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ABSTRACT

Numerical Studies for M -Matrix Algebraic Riccati Equations

Weichao Wang, Ph.D.

The University of Texas at Arlington, 2013

Supervising Professor: Ren-cang Li

A new doubling algorithm – Alternating-Directional Doubling Algorithm (ADDA)

– is developed for computing the unique minimal nonnegative solution of anM -Matrix

Algebraic Riccati Equation (MARE). It is argued by both theoretical analysis and

numerical experiments that ADDA is always faster than two existing doubling algo-

rithms – SDA of Guo, Lin, and Xu (Numer. Math., 103 (2006), pp. 393–412) and

SDA-ss of Bini, Meini, and Poloni (Numer. Math., 116 (2010), pp. 553–578) for the

same purpose.

A deflation technique is then presented for an irreducible singular MARE. The

technique improves the rate of convergence of a doubling algorithm, especially for

an MARE in the critical case for which without deflation the doubling algorithm

converges linearly and with deflation it converges quadratically. The deflation also

improves the conditioning of the MARE in the critical case and thus enables its

minimal nonnegative solution to be computed more accurately.
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CHAPTER 1

Introduction

An M-Matrix Algebraic Riccati Equation1 (MARE) is the matrix equation

R(X) := XDX − AX −XB + C = 0, (1.0.1)

for which A, B, C, and D are matrices whose sizes are determined by the partitioning

W =


m n

m B −D

n −C A

, (1.0.2)

and W is a nonsingular or an irreducible singular M -matrix2. This kind of Riccati

equations arise in applied probability and transportation theory and have been at-

tracting a lot of attention lately. See [19, 21, 23, 24, 25, 26, 35] and the references

therein.

In [24], a structure-preserving doubling algorithm (SDA) was proposed and

analyzed for an MARE with W being a nonsingular M -matrix by Guo, Lin, and Xu.

The idea of using a doubling algorithm for Riccati-type equations traces back to 1970s

(see [2] and references therein). Recent resurgence of interests in the idea, however,

attributes to [15, 14] and has since led to efficient doubling algorithms for various

nonlinear matrix equations. SDA is very fast and efficient for small to medium size

MAREs as it is globally and quadratically convergent. Later in [22], it was argued

that SDA still works for the case in which W is an irreducible singular M -matrix.

1Previously it was called a Nonsymmetric Algebraic Riccati Equation, a name that seems to be

too broad to be descriptive. MARE was recently coined in [42] to better reflect its characteristics.
2The definition of the M -matrix will be introduced in Chapter 2.
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The algorithm has to select a parameter that is no smaller than the largest diagonal

entries in both A and B. Such a choice of the parameter ensures the following:

1. An elegant theory of global and quadratic convergence [22, 24], except for the

null recurrent or critical case [22, p.1085] (see also Theorem 6.3.1(d)) for which

only linear convergence is ensured [13];

2. Computed Φ has an entrywise relative accuracy as the input data deserves, as

argued recently in [42].

Consequently, SDA has since emerged as one of the most efficient algorithms. After

that, the doubling algorithm called SDA-ss of Bini, Meini, and Poloni [11] which

combined a shrink-and-shift approach of Ramaswami [34] came out to improve the

convergence rate. One of the major contributions of this thesis is a new algorithm–

ADDA, which is optimal among all the known doubling algorithms.

This thesis is devoted to studying algorithms for the MARE (1.0.1).

Chapter 2 will present some preliminary knowledge in numerical analysis and

linear algebra that is necessary for this thesis. Especially, this chapter will give the

definition and some basic properties of the M -matrix.

In Chapter 3, we will prove a theorem of the MARE which all these doubling

algorithms base on. We will apply some general numerical methods in Chapter 2 to

give a rigorous proof on the existence of the unique minimal nonnegative solution.

Next in Chapter 4, we will give a new alternating directional implicit(ADI)

method and show its convergence rate on the MARE. Although the new ADI method

is still linearly convergent as the previous one, it is the idea of using two parameters

instead of one in the new method that inspires us to develop our ADDA which turns

out to be optimal.
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Chapter 5 will introduce the Smith method and explain why higher order algo-

rithms are less efficient than the doubling algorithms.

Our main contributions are described in detail in Chapter 6 and Chapter 7.

Chapter 6 will first lay out the framework of ADDA and analyze its convergence

properties. Next, we will compare the convergence rates of ADDA, SDA and SDA-ss

to indicate that (the optimal) ADDA is the fastest among all doubling algorithms

derivable from bilinear transformations.

In the so-called critical case [13] of the MARE, those doubling algorithms in

Chapter 6 are linearly convergent. For this reason, in Chapter 7 we will propose a

deflation approach before applying our ADDA method. The new method is called D-

ADDA. As in Chapter 6, we will lay out framework of D-ADDA and the convergence

properties. Two efficient numerical realizations of the framework will be given. Next

we will compare our D-ADDA method with the shifting approach of Guo, Iannazzo,

and Meini [22].

Chapter 8 will show some numerical examples to support the analytical results

in Chapter 6 and Chapter 7.

Finally, in Chapter 9 we will give our conclusion on the whole thesis.
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CHAPTER 2

Preliminaries

Before discussing numerical methods for matrix equations, let us recall some

basic but very important concepts and general numerical methods that are quite

useful to better understand this thesis.

2.1 Notation

Notation. Rn×m is the set of all n ×m real matrices, Rn = Rn×1, and R = R1. In

(or simply I if its dimension is clear from the context) is the n × n identity matrix

and ej is its jth column. 1n,m ∈ Rn×m is the matrix of all ones, and 1n = 1n,1. The

superscript “·T” takes the transpose of a matrix or a vector. For X ∈ Rn×m,

1. X(i,j) or Xi,j refers to its (i, j)th entry;

2. xij also refers to X’s (i, j)th entry;

3. when m = n, diag(X) is the diagonal matrix with the same diagonal entries as

X’s, ρ(X) is the spectral radius of X, and

ϱ(X) = ρ([diag(X)]−1[diag(X)−X]).

