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ABSTRACT 

 

NEW DEVELOPMENTS OF THE DEFORMATION METHOD 

 

Publication No. ______ 

 

Jie Liu, PhD. 

 

The University of Texas at Arlington, 2006 

 

Supervising Professor:  Guojun Liao  

New developments of deformation method for grid generation are presented in 

this work. Theorems for three different cases and different methods for implementing 

deformation method are presented. One of the new developments is a 3D multi-block 

moving grid method. In this version, a Poisson equation is solved by finite difference 

method to get the vector field for moving grid. Special treatment applies to the common 

boundary of different blocks. Another new development is a numerical method for 

reconstructing a given differentiable transformations by solving a system of div-curl 

equation directly formed from each point of the graph. The determinacy and ellipticity 

of the system of the 3D div-curl equation are analyzed in detail. And the least-square 

finite element method is used to solve the div-curl equation in order to reconstruct a 

differentiable mapping. Both 2D and 3D implementations are presented in this work.  



 iv

 

 

TABLE OF CONTENTS 

 

ACKNOWLEDGEMENTS....................................................................................... ii 
 
ABSTRACT .............................................................................................................. iii 
 
LIST OF ILLUSTRATIONS..................................................................................... vi 
 
Chapter 
 
 1. INTRODUCTION……….. ........................................................................... 1 
 
 2. THE DEFORMATION METHOD ................................................................ 6 
 
  2.1 Case 1....................................................................................................... 7 
 
  2.2 Case 2.......................................................................................................  14 
 
  2.3 Case 3.......................................................................................................  15 
  
 3.  3D MULTI-BLOCK DEFORMATION METHOD ..................................... 19 
 
  3.1 Numerical Implementation ...................................................................... 19 
 
  3.2 Numerical Example ................................................................................. 19 
 
 4.  RECONSTRUCTION OF TRANSFORMATIONS.....................................  36 
 
  4.1 Div-curl System.......................................................................................  37 
 
  4.2 Least-square FEM.................................................................................... 39 
 
  4.3 Solve Div-curl System ............................................................................ 42 
 
  4.4 Numerical Examples ............................................................................... 44 
 
 5.  CONCLUSION .............................................................................................  61 
 



 v

REFERENCES .......................................................................................................... 63 
 
BIOGRAPHICAL INFORMATION......................................................................... 68 



 

 vi

 

 

LIST OF ILLUSTRATIONS 

Figure Page 
 
3.1 Common boundary of two blocks .................................................................  20 
 
3.2 Finite difference using adjacent six points....................................................  22 
 
3.3 Corner 1.........................................................................................................  23 
 
3.4 Edge 1............................................................................................................  24 
 
3.5 Face 1 ............................................................................................................  25 
 
3.6 3D plot for time step 0l = .........................................................................  27 
 
3.7 A slice extract at constant 0 .5z =  for time step 0l = ..........................  27 
 
3.8 3D plot for time step 5l = .........................................................................  28 
 
3.9 A slice extract at constant 0 .5z =  for time step 5l = ..........................  28 
  
3.10 3D plot for time step 1 5l = .......................................................................  29 
 
3.11 A slice extract at constant 0 .5z =  for time step 1 5l = .......................  29 
 
3.12 3D plot for time step 2 0l = .......................................................................  30 
 
3.13 A slice extract at constant 0 .5z =  for time step 2 0l = .......................  30 
 
3.14 3D plot for time step 2 5l = .......................................................................  31 
 
3.15 A slice extract at constant 0 .5z =  for time step 2 5l = .......................  31 
 
3.16 3D plot for time step 2 8l = .......................................................................  32 
 
3.17 A slice extract at constant 0 .5z =  for time step 2 8l = .......................  32 
 
3.18 3D plot for time step 3 0l = .......................................................................  33 



 

 vii

 
3.19 A slice extract at constant 0 .5z =  for time step 3 0l = .......................  33 
 
3.20 3D plot for time step 3 5l = .......................................................................  34 
 
3.21 A slice extract at constant 0 .5z =  for time step 3 5l = .......................  34 
 
3.22 3D plot for time step 4 0l = .......................................................................  35 
 
3.23 A slice extract at constant 0 .5z =  for time step 4 0l = .......................  35 
 
4.1 Example 4.1 Given transformation with a Sine curve .................................  47 
 
4.2 Example 4.1 Reconstruction at time step 0t = .........................................  47 
 
4.3 Example 4.1 Reconstruction at time step 5t =  ........................................  48 
  
4.4 Example 4.1 Reconstruction at time step 1 0t = ......................................  48 
 
4.5 Example 4.2 Given transformation with a rectangle and an arc ..................  49 

 
4.6 Example 4.2 Reconstruction at time step 0t = .........................................  49 
 
4.7 Example 4.2 Reconstruction at time step 5t = .........................................  50 
 
4.8 Example 4.2 Reconstruction at time step 1 0t = ......................................  50 
 
4.9 Example 4.3 Given transformation with a circle ..........................................  51 
 
4.10 Example 4.3 Reconstruction at time step 0t = .........................................  51 
 
4.11 Example 4.3 Reconstruction at time step 5t = .........................................  52 
 
4.12 Example 4.3 Reconstruction at time step 1 0t = ......................................  52 
 
4.13 Example 4.4 Given transformation: A cube with a ball inside 
  (cutaway plot)................................................................................................  53 
 
4.14 Example 4.4 Reconstruction .........................................................................  53 
 
4.15 Example 4.4 Given transformation: A cube with a ball inside  
  (A slice cut at 0.5z = ) ...................................................................................  54 
 



 

 viii

4.16 Example 4.4 Reconstruction (A slice cut at 0.5z = ).....................................  54 
 
4.17 Example 4.5 Given transformation: A cube with an ellipsoid inside  
  (cutaway plot)................................................................................................  55 
 
4.18 Example 4.5 Reconstruction (cutaway plot) .................................................  55 
 
4.19 Example 4.5 Given transformation: A cube with an ellipsoid inside 
  (cutaway plot)................................................................................................  56 
 
4.20 Example 4.5 Reconstruction (cutaway plot) .................................................  56 
 
4.21 Example 4.5 Given transformation: A cube with an ellipsoid inside  
  (cutaway plot)................................................................................................  57 
 
4.22 Example 4.5 Reconstruction (cutaway plot) .................................................  57 
 
4.23 Example 4.5 Given transformation: A cube with an ellipsoid inside  
  (A slice cut at 0.5x = )...................................................................................  58 
 
4.24 Example 4.5 Reconstruction (A slice cut at 0.5x = ) ....................................  58 
 
4.25 Example 4.5 Given transformation: A cube with an ellipsoid inside  
  (A slice cut at 0.5y = )...................................................................................  59 
 
4.26 Example 4.5 Reconstruction (A slice cut at 0.5y = ) ....................................  59 
 
4.27 Example 4.5 Given transformation: A cube with an ellipsoid inside  
  (A slice cut at 0.5z = ) ...................................................................................  60 
 
4.28 Example 4.5 Reconstruction (A slice cut at 0.5z = ).....................................  60 
 

 



 

 1

 

 
CHAPTER 1 

INTRODUCTION 

 

In order to solve partial differential equations (PDEs) numerically, we first need 

to discretize the continuous differential equation into a system of algebraic difference 

equations. Accompanying with this, the solution field (physical domain) needs to be 

discretized into elements or cells, i.e. grids (meshes) have to be generated. The grids 

generated for solving PDEs are very crucial for the accuracy of the numerical solution 

of PDEs, especially for problems with very rapid variations or sharp layers. Grid 

generation becomes an important tool for the computational simulation of various 

physical phenomena, like fluid flow, heat transfer, acoustic propagation, just name a 

few. After J. Thompson et al. wrote the book [1] about grid generation in 1985, it has 

been developed both technologically and analytically. Various grid generation codes 

(GRIDGEN, TRIANGLE, etc.), free or commercial, are developed by researchers in 

computational field simulation. Mathematical aspects of numerical grid generation are 

discussed in [13] to provide a deeper understanding of different algorithms and their 

limitations. General grid generation methods are discussed in the books by Knupp and 

Steinberg [2], Carey [3], and Thompson [4]. In 1996, a reflection on grid generation 

was done by J. Thompson [5] after two decades on its growth.  
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Grid generation methods are typically grouped into two categories: structured 

and unstructured. Structured grid utilizes quadrilateral (2D) and hexahedral (3D) 

elements in a computationally rectangular array. The topology of the elements is fixed. 

The connectivity among nodes in a structured grid is completely defined by the nodes 

indices. For example, a node ,i jx  in a 2D structured grid is connected with 

1, 1, , 1, , ,i j i j i jx x x− + −  and , 1i jx + , This type of connectivity allow us to use finite difference 

method which is very efficient for solving PDEs. Classical methods for generating 

structured grids are transfinite interpolation (TFI) [2] and solving elliptic (or 

hyperbolic) systems of PDEs. Unstructured grid utilizes an arbitrary collection of 

elements to fill the domain. Triangles and quadrilaterals are used in 2D and tetrahedral 

and hexahedra for 3D. The number of edges sharing a node is not restricted. Algorithms 

like Delaunay triangulation and Vornoi diagram are typically used to generate 

unstructured grid. Finite element or Finite volume method are applied when we have 

unstructured grids. 

