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Abstract 

DEVELOPMENT AND SIMULATION OF FOCUS OF ATTENTION USING 

REINFORCEMENT LEARNING AND FUNCTION APPROXIMATION 

 

 

Stephen Ratz, CSE 

 

The University of Texas at Arlington, 2013 

 

Supervising Professor: Manfred Huber 

Without short-term memory, humans would have little hope to learn and 

accomplish tasks. The same can be said for artificially intelligent agents. Often referred 

as Miller's Law, the number of working objects that a human can hold in working memory 

is around seven. For an AI agent, the cost of keeping additional memory blocks is 

exponential. Other issues to consider are what to keep in memory and for how long. Only 

a few of many of an agent's previous steps may be important to hold on to. This thesis 

project attempts to train an intelligent agent to learn what to hold onto in memory using 

Reinforcement Learning in order to accomplish a task. Function Approximation is used to 

mitigate the memory requirements of a task as simple as block copying. The concepts 

used in this thesis can be applied to any task that requires memory management.
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Chapter I  

Introduction 

1.1 Problem Description 

Humans are habitually trying to create mirror images of themselves. From small 

figurines to paintings to puppets, humans instinctually try to create and understand what they 

themselves are. The advancement of technology and modern computing has allowed humans 

yet another avenue to pursue one of their most coveted activities. 

Artificial Intelligence is a field in Computer Science whereby intelligent agents are 

developed and studied in relation to their environments. In one of the areas within this field, 

agents are tasked with comprehending their environment and making decisions to achieve a 

maximum outcome or the most reward. Agents in one way or another are given or develop a 

model (state) of the world. Based on what an agent perceives as the state of the world, an 

agent makes a decision (performs an action). Note that even no action is a perfectly valid 

action. Over time, an intelligent agent has the opportunity to develop a ‘policy’ of what actions 

are best based on the state of the world. 

Memory and perception are intimately related. Humans have more or less five senses, 

depending on a person’s physical capacity, which are: sight, hearing, touch, taste, and smell. 

Based on these external stimuli, humans develop an internal model of the world. These models 

are not guaranteed to be accurate or precise. One person’s model of the world may be a 

completely different than someone else’s. For a person that has not seen a lion for example, 

that creature does not exist in his/her model. This situation may or may not be a perfectly valid 

model. If a person is not in an environment where lions occur, then it is not necessary to model 

the creature. For environments where lions do occur, a person may suffer dire consequences 

for not having that in his/her model. In less severe circumstances, a person will have to re-

evaluate his/her internal model of the world. Human memories can be thought of as a collection, 

often visualized of as a table, of recordings of models and of states of the world. This state table 
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can become quite huge. Often a human’s model of the world is not precise in relation to reality. 

A human must make conscious and/or un-conscience decisions about what to include in his/her 

model of the world. In some cases, information like sights or sounds may not be distinguishable 

to some humans. These same complexities are applicable to artificially intelligent agents. 

Design of AI agents involves much of the following: making decisions about what to keep in an 

agent’s state information, how long to store state information, how to represent state, how to 

handle physically memory limitations, what external stimuli an agent needs, the cost-benefit of 

processing information, etc. 

Focus of Attention involves the filtering of data into a more useable form. For an AI 

agent, and humans for that matter, too much information is not useful and is often associated 

with prohibitively high computation times and memory storage. Two main facets of Focus of 

Attention are the filtering and selection of information and also the memory management 

application of deciding and strategizing of what information to hold onto and when. This thesis is 

associated with the memory management facet of Focus of Attention and is related to and 

expanding the work of Srividhya [Rajendran 2003].  The work in this thesis uses Function 

Approximation with Reinforcement Learning to tackle memory and computation complexities of 

exponentially large state spaces. More specifically, this work can be thought of as a Partially 

Observable Markov Decision Process (POMDP) treated as a Markov Decision Process (MDP) 

that simulates short-term memory in humans. See chapter three in this thesis for background on 

POMDP and MDP.  The intelligent agent is not in a fully observable environment but must act 

and make decisions as if it were. The agent’s state information contains a perceptual memory 

block and a configurable number of auxiliary memory blocks. The perceptual memory block 

stores the agent’s previous action and its result(s). The agent may choose to store what’s in the 

perceptual memory block into an available auxiliary memory block. Different action schedules 

for the timing of this memory action are being exposed and evaluated here.  Each memory 

block contains a tuple of state information: action, parameter(s), and result(s). Thus in the case 
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of the blocks world domain used as an example domain in the experiments in this thesis, the 

agent’s state information contains whether or not the agent is holding something and memory 

blocks (a sequence of tuples). Because the state information contains a sequence of tuples, the 

memory complexity is of the order of product of sequences, which is practically exponential. 

Since the agent is actively choosing whether or not to hold something in memory, the agent is 

learning memory management. The agent is also learning Focus of Attention, because it is 

learning which actions and features to pay attention to and when.  The challenge for the agent 

is to perform and remember sequences of actions in order to accomplish a task. The task can 

be arbitrary, and therefore this research has applications in many other areas. 

The experiments in this thesis focus on the task of block copying.  There is a tower of 

blocks the agent must copy.  There are also other blocks on the floor. The agent must stack the 

free blocks the same way as the tower of blocks it is trying to copy from. Since the agent is 

limited in memory, the agent must look back and forth between the stacked tower blocks and 

the blocks on the floor.  Once an agent has learned the tower, it no longer needs to look at the 

tower and can proceed directly to stacking the blocks on the floor to get its reward. To prevent 

this, the tower is randomized after each episode of the simulation. In such a way, the agent is 

forced to learn memory management and Focus of Attention by having to observe each new 

stacking of the tower of blocks to be copied. In most representations of the simulation, the 

agent’s actions have parameters. For example, ‘move Y W’ would mean ‘move to the yellow 

block with the white background’. In such a scenario, the number of actions is a function of the 

number of block colors and background colors and the number of base actions (‘move’ or ‘pick’ 

for example). A memory block can contain a tuple of the fore-mentioned list plus an action’s 

result(s). 

The number of possible states and possible actions are related to the number of block 

colors and the number of auxiliary memory blocks an agent has available. Because the state 

space is a sequence of tuples, the memory cost complexity is exponential. Trying to store a 
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table of state-action pairs, known as a Q-Table, is prohibitive for higher numbers of block colors 

and auxiliary memory blocks. Thus, Function Approximation is needed and used in this thesis 

project to mitigate the memory requirements needed to store state information. 

1.2 Related Work 

Sutton and Barto [Sutton and Barto 1998] have written an excellent book on 

Reinforcement Learning named, “Reinforcement Learning: An Introduction”. This book is often 

used when describing and learning Reinforcement Learning. The book covers topics such as 

Markov Decision Processes, Dynamic Programming, Monte Carlo Methods, Temporal 

Difference Methods, Eligibility Traces, and Function Approximation.  This thesis uses methods 

and concepts from Reinforcement Learning to learn policies of Focus of Attention. Focus of 

Attention is only the application or avenue in which Reinforcement Learning is used. 

Sutton [Sutton 1996] does a terrific job describing and explaining Function 

Approximation using coarse coding. Function Approximation, described in Sutton’s work in 1996 

and in the book by Sutton and Barto [Sutton and Barto 1998], has been used explicitly in this 

thesis project to great success. The exponential state space this thesis copes with could only be 

managed by approximating state. The state space simply grows too quickly to be stored in a 

table. 

Li et al. [Li et al. 2007] write directly on Focus of Attention. In their work, they introduce 

the concept of focused learning and the notion of state importance. They show experimentally 

that focusing learning on certain states can lead to better learning performance. They use state 

visitation probabilities and the concept of advantage introduced by [Baird 1993]. Their work, 

however, is more related to the selection facet of Focus of Attention. In their case, they are 

being selective of which states are most advantageous to learn on. 

