extract at constant 0 .5z = for time step 1 5l =

 30

0

0.25

0.5

0.75

1

V
3

0

0.5

1

1.5

2

V1

0

0.5

1

1.5

2

V2

X Y

Z

Figure 3.12 3D plot for time step 2 0l = (Cutaway plot)

X

Y

Z

Figure 3.13 A slice extract at constant 0 .5z = for time step 2 0l =

 31

0

0.5

1

V
3

0
0.5

1
1.5

2
V1 0

0.5

1

1.5

2

V2

Y

X

Z

Figure 3.14 3D plot for time step 2 5l = (Cutaway plot)

X

Y

Z

Figure 3.15 A slice extract at constant 0 .5z = for time step 2 5l =

 32

0

0.5

1

V
3

0

0.5

1

1.5

2

V1

0

0.5

1

1.5

2

V2

X Y

Z

Figure 3.16 3D plot for time step 2 8l = (Cutaway plot)

X

Y

Z

Figure 3.17 A slice extract at constant 0 .5z = for time step 2 8l =

 33

0

0.5

1

V
3

0

0.5

1

1.5

2

V1

0

0.5

1

1.5

2

V2

X Y

Z

Figure 3.18 3D plot for time step 3 0l = (Cutaway plot)

X

Y

Z

Figure 3.19 A slice extract at constant 0 .5z = for time step 3 0l =

 34

0

0.5

1

V
3

0

0.5

1

1.5

2

V1

0

0.5

1

1.5

2

V2

X Y

Z

Figure 3.20 3D plot for time step 3 5l = (Cutaway plot)

X

Y

Z

Figure 3.21 A slice extract at constant 0 .5z = for time step 3 5l =

 35

0

0.5

1

V
3

0

0.5

1

1.5

2

V1

0

0.5

1

1.5

2

V2

X Y

Z

Figure 3.22 3D plot for time step 4 0l = (Cutaway plot)

X

Y

Z

Figure 3.23 A slice extract at constant 0 .5z = for time step 4 0l =

 36

CHAPTER 4

RECONSTRUCTION OF TRANSFORMATIONS

In this chapter we’ll explore a new idea which may have applications to image

processing using div-curl system of equations. The idea comes from the implementation

of deformation method for finding transformations. Notice that for all the three cases in

chapter one, the first step is to find a vector field by solving a divergence equation with

different right hand side. After we add an equation of curl of the vector field, we can

set up a div-curl system of equation. The least-square finite element method is a good

way to solve it [42]. Now let’s think in the opposite direction. For a transformation

given on a uniform initial grid we can find out the divergence and curl at each point.

Thus we can set up the div-curl system of equations for each point. Solving this system

we can reconstruct the given transformation. This idea can apply to the construction of

any differentiable and invertible transformations.

This idea may apply to image registration, which is the process of establishing

point-by-point correspondence between two images of a scene. This process is needed

in various computer vision applications. Sets of data acquired by sampling the same

scene or object at different times, or from different perspectives, will be in different

coordinate systems. Image registration is the process of transforming the different sets

of data into one coordinate system. Registration is necessary in order to be able to

 37

compare or integrate the data obtained from different measurements. More research

needs to be done to apply this method of reconstructing transformation to the field of

image registration.

4.1 Div-curl system

We will first take a look at the div-curl system. Let’s discuss the three-

dimensional case. Let D be an open bounded domain in 3\ with a piecewise smooth

boundary 1 2Γ = Γ Γ∪ . (), ,x y z denotes a point in D . F Pi Qj Rk= + +
KK K

 is a vector

field in D . nK is the unit outward normal vector of the boundary. Then the 3D div-curl

system of equations is:

1

2

0
0

divF in D
curlF in D
n F on
n F on

α

β

=⎧
⎪ =⎪
⎨

⋅ = Γ⎪
⎪ × = Γ⎩

K

K
K

 (4.1)

where 1 2 3i j kβ β β β= + +
KK K K

Our purpose is to solve for , ,P Q R , for a total of three unknowns. But we have

four scalar equations in this system. So, it appears that this system is ‘overdetermined’.

