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ABSTRACT

PHYSICAL LAYER AND APPLICATION LAYER ISSUES OF WIRELESS SENSOR

NETWORKS

Publication No.

Lingming Wang, Ph.D.

The University of Texas at Arlington, 2006

Supervising Professor: Qilian Liang

The potential for collaborative, robust networks of wireless sensors has attracted a great

deal of research attention. For the most part, this is due to the compelling applications

that wireless sensor networks will enable. Location sensing, environmental observation

and surveillance, medical monitoring and a lot other applications are all gaining interest.

However, wireless sensor network poses a large number of challenges. Among all, one of

the most important challenges is design sensor networks that have long network lifetime,

which will become especially difficult due to the energy-constrained nature of the sensor

nodes. In this thesis, we focus on physical layer issues and approaches to design algo-

rithms.

Virtual Multiple-Input Multiple-Output (MIMO) structure is very attractive to wire-

less sensor networks due to its huge diversity gain and potential ability to save energy.

With channel state information at transmitter side, water-filling algorithm can be applied

to optimize the power allocation in each sub-channel of the MIMO system based on the

estimated channel matrix H, so as to maximize the channel capacity of the system even

in deep fading scenario. In reality, however, both the estimation error and the delay will
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be introduced when estimate the channel. We will investigate how the estimation error

will impact the optimal water-filling strategy in wireless sensor networks.

Interferences due to the hostile environment and the Multi-User Access are critical fac-

tors affecting performance of the Wireless Sensor Networks. There is clearly a need of a

system that can survive from the severe interference. A hybrid Frequency Hopping/Time

Hopping-Pulse Position Modulated Ultra Wide Band system is proposed for Wireless Sen-

sor Networks to confront the hostile environment. Frequency-hopping and time-hopping

are both used to get as much diversity gain as possible. An exact analysis is also derived

to precisely calculate the bit error rates for both Additive White Gaussian Noise channel

and path-loss channel in the presence of multitone/pulse (tone in frequency domain and

pulse in time domain) interference and Multi-User Interference.

For event-centric wireless sensor networks, event detection is one of the key issues. Two

methods are proposed to detect the event, one is Double Sliding Window Detection, the

other one uses Fuzzy Logic approach. We evaluate the event-detection approaches based

on the acoustic data collected by the test-bed in different experiments.

To further extend our work, we demonstrate that real-world sensed acoustic signals are

self-similar, which means they are forecastable. We showed that a type-2 fuzzy member-

ship function (MF), i.e., a Gaussian MF with uncertain mean is appropriate to model

the sensed signal strength of wireless sensors. Two fuzzy logic systems (FLS), a type-1

FLS and an interval type-2 FLS are designed to forecast signal strength. Therefore, we

can not only detect the event, but also forecast the event based on the forecasted signals.

Simulation results show that the interval type-2 FLS outperforms the type-1 FLS in sig-

nal strength forecasting and the performance of event detection based on the forecasted

signal from type-2 FLS is much better than that based on type-1 FLS.
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Another issue in wireless sensor networks is redundancy. Not only does the data of

one sensor node have self-similarity, but the data from adjacent sensor nodes also have

cross-similarity. Clearly, there exists highly redundancy in the collected data from sensor

nodes in the neighborhood. Due to the intrinsic properties wireless sensor networks have,

e.g., energy constraint, bandwidth limitation, this kind of information redundancy will

impact the whole networks in a negative way. We propose to use Singular-Value-QR

Decomposition(SVD-QR) to reduce the redundancy in wireless sensor networks.
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CHAPTER 1

INTRODUCTION

1.1 Wireless Sensor Networks

The infusion and maturation of the micro-electro-mechanical systems (MEMS), wireless

communications, and digital electronics technologies have advanced the development of

low-cost, low-power, multi-functional sensor nodes, which are generally small size and can

communicate untethered in short distance. Theses sensor nodes are typically equipped

with processor & memory (together as the processing unit), power unit(usually battery),

wireless communication interfaces and various sensors, which can perform sensing, data

processing, and communication respectively. Usually a large number of these tiny, not

expensive sensor nodes will work collaboratively so as to collect the useful and accurate

information from their surrounding areas and deliver to the base stations.

The position of sensor nodes and the communication topology can either be carefully

engineered (e.g., placed one by one by a human or a robot) or be totally random(e.g.,

dropped by a plane, throwing by a catapult). The latter is more attractive to potential

users, because it makes the access to uninhabited terrains and disaster relief operations

feasible. On the other hand, due to the lack of a priori infrastructure support in this

random deployment environments, the sensor nodes must self-organize into networks,

referred to as Wireless sensor networks (WSN).

1.2 Advantages and Applications of Wireless Sensor Network

The sensor nodes are usually scattered in a sensor field as shown in Figure 1.1. These

sensor nodes may equipped with a lot of different types of sensors such as seismic, mag-
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netic, thermal, visual, infrared, acoustic, and radar, which make Wireless Sensor Network

be able to monitor various ambient conditions that include temperature, humidity, ve-

hicular movement,lightning condition, pressure, soil makeup, noise levels, the presence

or absence of certain objects, mechanical stress levels on attached objects, the current

characteristics such as speed, direction, and size of an object [21].

Figure 1.1. Sensor nodes scattered in a sensor field.

Besides the various sensing ability, the other strong points of Wireless Sensor Networks

can be concluded as [2]:

• Ensuring greater signal to noise ratio (SNR) by combining information from sources

with different spatial perspectives.

• Allowing greater fault tolerance through a high level of redundancy. [56]

• Providing coverage of a large area through the union of the individual nodes cov-

erage area.

• Improving sensing performance by including multiple sensors.
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• Overcoming environmental effects by having sensors at close proximity to the ob-

ject of interest.

• Localizing discrete phenomenon through each sensor’s limited range and combining

information with other sensor nodes.

• Deployed in regions where infrastructure for replenishing energy/power is not avail-

able.

The advantages of Wireless Sensor Network make it have a wide range of potential ap-

plications, which can be categorized into military, environment, health, home and other

commercial areas:

• Military applications include battlefield surveillance; monitoring friendly forces,

equipment and ammunition; reconnaissance of opposing for and terrain; battle

damage assessment; nuclear, biological and chemical attack detection and recon-

naissance; and object targeting and tracking [3, 55].

• Environmental applications include forest fire detection [12]; bio-complexity map-

ping of the environment [11, 30]; flood detection [10](ALERT system [5]); and

precision agriculture.

• Health applications include tele-monitoring of human physiological data [49, 50, 66];

tracking and monitoring doctors and patients inside hospitals; and drug adminis-

tration in hospitals [80].
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• Home applications include home automation [69]; human-centered or technology-

centered smart environment [1, 20, 34], detecting and monitoring car thefts.

The number of sensor nodes deployed in studying a phenomenon may be in the order of

hundreds or thousands. Some applications may require the number of sensor nodes reach

an extreme value of millions. As a result, the cost of a single sensor node should be kept

as low as possible to justify the overall cost of the networks. In [71], it is claimed that the

cost of a sensor node should be much less 1$ in order for the sensor network to be feasible.

1.3 Challenges of Wireless Sensor Networks

There are several thrust area in the operations of the wireless sensor networks:

• Energy Constraint

As a micro-electronic device, sensor node can be equipped with a limited power

source, i.e., < 0.5Ah, 1.2V . Besides, most of the Wireless Sensor Networks are set

remotely, it is impossible to replenish the power source. Therefore, sensor node

lifetime shows a strong dependence on battery lifetime. The dead of few nodes will

cause significant changes of the topology, and directly influence the lifetime of the

network [43]. On the other hand, in some scenario, Wireless Sensor Networks are

expected to keep functioning for years to decades. Hence, energy conservation and

power management take on additional importance in the design of Wireless Sensor

Networks.

The basic task of sensor nodes is to detect events, perform simple local data pro-

cessing, and transmit the data. Energy consumption can hence be divided into

three domains:
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– Sensing;

– Data processing, including AD/DA and digital signal processing;

– Communication.

According to [89], the sensing and signal processing parts operate at low frequency

and consume less than 1mW . This is over an order of magnitude less than the

energy consumption of the communication part, which involved both data trans-

mission and reception. Mixers, frequency synthesizers, voltage control oscillators,

phase locked loops (PLL) and power amplifiers, all consume valuable power in the

transceiver circuitry. The example in [70] effectively illustrates this property. As-

suming Rayleigh fading channel, and the pass loss exponential parameter is 4, the

energy cost of transmitting 1KB data of a distance of 100m is approximately the

same as that for executing 3 million instructions by a 100 MIPS (million instruc-

tions per second) processor. Therefore, less communication/data exchange between

sensor nodes but more local processing implemented by single sensor node is more

attractive in terms of the energy consumption and prolonging the lifetime of the

Wireless Sensor Networks.

• Unreliable communication

Depending on the applications, Wireless Sensor Networks are set up either very

close to or directly inside the phenomenon to be observed. Therefore, sensor nodes

usually work unattended in remote geographic areas, for example:

– in a battle field beyond the enemy lines;

– in the bottom of an ocean;

– on the surface of an ocean during a tornado;

– attached to fast moving vehicles.

Under such harsh condition, sensor nodes may suffer potential failure due to the

unreliability of the sensor nodes, high channel bit error ratio, intentional jamming
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and interference, multi-path fading. All of these make the communication highly

unreliable.

• Fault Tolerance and Redundancy Reduction

Some sensor nodes may fail or be blocked because of the energy outage, physical

damage, or environmental interference. The failure of sensor nodes should not af-

fect the overall task of the sensor network. For example, if sensor nodes are being

deployed in a battlefield for surveillance and detection, the sensed data are very

critical, meanwhile, sensor nodes can be destroyed by the hostile action. The high

unpredictable nature of Wireless Sensor Networks necessitates a high redundancy

to guarantee fault tolerance, which refers the ability to sustain sensor network func-

tionalities without any interruption due to sensor node failure [37, 64, 77]. On the

other hand, Wireless Sensor Networks face the problem of energy constraint, and

the limited memory, storage, bandwidth. Hence, how to optimize the resources,

and reduce the redundancy without decreasing the performance is another issue

need to be paid attention to.

• Quality of Service

For the traditional communication system, we use Bit Error Rate (BER) and chan-

nel capacity to evaluate the physical layer performance of system. However, the

missions of Wireless Sensor Networks are not only to transmit the information

accurately, but also to observe and monitor the physical world. Therefore, event

detection becomes another important assignment of Wireless Sensor Networks. Ob-

viously, when we evaluate the quality of service (QoS) of Wireless Sensor Networks,

the probability of detection (Pd), the probability of false alarm (Pfa) should also

be included.
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1.4 Our Strategies

The architecture of the wireless sensor networks can be layered as: application layer,

transport layer, network layer, data link layer, physical layer [3]. Different applications

can be carried on and used on the application layer depending on the tasks. The trans-

port layer helps to maintain the flow of data if the sensor networks application requires

it [70, 72]. This layer is especially needed when the system is planned to be accessed

through Internet or other external networks [3]. The network layer takes care of routing

the data supplied by the transport layer. A lot of network layer protocols have been pro-

posed for wireless sensor networks, e.g., LEACH [33], SPIN [32], directed diffusion [39],

GPER [102], energy efficient routing protocols [51]. The data link layer is responsible

for the multiplexing of data streams, data frame detection, medium access and error con-

trol, e.g., energy efficient scheduling for wireless sensor networks [104], energy efficient

clustering for wireless sensor networks [105]. The physical layer addresses the needs of

simple and robust modulation, transmission and receiving techniques. The underlying

physical layer can be exploited by both system-level and node-level algorithms to achieve

energy-efficient and QoS satisfied solutions in wireless sensor networks.

In this dissertation, we presented physical layer and application layer driven approaches

to algorithm design for wireless sensor networks, including:

• MIMO wireless sensor networks.