Daw [Daw 2005] uses neural networks in his coined approach of Attention-Gated 

Reinforcement Learning (AGREL). In his approach, he works to associate actions with input 
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patterns. Although interesting and related to Focus of Attention, his approach is more related to 

the selection and exclusion of external stimuli and not memory management. 

McCullum [McCullum 1994] tries to address the hidden state problem through an 

approach he coins as instance-based state identification. He recognizes hidden state as when 

“the agent’s state representation is non-Markovian with respect to actions and utility”. A problem 

is said to be Markovian when the next state only depends on the current state. If an agent’s 

history is relevant to determine the next state, then such information is needed in the current 

state’s information. Also known as the Markov Assumption, the current state’s information can 

be assumed to contain all previous states’ information in order to determine the next state. 

If the agent’s perceptual system produces the same outputs for two world 
states in which different actions are required, and if the agent’s state 
representation consists only of its percepts, then the agent will fail to choose 
correct actions. [McCullum 1994] 

McCullum’s approach extends state information online in order to break state ambiguity. He 

does this to make the problem Markovian. If an action in a state has inconsistent or ambiguous 

utility, then the problem is considered to be Non-Markovian. McCullum augments his states with 

temporary or short-term memory to distinguish states. His work works toward establishing finer 

granularity of a state space. His work is similar to the work done in this thesis and works 

towards similar goals, but there are fine distinctions. His work assumes a fair amount of 

perceptual information and external stimuli, while the work done in this thesis work does not. 

This thesis work also does not attempt to add auxiliary memory blocks online. The reason for 

this is that the number of auxiliary blocks the agent has available affects both the action space 

and the state space. His approach uses memory to disambiguate states, while this thesis work 

works toward forcing the agent to learn memory management of available memory and what 

actions are important to keep in memory and when. The largest difference is, however, that in 

this work the state augmentation is treated as an active decision process where the agent has 

to learn to actively augment a state with past information rather than as a passive process that 



 

6 

splits states by augmenting them with extensive, detailed information about past experiences 

which uses a more extensive state representation. 

As mentioned in the introduction, this thesis is related to and expanding the work of 

Rajendran [Rajendran 2003] in relation to the block copying task. Besides using additional, 

different software and control architectures, this thesis work varies from hers in a number of 

ways. Her work uses a Q-Table and quickly runs into memory limitations for higher numbers of 

blocks and auxiliary memory blocks. This thesis work uses Function Approximation, which 

largely addresses the memory problem. Her work uses a Boltzmann Soft-Max Distribution for 

action selection, while this thesis uses an Epsilon-Greedy approach. As mentioned in 

Rajendran’s listed future work, a later representation of experimentation (Representation 3) in 

this thesis successfully handles copying a block tower with duplicate block colors using counting 

and handles orientations in space of: up, down, left, and right. Great time and effort has been 

taken in this thesis to make the number of auxiliary memory blocks configurable. This allows an 

experimenter to change the number of auxiliary memory blocks used in a configuration file, so 

that the experimenter may see and compare the results of using different numbers auxiliary 

memory blocks while attempting to learn a specified block tower configuration. Because the 

number of auxiliary memory blocks and number of blocks can vary based on an experimenter’s 

configuration, the implementation used in this thesis must dynamically deduce and handle the 

state and action spaces to be used for experimentation. Different decision protocols are used in 

this thesis that relate to how and when the agent performs memory actions. This thesis also 

implements three different representations of implementation. In these representations, the 

agent interacts with the environment in different ways. The state and action spaces are different 

and in one representation used a completely different way. The representations are explained in 

the next chapter. 
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Chapter II  

Approach Taken 

2.1 Learning Methodology 

The approach taken in this thesis is to develop an agent with an adaptive internal state 

representation that allows it to learn to focus its attention through the learning of actions, 

perception, and memory management strategies. The latter two here allow the agent to actively 

augment its own state knowledge and with this the state used for decision-making. In particular, 

due to the agent’s limited memory, the learned policy has to decide which of the percepts to 

remember (i.e. to include in the agent’s state) and which ones are available. The overall 

learning algorithm the agent uses is Q(λ) with eligibility traces. The action selection method 

used is Epsilon-Greedy. The approach treats a POMPD problem like an MDP. Due to its 

perception and memory limitations, the agent is not in a fully observable environment but does 

act and make decisions as if it were in a fully observable environment where its internal state 

contains all relevant information. The agent’s state is made up of what is in its memory and 

whatever its external stimuli are. In other words, the state of the agent is from the agent’s 

perspective. Whereas in a fully observable state space for the block world domain used here, 

the agent would be aware of where all the blocks are on the table at each moment in time as 

well as where the agent is in the environment. The agent here is only aware of actively pursued 

and remembered percepts. 

2.2 Actions 

The agent’s action set is comprised of physical actions and memory actions. Physical 

actions are actions that effect the environment and the agent’s position in it as well as what 

aspects of the environment the agent perceives. Memory actions are actions that affect the 

agent’s auxiliary memory blocks. Memory actions allow the agent to copy what’s in its 

perceptual memory into a specified memory block it has available to it. ‘Mem 0’ is a No-Op, 

which means that agent chooses not to copy what’s in perceptual memory into an auxiliary 
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memory block. ‘Mem 1’ would mean the agent shall copy what’s in perceptual memory to the 

auxiliary memory block labeled ‘1’ or first auxiliary memory. 

 

Figure 1-1: Agent Physical Action Example 
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Figure 1-2: Agent Memory Action Example 

Figure 1-1 and Figure 1-2 show example sequences of physical and memory actions. 
 

2.3 Representations 

To investigate the effect of different action and representation capabilities on learning, 

three different representations have been investigated here. The agent’s exact state information 

varies and has different meaning depending on the representation of experimentation being 

explored. The action space the agent has available also varies depending on the representation 

of experimentation being explored. The representations used are detailed below in the context 

of the used block-copying task: 

Representation 1: 

• The agent knows whether it is holding a block or not. 

• The agent knows its position. 
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• The agent may move one position away from its current position at a time. 

• The agent must specify parameters of physical actions, which represent specific 

perceptual features that it is processing. 

• Physical actions include the perceptions actions: top, bottom. 

• Physical actions available: move, pick, top, bottom, and stop. 

• Memory actions available: Mem0, . . ., Mem[num_auxiliary_mem_blocks]. 

• Physical actions only have one result: true or false. 

• The absolute position of the agent is determined by the agent’s ‘atColor’ and 

‘atBackColor’. 

Representation 2: 
 

• The agent knows whether it is holding a block or not. 

• The agent does not know its position. 

• The agent may move directly to a specified position at any time. 

• The agent must specify parameters of physical actions, and thus which features are to 

be processed. 

• Physical actions include the perceptions actions: ‘top’  and  ‘bottom’, which allow the 

agent to see up and down a stack of blocks. 

• Physical actions available: move, pick, top, bottom, and stop. 

• Memory actions available: Mem0, . . ., Mem[num_auxiliary_mem_blocks]. 

• Physical actions have two results: ‘physicalResult’ and ‘perceptionResult’. 

• The absolute position of the agent is determined by the agent’s ‘atColor’ and 

‘atBackColor’. 

Representation 3: 

• The agent knows whether it is holding a block or not. 

• The agent does not know its position. 

• The agent may move one position away at a time: up, down, left, right. 
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• The agent does not specify parameters to physical actions, rather the action returns the 

relevant features found. 

• The agent has in each auxiliary memory block a counter that can be incremented, reset, 

or left alone (no-op) during a memory action. 

• Physical actions do not include perception actions. 

• Physical actions available: move_up, move_down, move_left, move_right, pick, top, 

and stop. 