Let’s reconsider this system by introducing a dummy variable θ as in [44], where

0θ ≡ in D and 0θ = on 1Γ so that the system becomes:

 1

1

2

0
0

0

divF in D
curlF in D

n F on
on

n F on

α

θ β

θ

=⎧
⎪∇ + =⎪⎪ ⋅ = Γ⎨
⎪ = Γ⎪
⎪ × = Γ⎩

K

K

K

 (4.2)

 38

We can show that system (4.2) is equivalent to system (4.1). Detailed proof can

be found in [42]. Notice, system (4.2) is a system with four unknowns and four

equations.

In Cartesian coordinates, we have:

R Q P R Q Pcurl F i j k
y z z x x y

⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞= − + − + −⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠

KK K

i j k
x y z
θ θ θθ ∂ ∂ ∂

∇ = + +
∂ ∂ ∂

KK K

P Q Rdiv F
x y z

∂ ∂ ∂
= + +
∂ ∂ ∂

So system (4.2) can be written as:

1

2

3

R Q
x y z

P R
y z x

Q P
z x y
P Q R
x y z

θ β

θ β

θ β

α

∂ ∂ ∂⎧ + − =⎪ ∂ ∂ ∂⎪
∂ ∂ ∂⎪ + − =⎪ ∂ ∂ ∂⎪

⎨∂ ∂ ∂⎪ + − =
⎪ ∂ ∂ ∂
⎪
∂ ∂ ∂⎪ + + =

⎪ ∂ ∂ ∂⎩

 (4.3)

Define

P
Q

F
R
θ

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

� and

1

2

3

β
β

β
β
α

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

� , then this system can be written in a matrix

form:

0 1 2 3
F F FA F A A A
x y z

β∂ ∂ ∂
+ + + =

∂ ∂ ∂

� � � �� where

 39

0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

A

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

, 1

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

A

⎛ ⎞
⎜ ⎟−⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

,

2

0 0 1 0
0 0 0 1
1 0 0 0

0 1 0 0

A

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟−
⎜ ⎟
⎝ ⎠

, 3

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

A

−⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

,

For any nonzero triplets (), ,x y z , the characteristic polynomial for system (4.3)

is

()22 2 2
1 2 3

0
0

det() det 0
0

0

z y x
z x y

A x A y A z x y z
y x z

x y z

−⎛ ⎞
⎜ ⎟−⎜ ⎟+ + = = + + ≠
⎜ ⎟−
⎜ ⎟
⎝ ⎠

Thus, system (4.2) is elliptic and properly determined. And so is system (4.1).

Least-square finite element method is a good way to solve the div-curl system.

Detailed analysis can be found in [42]. The numerical implementation procedures can

be found in [40]. Here we’ll take a glance at it.

4.2 Least-square FEM

Let’s consider the linear boundary-value problem:

 Au f= in Ω

 Bu g= on Γ (4.4)

 40

Where 0
1

dn

i
i i

uAu A A u
x=

∂
= +

∂∑ (2dn = for 2D, 3dn = for 3D). B is a boundary

operator. f and g are given vector-valued functions. u is a vector with m unknown

functions of ()1, dnx x"x .

1

2 ,

m

u
u

u

u

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

"

1

2 ,

dn

f
f

f

f

⎛ ⎞
⎜ ⎟
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

"

1

2

dn

g
g

g

g

⎛ ⎞
⎜ ⎟
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

"

Let’s define the residual as R Au f= − , then if 0R = we get the exact solution

for u . The least-square finite element method is to minimize R in a least-square sense,

that is, to minimize the following functional:

() ()
22

0
I v R Av f dω

Ω
= = −∫ .

A necessary condition for u to minimize ()I v is :

()
0

lim 0
t

d I u tv
dt→

+ = .

Since

() ()

() () ()() () ()

2

2 2 2 2 2 2 2 ,

I u tv A u tv f d

Au Av t f Au Av t Av ft Au f d

ω

ω

Ω

Ω

+ = + −⎡ ⎤⎣ ⎦

⎡ ⎤= + + + − −⎣ ⎦

∫

∫

we have

 41

() () ()() ()

()() ()

2

0 0
lim lim 2

2

0.

t t

d I u tv Av t Au Av Av f d
dt

Au Av Av f d

ω

ω

Ω→ →

Ω

⎡ ⎤+ = + −⎣ ⎦

= −⎡ ⎤⎣ ⎦

=

∫

∫

Thus

()() ()Au Av d Av f dω ω
Ω Ω

=⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦∫ ∫ .

That is

 () (), ,Au Av f Av= . (4.5)

This is the variational principle of equation (4.4).