Virtual multiple-input multiple-output (MIMO) communication architecture has

recently been applied in energy-constraint, distributed wireless sensor networks so

as to economize energy consumption through its potential huge diversity gain [17,

47, 48]. With channel state information (CSI) at transmitter, we can design algo-

rithms (e.g., water-filling algorithm) to be applied to optimize the power allocation

in each sub-channel of the MIMO system based on the already known channel ma-

trix H, so as to maximize the channel capacity of the system even in the deep fading
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scenario. However, in reality, the CSI at the transmitter may not be accurate due

to either the estimation error, or the time delay. We will investigate how the error

impact the channel capacity under this circumstance.

• Ultra WideBand sensor networks.

Since 2002 there has been great increasing popularity of commercial applications

based on Ultra Wide Band (UWB) communication techniques. UWB systems have

potentially low complexity and low cost; have a very good time domain resolution,

which facilitates location and tracking applications. This has ignited the interest

in the use of this technology for wireless sensor networks. A UWB based sensor

network is proposed in [87] for civil infrastructure health monitoring.

We proposed a hybrid Frequency Hopping/Time Hopping-Pulse Position Modu-

lated (FH/TH-PPM) Ultra Wide Band system for wireless sensor networks, where

frequency hopping and time hopping are both used to get as much diversity gain as

possible. However, neither multi-user interference or hostile interference in Ultra

Wide Band sensor networks can be neglected. We first derived theoretical perfor-

mance formula when the low duty-cycle in Ultra Wide Band system and the large

number of sensor nodes in a wireless sensor networks are considered, and then fo-

cused our study on the theoretical analysis of the physical layer performance in the

presence of multitone/pulse (tone in frequency domain and pulse in time domain)

interference and Multi-User Interference.

• Event-centric wireless sensor networks .

The main goal of wireless sensor networks is to sense the physical world, collect

the data, and then send back to the users. Usually, people are more interested

in unexpected data. For example, in a scenario of battlefield, people are more

interested in the appearance of enemies. If a wireless sensor network is set up to

monitor forest-fire, the unusual increasing of the temperature should be a necessary
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warning to people. Both the appearance of enemies and the unusual increasing of

the temperature can be seen as events. Because of the energy constraint of wireless

sensor networks mentioned previously, the ideal state of wireless sensor networks

should be event-driven, so that the communication component, which cost the most

of the energy, can be powered off most of the time. Only when certain sensor nodes

detect an event, the radio-frequency channel will be triggered, and transmit the

useful information out. Our approach is based on no other than the event-driven

characteristic that wireless sensor networks have so as to reserve energy and pro-

long the lifetime of the networks. A node-level power-mode scheduling algorithm

[79] will be used to save energy by managing the active and sleep modes of the

underlying device. Risk that might miss the event will be introduced if we cannot

schedule the modes very well. Hence, to detect and predict events accurately be-

comes a crucial issue.

• Redundancy reduction in wireless sensor networks .

Redundancy among neighborly nodes is one of the properties of wireless sensor

network. It can guarantee fault-tolerance, on the other hand, it leads to the cost

of energy, bandwidth, memory, and the occurrence of interference. Therefore, we

propose to let one or two nodes to represent the whole neighboring group, let the

others be at the idle state to save the energy of themselves, and meanwhile prolong

the life-time of the whole network. To reduce the number of the working nodes can

also save the bandwidth of the network and reduce the multi-user interference and

probability of collision.

1.5 Thesis outline

This thesis consists of 4 main chapters. Chapter 1 is this introduction. The remaining

chapters follow the contributions outlines above. A brief outline of each chapter is as
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follows.

Chapter 2 discusses how the estimation error and time delay of the channel state infor-

mation at the transmitter side will impact the channel capacity of a MIMO sensor

network system.

Chapter 3 proposes a hybrid Frequency Hopping/Time Hopping-Pulse Position Modu-

lated (FH/TH-PPM) Ultra Wide Band system for wireless sensor networks, which

is targeting in hostile environment applications. It then focuses on the interference

and performance analysis in such circumstances.

Chapter 4 proposes two event-detection approaches in wireless sensor networks, includ-

ing double sliding scheme and hybrid approach based on Fuzzy Logic System.

Chapter 5 shows an energy-efficient event-centric wireless sensor network. Then it

shows how to use type-2 Fuzzy logic system to forecast the sensed signal and the

event.

Chapter 6 studies redundancy problem in wireless sensor networks. It proposes to use

SVD-QR to select the principal data sets from particular sensor nodes to represent

the all the sensor nodes in the neighborhood effectively.

The last chapter provides the conclusion. This chapter summarizes the main result of

the thesis, and outlines future research directions.



CHAPTER 2

CHANNEL CAPACITY IN MIMO WIRELESS SENSOR NETWORKS

2.1 Introduction

During the last decade, wireless communication has occurred tremendous growth in data,

voice, and video appliances. Cell phones and laptops with wireless capability are becom-

ing common. The data rate of wireless Local Area Networks (LAN) has reached unprece-

dented levels of hundreds of megabits per seconds [65, 40], allowing seamless connectivity.

One of the techniques to enable such advances, and a breakthrough in wireless commu-

nications, is the adoption of multiple antennas at both the transmitter and the receiver.

Multiple-input multiple-output (MIMO) systems allow a growth in transmission rate lin-

ear in the minimum of the numbers of antennas at each end [84]. They also enhance link

reliability and improve coverage [68]. MIMO technology is now entering next generation

cellular and wireless LAN products [40, 41, 42], with the promise of widespread appli-

cations in the near future.

The remainder of this chapter is organized as follows. In section 2.2 the benefit of the

CSI at transmitter side will be introduced. We briefly present the relay virtual MIMO ar-

chitecture for wireless sensor networks in section 2.3, and the underlying one-hop MIMO

system model will be presented in 2.5. Whereafter, we investigate the channel capac-

ity with imperfect CSI in section??. The numerical results will be presented in section2.6.

11
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2.2 Benefits of CSI at transmitter

A wireless channel exhibits time, frequency, and space selective variations, known as

fading, which arises due to Doppler, delay, and angle spreads in the scattering envi-

ronment [44, 73]. We focuses on the time-varying channel, assuming frequency-flat and

negligible angle spread.

The theoretical capacity gain of MIMO channels is tremendous, however, it depends

heavily on how accurately we know the channel. Specifically, when the instantaneous

channel gains, i.e., channel state information (CSI), are known perfectly at the trans-

mitter of the MIMO system, the transmitter can adapt its transmission strategy relative

to the instantaneous channel state, so the maximum MIMO channel capacity can be

achieved.

In a frequency-flat MIMO system, channel information can be two dimensional: tem-

poral and spatial. Temporal CSI at transmitter (CSIT) - channel information across

multiple time instances - provides negligible capacity gain at medium-to-high SNRs [25].

Spatial CSIT, which is channel information across antennas, on the other hand, offers

potentially significant increase in channel capacity at all SNRs. For example, in a 4-

transmit 2-receiver antenna system, transmit channel knowledge can more than double

the capacity at −5dB SNR and add 1.5bps/Hz to the capacity at 5dB SNR [88].

2.3 Virtual MIMO for wireless sensor networks

Recently, virtual MIMO architecture has also been applied in energy-constraint, dis-

tributed wireless sensor networks so as to economize energy consumption [17, 47, 48].

In these implementations, the underlying MIMO concepts include the simple Alamouti

scheme [4] and the virtual Bell Labs Layered Space-time (V-BLAST) architecture [101].
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We will first briefly review the virtual MIMO architecture applied in wireless sensor net-

works.

The nodes in a wireless sensor networks are usually of small dimensions. Thus it may

not be realistic to assume these inexpensive sensor nodes are equipped with multiple

antennas. [17] first proposed to realize MIMO communication architecture in a wireless

sensor network consisting of single-antenna sensor nodes via sensor cooperation. The

MIMO architecture applied here is shown in Fig. 2.1

Figure 2.1. Virtual MIMO architecture in WSN.

There is a transmitter cluster, which is composed of a group of NT cooperative sensor

nodes, communicating with a receiver cluster, which is compose of a set of NR coopera-

tive sensor nodes. In order to fulfil the communication, the transmitter cluster should do:

• broadcasting the data within the cluster, so that all the active sensor nodes inside

the cluster can encode and send out the data during the MIMO transmission;

• transmitting the data via the NT ∗NR MIMO channel.

These two functionalities should be carried out in two orthogonal channel. Here, we

assume time division (TD) scheme is applied. These two TD channels are referred as

Intra-cluster channel and Inter-cluster channel respectively. For Intra-cluster channel,

it is falling into the broadcast capacity region. In the Inter-cluster, the NT sensor nodes
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jointly transmit data to the receiver cluster by using a NT ∗NR virtual MIMO channel.

Hence, we will mainly focus on the Inter-cluster MIMO channel.

Channel capacity for MIMO channel has been intensively studied in different scenar-

ios since the pioneer work by Winters [100] and Telatar [84]. Most of them modeled the

channel as fully scattering, i.e., Rayleigh fading channel. The Rayleigh fading model is

a reasonable assumption for many fading environments encountered in practical commu-

nication systems. However in some other cases, (e.g., in Wireless LAN application, and

for sure, wireless sensor networks fit in this scope), there exists a strong deterministic

Line-Of-Sight (LOS) component between the transmitter and receiver, which gives rise

to Rician fading model. The Rician distribution is characterized by the Rice factor, k,

which reflects the relative strength of the direct LOS path component. When k = 0, this

model reduces to Rayleigh fading and k →∞ the model reduces to AWGN channel. The

capacity of a Rician channel with receiver CSI but without any knowledge even the Rice

factor at the transmitter has been studied in [22, 18]. [46] assumes that there is perfect

CSI at receiver (CSIR), meanwhile the transmitter has partial CSI, i.e., the knowledge

of the value of the Rice factor.

In this thesis, we assume that the transmitter has full/partial CSI, but with estimation

error and time delay. We will investigate how the error and delay impact the channel

capacity.

2.4 System model

We consider NT transmit sensor nodes and NR receive sensor nodes which equal to NT

transmit antenna and NR receive antenna respectively. Throughout, we assume that

NR ≥ NT . The discrete-time received signal in such a system can be modeled in matrix
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form as

y(i) = H(i)x(i) + η(i) (2.1)

where at symbol time i, x(i) is the NT × 1 vector of transmitted signal on the NT trans-

mitting sensor nodes, y(i) is the NR × 1 vector of received signal on the NR receiving

sensor nodes, and η(i) is the NR × 1 additive receiver noise vector. We assume the com-

ponents of the noise η(i) to be independent, zero-mean, circularly symmetric complex

Gaussian with independent real and imaginary parts having equal variances. The noise

is also assumed to be independent with respect to the time index, and

Rη = E[η(i)η(i)H ] = σ2
ηINR

, (2.2)

where INR
∈ CNR×NR denotes the identity matrix, and AH denotes the hermitian conju-

gate of the matrix A.

The Channel State Information (CSI) is defined as the channel matrix H(i) ∈ CNR×NT .

The (m,n)-th element of the matrix H(i) represents the fading coefficient value at time

i between the m-th receiving sensor node to the n-th transmitting sensor node. The

H(i) corresponding to each channel realization is assumed to be independent from that

of other realizations, i.e., H(i) and H(j) are independent when i 6= j. In this sense, the

time index i can be dropped so as to simplify notation.

In Rician fading the elements of H are nonzero mean, complex Gaussian variables. Hence,

we can model the channel matrix H as a sum of two components, a fixed (LOS) compo-



16

nent and a variable (or scattered) component,

H = H + H̃ (2.3)

and

H = E{H}

=
µ√
2
(1 + j)ΨNR,NT

(2.4)

where j =
√−1, ΨNR,NT

is defined as the NR × NT matrix of all ones. E{·} is an

expectation operation. H̃ is a complex distributed matrix with zero-mean, denoted as

H̃ ∼ Nc(0, INT

⊗
Σ), with the probability density function (pdf) [15, 45]

fH̃(H̃) =
1

(π)NT NR |Σ|NT
e−tr[Σ−1H̃H̃H ], (2.5)

where tr denotes the trace of a matrix, Σ is the Hermitian covariance matrix of the

columns (assumed to be the same for all the columns) of H̃,

Σ = 2 σ2 INR
. (2.6)

The strength of the LOS component can be indicated by the Rician K factor,

K = 10 log10(
|µ|2
2σ2

) dB. (2.7)

In the case of Rayleigh fading, which is an extreme scenario of Rician fading, K = 0.