• Memory actions available: Mem0, . . ., 

Mem[num_auxiliary_mem_blocks]_[‘MemCounter_NoOp’||’ MemCounter_Increment’||’ 

MemCounter_Reset’]. 

• Physical actions have two results: ‘physicalResult’ and ‘perceptionResult’. 

• The absolute position of the agent is determined by the agent’s ‘Position Number’ and 

what block id the agent is at. If the agent is at the table, the block id the agent is at is 

set to -1. 

• Duplicate Block Colors are allowed. For example, the blocks in the block tower to be 

copied can have two red blocks and there can be two red blocks on the floor. 

There are a few notes on actions to mention. Actions are associated with a step cost. 

The agent is aware of the total reward acquired. The initial total reward acquired is set to zero at 

the beginning of each episode of experimentation. Episodes are explained in chapter four, 

Agent-Environment Architecture. For each action taken, the agent receives the step cost.  In all 

experimentations done in this thesis, the step cost used is -1. The agent has the physical action 

‘stop’ available.  ‘Stop’ is used to let the agent give-up on the block-copying task. For agents 

that never see the final goal, the agent will learn to ‘stop’ immediately rather than continually 

acquiring more and more negative reward. To encourage the agent not to stop too early and 

seek goal of the simulations (resulting in a high positive reward), the agent’s ‘stop’ action will not 

work early in episodes. Representations 1 and 2 include perception actions: top and bottom.  
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These actions are used to query the environment’s block location. It is the same as asking, ‘Is 

the blue block with the white background above the agent’s current location?’ or ‘ Is the blue 

block with the white background below the agent’s current location?’. These perception actions 

provide two functions: 

• Allow the agent to know whether a particular move will succeed or fail. 

• Provide a means to store block location information in an agent’s memory. 

Note that the pick action will pick up a block if given the right parameters and the agent is not 

holding anything. A pick action will drop a block if it is holding a block and the parameters given 

are correct. In Representation 3, the agent does not use the counter in its perceptual memory 

block. In Representation 2 and Representation 3, physical actions have two results. This is to 

help the agent differentiate actions that fail because the given parameters are invalid from 

actions that fail because the action is not possible. A block can’t move because another block is 

on top of it is a great example. The agent specifies the correct parameters, “pick B W”, but the 

block is immoveable because another block is on top of it. This will result in the agent receivable 

a ‘true’ for the perception result and a ‘false’ for the physical action result. 

2.4 Decision Protocols 

For each representation, there are different decision protocols. These decision 

protocols affect how and when memory actions are performed. Decision protocols are as 

follows: 

• simultaneous: The agent may take a memory action at the same time as a physical 

action. 

• alternating: The agent may take a memory action only after a physical action. 

• asynchronous: The agent may choose either a physical action or memory action at any 

time. 
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2.5 Memory Blocks 

The content of what a memory block can hold has been eluded so far and not yet 

explained. As mentioned in the introduction of this thesis, a memory block can contain a tuple 

consisting of an action’s name (‘move’ for example), a foreground color (‘B’ for blue for 

example), a background color (‘W’ for White or ‘G’ for Gray), plus an action’s result(s). In 

Representation 1, there is only one action result stored. In Representations 2 and 3, there are 

two results stored (the perception result and the simulation result). In Representation 1 and 2, 

the foreground color and background colors are the colors the agent specified as parameters to 

a given action. For example, if agent wants to move to the blue block with the white 

background, the agent will attempt to ‘move B W’.  In the perceptual memory, the agent will now 

have a tuple of (‘move’, ’B’, ’W’, true) assuming the result is true and the decision protocol is 

Representation 1. Representation 3 behaves differently here. The agent does not specify 

parameters to physical actions. Recall that Representation 3’s physical actions are: move_up, 

move_down, move_left, and move_right, and pick. What gets stored in the memory block in this 

case is the foreground and background colors the agent found performing the action. For 

example, the agent tries to move left with ‘move_left’. What gets stored in the perceptual 

memory block is what the agent found moving left and its results. If the agent is trying to ‘pick’ 

up a block above, the perceptual memory block will store what the agent picked up. It should be 

noted that in all representations, what the agent is trying to pick up is always above itself. To 

pick up a block on the table, the agent must first move to the table (‘move W W’) and then do a 

‘pick B W’ for example. To successfully place a block the agent is holding on top of another 

block, the agent must do a ‘pick NOTHING W’ for example while on the topmost block of a 

stack. 

2.6 Blocks in the Environment 

The tower blocks will always have a background color of ‘G’ for Gray in all 

experimentations performed in this thesis. Similarly, stackable blocks will always have a ‘W’ for 
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White background color. In all representations, tower blocks (the blocks being copied) are 

immoveable. Blocks have properties. For the tower blocks, their moveable property is always 

set to false. For a stackable block that has a block placed on top of it, its moveable property is 

set to false. It is unset when the above block is picked up again. Make careful note that 

stackable blocks, the blocks having the White background, are not allowed to be moved to the 

Gray background. This is to prevent ambiguity and prevent the agent from confusing tower 

blocks with stack blocks. Representations 1 and 2 do not handle duplicate block colors. This 

allows those representations to have a unique mapping of blocks. For example, ‘move Y W’ 

would attempt to move the agent to the yellow block with the white background color. There is 

only one yellow block with background color of white. Because of this unique mapping, 

foreground and background colors have become the coordinate system for Representations 1 

and 2. The following is a three-block setup diagram used in Representations 1 and 2: 

 

Figure 1-3: Representations 1 and 2 Three-Block Setup Example 

To move to the table from a block at a bottom of the stack, the agent would do a ‘move W W’. 

For the agent to move from one background color to another, the agent must be at the table (‘W 

W’ or ‘G G’), not holding a block, and issue a ‘move’. For example, to successfully move to the 
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Gray background color from the White background color, the agent must issue a ‘move G G’ 

while the agent is at ‘W W’. 

Representation 3 has a slightly different coordinate system. Representation 3 allows 

duplicate block colors, so there is no longer a unique mapping of foreground and background 

colors to a block. To accommodate this, the environment must now use block ids to uniquely 

identify a block. The agent is completely unaware of the block ids. However, the environment 

‘knows’ what block id the agent is at. If the agent is at the table, the environment sets the block 

id the agent is at to -1. Also, note that in Representation 3 the agent can no longer move from 

the table to a specified block color. ‘move O W’ is now illegal and not a recognized physical 

action. There are two main reasons for this. The first reason is that there can be ambiguity if 

there is more than one block of the same color next to the agent. The second reason is that 

orientation in space is desired for Representation 3. The agent now has the ability to move: up, 

down, left, and right. This forces the need for the environment to store in some way what blocks 

are left and right of each other. The term ‘position’ is introduced to facilitate this need. Because 

blocks in the block tower are always unmovable, all tower blocks are assigned the position of 

zero. Each stackable block is initialized to be on the ground and to it own position number. The 

maximum position an agent or block can be at is the total number of stackable blocks. For 

example, if there are three stable blocks, position three will be the last position available in the 

environment. It is important to note that the agent is not aware of these locations. Instead the 

agent has the ability to use its counters to keep track of its and the blocks’ positions. To 

illustrate this, see below diagram: 
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Figure 1-4: Representation 3 Three-Block Setup Example 

 

2.7 State and Action Space Complexities 

There is merit in noting the state and action space complexities for the different 

representations and decision protocol combinations. This information is relevant to explaining 

why an agent does or does not do well under a particular representation and decision protocol. 
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Figure 1-5: Representation 1 State and Action Space Complexities 
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Figure 1-6: Representations 2 State and Action Space Complexities 
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Figure 1-7: Representations 3 State and Action Space Complexities 

All complexities use Big-O Notation, which is used to give upper bounds of complexities. In all 

representations, the state space complexity is of the order of product of sequences, or 

practically exponential. Representation 1 uses location information in its state space: the ‘at 

color’ and ‘at background color’ parameters. Representations 2 and 3 do not use location 

information. Representations 2 and 3 also have two action results to store in memory blocks. In 

the ‘simultaneous’ decision protocol of representations 1 and 2, actions are a combination of 

physical actions, action parameters, and memory action. One example would be 

‘move_Y_W_Mem1’. Representation 3 does not use parameters for physical actions and as a 

result has a much smaller action space. 
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Chapter III  

Background 

3.1 Reinforcement Learning Model 

The notion of Reinforcement Learning involves learning through interaction. 