Inequality X ≤ Y means X(i,j) ≤ Y(i,j) for all (i, j), and similarly for X < Y ,

X ≥ Y , and X > Y . ∥X∥ denotes some (general) matrix norm of X. Specifically,

∥X∥p = max
∥x∥p=1

∥Xx∥p is the lp-operator norm of X, where ∥x∥p is the lp-norm of the

vector x. Hence ∥X∥∞ = max
∥x∥∞=1

∥Xx∥ = max
i

∑
j

|Xij| is the maximum absolute row

sum of matrix X.

4



2.2 Newton’s Method

As we know, Newton’s method is a general procedure that can be applied in

many diverse situations. When specialized to the problem of locating a zero of a real-

valued function of a real variable, it is often called the Newton-Raphson iteration.

Suppose r is a real solution of equation f(x) = 0, where f ∈ C2(R) and x is a

good1 approximation to r such that r = x+ h. By Taylor’s Theorem,

0 = f(r) = f(x+ h) = f(x) + hf ′(x) +
1

2
h2f ′′(ξn), (2.2.1)

where ξn is between xn and xn + h. If |h| is small, then it is reasonable to ignore the

last term of (2.2.1), under which condition we have

0 = f(x) + hf ′(x).

It is hoped that

x+ h = x− f(x)

f ′(x)

is a better approximation to r. So if we write the iteration as

xn+1 = xn −
f(xn)

f ′(xn)
n ≥ 0, (2.2.2)

then {xn} is a sequence of estimates of r.

Next theorem indicates quadratic convergence of Newton’s method.

Theorem 2.2.1 ([27]). Let f ′′ be continuous and let r be a simple zero of f . Then

there is a neighborhood of r and a constant C such that if Newton’s method is started

in that neighborhood, then the successive points become quadratically convergent to r

as

|xn+1 − r| ≤ C(xn − r)2, n ≥ 0.

1This good means x is near r, i.e. h is small.
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Proof. Let en = r − xn and from (2.2.1),(2.2.2),

en+1 = en +
f(xn)

f ′(xn)
= −1

2

f ′′(ξn)

f ′(xn)
e2n.

If we can find a positive number C such that

| f
′′(ξn)

2f ′(xn)
| ≤ C,

then we will have

|en+1| ≤ Ce2n,

which means quadratical convergence. Actually, if we define

c(δ) =
1

2
max

|x−r|≤δ
|f ′′(x)|/ min

|x−r|≤δ
|f ′(x)|, δ > 0, (2.2.3)

then we can pick δ small enough to make the denominator of (2.2.3) positive and

bounded below because f ′(r) ̸= 0. Then if necessary, we could make δ less to ensure

the numerator is also bounded above, which is possible since as δ converges to zero,

c(δ) converges to 1
2
|f ′′(r)|/|f ′(r)|. So we can pick a proper δ such that c(δ) in (2.2.3)

is bounded above.

We can generalize the Newton’s method to solve nonlinear matrix equations.

If we apply Newton’s method to MARE (1.0.1). For any matrix norm, the Riccati

function R is a mapping from Rm×n into itself. R ′
X is2 a linear map from Rm×n to

Rm×n given by

R ′
X(Z) = −(A−XD)Z + Z(DX −B). (2.2.4)

Newton’s method for an MARE (1.0.1)

Xn+1 = Xn − (R ′
Xn

)−1R(Xn), n = 0, 1, 2, · · · , (2.2.5)

2Here R′
X stands for first Fréchet derivative of R.
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is well-defined if all R ′
Xn

are invertible. Now with (2.2.4) and (2.2.5), we have the

Newton’s iteration as

(A−XnD)Xn+1 +Xn+1(B −DXn) = C −XnDXn. (2.2.6)

Actually those interested readers are referred to [33] to get more detail in the

existence for R ′
X and the convergence theory of (2.2.6).

2.3 Fixed-Point Iteration

As we saw in (2.2.5), the right-hand-side of the equation is a function of the

matrix Xn, which is a point in Rm×n. Actually the Newton’s method is an example

of algorithms called functional iteration with form

Xn+1 = F (Xn), n ≥ 0. (2.3.1)

Suppose that

lim
n→∞

Xn = S.

If F is continuous, then

F (S) = F ( lim
n→∞

Xn) = lim
n→∞

F (Xn) = lim
n→∞

Xn+1 = S.

Thus, F (S) = S, and we call S a fixed-point of function F . We could think of a

fixed-point as a matrix that the function “locks onto” in the iterative process.

Often a mathematical problem can be reduced to the problem of finding a

fixed-point of a function. Very interesting applications occur in differential equations,

optimization theory, and other areas. Usually the function F whose fixed-points are

sought will be a mapping from one vector space into another. Here we extend F to

be a map from a closed set C ⊂ Rn×n into itself. The theorem to be proved concerns

7



Contractive mappings. A mapping (or function) F is said to be contractive if there

exists a number λ < 1 such that

∥F (X)− F (Y )∥ ≤ λ∥X − Y ∥, (2.3.2)

for all points (matrices) X and Y in the domain of F , where ∥ · ∥ is some matrix

norm. The Contractive Mapping Theorem indicates the uniqueness of fixed-point.

Theorem 2.3.1 ([27]). Let F be a contractive mapping of a closed set C ⊂ Rn×n

into C. Then F has a unique fixed-point. Moreover, this fixed-point is the limit of

every sequence obtained from (2.3.1) with any starting point X0 ∈ C.

Proof. From the property (2.3.2) and construct iteratively,

∥Xn+1 −Xn∥ = ∥F (Xn)− F (Xn−1)∥

≤ λ∥Xn −Xn−1∥

≤ λ2∥Xn−1 −Xn−2∥

≤ · · ·

≤ λn∥X1 −X0∥,

where λ < 1. Since Xn can be written as

Xn = X0 + (X1 −X0) + (X2 −X1) + · · ·+ (Xn −Xn−1),

we see that the sequence {Xn} converges if and only if the series

∞∑
n=1

(Xn −Xn−1)

converges. To prove that this series converges, it suffices to show that the series

∞∑
n=1

∥Xn −Xn−1∥

8



converges. This is easy since

∞∑
n=1

∥Xn −Xn−1∥ ≤
∞∑
n=1

λn−1∥X1 −X0∥ =
1

1− λ
∥X1 −X0∥.