The parameters should be normalized as

|µ|2 + 2 σ2 = 1, (2.8)
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so that the signal-to-noise ratio (SNR) will not be scaled by the channel. We also assume

that the channel is block fading [8], i.e., H remains constant over T ≥ NT symbol periods

and changes in an independent fashion from block to block.

2.5 One Hop Channel Capacity of MIMO Rician fading channel

The CSI is the channel matrix H. Based on different knowledge of the CSI, we can get

different system performances, and channel capacities.

2.5.1 Channel Capacity with Perfect CSIT

If CSIT is available, the transmitting sensor nodes can adapt its transmission strategy

according to this CSI. The channel capacity of such a MIMO system with perfect CSIT

is nothing but the average of the capacities achieved with each channel realization. The

formula is given in [24]

C = EH[ max
Q:tr(Q)=P

log |INR
+ HQHH|] (2.9)

where Q is the input covariance matrix as

Q = E(xxH). (2.10)

2.5.2 Optimal power allocation strategy: water-filling

With CSI at both the receiver and the transmitter, optimal power allocation strategy

based on the H should be applied to maximize the channel capacity in (2.9) [85]. The

joint singular value decomposition (SVD) and water-filling power allocation technique

provides the optimum solution [78].

The SVD of the channel matrix H is presented as

H = U Λ VH (2.11)
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where U ∈ CNR×NR is an unitary matrix of orthonormalized eigenvector of HHT , V ∈
CNT×NT is an unitary matrix of orthonormalized eigenvector of HTH, and Λ ∈ CNR×NT is

a rectangular matrix whose diagonal elements are non-negative real numbers and whose

off-diagonal elements are zero. The diagonal elements λ1, λ2, . . . , λNmin
denotes the ith

singular value of H, and λ1 ≥ λ2 ≥ · · · ≥ λNmin
> 0, where Nmin = min(NT , NR).

The MIMO channel can then be represented as a parallel channel [85] based on the

ordered singular value λi as

ỹi = λix̃i + η̃i, i = 1, · · · , Nmin (2.12)

and

x̃ = VHx,

ỹ = UHy,

η̃ = UHη.

Substituting (2.11) into (2.9), we can get

C = max
pi:

∑
i pi≤P

Nmin∑
i=1

log(1 +
λ2

i pi

σ2
η

), (2.13)

The transmitting powers are allocated to each sub-channel based on their strength ac-

cording to the water-filling strategy,

pi

P
= (0, µ− σ2

η

λ2
i P

)+ (2.14)

where (A)+ = max(0, A), and µ is the waterfilling level which should be chosen so that
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the total power constraint is satisfied:

Nmin∑
i=1

(µ− σ2
η

λ2
i P

) = 1. (2.15)

Therefore, the maximum channel capacity can be obtained as:

Cmax =
∑

i,pi>0

log(1 +
piλ

2
i

σ2
η

) (2.16)

2.5.3 Error Model

In a realistic scenario, however, the CSI is generally imperfect. The receive sensor node

can estimate the CSI, i.e., the matrix H, using training sequences, e.g., pilot symbols.

Basically there are two ways [7] to get CSIT. The transmit sensor nodes can estimate

the channel using the signals received in the reverse link, and use it as an estimate in

the forward link, because of the channel reciprocity principle. During the procedure of

estimation, estimation error will be introduced without doubt. Suppose the estimation

is unbiased, the estimated CSI, Ĥ can be formulated as

Ĥ = H + ξ (2.17)

where ξ is the estimation error. The entries of ξ are assumed to be i.i.d. and zero-mean

circularly symmetric complex Gaussian. ξ is independent from the real channel realiza-

tion. The alternate solution is to obtain the CSI through a feedback channel from the

receiver to the transmitter. Besides the Gaussian estimation error at the receiver, due

to the finite capacity of the feedback channel, the channel response has to be quantized,

which will introduce the another quantization noise to the CSIT.

We will focus on the Gaussian estimation error in the following analysis, and we make
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the following assumption.

• The transmit sensor nodes have a total power constraint P , however, they can

adapt their power allocation according to the channel fading so as the maximize

capacity. The power constraint condition can be mathematically represented as,

E(P ) = E(tr(Q)) ≤ P̄ . (2.18)

• Either there exists a perfect and instantaneous feedback channel from the receiver

to the transmitter, or the delay from the obtaining reverse-channel information

to apply the information to the forward-link is negligible. So the only error we

consider is the estimation error in (2.17).

2.5.4 Channel Capacity with imperfect CSIT

When there is error in the estimation as discussed in section 2.5.3, what the transmitter

knows is the estimated channel matrix Ĥ in (2.17). Hereby, the decomposition of the

MIMO channel and the application of water-filling strategy in section 2.5.2 are both

based on Ĥ, which contains zero-mean Gaussian Noise. Apparently, the singular value λ̂i

obtained from Ĥ will be different from λi. Consequently, the maximum channel capacity

in (2.16) is no longer tenable because the power allocation is not optimized. We will

show how the estimation error impact the channel capacity in section 2.6.

2.6 Numerical Results and Discussions

Numerical results are presented to show how Gaussian estimation errors degrade the

channel capacity in i.i.d. Rician fading MIMO channel based on Monte-Carlo simula-

tions.

Two MIMO systems, where NT = NR = 3 and NT = NR = 6, respectively were sim-
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ulated. The MIMO channels were treated as 9 and 36 i.i.d. single-input-single-output

(SISO) Rician channels applying the Jakes’s model [73] [44].

In Figure 2.2, we compare the average channel capacity using equal power allocation,

water-filling strategy with perfect CSIT, and water-filling strategy with channel estima-

tion error as σ2
ξ = 0.1, 0.25, 0.5, 1 respectively in a NT = 3, NR = 3 MIMO system with

the Rician fading parameter as K = 10 for all the independent 3 × 3 = 9 sub-channels,

and fd is randomly chosen from 0 ∼ 30Hz for sub-channels.

−10 −5 0 5
0

0.5

1

1.5

2

2.5

3

3.5

4

SNR(dB)

A
ve

ra
ge

 C
ha

nn
el

 C
ap

ac
ity

Equal Power Allocation
Waterfilling Capaciy with perfect CSIT
σ2

ξ=0.1

σ2
ξ=0.25

σ2
ξ=0.5

σ2
ξ=1

Figure 2.2. Average Channel Capacity for 3× 3 MIMO with Rician fading.

We can see clearly that the water-filling scheme performs much better than the equal

power allocation scheme, which does not need CSIT, even with estimation error, espe-

cially at the low SNR. At high SNR, the difference between water-filling and equal power

allocation scheme becomes slimmer.

We then set the Rice factor K = 0 for all the sub-channels, which means it is Rayleigh

fading. The results are shown in Figure 2.3.
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Figure 2.3. Average Channel Capacity for 3× 3 MIMO with Rayleigh fading.

For Rayleigh fading MIMO channel, channel capacity is more sensitive to the SNR, but

less sensitive to the estimation error.

Figure 2.4 2.5 show the results of the simulation of NT = NR = 6 system.
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Figure 2.4. Average Channel Capacity for 6× 6 MIMO with Rician fading.

We notice that the average channel capacities of equal power allocation strategy are larger

than the ones of water-filling strategy at high SNR. When we perform the water-filling
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Figure 2.5. Average Channel Capacity for 6× 6 MIMO with Rayleigh fading.

scheme, some of the decomposed parallel channels may not be assigned any power, so

that some of the diversity gain is lost.

We compare the average channel capacities of NT = NR = 3 and NT = NR = 6 MIMO

systems at Figure 2.6. The Rician fading parameters K and fd for each independent

sub-channel are chosen from 0 ∼ 10 and 0 ∼ 30Hz respectively.

Without any doubt, the average channel capacity of the NT = NR = 6 MIMO sys-

tem is much larger than the one of the NT = NR = 3 MIMO system.

Figure 2.7 shows the average channel capacities get from NR = 3, NT = 6 and NR =

6, NT = 3 MIMO systems.

For equal power allocation algorithm, the channel capacities for the two systems are

exactly the same. However, for water-filling strategy, more gains can be obtained from

the receiving part.
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Figure 2.6. Average Channel Capacities for 6× 6 and 3× 3 MIMO systems.
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Figure 2.7. Average Channel Capacities for 3× 6 and 6× 3 MIMO systems.

2.7 Chapter Summary

Virtual MIMO structure is very attractive to wireless sensor network due to its poten-

tial huge diversity gain. Wireless sensor network is power constraint, however, with

CSIT, water-filling algorithm can be applied to optimize the power allocation in each

sub-channel of the MIMO system based on the estimated channel matrix H, so as to

maximize the channel capacity of the system even in deep fading scenario. However, in

reality, both the estimation error and the quantization noise will be introduced when

estimate the channel.
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In this chapter, we first discuss the virtual MIMO structure in wireless sensor network,

then set up the MIMO system model focused on one-hop inter-cluster transmission.

Afterwards, the error model of the channel estimation is investigated, and how the esti-

mation error will impact the optimal water-filling strategy is analyzed. Numerical results

were presented based on the Monte-Carlo simulations.



CHAPTER 3

UWB SENSOR NETWORKS IN HOSTILE ENVIRONMENT

Interferences due to the hostile environment (e.g. jammer) and the Multi-User Access are

critical factors affecting performance of the wireless sensor networks. In this paper, we

study a hybrid Frequency Hopping/Time Hopping-Pulse Position Modulated (FH/TH-

PPM) UWB for wireless sensor networks in hostile environment with partial-band(PB)

tone interference. FH and TH are both used to get as much diversity gain as possi-

ble. Theoretical analysis is made for the bit error rates performance in the presence of

multitone/pulse (tone in frequency domain and pulse in time domain) interference and

Multi-User Interference. We also derived theoretical performance formula when the low

duty-cycle in UWB system and the large number of sensor nodes in a wireless sensor

networks are considered.

3.1 Introduction

Wireless sensor networks are becoming more popular for an ever increasing range of

applications with improvements in device size, power control, communications and com-

puting technology. Since 2002 there has been great increasing popularity of commercial

applications based on Ultra WideBand. This in turn has ignited interest in the use of this

technology for sensor networks. Actually, UWB systems have potentially low complexity

and low cost; have a very good time domain resolution, which facilitates location and

tracking applications. So, UWB wireless sensor networks are promising.

One of the most important applications of wireless sensor network is in battle field,

which means there exist hostile interferences. Frequency Hopping (FH) technology offers

an improvement in performance when the communication systems is attacked by hostile

26
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interference and reduce the ability of a hostile observer to receive and demodulate the

communication signal. This kind of inherent property finds it a potential position in the

UWB sensor networks. Based on the UWB definition released by the FCC (FCC, 2002)

that a signal is UWB if its bandwidth exceeds 500 MHz, the overall 7.5 GHz bandwidth,

that is, frequencies in the range 3.1 GHz to 10.6 GHz as based on the FCC ruling, can

be split into smaller frequency bands of at least 500 MHz each. This character inspired

us to design a hybrid FH/TH-PPM UWB system.

Sensor Network communication systems have to be multi-user accessible, which means

different users/sensor nodes are allowed to share the same physical medium for trans-

mitting and receiving different data flows. In TH-UWB, the spectrum of the impulse

radio signal is usually shaped by encoding data symbols using TH sequences, which are

typically described as pseudo-random PN codes. These same sequences can also serve

as users’ signatures and ensure access to the medium to multiple users. Therefore, this

so called Time Hopping Multiple Access (THMA) technology will be a reliable choice

in this case. However, in a realistic scenario where systems cannot achieve ideal syn-

chronization, multi-user interference (MUI) will be another crucial factor besides the

previous mentioned hostile interference to affect the system performance. Clearly, the

simple Signal-to-Noise-Ratio (SNR) is less than enough to give a comprehensive perfor-

mance evaluation for sensor networks. Therefore, Signal-to-Interference-plus-Noise-Ratio

(SINR) should be analyzed instead.