Reinforcement learning is learning what to do—how to map situations to 
actions—so as to maximize a numerical reward signal. The learner is not told 
what actions to take, as in most forms of machine learning, but instead must 
discover which actions yield the most reward by trying them. [Sutton and Barto 
1998] 

The agent is interacting with a dynamic environment. For example, if an agent’s environment 

has a cup on a table and the agent moves the cup, the agent has effected the environment. If 

the agent were to break the cup, the agent must continue on with a cup-less environment. 

Based on the agent’s actions, the environment will provide the agent feedback. The agent 

typically has a goal to accomplish. The goal may be defined in a number of ways or not at all. In 

some learning approaches used in Artificial Intelligence for example, the agent is not strictly 

required to know or have a goal. Here, we define a goal as a desired final state of the agent and 

environment. As the agent interacts with the environment, the environment provides feedback to 

the agent. 

 

Figure 3-1: Agent-Environment Interaction 
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Reinforcement Learning is distinguished as a learning problem and not as a learning method. 

There are different methods for learning reinforcement learning such as Dynamic Programming 

and Monte Carlo Methods, but they all fall under the umbrella of Reinforcement Learning. 

Reinforcement learning is different from supervised learning, the kind of 
learning studied in most current in machine learning, statistical pattern 
recognition, and artificial neural networks. Supervised learning is learning from 
examples provided by a knowledgeable external supervisor. This is an 
important kind of learning but alone is not adequate for learning from 
interaction. In interactive problems it is often impractical to obtain examples of 
desired behavior that are both correct and representative of all the situations in 
which the agent has to act. [Sutton and Barto 1998] 

The agent has no teacher or supervisor. The only feedback the agent gets is from the 

environment. Like humans, the agent makes choices and receives consequences. And like 

humans, the agent must learn from its own experience. 

Reinforcement is characterized by four main elements: policy, reward function, a value 

function, and possibly, a model of the environment. A model of the environment is not 

necessarily available. From Sutton and Barto [Sutton and Barto 1998]: 

• A policy defines the learning agent’s way of behaving at a given time. 

• A reward function maps each perceived state (or state-action pair) of the environment 

to a single number, a reward, indicating the intrinsic desirability of that state. 

• A value function specifies what is good in the long run. The value of a state is the total 

amount of reward the agent can expect to accumulate over the future, starting from that 

state. 

• A model of the environment is something that mimics the behavior of the environment. 

Below is a list of commonly used terms in Reinforcement Learning: 

Table 3-1 Common Reinforcement Learning Terms 

A action space 

D state space distribution 
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Table 3.1 – Continued 
 

γ discount factor in real number range between 

0 and 1 

L(π) policy loss 

π policy mapping S to A 

πQ(s) greedy policy with respect to Q 

πV(s) greedy policy with respect to V 

π* optimal policy 

Π policy space 

Q(s,a) action-value function estimate 

Q^π(s,a) action-value function 

Q*(s,a) optimal action-value function 

Rt reward received at time t 

R0 cumulative discounted return 

S state space 

t time step index 

V(s) state-value function estimate 

V^π(s) state-value function 

V*(s) optimal state-value function 

V(π) policy value 

 

The start state is denoted s0. The start state belongs to the state space. This is denoted S ∍ s0. 

The current state at time ‘t’ is denoted st. st also belongs to S, S ∍ st. An action at time ‘t’ is 

denoted at. A reward at time ‘t’ is denoted rt. 
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The general reinforcement-learning model is given below: 

 

Figure 3-2: Reinforcement Learning Model 

In this model, the agent makes an action and the environment returns a reward and a new state 

of the world. The agent is tasked with choosing actions that increase its total reward over time. 

Over time, the agent develops a policy, denoted π. The policy is a mapping from states to 

probabilities of selecting each possible action [Sutton and Barto 1998]. The goal of an 

environment is an important reward given to the agent from the environment for reaching a 

particular state. Overall, the agent’s objective is still to maximize reward. In order to obtain 

maximum reward, the agent will in turn seek the goal if its reward is sufficiently high. 

There may be many states between an agent’s initial state and established goal. 

Because of this, the agent must work with expected return from states. That is, if the there is 

sequence of states that lead to the goal, each state leading up to the goal can contain a 

discounted return. 
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From Sutton and Barto [Sutton and Barto 1998], the expected discounted return is given by the 

following equation: 

 

Figure 3-3: Expected Discounted Return Calculation 

where γ is a parameter, 0 ≤ γ ≤ 1, called the discount rate. 

There is a special property of environments known as the Markov property. A state is 

represented by the information available to the agent. For an environment to be Markov, the 

state signal an environment returns to the agent must retain all relevant information to the 

agent.  This relevant information thus includes any previous history needed. An environment is 

said to maintain the Markov property if the next state only depends on the current state and the 

action the agent takes. The Markov Assumption is that any previous history needed does not 

provide any additional information about future states.  

In Reinforcement Learning, there are many ways to learn the optimal policy. If the agent 

is limited in the number of time steps to act, the agent must learn to act within the limited time 

frame. However, if the agent has all the time in the world to act, the agent’s optimal policy may 

be different from the one learned in limited time. These contrasting policies are known as The 

Finite Horizon Model and The Infinite Horizon Model. There is yet another model known as The 

Average Reward Model. In The Average Reward Model, the agent will try to optimize the 

average reward gained over time. In the experimentation done in this thesis, the Infinite Horizon 

Model is used. Because of how auxiliary memory blocks an agent is configured to have and 

thus how extensive and expressive its state representation is, the agent may or may not be able 

to learn how to reach the given goal. To prevent the agent from potentially getting stuck 
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indefinitely, a maximum number of steps are enforced and the agent has the opportunity to stop 

after so-many steps. 

3.2 Markov Decision Processes 

A reinforcement-learning task that maintains the Markov Property is exactly modeled a 

Markov Decision Process, or MDP [Sutton and Barto 1998]. An MDP is characterized by a tuple 

of the following four entities: 

• S, a set of states 

• A, a set of actions 

• T, a state transition probability function 

• R, a reward function 

The state transition probability function, T, takes as input a state and action and returns a new 

state. The reward function, R, takes as input a state and action and returns a return. Value 

iteration, policy iteration, Q-Learning, and Sarsa are some methods used to find an optimal 

policy given an MDP. 