Hence {Xn} is convergent, say, with limit S. Moreover, we can see a contractive

function is continuous from its definition. So S is a fixed-point.

Suppose there are two fixed-points X and Y , then

∥Y −X∥ = ∥F (Y )− F (X)∥ ≤ λ∥Y −X∥ ⇒ |1− λ| · ∥X − Y ∥ ≤ 0 ⇒ X = Y.

Therefore, with λ < 1, we have X = Y , which proves the uniqueness of the fixed-

point.

2.4 Kronecker Products

Let X be m-by-n. Then vec(X) is defined to be a column vector of size m · n

made of the columns of X stacked atop one another from left to right. Let A be an

m-by-n matrix and B be a p-by-q matrix. Then A⊗B, the Kronecker Product of A

and B, is the (m · p)-by-(n · q) matrix
a11 ·B · · · a1n ·B

...
...

am1 ·B · · · amn ·B


The following lemma is a useful way to express a matrix equation by Kronecker

products and the vec(·) operator.

Lemma 2.4.1 ([16],[32]). Let A be m-by-m, B be n-by-n, and X and C be m-by-n.

Then the following properties hold:

(a) vec(AX) = (In ⊗ A)·vec(X).

(b) vec(BX) = (BT ⊗ Im)·vec(X).

(c) vec(AX +XB) = (In ⊗ A+BT ⊗ Im)·vec(X).

9



The proof of this lemma is quite easy. The first two parts can be proved by

comparing both sides of the equations and the last part directly follows from the first

two.

2.5 Irreducible Matrix

Definition 2.5.1. For n ≥ 2, an n× n complex matrix A is reducible if there exists

an n× n permutation matrix3 P such that

PAP T =


r n−r

r A11 A12

n−r 0 A22

,
where 1 ≤ r < n. If no such permutation matrix exists, then A is called irreducible.

If A is nonnegative, there is another equivalent definition for irreducible matrix.

Definition 2.5.2. Suppose A is nonnegative. A is called irreducible if for each pair

of indices i and j, there exists an m ∈ N such that (Am)ij ̸= 0.

2.6 Definition for M -matrix.

Definition 2.6.1. A matrix A ∈ Rn×n is called a Z-matrix if A(i,j) ≤ 0 for all i ̸= j.

Any Z-matrix A can be written as sI − N with N ≥ 0. It is called an M -matrix if

s ≥ ρ(N), a singularM-matrix if s = ρ(N), and a nonsingularM -matrix if s > ρ(N).

2.7 Equivalent Definitions for M -matrix

With the definition of the M -matrix, we have the following equivalent state-

ments for M -matrices which will be used in this thesis.

3A permutation matrix is a square matrix which in each row and each column has one and only

one entry unity and all others zero.
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Lemma 2.7.1 ([9, 17, 32, 38]). The following are equivalent for a Z-matrix A:

(a) A is a nonsingular M-matrix.

(b) A−1 ≥ 0.

(c) Au > 0 for some vector u > 0.

(d) All eigenvalues of A have positive real parts.

Proof. We will prove the lemma as follows: (a)⇐⇒(b), (b)⇐⇒(c), (a)⇐⇒(d).

(a)⇐⇒(b)

(=⇒) Suppose A is a nonsingularM -matrix, by definition we have A = sI−N ,

where N ≥ 0 and s > ρ(N). So

ρ

(
N

s

)
< 1, N ≥ 0. (2.7.1)

Consider[
I −

(
N

s

)]
·

[
I +

(
N

s

)
+

(
N

s

)2

+ · · ·+
(
N

s

)k
]
= I −

(
N

s

)k+1

.

When k → ∞, the right-hand side approaches I with condition (2.7.1). So[
I −

(
N

s

)]−1

=
∞∑
k=0

(
N

s

)k

≥ 0,

which means A−1 ≥ 0.

(⇐=) If A−1 ≥ 0, then A is nonsingular. Suppose λ is any eigenvalue of N ,

λx = Nx

⇒|λ||x| = N |x|

⇒(sI −N)|x| ≤ (s− |λ|)|x|

⇒0 ≤ |x| ≤ (s− |λ|)(sI −N)−1|x|

⇒s− |λ| ≥ 0

⇒s ≥ |λ|

⇒s ≥ ρ(N).
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Moreover, from |x| ̸= 0, we have s ̸= |λ|. Hence s > ρ(N).

(b)⇐⇒(c)

(=⇒) If A−1 ≥ 0, then A−1 exists and A−1 ̸= 0. There exists a vector v > 0,

such that A−1v > 0. Let u = A−1v. It is obvious that u > 0. So Au = v > 0.

(⇐=) If there exists a vector x = (x1, x2, · · · , xn)T > 0 such that Ax > 0. Let

D=diag(x1, x2, · · · , xn), then ADe > 0, where e = (1, 1, · · · , 1)T . AD is diagonally

dominant. Split A = E − N , where E = diag(A). Then AD = ED − ND, A =

(ED −ND)D−1 = ED(I −D−1E−1ND)D−1. Let H = D−1E−1ND. Then we have

ρ(H) < 1 since

ρ(H) ≤ ∥H∥∞ = max
i

∑
j ̸=i

|(AD)i,j|
|(AD)i,i|

< 1.

Because H ≥ 0, A−1 = D(I −H)−1D−1E−1 ≥ 0.

(a)⇐⇒(d)

(=⇒) From A = sI − N , we have λ(A) = s − λ(N). Here λ(A) stands for an

eigenvalue of A and λ(N) is the corresponding eigenvalue of N satisfies the equation.

If λ(N) = α+iβ, where α and β are real numbers and i is the imaginary unit satisfying

i2 = −1. Hence λ(A) = (s − α) − iβ. As assumed s > ρ(N) ≥ |λ(N)| =
√
α2 + β2,

we have Re(λ(A)) > 0.

