

A DISTRIBUTED SENSOR DATA MANAGEMENT INFRASTRUCTURE

BASED ON 802.15.4/ZIGBEE NETWORKS

by

TIANQIANG LI

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE AND ENGINEERING

THE UNIVERSITY OF TEXAS AT ARLINGTON

December 2006

 ii

ACKNOWLEDGEMENTS

I would like to take the opportunity to express my appreciation to my

supervising professor Dr. Yonghe Liu for his constantly motivating and encouraging me,

and for his invaluable advices during the course of my master thesis studies. And he

also keeps giving me the considerate and comprehensive supports on my requirements

regarding to hardware, software, technical support and communications. All of these are

the strong momentums that greatly drive me to overcome many difficulties that I met

during the course of thesis and get the research done on time.

I wish to thank Dr. Sajal K.Das and Dr. Ramez Elmasri for their interests in my

research, to be my thesis committee and assign their precious time to evaluate my

research.

I also wish to thank my teammate, PhD candidate Jun Luo for his interests in

my research and for the helpful discussions and invaluable comments which help me

find the correct direction in my research and make the progresses faster.

Special thanks should be given to my friends help me in many ways. Finally, I

would like to express my deep gratitude to my parents and brother for their

encouragement, patience and thoughtful concern.

November 9, 2006

 iii

ABSTRACT

A DISTRIBUTED SENSOR DATA MANAGEMENT INFRASTRUCTURE

BASED ON 802.15.4/ZIGBEE NETWORKS

Publication No. ______

Tianqiang Li, M.S.

The University of Texas at Arlington, 2006

Supervising Professor: Yonghe Liu

Wireless sensor networks consist of a certain number of autonomous devices

with sensor, every device has certain detection functionality like light, temperature

pressure etc. Communication by using the radio frequency make these spatially

distributed devices feasible to oversee the activities in a large scale of area/space.

802.15.4/ZigBee networks are slated to run in the unlicensed frequencies. It is a

packet-based radio protocol aimed at very low-cost, battery-operated widgets and

sensors that can intercommunicate and send low-bandwidth data to each other.

 iv

This thesis covers the content of a software solution of data management for an

802.15.4 networks. Its main contribution lies in it grounds a scalable and extendable

infrastructure for current and future developments to depend on, enabling users to

manage the distributed sensor data across the diversified and spacious ZigBee network.

Some unique technologies are proposed according to the specific hardware embedded

environment, such as cyclic queue, storage structure of RAM+Flash memory, Dynamic

binary search etc. Some improvement solutions are also implemented in an attempt to

fill the gaps in functionalities of ZigBee networks such as TCP/IP stacks built onto

ZigBee protocols. Some advanced design ideas are also presented such as browser-

based user interface, communication via standard protocol (HTTP); Some software

implementations are accomplished for the first time without former references such as

the immigrating the RTX51 tiny from standard 8051 CPU to ChipCon2430 CPU.

The infrastructure that we proposed consists of the sensor data collecting

subsystem, data storing subsystem, data query algorithm and subsystem, radio

frequency intercommunication subsystem and browser based user accessing interface.

Sensor data collection and storing system will periodically save the sampled value from

sensor to the memory system and later to the permanent flash memory. Data query

subsystem will provide an efficient approach to locate the data to be queried among

large number of stored data. Radio frequency intercommunication subsystem is in

charge of the radio frequency communication between devices, to delivery back and

forth for the query request and response is the one of the major duties in this subsystem.

 v

The user accessing interface supports the users to submit query requests in the browser

with the standard http link address in users’ personal computer.

 vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS.. ii

ABSTRACT ..iii

LIST OF ILLUSTRATIONS... ix

LIST OF TABLES.. x

Chapter Page

1. INTRODUCTION .. 1

1.1 Outline... 7

2. HARDWARE ENVIRONMENT... 9

2.1 Overview... 9

2.2 Hardware Summary on Chip Set .. 9

2.3 Hardware summary of development board... 10

3. SENSOR DATA COLLECTING SUBSYSTEM .. 12

3.1 Overview... 12

3.2 Relevant Hardware ... 12

3.3 Software Implementation.. 12

4. SENSOR DATA STORAGE SUBSYSTEM... 14

4.1 Overview... 14

4.2 RAM and Flash memory .. 14

 vii

4.3 Page Accessing and Cycle Queue... 15

4.4 Caching and flashing .. 18

5. SENSOR DATA QUERY SUB-SYSTEM .. 19

5.1 Overview... 19

5.2 Comparison of searching algorithms .. 19

5.3 Dynamic and static binary search ... 21

6. RADIO FREQUENCY COMMUNICATION SUBSYSTEM 26

6.1 Overview... 26

6.2 Overview of IEEE 802.15.4 and ZIGBEE.. 26

6.3 Specification in CC2430 and Physics and MAC Layer.................................... 31

6.4 TCP/IP Protocol Implementation ... 34

7. USER INTERFACE SUBSYSTEM... 39

7.1 Overview... 39

7.2 Browser-based interface ... 39

7.3 Way to hookup.. 40

7.4 Processing within ZigBee network... 41

8. RESEARCH OF EMBEDDED OPERATING SYSTEM.. 43

8.1 Overview... 43

8.2 Overview of Embedded Operating System .. 43

8.3 Migrate to our system ... 44

8.4 Basic software architecture of RTX51 tiny .. 46

8.5 Stack Management in RTX51 tiny.. 49

 viii

8.6 Initialization of RTX51 tiny.. 50

8.7 Processing Diagram of Task Scheduling in RTX51 Tiny 51

9. PERFORMANCE TEST ON NETWORK COMMUNICATIONS 54

9.1 Overview... 54

9.2 Test Environment and terms... 54

9.3 Test Procedure .. 55

9.4 Test Result .. 55

9.5 Experiment Analysis... 57

10. CONCLUSION AND FUTURE WORK ... 61

REFERENCES ... 63

BIOGRAPHICAL INFORMATION.. 66

 ix

LIST OF ILLUSTRATIONS

Figure Page

1 System Architecture.. 6

2 Picture of Development board .. 11

3 Cyclic Queue... 16

4 Insertion operation of cyclic queue... 17

5 Two cases in Splitting the window in cyclic queue.. 23

6 ZigBee network model.. 31

7 Structure of User Interface Subsystem ... 39

8 Software structure in RTX51 tiny... 48

9 Stack Management in RTX51 tiny ... 50

10 Processing Diagram of Task Scheduling in RTX51 tiny (Part I).......................... 52

11 Processing Diagram of Task Scheduling in RTX51 tiny (Part II)......................... 53

12 Reliability comparisons in four scenarios.. 58

13 Reliability comparisons between TCP/IP+ZigBee and ZigBee network 60

 x

LIST OF TABLES

Table Page

 1 Comparison within Wi-Fi, Bluetooth and ZigBee .. 28

 2 Categories of ZigBee devices.. 29

 3 Important APIs in PHY& MAC layer libraries in Chipcon CC2430 ZigBee
 solution .. 33

 4 Difference between 8051 and CC2430 in controlling time tick timer 45

 5 Experiment result when payload is 10 bytes... 56

 6 Experiment result when payload is 30 bytes... 56

 7 Experiment result when payload is 60 bytes... 57

 1

CHAPTER 1

INTRODUCTION

In the recent few years, the applications of sensor devices have been explosively

expanded in many areas like house appliances, automatic surveillance, environment

protection and military reconnaissance, etc. They come with not only a lot of diversified

sensor networks made by different manufactures, but also all kinds of different private

communication protocols. As there are more and more sensor networks being deployed

to the market, sooner or later, those networks will overlap with each other or face the

need of interacting with each other to interchange data. To interact with all these remote

sensor devices and sensor networks, there should be an industry standard to represent

the comprehensive requirements in personal-area network and let the manufactures

comply with it. Only in this way, the sensor network world can be unified to a healthy

growing way.

One of the most promising protocols is ZigBee, a software layer based on the

IEEE 802.15.4 standard. ZigBee is designed to satisfy the market’s need for a cost-

effective wireless home-area network that supports low data rates, low power

consumption, simplicity, security, and reliability, [1,2,3] introduce the standard

specification of IEEE 802.15.4, [4, 5, 6] presented ZigBee in terms of concepts and

protocols.

 2

In the previous experiences, there are some challenges in different aspects that

we met when people were trying to create a software architecture or system to manage

the sensor data of ZigBee network. They are shown below:

1. ZigBee protocol lacks of traffic-intended consideration, even though ZigBee

is designed to be with low data rate, low power consumption, simplicity and security.

The capability of transmitting data is not strong enough to make it carry the large

amount of traffic like stream data, large-amount-data-generated sensor like video

camera.

2. The Address used to identify a node in ZigBee networks are a 16-bit number

or 64-bit IEEE address. Both of them are not compatible with the most widely-used IP

address, which means ZigBee network is not able to be a part of Internet, can not join

the IP network and be located directly from outside the ZigBee network without the

help of specific-designed gateway.

3. Most of sensor node didn’t largely store the history data. They either don’t

store history data at all, only keep the current sampled data in their storage system, or

do some aggregations or compressions real-timely, without storing the history data

piece by piece as they were. They do so because there are restrictions in memory space

in the earlier sensor node. Our system built on ChipCon 2430, which has 128K byte

flash memory and 8K byte RAM, in some extent it lifts the burden of storing more

details that we got. So figuring out a storage system to keep the data in permanent

storage efficiently and reliably, is one of the main challenge that we are facing.