 Methods combining structured and unstructured grids are also developed. 

Those include multiblock grids, hybrid grids, chimera grids and hierarchical grids. 

Multiblock grids can be described as an unstructured collection of structured blocks. 

The domain is decomposed into several blocks. The grid for each block is structured 

while the connections between blocks are unstructured. Several block to block 

connection methods have developed. These include point to point, many points to one 

point and arbitrary connections. In first case, blocks must match topologically and 

physically at the boundary. In the second case, the blocks must be topologically similar 
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but not the same at the boundary. The third case is where the blocks must be physically 

similar at the boundary but can have significant topological differences. Here are some 

advantage and disadvantage of multi-block grids.  

Advantage: 

• Unstructured collection of structured blocks. It is unstructured in block 

level and structured inside each block.  

• Provide a measure of flexibility for complex geometrics. 

• Allow different physical or mechanical models in different blocks. 

• Allow different grid refinement strategies for different blocks. 

• Leads to parallel computing with different blocks assigned to different 

computer processors. 

Disadvantage: 

• Construction of a multi-block grid requires domain decomposition, 

which is still an unsolved big problem in multi-block grid generation. 

• Data communication between blocks is another challenge. 

Comparison of advantages and drawbacks for different type of grids can be 

found in [6]. Detailed information about existing grid types and generation techniques is 

provided in [1],[2],[3],[4].  

Accuracy of the solution and computational efficiency are the two main 

concerns in computational grid generation area. For problems with shock waves, 

boundary layers, etc. very fine grids over a small portion of the physical domain are 

required in order to resolve the large solution variations. For fixed grid, adding grid 
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points to the whole domain to improve accuracy will cost computational efficiency. To 

improve computational efficiency by reduce grid points will reduce the accuracy. So in 

order to improve accuracy and efficiency at the same time, we introduce adaptive grid. 

The idea is to always put dense grids on the part which has large variation and coarse 

grids on the part which is smooth. For time dependent problems with salient features, 

since the position of the part with large variation is changing in different time step, we 

want to move the grid in order to keep track of the change of the solution in different 

time step. 

Local mesh refinement ( h -refinement) and moving mesh ( r -refinement) are 

two main methods for generating adaptive grids. Local refinement method adapts the 

grid by locally adding points to the part with large variation and removing points from 

the part with low variation. This technique has gotten the most attention for the past 

several decades since the refinement is easily prescribed and error analysis is easily 

carried out [7]. The disadvantage of this method is that the data structure of the grid has 

to be adjusted every time the grid is adapted. And consequently we have to change the 

data structure of the solver. Moving grid methods relocate grid points to refine the grid 

where needed. The total number of points and the connection between grid points are 

always kept the same so that there is no need to change the data structure of the slover. 

A number of techniques have been developed by researchers for generating moving 

grids. Moving finite element methods where nodal points are driven by the residual of 

the finite element approximation have been developed by Miller, Carson and Baines 

(See [8][9][10][11][12]). In [14], a variety of approaches for generating moving 
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adaptive methods are summarized and compared. In [19], a moving mesh method takes 

the advantage from both h -refinement and r -refinement is proposed. A moving mesh 

finite element method is designed to solve the incompressible Navier-Stokes equations 

in [20].  

Different numerical methods are combined with moving grid techniques. 

Moving finite difference ([15],[16])and moving finite element ([17],[18])algorithms are 

developed mainly in the past. Some adaptive moving techniques in finite element and 

finite difference solutions of partial differential equations are reviewed in [21],  In [22], 

a moving mesh finite volume method is developed. Recently, the idea of meshless 

adaptation is also implemented in [39][40]. An overview of the meshless methods can 

be found in [41].  

In this work, some new developments of the moving deformation method 

developed by Liao et al ([28],[29]) are presented. Theorems for three different cases and 

different methods for implementing deformation method are presented in chapter 2. A 

3D multi-block moving grid method based on deformation method is developed in 

chapter 3. In chapter 4, the div-curl system is analyzed. Least-square finite element 

method is used to solve the div-curl equation in order to reconstruct a differentiable 

mapping. The idea comes from the implementation of deformation method. This may 

have potential applications in image registration and computer vision simulation, which 

currently are currently hot research topics. Both 2D and 3D implementations are 

presented in this work.  
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CHAPTER 2 

THE DEFORMATION METHOD 

 

The deformation method is based on the idea of equivalent volume elements of 

a compact Riemannian manifold [27]. In 1992, Liao and Anderson proposed this new 

method in [29]. In this new approach a grid can be constructed by moving the grid 

points such that specified cell volumes can be achieved. A monitor function is defined 

and used to obtain a vector field by solving one linear Poisson equation. The grid points 

are moved according to a velocity field related to the vector field obtained. The 

mathematical principles behind this method guarantee that grid lines of the same grid 

family will not cross each other. In [29], the transformation Jacobian determinant, and 

consequently the cell volumes, was specified on the old grid before adaptation. In [32], 

the method is improved so that cell volumes can be specified as functions of the new 

grid after adaptation. In [31], this method is further extended into a real time moving 

grid method and used for solving one-dimensional unsteady problems. Some 1D and 2D 

applications and more analysis of adaptive moving grid by deformation method were 

done in [30]. In [35], an adaptive deformation method is applied to solve the 

compressible Euler equations for field flows. A least-square finite element deformation 

method is developed in [37] and applied in [34] to a nonlinear problem. A 2D moving 
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grid geometric deformable model using deformation method is developed by X. Han in 

[36] for segmentation of image processing.   

Let’s take a look at the following three versions of deformation method.   

2.1 Case 1 

This is one of the steady versions of deformation method where the 

transformation Jacobian determinant is specified on the old grid ξ  before adaptation.  

Problem: Given a monitor function ( )f ξ , find a mapping ( )1φ ξ  such that  

 ( ) ( ) ( )1 1detJ fφ φ ξ ξ= ∇ =  (2.1)  

We can use the following two steps to find such a mapping.  

Step 1: Find a vector field ( )V ξ that satisfies:  

 ( ) ( )div 1V fξ ξ= −    (2.2) 

Step 2: Form 
( )1t

VV
t t f

=
+ −

, then find ( )tφ ξ by solving the following ODE 

 ( ) ( ) [ ]0,1t
t t

d
V t

dt
φ ξ

φ= ∈  (2.3) 

Here ( ) ( ),t tφ ξ φ ξ= , and let ( ) ( )1 , 1tφ ξ φ ξ= = . 

Now, let us show that ( )1φ ξ found by this way satisfies (2.1): 

In order to prove this, let 

 

( ) ( )( ) ( ) ( )( )

( )( ) ( ) ( )( )

, 1

det 1

t t

t t

H t J t t f

t t f

ξ φ ξ φ ξ

φ ξ φ ξ

⎡ ⎤= + −⎣ ⎦

⎡ ⎤= ∇ + −⎣ ⎦

 (2.4) 
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We can show 

 0H
t

∂
=

∂
 (2.5) 

Since ( ) ( )0 , 0tφ ξ φ ξ= = is the identity mapping, we have ( )0det 1φ ξ∇ =  and  

( )0φ ξ ξ=  

So     ( ) ( )( ) ( )( ) ( )0 00, detH f fξ φ ξ φ ξ ξ= ∇ =  (2.6) 

Also by (2.4) we have  1(1, ) det ( )H ξ φ ξ= ∇  (2.7) 

Thus (2.1) follows by (2.5), (2.6) and (2.7).  

In order to prove (2.5), we need to introduce Abel’s Lemma first.  

Abel’s Lemma:  

Let M be a n n×  matrix such that each element of the matrix is differentiable 

on t . If ( )d M AM
dt

= where A  is a n n×  matrix, then (det ) (trace )(det )d M A M
dt

= . 

This is a standard lemma, which can be found for in [26] or other standard ODE 

books. For completeness, we outline its proof here. 

Proof: 

Let 
11 1

1

n

n nn

m m
M

m m

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

"
" " "

"
 

Assume 
11 1 11 1 11 1

1 1 1

' '

' '

n n n

n nn n nn n nn

m m a a m m
d M AM
dt

m m a a m m

⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟= = =⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

" " "
" " " " " " " " "

" " "
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Then  ,
1

' ( , 1,..., )
n

i j ik kj
k

m a m i j n
=

= =∑  (2.8) 

 

11 12 1 11 12 1

21 22 2 21 22 2

1 2 1 2

11 12 1

21 22 2

1 2

' ' '
' ' '

(det )

...

' ' '

n n

n n

n n nn n n nn

n

n

n n nn

m m m m m m
m m m m m md M

dt
m m m m m m

m m m
m m m

m m m

= +

+ +

" "
" "

" " " " " " " "
" "

"
"

" " " "
"

 (2.9) 

Plug (2.8) into (2.9) and do row equivalent operations to each of the 

determinants, we can reduce (2.9) to  

11 11 11 12 11 1 11 12 1

21 22 2 22 21 22 22 22 2

1 2 1 2

11 12 1

21 22 2

1 2

11 22

11 22

(det )

...

det det det

( )det

( )

n n

n n

n n nn n n nn

n

n

nn n nn n nn nn

nn

nn

a m a m a m m m m
m m m a m a m a md M

dt
m m m m m m

m m m
m m m

a m a m a m

a M a M a M

a a a M

traceA

= +

+ +

= + + +

= + + +

=

" "
" "

" " " " " " " "
" "

"
"

" " " "
"

…

…

(det )M

 

   ,  
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Now let’s prove (2.5).  