In finite element, we discritize the domain into elements and then introduce

finite element basis. Let jϕ be the element shape function, we write the expansion of the

unknown variables in each element as

 () ()

1

2

1

nN
e
h j

j

m j

u
u

u

u

ϕ
=

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

∑ "
x x (4.6)

where nN is the number of nodes for one element.

Introducing (4.6) into (4.5) we get a linear system of algebraic equations:

 KU F= (4.7)

Here

() ()1 2 1 2, , , , , ,
n n

T

e N NK A A A A A A dϕ ϕ ϕ ϕ ϕ ϕ
Ω

= Ω∫ " "

 42

()1 2, , ,
n

T

e NF A A A fdϕ ϕ ϕ
Ω

= Ω∫ "

are the element matrices used to assemble the global matrix K and F .

4.3 Solve Div-Curl System

Let’s take a look at the definition of divergence and curl of a vector field first.

If Pi Qj Rk= + +
KK K

V is a vector field on 3\ and the partial derivatives

of (), ,P x y z , (), ,Q x y z and (), ,R x y z all exist, then

P Q Rdiv
x y z

∂ ∂ ∂
= + +
∂ ∂ ∂

V

R Q P R Q Pcurl i j k
y z z x x y

⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞= − + − + −⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠

KK K
V

In 2D, all the terms related to R and z vanish. So we have

P Qdiv
x y

∂ ∂
= +
∂ ∂

V

Q Pcurl k
x y

⎛ ⎞∂ ∂
= −⎜ ⎟∂ ∂⎝ ⎠

K
V , where k

K
 is the unit outward normal vector, usually

denoted as nK .

The matrix form of the div-curl system can be written as:

 43

1 0 0 0 1 0 0 0 1
0 0 0 0 0 1 0 1 0
0 0 1 0 0 0 1 0 0
0 1 0 1 0 0 0 0 0

P Q R
P x y zP P
y R Qx z

Q Q Q y z
x y z P R
R RR z x
x zy

∂ ∂ ∂
+ +

⎛ ⎞∂ ∂ ∂ ∂∂ ∂⎛ ⎞ ⎛ ⎞⎜ ⎟⎜ ⎟ ⎜ ⎟⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂∂ ∂⎜ ⎟ −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟−⎜ ⎟∂ ∂ ∂ ∂ ∂⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟+ + =⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟− ∂ ∂ ∂ ∂ ∂⎜ ⎟ −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂⎜ ⎟− ∂ ∂ ∂⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠∂⎝ ⎠ Q P
x y

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟

∂ ∂⎜ ⎟−⎜ ⎟∂ ∂⎝ ⎠

In 3D, linear hexahedral elements are used and the finite element approximation

at each hexahedral is given by

()
8

1

i
e

h i i
i

i

p
V x q

r
ϕ

=

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟= ⎢ ⎥⎜ ⎟

⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

∑

where , ,i i ip q r are the nodal values at the thi node of the hexahedral element

and iϕ ’s are the shape functions.

The element matrices used to assemble the algebraic system KV F= are

() ()

() ()

1 1 1 8

8 1 8 8

e

T T

e
T T

A A A A
K d

A A A A

ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ
Ω

⎛ ⎞
⎜ ⎟

= Ω⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

∫
"

%

"

()

()

1

8

e

T

e
T

A
F d

A

ϕ

ϕ
Ω

⎛ ⎞
⎜ ⎟

= Ω⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

∫ #
f

f

 44

where
0

for 1,2,...,8.
0

0

i i i

i i

i
i i

i i

x y z

z yA i

z x

y x

ϕ ϕ ϕ

ϕ ϕ

ϕ
ϕ ϕ

ϕ ϕ

∂ ∂ ∂⎛ ⎞
⎜ ⎟∂ ∂ ∂⎜ ⎟

∂ ∂⎜ ⎟
−⎜ ⎟∂ ∂⎜ ⎟= =

⎜ ⎟∂ ∂
−⎜ ⎟∂ ∂⎜ ⎟

∂ ∂⎜ ⎟−⎜ ⎟∂ ∂⎝ ⎠

and

P Q R
x y z

R Q
y z
P R
z x
Q P
x y

∂ ∂ ∂⎛ ⎞+ +⎜ ⎟∂ ∂ ∂⎜ ⎟
∂ ∂⎜ ⎟

−⎜ ⎟∂ ∂⎜ ⎟
⎜ ⎟∂ ∂

−⎜ ⎟∂ ∂⎜ ⎟
∂ ∂⎜ ⎟−⎜ ⎟∂ ∂⎝ ⎠

f = , calculated from the given transformation.