(⇐=) Now suppose Re(λ(A)) > 0. This means that there is a real number γ

such that the circle centered at γ with radius γ contains all eigenvalues of A. Let s be

any real number satisfies s > max{2γ,maxi |aii|}, and set N = sI − A. Then N ≥ 0

and by λ(N) = s− λ(A), we have |λ(N)| = |s− λ(A)| < s, i.e. s > ρ(N). Moreover,

since Re(λ(A)) > 0, λ(A) ̸= 0, which means A is nonsingular.

Remark 2.7.1. From the proof of (a)⇐⇒(b), we can similarly prove the following

lemma.
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Lemma 2.7.2 ([17, 38]). Given A, ρ(A) < 1 if and only if (I − A)−1 exists and

(I − A)−1 =
∞∑
k=0

Ak.

2.8 Properties of M -matrices

Lemma 2.8.1 collects a few properties of M -matrices, important to our later

analysis, where Item (e) can be found in [31].

Lemma 2.8.1 ([9, 17, 38]). Let A,B ∈ Rn×n, and suppose A is an M -matrix and B

is a Z-matrix.

(a) If B ≥ A, then B is an M-matrix. In particular, θI + A is an M-matrix for

θ ≥ 0 and a nonsingular M-matrix for θ > 0.

(b) If B ≥ A and A is nonsingular, then B is a nonsingular M-matrix, and A−1 ≥

B−1.

(c) If A is nonsingular and irreducible, then A−1 > 0.

(d) The one with the smallest absolute value among all eigenvalues of A, denoted by

λmin(A), is nonnegative, and λmin(A) ≤ maxiA(i,i).

(e) If A is a nonsingular M-matrix or an irreducible singular M -matrix, and is

partitioned as

A =

A11 A12

A21 A22

 ,

where A11 and A22 are square matrices, then A11 and A22 are nonsingular M -

matrices, and their Schur complements

A22 − A21A
−1
11 A12, A11 − A12A

−1
22 A21

are nonsingular M -matrices if A is a nonsingular M -matrix or an irreducible

singular M-matrices if A is an irreducible singular M-matrix.
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Proof. (a) The proof is essentially the same as the proof of Theorem 3.12 in [38].

Let DA be a diagonal matrix whose diagonal entries are given by dii = 1/Aii,

and DB be a diagonal matrix with dii = 1/Bii. QA and QB are defined as

QA = I −DAA, QB = I −DBB. (2.8.1)

Since A is an M -matrix, we have

ρ(QA) < 1.

With the assumption B ≥ A, we have QB ≤ QA and both of them are nonnegative.

So

ρ(QB) ≤ ρ(QA) < 1.

From the above inequality and Lemma 2.7.2, we have B is an M -matrix.

(b) From Lemma 2.7.1, A is a nonsingularM -matrix. Then there exists a vector

u > 0, such that Au > 0. Since B ≥ A, (B − A)u ≥ 0. Hence Bu ≥ Au > 0, which

means B is also a nonsingular M -matrix.

(c) Suppose A is irreducible nonsingular and A = sI − N as in the definition

of the M -matrix. According to Definition 2.5.2, for any (i, j), there exists an m ∈ N,

such that (Nm)ij ̸= 0. So[
I −

(
N

s

)]−1

= I +

(
N

s

)
+

(
N

s

)2

+

(
N

s

)3

+ · · · > 0,

i.e. A−1

s
> 0, A−1 > 0.

(d) Without loss of generality, suppose A is irreducible (If not, split it into

irreducible blocks and work on submatrices). Let A = sI −N , where s = maxi(Aii)

and N ≥ 0. Apply Theorem 3.1.1 to N since N is also irreducible. We have an

eigenvalue of N , say λN , such that

λN = ρ(N).
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Thus from

λmin(A) = s− λmax(N) = s− ρ(N) ≥ 0,

λmin(A) ≤ s = maxi(Aii).

(e) The proof of (e) can be found in [31].
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CHAPTER 3

A Fundamental Theorem on M -matrix Algebraic Riccati Equation

A fundamental result on theM -matrix Algebraic Riccati Equation is as follows.

Theorem 3.0.1 ([19, 23]). An MARE (1.0.1) has a unique (entrywise) minimal

nonnegative solution Φ, i.e.,

Φ ≤ X for any other nonnegative solution X of an MARE (1.0.1).

The proof of Theorem 3.0.1 is very complicated. So we split it into two parts.

Theorem 3.2.1 is about the existence of nonnegative solutions. Theorem 3.3.1 says

that there is a unique minimal nonnegative solution, assuming the existence of a

nonnegative solution of MARE (1.0.1).

3.1 Perron-Frobenius Theorem

The following theorem presents some important properties of nonnegative irre-

ducible matrices.

Theorem 3.1.1 (Perron-Frobenius [32, 38]). Let A ≥ 0 be an irreducible n×n matrix.

Then

1. A has a positive real eigenvalue equal to its spectral radius.

2. To ρ(A) there corresponds a positive eigenvector.

3. ρ(A) increases when any entry of A increases.

4. ρ(A) is a simple eigenvalue of A.

The interested reader is referred to [38] for the proof of Theorem 3.1.1 as well

as some applications..
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Remark 3.1.1. Iterative methods are studied for the numerical solution of an MARE

(1.0.1). The condition

C ≥ 0, D ≥ 0, I ⊗ A+BT ⊗ I is a nonsingular M-matrix, (3.1.1)

given in [23], where ⊗ is the Kronecker product, could be easily derived with Lemma 2.8.1

(e). It is shown in [23] that Newton’s method and a class of basic fixed-point iterations

can find its minimal nonnegative solution whenever it has a nonnegative solution. This

conclusion is useful for the proofs in the following two sections.

3.2 The Existence of Nonnegative Solutions

As a part of proving Theorem 3.0.1, we will first prove the existence of nonneg-

ative solutions.

Theorem 3.2.1 ([9, 38, 19, 23]). If W in (1.0.2) is a nonsingular M-matrix, then the

MARE (1.0.1) has a nonnegative solution X such that B−DX is also a nonsingular

M-matrix. If W in (1.0.2) is an irreducible singular M-matrix, then the MARE

(1.0.1) has a nonnegative solution X such that B −DX is also an M -matrix.