 3

4. With a existence of challenge No.3, we can easily expected further that there

are not many query algorithms and implementations available for system builder to

query the data within this large amount of sensor data. One of important task for us is to

get this question over with.

5. To design a system which is scalable and extendable, be good modularization?

These features are critical at the beginning stage of design procedure, a well-designed

architecture in these aspects will place solid and flexible groundwork for the upper

applications in the future, accommodate the problem revising and future upgrade with

no need to rebuild the original designed architecture.

6. Select and run a real time operating system onto our specific sensor nodes.

Chipcon2430 is quite new hardware released on the market, plus the fact that Chipcon

Corp. doesn’t have its own RTOS solution, both of issues lead to the fact that so far

there is no corresponding operating system for education purpose.

7. Providing the users a convenient access window to the users. Many sensor

network need uses install their own software onto users’ computers before their

functionalities can take effect, there should be a way to release the burden to the users

on this.

Facing these challenges, in this thesis, we proposed our corresponding solutions

to above challenges in respective chapter, all these solutions and other necessary

components make up of a distributed sensor data management software infrastructure.

For the challenge No.1 and 2, we build a TCP/IP stack on top of ZigBee stack,

offer the feature of reliable, connection-oriented data transmission into our ZigBee

 4

networks, strengthen largely their capability to couple with the data traffic situations.

The retransmission and reassembly feature offered by TCP/IP also make our ZigBee

networks now are ideal to carry stream data. On the other hand, the IP stack identify

every sensor node with an unique IP address, the ZigBee network can be part of the

Internet or a subnet of Internet, the individual sensor node is able to be accessible and

located by using the standard IP routing protocol. Chapter 6 will give us detailed

descriptions regarding these. Chapter 9 gives readers a practical experiment in aspect

of performance on both TCP/IP ZigBee network and pure ZigBee, some statistics data

are shown in this chapter illustrating how TCP/IP offer the virtues to ZigBee networks.

To overcome the challenge No.3, we build up a storage subsystem enhanced

with a couple of algorithms and technologies which include “RAM+Flash” two-

layered storage structure, cyclic queue, page-accessing, etc. The storage subsystem is

able to store at most 47K sample data. Chapter 4 will explain specifically these issues.

The point to solve challenge No.4 lies in designing an efficient algorithm

coupled tightly with storage subsystem. We proposed an alternative binary search

algorithm running on two-layered structure of storage subsystem which is able to

reduce the time complexity to O(log2N). For more details, please reference Chapter 5.

In terms of Challenge No.5, we introduce a well-modularized, extendable

software framework to manage the sensor data across the network. It consists of 5

subsystems which interact with each other cooperatively but with their own distinct

design functionalities, the applications are able to easily hook up to the existing system

and start to run, such a framework place a solid groundwork for future applications

 5

developments by provide a serials of API fully covering the necessary features to

upper layers programs. Based on them, the developers will feel easier to get in,

convenient to develop, and shorten the development period greatly.

We discover a solution to Challenge No.6 to implement it successfully. Even

though there is no existing example that we could reference, we immigrate the RTX51

tiny (RTOS) to our sensor nodes successfully. There are no technical support for such

a porting, we first look through and understand all the source code of RTX51 tiny, and

make some necessary change to the code and port our version to our sensor nodes.

Chapter No.8 is right place for reader to look into these questions.

We select the browser based solution to solve Challenge No.7, furthermore, The

HTTP protocol are used as the protocol when communications occur between User

interface subsystem and the RF communication subsystem. Both of issues enable users

to not install any software onto their desktop, merely use browser and type the

specified link and then the whole processing can be started and done within the

browser. Reader will see more details in Chapter No.7.

 Below is a brief introduction to the whole system – “sensor data management

infrastructure based on the hardware environment of 801.15.4/ZigBee sensor network”.

A system diagram below depicts how the system is constructed.

 6

Collecting
Subsystem

Storage Subsystem

Query Subsystem

RF communication
Subsystem(Client)

User
Interface
Subsytem

RF
communication
Subsystem(Man

age Node)

Hardware of sensor
node

IEEE 802.15.4/
ZigBee Network

Figure 1 System Architecture

The sensor network hardware consists of a couple of development board with

CPU ChipCon2430, a system-on-chip radio frequency chipset supporting 2.4G Hz

IEEE 802.15.4/ZigBee application. An 8k byte RAM and 128K bytes Flash memory

are build-in into the chipset, as well as a high-performance radio transceiver. A

temperature sensor is also included inside the chipset[11,12,13]. Based on hardware

supports, a software system is developed in an attempt to collect the data sampled by

sensor, store them to the permanent memory space, remotely look up the specific data

we need from the storage of remote nodes with high efficiency by using the high-

performance search algorithm and radio frequency communication, provide friendly

query interface to the non-professional users, support the TCP/IP protocol stack [19,

 7

21] on top of IEEE 802.15.4 MAC and physical layer[2, 3]. This software system is

comprehensive solution which empowers users to file a search request from a browser

in users’ PC, and the query result will be returned and displayed by the browser. The

data storage subsystem takes care on both aspects of efficiency and data reliability by

using the RAM as the first level cache and Flash Memory as the permanent storage

space, under the cache-to-flash synchronization algorithm, the data will be save with

efficiency and consistency. The cyclic queue data structure enhances the storage

subsystem with higher data utility ratio in limited Flash memory spaces, it also place a

solid foundation under the data query subsystem which is implemented by using the

cyclic binary search algorithm. The support of 802.15.4/ZigBee makes it easier and

convenient to interchange data and interact with other ZigBee network. The TCP/IP

feature on this system makes the connection-oriented reliable packet transportation and

flow control possible. Based on it, plenty of network applications like http web server,

DHCP, FTP, SNMP are applicable with no difficulties.

1.1 Outline

Chapter 2 gives an overview regarding to the hardware environment including

the features of the chip set ChipCon 2430 and his development board.

Chapter 3 describes the sensor data collecting subsystem which will enable the

sensor board to sample and capture the analog data from sensor and use some

mechanisms to notice the application.

 8

Chapter 4 depicts how sensor data storage subsystem works, some important

components and implementation approaches are illustrated such as the cycle queue and

cache buffer.

Chapter 5 presents the algorithms and data structures that sensor data query

subsystem uses, and the implementation details to guarantee it to be a rapid solution

compared to other solutions.

Chapter 6 explains the approaches that are leveraged by radio frequency

communication subsystem. Some detailed introductions regarding IEEE 802.15.4 and

ZigBee will be found in this chapter, the features and usages of software library of PHY

and MAC layer is discussed as well as the TCP/IP implementation on top of ZigBee

protocol stack.

Chapter 7 discusses the user interface subsystem in terms of how it is built and

the major technologies and software modules involved

 Chapter 8 provides a research report on real time operating system for

embedded system. The typical RTOS system called RTX51 tiny is introduced in

comprehensive aspects 0066rom task scheduling, timer tick to stack management. Also,

some processing logics within the kernel of RTX51 tiny are also analyzed.

Chapter 9 give us an practical experiment on how TCP/IP protocol stack

improves the ZigBee Network’s capabilities on handling heavy data traffic situations.

 9

CHAPTER 2

HARDWARE ENVIRONMENT

2.1 Overview

There development environment in terms of hardware mainly consists of two

components: The chipset module plug-in board and the development main board. Some

tightly related parameters regarding to the functionalities of these two components will

be introduced in the following sections.

2.2 Hardware Summary on Chip Set

There are three versions in the family of Chipcon 2430, they are CC2430-F32,

F64 and F128, the number behind ‘F’ means the size of the flash memory. The one that

we use in the development is CC2430-F128, which includes 128 K bytes flash memory.

The CC2430 is a true System-on-Chip (SoC) solution specifically designed the

requirement of IEEE 802.15.4 and ZigBee applications. The CC2430 is equipped with

an industry-standard enhanced 8051 MCU, 8K bytes RAM and 128K bytes flash

memory. A high performance radio frequency transceiver is also built in the chip.

Featured with various operating modes, CC2430 is suited for systems where ultra low

power consumption is required. Some important hardware features are listed below [11,

12, 13]:

· High performance and low power 8051 microcontroller core.

· 2.4 GHz IEEE 802.15.4 compliant RF transceiver in radio core.

 10

· 128 KB in-system programmable flash

· 8 KB on-chip RAM, 4 KB with data retention in all power modes

· CSMA/CA hardware support.

· Digital RSSI / LQI support

· Battery monitor and temperature sensor.

· 8-14 bits ADC with up to eight inputs

· AES security coprocessor

· Two powerful USARTs with support for several serial protocols.

· One IEEE 802.15.4 MAC Timer, one general 16-bit timer and two 8-bit

timers

· 21 general I/O pins, two with 20mA sink/source capability

2.3 Hardware summary of development board

SmartRF04EB is the name of the development board. SmartRF04EB is the

platform for development and testing on both hardware and software. Some important

features are worth to be mentioned [28]:

User interface

The SmartRF04EB includes an LCD panel, two pushbuttons, one joystick and 2

LEDs to help developers get the intuitive feedback from hardware during the

development. A potentiometer is built in for analog measurement, the board is also

featured with an audio filter and amplifier enabling transmission and reception of audio

signals.