Proof: 

  

( )( ) ( ) ( )( )( )

( )( ) ( ) ( )( )

( )( ) ( ) ( )( )

det 1

det 1

det 1

t t

t t

t t

H t t f
t t

t t f
t

t t f
t

φ ξ φ ξ

φ ξ φ ξ

φ ξ φ ξ

∂ ∂ ⎡ ⎤= ∇ + −⎣ ⎦∂ ∂

∂ ⎡ ⎤ ⎡ ⎤= ∇ + −⎣ ⎦ ⎣ ⎦∂

∂ ⎡ ⎤+ ∇ + −⎣ ⎦∂

 (2.10) 

Since ( ) ( )( )( ) ( )( )t t
d d V V
dt dt φ

φφ φ ξ φ⎛ ⎞∇ = ∇ = ∇ = ∇ ∇⎜ ⎟
⎝ ⎠

, by Abel’s Lemma we 

get:  

 ( ) ( )( )( )det trace dettV
t φφ φ∂

∇ = ∇ ∇
∂

 (2.11) 

31 2

1 1 1

31 2

2 2 2

31 2

3 3 3

t

VV V

VV VV

VV V

φ

φ φ φ

φ φ φ

φ φ φ

∂∂ ∂
∂ ∂ ∂

∂∂ ∂
∇ =

∂ ∂ ∂
∂∂ ∂

∂ ∂ ∂

 

So  ( ) 31 2

1 2 3

trace divt t
VV VV Vφ φφ φ φ
∂∂ ∂

∇ = + + =
∂ ∂ ∂

 (2.12) 

Putting (2.12) into (2.11), we have 

 ( ) ( )( )det div dettV
t φφ φ∂

∇ = ∇
∂

 (2.13) 

Plugging (2.13) into (2.10), we have: 
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( )( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( ){ }

div det 1 det 1

div det 1 det 1 1

det div 1 1 1

t

t t

t t

H V t t f t t f
t t

V t t f f t f V

V t t f f t f V

φ

φ

φ

φ φ

φ φ

φ

∂ ∂
= ∇ + − + ∇ + −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦∂ ∂

= ∇ + − + ∇ − + − ∇⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

= ∇ + − + − + − ∇⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

 (2.14) 

By step 2, we have 

 
( )1t

VV
t t f

=
+ −

 

So ( )1tV V t t f= + −⎡ ⎤⎣ ⎦  

 
( ) ( ) ( )

( ) ( ) ( )

1 1

1 1

t t

t t

divV divV t t f V t f

divV t t f divV V t f

⇒ = + − + − ∇⎡ ⎤⎣ ⎦

⇒ + − = − − ∇⎡ ⎤⎣ ⎦

 (2.15) 

Plugging (2.15) into (2.14), we get: 

 

( ) ( ) ( )( ){ }

( )( )

det 1 1 1

det 1

t t
H divV V t f f t f V
t

divV f

φ

φ

∂
= ∇ − − ∇ + − + − ∇⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦∂

= ∇ + −

 (2.16) 

By step 1, plugging (2.2) into (2.16), we get  

 ( )( )det 1 1 0H f f
t

φ∂
= ∇ − + − =

∂
 

  ,  

Now, our main problem is how to implement step 1, that is how to find 

( )V ξ such that ( ) ( )div 1V fξ ξ= − . We have three different methods.  

Method 1: Direct construction. 
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Method 2: Solve the Poisson equation 1fωΔ = − forω , then letV ω= ∇ .  

The V found out by this way satisfies  

( ) 1divV div fω ω= ∇ = Δ = − . 

Method 3: Solve the div-curl system
1

0
divV f
curlV

= −⎧
⎨ =⎩

. Least-square finite element 

method is a good way to solve it. 

We will discuss method 2 in the application of Chapter three for multi-block 

moving grid. In Chapter four we use method 3 to reconstruct a mapping. Here let us see 

some details about method 1.  

In 2D, we need to find a vector field ( )1 2,V V V  on [ ] [ ]0,1 0,1Ω = × such 

that div 1V f g= − = for a normalized monitor function 1f
Ω

=∫∫  

Let ( ) ( )1

1 2 20
, ,

x
G x x g t x dt= ∫  

Define: 
( ) ( ) ( ) ( )

( ) ( ) ( )2

1 1 2 1 2 1 2

2 1 2 1 0

, , 1,
:

, ' 1, ,
x

V x x G x x h x G x
V

V x x h x G t dt

⎧ = −⎪
⎨

=⎪⎩ ∫
  (2.17) 

where ( )1h x is a function satisfying (0) 0h = , (1) 1h = and '(0) '(1) 0h h= = . For 

example: ( )1( ) 1 cos
2

h t tπ= − . Then 
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( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
( )
( )

1 2

2

1 2

1 2 1 2 1 0
1 2

1 2 1 2 1 2

1 2

1 2

, 1, ' 1,

, ' 1, ' 1,

,

, 1.

x x

x

divV V V

G x x h x G x h x G t dt
x x

g x x h x G x h x G x

g x x

f x x

= +

∂ ∂ ⎡ ⎤= − +⎡ ⎤⎣ ⎦ ⎢ ⎥⎣ ⎦∂ ∂

= − +

=

= −

∫
 

So the vector constructed by (2.17) satisfies.  

In 3D, we need to find a vector field ( )1 2 3, ,V V V V  such that 1divV f= − . 

Define:

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )

1

2

3

1

1 1 2 3 1 2 3 1 1 1 2 3 10 0

1 1 1

2 1 2 3 1 1 2 3 1 2 2 1 2 3 1 20 0 0 0

1 1

3 1 2 3 1 2 1 2 3 1 2 30 0 0

, , , , , ,

: , , ' , , , ,

, , ' ' , , ,

x

x

x

V x x x g t x x dt h x g t x x dt

V V x x x h x g t t x dt dt h x g t t x dt dt

V x x x h x h x g t t x dt dt dt

⎧ = −⎪
⎪

= −⎨
⎪
⎪ =⎩

∫ ∫

∫ ∫ ∫ ∫

∫ ∫ ∫

  where ( )1h x , ( )2h x  are functions satisfying (0) 0h = , (1) 1h = , and 

'(0) '(1) 0h h= = .  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( )

( )

1 2 31 2 3

1 1

1 2 3 1 1 2 3 1 1 1 2 3 10 0

1 1 1 1

1 2 1 2 3 1 2 1 2 1 2 3 1 20 0 0 0

1 2 3

1 2 3

, , ' , , ' , ,

' ' , , ' ' , ,

, ,

, , 1

x x xdivV V V V

g x x x h x g t x x dt h x g t x x dt

h x h x g t t x dt dt h x h x g t t x dt dt

g x x x

f x x x

= + +

= − +

− +

=

= −

∫ ∫

∫ ∫ ∫ ∫  
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Another interesting direct construction method is worked out by Liao and  Su in 

[28]. 

2.2 Case 2 

This is another static version of deformation method where the transformation 

Jacobian determinant is specified on the new grid ( )φ ξ  before adaptation.  

Problem: Given g  and f (properly normalized), find a transformation 

:φ ∂Ω→ ∂Ω  such that   

 ( ) ( )( ) ( )( ) ,g J fξ φ ξ φ ξ ξ= ∈Ω   (2.18) 

g and f must satisfy 1 1
f gΩ Ω
=∫ ∫ . 

We can use the following three steps to find such a transformation. 

Step 1. Compute V  such that 

1 1( ( ))
( ) ( )

div V
g f

ξ
ξ ξ

= − in Ω , and ( ) 0,V nξ ξ⋅ = ∈∂ΩK . 

Step 2. For each fixed node ξ , solve the ODE 

( ) ( )( ),
, , 0 1

t
t t t

t
ϕ ξ

η ϕ ξ
∂

= ≤ ≤
∂

 

with ( ),0 ,ϕ ξ ξ=  where ( ) ( )

( ) ( ) ( )

, 1 11

V x
x t

t t
f x g x

η =
− −

 

Step 3. Define ( ) ( ),1φ ξ ϕ ξ= , then φ  will be the solution. 

Now, let’s show that the φ  found out by these three steps satisfies (2.18). 
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Let  ( ) ( )( )( ) ( )( ) ( ) ( )( )
1 1, , 1

, ,
H t J t t t

f t g t
ξ ϕ ξ

ϕ ξ ϕ ξ

⎛ ⎞
= + −⎜ ⎟⎜ ⎟

⎝ ⎠
 (2.19) 

If we can show (2.19) is independent of t , i.e.  