4.4 Numerical Examples

Numerically, if we set the position array for the given transformation

as (), ,xn i j k , (), ,yn i j k , (), ,zn i j k , and the array for our initial grid as (), ,x i j k ,

(), ,y i j k , (), ,z i j k , then

 () ()
() ()

1, , 1, ,
1, , 1, ,

xn i j k xn i j kP
x x i j k x i j k

+ − −∂
=

∂ + − −

() ()
() ()

, 1, , 1,
, 1, , 1,

xn i j k xn i j kP
y y i j k y i j k

+ − −∂
=

∂ + − −

() ()
() ()

, , 1 , , 1
, , 1 , , 1

xn i j k xn i j kP
z z i j k z i j k

+ − −∂
=

∂ + − −

 45

() ()
() ()

1, , 1, ,
1, , 1, ,

yn i j k yn i j kQ
x x i j k x i j k

+ − −∂
=

∂ + − −

() ()
() ()

, 1, , 1,
, 1, , 1,

yn i j k yn i j kQ
y y i j k y i j k

+ − −∂
=

∂ + − −

() ()
() ()

, , 1 , , 1
, , 1 , , 1

yn i j k yn i j kQ
z z i j k z i j k

+ − −∂
=

∂ + − −

() ()
() ()

1, , 1, ,
1, , 1, ,

zn i j k zn i j kR
x x i j k x i j k

+ − −∂
=

∂ + − −

() ()
() ()

, 1, , 1,
, 1, , 1,

zn i j k zn i j kR
y y i j k y i j k

+ − −∂
=

∂ + − −

() ()
() ()

, , 1 , , 1
, , 1 , , 1

zn i j k zn i j kR
z z i j k z i j k

+ − −∂
=

∂ + − −

Following are some of the numerical examples.

We define ()max i idxyz XN X= − (1,...i = nmax).

Here () () ()2 2 2
i i i i i i i iXN X xn x yn y zn z− = − + − + − is the distance between

each corresponding pair of points of the given and the reconstructed transformations.

And nmax is the maximum number of nodes. dxyz is used to measure the accuracy of

our reconstruction method.

The grid size of the following examples are 64 64× over the unit square

[] []0,1 0,1× for 2D and 40 40 40× × over the unit cube [] [] []0,1 0,1 0,1× × for 3D. That

means the distance between adjacent points in the uniform grid is 1 =0.015625
64

 for 2D

 46

and 1 =0.025
40

 for 3D. We’ll compare the dxyz in each case with these to have the

sense of how accurate we are.

4.4.1 2D examples

Example 1: A unit square with a sine curve. The results are shown in Figure 4.1

to Figure 4.4. 31.099 10dxyz −= ×

Example 2: A unit square with a rectangle and an arc. The results are shown in

Figure 4.5 to Figure 4.8. 21.122 10dxyz −= ×

Example 3: A unit square with a circle. The results are shown in Figure 4.9 to

Figure 4.12. 31.142 10dxyz −= ×

4.4.2 3D examples

Example 4: A unit cube with a ball inside. The results are shown in Figure 4.13

to Figure 4.16. 34.225 10dxyz −= ×

Example 5: A unit cube with an ellipsoid inside. The results are shown in Figure

4.17 to Figure 4.28. 34.162 10dxyz −= ×

 47

x

y

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4.1 Example 4.1 Given transformation with a Sine curve

X

Y

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4.2 Example 4.1 Reconstruction at time step 0t =

 48

x

y

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4.3 Example 4.1 Reconstruction at time step 5t =

x

y

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4.4 Example 4.1 Reconstruction at time step 1 0t =

 49

x

y

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4.5 Example 4.2 Given transformation with a rectangle and an arc

X

Y

0 0.25 0.5 0.75 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4.6 Example 4.2 Reconstruction at time step 0t =

 50

x

y

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4.7 Example 4.2 Reconstruction at time step 5t =

x

y

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4.8 Example 4.2 Reconstruction at time step 1 0t =

 51

x

y

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4.9 Example 4.3 Given transformation with a circle

X

Y

0 0.25 0.5 0.75 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4.10 Example 4.3 Reconstruction at time step 0t =