Several efforts have been made in the recent past for evaluating the effect of MUI on

symbol error rate with single-user reception in an AWGN channel [38, 103]. However,

hostile jammer is considered in none of them, which would be challenged in this paper.

For example, a TH-UWB sensor network, which is set up in a hostile environment, it is

feasible for the enemies to estimate the shape of a pulse. Therefore, a repeated-imitated-

pulses intruder will be sent out to degrade the performance of the network. The main
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contribution of this paper, we put the hostile interference along with the MUI into consid-

eration, and through the precise analysis a closed-form performance analysis expression

can be got.

The rest of this chapter is organized as follows. The system models, including the trans-

mission, channel and receiver, will be introduced in Section 3.2. The MUI and hostile

interference will be studied in Section 3.3 and Section 3.4 respectively, and the SINR

and closed-form BER will be derived as well. Numerical results and comparisons will be

present in Section 3.5; and conclusions are made in Section 3.6.

3.2 System Models

In the proposed system, there are NF non-overlapping FH bands, each with bandwidth

Bh where Bh is the bandwidth required to transmit a TH-PPM signal in the absence of

FH. Let sk(t) denotes the k-th user’s signal at time t in this FH/TH-PPM UWB system

with totally Nu users, and it takes the form

sk(t) =

√
Eb

Ns

+∞∑
j=−∞

cfh
j (k)p[t− jTf − cth

j (k)Tc − dj(k)δ]) (3.1)

where p(t)is a chip waveform, which can take arbitrary time-limited pulse shapes proposed

specifically for UWB communication systems, and is normalized to satisfy
∫ +∞
−∞ p2(t)dt =

1. The notations and parameters are:

• Ns is the number of pulses used to transmit a single information bit. Tf is the time

duration of a frame. In general case, Ns ≥ 1 pulses carry the information of one

bit. The bit duration Tb should satisfy, Tb ≥ TfNs.
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• Eb is the energy per information bit.
√

Eb

Ns
is the normalized energy in each symbol.

• cth
j (k)Tc is the time shift introduced by the TH code. Tc is the chip duration. cth

j (k)

is the j-th coefficient of the TH sequence used by user k; it is pseudo-random with

each element take an integral in the range [0, Nh − 1], where Nh is the number of

hops. Tc ≤ Tf/Nh should be satisfied.

• The dj(k)δ term represents the time shift introduced by PPM modulation. In our

system, 2PPM is only considered. Therefore, dj(k) represents the j-th binary data

bit (0 or 1) transmitted by the k-th user; δ is the PPM shift.

• cfh
j (k) =

√
(2)cos(2πfkj) is the k-th user’s spreading code during j-th frame.

Notice that each symbol chooses one of the NF sub-bands to transmit the signal, how-

ever, in each sub-band, the transmitted signal is TH-2PPM.

In wireless sensor networks, sensor nodes have two states, i.e., active communication

status and idle status. In order to save energy, sensor nodes choose to be idle for most

of the time. The number of nodes who are actually in the status of active communi-

cation is unknown. However, the total number of sensor nodes in the network and the

access rate λ, i.e., the rate that a node in the communication status, for each node are

assumed to be known. Clearly, the event of status of sensor node is a Bernoulli distri-

bution with mean as λ and variance as λ(1 − λ). Assume there are NU sensor nodes

in a network, each one of them chooses to be idle or active independently. Therefore,

the number of sensor nodes who are in active communication status, NT
u , can be seen as

the sum of NU independent, identically distributed Bernoulli random variable, which is

a Binomial distribution. Usually NU is very large, we can approximate the Binomial dis-
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tribution to a Gaussian random variable with the mean NUλ and variance NUλ(1−λ), as

fNT
u
(nt

u) =
1√

2πNUλ(1− λ)
e−(nt

u−NUλ)2/2NUλ(1−λ) (3.2)

For the NT
u users, they randomly choose one of the sub-bands to transmit the signal

according to cfh
j (k) symbol by symbol. It is also a Binomial random variable with the

coefficient 1/NF . To simplify the problem, we assume that the users are distributed op-

timally, so the number of users share the same channel, Nu, should be expressed as

Nu = NT
u /NF . (3.3)

Assume over one Tf , Nu users’ signals are simultaneously transmitted over a channel

with Lc paths [23], the composite waveform at the output of the receiver antenna maybe

written as

r(t) =
Nu∑

k=1

Lc∑

l=1

α
(k)
l s

(k)
j (t− τ

(k)
l ) + n(t) + I(t) (3.4)

where n(t) is the additive Gaussian Noise withe two-sided power spectral density N0/2,

I(t) is the hostile jammer interference, α
(k)
l and τ

(k)
l are the attenuation and the delay

affecting replica of the k-th user’s signal traveling through the l-th path. In writing ( 3.4),

we have implicitly assumed a static channel, meaning the α
(k)
l and τ

(k)
l are either fixed

or vary so slowly that they are practically constant over several bits.

Consider s(1)(t) to be the desired user, all the other Nu − 1 users signals are interference

signals. We make assumptions
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• The reference transmitter and receiver of a reference link are perfectly synchronized

under the coherent detection hypothesis;

• A dominant path exists that conveys the major part of the desired user’s energy [58];

the decision statistic over the 1-st user’s j-th symbol is obtained as

zj =

∫ (j+1)Tf

jTf

r(t)v(t− τ
(1)
1 − jTf − c

(1)
j Tc)dt, (3.5)

where v(t) = p(t)− p(t− δ) is the correlation template waveform.

Afterwards, a simple hard decision of the information bit based on zj, j = 0, 1, . . . , Ns−1

will be made by majority law.

3.3 Multi-User Interference Analysis

In this section, we will first focus on the analysis of MUI with the absence of hostile

jammer interference. We assume there is no inter-channel-interference. Therefore, the

received signal of 1-st user’s j-th symbol can be expressed as:

rj(t) = r
(1)
j (t) + rj,mui(t) + n(t) (3.6)

where rj,mui(t) is the MUI contribution at the receiver input. If the users are many and

have comparable powers, we can approximate the MUI as a white Gaussian process by

the central limit theorem [99] and, as such, it can be lumped into the additive Gaussian



32

Noise,

wtot(t) = rj,mui(t) + n(t) (3.7)

and wtot(t) is still a white Gaussian process. Correspondingly, the minimum error prob-

ability can be achieved by computing ( 3.5).

However, we still need to evaluate the energy of the MUI. Since the system is asyn-

chronous, we need to consider all cases where a pulse originated by any of the trans-

mitters but TX1, is detected by the receiver. First of all we need to analyze the noise

provoked by the presence of one alien pulse at the output of the receiver by using the

similar method as in[6],

mui(k)(τ (k)) =

√
E

(k)
RX

∫ Tc

0

p(t− τ (k))vtdt (3.8)

where, E
(k)
RX = α(k)(Eb/Ns), and here we suppose α(k) = 1 ∀k.

Since τ (k) is uniformly distributed over [0, Tf ), however, the region the MUI noise can

affect to the desired user , is only at [−Tp, Tc], with Tc = 2Tp[6]. Hence,

σ2
mui(k) =

1

Tf

∫ Tc

−Tp

(√
E

(k)
RX

∫ Tc

0

p(t− τ (k))v(t)dt

)2

dτ (k) (3.9)

and cumulate all the Nu − 1 interference sources, the total MUI energy is

σ2
mui =

1

Tf

Nu∑

k=2

E
(k)
RX

(∫ Tf

0

(∫ Tc

0

p(t− τ (k))v(t)dt

)2

dτ (k)

)
(3.10)

Since all the delays, τ , are identically distributed, and under the hypothesis of perfect
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power control, e.g., E
(k)
RX = ERX ∀k,

σ2
mui =

ERX

Tf

Nu∑

k=2

(∫ Tf

0

(∫ Tc

0

p(t− τ)v(t)dt

)2

dτ

)
(3.11)

Define σ2
M as

σ2
M =

∫ Tf

0

(∫ Tc

0

p(t− τ)v(t)dt

)2

dτ

=

∫ Tf

0

(∫ Tc

0

p(t− τ) (p(t)− p(t− δ)) dt

)2

dτ

=

∫ Tf

−Tp

(R0(τ)−R0(τ + δ))2 dτ (3.12)

and (3.10) becomes

σ2
mui =

ERX

Tf

(Nu − 1)σ2
M (3.13)

Therefore, the SIRmui over one symbol can be expressed as:

SIRmui =
Tf

(Nu − 1)σ2
M

. (3.14)

Let SNRref denotes the equivalent signal to noise and MUI ratio over one symbol, it can

be written as

SNRref = (SNR−1
n + SIR−1

mui)
−1 (3.15)

where SNRn are the signal to noise ratio over one symbol.
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Hence,

SNRref =

((
ERX

N0

)−1

+

(
Tf

(Nu − 1)σ2
M

)−1
)−1

=
Tf

NsTf + (Nu − 1)σ2
M

(
Eb

N0

)
(

Eb

N0

)
(3.16)

where Eb/N0is the system SNR.

We can also get the equivalent variance of wtot(n),

N ′
0 = N0 +

(Nu − 1)σ2
MEb

NsTf

(3.17)

3.4 Performance Analysis with Multitone/pulse Interference

In this section, the SIR for the hostile interference part is obtained. As previously men-

tioned, in a hostile environment, which is a common case for sensor networks, it is feasible

for an enemy to estimate/detect the pulse waveform, furthermore, send the imitational

waveform to interfere the communication system. However, it is not economy or efficient

for the interference to cover all the frequency bandwidth. So, what we study here is

a multitone/pulse (tone in frequency domain; and pulse in time domain) interference,

which implies that the jamming signal consists of one or more tones/sub-bands trans-

mitted within the total bandwidth; and it has the same pulse shaper as the transmitted

2-PPM signal does.

We make the following assumptions:

• The multitone/pulse interference has a total power PJ , which is transmitted in a

total of q equal power interfering tones spread randomly over the spread spectrum
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bandwidth;

• The time duration for the interference pulse is the same as the time duration of the

transmitted signal pulse p(t), which is denoted as Tp. To simplify the problem, we

suppose Tc = 2Tp and δ = Tp. The hop period of the interference is also Tp, and

each hop is independent;

• The multitone/pulse interference can catch the signal pulse with the perfect tim-

ing. We consider the scenario that there is at most one interference per FH sub-

band. Hence, in one hop, the probability that a FH band contains an interference

tone/pulse is q/NF . Observe the transmitted signal as in (3.1), the signal hops both

in the frequency domain and in the time domain symbol by symbol. Therefore, our

analysis will first focus on one symbol.
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Figure 3.1. An example of the waveform of a 2-PPM signal.
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For one symbol, no matter what cfh
j (k) and cth

j (k) are, it is a 2-PPM signal shown as in

Fig 3.1. The left one is the waveform when dj(k) = 0, and the right one is the waveform

when dj(k) = 1. We partition the symbol duration as two time slots, hence, for the multi-

tone/pulse interference, there are two hops. And because in each hop, it is independently

distributed, there should be totally four cases with regard to the jammer interference for

each symbol:

1. Case1. There is no jammer interference in either of two slots, and the probability

of case1 is

P {case1} = (1− q

NF

) · (1− q

NF

). (3.18)

2. Case2. There is jammer interference in each slot, and the probability of case2 is

P {case2} =
q

NF

· q

NF

. (3.19)

3. Case3. There is one and only one jammer interference pulse, and it is at the same

slot as the signal pulse. The probability of case3 is

P {case3} = (1− q

NF

) · q

NF

. (3.20)
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4. Case4. There is one and only one jammer interference pulse, and it is not at the

same slot as the signal pulse. The probability of case4 is

P {case4} = (1− q

NF

) · q

NF

. (3.21)

The received signal of the j-th symbol of 1-st user can be expressed as:

r′j(t) = r1
j (t) + Ijammer(t) + wtot(t); (3.22)

where rk
j (t) and Ijammer(t) are the jammer interference contributions at the receiver

input, and wtot(t) accounts for both the thermal and MUI noise contributions, and is

still a white Gaussian process as proved in Section 3.3. Hence, a maximum a posteriori

(MAP) approach can be adopted here to get the minimum error probability. For different

cases of the jammer interference, the detection boundaries are shown in Fig. 3.2.

case1 case2

case3 case4

   0 E
RX
1/2

sqrt(P
J
/q) E

RX
1/2+(P

J
/q)1/2 

0 E
RX
1/2+t(P

J
/q)1/2 (P

J
/q)1/2 E

RX
1/2

z=1 z=0 

f(r|H1) f(r|H0) f(r|H1) f(r|H0) 

z=0 z=1 

z=0 z=1 

z=0 z=1 

f(r|H0) f(r|H1) f(r|H0) f(r|H1) 

Figure 3.2. The MAP detection rule for all the cases.
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Hence, we can get the SINRjammer straightforwardly.