3.3 Partially Observable Markov Decision Processes 

Fakoor [Fakoor 2012] writes, “A POMDP is an extension of the MDP and is defined by a 

tuple of six entities: <S, A, Z, R, T, O>. Here S is the set of world states denoted by st. Z is the 

set of observations. A is the set of actions, and T is the state transition probability function.”. T is 

given as T(s,s’,a) := P(st = s’ | st-1 = s, at-1 = a). O is given as O(s,z) := P(zt = z | st = s). POMDPs 

have incomplete observations of the environment. The notion of history is needed. History, in 

this context, is a sequence of observations and actions. Policies are defined in a POMDP as 

mapping of histories to actions. Histories can be infinitely long. To cope with this it is usually 

enough to use a sufficient statistic to represent history, also know as a belief state. The agent 

calculates a ‘belief state’, and from there the agent can implement various methods to find an 

optimal policy. 
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3.4 POMDPs Treated As MDPs 

POMDPs treated as MDPs are problems where is agent is not in a fully observable 

environment but decides to act and make decisions as if it were. State is treated as the state of 

the agent in the environment. The actual state of the environment is not fully observable and not 

used as part of any policy that agent learns. Similarly, belief state is not calculated and 

observations are used to derive an agent-internal memory state, which is treated as if it were a 

MDP state and is used to learn and represent the policy. POMDPs treated as MDPs are used to 

model an agent’s internal memory state, which is treated as if it were an MDP state and used to 

learn and represent the policy. State, used for policy learning, is from the agent’s perspective. 

Only by what the agent has in its memory blocks is the agent aware of the state of the 

environment. In some representations of experimentation used in this thesis, the agent is also 

aware of its position independent of what is kept in memory blocks.  

3.5 Q-Learning 

Q-Learning is an off-policy TD control algorithm in Reinforcement Learning. TD, 

temporal-different learning, is a category of learning methods in Reinforcement Learning that 

can learn directly from raw experience without having a model of the environment.  Sutton and 

Barto [Sutton and Barto 1998] write, “TD methods update estimates based in part by other 

learning estimates, without waiting for a final outcome (they bootstrap)”. In one-step Q-learning, 

the equation is given as: 

 

Figure 2-4: Q-learning Equation 

where α is the learning rate and γ is the discount rate. 

In this case, the learned action-value function, Q, directly approximates Q*, the 
optimal action-value function, independent of the policy being followed. This 
dramatically simplifies the analysis of the algorithm and enabled early 
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convergence proofs. The policy still has an effect in that it determines which 
station-action pairs are visited and updated. However, all that is required for 
correct convergence is that all pairs continue be updated. [Sutton and Barto 
1998] 

The algorithm for Q-learning is given as follows: 

 

Figure 2-5: Q-learning Algorithm 

 

3.6 Sarsa 

Sarsa is another TD method used in Reinforcement Learning for learning a MDP policy.  

In contrast to Q-learning being an off-policy algorithm, Sarsa is an on-policy algorithm. On-

policy algorithms continually estimate Q^π for the policy and adjust π greedily with respect to 

Q^π. Sarsa is an acronym for State-Action-Reward-State-Action. The name refers to the Q-

value being updated as a function of the  tuple of current state, the action chosen, reward 

received for action chosen, the resultant state after the chosen action is performed, and the next 

action. The equation is given as: 

 

Figure 3-6: Sarsa Equation 

where α is the learning rate and γ is the discount rate. 

Sarsa converges with probability 1 to an optimal policy and action-value 
function as long as all state-action pairs are visited an infinite number of times 
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and the policy converges in the limit to the greedy policy (which can be 
arranged, for example, with ε-greedy policies by setting ε = 1 / t). [Sutton and 
Barto 1998] 

The algorithm for Sarsa is given as follows: 
 

 

Figure 3-7: Sarsa Algorithm 

3.7 Eligibility Traces 

Eligibility Traces are a device in Reinforcement Learning that acts as a bridge between 

Monte Carlo methods and Temporal Difference (TD) methods. Monte Carlo methods use 

averages of sample returns to solve the Reinforcement Learning problem. The symbol ‘λ’, in 

TD(λ) algorithms, refer to the use of eligibility traces. Q-Learning and Sarsa can be combined 

with eligibility traces and referred to as Q(λ) and Sarsa(λ) respectively. 

An eligibility trace is a temporary record of the occurrence of an event, such as 
the visitation of a state or the taking of an action. The trace marks the memory 
parameters associated with the event as eligible for undergoing learning 
changes. When a TD error occurs, only the eligible states or actions are 
assigned credit or blame for the error. [Sutton and Barto 1998] 

Eligibility traces are useful in tasks with long-delayed rewards, such as the block-stacking task 

approached in this thesis. Eligibility traces require more computation than one-step methods but 

give the learning agent the opportunity to learn much faster. 

3.8 Function Approximation 

The value functions for the methods mentioned so far in this background chapter have 

been assumed to be represented as a table of states and actions. Q-learning calls this a Q-

Table. For problems with large state and/or action spaces, the amount of memory needed to 
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store this table of state-action pairs is prohibitive. Function approximation attempts to 

generalize, or approximate, the value function. Given a state and action, the function will return 

an approximate value. This is known as value prediction. As opposed to trying to store a table, a 

function is learned and tweaked to return values for a given state-action pair. 

The approximate value function at time t, Vt, is represented not as a table but 
as a parameterized functional form with parameter vector Θ→t. This means that 
the value function Vt, depends totally on Θ→t, varying from time step to time step 
only as Θ→t varies. [Sutton and Barto 1998]. 

Gradient-descent methods are widely used methods for function approximation. 

In gradient descent methods, the parameter vector is a column vector with a 
fixed number of real valued components, Θ→t = ( Θt(1), Θt (2), . . . , Θt (n))^t (the 
T here denotes transpose), and Vt(s) is a smooth differentiable function of  for 
all S ∍ s. [Sutton and Barto 1998] 

Although exact values are given for V^π(st) for each st, the function approximator has limited 

resolution and resources, and therefore no Θt can give exact values for each and every state. 

To refine the function approximator, mean square error (MSE) is minimized on the observed 

examples. Gradient descent methods adjust the parameter vector after each example observed 

by a small amount in a direction that reduces the most error in the given example. 

This derivative vector is the gradient of f with respect to Θ→t. This kind of method 
is called gradient descent because the overall step in Θ→t is proportional to the 
negative gradient of the example’s squared error. This is the direction in which 
error falls most rapidly. [Sutton and Barto 1998] 

Two popular methods used for gradient-based function approximation are multilayered neural 

networks using the error backpropagation algorithm and the linear form. 

In the linear form, the approximate function, Vt, is a linear function of the parameter 

vector, Θ→t. States are represented in terms of features. In coarse coding, the state space is 

assumed to be continuous. If features were represented as circles in a Venn diagram, a state is 

where the circles overlap. This representation is known as coarse coding. Tile coding is a form 

of coarse coding. 

In tile coding the receptive fields of the features are grouped into exhaustive 
partitions of the input space. Each such partition is called a tiling, and each 
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element of the partition is called a tile. Each tile is the receptive field for one 
binary feature. [Sutton and Barto 1998] 

One and only one feature is present in each tiling. The number of features present is equal to 

the number of tilings. Let α be a step-size parameter. Let ‘m’ be the number of tilings. Choosing 

α = 1/m would result in exactly one-trial learning. Choosing α = 1/(10m) would move one-tenth 

of the way per update. The number of tilings used affects how closely a function approximator 

can represent a function. The denser the tiling, the more accurate it is; the computational cost is 

also higher. The following version of the Q(λ) algorithm is used in the experimentation of this 

thesis project: 

 

Figure 3-8: A linear, gradient-descent version of Q(λ) with ε-greedy selection policy and 

accumulation traces 
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3.9 Exploration Versus Exploitation 

There is always a trade off between selecting actions when developing a policy. For an 

untried action at any given state, one cannot say how good or bad it is to perform the action 

unless one tries it. The agent will not always have a developed policy. The agent must at times 

try different actions at a given state. This is known as exploration. In contrast, exploitation would 

be where the agent performs the best possible action given to it by the agent’s policy. The 

experimenter must decide on an action selection strategy for the agent to use. Depending on 

the action selection strategy, the agent may explore more at first before following the agent’s 

policy more and more.  