 52

x

y

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4.11 Example 4.3 Reconstruction at time step 5t =

x

y

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4.12 Example 4.3 Reconstruction at time step 1 0t =

 53

0

0.2

0.4

0.6

0.8

1

V
3

0

0.2

0.4

0.6

0.8

1

V1

0

0.2

0.4

0.6

0.8

1

V2

X Y

Z

Figure 4.13 Example 4.4 Given transformation: A cube with a ball inside (cutaway plot)

0

0.2

0.4

0.6

0.8

1

Z

0

0.2

0.4

0.6

0.8

1

X

0

0.2

0.4

0.6

0.8

1

Y

X Y

Z

Figure 4.14 Example 4.4 Reconstruction

 54

X

Y

Z

Figure 4.15 Example 4.4 Given transformation: A cube with a ball inside (A slice cut at
0.5z =)

X

Y

Z

Figure 4.16 Example 4.4 Reconstruction (A slice cut at 0.5z =)

 55

0

0.2

0.4

0.6

0.8

1

V
3

0

0.2

0.4

0.6

0.8

1

V1

0

0.2

0.4

0.6

0.8

1

V2

X Y

Z

Figure 4.17 Example 4.5 Given transformation: A cube with an ellipsoid inside
(cutaway plot)

0

0.2

0.4

0.6

0.8

1

Z

0

0.2

0.4

0.6

0.8

1

X

0

0.2

0.4

0.6

0.8

1

Y

X Y

Z

Figure 4.18 Example 4.5 Reconstruct (cutaway plot)

 56

0

0.2

0.4

0.6

0.8

1

V
3

0

0.2

0.4

0.6

0.8

1

V1

0

0.2

0.4

0.6

0.8

1

V2

X Y

Z

Figure 4.19 Example 4.5 Given transformation: A cube with an ellipsoid inside

(cutaway plot)

0

0.2

0.4

0.6

0.8

1

Z

0

0.2

0.4

0.6

0.8

1

X

0

0.2

0.4

0.6

0.8

1

Y

X Y

Z

Figure 4.20 Example 4.5 Reconstruct (cutaway plot)

 57

0

0.2

0.4

0.6

0.8

1

V
3

0

0.2

0.4

0.6

0.8

1

V1

0

0.2

0.4

0.6

0.8

1

V2

X Y

Z

Figure 4.21 Example 4.5 Given transformation: A cube with an ellipsoid inside

(cutaway plot)

0

0.2

0.4

0.6

0.8

1

Z

0

0.2

0.4

0.6

0.8

1

X

0

0.2

0.4

0.6

0.8

1

Y

X Y

Z

Figure 4.22 Example 4.5 Reconstruct (cutaway plot)

 58

X Y

Z

Figure 4.23 Example 4.5 Given transformation: A cube with an ellipsoid inside (A slice

cut at 0.5x =)

X Y

Z

Figure 4.24 Example 4.5 Reconstruction (A slice cut at 0.5x =)

 59

Y X

Z

Figure 4.25 Example 4.5 Given transformation: A cube with an ellipsoid inside (A slice
cut at 0.5y =)

Y X

Z

Figure 4.26 Example 4.5 Reconstruction (A slice cut at 0.5y =)

 60

X

Y

Z

Figure 4.27 Example 4.5 Given transformation: A cube with an ellipsoid inside (A slice

cut at 0.5z =)

X

Y

Z

Figure 4.28 Example 4.5 Reconstruction (A slice cut at 0.5z =)

61

CHAPTER 5

CONCLUSION

The three versions of deformation method for adaptive grid generation are

presented. If we generate a monitor function f corresponding to the grid size we need,

and set the Jacobian determinant J f= , by either solving a Poisson equation by finite

difference method or solving a div-curl system by least-square finite element method,

we can adapt the grids by controlling the cell volume to the desirable cell sizes.

Since 0f > , we can prove the grid we get is non-folded up to three dimensions.

A three dimension multi-block deformation method is implemented. Multi-

block grids allow us to take advantage of the computational efficiency of structured

grids and the flexibility for complex geometry. Special treatments for the common

boundaries of different blocks are very crucial. Our 3D numerical example shows that

the front pass through the common boundary of the two blocks successfully.