 0H
t

∂
=

∂
 (2.20) 

then ( ) ( )( ) ( )( ) ( )1,0 ,0 1/
,0

H J g
g

ξ ϕ ξ ξ
ϕ ξ

= =  and  

( ) ( )( )( ) ( )( ) ( )( )1,1 ,1 /
,1

H J J f
f

ξ ϕ ξ φ ξ
ϕ ξ

= =  

( ) ( ) ( ) ( )( )0 ,0 ,1 1/ /H H H g J f gJ f
t

ξ ξ ξ φ ξ∂
= ⇒ = ⇒ = ⇒ =

∂
 

The proof of (2.20) is very similar to the proof of the first case. Detailed proof 

can be found in [43].  

 

2.3 Case 3 

This is the version of deformation method with real time adaptation. 

Problem: Given a monitor function ( ),f tξ  (normalized with 

1 , where  is the volume of the domain
f
= Ω Ω∫ ), find a transformation 1 2:φ Ω →Ω  

such that:  

 ( )( ) ( )( ), , ,J t f t tφ ξ φ ξ=  for 0t >  (2.21) 

(assuming it is true at 0t = . ) 
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where ( )( ) ( ), det ,J t tφ ξ φ ξ= ∇ is the Jacobian determinant of the 

transformation. 

The transformation φ  can be found by the following two steps. 

Step 1: Find a vector field ( ),V tφ such that:  

( ) ( ) ( )1div , ,
,

V t g t
t f t tφ φ φ

φ
∂ ∂

= − = −
∂ ∂

, 

where ( )( ) ( )( )
1, ,

, ,
g t t

f t t
φ ξ

φ ξ
=  . 

Step 2: Solve the ODE for the transformation ( ), tφ ξ : 

 ( ) ( ) ( ) ( ),
, , ,

t
f t V t t

t
φ ξ

φ φ η φ
∂

= =
∂

  

We can show that the ( , )tφ ξ found by this way satisfies (2.21): 

In order to prove this, let: 

( )( ) ( )( ) ( )
( )

,
det , , ,

,
J t

H t g t t Jg
f t
φ

φ ξ φ ξ
φ

= ∇ = = . 

If we can show 0H
t

∂
=

∂
, then constJH

f
= = . 

Proof:  

 ( )( ) ( )( ), ,
, ,

g t tH J g t t J
t t t

φ ξ
φ ξ

∂∂ ∂
= +

∂ ∂ ∂
 (2.22) 

By Abel’s Lemma, 

since ( ) ( ) ( )( )( )t t tξ ξ φ ξ φ ξ
φ φφ φ η φ∂ ∂ ⎛ ∂ ⎞⎛ ⎞ ⎛ ⎞∇ = ∇ = ∇ ∇ = ∇ ∇⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠

, we get 
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( ) ( )( )( )( )

( )( )( ) ( ) ( )( )( )

( ) ( )( ) ( ) ( )

det trace , det

div , det div , ,

, div , , , ,

,

J t
t t

t f t V t J

f t V t f t V t J

gf f V J
t

φ

φ φ

φ φ

φ

φ η φ φ

η φ φ φ φ

φ φ φ φ

∂ ∂
= ∇ = ∇ ∇

∂ ∂

= ∇ =

⎡ ⎤= + ∇⎣ ⎦

∂⎡ ⎤= − + ∇⎢ ⎥∂⎣ ⎦

 

That is  ,J gf f V J
t t φ

∂ ∂⎡ ⎤= − + ∇⎢ ⎥∂ ∂⎣ ⎦
 (2.23) 

Also we have ( ),
,

g t gg
t t tφ

φ φ∂ ∂ ∂
= ∇ +

∂ ∂ ∂
 (2.24) 

Plugging (2.23) and (2.24) into (2.22), we get: 

( )

, ,

, , (note: is used)

1, , (note: 1 is used)

, note: 1 ( ) 0

H g gf f V Jg J g
t t t t

g gJ fg f V g g fV fV
t t t

g gJ f V g f g V g fg
t t f

J g f f g V fg fg g f f g

φ φ

φ φ

φ φ

φ φ

φ

φ

∂ ∂ ⎛ ∂ ∂ ⎞⎡ ⎤= − + ∇ + ∇ +⎜ ⎟⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦ ⎝ ⎠

∂ ∂ ∂⎡ ⎤= − + ∇ + ∇ + =⎢ ⎥∂ ∂ ∂⎣ ⎦

∂ ∂⎡ ⎤= − + ∇ + ∇ + = ⇒ =⎢ ⎥∂ ∂⎣ ⎦

⎡ ⎤= ∇ + ∇ = ⇒∇ = ∇ + ∇ =⎣ ⎦ ( )is used

0,

0

J V= ⎡ ⎤⎣ ⎦

=
,  
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The numerical implementations for all the three cases are similar. The method 

discussed in case1 works after adjusting the right hand side of the equation corresponds 

to the certain case.  
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CHAPTER 3 

3-D MULTI-BLOCK DEFORMATION METHOD 

 

In this chapter we apply the deformation method to 3D multi-block structured 

grids. A 2D implementation can be found in [38].  

3.1 Numerical Implementation 

It is hard to apply structured grid on complex domains. A domain can be 

decomposed into different blocks so that we can take advantage of structured grid on 

each block. When we implement deformation method in multi-block setting, a monitor 

function is defined for the entire domain. After normalizing the monitor function for the 

whole domain [38], we implement deformation method by solving a Poisson equation 

on each block by using finite difference method. And then take the gradient on the 

solution to get the vector field for moving the grid points.   

 

3.2 Numerical Example 

In this example, a 3D back-step is decomposed into two blocks. The first block 

is a [ ] [ ] [ ]0,1 0, 2 0,1× × column. A 20×40×20 initial uniform grid is generated on it. The 

Second block is a [ ] [ ] [ ]1, 2 0,1 0,1× ×  cube. The initial uniform structured grid on it is 

20×20×20. These two blocks have a common boundary at 1x = , [ ]0,1y∈  and [ ]0,1z∈ . 

(See figure 3.1). The initial grid is deformed into a moving grid concentrated around a 



 

 20

ball of radius 0.2r = .  The ball keeps the same radius and moves from the first block to 

the second block gradually through the interface of the two blocks. 

Let l  denote the time step. The coordinate values of the center of the moving 

ball ( ), ,a b c are defined as:             

0.5
1.5 0.05 0 20
0.5

0.5 0.05( 20)
0.5 20 40
0.5

a
b l when l
c

a l
b when l
c

=⎧
⎪ = − ≤ ≤⎨
⎪ =⎩

= + −⎧
⎪ = < ≤⎨
⎪ =⎩

 

O1

O2 O3

x

y

z

Block 1

Block 2

 

Figure 3.1 Two block of a 3D back-step 

That means the center of the sphere starts at ( )1 0.5,1.5,0.5O  and then drop to 

( )2 0.5,0.5,0.5O when 0 20l≤ ≤ . After that, when 20 40l< ≤ , the center keeps on 

moving through the interface of the two blocks and then reaches ( )3 1.5,0.5,0.5O .  

The computation includes two steps in our example: 
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Step 1: For 0 0.5t≤ ≤ , we form a grid adapted to the sphere at ( )1 0.5,1.5,0.5O  

with 0.2r = .  

Step 2: For 0 20l≤ ≤ , the sphere goes to ( )2 0.5,0.5,0.5O  and for 20 40l< ≤  

the sphere moves to ( )3 1.5,0.5,0.5O gradually (See figure 3.1). 

Now, let us define a monitor function on the entire domain. 

To define the monitor function, a level set function d  is introduced, which 

vanishes on the moving ball. 

( )2 2 2 2( ) ( ) ( ) 0.2d x a y b z c r r= − + − + − − =   

Then, the monitor function for 0 0.5t≤ ≤ can be defined as:  

1 0.05
1 2 2 (0.2 8 ) 0.05 0
1 2 2 (0.2 8 ) 0 0.05
1 0.05

d
t t d d

f
t t d d

d

< −⎧
⎪ − + − − ≤ <⎪= ⎨ − + + ≤ <⎪
⎪ ≥⎩

�  

This is the monitor function before normalization. We find the normalized 

monitor function f  by  

1f dA
ff

Ω
=

Ω

∫� �
. 

After we obtain the normalized monitor function, we calculate the right hand 

side of the Poisson equation 

1 in
t f

ω
⎛ ⎞∂

Δ = − Ω⎜ ⎟∂ ⎝ ⎠
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0 on 
n
ω∂
= Γ

∂
 

by  ( ) ( )
1 1
, ,1 f t dt f t

t f dt

−
+⎛ ⎞∂

=⎜ ⎟∂ ⎝ ⎠

x x
.   

After the right hand sides of the Poisson equation for both block 1 and block 2 

are set up, now we discretize the Poisson equation using the adjacent six points. The 

finite difference representation of the Poisson equation is (See figure 3.2): 

1, , , , 1, , , 1, , , , 1, , , 1 , , , , 1
, ,2 2 2

2 2 2i j k i j k i j k i j k i j k i j k i j k i j k i j k
i j krhs

x y z
ω ω ω ω ω ω ω ω ω− + − + − +− + − + − +

+ + =
Δ Δ Δ

 

 

 

 

 

 

 

Figure 3.2 Finite difference using adjacent six points 

Here, we assume x y z hΔ = Δ = Δ = , then for all the interior points we have 

( )2
, , 1, , 1, , , 1, , 1, , , 1 , , 1 , ,

1
6i j k i j k i j k i j k i j k i j k i j k i j kh rhsω ω ω ω ω ω ω− + − + − += + + + + + − × .  