Proof. Consider T=diag(B,A) ≥ W and Lemma 2.7.1. T is an M -matrix since W

is an M -matrix. If W is nonsingular, then there exists a positive vector u > 0, such

that Wu > 0. Thus

(T −W )u ≥ 0 ⇒ Tu ≥ Wu > 0 ⇒ Tu > 0.

So T is also a nonsingular M -matrix.
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If W is an irreducible singular M -matrix, then with the definition of the M -

matrix, there is a number s and two nonnegative matrices N1 and N2 such that

T = sI −N1 and W = sI −N2. By Theorem 3.1.1,

T > W ⇒ sI −N1 > sI −N2

⇒ N1 < N2

⇒ ρ(N1) < ρ(N2)

⇒ s− ρ(N1) > s− ρ(N2)

⇒ ρ(T ) > ρ(W ) ≥ 0.

Hence T is a nonsingular M -matrix. From, det(A)· det(B) = det(T ), A and B are

nonsingular. Moreover we have T−1 = diag(B−1, A−1) ≥ 0 from Lemma 2.7.1. Thus

A−1 and B−1 are both nonnegative, which means A and B are both nonsingular

M -matrices. So condition (3.1.1) is satisfied.

Next, take X0 = 0 and use the Fixed-point Iteration:

A1Xi+1 +Xi+1B1 = XiDXi + A2Xi +X2B2 + C, i = 1, 2, · · · , (3.2.1)

where A = A1 −A2, B = B1 −B2 that makes A1 and B1 both Z-matrices along with

A2, B2 ≥ 0. We need to prove that the sequence {Xi} is bounded above and satisfies

0 ≤ Xi ≤ Xi+1. If W is a nonsingular M -matrix, we can find v1, v2, such that

B1v1 −B2v1 −Dv2 = u1 > 0, (3.2.2)

A1v2 − A2v2 − Cv1 = u2 > 0. (3.2.3)
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By induction, it is easy to get 0 ≤ Xi ≤ Xi+1. For k = 0, v2 − A−1
1 u2 = A−1

1 (A2v2 +

Cv1) ≥ 0 by (3.2.3). Now suppose Xiv1 ≤ v2 − A−1
1 u2 for some i ≥ 1. Then

A1Xi+1v1 +Xi+1B1v1 = XiDXiv1 + A2Xiv1 +XiB2v1 + CV1

≤ XiDV2 + A2V2 +XiB2V1 + CV1

= XiB1v1 −XiB2v1 −Xiu1 + A1v2 − u2 +XIB2v1

= XiB1v1 −Xiu1 + A1v2 − u2

≤ XiB1v1 + A1v2 − u2.

Since Xi+1 ≥ Xi, from above A1Xi+1v2 ≤ A1v2 − u2. So {Xi} is increasing and

bounded above. Hence it has a limit, say S, which is a nonnegative solution of MARE

(1.0.1) and satisfies Sv1 ≤ v2−A−1
1 u2 < v2. Thus (B−DS)v1 ≥ Bv1−Dv2 = u1 > 0.

Therefore B − DS is a nonsingular M -matrix by Lemma 2.7.1. The proof for the

irreducible singular case is almost the same. The only difference is at the initial step,

where we use Theorem 3.1.1 to ensure that there are v1, v2 > 0 to make

B1v1 −B2v1 −Dv2 = 0,

A1v2 − A2v2 − Cv1 = 0.

3.3 The Unique Minimal Nonnegative Solution

For the next lemma, we need to add the following assumption besides (3.1.1)

C,D ̸= 0, (I ⊗ A+BT ⊗ I)−1vec(C) > 0. (3.3.1)

Lemma 3.3.1 ([23, 19, 38]). Consider an MARE (1.0.1) with conditions (3.1.1) and

(3.3.1). If there exists a positive matrix X such that R(X) ≤ 0, then the MARE

(1.0.1) has a positive solution S satisfies S ≤ X for every positive matrix X for
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which R(X) ≤ 0. Furthermore, S is also the minimal positive solution of the MARE

(1.0.1).

Proof. Let X be an arbitrary positive matrix such that

R(X) = XDX − AX −XB + C ≤ 0. (3.3.2)

We use induction to prove

Xk < Xk+1, Xk < X, I ⊗ (A−XkD)+ (B−DXk)
T ⊗ I is an M -matrix. (3.3.3)

For k = 0, the Newton’s iteration (2.2.6) is

AX1 +X1B = C,

which is equivalent to

(I ⊗ A+BT ⊗ I)vec(X1) = vec(C).

In the above equation, I ⊗ A + BT ⊗ I is an M -matrix as assumed in (3.1.1). Thus

(I⊗A+BT ⊗ I)−1 > 0 by Lemma 2.7.1. With C > 0, we have X1 > 0. Hence (3.3.3)

is true for k = 0.

Now assuming that (3.3.3) is true for k = i ≥ 0, by (2.2.6) and (3.3.2) we have

(A−XiD)(Xi+1 −X) + (Xi+1 −X)(B −DXi)

= C −XiDXi − AX +XiDX −XB +XDXi

≤−XDX −XiDXi+XiDX +XDXi

=− (X −Xi)D(X −Xi).

Since I ⊗ (A −XiD) + (B −DXi)
T ⊗ I is an M -matrix and D > 0 by assumption,

we can easily get Xi+1 −X < 0, i.e. Xi+1 < X.
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Consider

(A−Xi+1D)Xi+1 +Xi+1(B −DXi+1)

= (A−XiD − (Xi+1 −Xi)D)Xi+1 +Xi+1[B −DXi −D(Xi+1 −Xi)]

= (A−XiD)Xi+1 +Xi+1(B −DXi)− (Xi+1 −Xi)DXi+1 −Xi+1D(Xi+1 −Xi)

= C − (Xi+1 −Xi)D(Xi+1 −Xi)−Xi+1DXi+1,

i.e.

(A−Xi+1D)Xi+1+Xi+1(B−DXi+1) = C− (Xi+1−Xi)D(Xi+1−Xi)−Xi+1DXi+1.