The deformation method may be used to find a desired transformation. A brand

new idea comes out from applying the deformation method by solving the div-curl

system of equations. This idea is to reconstruct a given transformation by directly

varying the divergence and curl of each corresponding points. Using these information

in the right hand side of the div-curl system and solving the system, we can reconstruct

any differentiable transformation. The least-square finite element method is used to

62

solve the div-curl system. Our numerical examples in both two dimension and three

dimension show great accuracy. Our future work is to find out the connection of

reconstruction to image registration and apply it to the computational image processing

problem.

63

REFERENCES

[1] J. F. Thompson, Z. U. A. Warsi, and C. W. Mastin, Numerical Grid Generation,

North-Holland, Amsterdam, 1985.

[2] P. Knupp and S. Steinberg, The Fundamentals of Grid Generation, CRC Press,

1993.

[3] G. Carey, Computational Grid Generation, Adaptation and Solution Strategies,

Taylor and Francis, 1997.

[4] J. F. Thompson, B. Soni, N. Weatherill, Handbook of Grid Generation, CRC Press,

1998.

[5] J. Thompson, A reflection on grid generation in the 90s: trends, needs and

influences, 5th International Conference on Numerical Grid Generation in

Computational Field Simulations, Mississippi State University, pp.1029-1110, 1996.

[6] B. Hamann, R. J. Moorhead, A survey of grid generation methodologies and

scientific visualization efforts, Chapter 3 in Scientific Visualization: Overviews,

Methodologies, and Techniques, pp. 59-101, 1997.

[7] D. Arney, J. Flaherty, An adaptive mesh-moving and local refinement method for

time-dependent partial differential equations, ACM Transaction in Mathematical

Software, 16, 1990.

[8] K. Miller, R. Miller, Moving Finite Elements I, SIAM J. Numer. Anal. 18, 1019-

1032, 1981.

[9] K. Miller, Moving Finite Elements II, SIAM J. Numer. Anal. 18, 1033-1057, 1981.

64

[10] N. Carlson, K. Miller, Design and application of a gradient-weighted moving

finite element code, Part I, in 1D, SIAM J. Sci. Comput. 19, 728-765, 1998.

[11] N. Carlson, K. Miller, Design and application of a gradient-weighted moving

finite element code, Part II, in 2D, SIAM J. Sci. Comput. 19, 766-798, 1998.

[12] M. Baines, Moving finite elements, Oxford University Press, New York, 1994.

[13] J. Castillo, Mathematical Aspects of Numerical Grid Generation, Society for

Industrial and Applied Mathematics, 1991.

[14] W. Cao, W. Huang and R. D. Russell, Approaches for Generating Moving

Adaptive Meshes: Location versus Velocity, Appl. Num. Math., 47 (2003), 121-138.

[15] E. A. Dorfi and L. Drury, Simple adaptive grids for 1D initial value problems, J.

Comput. Phys. 69, 175-195, 1987.

[16] W. Huang, Y. Ren and R.D. Russell, Moving mesh partial differential equations

(MMPDES) based on the equidistribution principle, SIAM J. Numer. Anal. 31, 709-

730, 1994.

[17] W. Cao, W. Huang and R. D. Russell, An r-adaptive finite element method

based upon moving mesh PDEs, Journal of Computational physics, 170, 871-892,

2001.

[18] R. Li, T. Tang, and P. Zhang, A moving mesh finite element algorithm for

singular problems in two and three space dimensions, J. Comput. Physics, 177, 365-

393, 2002.

[19] R. Li, T, Tang, and P. Zhang, Moving mesh methods in multiple dimensions base

on harmonic maps, J. Comput. Physics, 170, 562-588, 2001.

65

[20] Y. Di, R. Li, T. Tang, and P. Zhang, Moving mesh finite element methods for the

incompressible Navier-Stokes equations, SIAM, J. Sci. Comput., 26, 1036-1056,

2005.

[21] D. Hawken, J. Gottlieb and J. Hansen, Review of some adaptive node-movement

techniques in finite-element and finite-difference solutions of partial differential

equations, J. Comput. Physics, 95, 254-302, 1991.

[22] A. van Dam, P. A. Zegeling, A robust moving mesh finite volume method applied

to 1D Hyperbolic conservation laws from magnetohydrodynamics, J. Comput.

Physics, 2006.

[23] W. Cao, W. Huang and R. D. Russell, An error indicator monitor function for

an r-adaptive finite-element method

[24] W. Cao, W. Huang and R.D. Russell, A study of monitor functions for two-

dimensional adaptive mesh generation, SIAM J. Sci. Comput. 20, 1978-1994, 1999.