The resulting system of linear algebraic equations is then solved by using 

successive overrelaxation (SOR) method in the following two steps.  

( )2
, , 1, , 1, , , 1, , 1, , , 1 , , 1 , ,

1
6

new old new old new new
i j k i j k i j k i j k i j k i j k i j k i j kh rhsω ω ω ω ω ω ω− + − + − += + + + + + − ×�  

 (i, j, k)

 (i, j-1, k)

 (i, j+1, k)

 (i-1, j, k)

 (i, j, k-1)

 (i, j, k+1)
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( ), , , , , ,1new old
i j k i j k i j kω λ ω λω= − + �   

On the boundary, Neumann boundary condition is implemented by 

0 on 
n
ω∂
= Γ

∂
.  

The boundary includes 8 corners, 12 edges and 6 faces for each block.  

For corner 1 (See Figure 3.3): 

 

 

 

 

 

 

Figure 3.3 Corner 1 

1,0,0 1,0,0
1,0,0 1,0,00

2 x
ω ω

ω ω−
−

−
= ⇒ =

Δ
 

0,1,0 0, 1,0
0,1,0 0, 1,00

2 y
ω ω

ω ω−
−

−
= ⇒ =

Δ
 

0,0,1 0,0, 1
0,0,1 0,0, 10

2 z
ω ω

ω ω−
−

−
= ⇒ =

Δ
 

( )

( )

2
0,0,0 1,0,0 0,1,0 0,0,1 0,0,001,0,0

2
1,0,0 0,1,0 0,0,1

0

0,0,0

,, , 11, 00
1
6
1 2 2 2
6

h rhs

h rhs

ωω ω ω ω

ω ω

ω ω

ω

−−−= + + + + + − ×

= + + − ×
 

Other corner points are implemented in a similar way.  

 (0,0,0)

 (0,-1,0)

 (1,0,0)

 (0,0,-1)

 (0,1,0)

 (0,0,1)

 (-1,0,0)
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For edge 1 (See figure 3.4): 

 

 

 

 

 

 

Figure 3.4 Edge 1 

,1,0 , 1,0
,1,0 , 1,00

2
i i

i iy
ω ω

ω ω−
−

−
= ⇒ =

Δ
 

,0,1 ,0, 1
,0,1 ,0, 10

2
i i

i iz
ω ω

ω ω−
−

−
= ⇒ =

Δ
 

( )

( )

( )

2
,0,0 1,0,0 1,0,0 0,1,0 0,0,1 0,0,0

2
1

0, 1,0

0,1,,0,0 1,0,0 0,1,0 0,0,1 0,0,0

2
1,0,0 1,0,0 0,1,0 0,0,1 ,0,0

0,0,

0

1

0,0,1

1
6
1
6
1 2 2
6

i i i

i i

i i i

h rhs

h rhs

h rhs

ω ω ω ω ω

ω ω ω ω

ω ω

ω

ω

ω ω

ω

ω

− +

− +

−

− +

−= + + + + + − ×

= + + + + + − ×

= + + + − ×

 

Other boundary edges are implemented in the similar way. 

For face 1 (See figure 3.5): 

,1, , 1,
,1, , 1,0

2
i j i j

i j i jy
ω ω

ω ω−
−

−
= ⇒ =

Δ
 

 (i,0,0)

 (i,-1,0)

 (i+1,0,0)

 (i,0,-1)

 (i,1,0)

 (i,0,1)
 (i-1,0,0)
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( )

( )

( )

, 1,

,1,

2
,0, 1,0, 1,0, ,1, ,0, 1 ,0, 1 ,0,

2
1,0, 1,0, ,1, ,0, 1 ,0, 1 ,0,

2
1,0, 1,0, ,1, ,0, 1 ,0, 1 ,0,

1
6
1
6
1 2
6

i j i j i j i j i j i j i j

i j i j i j i j i j i j

i j i j i j i j i j i

i

j

i j

j

h rhs

h rhs

h rhs

ω ω ω ω ω ω

ω ω ω ω ω

ω ω ω

ω

ω

ω ω

− + − +

− + − +

− + −

−

+

= + + + + + − ×

= + + + + + − ×

= + + + + − ×

 

 

 

 

 

 

 

Figure 3.5 Face 1 

Other boundary faces are implemented in the similar way. 

Special cares need to be taken for common boundary points. Notice, part of the 

boundary of each block actually is not really the boundary for the whole domain. The 

common boundary (interface) of the two blocks (Shaded part of figure 3.1, includes: 4 

corners, 4 edges and 1 face) is the part which we need to pass data to each other block. 

Neumann boundary condition does not apply here as for other boundary part. For the 

points on the interface, we have to use points from the neighbor block. For example, for 

1 1,1 1j my k mz< < − < < − , when we calculate for block 1: 

( )2
, , 1, , 1, , , 1, , 1, , , 1 , , 1 , ,

1
6mx j k mx j k j k i j k i j k i j k i j k i j kA A B A A A A h rhsω ω ω ω ω ω ω− − + − += + + + + + − × . 

When we calculate for block 2: 

 (i,-1,j)

 (i+1,0,j)

 (i,1,j)

 (i,0,j+1)

 (i,0,j)

 (i,0,j-1)

 (i-1,0,j)
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( )2
0, , 1, , 0, , , 1, , 1, , , 1 , , 1 , ,

1
6j k mx j k j k i j k i j k i j k i j k i j kB A B B B B B h rhsω ω ω ω ω ω ω− − + − += + + + + + − × . 

The 4 corners and 4 edges on the interface are implemented in the similar way 

by borrowing points from each block. For example: 

( )2
,0,0 ,0,0 1,0,0 1,0,0 ,1,0 ,0,1 ,0,0

1 2
6mx mx mx mx mx mxA A B A A A h rhsω ω ω ω ω ω−= + + + + − ×  

( )2
0,0,0 0,0,0 1,0,0 1,0,0 0,1,0 0,0,1 0,0,0

1 2
6 mxB B A B B B h rhsω ω ω ω ω ω−= + + + + − ×  

( )2
,0, 1,0, 1,0, ,0, 1 ,0, 1 ,1, ,0, ,0,0

1
6mx k mx k k mx k mx k mx k mx k mxA A B A A A A h rhsω ω ω ω ω ω ω− + −= + + + + + − ×

( )2
0,0, 1,0, ,0, 0,0, 1 0,0, 1 0,1, 0,0, ,0,0

1
6k k mx k k k k k mxB B A B B B B h rhsω ω ω ω ω ω ω+ −= + + + + + − ×  

Here, Aω is for values in block 1, Bω is for values in block 2. Other points are 

implemented in the similar way. 

After boundary points are carefully taken care of. We solve the Poisson 

equation for each block.  

Then we compute the vector field V , i.e. the nodal velocities by: 

V ω= ∇  

At last, the new position of grid points are computed by the following 

deformation ODE.  

f V
t
φ∂
=

∂
 

The results are shown through Figure 3.6 to Figure 3.23. The implementation of 

more blocks can be done in the similar way as this two-block example. 
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Figure 3.6 3D plot for time step 0l = (Cutaway plot) 
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Figure 3.7 A slice extract at constant 0 .5z =  for time step 0l =  
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Figure 3.8 3D plot for time step 5l =  (Cutaway plot) 
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Figure 3.9 A slice extract at constant 0 .5z =  for time step 5l =  



 

 29

0

0.5

1

V
3

0

0.5

1

1.5

2

V1

0

0.5

1

1.5

2

V2

X Y

Z

 
 

Figure 3.10 3D plot for time step 1 5l =  (Cutaway plot) 
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Figure 3.11 A slice extract at constant 0 .5z =  for time step 1 5l =  
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Figure 3.12 3D plot for time step 2 0l =  (Cutaway plot) 
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Figure 3.13 A slice extract at constant 0 .5z =  for time step 2 0l =  
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Figure 3.14 3D plot for time step 2 5l =  (Cutaway plot) 
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Figure 3.15 A slice extract at constant 0 .5z =  for time step 2 5l =  
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Figure 3.16 3D plot for time step 2 8l =  (Cutaway plot) 
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Figure 3.17 A slice extract at constant 0 .5z =  for time step 2 8l =  
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Figure 3.18 3D plot for time step 3 0l =  (Cutaway plot) 
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Figure 3.19 A slice extract at constant 0 .5z =  for time step 3 0l =  
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Figure 3.20 3D plot for time step 3 5l =  (Cutaway plot) 
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Figure 3.21 A slice extract at constant 0 .5z =  for time step 3 5l =  
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Figure 3.22 3D plot for time step 4 0l =  (Cutaway plot) 
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Figure 3.23 A slice extract at constant 0 .5z =  for time step 4 0l =
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CHAPTER 4 

RECONSTRUCTION OF TRANSFORMATIONS 

 

In this chapter we’ll explore a new idea which may have applications to image 

processing using div-curl system of equations. The idea comes from the implementation 

of deformation method for finding transformations. Notice that for all the three cases in 

chapter one, the first step is to find a vector field by solving a divergence equation with 

different right hand side.  After we add an equation of curl of the vector field, we can 

set up a div-curl system of equation. The least-square finite element method is a good 

way to solve it [42]. Now let’s think in the opposite direction. For a transformation 

given on a uniform initial grid we can find out the divergence and curl at each point. 