(3.3.4)

Using the above equation, we have

(A−Xi+1D)(Xi+1 −X) + (Xi+1 −X)(B −DXi+1)

=− (Xi+1 −Xi)D(Xi+1 −Xi)− (Xi+1 −X)D(Xi+1 −X) < 0,

which means (I ⊗ (A − Xi+1D) + (B − DXi+1)
T ⊗ I)vec(X − Xi+1) > 0. From

Lemma 2.7.1, I ⊗ (A−Xi+1D) + (B −DXi+1)
T ⊗ I is an M -matrix.

Using (3.3.4) again, we get

(A−Xi+1D)(Xi+1 −Xi+2) + (Xi+1 −Xi+2)(B −DXi+1)

=− (Xi+1 −Xi)D(Xi+1 −Xi)− (Xi+1 −X)D(Xi+1 −X) < 0,

by which we have Xi+1 < Xi+2
1. Thus, the proof by induction for (3.3.3) is done.

From (3.3.3), the sequence {Xi} generated by the Newton’s iteration (2.2.6)

is monotonically increasing and bounded above. Thus the limit exists. If we write

S = limk→∞Xk, then S is a solution of R(X) = 0. Moreover, since S ≤ X for

1Here we used (I ⊗ (A − Xi+1D) + (B − DXi+1)
T ⊗ I)vec(X − Xi+1) > 0 is an M -matrix as

mentioned before.
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any X satisfies R(X) ≤ 0, S is also the minimal nonnegative solution of the MARE

(1.0.1).

Now with (3.2.1), we introduce an operator L defined as

L (X) = A1X +XB1. (3.3.5)

Lemma 3.3.2 ([32, 38, 16]). If L is defined as (3.3.5), then

(a) L is a linear operator.

(b) If I ⊗A1 +BT
1 ⊗ I is a nonsingular M-matrix, the operator L is invertible and

L −1(X) ≥ 0 for X ≥ 0.

Proof. Part (a) is trivial. For part (b), referring to Lemma 2.4.1 part (c), we have

vec(A1X +XB1) = (In ⊗ A1 +BT
1 ⊗ Im)vec(X).

Thus, with the assumption that I ⊗ A1 + BT
1 ⊗ I is a nonsingular M -matrix and

Lemma 2.7.1, L −1 ≥ 0. So L −1(X) ≥ 0 for X ≥ 0.

Consider an MARE (1.0.1) with condition (3.1.1), we have

Theorem 3.3.1 ([19, 23]). For fixed-point iteration (3.2.1) and X0 = 0, we have

Xk ≤ Xk+1 for any k ≥ 0. If R(X) ≤ 0 for some nonnegative matrix X, then

we also have Xk ≤ X for any k ≥ 0. Moreover, {Xk} converges to the minimal

nonnegative solution of the MARE (1.0.1).

Proof. There are three steps for this proof.

(a) Xk ≤ Xk+1 for any k ≥ 0.

(b) If there exists X ≥ 0 such that R(X) ≤ 0, then Xk ≤ X for any k ≥ 0.

(c) {Xk} converges to the minimal nonnegative solution of the MARE (1.0.1).
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(a) can be easily proved with induction. For (b), we also apply induction. X0 ≤ X is

true. Suppose Xk ≤ X, then

Xk+1 = L −1(XkDXk + A2Xk +Xk +B2 + C)

= L −1(XkDXk − AXk −XkB + C + A1Xk +XkB1)

= L −1R(Xk) + L −1L (Xk)

= Xk − L −1[−R(Xk)]

≤ Xk ≤ X.

The last but one inequality comes from Lemma 3.3.2.

Thus ifX∗ = limk→∞Xk, then from Lemma 3.3.1X∗ is the minimal nonnegative

solution of the MARE (1.0.1), which proved (c).

Combining Theorem 3.2.1 with Theorem 3.3.1, we have proved Theorem 3.0.1.

23



CHAPTER 4

ADI Method

Bai, Guo, and Xu [4] proposed an alternating-directional-implicit1 iteration

method for the MARE (1.0.1):

Xk+ 1
2
[αI + (B −DXk)] = (αI − A)Xk + C, (4.0.1a)

[αI + (A−Xk+ 1
2
D)]Xk+1 = Xk+ 1

2
(αI −B) + C. (4.0.1b)

They proved that with X0 = 0,

0 ≤ Xk ≤ Xk+ 1
2
≤ Xk+1 ≤ Φ, lim

k→∞
Xk = Φ, (4.0.2)

provided

α ≥ max
i,j

{A(i,i), B(j,j)}. (4.0.3)

While this theory reads beautifully, it does not tell what α value should be for the

fastest convergence rate subjected to (4.0.3). Recently, Wang and Guo [40] essentially

showed that under the constraint (4.0.3), α = maxi,j{A(i,i), B(j,j)} makes Xk converge

to Φ the fastest.

The method (4.0.1) is very much reminiscent of the well-known ADI (Alternating-

Directional-Implicit) iteration for Sylvester equations [8, 39], except that it uses only

one parameter α. Inspired by the effort in [39] on ADI parameter selections, it is

conceivable that the method could be improved with more parameters. Added to the

complexity here is the question how to still retain the nonnegativity of Xk and its

monotonic convergence to Φ. So we are about to present a much improved version of

the method (4.0.1) in terms of the speed of Xk approaching Φ.

1It is also called alternating-linearized-implicit(ALI) method.
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4.1 ADI Method for M -Matrix Algebraic Riccati Equation

Consider an MARE (1.0.1). We reformulate it as the following two fixed-point

equations:

X[αI + (B −DX)] = (αI − A)X + C, (4.1.1)

[βI + (A−XD)]X = X(βI −B) + C, (4.1.2)

where α and β are given positive parameters. In fact, this reformulation also provides

a new technique for linearizing the nonlinear MARE (1.0.1). Now given Xk , by first

solving Xk+ 1
2
from

Xk+ 1
2
[αI + (B −DXk)] = (αI − A)Xk + C, (4.1.3)

and then solving Xk+1 from

[βI + (A−Xk+ 1
2
D)]Xk+1 = Xk+ 1

2
(βI −B) + C, (4.1.4)

we can establish the following alternating directional implicit iteration method to

solve the MARE (1.0.1).