 11

In Circuit Emulator:

For more efficient development, the CC2430 includes an on-chip real time In

Circuit Emulator (ICE). SmartRF04EB controls the emulator via the USB interface.

Figure 2 Picture of Development board [28]

 12

CHAPTER 3

SENSOR DATA COLLECTING SUBSYSTEM

3.1 Overview

Sensor data collecting subsystem enable the sensor board to sample and capture

the analog data from sensors, and convert the analog data to digital value which will be

delivered up to application. Firstly the hardware background is given, then we present

the implementation regarding to control sensors, A/D channels, and deliver data to the

application level.

3.2 Relevant Hardware

CC2430 has a built-in analog temperature sensor, the measurement parameter is

0.763V at 0°C and 2.44mV / °C. [12]. The A/D conversion channel is provided to

sample the temperature, convert the sampled data to digital data and output data to the

certain pin port of the chipset, and then the application is able to access the pin port and

get the value.

On the other hand, there is also a potmeter at the Evaluation Board, when the

potmeter is turns on, the voltage will be sampled, converted by controlling the A/D

channels.

3.3 Software Implementation

In order to enable the A/D channel, the SFR(Special Function Register)

ADCCFG is required to be initialized correctly, then the next step is to select the ADC

 13

conversion sequence by set the corresponding bits in register ADCCON. To start the

sampling, certain bit has to be set in ADCCON, if the hardware level sample has been

done, certain bit in ADCCON will be set to indicate this issue, and the data after A/D

conversion will be put into register ADCH which is addressable for application [12].

 In the common cases, people would like to get the sensor node doing sampling

periodically instead of doing it manually or single time. The best way to put the

sampling and A/D conversion to run in a fixed interval is using interrupt. There are

there timers in CC2430 for us to use, after users set the timer correctly and run, when

the time-out event occurs, an interrupt event will be triggered, then the interrupt routine

corresponding to the timer will be called by the kernel. Users can customize specific

operations that will be performed into the interrupt routine, and update the system

interrupt vector by changing the value of timer routine entry to customized function

address.

 14

CHAPTER 4

SENSOR DATA STORAGE SUBSYSTEM

4.1 Overview

This chapter describes how our system store the data collected by collecting

subsystem. This subsystem is capable to store large amount of logs of sensor data. We

build up this subsystem enhanced with a couple of algorithms and technologies which

include “RAM+Flash” two-layered storage structure, cyclic queue, page-accessing, etc.

The storage subsystem is able to store at most 47K sample data. Considering the RAM

and flash memory offer distinct virtues on store data as well as their distinct flaws,

firstly, we briefly discuss about what can RAM and flash memory can do and not do,

secondly, a two layer structure “caching and flashing” structure is presented on how to

combine the merits of both RAM and flash memory to make the data to be stored

reliably and efficiently. The third, in the flash memory part, the cycle queue data

structure will be discussed as well as the page accessing mechanism.

4.2 RAM and Flash memory

Data storage subsystem is used to save the data that sensors have sampled into

CC2430’s memory space as sort of log data for the later usage. There are 8K bytes of

RAM and 128K bytes Flash memory in CC2430, RAM owns the fast accessing

operation but it is sort of vulnerable storage, only maintains data when the power is on,

on the other hand, flash memory has slow accessing speed but possess the functionality

 15

for reliable storage even without the power supply. Most of modern computer

architectures make use of the merits of both of them to pursue the balance the accessing

performance and the reliability by applying a two-layer structure: use RAM as the cache

to store the most recent and most dynamic data, and use flash memory to store the less

recently or used data. In our system, the similar approach is adopted to increase the

software response speed and provide the permanent storage at the same time.

4.3 Page Accessing and Cycle Queue

In addition, in CC2430, the write operation is different to the read operation.

The smallest accessing unit in reading flash memory in our system is byte, but the

counterpart in writing flash memory is block with size of 2k bytes. So the best way for

us to manage the flash memory is block accessing [12, 29].

With the limited flash memory size, we create a cycle queue in Flash memory

space as the container for the sensor data, which is being generated periodically. The

operating unit to the cycle queue is a page/block of size 2k bytes, this is accordant to the

traits of flash memory that the size of single writing operation is 2k bytes. Every page

will be assigned an page ID in an ascending order from 0 to N-1(N is the total page

number of the queue). In an attempt to indicate the current starting location of the

queue (head of the queue), the Head_PageID is maintain for this purpose meaning the

head page ID, it also means that the data stored in this page are the least recent data in

the whole queue. Another variable called UsedPageCount is used to monitor the size of

the queue, it tells the how many pages were used to store data. The following figure

illustrate how cyclic queue works:

 16

HeadPage
RearPageMedianPage

Figure 3 Cyclic Queue

When the cache page in RAM is full, the content of whole page will be dump

into the cycle queue, here two scenarios will occur, one is the cycle queue is not full, the

other is the cycle queue is full right before the dumping processing.

In the first case, the system will locate the right page position to save the page

from cache, it should be the rear of the cycle queue, the location will be figured out by

adding two parameters: the size of the queue and the head pageID

(HeadPageID+PageUsedCount), one situation has to be concerned with is that when

the HeadPage is behind the rear page, the sum of this two parameters is not right due to

the fact that the part beyond the end of queue has to be wrapped back to the start of the

queue. The following figure gives us an intuitional image:

 17

HeadPage
UsedPageCount = 9

HeadPage
UsedPageCount = 10

HeadPageUsedPageCount = 11

Figure 4 Insertion operation of cyclic queue

In the second case, full queue is never unlikely in the queue operations,

generally speaking, two measures we can take: deny the insertion, or overwrite the head

of queue. Since we have ceaseless sensor data coming along time passing, it is

unreasonable to deny the new data and keep the old data in the queue. So overwriting

the head page is our choice. The process of this is to locate the rear page ID firstly, and

move one page further so as to get the head page, overwrite this page and change the

HeadPageID to point to next page of original head page, and the size of

queue(PageUsedCount) keep unchanged.

 18

4.4 Caching and flashing

The drawback of flash memory is also obvious, we surely can not do

modification frequently to flash memory. Like we mentioned before, ahead of inserting

page to cycle queue we use a region in RAM to cache the newest data from A/D

channel, the region with same size to the page size in flash memory is efficient and

straightforward. So a fix-addressed RAM space is appointed as the cache space, sensor

data got freshly from A/D channel will be put into the cache first, the subsequent data

will be appended to the cache space until the cache page is out of space, when the whole

cache page will be dumped to the cycle queue in flash memory.

19

CHAPTER 5

SENSOR DATA QUERY SUB-SYSTEM

5.1 Overview

As we mentioned in the previous chapter, the storage subsystem is capable to

store large number of sensor data into the flash memory. It raises a challenge that how

to locate a specified data in the middle of the sensor data efficiently. We propose an

alternative binary search algorithm running on two-layered structure of storage

subsystem which is able to reduce the time complexity to O(log2N)

 Firstly, we will give a comparison of several candidate query algorithms.

Secondly, we make our choice and explain the reasons that we choose binary search.

Thirdly, the dynamic binary search and static binary search, two derived from binary

search are applied to our system and make our solution fast and satisfy the searching

requirements in both cache area and cycle queue.

5.2 Comparison of searching algorithms

Quite a few mature and widely-used search algorithms are there in the software

industry to cope with this question. Linear Search, Binary Search, Hash Table Search, B

or B+ tree, Skip List, etc are the most well-known techniques in the search areas. None

of them are perfect for all cases, they have their merits and drawbacks[22, 23, 24, 25].

20

Linear search is easiest one to be implemented, but with no efficient

performance, when the data set is large, the performance is unacceptable due to low

CPU benchmark and lack of memory on embedded system.

Hash table search technically is the fastest algorithm, but it has to take much

more concerns and energies onto solving the conflict problem along with more and

more items were added into the hash table [24], one other drawback of hash table search

is it is not capable to do the range search quickly.(search data that falls into the

specified range).

[22] gives us a detailed illustration on B or B+ tree, which is suitable to handle

the case in which huge numbers of data were contained, but the balancing operation is a

extremely tedious, and will turn into be overloaded workload at some extent. Plus, the

memory allocation mechanism is required as prerequisite if B tree is consider to be used.

In some embedded system operating system, this mechanism is not provided due to the

simplicity sake.

Skip list owns a good balance between performance and simplicity [26], it uses

multi-linked list to accelerate the search, the search process will go through those multi-

linked list from top layer to the bottom, but stick to the one direction, making the

searching happens like jumping among several link list to get to the desired destination

finally. Skip list has to generate a random number to decide the layer number for the

new-added item which at the same time disables it to guarantee time complexity in

terms of search operation, in the worst cases, the search operation will be identical to

21

the linear search. One more thing is the same to B+ tree, the memory allocation

mechanism is also a base requirement [25].

Binary Search is significantly fast search algorithm with O(log2N) time

complexity. The key of data stored by binary search algorithm is required to be in

order(ascending or descending order). No matter using static memory allocation or

dynamic memory allocation, binary search will work well and show the same search

performance. So far due to the dynamic memory allocation mechanism is temporarily

not available in our operating system running on our sensor node, plus the maturity that

binary search owns, and code complexity which will affect the footprint of our

executable program(the smaller the better). We figure binary search is the best choice

so far according to what we have on the aspect of hardware environment and the

software development kits.