Thus we can set up the div-curl system of equations for each point. Solving this system 

we can reconstruct the given transformation. This idea can apply to the construction of 

any differentiable and invertible transformations.  

This idea may apply to image registration, which is the process of establishing 

point-by-point correspondence between two images of a scene. This process is needed 

in various computer vision applications. Sets of data acquired by sampling the same 

scene or object at different times, or from different perspectives, will be in different 

coordinate systems. Image registration is the process of transforming the different sets 

of data into one coordinate system. Registration is necessary in order to be able to 
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compare or integrate the data obtained from different measurements. More research 

needs to be done to apply this method of reconstructing transformation to the field of 

image registration.  

4.1 Div-curl system 

We will first take a look at the div-curl system. Let’s discuss the three-

dimensional case. Let D  be an open bounded domain in 3\ with a piecewise smooth 

boundary 1 2Γ = Γ Γ∪ . ( ), ,x y z  denotes a point in D . F Pi Qj Rk= + +
KK K

 is a vector 

field in D . nK  is the unit outward normal vector of the boundary. Then the 3D div-curl 

system of equations is: 

  
1

2

0
0

divF in D
curlF in D
n F on
n F on

α

β

=⎧
⎪ =⎪
⎨

⋅ = Γ⎪
⎪ × = Γ⎩

K

K
K

 (4.1) 

where 1 2 3i j kβ β β β= + +
KK K K

 

Our purpose is to solve for , ,P Q R , for a total of three unknowns. But we have 

four scalar equations in this system. So, it appears that this system is ‘overdetermined’. 

Let’s reconsider this system by introducing a dummy variable θ  as in [44], where 

0θ ≡  in D  and  0θ =  on 1Γ  so that the system becomes: 

 1

1

2

0
0

0

divF in D
curlF in D

n F on
on

n F on

α

θ β

θ

=⎧
⎪∇ + =⎪⎪ ⋅ = Γ⎨
⎪ = Γ⎪
⎪ × = Γ⎩

K

K

K

 (4.2) 
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We can show that system (4.2) is equivalent to system (4.1). Detailed proof can 

be found in [42]. Notice, system (4.2) is a system with four unknowns and four 

equations.  

In Cartesian coordinates, we have: 

R Q P R Q Pcurl F i j k
y z z x x y

⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞= − + − + −⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠

KK K
 

i j k
x y z
θ θ θθ ∂ ∂ ∂

∇ = + +
∂ ∂ ∂

KK K
 

P Q Rdiv F
x y z

∂ ∂ ∂
= + +
∂ ∂ ∂

 

So system (4.2) can be written as: 

 

1

2

3

R Q
x y z

P R
y z x

Q P
z x y
P Q R
x y z

θ β

θ β

θ β

α

∂ ∂ ∂⎧ + − =⎪ ∂ ∂ ∂⎪
∂ ∂ ∂⎪ + − =⎪ ∂ ∂ ∂⎪

⎨∂ ∂ ∂⎪ + − =
⎪ ∂ ∂ ∂
⎪
∂ ∂ ∂⎪ + + =

⎪ ∂ ∂ ∂⎩

 (4.3) 

Define 

P
Q

F
R
θ

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

�  and

1

2

3

β
β

β
β
α

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

� , then this system can be written in a matrix 

form: 

0 1 2 3
F F FA F A A A
x y z

β∂ ∂ ∂
+ + + =

∂ ∂ ∂

� � � ��  where 
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0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

A

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

, 1

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

A

⎛ ⎞
⎜ ⎟−⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

,  

2

0 0 1 0
0 0 0 1
1 0 0 0

0 1 0 0

A

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟−
⎜ ⎟
⎝ ⎠

,  3

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

A

−⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

, 

For any nonzero triplets ( ), ,x y z , the characteristic polynomial for system (4.3) 

is  

( )22 2 2
1 2 3

0
0

det( ) det 0
0

0

z y x
z x y

A x A y A z x y z
y x z

x y z

−⎛ ⎞
⎜ ⎟−⎜ ⎟+ + = = + + ≠
⎜ ⎟−
⎜ ⎟
⎝ ⎠

 

Thus, system (4.2) is elliptic and properly determined. And so is system (4.1). 

Least-square finite element method is a good way to solve the div-curl system. 

Detailed analysis can be found in [42]. The numerical implementation procedures can 

be found in [40]. Here we’ll take a glance at it.  

4.2 Least-square FEM 

Let’s consider the linear boundary-value problem: 

  
 Au f=  in Ω  

 Bu g=   on Γ  (4.4) 
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Where 0
1

dn

i
i i

uAu A A u
x=

∂
= +

∂∑ ( 2dn =  for 2D, 3dn =  for 3D). B is a boundary 

operator. f and g are given vector-valued functions. u is a vector with m unknown 

functions of ( )1, dnx x"x . 

1

2 ,

m

u
u

u

u

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

"

1

2 ,

dn

f
f

f

f

⎛ ⎞
⎜ ⎟
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

"

1

2

dn

g
g

g

g

⎛ ⎞
⎜ ⎟
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

"
 

Let’s define the residual as R Au f= − , then if 0R = we get the exact solution 

for u . The least-square finite element method is to minimize R in a least-square sense, 

that is, to minimize the following functional: 

( ) ( )
22

0
I v R Av f dω

Ω
= = −∫ . 

A necessary condition for u to minimize ( )I v is : 

( )
0

lim 0
t

d I u tv
dt→

+ =  . 

Since 

( ) ( )

( ) ( ) ( )( ) ( ) ( )

2

2 2 2 2 2 2 2 ,

I u tv A u tv f d

Au Av t f Au Av t Av ft Au f d

ω

ω

Ω

Ω

+ = + −⎡ ⎤⎣ ⎦

⎡ ⎤= + + + − −⎣ ⎦

∫

∫
 

we have  
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( ) ( ) ( )( ) ( )

( )( ) ( )

2

0 0
lim lim 2

2

0.

t t

d I u tv Av t Au Av Av f d
dt

Au Av Av f d

ω

ω

Ω→ →

Ω

⎡ ⎤+ = + −⎣ ⎦

= −⎡ ⎤⎣ ⎦

=

∫

∫  

Thus 

( )( ) ( )Au Av d Av f dω ω
Ω Ω

=⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦∫ ∫ . 

That is   

 ( ) ( ), ,Au Av f Av= .  (4.5) 

This is the variational principle of equation (4.4). 

In finite element, we discritize the domain into elements and then introduce 

finite element basis. Let jϕ be the element shape function, we write the expansion of the 

unknown variables in each element as 

 ( ) ( )

1

2

1

nN
e
h j

j

m j

u
u

u

u

ϕ
=

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

∑ "
x x  (4.6) 

where nN is the number of nodes for one element.  

Introducing (4.6) into (4.5) we get a linear system of algebraic equations: 

 KU F=  (4.7) 

Here  

( ) ( )1 2 1 2, , , , , ,
n n

T

e N NK A A A A A A dϕ ϕ ϕ ϕ ϕ ϕ
Ω

= Ω∫ " "  
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( )1 2, , ,
n

T

e NF A A A fdϕ ϕ ϕ
Ω

= Ω∫ "  

are the element matrices used to assemble the global matrix K  and F .  

 

4.3 Solve Div-Curl System 

Let’s take a look at the definition of divergence and curl of a vector field first.  

If Pi Qj Rk= + +
KK K

V  is a vector field on 3\ and the partial derivatives 

of ( ), ,P x y z , ( ), ,Q x y z  and ( ), ,R x y z all exist, then  

P Q Rdiv
x y z

∂ ∂ ∂
= + +
∂ ∂ ∂

V  

R Q P R Q Pcurl i j k
y z z x x y

⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞= − + − + −⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠

KK K
V  

In 2D, all the terms related to R  and z vanish. So we have 

P Qdiv
x y

∂ ∂
= +
∂ ∂

V  

Q Pcurl k
x y

⎛ ⎞∂ ∂
= −⎜ ⎟∂ ∂⎝ ⎠

K
V , where k

K
 is the unit outward normal vector, usually 

denoted as nK .  

The matrix form of the div-curl system can be written as: 
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1 0 0 0 1 0 0 0 1
0 0 0 0 0 1 0 1 0
0 0 1 0 0 0 1 0 0
0 1 0 1 0 0 0 0 0

P Q R
P x y zP P
y R Qx z

Q Q Q y z
x y z P R
R RR z x
x zy

∂ ∂ ∂
+ +

⎛ ⎞∂ ∂ ∂ ∂∂ ∂⎛ ⎞ ⎛ ⎞⎜ ⎟⎜ ⎟ ⎜ ⎟⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂∂ ∂⎜ ⎟ −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟−⎜ ⎟∂ ∂ ∂ ∂ ∂⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟+ + =⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟− ∂ ∂ ∂ ∂ ∂⎜ ⎟ −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂⎜ ⎟− ∂ ∂ ∂⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠∂⎝ ⎠ Q P
x y

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟

∂ ∂⎜ ⎟−⎜ ⎟∂ ∂⎝ ⎠

  

In 3D, linear hexahedral elements are used and the finite element approximation 

at each hexahedral is given by  

( )
8

1

i
e

h i i
i

i

p
V x q

r
ϕ

=

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟= ⎢ ⎥⎜ ⎟

⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

∑  

where , ,i i ip q r  are the nodal values at the thi node of the hexahedral element 

and iϕ ’s are the shape functions. 