In the ε-greedy action selection strategy, the agent uses the best action given by the 

agent’s policy for a proportion of 1 - ε of the steps in an episode and a random action for the 

rest of the time. This is a simple selection strategy. There are other selection strategies, but this 

is the one used in the experimentation done in this thesis. 



 

32 

Chapter IV  

Agent-Environment Architecture 

This chapter describes the high-level agent-environment architecture used in the 

experimentation of this thesis. Many of the Reinforcement Learning concepts and mechanisms 

described in the Background are used in the implementation of the experimentation.  The 

‘where’ and ‘how’ these learning mechanisms are used are also described. The goal of 

experimentation is to learn Focus of Attention in terms of memory management. The application 

the agent attempts to learn focus in is block-copying. Block-copying is a good venue for this 

research, because the agent is limited in terms of memory and must learn memory 

management in order to successfully copy a tower of blocks. The overall strategies used by the 

learning agent are described in chapter two, ‘Approach Taken’. The goal of this chapter is to 

delineate the software architecture and how reinforcement concepts are used. 

4.1 Learning Architecture 

 

Figure 4-1: Agent-Environment Interaction 

The agent and environment are separate entities. The environment is aware of where 

the agent is and of the block locations. The agent’s state information only contains what is in the 

perceptual memory block, auxiliary memory blocks if any, whether or not the agent is holding a 

block, and possibly position information depending on the representation of experimentation. 



 

33 

 The environment keeps a unique mapping to the blocks. Each block contains properties 

such as block color, its type (tower block or stackable block), whether it is moveable, whether it 

is being held, its position information, what’s above the block, and what’s below the block. 

Whenever the agent successfully performs an action such as moving a block or picking up a 

block or dropping a block on top of something, the environment must update the associated 

blocks’ properties. The agent-environment interaction can be likened to that of client-server. 

See Figure 4-1. The environment contains the state information of the agent. The agent, like a 

client, gets the state information from the client. Whenever the agent performs an action, the 

agent makes a request to the environment, like a server, to perform an action and the 

environment returns the agent’s new state information to the agent. If the action performed is 

successful, the environment is in charge of updating information regarding the agent and the 

blocks. After an action is performed, the agent queries the environment to see if the goal and 

sub-goals have been reached. If the goal is reached, the environment will return the goal reward 

to the agent. If the ‘goal state is final’ flag is set, the episode will immediately end. The 

environment will award the agent intermediate reward if a sub-goal is reached, meaning some 

of the blocks are stacked correctly. Sub-goals must be reached in order. If the agent undoes a 

sub-goal, the agent will receive negative the intermediate reward. 

 

Figure 4-2: Representations 1 and 2 Environment 
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Figure 4-3: Representation 3 Environment 

Figure 4-2 and Figure 4-3 show how the environment orients blocks for each representation.  

 The agent uses Q(λ) with a tile-coding based function approximator and a linear 

gradient-descent method to learn the value function. Actions are selected based on an ε-greedy 

strategy. Tilings are created based on derived state and action spaces. The experimenter is 

tasked with adjusting the configuration file and creating an input file specifying the block 

configuration. Decision protocol is specified in the configuration file. Different representations of 

experimentation are coded and run separately. Much of the code is similar. The environment, 

the agent’s state information, and action space change from one representation of 

experimentation to another. 

4.2 Blocks in the Environment 

At the beginning of an experiment, a ‘run’, blocks are created and positioned in the 

environment based on an input file that specifies the blocks and their properties. Based on the 

block specification and representation of experimentation and decision protocol, the state and 

action spaces are derived. Based on parameters specified in the input file, the agent creates a 

tile set. Based on the tile set  and whether the agent is using previously stored weights, the 

agent initializes the thetas Θ→t,., a concept described in Section 3.8.  The agent is using Q(λ) for 
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learning. After the agent and environment are initialized, the required number of runs, episodes, 

and steps are performed. At the beginning of each episode, the agent and environment are 

reset. The agent will return the policy learned, but the agent’s rewards and position are reset. If 

the tower blocks are set to randomize, the environment will initialize the blocks based on that. At 

the end of each episode, the agent’s total reward is appended to an output file. The output file is 

used for analyzing the agent’s learning performance. 

 

Figure 4-4: Block Properties 

 As show in Figure 4-4, blocks have properties. Blocks in Representations 1 and 2 have 

a unique ‘At Color’ and ‘At Background Color’ mapping. In all representations, to prevent the 

agent from confusing stacked blocks its trying to copy and the other blocks, the agent is not 

allowed to move a block to different background color. Notice in Figure 4-4 that in 

Representation 3 that a Block has an ‘Id’, ‘Above Id’, and ‘Below Id’. In Representation 3, there 

may be duplicate block colors for the agent to copy. The Environment in Representation 3 must 

internally represent blocks differently in order to distinguish specifically which blocks are next to 

each other. 

4.3 Actions 

Physical actions are actions the agent may perform to affect the environment and the 

agent’s position in it. Such actions include moving, picking up a block, dropping a block, and 
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depending on the representation of experimentation takes perception actions (top, bottom). The 

success or failure of physical actions depends on where the agent is relative to the blocks, the 

positions and properties of the blocks, and if the agent is holding a block or not. The success or 

failure of physical actions does depend on what the agent has in memory. Albeit the agent may 

not be able to learn a policy if the agent doesn’t have enough memory (state information). This 

does not affect results of individual physical actions. 

Memory actions only allow the agent to move what’s in perceptual memory to an 

available auxiliary memory block. If the representation of experimentation is 3,  the agent may at 

the same time adjust the counter in the same auxiliary memory block being updated. 

4.4 The Agent 

 

Figure 4-5: Agent Overview 

 The agent is in charge of keeping track of policy, memory blocks, whether it is holding a 

block or not, and possibly its location. The agent is only location aware in Representation 1. 

‘Location aware’ in this context means that the agent’s internal state contains location 

information separately from memory blocks. In Representation 1, the agent is aware of what 

foreground and background colors the agent is at. In Representations 2 and 3, the agent’s 

internal state information does not contain location information separately from memory blocks, 

and the agent must use what’s in memory to determine where the agent is located. In all 
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representations, the agent is always aware of whether it is holding a block or not. The agent, 

however, does not know which block is being held. The agent must use a memory block to 

remember what block was picked up. 

4.5 Memory Blocks 

 

Figure 4-6: Memory Block 

As shown in Figure 4-6, a memory block contains the ‘Action Performed’, ‘Action 

Parameters’, and ‘Action Results’. The term ‘Action Performed’ is the physical action performed 

by the agent in the environment such as ‘move’ or ‘pick’. In Representations 1 and 2, ‘Action 

Parameters’ contain parameters specified with the physical action. For example, ‘move B W’ 

would have ‘B’ and ‘W’ as part of ‘Action Parameters’ in a memory block. In Representation 3, 

‘Action Parameters’ contain the resulting percepts the environment returns to the agent after an 

action. For example, if the agent takes the action ‘move_up’, the environment might return the 

percepts ‘R’ and ‘W’ for the agent to store ‘Action Parameters’ of a memory block. For all 

representations, the agent stores an action’s result(s) into the ‘Action Results’ of a memory 

block. 

The agent will always have a perception memory block that will store the result of the 

agent’s last action in the environment. The agent also has a configurable number of auxiliary 

memory blocks. The agent uses memory actions to move what’s in the agent’s perception 

memory block into a designated auxiliary memory block. The agent’s total number of memory 

blocks is the agent’s perception memory block plus the total number of auxiliary memory blocks. 