• For case1 and case2,

SINRjammer|case1,2 =
ERX

N ′
0

. (3.23)

• For case 3,

SINRjammer|case3 =
(
√

ERX +
√

PJ

q
)2

N ′
0

. (3.24)

• For case 4,

SINRjammer|case4 =
(
√

ERX −
√

PJ

q
)2

N ′
0

. (3.25)

For 2-PPM signal the error probability is [6],

Pr = Q(
√

SNRspec). (3.26)

Apply (3.17) and (3.23) to (3.25) into (3.26), we can derive,

• For case1 and case2,

prs|c1,2 = Q(

√√√√
(

Eb

Ns

N ′
0

)
); (3.27)
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• For case 3,

prs|c3 = Q(

√√√√√√




(
√

Eb

Ns
+

√
PJ

q
)2

N ′
0


); (3.28)

• For case 4,

prs|c4 = Q(

√√√√√√




(
√

Eb

Ns
−

√
PJ

q
)2

N ′
0


). (3.29)

Removing the conditioning on cases, we get

Pr′s =

((
NF − q

NF

)2

+

(
q

NF

)2
)

Q(

√√√√
(

Eb

Ns

N ′
0

)
)

+

(
NF − q

NF

)(
q

NF

)
(Q(

√√√√√√




(
√

Eb

Ns
+

√
PJ

q
)2

N ′
0


)

+ Q(

√√√√√√




(
√

Eb

Ns
−

√
PJ

q
)2

N ′
0

)


)). (3.30)

Considering only Nu is a random variable, we should take ( 3.2) and ( 3.3) into ( 3.30),

Prs =
1

NF

√
2πNUλ(1− λ)

∫ NU

1

Pr′s

e−(nu−NUλ)2/2NUλ(1−λ)dnu (3.31)
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After we got the symbol error rate Prs, it is easy for us to obtain the bit error rate Prb

by majority law.

Prb =
Ns∑

k=dNs
2 e

Ck
NsPrk

s (1− Prs)
Ns−k (3.32)

where d e is the ceiling operation, and Ck
Ns is an Ns-choose-k Binomial coefficient, i.e.,

Ck
Ns = k!(Ns−k)!

Ns!
.

3.5 Numerical Results and Comparisons

Table 3.1. Parameters of the example FH/TH-PPM UWB system

Parameter Notation 2nd-order mono-cycle

shaping factor for the pulse ε 0.25ns
time shift introduced by PPM δ 0.5ns

pulse duration Tp 0.5ns
frame duration Tf 8ns
chip duration Tc 1ns

number of hops Nh 6

The parameters of the example UWB systems are listed in Table 3.1.

• The discussion on Ns;

We fix NF = 20, q = 8, Nu = 10 and the energy of the signal and jammer in-

terference ratio Eb/PJ = 5dB, and compare the Symbol Error Rate (SER) and Bit

Error Rate (BER) among Ns = 1, 3, 5, 7. The results are shown in Figure. 3.3 and

Figure. 3.4 respectively. For SER, because, the more symbols used to transmit one

bit, the energy for each symbol is less, SER is increasing when the Ns increases.
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However, BER is more meaningful here, and obviously, the more symbols we used

to transmit one information bit, the better performance we can achieve. The curves

drop quickly from SNR = 0dB to 15dB, however, after 15dB, become flat, which

caused by the jammer interference.
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Figure 3.3. The average SER for different Ns.

• The discussion on Eb/PJ ;

We set NF = 20, Ns = 3, q = 8, and Nu = 10, and compare the SER and BER

among Eb/PJ = 0, 5, 10dB. Figure. 3.5 and Figure 3.6 show the results. For both

SER and BER, larger Eb/PJ can guarantee better performance. From Eb/PJ = 5dB

to Eb/PJ = 10dB, the performance gain is very limited, the reason of which is when

Eb/PJ is higher than some better threshold, the jammer interference is too weak

to give any impact to the system.

• The discussion on q;

NF , Ns, Nu and Eb/PJ are fixed at 20, 5, 10 and 5dB respectively.We try to

evaluate the performance for q = 2, 8, 18. At the first glance, larger q may be
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Figure 3.4. The average BER for different NS.

thought to yield worse performance, because large q means the probability that a

jammer interference bumps the information signal is higher. However, we need to

notice, high q also means the energy of the jammer interference for each sub-band

is less, because the total jammer interference power is fixed. We can get the same

conclusion in the Figure. 3.7 and Figure. 3.8. The worst and best performances are

get at q = 2 and q = 8 respectively.

• The discussion on NF ;

We evaluate the performance for NF = 1, 5, 10, 20 when Ns = 1, and the num-

ber of users who are at communication status is 100. We need to evaluate how

partitioning NF can decrease the MUI, therefore, we set it as a jammer interfer-

ence free channel. Obviously, Figure. 3.9 shows that we can get better performance

when NF is larger. Considering, more sub-bands partitioned means more cost, the

NF should be set at an appropriate value as long as the Quality of Service (QoS)

is satisfying.
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Figure 3.5. The average SER for different Eb/PJ .

• The discussion on Nu;

We set NF = 20, q = 8, Ns = 5 and Eb/PJ = 5dB. Nu is equal to 5, 10, 15, 20

respectively to get different performance, which are shown in Figure. 3.10 and Fig-

ure. 3.11. At high SNR, the performance is degraded quickly when Nu becomes

larger. That is because the MUI is related with Eb under the assumption that each

user has comparable power.

• The discussion on λ;

We proved in Section 3.2 that the Nu is approximately a Gaussian RV.With known

NU , the number of sensor nodes in the wireless sensor network, but unknown Nu,

the number of users that would share the same sub-band, we need to calculate the

SER as in (3.31). We set NU = 10, 000, NF is set as 20 and we assume the users

are optimally distributed. For different access rate, λ = 0.01 and λ = 0.02, the

performances are shown in Figure 3.12 and Figure. 3.13, we can see though the NU

are the same, the difference in λ would yield totally different performance.
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Figure 3.6. The average BER for different Eb/PJ .

3.6 Chapter Summary

In this chapter, we make an performance analysis with the presence of the multi-tone/pulse

jammer interference and multi-user interference based on the hybrid FH/TH-PPM-UWB

system. We get an accurate expressions of SER and BER with the presence of MUI and

hostile jammer interference. We evaluate the performances for different number of sym-

bols to carry one information bit Ns; the signal to jammer interference ratio Eb/PJ ; the

number of FH sub-bands NF ; the number of tones q of the jammer interference; the num-

ber of users sharing the same sub-band Nu; and the total number of users in the wireless

sensor networks NU , and the access rate for each sensor nodes λ, in terms of BER and

SER so as to show how these parameters affect to the FH/TH-PPM UWB system.
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Figure 3.8. The average BER for different q.
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Figure 3.9. The average BER for different NF .
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Figure 3.10. The average SER for different Nu.
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Figure 3.11. The average BER for different Nu.
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CHAPTER 4

EVENT DETECTION IN WIRELESS SENSOR NETWORKS

The main goal of wireless sensor network is to monitor physical world. Usually, people

are more interested in unexpected events. For example, in a scenario of battlefield, peo-

ple are more interested in the appearance of enemies. If a wireless sensor network is to

monitor forest-fire, unusual increasing of the temperature should be a necessary warning

to people. Both the appearance of enemies and the unusual increasing of the temperature

can be seen as events. Because of the energy constraint of wireless sensor network, the

ideal state of wireless sensor network should be event-driven, so that we can power off

the communication part at most of the time. Only when certain sensor nodes detect

an event, they trigger the communication channel, and transmit the useful information

to base-station or headquarters. Therefore, event-detection is one of the key issues for

wireless sensor network.

In this chapter we present two approaches of event-detection for wireless sensor net-

work, double sliding window and hybrid event-detection using fuzzy logic system. We use

Berkeley MICA2 motes[35] as our test-bed and evaluate the event-detection approaches

based on the acoustic data collected by the test-bed in different experiments.

The remainder of this chapter is organized as follows. the sensor model is given in

Section 4.1. The double sliding window and hybrid event-detection based on fuzzy logic

system approaches are presented in Section 4.2 and Section 4.3 respectively. Simulation

results and discussions are presented in section 4.4. Section 4.5 concludes this chapter.
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4.1 Acoustic Sensor Model

Acoustic amplitude sensor node measures sound amplitude at the microphone. Assuming

that the sound source is a point source and sound propagation is lossless and isotropic,

a root-mean-squared (RMS) amplitude measurement z is related to the sound source

position X as

z =
a

‖X − ς‖ + w, (4.1)

where a is the RMS amplitude of the sound source, ς is the location of the sensor, and

w is RMS measurement noise [53]. In this paper, we use Xbow wireless sensor network

professional developer’s kit MOTE-Kit for data collection.

4.2 Double Sliding Window event-detection

In [60],the acoustic energy in a fixed period of time is integrated, when it exceeds a

threshold, the authors claim a detection of event occurred, as:

Es =
M−1∑
m=0

|zn−m|2 , (4.2)

Es ≥ Ethreshold. (4.3)

However, this simple method suffers from a significant drawback; namely, the value of

the threshold depends on the sensed signal energy. When there is no event occurring in

the sensing range, the sensed signal consists of only noise. The level of the noise power is

generally unknown and can change when the environment changes or if unwanted inter-

ferers go on and off. Therefore, it is quite difficult to set a fixed threshold. We design a

double sliding window algorithm for event-detection so as to alleviate the threshold value

selection problem.
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The double sliding window event-detection algorithm calculates two consecutive slid-

ing windows of the sensed signal energy. The basic principle is to form the decision

variable as the ratio of the total energy contained inside the two windows. Figure 4.1

shows the windows A and B and the response of the ratio mn to a sensed event. It can

be seen that when only noise is sensed the response is flat, since both windows contain

ideally the same amount of noise energy.

Event


A
 B


Th

1


n

m


Figure 4.1. The response of the double sliding window event-detection algorithm.

The calculation of the window A and window B value is shown as

Ea =
M−1∑
m=0

|zn−m|2 , (4.4)

Eb =
M∑

m=1

|zn+m|2 . (4.5)

Then the decision variable mn is

mn =
Ea

Eb

. (4.6)

The advantage of this approach is the decision variable mn does not depend on the sensed

signal energy, but on the ratio of the energy of two consecutive windows.
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4.3 Hybrid Event-Detection Based on Fuzzy Logic System

Using the double sliding window algorithm to do event-detection is a good approach.

However, if an event continuously appears in the sensing range of a node, the ratio mn

will still be flat. The probability of detection will decrease accordingly. In order to solve

this problem, we present a hybrid event-detection algorithm based on fuzzy logic system.

4.3.1 Overview of Fuzzy Logic Systems

Figure 4.2 shows the structure of a fuzzy logic system (FLS) [61]. When an input is

applied to a FLS, the inference engine computes the output set corresponding to each

rule. The defuzzifer then computes a crisp output from these rule output sets. Consider

a p-input 1-output FLS, using singleton fuzzification, height defuzzification [61] and “IF-

THEN” rules of the form [59]

Rl : IF x1 is F l
1 and x2 is F l

2 and · · · and xp is F l
p, THEN y is Gl.