The element matrices used to assemble the algebraic system KV F= are 

( ) ( )

( ) ( )

1 1 1 8

8 1 8 8

e

T T

e
T T

A A A A
K d

A A A A

ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ
Ω

⎛ ⎞
⎜ ⎟

= Ω⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

∫
"

# % #

"

 

( )

( )

1

8

e

T

e
T

A
F d

A

ϕ

ϕ
Ω

⎛ ⎞
⎜ ⎟

= Ω⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

∫ #
f

f
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where  
0

for 1,2,...,8.
0

0

i i i

i i

i
i i

i i

x y z

z yA i

z x

y x

ϕ ϕ ϕ

ϕ ϕ

ϕ
ϕ ϕ

ϕ ϕ

∂ ∂ ∂⎛ ⎞
⎜ ⎟∂ ∂ ∂⎜ ⎟

∂ ∂⎜ ⎟
−⎜ ⎟∂ ∂⎜ ⎟= =

⎜ ⎟∂ ∂
−⎜ ⎟∂ ∂⎜ ⎟

∂ ∂⎜ ⎟−⎜ ⎟∂ ∂⎝ ⎠

  

and  

P Q R
x y z

R Q
y z
P R
z x
Q P
x y

∂ ∂ ∂⎛ ⎞+ +⎜ ⎟∂ ∂ ∂⎜ ⎟
∂ ∂⎜ ⎟

−⎜ ⎟∂ ∂⎜ ⎟
⎜ ⎟∂ ∂

−⎜ ⎟∂ ∂⎜ ⎟
∂ ∂⎜ ⎟−⎜ ⎟∂ ∂⎝ ⎠

f = , calculated from the given transformation.  

 

4.4 Numerical Examples 

Numerically, if we set the position array for the given transformation 

as ( ), ,xn i j k , ( ), ,yn i j k , ( ), ,zn i j k , and the array for our initial grid as ( ), ,x i j k ,  

( ), ,y i j k , ( ), ,z i j k , then 

 ( ) ( )
( ) ( )

1, , 1, ,
1, , 1, ,

xn i j k xn i j kP
x x i j k x i j k

+ − −∂
=

∂ + − −
 

( ) ( )
( ) ( )

, 1, , 1,
, 1, , 1,

xn i j k xn i j kP
y y i j k y i j k

+ − −∂
=

∂ + − −
 

( ) ( )
( ) ( )

, , 1 , , 1
, , 1 , , 1

xn i j k xn i j kP
z z i j k z i j k

+ − −∂
=

∂ + − −
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( ) ( )
( ) ( )

1, , 1, ,
1, , 1, ,

yn i j k yn i j kQ
x x i j k x i j k

+ − −∂
=

∂ + − −
 

( ) ( )
( ) ( )

, 1, , 1,
, 1, , 1,

yn i j k yn i j kQ
y y i j k y i j k

+ − −∂
=

∂ + − −
 

( ) ( )
( ) ( )

, , 1 , , 1
, , 1 , , 1

yn i j k yn i j kQ
z z i j k z i j k

+ − −∂
=

∂ + − −
 

( ) ( )
( ) ( )

1, , 1, ,
1, , 1, ,

zn i j k zn i j kR
x x i j k x i j k

+ − −∂
=

∂ + − −
 

( ) ( )
( ) ( )

, 1, , 1,
, 1, , 1,

zn i j k zn i j kR
y y i j k y i j k

+ − −∂
=

∂ + − −
 

( ) ( )
( ) ( )

, , 1 , , 1
, , 1 , , 1

zn i j k zn i j kR
z z i j k z i j k

+ − −∂
=

∂ + − −
 

Following are some of the numerical examples. 

We define ( )max i idxyz XN X= − ( 1,...i = nmax).  

Here ( ) ( ) ( )2 2 2
i i i i i i i iXN X xn x yn y zn z− = − + − + −  is the distance between 

each corresponding pair of points of the given and the reconstructed transformations. 

And nmax is the maximum number of nodes. dxyz  is used to measure the accuracy of 

our reconstruction method.  

The grid size of the following examples are 64 64× over the unit square 

[ ] [ ]0,1 0,1× for 2D and 40 40 40× × over the unit cube [ ] [ ] [ ]0,1 0,1 0,1× ×  for 3D. That 

means the distance between adjacent points in the uniform grid is 1 =0.015625
64

 for 2D 
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and 1 =0.025
40

 for 3D. We’ll compare the dxyz  in each case with these to have the 

sense of how accurate we are. 

4.4.1  2D examples 

Example 1: A unit square with a sine curve. The results are shown in Figure 4.1 

to Figure 4.4.  31.099 10dxyz −= ×  

Example 2: A unit square with a rectangle and an arc. The results are shown in 

Figure 4.5 to Figure 4.8. 21.122 10dxyz −= ×  

Example 3: A unit square with a circle. The results are shown in Figure 4.9 to 

Figure 4.12. 31.142 10dxyz −= ×  

4.4.2 3D examples    

Example 4: A unit cube with a ball inside. The results are shown in Figure 4.13 

to Figure 4.16. 34.225 10dxyz −= ×  

Example 5: A unit cube with an ellipsoid inside. The results are shown in Figure 

4.17 to Figure 4.28. 34.162 10dxyz −= ×  
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Figure 4.1 Example 4.1 Given transformation with a Sine curve 
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Figure 4.2 Example 4.1 Reconstruction at time step 0t =  
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Figure 4.3 Example 4.1 Reconstruction at time step 5t =  
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Figure 4.4 Example 4.1 Reconstruction at time step 1 0t =  
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Figure 4.5 Example 4.2 Given transformation with a rectangle and an arc 
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Figure 4.6 Example 4.2 Reconstruction at time step 0t =  
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Figure 4.7 Example 4.2 Reconstruction at time step 5t =  
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Figure 4.8 Example 4.2 Reconstruction at time step 1 0t =  
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Figure 4.9 Example 4.3 Given transformation with a circle 
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Figure 4.10 Example 4.3 Reconstruction at time step 0t =  
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Figure 4.11 Example 4.3 Reconstruction at time step 5t =  
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Figure 4.12 Example 4.3 Reconstruction at time step 1 0t =  
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Figure 4.13 Example 4.4 Given transformation: A cube with a ball inside (cutaway plot) 
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Figure 4.14 Example 4.4 Reconstruction 
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Figure 4.15 Example 4.4 Given transformation: A cube with a ball inside (A slice cut at 
0.5z = ) 
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Figure 4.16 Example 4.4 Reconstruction (A slice cut at 0.5z = ) 
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Figure 4.17 Example 4.5 Given transformation: A cube with an ellipsoid inside 
(cutaway plot) 
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Figure 4.18 Example 4.5 Reconstruct (cutaway plot) 
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Figure 4.19 Example 4.5 Given transformation: A cube with an ellipsoid inside 

(cutaway plot) 
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Figure 4.20 Example 4.5 Reconstruct (cutaway plot) 
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Figure 4.21 Example 4.5 Given transformation: A cube with an ellipsoid inside 

(cutaway plot) 
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Figure 4.22 Example 4.5 Reconstruct (cutaway plot) 
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Figure 4.23 Example 4.5 Given transformation: A cube with an ellipsoid inside (A slice 

cut at 0.5x = ) 
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Figure 4.24 Example 4.5 Reconstruction (A slice cut at 0.5x = ) 
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Figure 4.25 Example 4.5 Given transformation: A cube with an ellipsoid inside (A slice 
cut at 0.5y = ) 
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Figure 4.26 Example 4.5 Reconstruction (A slice cut at 0.5y = ) 
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Figure 4.27 Example 4.5 Given transformation: A cube with an ellipsoid inside (A slice 

cut at 0.5z = )  
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Figure 4.28 Example 4.5 Reconstruction (A slice cut at 0.5z = ) 



 

 

 

61

 

 
CHAPTER 5 

CONCLUSION 

 

The three versions of deformation method for adaptive grid generation are 

presented. If we generate a monitor function f corresponding to the grid size we need, 

and set the Jacobian determinant J f= , by either solving a Poisson equation by finite 

difference method or solving a div-curl system by least-square finite element method, 

we can adapt the grids by controlling the cell volume to the desirable cell sizes. 

Since 0f > , we can prove the grid we get is non-folded up to three dimensions. 

A three dimension multi-block deformation method is implemented. Multi-

block grids allow us to take advantage of the computational efficiency of structured 

grids and the flexibility for complex geometry. Special treatments for the common 

boundaries of different blocks are very crucial. Our 3D numerical example shows that 

the front pass through the common boundary of the two blocks successfully. 