The agent’s memory blocks are part of the agent’s internal state space. As the number of 

memory blocks increases, the agent’s internal state space grows exponentially. 
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4.6 Runs, Episodes, and Steps 

Running experiments involves the terms of: runs, episodes, and steps. A step is one 

step for the agent in the environment. For example, the agent is at state A and takes an action 

to get to state B. The agent has made one step in the environment.  A series of steps in the 

environment will be called an episode. For each episode, the agent’s step count is reset to zero 

and the agent and environment are reinitialized to their respected starting conditions. For the 

environment, if the tower blocks are being randomized, the tower blocks will be randomized at 

the beginning of each episode. A ‘run’ is a series of episodes. The agent will learn a policy over 

the course of a ‘run’.  Multiple runs can be enabled in the experiment’s configuration file, but the 

experimentations done in this thesis have always used one run per block configuration and 

memory setup. The purpose of using multiple runs is to compare policy performance. For each 

experiment, the maximum number of steps per episode is specified as well as the maximum 

number of episodes per run. The experimenter must be careful setting the maximum number of 

steps per episode allowed. Too few steps allowed handicaps the agent from reaching the goal. 

4.7 Goals and Sub-Goals 

The agent is tasked with reaching the goal of the simulation. In the block-copying task, 

the goal of the agent is to make the unstacked blocks look like the tower of stacked blocks. 

Upon reaching the goal, the agent receives the goal reward. In the configuration file later 

described, the goal can be ‘final’, meaning once reached the agent immediately stops and the 

episode is finished. If ‘final’ is not enabled, the agent is expected to learn to stop after meeting 

the goal. If the agent were to unstack the blocks that were used to reach the goal, the agent 

would receive a negative goal reward. This is to prevent the agent from receiving the goal 

reward more than once and maintain the Markov property of the experiment. The 

experimentation done in this thesis always requires the goal state to be final. The agent has the 

opportunity to ‘stop’ after enough steps in an episode have been made. The agent is not 

allowed to stop early in an episode and is encouraged in this way to attempt to reach the goal. 



 

39 

For tasks that require a long sequence of steps before reaching the goal, the agent may 

wish to stop early. To prevent this and encourage the agent to pursue a correct sequence of 

steps to reach the goal, the agent is given intermediate reward at designated sub-goals. A sub-

goal is a desired state of the environment that is necessary to reach the goal. Note that the 

state of the environment is independent of the state of the agent (what’s in memory). Stacking 

blocks on top of one another to reach a desired stack configuration are sequential tasks that 

must be done in order. A sub-goal in the experimentation done in this thesis is when a set of the 

stackable blocks is stacked correctly. The order of sub-goals is enforced. For a goal of three 

blocks being stacked correctly, that the first two blocks must be stacked correctly will be the first 

sub-goal. The second and third blocks being stacked correctly will be the second sub-goal. 

Upon stacking all three blocks correctly, the agent will also receive the goal reward. If the agent 

undoes a sub-goal, the agent will get negative the intermediate reward. This is to prevent the 

agent from accumulating intermediate rewards and also to maintain the Markov Property. 

4.8 Experiment Configuration 

A configuration file is used in the experimentation to adjust parameters of the 

experiments such as decision protocol, number of auxiliary memory blocks to use, maximum 

number of steps in an episode allowed, etc. See the figure below. 
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Figure 4-7: Sample Configuration File 

Most terms and parameters are either self-explanatory or have been explained earlier in this 

document. The term ’test-number’ is used to label output files. The term 

‘additionalStepsPerBlockInEpisode’ is used to add to the maximum number of steps in an 

episode allowed based on the number of blocks in the experiment. This is useful for scripting 

runs of experiments because additional steps in episodes in experiments using more blocks. 

The term ‘initthetas’ is used to initialize the tilings used with function approximation. It can be 

likened to a term used to initialize elements in a table. The terms alpha, gamma, lambda, and 

epsilon are terms used in the Q(λ) algorithm, a reinforcement-learning algorithm. The term 

‘tilings’ gives the number of tile sets to use for function approximation. The term ‘resolution’ is 

used in making tiles in the tile sets. 
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Chapter V  

Experimentation And Results 

This chapter is intended to convey results of experimentation and commentary. 

Strategies used in experimentation are described in chapter two, ‘Approach Taken’. Software 

architecture and other notes are included in chapter four, ‘Agent-Environment Architecture’. 

Reinforcement Learning concepts and mechanisms are described in chapter three, 

‘Background’. This chapter breaks results into what happens across representations when 

increasing the number of blocks, using different decision protocols, and increasing the number 

of memory blocks. Below are the results of experimentation. 

5.1 Representations 

As explained in the chapter two, ‘Approach Taken’, different representations have 

different state and action spaces. Different representations may be inherently harder for the 

agent to learn an optimal policy. For example, Representations 1 and 2 require the agent to 

specify parameters to actions, while Representation 3 does not. Representation 1 has actions 

that may only succeed if the specified parameters are only one position away. For example, 

‘move W W’ would only succeed if the agent is one position away from a white foreground and 

background color. Representation 2 may elect to move directly to a valid position even if the 

agent is more than one position away. In Representation 3, the agent does not specify 

parameters  and simply has actions like ‘move_up’ or ‘move_left’ for example. These 

differences in representation of experimentation can require the agent to need to perform 

different numbers of actions to reach the goal. 
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See the following figure: 

 

Figure 5-1: Random Tower of 2 Blocks with No Aux Memory Blocks using Asynchronous 

Decision Protocol 

Figure 5-1 shows for a simple example, randomized tower of two blocks with no 

auxiliary memory and using the ‘asynchronous’ decision protocol that the agent learns an 

optimal policy for all representations of experimentation. Note that the agent converges on a 

different average reward per step for each representation. This phenomenon is a result of the 

different representations requiring different numbers of steps to reach the goal. Higher averages 

of reward per step are a result of the agent reaching the goal in a lower number of steps. 

Representation 3, for example, has more actions to perform and thus has converged to a lower 

average reward per step than the other representations. 

 As the complexity of the task increases, the difficulty level for learning is more apparent 

for  each representation. 
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The following figure shows a more complicated example: 

 

Figure 5-2: Random Tower of 3 Blocks with 1 Auxiliary Memory Block using Simultaneous 

Decision Protocol 

Figure 5-2 shows that Representation 3 is far easier to learn for the agent than 

Representations 1 and 2.  Figure 5-2 is not intended to show any of the representations 

converge on a policy. The point of Figure 5-2 is to show that given the same number of blocks 

to learn to copy and the same number of auxiliary memory, the agent has an easier time 

learning and reaching the goal with Representation 3 than with the other representations. 

Representations 1 and 2 have the potential to learn the scenario of Figure 5-2 given enough 

episodes to learn. However as will be shown in Section 5.4, some block copying tasks are not 

learnable for the agent if the agent does not have enough auxiliary memory. The agent may 

also fail due to limitations in the function approximator and the available learning time. 
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5.2 Number of Blocks 

For each representation, the agent is given the task of copying a specified number of 

blocks. The number of blocks affects the state and action space complexities. As the number of 

blocks increases, the state space the agent must learn increases exponentially. As the state 

space increases, the function approximator will have a more and more difficult job representing 

state space and the value function. 

 

Figure 5-3: Representation 1 Random Tower with 1 Auxiliary Memory Block using Simultaneous 

Decision Protocol 

Figure 5-3, shows that one auxiliary memory block is sufficient to learn two blocks for 

Representation 1, but one auxiliary memory block is not enough to learn three blocks for 

Representation 1. 
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Figure 5-4: Representation 3 Random Tower with 4 Auxiliary Memory Blocks using 

Simultaneous Decision Protocol 

 

Figure 5-4 is a more complicated example. Figure 5-4 shows that in Representation 3 

the agent is able to start learning to copy three blocks with four auxiliary memory blocks. Four 

and five blocks are exponentially more complex for the agent to learn. 