Assuming singleton fuzzification, when an input x′ = {x′1, . . . , x′p} is applied, the degree

of firing corresponding to the lth rule is computed as

µFl
1
(x′1) ? µFl

2
(x′2) ? · · · ? µFl

p
(x′p) = T p

i=1µFl
i
(x′i) (4.7)

where ? and T both indicate the chosen t-norm. There are many kinds of defuzzifiers. In

this paper, we focus, for illustrative purposes, on the height defuzzifier [61]. It computes a

crisp output for the FLS by first obtaining the height, yl, of every consequent set Gl, and,

then computing a weighted average of these heights. The weight corresponding to the

lth rule consequent height is the degree of firing associated with the lth rule, T p
i=1µFl

i
(x′i),
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so that

yh(x
′) =

∑M
l=1 ylT p

i=1µFl
i
(x′i)∑M

l=1 T p
i=1µFl

i
(x′i)

(4.8)

where M is the number of rules in the FLS. In this paper, we design a FLS for event-

detection of wireless sensor network.

FUZZIFIER  DEFUZZIFIER

   RULES

 INFERENCE

  FUZZY  LOGIC  SYSTEM

CRISP

INPUT

CRISP

OUTPUT

FUZZY   INPUT

SETS

FUZZY  OUTPUT
SETS

x ε X y=f(x) ε Y

Figure 4.2. The structure of a fuzzy logic system.

4.3.2 Hybrid event-detection algorithm

We have two inputs for the FLS:the accumulated signal energy Es in a fixed period of

time and the ratio of the accumulated signal energy in two consecutive sliding windows

mn. The linguistic variables used to represent them were divided into three levels: low,

moderate, and high. The consequent – the possibility that an event occurs – was divided

into five levels,very strong, strong , medium , weak and very weak. We used trapezoidal

membership functions (MFs) to represent low, high, very strong, very weak; and triangle

MFs to represent moderate, medium , strong, weak. We show these MFs in Figure 4.3(a)

and 4.3(b).
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Figure 4.3. MFs used to represent the linguistic labels.

Based on the fact that when event occurs, Es or mn should be high. We design a fuzzy

logic system using rules such as:

Rl : IF Es is F l
1 and mn is F l

2, THEN the possibility that there is event (y) is Gl.

where l = 1, · · · , 9. We summarize all the rules in Table 4.1.

4.4 Simulations

Figure 4.4 shows the basic data set, which was collected from Berkeley MICA2 motes,

we used in our simulations. In order to get the probability of detection P − d, and

probability of false alarm P − f , white Gaussian Noise is added, Signal-to-Noise Ratio

(SNR) is 10dB. We ran 100,000 Monte-Carlo simulations. The results of each algorithms

are summarized in Table 4.2. Obviously, in terms of both Pd and Pf , the performances

of both Double Sliding Window scheme and hybrid event-detection algorithm based on
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Table 4.1. Rules for event-detection. Antecedent 1 is Es, Antecedent 2 is mn.

Rule Antecedent 1 Antecedent 2 Consequent
1 low low very weak
2 low mod weak
3 low high mod
4 mod low weak
5 mod mod mod
6 mod high strong
7 high low mod
8 high mod strong
9 high high very strong

FLS are much better than that of signal strength event-detection algorithm.

0 50 100 150 200 250
0

5

10

15

20

25

30

35

event 

Figure 4.4. 240 sensed data set, the sample period is 1024ms.

4.5 Chapter Summary

In this chapter, we proposed two event-detection algorithms in Wireless Sensor Networks,

Double Sliding Window scheme and hybrid approach based on Fuzzy Logic System. We

use the basic data set collected by MOTE-Kit[35] test-bed and white Gaussian Noise is
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Table 4.2. Probabilities of detection and false alarms .

Pd Pf

Signal Strength event-detection 69.75% 0.08%
Double Sliding Window event-detection 91.499% 0.02%
Hybrid event-detection based on FLS 99.97% 0.05%

added. Simulation results show that both the Double Sliding Window and the hybrid

scheme based on FLS outperform the existing Signal Strength event-detection algorithm

in terms of both the probability of detection and the probability of false alarm.



CHAPTER 5

EVENT FORECASTING FOR WIRELESS SENSOR NETWORKS

This chapter proposes using fuzzy logic system to forecast the events in wireless sen-

sor networks. Section 5.1 will first study the self-similarity property of the sensed data

in wireless sensor network, which means that the sensed data are forecastable. Type-2

Fuzzy Set and Interval Type-2 Fuzzy Logic Systems will be introduce in Section 5.2. We

proposed to forecast the sensed signal strength and event using interval Type-2 fuzzy

logic system in Section 5.3 and Section 5.4 respectively. The simulation result is shown

in Section 5.5. Section 5.6 gives a summary of this chapter.

5.1 Self-Similarity of Sensed Signal Strength in wireless sensor network

For a detailed discussion on self-similarity in time-series, see [82, 98]. Here we briefly

present its definition [16]. Given a zero-mean, stationary time-series X = (Xt; t =

1, 2, 3, · · · ), we define the m-aggregated series X(m) = (X
(m)
k ; k = 1, 2, 3, · · · ) by sum-

ming the original series X over nonoverlapping blocks of size m. Then it’s said that X

is H-self-similar, if, for all positive m, X(m) has the same distribution as X rescaled by

mH . That is,

Xt ≡ m−H

tm∑

i=(t−1)m+1

Xi ∀m ∈ N. (5.1)

If X is H-self-similar, it has the same autocorrelation function r(k) = E[(Xt−µ)(Xt+k−
µ)]/σ2 as the series X(m) for all m, which means that the series is distributively self-

similar: the distribution of the aggregated series is the same as that of the original.

57
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Self-similar processes can show long-range dependence. A process with long-range de-

pendence has an autocorrelation function r(k) ∼ k−β as k → ∞, where 0 < β < 1.

The degree of self-similarity can be expressed using Hurst parameter H = 1− β/2. For

self-similar series with long-range dependence, 1/2 < H < 1. As H → 1, the degree of

both self-similarity and long-range dependence increases.

One method that has been widely used to verify self-similarity is the variance-time plot,

which relies on the slowly decaying variance of a self-similar series. The variance of X(m)

is plotted against m on a log-log plot, and a straight line with slope (−β) greater than

−1 is indicative of self-similarity, and the parameter H is given by H = 1− β/2. We use

this method to verify the self-similarity of acoustic signal.

In our experiments, 8 sensors were deployed in a lab. The location of each sensor is

plotted in Fig. 5.1. We designed two scenarios, one is with a fixed source, and the other

is without a fixed source. In Fig. 5.2, we plot the variance of X(m) against m on a log-log

plot for 8 sensor node data respectively in the first scenario and Fig. 5.3 is under the

second scenario. From the two figures, it’s very clear that the no matter under what kind

of condition the sensor network data have self-similarity because their traces have slopes

much greater than −1.

5.2 Introduction Interval Type-2 Fuzzy Logic Systems

5.2.1 Introduction to Type-2 Fuzzy Set

The concept of type-2 fuzzy sets was introduced by Zadeh [106] as an extension of the

concept of an ordinary fuzzy set, i.e., a type-1 fuzzy set. Type-2 fuzzy sets have grades of

membership that are themselves fuzzy [19]. A type-2 membership grade can be any sub-

set in [0, 1] – the primary membership; and, corresponding to each primary membership,

there is a secondary membership (which can also be in [0, 1]) that defines the possibilities
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Figure 5.1. The deployment of eight sensor nodes in our experiments.
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Figure 5.2. The variance-time plot (fixed source).
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Figure 5.3. The variance-time plot .
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for the primary membership. A type-1 fuzzy set is a special case of a type-2 fuzzy set;

its secondary membership function is a subset with only one element, unity. Type-2

fuzzy sets allow us to handle linguistic uncertainties, as typified by the adage “words can

mean different things to different people.” A fuzzy relation of higher type (e.g., type-2)

has been regarded as one way to increase the fuzziness of a relation, and, according to

Hisdal, “increased fuzziness in a description means increased ability to handle inexact

information in a logically correct manner [36]”.

Figure 5.4 shows an example of a type-2 set. The domain of the membership grade

corresponding to x = 4 is also shown. The membership grade for every point is a Gaus-

sian type-1 set contained in [0, 1], we call such a set a “Gaussian type-2 set”. When

the membership grade for every point is a crisp set, the domain of which is an interval

contained in [0, 1], we call such type-2 sets “interval type-2 sets” and their membership

grades “interval type-1 sets”. Interval type-2 sets are very useful when we have no other

knowledge about secondary memberships. An interval type-2 MF is characterized by an

upper and lower MF [57]. An upper MF and a lower MF are two type-1 MFs which are

bounds for the footprint of uncertainty of an interval type-2 MF. The upper MF is a

subset which has the maximum membership grade of the footprint of uncertainty; and,

the lower MF is a subset which has the minimum membership grade of the footprint of

uncertainty.

Example 1: Gaussian Primary MF with Uncertain Mean

Consider the case of a Gaussian primary MF having a fixed standard deviation, σl
k, and

an uncertain mean that takes on values in [ml
k1,m

l
k2], i.e.,

µl
k(xk) = exp

[
−1

2
(
xk −ml

k

σl
k

)2
]
, ml

k ∈ [ml
k1,m

l
k2] (5.2)
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where: k = 1, . . . , p; p is the number of antecedents; l = 1, . . . , M ; and, M is the number

of rules. The upper MF, µl
k(xk), is (see Fig. 5.5)

µl
k(xk) =





N (ml
k1, σ

l
k; xk) , xk < ml

k1

1 , ml
k1 ≤ xk ≤ ml

k2

N (ml
k2, σ

l
k; xk) , xk > ml

k2

(5.3)

where, for example, N (ml
k1, σ

l
k; xk)

4
= exp

(
−1

2
(

xk−ml
k1

σl
k

)2
)
.

The lower MF, µl
k
(xk), is (see Fig. 5.5)

µl

k
(xk) =





N (ml
k2, σ

l
k; xk) , xk ≤ ml

k1+ml
k2

2

N (ml
k1, σ

l
k; xk) , xk >

ml
k1+ml

k2

2

(5.4)

2

5.2.2 Introduction to Type-2 FLS

Figure 5.6 shows the structure of a type-2 FLS[52]. It is very similar to the structure

of a type-1 FLS [61]. For a type-1 FLS, the output processing block only contains the

defuzzifier. We assume that the reader is familiar with type-1 FLSs, so that here we

focus only on the similarities and differences between the two FLSs.

The fuzzifier maps the crisp input into a fuzzy set. This fuzzy set can, in general,

be a type-2 set. In the type-1 case, we generally have “IF-THEN” rules, where the lth

rule has the form

“Rl : IF x1 is Fl
1 and x2 is Fl

2 and · · · and xp is Fl
p, THEN y is Gl”,
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where: xis are inputs; Fl
is are antecedent sets (i = 1, . . . , p); y is the output; and Gls

are consequent sets. The distinction between type-1 and type-2 is associated with the

nature of the membership functions, which is not important while forming rules; hence,

the structure of the rules remains exactly the same in the type-2 case, the only difference

being that now some or all of the sets involved are of type-2; so, the lth rule in a type-2

FLS has the form

“Rl : IF x1 is F̃
l

1 and x2 is F̃
l

2 and · · · and xp is F̃
l

p, THEN y is G̃
l
”.

In the type-2 case, the inference process is very similar to that in type-1. The infer-

ence engine combines rules and gives a mapping from input type-2 fuzzy sets to output

type-2 fuzzy sets. To do this, one needs to find unions and intersections of type-2 sets,

as well as compositions of type-2 relations.

In a type-1 FLS, the defuzzifier produces a crisp output from the fuzzy set that is the

output of the inference engine, i.e., a type-0 (crisp) output is obtained from a type-1 set.