The deformation method may be used to find a desired transformation. A brand 

new idea comes out from applying the deformation method by solving the div-curl 

system of equations. This idea is to reconstruct a given transformation by directly 

varying the divergence and curl of each corresponding points. Using these information 

in the right hand side of the div-curl system and solving the system, we can reconstruct 

any differentiable transformation. The least-square finite element method is used to 
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solve the div-curl system. Our numerical examples in both two dimension and three 

dimension show great accuracy. Our future work is to find out the connection of 

reconstruction to image registration and apply it to the computational image processing 

problem.  

 



 

 

 

63

 

REFERENCES 

[1] J. F. Thompson, Z. U. A. Warsi, and C. W. Mastin, Numerical Grid Generation, 

North-Holland, Amsterdam, 1985.  

[2] P. Knupp and S. Steinberg, The Fundamentals of Grid Generation, CRC Press, 

1993. 

[3] G. Carey, Computational Grid Generation, Adaptation and Solution Strategies, 

Taylor and Francis, 1997. 

[4] J. F. Thompson, B. Soni, N. Weatherill, Handbook of Grid Generation, CRC Press, 

1998. 

[5] J. Thompson, A reflection on grid generation in the 90s: trends, needs and 

influences, 5th International Conference on Numerical Grid Generation in 

Computational Field Simulations, Mississippi State University, pp.1029-1110, 1996. 

[6] B. Hamann, R. J. Moorhead, A survey of grid generation methodologies and 

scientific visualization efforts, Chapter 3 in Scientific Visualization: Overviews, 

Methodologies, and Techniques, pp. 59-101, 1997. 

[7] D. Arney, J. Flaherty, An adaptive mesh-moving and local refinement method for 

time-dependent partial differential equations, ACM Transaction in Mathematical 

Software, 16, 1990. 

[8] K. Miller, R. Miller, Moving Finite Elements I, SIAM J. Numer. Anal. 18, 1019-

1032, 1981. 

[9] K. Miller, Moving Finite Elements II, SIAM J. Numer. Anal. 18, 1033-1057, 1981.  



 

 

 

64

[10] N. Carlson, K. Miller, Design and application of a gradient-weighted moving 

finite element code, Part I, in 1D, SIAM J. Sci. Comput. 19, 728-765, 1998. 

[11] N. Carlson, K. Miller, Design and application of a gradient-weighted moving 

finite element code, Part II, in 2D, SIAM J. Sci. Comput. 19, 766-798, 1998. 

[12] M. Baines, Moving finite elements, Oxford University Press, New York, 1994. 

[13] J. Castillo, Mathematical Aspects of Numerical Grid Generation, Society for 

Industrial and Applied Mathematics, 1991.   

[14] W. Cao, W. Huang and R. D. Russell, Approaches for Generating Moving 

Adaptive Meshes: Location versus Velocity, Appl. Num. Math., 47 (2003), 121-138. 

[15] E. A. Dorfi and L. Drury, Simple adaptive grids for 1D initial value problems, J. 

Comput. Phys. 69, 175-195, 1987.  

[16] W. Huang, Y. Ren and R.D. Russell, Moving mesh partial differential equations 

(MMPDES) based on the equidistribution principle, SIAM J. Numer. Anal. 31, 709-

730, 1994. 

[17] W. Cao, W. Huang and R. D. Russell, An r-adaptive finite element method 

based upon moving mesh PDEs, Journal of Computational physics, 170, 871-892, 

2001.  

[18] R. Li, T. Tang, and P. Zhang, A moving mesh finite element algorithm for 

singular problems in two and three space dimensions, J. Comput. Physics, 177, 365-

393, 2002.  

[19] R. Li, T, Tang, and P. Zhang, Moving mesh methods in multiple dimensions base 

on harmonic maps, J. Comput. Physics, 170, 562-588, 2001.   



 

 

 

65

[20] Y. Di, R. Li, T. Tang, and P. Zhang, Moving mesh finite element methods for the 

incompressible Navier-Stokes equations, SIAM, J. Sci. Comput., 26, 1036-1056, 

2005.  

[21] D. Hawken, J. Gottlieb and J. Hansen, Review of some adaptive node-movement 

techniques in finite-element and finite-difference solutions of partial differential 

equations, J. Comput. Physics, 95, 254-302, 1991. 

[22] A. van Dam, P. A. Zegeling, A robust moving mesh finite volume method applied 

to 1D Hyperbolic conservation laws from magnetohydrodynamics, J. Comput. 

Physics, 2006.  

[23] W. Cao, W. Huang  and R. D. Russell, An error indicator monitor function for 

an r-adaptive finite-element method 

[24] W. Cao, W. Huang and R.D. Russell, A study of monitor functions for two-

dimensional adaptive mesh generation, SIAM J. Sci. Comput. 20, 1978-1994, 1999. 

[25] H. M. Tsai, A. S. F. Wong, J. Cai, Y. Zhu, and F. Liu, Unsteady flow calculations 

with a parallel multiblock moving mesh algorithm, AIAA Journal, 39, No. 6, 2001.  

[26] Thomas J.R. Hughes and Jerrold E. Marsden, A short course in fluid mechanics: 

mathematics lectures series 6, Publish or Perish, Inc. 1976 

[27] J. Moser, Volume elements of a Rieman Manifold, Trans AMS, 120, 1965 

[28] G. Liao and J. Su, Grid generation via deformation, Appl. Math. Lett., 5, 1992. 

[29] G. Liao and D. Anderson, A new approach to grid generation, Appl. Anal., 44, 

1992. 



 

 

 

66

[30] P. B. Bochev, G. Liao, and G. C. de la Pena. Analysis and computation of 

adaptive moving grids by deformation. Numerical Methods for Partial Differential 

Equations, 12, 1996. 

[31] B. Semper and G. Liao,  “A moving grid finite-element method using grid 

deformation”, Numer. Meth. PDE, 11:603, 1995.  

[32] G. Liao, T. Pan, and J. Su, “Numerical Grid Generator Based on Moser’s 

Deformation Method”, Numer. Meth. Part. Diff. Eq. 10, 21 (1994). 

[33] G. Liao, G. de la Pena, “A deformation method for moving grid generation”, 

proceedings, 8th International Meshing Roundtable, pp. 155-162. South Lake 

Tahoe, CA, October, (1999). 

[34] D. Fleitas, J. Xue, J. Liu and G. Liao, Least-squares finite element adaptive grid 

deformation in a non-linear time dependent problem. In Advances in applied 

mathematics (2004 SIAM GATORS), Gainsville, Florida, 2004.  

[35] F. Liu, S. Ji, and G. Liao, An adaptive grid method and its application to steady 

Euler flow calculations, SIAM J. Sci. Comput. 20, 811-825, 1998.  

[36] X. Han, C. Xu, and J. L. Prince, A 2D Moving Grid Geometric Deformable 

Model, IEEE Computer Society Conference on Computer Vision and Pattern 

Recognition (CVPR2003) , June, 2003, pp. I: 153-160. 

[37] X. Cai, D. Fleitas, B. Jiang, and G. Liao, Adaptive grid generation based on least-

squares finite-element method. Computers and Mathematics with Applications, 48, 

2004. 



 

 

 

67

[38] J. Xue, Moving grids by the deformation method, Dissertation, 2004. 

[39] W. Morris, A meshfree adaptive numerical method, Dissertaion, 2004. 

[40] D. Fleitas, The least-square finite element method for grid deformation and 

meshfree applications, Dissertation, 2005. 

[41] T. Belytschko, Y. Krongauz, D. Organ, M. Fleming and P. Krysl,  Meshless 

Methods: an overview and recent developments, Computer methods in applied 

mechanics and engineering, 139, 3-47, 1996.                         

[42]  B. Jiang, The Least-Squares Finite Element Method: Theory and Applications in 

computational Fluid Dynamics and Electromagnetics. Springer, Berlin, 1998. 

[43] M. Grajewski, M. Koster, S. Kilian and S. Turek, Numerical Analysis and 

Practical Aspects of a Robust and Efficient Grid Deformation Method in the Finite 

Element Context, preprint, 2005. 

[44] C. L. Chang and M. Gunzburger, A finite element method for first order elliptic 

systems in three dimensions. Appl. Math. Comput. 23, 135-146, 1987. 



 

 

 

68

BIOGRAPHICAL INFORMATION 

 

Jie Liu was born in Jiangxi, China, in 1971. She received her B.S degree in 

Physics from Jiangxi Normal Univerysity, Nanchang, China, in 1994. After graduation, 

from 1994-1998, she taught Physics and Science in Huxin Middle School, Shanghai, 

China. In 1998, she entered the University of Texas at Arlington to pursue graduate 

studies. She received her M.S degree in Mathematics in 2002. And in 2006 she 

successfully defended her dissertation, entitled “New Developments of the Deformation 

method” under the direction of Dr. Guojun Liao, and graduated with a Doctor of 

Philosophy degree in Mathematical Science. During her graduate studies in the 

University of Texas at Arlington, she taught many undergraduate mathematics courses 

and received Outstanding Graduate Student Teaching Award in 2001. 

 