5.3 Dynamic and static binary search

Like the last chapter mentioned, the flash memory accessing mechanism

designed by CC2430 is not identical in the aspects of reading and writing. Block writing

has to be applied when writing request happened. But reading operation is performed in

same way with doing regular external memory reading which is byte-level. Since search

operation is a kind of read-only operation, we can search and examine to the level of

item in the cycle queue. At the same time, in the scenario where the specified data

locates into the cache instead of in the cycle queue, binary search is also feasible to be

applied to the RAM space, only difference between them is that, in cache page, the

search range is fix(from the beginning of the page to the end of page), we call it static

22

binary search; meanwhile, in cycle queue, the range that contains stored data is various

from time to time depending on the frequency of the insertion requests. That means the

search range is movable continuously, we are required to revise the static search

algorithm slightly and put some more control logic into it, and generate an upgraded

version that we call dynamic binary search algorithm.

The key part of binary search is to select the search window, then locate the

median item right inside the window, compare the value to be search and the value of

the median item, then determine which half of the window we should go further, that

half of window will turn into be new search window, similar processing are repeated

until the value is found.

The range containing data in the cycle queue is various, the pointer HeadPageID

and queue size(PageUsedCount) are used to monitor the variance of this range. Let’s

make definition for some terms here in order to illustrate the search procedure

intuitively, later an figure also depicts how to locate and split the window:

Definitions:

HeadPage: First page ID of the queue that stores data.

RearPage: The last page ID of the queue that stores data.

OrgHead: The first item that stores the oldest data.

OrgRear :The last item that stores the most recent data.

Distance: The size (in items) of the search window.

23

HeadPage
RearPageMedianPage

HeadPageRearPageMedianPage

Figure 5 Two cases in splitting the window in cyclic queue

The ADT (abstract data type) description for the dynamic binary search tree:

Def DynamicBinSearch(key, *val) :

 HeadPage = LogSummaryCache.Head_PageNumber;

 //For the cycle queue structure

RearPage=(HeadPage+ LogSummaryCache.PageUsedCount-1)%MAX_PAGE;

 //Every page contain 512 items.

OrgHead = HeadPage*512;

 OrgRear = (RearPage+1)*512-1;

 head = OrgHead;

 rear = OrgRear;

 //Flag to mark if the head pointer is ahead of rear pointer originally, used to

//determine if the search processing should stop or not.

OrgState = (head >= rear);

24

 //Size of the window

distance = (rear-head) in case of (head<rear);

OR

((512*MAX_PAGE)-(head-rear)) in case of (head >= rear);

 // The median location of window

 dobber = (head + distance/2)%(MAX_PAGE*512);

 // Process to shrink the window.

For(; (head==rear) or (head>=rear) == OrgState ;)

 {

 if (time > [item at dobber].time)

 {

 head = dobber+1;

 }else if (time < [item at dobber].time)

 {

 rear = dobber-1;

 }else

 { // Found the specified key.

 *val = PageLog[dobber].val_1;

 return TRUE;

 }

 //Adjust the size of window.

Distance = (rear-head) in case of (head<= rear)

25

 OR

 ((512*MAX_PAGE)-(head-rear)) in case of (head > rear)

 // Caculate the new median location in new window.

Dobber = (head + distance/2)%(MAX_PAGE*512);

 }

At last, with all this preparation works being ready, the API(Application

Programming Interfac) is given for the developer to search the specified key inside

sensor data storage system.

BOOL LocateLog(INT16 time, UINT8 * val);

Where,

Time is the key to search, val is the pointer of memory specified by invoker to

store the result data;

Return value: TRUE if key is found, FALSE otherwise.

26

CHAPTER 6

RADIO FREQUENCY COMMUNICATION SUBSYSTEM

6.1 Overview

ZigBee network lacks of data traffic-intended consideration, since its major

designing purpose doesn’t lie on this. ZigBee protocol is not ideal to carry the large

amount of payload. In an attempt to compensate this gap, we build a TCP/IP stack on

top of ZigBee stacks, strengthen largely their capability to couple with the data traffic

situations. The retransmission and reassembly features offered by TCP/IP also make our

ZigBee networks now are suitable to carry stream data. On the other hand, the IP stack

enables the ZigBee network can be part of the Internet, the sensor node is able to be

accessible and located by using the standard IP routing protocol.

This chapter mainly depicts the how our system accomplishes radio frequency

communication based on 802.15.4/ZigBee standard. Some detailed introductions

regarding IEEE 802.15.4 and ZigBee protocol stack will be found in this chapter, the

features and usages of software library of PHY and MAC layer is discussed, lastly, the a

light-weighted but richly featured TCP/IP implementation specific to our system on top

of ZigBee protocol stack is gone through.

6.2 Overview of IEEE 802.15.4 and ZIGBEE

ZigBee is a PAN (Personal Area Network) wireless networking solution that

supports low data rates, low power consumption, and security, promoted by ZigBee

Alliance. ZigBee is based on the IEEE 802.15.4 specification which was ratified in May

27

2003. ZigBee is designed specifically to replace the proliferation of individual remote

controls and sensor devices[5, 6], A home-area network covers an areas of 30-70

meters, consists of one or more kinds of electronic devices including sensors, actuators,

appliances and asset-tracking device, security surveillance equipments and so on.

ZigBee is a protocol stack to standardize the behaviors on the wireless communication

within these diversified devices. If we do some survey into the HAN network, we will

notice that the wireless payloads circulating within the network, sent and received by

most of the devices are small packets, they carry the control commands, the running

status that need to be monitored. For some widely-used applications, for example the

smoke detector installed in every kitchen, at most of the time, the detector is in deep-

sleep mode, only generate a burst of alarm information in case of the trigger event

(heavy smoke detected) happening. So some characteristics are necessary for the

device in HAN networks:

* Allow long sleeping time;

* Very low power consumption;

In the previous couple of years, WLAN(Wireless Local Area Network)

technologies were invented, gain the explosive progress and own their space in the

industry quickly, such as Wi-Fi and Bluetooth. Both of them and ZigBee have the

function to communicate remote devices wirelessly, but each of them has the specific

functionalities and performance benchmarks, Table-1 shows the traits comparison

within Wi-Fi, Bluetooth and ZigBee.

28

Table-1 Comparison within Wi-Fi, Bluetooth and ZigBee [9]

 ZigBee Bluetooth Wi-Fi

Application Monitoring and control Cable
replacement

Web, Email,
Video

System resources 4KB – 32KB more than
250KB

more than
1MB

Battery life (days) more than 1000 1 to 7 1 to 5

Network size
“unlimited” in theory, 32000

in reality 7 32

Bandwidth(KB/s) 20 to 250 728 54000
Transmission range

(meters)
30-70 10 100

Power consumption(TX

mode)
25 to 35 mA 40 mA more than

400 mA

Power consumption

Standby mode
3 µA 200 µA 20 mA

The main advantages of ZigBee compared to Bluetooth and Wi-Fi are the very

low power consumption in sleeping mode and the small footprint of the ZigBee stack

protocol, which make it possible to provide components with very low cost.

What’s the relationship of IEEE 802.15.4 and ZigBee? We might consider the

802.15.4 as physical radio and ZigBee as the logical network and application software.

According to OSI(Open system Interconnection) reference model, IEEE

802.15.4/ZigBee covers three layers, the lowest two layers: physical(PHY) and media

access layer(MAC) belong to IEEE 802.15.4 standard, the layer above these two, are

defined by ZigBee standard [8].

In 802.15.4, four basic frame types are defined: Data, ACK, MAC command,

Beacon. Data Frames supports a payload with size of 104 bytes with unique frame ID

29

for tracking purposes. ACK frame acknowledges the packet has been received by the

destination node correctly. MAC command frame are used to control and configure the

client node by coordinator. Beacon frame is like notice message for the client nodes,

client nodes are wake up by the beacon frame. They listen on the PAN network, and

will go back to the sleep mode if no beacon frame is received.

ZigBee devices can be divided by three kinds of categories:

Table-2 Categories of ZigBee devices [8]

Device type Characteristics Role in the network

Coordinator
Maintain the overall network information,
requires the most memory and computing

power
Pan network manager

Full function
device(FFD) Full support 802.15.4 Coordinator or

network router
Reduced
function

device(RFD)
Limited functionality Network-edge device

ZigBee networks are designed to conserve the power of the slave nodes. For

most of the time, a slave device is in sleeping mode and wakes up only for a fraction of

a second to let the coordinator know its presence in the network.

ZigBee network can run under Beacon or non-beacon strategies. Basically, in

non-beacon mode, each client is autonomous, acting like two-way radio network, can

establish a conversation at will, but the conversation perhaps will be disturbed by others

occasionally. The beacon mode is able to control the power consumption in whole

network and extended network. In this mode, the two-way network is managed by

30

central dispatcher in terms of controlling the channels and manager the calls, by which

it optimized the power consumption of whole network.

Non-beacon mode is typically deployed as security systems where ZigBee end

devices, like intrusion sensors, sleep most of the time. They wake up on a regular

interval(might be long time period) to announce their presence in the network. When

an event shows up, the sensor is triggered and wakes up immediately and sent the alert

(“Somebody’s entered the front gate”). The network coordinator listens to the network

all the time and can therefore wait to hear from each of these end devices. Due to fact

that network coordinator has enough power supply it can allow clients to sleep for

unlimited periods of time, non-beacon mode enables the slave nodes to save power.