In the type-2 case, the output of the inference engine is a type-2 set; so, “extended ver-

sions” (using Zadeh’s Extension Principle [106]) of type-1 defuzzification methods were

proposed in[52]. The type-reduction gives a type-1 fuzzy set called “type-reduction set”.

To obtain a crisp output from a type-2 FLS, we can defuzzify the type-reduced set.

The most natural way of doing this seems to be by finding the centroid of the type-

reduced set; however, there exist other possibilities like choosing the highest membership

point in the type-reduced set.

General type-2 FLSs are computationally intensive, because type-reduction is very in-

tensive. Things simplify a lot when secondary membership functions (MFs) are interval
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sets (in this case, the secondary memberships are either 0 or 1). When the secondary

MFs are interval sets, the type-2 FLSs are called “interval type-2 FLSs”. In [57], Liang

and Mendel proposed the theory and design of interval type-2 FLSs. They proposed

an efficient and simplified method to compute the input and antecedent operations for

interval type-2 FLSs, one that is based on a general inference formula for them.

In an interval type-2 nonsingleton FLS with type-2 fuzzification and meet under min-

imum or product t-norm, the result of the input and antecedent operations, Fl, is an

interval type-1 set, i.e., F l = [f l, f
l
], where f l and f

l
simplify to

f l = µ
F̃

l
1
(x1) ? . . . ? µ

F̃
l
p
(xp) (5.5)

and

f
l
= µ

F̃
l
1
(x1) ? . . . ? µ

F̃
l
p
(xp) (5.6)

where xi (i = 1, . . . , p) denotes the location of the singleton. In this paper, we use center-

of-sets type-reduction [57], which can be expressed as:

Ycos(Y
1, · · · , Y M , F 1, · · · , FM) = [yl, yr] =

∫

y1

· · ·
∫

yM

∫

f1

· · ·
∫

fM

1
/∑M

i=1 f iyi

∑M
i=1 f i

(5.7)

where Ycos is an interval set determined by two end points, yl and yr; f i ∈ F i = [f i, f
i
];

yi ∈ Y i = [yi
l , y

i
r], and Y i is the centroid of the type-2 interval consequent set G̃

i
, and,

i = 1, . . . , M . We also use the training method proposed in [57] for designing an interval

type-2 FLS in which its parameters are tuned.
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Figure 5.4. Representation of a Gaussian type-2 set.

5.3 Sensed Signal Strength Forecasting Using Interval Type-2 FLS

Acoustic amplitude sensor node measures sound amplitude at its microphone. Assuming

that the sound source is a point source and sound propagation is lossless and isotropic,

a root-mean-squared (RMS) amplitude measurement z is related to the sound source

position X as

z =
a

‖X − ς‖ + w, (5.8)

where a is the RMS amplitude of the sound source, ς is the location of the sensor, and

w is RMS measurement noise [53]. According to [53], w is modeled as a Gaussian with

zero mean and variance σ2. The sound source amplitude a is also modeled as a random

quantity, which is uniformly distributed in the interval [alo, ahi]. Given the location of

the sound source X and the sensor position ς, a
‖X−ς‖ is uniformly distributed as a is.
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Figure 5.5. The interval type-2 MFs with fixed std and uncertain mean.
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Figure 5.6. The structure of a type-2 FLS.

Therefore, z should be modeled as a Gaussian primary MF having a fixed standard de-

viation and an uncertain mean, as shown in Fig 5.5.

FLSs have been extensively used in time-series forecasting (e.g., [62, 57]). Since the

sensed signal strength in wireless sensor network is self-similar as demonstrated in Sec-

tion 5.1, its characteristics can be captured, which also means it can be forecasted. Here

we apply an interval Type-2 FLS to do a multi-step forecasting, the step size is L. We

use four antecedents, i.e., x(k− 4×L), x(k− 3×L), x(k− 2×L), and x(k− 1×L), as

inputs of the FLS to predict x(k). Similarly, we use x(k − 4× L + i), x(k − 3× L + i),

x(k− 2×L + i), and x(k− 1×L + i) to predict x(k + i), ∀i < L. If antecedent has two

fuzzy sets, the number of rules is 24 = 16. The rules are set up as one example shown
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bellow:

Rl : IF x(k − 4× L) is F̃
l

1 and x(k − 3× L) is F̃
l

2 and x(k − 2× L) is F̃
l

1 and

x(k − 1× L) is F̃
l

2, THEN x(k) is G̃l.

We use center-of-sets type reduction and steepest descent training algorithm [57] to de-

sign this interval type-2 FLS.

For comparison, we also design a type-1 FLS for signal strength forecasting. Antecedents

are the same as in the interval type-2 FLS, however Gaussian MFs are chosen for this

type-1 FLS. There are also 16 rules, since each of the antecedents has 2 fuzzy sub-set as

well. The rule is designed as:

Rl : IF x(k − 4× L) is Fl
1 and x(k − 3× L) is Fl

2 and x(k − 2× L) is Fl
1 and

x(k − 1× L) is Fl
2, THEN x(k) is Gl.

We use center-of-sets defuzzifier and steepest descent training algorithm to design this

type-1 FLS.

5.4 Event Forecasting

Our event forecasting scheme consists of two steps:

1. Sensed signal strength forecasting, which has already been explained in the previ-

ous section;

2. Event detection. Double sliding window event detection scheme, which was pro-

posed in the previous section is used here.
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The double sliding window event-detection algorithm calculates two consecutive sliding

windows of the sensed signal energy. The basic principle is to form the decision variable

as the ratio of the total energy contained inside the two windows. Figure 4.1 shows the

windows A and B and the response of the ratio mn to the start and end of a sensed event.

It can be seen that when only noise is sensed the response is flat, since both windows

contain ideally the same amount of noise energy. The calculation of the window A and

window B value is represented as in (4.4) to (4.6).

The advantages of this approach are:

• The decision variable mn does not depend on the sensed signal energy, but on the

ratio of the energy of two consecutive windows;

• Not only can we predict the starting edge of the event, but also the ending edge,

i.e. , when Mn below the threshold Th2, the event is claim ending(see Fig. 4.1.(b)).

5.5 Simulations

Our simulations were based on N = 480 samples, x(1), x(2), . . ., x(480). The first 240

data, x(1), x(2), . . ., x(240), are for training, and the remaining 240 data, x(241), x(242),

. . . , x(480) are for testing. In Fig. 5.7, we plot the sensed data that we used for training

and testing, x(1), x(2), . . ., x(480). A standard 1kHz audio signal with different volume

levels was used to simulate the events. Each sample has 1024ms duration.

We applied a type-1 FLS and an interval type-2 FLS for sensed signal forecasting. The

initial locations of antecedent MFs were based on the mean, mt, and std, σt, of the

training data set. The parameters and number of parameters in the type-1 FLS and

interval type-2 FLS are summarized in Table 5.1. The initial values we choose for the
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Gaussian MFs are listed in Table 5.2. Then, we use steepest descent algorithm to train

all the parameters based on the training data. After training, all the parameters and

rules are fixed and we test the interval type-2 FLS based on the remaining 240 sam-

ples, x(241), x(242), . . ., x(480). We set the step size as L = 5 in both the type-1 FLS

and the interval type-2 FLS. Meanwhile, the window size M equals to 5 in double slid-

ing window event-detection as well. That makes the sensed signal forecasting meaningful.

Table 5.1. The parameters in type-1 and interval type-2 FLSs

FLS type-1 interval type-2
Parameters in one antecedent mFi

k
, σFi

k
m

F̃
i
k1

, m
F̃

i
k2

, σ
F̃

i
k

Parameters in one consequent yi yi
l , yi

r

Total number of Parameters 144 224

Table 5.2. Initial values of the parameters in type-1 and interval type-2 FLSs

Type-1 FLS Interval Type-2 FLS
mean mt − 2σt [mt − 2.5σt,mt − 1.5σt]

or mt + 2σt or [mt + 1.5σt,mt + 2.5σt]
σ σFi

k
= 2σt σ

F̃
i
k

= 2σt

consequent yi ∈ [min,max] yi
l = yi − σt,

yi
r = yi + σt

We compared the performance of the interval type-2 FLS with that of the type-1 FLS for

sensed signal strength forecasting. For each FLS, we ran 100 Monte-Carlo realizations

to eliminate the randomness of the consequences, and the two FLSs were tuned using

a simple steepest-descent algorithm for 5 epochs. We used the testing data to see how

each FLS performed by evaluating the root-mean-square-error (RMSE) between the de-
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fuzzified output of the FLS and the actual sensor data (x(k + 1)), i.e.,

RMSE =

√√√√ 1

240

480∑

k=241

[x(k)− f(xk)]2, (5.9)

where xk = [x(k−4×5), x(k−3×5), x(k−2×5), x(k−1×5)]T , and T denotes transpose.

The RMSE of all simulations are summarized in Figure 5.8. Observe Figure 5.8, the

interval type-2 FLS outperforms the type-1 FLS in the sensed signal strength forecasting.

We are more interested in the system’s capability of forecasting the events, especially

the starting point of the events. We used the forecasted data sets to detect the starting

point of the events, i.e., the time stamp of event occurrence and then compared with the

actual time stamp. We evaluated our double sliding window algorithm and compared it

against the cumulated signal strength scheme[60]. We chose Th1 = mean + std for the

double sliding window event detection. Since the threshold is hard to choose for cumu-

lated signal strength scheme, we ran simulation for 3 different thresholds: i.e., mean,

mean+ std/2 and mean+ std. We also ran 100 Monte-Carlo simulations so as to get the

average absolute error between the forecasted and actual time stamp, 1
100

∑100
i=1 |Di − Pi|,

where Di is the detected starting point (based on the forecasted signal) and Pi is the

actual starting point. The results are summarized in Table 5.3.

Observe Table 5.3, the performance of event detection based on the forecasted signal

from type-2 FLS is much better than that based on the forecasted signal from type-1

FLS. Meanwhile, our double sliding window is more effective than the existing cumulated

signal strength scheme. Event forecasting helps us for power on/off management of the

wireless sensor network, i.e. , we can power on the communication part of sensor nodes

only when event has been forecasted. Since the sensor, signal processing parts consume

less than 1/10 of the energy consumed by the communication part[89], this power on-off



70

strategy can save the energy tremendously.

Table 5.3. Average absolute error between the forecasted and actual time stamp

type-1 FLS interval type-2 FLS
double sliding window 7.8 1.4

SS with th = m 57.8 18.7
SS with th = m + σ/2 24.4 13.0
SS with th = m + σ 20.5 16.6

5.6 Chapter Summary

In this chapter, we proposed an event forecasting scheme for wireless sensor networks

using interval type-2 fuzzy logic system. Our event forecasting scheme consists of two

steps: sensed signal strength forecasting and event detection. We demonstrated that

real-world sensed acoustic signals are self-similar, which means they are forecastable. We

showed that a type-2 fuzzy membership function (MF), i.e., a Gaussian MF with uncer-

tain mean is appropriate to model the sensed signal strength of wireless sensors. We then

applied an interval type-2 FLS to perform sensed signal forecasting. Furthermore, we

proposed a double sliding window for event detection based on the forecasted signal, and

compared it against the existing cumulated signal strength scheme. Simulation results

show that FLSs can be used for sensed signal strength forecasting, and the interval type-2

FLS performs much better than the type-1 FLS in sensed signal forecasting. The sensed

signal forecasting can further be used for event detection, and the average absolute error

between the actual starting point and the point detected based on the sensed signal from

the interval type-2 FLS is much smaller than the one based on the sensed signal from

the type-2 FLS.
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Figure 5.7. Sensed data for 1024 seconds. (The sample period is 1024ms).
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Figure 5.8. The forecasting RMSE by two FLSs.



CHAPTER 6

REDUNDANCY REDUCTION IN WIRELESS SENSOR NETWORKS

6.1 Cross-similarity of Sensor Network Data

Usually, in wireless sensor networks, sensor nodes are densely deployed, e.g., tens of sen-

sor nodes per square meters [63], therefore the information data collected from adjacent

sensor nodes might be very similar with each other, that also means there exists redun-

dancy among those information.