Algorithm 4.1.1 (The new ADI iteration method). Set X0 = 0 ∈ Rn×m. For

k = 0, 1, 2, · · · , compute Xk+1 from Xk by solving the following two systems of linear

matrix equations:

Xk+ 1
2
[αI + (B −DXk)] = (αI − A)Xk + C, (4.1.5a)

[βI + (A−Xk+ 1
2
D)]Xk+1 = Xk+ 1

2
(βI −B) + C, (4.1.5b)

where α > 0 and β > 0 are given iteration parameters.

4.2 Convergence Theory

As a preparation, we first show several properties about the ADI iteration

method, which are essential for us to establish its monotonic convergence theorem.
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Lemma 4.2.1. Let the matrix sequence {Xk} be generated by Algorithm 4.1.1, and Φ

be the minimal nonnegative solution of MARE (1.0.1). Then the following equalities

hold true:

(a) (Xk+ 1
2
− Φ)[αI + (B −DXk)] = [αI − (A− ΦD)](Xk − Φ);

(b) (Xk+ 1
2
−Xk)[αI + (B −DXk)] = R(Xk);

(c) R(Xk+ 1
2
) = [αI − (A−Xk+ 1

2
D)](Xk+ 1

2
−Xk);

(d) [βI + (A−Xk+ 1
2
D)](Xk+1 − Φ) = (Xk+ 1

2
− Φ)[βI − (B −DΦ)];

(e) [βI + (A−Xk+ 1
2
D)](Xk+1 −Xk+ 1

2
) = R(Xk+ 1

2
);

(f) R(Xk+1) = (Xk+1 −Xk+ 1
2
)[βI − (B −DXk+1)].

In Lemma 4.2.1, items (a), (b) and (c) are the same as Lemma 4.1 in [4]. Items

(d), (e) and (f) are only different from Lemma 4.1 in [4] in the parameters.

4.3 Analysis

Based on Lemma 4.2.1 and Lemma 2.8.1, we are now ready to prove the mono-

tonic convergence for the ADI iteration sequences.

Theorem 4.3.1. Let Φ be the minimal nonnegative solution of the MARE (1.0.1).

Let X0 = 0 be the initial matrix, and α, β be the parameters such that

α ≥ max
1≤i≤n

aii, β ≥ max
1≤i≤m

bii,

where aii and bii are the ith diagonal elements of matrices A and B respectively. Then

the matrix sequence {Xk} generated by Algorithm 4.1.1 is well defined, and it holds

that

(a) {Xk} is monotonically increasing and bounded, i.e. 0 = X0 ≤ X 1
2
≤ X1 ≤

· · · ≤ Xk ≤ Xk+ 1
2
≤ Xk+1 ≤ · · · ≤ Φ;

(b) {Xk} converges to Φ, i.e. lim
k→∞

Xk = Φ.
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Proof. The proof is almost the same as the proof of Theorem 4.1 in [4]. The difference

is in the iteration parameters. Because W is an M -matrix, its diagonal blocks A and

B are M -matrices, too. Hence, when

α ≥ max
1≤i≤n

aii, β ≥ max
1≤i≤m

bii,

the matrices αI − A and βI − B are both nonnegative matrices. For the matrix

sequence Xk generated by Algorithm 4.1.1, we can assert that the following facts

hold true

(F1) {Xk+ 1
2
} and {Xk+1} are bounded, i.e.

0 ≤ Xk+ 1
2
≤ Φ and 0 ≤ Xk+1 ≤ Φ, k = 0, 1, 2, · · · .

(F2) A−Xk+ 1
2
D and B −DXk+1 are M -matrices, k = 0, 1, 2, · · · .

Facts (F1) and (F2) can be proved by induction. In fact, by substituting X0 = 0

into (4.1.5) we get

X 1
2
(αI +B) = C.

As B is an M-matrix, by Lemma 2.8.1 the matrix αI+B is also an M-matrix. Hence,

X 1
2
= C(αI +B)−1 ≥ 0.

In addition, by Lemma 4.2.1, we get

X 1
2
− Φ = −[(αI − A) + ΦD]Φ(αI +B)−1 ≤ 0.

This shows that 0 ≤ X 1
2
≤ Φ. From D ≥ 0, we have

A− ΦD ≤ A−X 1
2
D ≤ A.

By Lemma 2.8.1, we know that A −X 1
2
D is an M -matrix. Analogously, by making

use of Lemma 2.8.1, we know that βI + (A − X 1
2
D) is an M -matrix. From (4.1.5)

and Lemma 4.2.1, we get

X1 = [βI + (A−X 1
2
D)]−1(X 1

2
(βI −B) + C) ≥ 0,
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and

X1 − Φ = [βI + (A−X 1
2
D)]−1(X 1

2
− Φ)[(βI −B) +DΦ] ≤ 0.

This shows that 0 ≤ X1 ≤ Φ. From D ≥ 0, we get

B −DΦ ≤ B −DX1 ≤ B.

Thus we know that B −DX1 is an M -matrix. The above proof shows that (F1) and

(F2) are true for k = 0. Now assume that (F1) and (F2) are true for k = l− 1. Then

from (4.1.5) and Lemma 4.2.1 (a) we get

Xl+ 1
2
= [(αI − A)Xl + C][αI + (B −DXl)]

−1,

and

Xl+ 1
2
− Φ = [α− (A− ΦD)](Xl − Φ)[α+ (B −DX)]−1.

Because 0 ≤ Xl ≤ Φ, αI − A ≥ 0 and C ≥ 0, it holds that

(αI − A)Xl + C ≥ 0.

In addition, as B − DXl is an M -matrix, we know that αI + (B − DXl) is also an

M -matrix. Therefore, we have

Xl+ 1
2
≥ 0 and Xl+ 1

2
− Φ ≤ 0.

That is to say,

0 ≤ Xl+ 1
2
≤ Φ.