On the contrary, beacon mode is fitter to be used if the network coordinator has

limited power supply. The side to listen is end devices, they listen for the network

coordinator’s beacon (broadcast at certain interval). An end device registers with the

coordinator and looks for any messages to itself. If no messages are pending, the client

returns to sleep, awaking on a schedule specified by the coordinator to listen to beacon

coming next. Once the end device communications are completed, the coordinator itself

returns to sleep for the sake to lower power consumption.

The NWK layer is in charge to associate or dissociate devices through the

network coordinator, routes frames to their destination and perform security. In addition,

the NWK layer of the network coordinator also in charge of starting a new network and

assigning an address to newly associated devices.

31

The NWK layer specifies multiple network topologies including star, cluster

tree, and mesh, which are shown in Figure below.

Figure 6 ZigBee network model [8]

In the star topology, one of the FFD-type devices will play the role of network

coordinator and is used for initiating and maintaining the devices on the network. All

other end devices, communicate with the coordinator directly.

In the mesh topology, like in star topology, the ZigBee coordinator is

responsible for starting the network and for choosing key network parameters, but the

network can be expanded and interact with network outside via the use of ZigBee

routers.

6.3 Specification in CC2430 and Physics and MAC Layer

The CC2430 IEEE 802.15.4 MAC and PHY software implements the

functionality as specified by the IEEE 802.15.4 specifications. The MAC software may

run by using a CC2430EB development kit.

32

Functionality of the MAC and PHY layers include following features as described in

[30]:

 CSMA-CA

 Link quality measurements.

 Data Transfer

 Retransmission

 Fame acknowledgement

 Association/Disassociation

 Beacon notification.

The software of MAC and PHY layer has plenty of interfaces for developers to

control and manage the diversified elements in ZigBee network. The most frequently

used API is shown below in Table – 3:

33

Table-3 Important APIs in PHY& MAC layer libraries in Chipcon CC2430 ZigBee
solution

API Features Where to apply

MAC_INIT
Setup MAC framework and DB

peripherals

Coordinator or

devices

mpmSetRequest Power up MAC sublayer
Coordinator or

devices

mlmeSetRequest

Set the PIB attributes.

(The MAC PIB contains the attributes

required to manage the MAC sublayer

of a device).

Coordinator or

Devices

mlmeStartRequest Start service of the coordinator Coordinator

mlmeScanRequest
Scan the network for existing

coordinator
Devices

mlmeAssociateRequest Associate with the specified coordinator Devices

mcpsDataRequest Send out the data
Coordinator or

Device

mcpsDataConfirm

Call back function called by the MAC

layer when a packet transmission

initiated by

mcpsDataRequest() has succeeded or

failed.

Coordinator /

Device

mlmePollRequest

is used to request pending data

(transmitted using indirect data

transmission) from the coordinator

Device

34

Table-3 Continued

mlmePollConfirm

Call back function called by MAC layer

to report the result of calling

mlmePollRequest()

Device

mcpsDataIndication

Call back function that is invoked by

the MAC layer when a data frame is

successfully received

Coordinator or

Device

mlmeDisassociateIndica

tion

Callback generated by the MAC

sublayer to the higher layer upon

reception of a disassociation notification

command frame

Coordinator

6.4 TCP/IP Protocol Implementation

IEEE 802.15.4 defines the PHY layer and MAC layer, ZigBee defines above

layers like Network layers(NWK) and part of application layer(E.X. application

profiles), The current standard enables the devices defined in same profile category can

interact the control commands and exchange data, even devices are made by different

manufactures. But control commands compatible to devices in same profile category

does not satisfy all the requirements from HAN network, for example, once the ZigBee

remote control A is able to hook up to ZigBee monitor B and control B, once this

control commands are done, the part coming next is to fetch, exchange and synchronize

what the monitor has captured. Sensor data flow is the vital part of ZigBee network,

also is the source for later data exploitation. Sensor data flow is sort of data stream that

35

were continuously generated with large data payload, which is not like control

commands with small payload body. Facing to these, the reliable data transmission

which is suitable for stream data transportation is in great needs. TCP/IP protocol stack

is de facto standard and overwhelmingly the most popular network interconnecting

protocol, it is reliable, connection-oriented data transmission with flow control, make it

ideal to be the carrier of stream data [18, 19, 20].

 There are lots of implementations for TCP/IP protocol stacks, but it is not every

implementation is ideal to be deployed onto an embedded system. Embedded systems

are not like large scale computer architecture and mature personal computer(PC), they

lack of memory(Mostly, RAM less than 10K, ROM less than 256K), CPU

performance is much weaker than main stream computers, these lead to the code

footprint, RAM requirement and code complexity are three vital factors for the program

running on embedded systems. Based on consideration above, we choose the uIP as our

solution.

 From [17], uIP is a compact implementation of the TCP/IP protocol stack

designed for small 8-bit and 16-bit microcontrollers. It supports the RFC-compliant

protocols for network communication, with a very small binary footprint and RAM

usage, uIP code size is a few kilobytes and RAM usage is a few hundred bytes. Some

extra good features of it are shown below:

 RFC standard TCP and IP protocol implementations, including flow control,

fragment reassembly and retransmission time-out estimation.

 Unlimited number of listening TCP connections, maximum amount is configurable.

36

 Free for both commercial and non-commercial use or modification.

 Well documented and well commented source code.

 uIP’s source code also includes the low level driver under TCP/IP, in the most

of version, the driver included is the most typical Ethernet driver. Our hardware system

does not have Ethernet network card and related interface, the driver come with uIP

source code is not required at all, we have to replace it with the driver suitable to our

hardware environment. According to the OSI reference model, our TCP/IP stack should

be built on top of ZigBee protocol, the Chipcon Corporation does not have any software

solution for that temporally, so providing such a solution by ourselves is our choice.

The development mainly focuses on:

1. Making such a driver based on ZigBee’s protocol stack, this driver should

implement the data transmission by using the programming interface provided by

PHY and MAC layers.

2. Some features are tightly coupled to Ethernet network, such as ARP, will be

removed since the ZigBee network hardware is not feasible to broadcast the IP

address to the network and try to get the corresponding MAC address. ZigBee

network has the at least one FFD to be the coordinator, when the end device start the

connection and try to associate to the network, the coordinator will catch the request,

assigned the unused ZigBee address(IEEE 64bit format or 16bit short format) to

that end device, initialize the channel, allocate the network resources, specify the

parameter of the new connection, and finally send address back to the end device,

on the other hand, ZigBee routers do not have to associate to certain coordinator,

37

and other devices that communicate with it are the ZigBee routers too, their

addresses are static and pre-configurated during planning and constructing the

ZigBee network. Above two scenarios prove that ARP is not necessary in ZigBee

network according to the current IEEE specification.

3. An alternative DHCP mechanism is necessary to provided on coordinators, since the

PHY & MAC address of ZigBee network is IEEE 64bit format or 16 bit short

format, TCP/IP use IP address to locate the machine, we need to have some

translation operations from IP address to ZigBee address when a packet is being

sent out. Since ARP protocol is not ideal for ZigBee network, we consider the new

protocol like below:

 When an end devices file the request to associate to the coordinator, the

coordinator in charge of not only assigning the ZigBee address for the end device, but

also assigning the IP address for it, and record down the matching relationship of this

ZigBee-IP addresses pair into its address translation table. When the client(end device)

send a packet to coordinator, the IP layer will extract the destination IP address inside

the IP header, and look it up within the translation table, if item is found, the value that

pairs with the IP address will be the ZigBee address that points out the where the packet

should finally reach. By confirmed with the ZigBee destination address, the PHY and

MAC layer will do their duty to deliver the packet right to the end device.

 One issue that we should pay attention to is: The ATT(address translation table)

is mostly only necessary onto the coordinator, in most of the cases, end devices don’t

require ATT, this is decided by the center-coordinator-management mechanism

38

specified on ZigBee network. The only part that end devices need is the its source IP

address and the destination IP address where the packet is supposed to reach. Unlike the

IP routing and ARP structure in Ethernet network, end devices in ZigBee network don’t

have to know the MAC address of the destination, because they have the only single

point – the coordinator to contact, packet will be transmitted to the coordinator, the

coordinator will look the MAC address(ZigBee address) up given by the packet’s

destination IP address.

 If the TCP/IP communication occurs within one PAN(Personal Area Network),

one coordinator might be enough, but if more than one PAN are deployed, the packet

might be needed to be sent to the some devices that are not belong to the PAN where

the source end device lies. Here some routing functionalities are needed, in ZigBee

network, the network topology consists of a number of PANs and the routers. The PAN

ID and device address are both needed when we address the unique device inside the

whole ZigBee network. Remember what we mention in the last paragraph, Only IP-

ZigBee address pair are recorded, we should modify the ATT and put PAN ID into the

ATT to guarantee the capability that enables the global ZigBee network data

transmission.

 The routing mechanism is very similar to the one in TCP/IP protocol, so we take

advantage of the routing module in uIP software to implement the TCP/IP routing on

ZigBee network.