5.3 Decision Protocols 

Decision protocols affect the size the agent’s action space and can affect how well the 

agent learns a given task. The decision protocol ‘simultaneous’ enforces that the agent makes a 

physical action, ‘move’ or ‘pick’ for example, and a memory action at the same time. 

‘Simultaneous’ has a larger action space but has the advantage of directly associating what 

actions to remember and when. The ‘asynchronous’ protocol lets the agent take either a 

physical action or a memory action at any time. ‘Asynchronous’ has a smaller action space but 

must make an extra action (a memory action) for each physical action the agent wishes to 

remember. 
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Figure 5-5: Representation 3 Non-Random Tower of 2 Blocks with 1 Auxiliary Memory Block 

Figure 5-5 shows that both ‘simultaneous’ and ‘asynchronous’ decision protocols are 

able to converge on an optimal policy in the given simple scenario of copying two non-

randomized blocks with one auxiliary memory block in Representation 3. The ‘simultaneous’ 

decision protocol converges slightly faster than the ‘asynchronous’ decision protocol in Figure 5-

5. 
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Figure 5-6: Representation 3 Random Tower of 5 Blocks with 4 Auxiliary Memory Blocks 

Figure 5-6 clearly shows that the ‘simultaneous’ decision protocol performs better than 

the ‘asynchronous’ decision protocol for high numbers of blocks and auxiliary memory blocks. 

Figure 5-6 does not show convergence and is not intended to. Figure 5-6 is intended to show 

the general difference in learning performance between different decision protocols. The 

comparison between ‘simultaneous’ and ‘asynchronous’ decision protocols is a little unfair, 

because the ‘asynchronous’ protocol has more actions to perform. If a low maximum number of 

steps per episodes is enforced, the ‘simultaneous’ decision protocol may be able to accomplish 

tasks that the ‘asynchronous’ can not. However, even when compared using a high enough 

maximum number of steps per episode, the ‘simultaneous’ decision protocol performs better 

than the ‘asynchronous’ decision protocol. 

5.4 Number of Auxiliary Memory Blocks 

The number auxiliary memory blocks affect what block copying tasks the agent is 

capable of learning. The number of auxiliary memory blocks also affects the learning rate for the 
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agent. If the agent has more auxiliary memory blocks than required to learn a task, the agent by 

definition is capable of learning the task but at a slower learning rate. 

 

Figure 5-7: Representation 1 Non-Random Tower of 3 Blocks using Asynchronous Decision 

Protocol 

Figure 5-7 shows the agent is able to start learning to copy three non-randomized 

blocks using two auxiliary memory blocks. However, the agent is unable to learn the task with 

one auxiliary memory block. Again by definition, the agent is able to learn the task given in 

Figure 5-7 with three auxiliary memory blocks but at a much slower rate. 
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Figure 5-8: Representation 3 Random Tower of 3 Blocks using Simultaneous Decision Protocol 

 
Figure 5-8 shows different numbers of auxiliary memory blocks used to start learning a 

block copying task of three randomized tower blocks in Representation 3. Figure 5-8 shows how 

the learning rate changes based the number of auxiliary memory blocks. The higher spike given 

by ‘1AuxMem’ in Figure 5-8 can be explained by an educated guess of the agent choosing 

enough of the correct random actions to reach the goal more often early on but the agent may 

not have enough auxiliary memory (state information) to learn a policy to consistently reach that 

high of an average reward per step. ‘2AuxMem’ in Figure 5-8 appears to be the most promising 

amount of memory for the agent to learn block copying task given in Figure 5-8. Figure 5-8 may 

be showing the limitations of what the function approximator used in experimentation can 

represent. If the function approximator is unable to representation the state space sufficiently, 

learning becomes unfeasible.  At higher numbers of blocks and auxiliary memory blocks, 

average reward per step appears to oscillate even with more episodes.  At low enough numbers 
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of blocks to copy and number of auxiliary memory blocks, the agent is able to converge to an 

optimal policy. 
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Chapter VI  

Conclusions and Future Work 

Often one’s environment offers more information that can be processed in a reasonable 

amount of time. Tasks can conventionally be performed numerous ways to varying degrees of 

success. Memory is a limited resource and typically needs to be managed. Learning Focus of 

Attention is motivated by a number reasons among which are filtering of information, focusing 

on a task at hand and discerning what improvements can be made, and memory management. 

The work done in this thesis focuses on the ‘memory management’ and ‘focusing on a 

task at hand’ aspects of Focus of Attention. The chosen application for Focus of Attention is 

block copying. The agent is given a tower of blocks to copy. There are also unstacked blocks on 

the floor. The agent must memorize parts of the tower of blocks it is trying to copy in order to 

correctly stack the unstacked blocks on the floor. The agent is forced to learn memory 

management because it has limited memory and must manage what to hold onto in memory. 

The agent is able to remember actions and whether they were successful or not. Actions 

include things such as movement, picking up or placing a block, and memorizing parts of the 

tower of blocks being copied. The agent is also learning to focus on tasks at hand by 

remembering what actions are important to perform and when. 

The work in this thesis uses different representations of experimentation as well as 

different decision protocols. The agent has physical actions and memory actions. Physical 

actions are actions that affect the environment and the agent’s position in it. The result of each 

physical action is stored in the agent’s perceptual memory block. The agent has a configurable 

number of auxiliary memory blocks. Memory actions move what’s in the perceptual memory 

block into a specified auxiliary memory block. The agent’s decision protocol dictates how and 

when physical actions and memory actions are performed. The ‘simultaneous’ decision protocol 

means that the agent must decide and take a physical action and memory action at the same 

time. The ‘alternating’ decision protocol enforces that the agent must alternate between taking 
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physical actions and memory actions. The ‘asynchronous’ decision protocol allows the agent to 

take physical actions or memory actions at any time. Different representations of 

experimentation model the environment and agent in different ways, and the agent has different 

actions depending on the representation. In Representation 1, actions have parameters and 

actions may only succeed if the parameters are only one position away from the agent. For 

example, the agent may only move one position away. Representation 2 is similar to 

Representation 1, but allows the agent to move directly to a valid specified location. In 

Representation 3, actions do not have parameters. The agent has actions such as ‘move_left’ 

and ‘move_right’. In Representations 1 and 2, the agent must specify parameters to actions and 

the environment will respond back with successful or failure. In Representation 3, the agent 

does not specify parameters to actions and the environment responds back with successful or 

failure plus what parameters the agent tried to perform an action on. For example, if the agent 

tries to ‘move_left’, the environment returns to the agent where the agent tried to ‘move_left’ to. 

Function approximation has been used to great success in the experimentation of this 

thesis project. Different representations of experimentation have been implemented and tested. 

Representation 3 far outperforms the other representations. This is related to the fact the 

Representation 3 uses a significantly smaller action space by not using parameters with actions. 

It is reasonable for the environment to inform the agent what perceptual feedback some actions 

give. For example, if a human were to walk forward until he/she hits something, it is reasonable 

for the environment to inform the human what was walked into. The agent seems to have issues 

still learning to copy higher numbers of blocks. This can possibly be addressed by including 

position information in agent’s state but outside of memory blocks. In some representations of 

experimentation, the agent must use what’s in memory to determine both its position and also to 

learn the tower of blocks to copy. This creates a bottleneck for the agent to learn. Although it 

increases the complexity of the agent’s state space, the benefits could be substantial. Another 
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explanation for agent not being able to learn higher numbers of blocks is that the function 

approximator used in experimentation reaches its limits in what states it can represent.  

Future work includes augmenting the agent’s state information using Representation-3-

like strategies, using more sophisticated tiling systems, and applying the concepts used in this 

thesis to different tasks. Decision protocol ‘alternating’ has also not been fully explored. A more 

sophisticated expansion to this work would be trying to abstract actions by creating symbols that 

map to sets of actions. 
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