The study about self-similarity in Section 5.1 can be extended. We try to prove that

not only does the data from one sensor node have self-similarity, but cross-similarity

among the data of all the adjacent sensor nodes have cross-similarity as well, which can

directly demonstrate that there exists redundancy in the collected data of the wireless

sensor networks. In order to prove that, we mixed the data sets together to get a new

time series as Y = (X1
t , X2

t , · · · , X8
t ; t = 1, 2, 3, · · · ). We test its self-similarity by plotting

the variance-time curve in Fig 6.1 as well. From these three figures, it’s very clear that

the no matter under what kind of condition both the single sensor network data and the

mixed sensor networks data have self-similarity because their traces have slopes much

greater than −1.

6.2 Redundancy Reduction in Wireless Sensor Networks Using SVD-QR

In the previous section, we have proved that the data sets collected by adjacent sensor

nodes are quite similar with each other. It is clear that there exists redundancy among the

collected information. Therefore, two questions are popping up. Is such kind of redun-

dancy profitable? Does more copies of the data set mean better estimates? The answers

72
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Figure 6.1. The variance-time plot for mixed sensor data.

are both no. The goal of wireless sensor networks is to monitor the physical world, pro-

vide enough information in which users are interested so that users can perform further

tasks, e.g., events detection, targets estimating and tracking. Blair and Bar-Shalom have

already demonstrated in [9] that more data from more sensor nodes doesn’t mean better

performance in terms of the maximum root-mean square errors(RMSE). Meanwhile, if

we can get enough information from less sensor nodes, we can turn off the other sensor

nodes so as to preserve energy and prolong the lifetime of the whole networks.

How to select the principal nodes to effectively represent the whole neighborhood? We

view the data from all the adjacent sensor nodes as a matrix P , each column of P is the

data from one sensor node, each row of P is the data collected at one epoch from all the

sensor nodes. Therefore, the principal nodes picking problem can be simplified as subset

selection.

Several subset selection methods exist [14], but a singular value decomposition (SVD)

method is preferable in rank deficient problems [26]. Furthermore, the SVD provides a

natural way to separate a space into dominant and subdominant subspaces. If we view

the data matrix P as a span of the input subspace, then the SVD decomposes the span
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into an equivalent orthogonal span, from which we can identify the dominant and sub-

dominant spans. In this way, we solve two problems simultaneously: (i) we estimate the

data sets from how many sensor nodes are needed to effectively represent the neighbor-

hood, and, (ii) we identify the data sets from which sensor nodes are the principal ones.

The remainder can be discarded, and those sensor nodes can be turned off to conserve

the energy.

6.2.1 Introduction of SVD-QR Algorithm

Here, we use the following SVD-QR algorithm that is similar to the one in [26] and [27]

to select a set of independent data sets that minimize the residual error in a least-squares

sense:

1. Given P ∈ RN×M , assume N > M , and rank(P ) = r ≤ M denote the rank of

P . Determine a numerical estimate r
′

of the rank of the data sets matrix P by

calculating the singular value decomposition

P = U




Σ 0

0 0


 V T , (6.1)

where, U is an N × N matrix of orthonormalized eigenvectors of PP T , V is an

M × M matrix of orthonormalized eigenvectors of P T P , and Σ is the diagonal

matrix Σ = diag(σ1, σ2, . . . , σr), where σi denotes the ith singular value of P , and

σ1 ≥ σ2 ≥ · · · ≥ σr > 0. Select r̂ ≤ r
′
.

2. Calculate a permutation matrix Π such that the columns of the matrix Γ1 ∈ RN×r̂

in

PΠ = [Γ1, Γ2] (6.2)
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are independent. The permutation matrix Π is obtained from the QR decomposi-

tion of the sub-matrix comprised of the right singular vectors, which correspond to

the r̂ ordered most-significant singular values.

In short, we select the data sets as the following:

• Decomposes P , from the SVD of P , save V .

• Observe Σ. Select an appropriate r̂.

• Partition

V =




V11 V12

V21 V22


 (6.3)

where V11 ∈ Rr̂×r̂, V12 ∈ Rr̂×(M−r̂), V21 ∈ R(M−r̂)×r̂, and V22 ∈ R(M−r̂)×(M−r̂).

In many practical cases, σ1 is much larger than σr′ ; thus r̂ can be chosen much

smaller than the estimate r
′
of rank(P ), even 1.

• Using QR decomposition with column pivoting, determine Π such that

QT [V T
11, V

T
21]Π = [R11, R12], (6.4)

where Q is a unitary matrix, and R11 and R12 form an upper triangular ma-

trix; and Π is the permutation matrix, the column permutation Π is chosen so

that abs(diag(R)) is decreasing. In short, Π corresponds to the r̂ ordered most-

significant sets.
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6.2.2 Examples of Redundancy Reduction Using SVD-QR

Here, we give an example of how to use SVD-QR decomposition to reduce the redundancy

in wireless sensor networks, i.e., determine how many sensors of data should be selected.

We use the data sets which also has been used in Section 5.1, and get one clip, i.e.,

8 sensor nodes, each one has 100 samples of data, as the input of the following example.

Example 2

• step 1. SVD the input matrix P , get:

diag(Σ) = (14160, 74, 20, 14, 13, 10, 9, 7);

Clearly, Σ(1, 1) is much larger than Σ(2, 2). That means we can only select one

data set to represent all the eight sets of data, i.e., r̂ = 1.

• step 2. Partition the V, and get V11 and V21, which are needed in QR decomposi-

tion, V11 = −0.3565, and

V21 =




−0.3556

−0.3535

−0.3512

−0.3546

−0.3526

−0.3540

−0.3503




.

• step 3. Using QR decomposition with column pivoting to determine the economy

matrix Π. Since in this example, r̂ = 1, we only care about the first column of Π,
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Π(:, 1) =




1

0

0

0

0

0

0

0




.

That means the first column of the input matrix P , i.e., the data collected from

the first sensor node is the most-significant one, which can effectively represent all

the eight sensor nodes in the neighborhood. ]

Example 3

What if we select more than one set of data? We have the following example to explain.

We get another clip of data, still has 8 sensor nodes, each one has 100 samples of data,

as the input.

• step 1. SVD the input matrix P , get:

diag(Σ) = (14759, 368, 275, 200, 186, 146, 97, 68).

Oberserve Σ, the decreasing scope from Σ(1, 1) to Σ(2, 2) is not as large as it is in

Example 1 . So, we have r̂ = 2.

• step 2. Partition the V, and get V11 and V21,
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V11 =



−0.3503 0.1919

−0.3582 −0.1618


, and

V21 =




−0.3528 0.3369

−0.3570 −0.8685

−0.3580 −0.1417

−0.3525 0.0853

−0.3585 0.1548

−0.3406 0.1338




.

• step 3. Using QR decomposition with column pivoting to determine the economy

matrix Π. Since r̂ = 2, we only care about the two column of Π,

Π(:, 1 : 2) =




0 0

0 0

0 1

1 0

0 0

0 0

0 0

0 0




.

That means the forth and third columns of the input matrix P , i.e., the data

collected from the forth and third sensor nodes are the most-significant ones, which

can effectively represent all the eight sensor nodes in the neighborhood. ]

From our plenty of simulations, the significant one(s) are changing, that depends on the

change of the environment. However, we can define a coherent time , in this time, the
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environment is assumed to keep stable to a certain extend.

6.3 Chapter Summary

In this chapter, we first proved there exists not only self-similarity in the data from one

sensor node, but cross-similarity among the data of all the adjacent sensor nodes also.

That demonstrated that there exists redundancy in the collected data of the wireless

sensor networks. Taking energy efficiency and better performance into consideration, we

proposed to use SVD-QR to select the principal data sets from particular sensor nodes to

represent the all the sensor nodes in the neighborhood effectively. We gave two examples

to show how to do it.



CHAPTER 7

CONCLUSION

This chapter concludes the thesis. The chapter begins with a summary of the thesis

results and contributions, follows with a discussion of future research directions in the

physical layer design of wireless sensor networks.

7.1 Summary

This thesis has focused on the physical layer issues in the design of wireless sensor net-

works. The contributions of this thesis are:

MIMO Wireless Sensor Network : We discussed the virtual MIMO structure in wire-

less sensor network, set up MIMO system model focused on one-hop inter-cluster

transmission. Investigated the error model of the channel estimation, and analyzed

how the estimation error will impact the optimal water-filling strategy along with

the numerical results based on the Monte-Carlo simulations [94, 95](chapter 2).

UWB Sensor Network : We proposed a hybrid TH/FH PPM UWB for wireless sen-

sor networks, and based on this system we made a performance analysis with the

presence of the multi-tone/pulse jammer interference and multi-user interference.

An accurate expressions of SER and BER with the presence of MUI and hostile

jammer interference was obtained. We also evaluated the performances for dif-

ferent selections of the parameters to show how these parameters affect to the

system [96, 97](chapter 3).

80
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Event Detection in Wireless sensor Networks : Two event detection schemes in Wire-

less Sensor Networks were proposed, including double sliding window and hybrid

hybrid event-detection using fuzzy logic system. We collect the data set by MOTE-

Kit[35] test-bed. Simulation results showed that both the Double Sliding Window

and the hybrid scheme based on FLS outperform the existing Signal Strength event-

detection algorithm in terms of both the probability of detection and the probability

of false alarm [90](chapter 4).

Event Forecasting for Wireless Sensor Networks : An event forecasting scheme for wire-

less sensor networks using interval type-2 fuzzy logic system was proposed. We

demonstrated that real-world sensed acoustic signals are self-similar, which means

they are forecastable. A type-2 fuzzy membership function (MF), i.e., a Gaussian

MF with uncertain mean was shown to be appropriate to model the sensed sig-

nal strength of wireless sensors. The sensed signal forecasting can further be used

for event detection, and the average absolute error between the actual starting

point and the point detected based on the sensed signal from the interval type-

2 FLS is much smaller than the one based on the sensed signal from the type-2

FLS [91, 92](chapter 5).

Redundancy reduction in wireless sensor networks : we first proved there exists not only

self-similarity in the data from one sensor node, but cross-similarity among the data

of all the adjacent sensor nodes also. That theocratically demonstrated that there

exists redundancy in the collected data of the wireless sensor networks. Taking

energy efficiency and better performance into consideration, we proposed to use

SVD-QR to select the principal data sets from particular sensor nodes to represent

the all the sensor nodes in the neighborhood effectively [93](chapter 6).
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7.2 Future directions

7.2.1 Multiple Event Detection in wireless sensor networks

In our propose work in Chapter 4 and 5, we focused on single event detection

in wireless sensor networks. However, it can be extended to a more meaningful multiple

event detection and propagation problem, i.e., the local sensing of a series of crucial

events and the energy efficient data reporting the realization of these events to a (fixed

or mobile) control center.

This work includes:

• The cooperation of local sensor nodes. Nearby sensor nodes work coordinately,

make the detection for different events together so as to increase the probability of

detection, Pd and decrease the probability of false alarm, Pf ;

• Classification of multiple events. Events may belong to the same class, or not.

E.g., in a battlefield, an event may mean the appearance of a soldier or a tank. If

the sensor nodes can not only detect events, but also classify the events, it will a

significant progress.

• Propagation through multiple hops. To reserve energy, the communication mode

of WSN is multi-hop mode. After the local sensing, processing and detecting of the

events, it is necessary to report the results to a control center, wherein a multi-hop

transmission is a must. How to fuse all the data and achieve a reliable transmission

is also important.
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7.2.2 MIMO UWB for wireless sensor networks

The system we addressed in Chapter 3 is a Single Input Single Output (SISO) system.

However, Multiple Input Multiple Output (MIMO) will be a better solution to wireless

sensor networks. MIMO can achieve better performance in terms of error probability,

i.e., BER, and high throughput [83]. The trade-off between diversity and multiplexing

gains should be considered. Concerning the realization of MIMO, local nodes can be

noncooperative, half-cooperative or cooperative. Energies consumed in transmission,

processing circuitry and cooperation should be studied to get an optimal energy efficiency,

satisfying diversity and multiplexing gains.
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