39

CHAPTER 7

USER INTERFACE SUBSYSTEM

7.1 Overview

 This chapter is going to give a big pictures and implementation details on how

the users do the sensor data query against the ZigBee network. The major steps in the

procedure is that: Send http query request from browser, which will deliver the request

through a proxy to the serial port(RS232), the web server on management node will

phase the http request and send the query request to the destination node, the query

response will be send back following the same route reversely. The architecture of this

module is shown below:

Local NetworkBrowser SerProxy Manage Node
IEEE 802.15.4/
ZigBee Network

RS232

HTTP
HTTP

ZigBee

Private
Protocol

Figure 7 Structure of User Interface Subsystem

7.2 Browser-based interface

 The user interface is supposed to be designed for less professional or non-

professional people, so it should not have lots command lines for users to type or a large

keyword set to memorize. At the same time, some GUI interfaces would be helpful.

40

 We choose use the Internet browser to be the most frontal interface to face the

users. Its compliancy to the RFC Internet standard: HTTP, HTML, XML, DHTML etc,

make the Internet communication is much more convenient than other GUI interfaces,

furthermore, it is probably the software that people can the most easily get for free.

Every modern operating system comes with browser.

7.3 Way to hookup

 The browsers are used onto users’ desktop or laptop, a way that let the PC hook

up to ZigBee network has to be figured out, otherwise the communication can not be

accomplished. There are a couple of channels available to be used to interact with the

outside devices, such as Serial port(RS232), USB, Radio Frequency. We choose the

serial port communication as our approach to hook the PC up to the sensor network in

the current version of system. This kind of mature technology is widely-accepted by the

industry, and convenient for developer to build the communication work up.

 The next step of work is how to get the browsers send their data through the

serial port. Generally speaking, browsers work based on the TCP/IP network

environment, such as Ethernet and Wi-Fi, they send data up to the network that PC

attached instead of the serial port. In this situation, a proxy is an ideal software to make

our requirement come true. We use a proxy software called “SerProxy”(can be

downloaded in [10]), it has the features to transmit data transparently between TCP/IP

and serial port. Once SerProxy is startup, it listens on specified TCP port, once some

data come in, it is able to redirect the data transparently to the serial port. With the help

of SerProxy, we configure a proxy setting of browser to the machine where SerProxy is

41

running on, the port the SerProxy is listening, The browser will send the http request to

the SerProxy, which will redirect what it receives to the serial port. When all these are

ready, a web server is supposed to be running on to the sensor node to accept these http

requests from the serial port interface connected by SerProxy.

7.4 Processing within ZigBee network

 A web server is very import in our system, currently it is running onto the sensor

node with specified functionality. It is called manager node, it acts like a bridge to

connect serials port to the query subsystem and RF communication subsystem. It

includes the following components:

1. HTTP parser

 HTTP parser is featured to parse the http request coming from serial port, it

analysis the http request header, get the exact query command from the header, and it

also need to parser the address information from the http request to make clear onto

which node the request is expecting to look up. After that, the parser will invoke the

“query starter” to transfer the query out and wait for the query result to come. Once the

response of the query is coming back, it will create the response message in standard

HTTP format and send it back to the SerProxy via the serial port, SerProxy will transfer

intact response back to the browser, then, the query result will be shown up into

browser.

2. Query starter.

 Query starter is called by web server when the HTTP parser’s job is done, at this

moment, the query string is extracted, the address information(IP address) is also

42

present, both of them will be passed as the parameter to Query Starter, which will

reformat the query string into the private protocol as the packet payload, next, either

look up the Address Translation table and then forward the packet to the right

destination (Coordinator) , or post the packet directly to the coordinator(end device).

 The query processing continues on the other side after the query string has been

send to the destination over TCP/IP, here management node is acting like a client, send

request to the server, which means the destination node. The destination node receive

the query string from the network, then call the local query subsystem mentioned at

Chapter 5 by passing the query parameters. When the query operation is accomplished,

the result will be send back tracing back from the way that the query request came.

43

CHAPTER 8

RESEARCH OF EMBEDDED OPERATING SYSTEM

8.1 Overview

Chipcon2430 is quite new hardware compared with the other 8051 chipset in the

current market, plus the fact that Chipcon Corp. doesn’t provide customers its own

RTOS solution, which lead to the fact that there is no corresponding operating system

solution on this chipset for education purpose. We migrate the RTX51 tiny (RTOS) to

our sensor nodes successfully, even though there is no existing example that we could

reference.

Embed OS specially the real time operating system is major attention in this

chapter. Some basic concepts are introduced firstly, followed by the fact that we choose

RTX51 tiny as our RTOS, thirdly we migrate RTX51 tiny to our system (ChipCon2430),

and the distinctions on implementation details between 8051 standard CPU and

Chipcon2430 followed, finally, we analysis and illustrate technologies used at some

vital parts of RTX51 tiny including the stack management, task scheduling and

initialization procedure.

8.2 Overview of Embedded Operating System

Along with the more and more powerful hardware equipped to the embedded

system, more and more hardware features are provided, it also means the corresponding

software running on embedded system proliferate rapidly. The architecture of single

task assisted with interrupt mechanism become incapable to handle all these hardware

44

events or software tasks to run within the same embedded system. So far, the trend of

Real Time Operating System(RTOS) is more and more popular, RTOS is capable to

manage more than one programs running simultaneously as described in [14, 15, 16].

 RTX51 is one of the widely-used RTOS running on Intel 8051 architecture, it

provide the features including priority based task scheduling, stack management and

interrupt management etc. But the footprint of it is around 6K bytes, which is quite

large comparing the 8K RAM totally on CC2430, and RTX requires quite a few RAM.

RTX51 tiny is compact version of RTX51, only support a subset of features and

functionalities of RTX51, but consume less RAM and offer the much less binary

footprint(around 900 bytes), meanwhile, it also support some important features

well(shown below as [14]), which make it one of the most practical and efficient RTOS

in the industry:

 Flexible multi-task scheduling including Round-Robin scheduling and Cooperative

Scheduling.

 Efficient stack management

 Explicit task management feature: create / delete / switch task, make task sleep, set

task status, send signal between tasks.

 User code support in Timer Interrupt.

 CPU Idle mode.

8.3 Migrate to our system

Though RTX51 tiny supports various 8051 series CPU, but CC2430 is a kind of

enhanced 8051 CPU, it is not fully compatible to industry-standard 8051 CPU, so the

45

source code(Assembly language) of RTX51 tiny does not take effect due to the

incompatibility. In the attempt to deploy RTX51 tiny to CC2430 hardware, we have to

port a new version that is adapted to CC2430 by revising some parts of code within the

incompatible module. One of the most vital modules that are not compatible is the timer

click module.

RTX51 Tiny leverages the standard 8051 Timer to generate a periodic interrupt

which is called RTX51 Tiny Timer Tick. Other Timeout and interval values specified

for the RTX51 Tiny are based on timer tick, which means they are all measured by

using the Timer Tick.

Standard 8051 CPUs function some built in registers to provide the timer tick, there

are one to four timer available in 8051 CPU depending on the model of hardware, in the

most common scenario, the first timer will be used to generate the timer click. RTX51

tiny uses the standard 8051 Timer 0 (mode 1) to generate the timer tick, but in CC2430,

the counterpart is Timer 1(Modulo Mode). The differences between them are listed

below:

Table-4 Difference between 8051 and CC2430 in controlling time tick timer

 Standard 8051 CC2430

Name of

Timer
Timer0 Timer 1

Mode Mode 0 Modulo Mode

46

Table-4 Continued

Relevant

Registers

TMOD(Mode selection)

TL0(low byte of counter value)

TH0(high byte of counter value)

TR0(enable/disable of timer)

T1CTL(Mode selection and

enable/disable timer)

TIMIF(overflow interrupt mask)

T1CC0L(low byte of counter)

T1CC0H(high byte of counter)

T1IE(Timer1 interrupt

enable/disable)

Control

1. Counter value is set to preset

value and decrements to zero

then trigger a hardware interrupt.

2. When timer0 interrupt

happens, the counter value need

to be reset to TL0 and TH0

1. Counter value is set to zero and

increments to the preset value then

trigger a hardware interrupt.

2. When timer1 interrupt happens,

the counter value stored in

T1CC0L/ T1CC0H will be turned

back to preset value automatically

8.4 Basic software architecture of RTX51 tiny

 RTX51 tiny on our system use the timer 1(Modulo mode) interrupt to

implement the task scheduling mechanism. RTX51 rewrite the Interrupt vector of Timer

1, let it point to the code defined in RTX51 tiny. The interrupt of timer1 is called Timer

tick, which is the base measurement unit for all other timeout and interval used in

47

RTX51 after. The timeout value can be configured at the compiling time. RTX51 can

schedule the tasks with two modes:

Round Robin mode

Each task running on the RTOS will be assigned a fix time slice, when the task

was assigned, it will own the privilege to control hardware, CPU, Memory, DMA etc.

But once the time slice is running out, the CPU will switch the control privilege to

another task that is in “Ready” status. As what is mentioned in [15], in Round Robin

mode, each task has the same time slice, every task in Ready status will be run in turn.

Cooperative mode

In this mode, no time slice is assigned to the tasks, the task scheduling logic is

put into the tasks themselves, the task is not running in turn any more. They cooperate

with each other and decide who will be the next to run. For example, There are Task A,

Task B, Task C is running, the programmer designed the running schedule for them,

First A runs, after A is done, A transfers the CPU time to Task C(B has to wait), then

Task C is start and run, when C finishes his job, he let Task B to take over, then it’s B’s

turn to run, likewise, when B has done his duty, the CPU time will be handed over to

Task A, this processing will repeat again and again, if these three tasks cooperate with

each other in a certain way that all of them comply with, they are able to run smoothly

and share the CPU time with no delay and blocking, [16] gives a similar introduction on

Cooperative mode.