[25] H. M. Tsai, A. S. F. Wong, J. Cai, Y. Zhu, and F. Liu, Unsteady flow calculations

with a parallel multiblock moving mesh algorithm, AIAA Journal, 39, No. 6, 2001.

[26] Thomas J.R. Hughes and Jerrold E. Marsden, A short course in fluid mechanics:

mathematics lectures series 6, Publish or Perish, Inc. 1976

[27] J. Moser, Volume elements of a Rieman Manifold, Trans AMS, 120, 1965

[28] G. Liao and J. Su, Grid generation via deformation, Appl. Math. Lett., 5, 1992.

[29] G. Liao and D. Anderson, A new approach to grid generation, Appl. Anal., 44,

1992.

66

[30] P. B. Bochev, G. Liao, and G. C. de la Pena. Analysis and computation of

adaptive moving grids by deformation. Numerical Methods for Partial Differential

Equations, 12, 1996.

[31] B. Semper and G. Liao, “A moving grid finite-element method using grid

deformation”, Numer. Meth. PDE, 11:603, 1995.

[32] G. Liao, T. Pan, and J. Su, “Numerical Grid Generator Based on Moser’s

Deformation Method”, Numer. Meth. Part. Diff. Eq. 10, 21 (1994).

[33] G. Liao, G. de la Pena, “A deformation method for moving grid generation”,

proceedings, 8th International Meshing Roundtable, pp. 155-162. South Lake

Tahoe, CA, October, (1999).

[34] D. Fleitas, J. Xue, J. Liu and G. Liao, Least-squares finite element adaptive grid

deformation in a non-linear time dependent problem. In Advances in applied

mathematics (2004 SIAM GATORS), Gainsville, Florida, 2004.

[35] F. Liu, S. Ji, and G. Liao, An adaptive grid method and its application to steady

Euler flow calculations, SIAM J. Sci. Comput. 20, 811-825, 1998.

[36] X. Han, C. Xu, and J. L. Prince, A 2D Moving Grid Geometric Deformable

Model, IEEE Computer Society Conference on Computer Vision and Pattern

Recognition (CVPR2003) , June, 2003, pp. I: 153-160.

[37] X. Cai, D. Fleitas, B. Jiang, and G. Liao, Adaptive grid generation based on least-

squares finite-element method. Computers and Mathematics with Applications, 48,

2004.

67

[38] J. Xue, Moving grids by the deformation method, Dissertation, 2004.

[39] W. Morris, A meshfree adaptive numerical method, Dissertaion, 2004.

[40] D. Fleitas, The least-square finite element method for grid deformation and

meshfree applications, Dissertation, 2005.

[41] T. Belytschko, Y. Krongauz, D. Organ, M. Fleming and P. Krysl, Meshless

Methods: an overview and recent developments, Computer methods in applied

mechanics and engineering, 139, 3-47, 1996.

[42] B. Jiang, The Least-Squares Finite Element Method: Theory and Applications in

computational Fluid Dynamics and Electromagnetics. Springer, Berlin, 1998.

[43] M. Grajewski, M. Koster, S. Kilian and S. Turek, Numerical Analysis and

Practical Aspects of a Robust and Efficient Grid Deformation Method in the Finite

Element Context, preprint, 2005.

[44] C. L. Chang and M. Gunzburger, A finite element method for first order elliptic

systems in three dimensions. Appl. Math. Comput. 23, 135-146, 1987.

68

BIOGRAPHICAL INFORMATION

Jie Liu was born in Jiangxi, China, in 1971. She received her B.S degree in

Physics from Jiangxi Normal Univerysity, Nanchang, China, in 1994. After graduation,

from 1994-1998, she taught Physics and Science in Huxin Middle School, Shanghai,

China. In 1998, she entered the University of Texas at Arlington to pursue graduate

studies. She received her M.S degree in Mathematics in 2002. And in 2006 she

successfully defended her dissertation, entitled “New Developments of the Deformation

method” under the direction of Dr. Guojun Liao, and graduated with a Doctor of

Philosophy degree in Mathematical Science. During her graduate studies in the

University of Texas at Arlington, she taught many undergraduate mathematics courses

and received Outstanding Graduate Student Teaching Award in 2001.