 The major components inside RTX51 tiny kernel are illustrate as the software

structure diagram below:

48

Global
information

block

Table of Stack
Pointers

Table of Task
Timer/State
Pointers

Task_
delay
_bit

System STACK System Registers
Program counter
Register(PC)

Figure 8 Software structure in RTX51 tiny

System STACK: Stored into the IDATA segment, the maximum address of STACK is

defined by macro RAMTOP.

System Registers: all running state related registers including ACC, PSW, B, R0-R7,

DPH, DPL,

Program Counter: Core register that stored the code address of current running

program.

Global Information Block: Stored into the Bank1 registers. It’s a global buffer to hold

the crucial and frequently updated task information. The Block consists of

 saveacc: temporary buffer for ACC, 1 byte;

 savepsw: temporary buffer for PSW, 1 byte;

 currenttask: Task ID of current running task, 1 byte.

49

Table of stack pointers: Lies in IDATA segment, a table storing the stack pointers(SP)

with respect to each task running on the system.

Table of Task Timer/State: Allocated in IDATA segment, a table to store each task’s

left time slick and task state.

Task delay bit: a bit to be a flag which is used to indicate if the task switching is

running after timer interrupt occur, if this bit is set, the new-coming timer interrupt

routine will be ignored.

8.5 Stack Management in RTX51 tiny

The Stack space in RTX51 tiny is located in internal memory(IDATA), all the

running tasks share the stack space together. The management mechanism is: The task

that is running(owns the CPU time) has as much amount of available stack space as

possible to use. When this task is switch out, its stack space will be shrunk and

relocated, in other words, the used stack space used by this task will be relocated and

the unused space will be merged into the stack space used by new task that is switched

in. So the switched-in task is expanded that guarantee the current task has the maximum

stack spaces as possible to use, there is a brief explanation represented in [31].

50

Stack Area for
Task 2

Stack Area for
Task 1

Unused Space by
Task 0

Used space by
Task 0

Stack Area for
Task 2

Stack Area for
Task 1

Unused Space by
Task 0

Used space by
Task 0

Stack Area for
Task 2

Stack Area for
Task 1

Unused Space

Used space by
Task 0

RAMTOP RAMTOP RAMTOP

Stack_Start Stack_Start Stack_Start

SP

SP

SP

Task 0 is running Task 2 is running

Step one Step two

Figure 9 Stack Management in RTX51 tiny

8.6 Initialization of RTX51 tiny

After the embedded system is booted up, the initialization module of RTX51

will be called by the boot loader and do initialization works to prepare the data

structures and get some vital peripheral ready. A list of sequential steps will be

accomplished during the initialization procedure:

1. Initialize the table of Stack Pointer, the stack pointer table is at the location

starting from the next byte of SP register(SP+1). Each item in stack pointer

table will be filled with RAMTOP(255)

2. Initialize the table of task timer/state, The first item in table will be set non-zero

value indicating the first task is at active and ready states. The other items are

filled with zero.

3. Push the code address of first task into stack.

51

4. Configure the Timer1 with modulo mode, enable the timer1 interrupt and start

the timer.

5. Enable the global interrupt and call RET, after that, the program counter will

fetch the first two byte in stack, so enable the CPU to go to the code space to run

the first task.

8.7 Processing Diagram of Task Scheduling in RTX51 Tiny

52

Start

Set Interrupt vector for T1
(JMP TIMERINT)

Stack Error Handling

?RTX_STACKERROR:

HW_TIMER: RETI

TIMERINT:

Call HW_TIMER

Save PSW to ?RTX_SAVEPSW

PSW = 0x01(select Bank one)

Save ACC to saveacc

Reset the timer0 counter

Stack space enough?

NO

TIMERLOOP:

From the top of the task state table,
decrements the timer count for every

task.

Timer Counter == 0

CLR EA

The task currently waiting for
Timeout event?

Set Ready & TMO_EVENT bits, save new
status back to STAT TABLE.

NoWaitTimeout:

SETB EA

NoTimeout:

Go check next task, hit last
item in table?

YES

Restore ACC from saveacc,
Restore PSW from SavePSW

TIMESHARING==0? YES

Is TS_DELAY bit set ? RET

Decrement ?RTX_ROBINTIME

?RTX_ROBINTIME==0 ?
NO

YES

?RTX_TaskSwitching:

PUSH ACC,PSW,B,DPH,DPL,AR0-AR7 into
Stack

Get current status of current running
task

CLR EA

Set its K_Robin bit, and save back

SETB EA

OS_Switch_Task:
OS_Switch_task1:

TIMESHARING==0 ?

SET TS_DELAY bit

Scan Status Table from current task
item, try to find one with K_Ready
bit is set, otherwise keep cycling

Adjust Stack content, and the stack
pointer table, after that, the SP
register pointers to the position

that is for the next ready
task(switch to another task)

?RTX_RobinTime = #TIMESHARING

Next task’s K_ROBIN bit is
set ?

YES

NO
NO

YES

NO

RET

NO

NO

YES

Deal with current task

YES

NO

Figure 10 Processing Diagram of Task Scheduling in RTX51 tiny (Part I)

53

Next task’s K_ROBIN bit is
set ?

Task is waiting for signal and
receive a signal later ?

SignalOff:

R7 = 0

Task is waiting for timeout
event and timeout occurs

later ?

SignalOn:
NoEvent:

Clear K_Ready, K_TMO and K_SIG bits

XCH A, @R0
Save to Status Table

SETB EA

Clear all bits but Keep K_READAY bit

ORL AR7, A

Clear ?RTX_TS_DELAY flag

RET

TimeoutON:

R7 = TMO_EVENT

Clear K_SIG, K_TMO, TMO_EVENT bits

Save new state to State Table

RobinON:

SETB EA

POP AR7-AR0, DPL, DPH, B, PSW, ACC
from the system STACK

Clear ?RTX_TS_DELAY flag

RET

YES

NO

YES

NO

YES

NO

Figure 11 Processing Diagram of Task Scheduling in RTX51 tiny (Part II)

54

CHAPTER 9

PERFORMANCE TEST ON NETWORK COMMUNICATIONS

9.1 Overview

This chapter will take a performance test on performance and reliability of

network communications. Two participants involved inside this test are ZigBee network

and combination of TCP/IP and ZigBee network. The test result will tell us the

improvement that TCP/IP gives to our network when it is built onto ZigBee network.

9.2 Test Environment and terms

Two participants that were tested are Pure ZigBee networks and TCP/IP+ZigBee

networks. Some prerequisite terms are explained below:

 Network Hardware

Network hardware includes two Chipcon 2430 development board with CC2430

chipset built in.

Status of Network Communication

It means how well the communications can be performance. Two network status

will be considered: Good and Bad network status, Good network means two sensor

board are close without any physical obstacles between them. Bad network means two

sensor nodes are far apart (20 meters) with a couple of physical obstacles (6-7 walls,

and metal box)

55

Test Payload

It represents how many bytes of application data that every transmitted packet

will carry. Data payload used during the test can be divided into three scenarios: light,

middle and heavy, where light payload means 10 bytes data, middle one means 30 bytes

and heavy means 60 bytes.

Transmission model

It means how sensor nodes send out the packets? Two categories will be

considered which are packet mode and stream mode. Packet mode stands for the next

packet has to be sent after having got the acknowledgement of last packet. Stream mode

represent the packet are sent in a asynchronous mode without having to wait until the

acknowledgement of previous-sent packet arrives.

9.3 Test Procedure

Two sensor nodes will be involved, one is the sender, the other is receiver.

Sender will transmit 10000 packets with three possible payloads respectively (light,

middle and heavy) under two network status(Good and bad) respectively. The time

used to finish the transmission and the number of packet that were received successfully

by the receiver node will be recorded.

9.4 Test Result

Here are the tables that record the experiment result:

56

Table-5 Experiment result when payload is 10 bytes

Payload = 10 bytes

Network ZigBee TCP/IP + ZigBee

Network Status Good Bad Good Bad

Packet

Received

Finish

Time

Packet

Received

Finish

Time

Packet

Received

Finish

Time

Packet

Received

Finish

Time

10000 40 10000 44

10000 40 9748 Null Packet Mode

9994 Null 9989 Null

9994 Null 9993 Null 10000 157 10000 160

10000 39 8429 Null 10000 156 10000 159 Stream Mode

9994 Null 9994 Null 10000 157 10000 161

Table-6 Experiment result when payload is 30 bytes

Payload = 30 bytes

Network ZigBee TCP/IP + ZigBee

Network Status Good Bad Good Bad

Packet

Received

Finish

Time

Packet

Received

Finish

Time

Packet

Received

Finish

Time

Packet

Received

Finish

Time

10000 53 10000 56
Packet Mode

10000 52 9748 Null

57

Table 6 Continued

 9996 Null 9989 Null

9995 Null 9961 Null 10000 167 10000 170

9996 Null 9947 Null 10000 168 10000 171 Stream Mode

10000 51 9999 Null 10000 167 10000 171

Table-7 Experiment result when payload is 60 bytes

Payload = 60 bytes

Network ZigBee TCP/IP + ZigBee

Network Status Good Bad Good Bad

Packet

Received

Finish

Time

Packet

Received

Finish

Time

Packet

Received

Finish

Time

Packet

Received

Finish

Time

10000 68 9532 Null

9998 Null 8689 Null Packet Mode

10000 68 9978 Null

9998 Null 9912 Null 10000 181 10000 184

9998 Null 9891 Null 10000 184 10000 186 Stream Mode

10000 62 9697 Null 10000 182 10000 184

9.5 Experiment Analysis

Some statistics histograms give us the summary of the table above.

58

Packet Mode in Good Network Stream Mode in Good Network

Packet Mode in Bad Network Stream Mode in Bad Network

Figure 12 Reliability comparisons in four scenarios

These four histogram illustrate that:

99.97

99.975

99.98

99.985

99.99

99.995

100

Recv
Packet(%)

TCP&ZigBee ZigBee
99.94

99.95

99.96

99.97

99.98

99.99

100

TCP&ZigBee ZigBee

Payload=10

Payload=30

Payload=60

90
91
92
93
94
95
96
97
98
99

100

Recv
Packet(%)

TCP&ZigBee ZigBee
92
93

94

95
96

97

98

99
100

TCP&ZigBee ZigBee

Payload=10

Payload=30

Payload=60

59

1. The ZigBee networks work well when the traffic is light and the network status

is healthy. But along with the traffic in the network increase, a number of

packets lost during the transmission;

2. The number of packets that are received successfully dramatically decreases

when the statuses of ZigBee networks are week. This and the above phenomena

prove that the ZigBee networks lack of traffic-intended consideration and is not

capable of dealing with the large amount of data transmission and weak signal

situations

3. TCP/IP+ZigBee network in our system work very well in all kinds of situations,

 no matter in heavy traffic situations or in weak signal situations, no packet is

 lost and the reliability of RF communication is guaranteed.

4. Packet model provide higher percentage of receiving packets than stream mode

 does when the packets are transmitted in ZigBee network.

An integrated comparison is given below in a more intuitional point of view.

60

Figure 13 Reliability comparisons between TCP/IP+ZigBee network and ZigBee
network

Communication Reliability

94
94.5

95
95.5

96
96.5

97
97.5

98
98.5

99
99.5
100

10b+
Good

30b+
Good

60b+
Good

10b+
Bad

30b+
Bad

60b+
Bad

P
er

ce
n

ta
g

e TCP&ZigBee

ZigBee@Pack
et Mode
ZigBee@Stre
am

61

CHAPTER 10

CONCLUSION AND FUTURE WORK

ZigBee is promising protocol stack designed specially to unify the diversified

electronic device running within a PAN network, IEEE802.15.4/ZigBee has been

steadily accepted by the industry as a de facto industry standard, more and more

manufactories produce the ZigBee compatible devices. It offers people a large

momentum to develop from hardware to software product compliant to the ZigBee.

Under this background, in this thesis, a software solution for distributed sensor

data management based on IEEE 802.15.4/ZigBee network has been proposed. It

guarantees the reliable data transmissions and enables people to manage the data

generated by distributed sensor nodes efficiently. It takes advantage of the features

offered by hardware(CC2430 CPU and development board), accomplishes the

functionalities from collecting and storing sensor data, providing efficient search

approach to locate sensor data rapidly, communicating with other node of ZigBee

network in standard TCP/IP protocol, offering users a browser based management

interface to connect their personal computer to ZigBee network and initiate the query

request. And experimental solution regarding to Real Time Operating System is also

provided in the software system.

As ongoing effort, new sensor is about to be installed onto the sensor board, and

some peripheral interface like flash memory card are also under consideration, so the

software should be improved by enriching the driver library to satisfy the requirement

62

of hardware; Compiler is tightly related with our development, specially when RTOS is

applied, every compiler has its advantage and limitation, more study need to be put on

how to provide a efficient and integrated development solution by choosing the

appropriate Compiler or related software to compile the RTOS and application code, or

doing some immigration work on RTOS and application code.

So far the management node is required to deliver the query request to the

destination node, in the future, a better infrastructure will be removing the management

node and let each node is able to be hooked up by the personal PC.

A more comprehensive web server is needed since there will be more

requirement such as file downloading, Security Socket Layer(SSL), etc.

A File system will be able to enhance current storage mechanism to a more

flexible and manageable level.

63

REFERENCES

[1] Ed Callaway, P. Gorday, L. Hester, J.A. Gutierrez, M. Neave, B. Heile, V. Bahl,

 "Home networking with IEEE 802.15.4: A developing standard for low-rate

 wireless personal area networks," IEEE Communication Magazine, August 2002.

[2] IEEE 802.15 WPAN, Task Group 4 (TG4),

 http://www.ieee802.org/15/pub/TG4.html

[3] IEEE 802.15 on Wikipedia, http://en.wikipedia.org/wiki/IEEE_802.15

[4] Homepage of ZigBee? Alliance, http://www.zigbee.org/

[5] William C. Craig Program Manager Wireless Communications, ZMD America,

 Inc., "Zigbee: "Wireless Control That Simply Works"", White Paper.

[6] P. Kinney, "ZigBee Technology: Wireless Control that Simply Works," Kinney

 Consulting LLC, Whitepaper 2/10/2003.

[7] Baker,N., "ZigBee and Bluetooth strengths and weaknesses for industrial

 applications" in Computing & Control Engineering Journal, April-May 2005

[8] Mikhail Galeev, "Home networking with Zigbee",

 http://www.embedded.com/showArticle.jhtml?articleID=18902431

 [9] "Bluetooth, Wi-Fi or ... ZIGBEE?"

 http://www.embeddedtouch.com/et/client/041129846391.php?lg=en

 [10] Introduction of SerProxy.

 http://www.lspace.nildram.co.uk/freeware.html

 [11] Chipcon: CC2430 Product Information; A true ZigBee low-cost, low-power

 System-on-chip (SoC) solution

 http://www.chipcon.com/index.cfm?kat_id=2&subkat_id=12&dok_id=245

 [12] Chipcon data sheet.

64

 http://www.chipcon.com/files/CC2430_Data_Sheet_rev1p03.pdf

 [13] CC2430 features:

 http://www.chipcon.com/index.cfm?kat_id=2&subkat_id=12&dok_id=240

 [14] RTX51 tiny Introduction. http://www.keil.com/c51/rtx51tiny/

 [15] Round Robin Mechanism in RTX51 tiny:

 http://www.keil.com/support/man/docs/tr51/tr51_rrobin.htm

[16] Cooperative task scheduling in RTX51 tiny:

 http://www.keil.com/support/man/docs/tr51/tr51_coop.htm

[17] The uIP Embedded TCP/IP Stack.

 http://www.sics.se/~adam/uip/

[18] TCP Tutorial:

 http://www.ssfnet.org/Exchange/tcp/tcpTutorialNotes.html

[19] Transmission Control Protocol(TCP),RFC 793:

 http://rfc.net/rfc793.html

[20] A TCP/IP Tutorial,RFC 1180, http://rfc.net/rfc1180.html

[21] Internet Protocol" RFC 791, http://rfc.net/rfc791.html

[22] Ramez Elmasri and Sham Navathe,"Fundamentals of Database Systems (4th

 edition)", published by Addison Wesley, July,2003

[23] Dennis Chester Smolarski, "The Essentials of Data Structures I", published by

 Research & Education Assoc., Mar, 1990

[24] James Andrew Storer,"An Introduction to Data Structures and Algorithms",

 published by Springer, Jan, 2002

[25] Mikhail J. (EDT) Atallah, "Algorithms and Theory of Computation

 Handbook" ,published by CRC Press, Oct, 1999

65

[26] William Pugh, "Skip Lists:A Probabilistic Alternative to Balanced Trees",

 Communication of ACM, June 1990

[27] RTX51 tiny Introduction. http://www.keil.com/c51/rtx51/

[28] CC2430DK Development Kit. ChipCon Products From TI, White paper

 http://www.chipcon.com/files/CC2430DK%20Development%20kit%20descripti

 on_rev_A.pdf

[29] HAL_CUL_EB Software User Manual.

 http://www.chipcon.com/files/HAL_CUL_EB_Software_%20User_Manual_1_

 1.pdf

[30] "CC2430 IEEE 802.15.4 MAC / PHY software layers", Technical Paper of

 Chipcon Corp. Confidential.

[31] Stack Management in RTX51 tiny.

 http://www.keil.com/support/man/docs/tr51/tr51_stackmgmt.htm

66

BIOGRAPHICAL INFORMATION

Tianqiang Li received his Bachelor of Science degree from Jinan University,

China P.R., 1998. After his graduation he worked as a software engineer in Suntek

Technologies until 2000, from 2000 to 2004, he worked as a software engineer in

AsiaInfo Technologies. He joined University of Texas at Arlington as a Master’s

student in Computer Science and Engineering department in Fall 2004. In Spring 2006,

and Summer 2006, he worked as a software engineer (internship) in Sipera(Dallas,TX)

and Google(Mountain View, CA) respectively. His current research interests include

embedded development, Sensor network, TCP/IP Stack, Distributed computing etc. He

received M.S. in Computer Science and Engineering from UTA in 2006.