It then follows from D ≥ 0 that

A− ΦD ≤ A−Xl+ 1
2
D ≤ A.

Thus A−Xl+ 1
2
D is an M -matrix.
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Similarly, from (4.1.5) and Lemma 4.2.1, we have

Xl+1 = [βI + (A−Xl+ 1
2
D)]−1[Xl+ 1

2
(βI −B) + C]

and

Xl+1 − Φ = [βI + (A−Xl+ 1
2
D)]−1(Xl+ 1

2
− Φ)[βI − (B −DΦ)].

Because 0 ≤ Xl+ 1
2
≤ Φ, αI −B ≥ 0 and C ≥ 0, it holds that

Xl+ 1
2
(βI −B) + C ≥ 0.

In addition, as A−Xl+ 1
2
D is an M -matrix, we know that βI + (A−Xl+1D) is also

an M -matrix. Therefore, we have

Xl+1 ≥ 0 and Xl+1 − Φ ≤ 0.

That is to say,

0 ≤ Xl+1 ≤ Φ.

It then follows from D ≥ 0 that

B −DΦ ≤ B −DXl+1 ≤ B.

Thus B −DXl+1 is an M -matrix.

The above proof shows that (F1) and (F2) are true for k = l.

Hence, by induction, we have proved that facts (F1) and (F2) hold for all

integers k ≥ 0. Now, we begin to prove conclusions (a) and (b) of this theorem.

We first prove (a). What needs to be done is to inductively prove that the

inequalities

Xk ≤ Xk+ 1
2
≤ Xk+1, R(Xk) ≥ 0, R(Xk+ 1

2
) ≥ 0, and R(Xk+1) ≥ 0 (4.3.1)

hold for all nonnegative integers k.
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In fact, when k = 0, by substituting X0 = 0 into (b), (c), (e) and (f) in

Lemma 4.2.1, and making use of the facts (F1) and (F2), we can easily verify that

the inequalities in (4.3.1) are all true. Assume that the inequalities in (4.3.1) hold for

k = l − 1. Then by making use of the facts (F1) and (F2), from (b), (c), (e) and (f)

in Lemma 4.2.1 again we can easily verify that the inequalities in (4.3.1) are also true

for k = l. Hence, by induction, we have proved that (4.3.1) holds for all nonnegative

integers k.

It follows straightforwardly from (4.3.1) and (F1) that (a) is true.

Because {Xk} is nonnegative, monotonically increasing, and bounded from

above, there exists a nonnegative matrix Φ∗, such that lim
k→∞

Xk = Φ∗. Evidently,

it also holds that lim
k→∞

Xk+ 1
2
= Φ∗. Obviously, (F1) implies Φ∗ ≤ Φ. On the other

hand, by taking limits in both (4.1.5) and (4.3.1), we see that Φ∗ is also a nonnegative

solution of the MARE (1.0.1). Hence, it must hold that Φ ≤ Φ∗ due to the minimal

property of Φ. It then follows that Φ∗ = Φ, and (b) is true.

The following theorem shows that the iteration sequence is nonincreasing with

respect to α and β, respectively.

Theorem 4.3.2. Suppose that W in (1.0.2) is an M-matrix, and Φ is the minimal

nonnegative solution of the MARE (1.0.1). Let X0 = X̃0 = 0 be the initial matrices,

and the matrix sequences {Xk}, {X̃k} be generated by Algorithm 4.1.1 for which the

corresponding iteration parameters are (α, β) and (α1, β1) respectively, satisfying

α1 ≥ α ≥ max
1≤i≤n

aii, β1 ≥ β ≥ max
1≤i≤m

bii,

where aii and bii are the ith diagonal elements of the matrices A and B, respectively.

Then

Xk+ 1
2
≥ X̃k+ 1

2
, Xk+1 ≥ X̃k+1, k = 0, 1, 2, . . . . (4.3.2)
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Proof. The proof is almost the same as the proof of Theorem 3.1 in [40]. The difference

is in the iteration parameters. It can be proved by induction. In fact, when k = 0,

X0 = X̃0 = 0, X 1
2
= C(αI +B)−1, X̃ 1

2
= C(α1I +B)−1.

As B is an M-matrix, by Lemma 2.8.1 the matrix αI + B and α1I + B are also

M-matrices, and αI +B ≤ α1I +B. By Lemma 2.8.1, we know

(αI +B)−1 ≥ (α1I +B)−1.

Therefore, X 1
2
≥ X̃ 1

2
.

From Lemma 4.2.1 (e), we have

Xk+1 = [βI + (A−Xk+ 1
2
D)]−1R(Xk+ 1

2
) +Xk+ 1

2
.

Therefore,

X1 − X̃1 = [βI + (A−X 1
2
D)]−1R(X 1

2
) +X 1

2

−[β1I + (A− X̃ 1
2
D)]−1R(X̃ 1

2
)− X̃ 1

2

≥ [βI + (A−X 1
2
D)]−1[R(X 1

2
)− R(X̃ 1

2
)] +X 1

2
− X̃ 1

2
.

Since

R(X 1
2
) = X 1

2
DX 1

2
− AX 1

2
−X 1

2
B + C,

by substitution, we have

X1 − X̃1 ≥ [βI + (A−X 1
2
D)]−1[X 1

2
DX 1

2
− X̃ 1

2
DX̃ 1

2

−(X 1
2
− X̃ 1

2
)B − A(X 1

2
− X̃ 1

2
)] +X 1

2
− X̃ 1

2

= [βI + (A−X 1
2
D)]−1{(X 1

2
D − A)(X 1

2
− X̃ 1

2
) + (X 1

2
− X̃ 1

2
)(DX̃ 1

2
−B)

+[βI + (A−X 1
2
D)](X 1

2
− X̃ 1

2
)}

= [βI + (A−X 1
2
D)]−1(X 1

2
− X̃ 1

2
)(βI +DX̃ 1

2
−B).
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By Lemma 2.8.1, we know that βI + (A−X 1
2
D) is an M -matrix. Hence [βI + (A−

X 1
2
D)]−1 ≥ 0. From β ≥ max

1≤i≤m
bii, we get βI +DX̃ 1

2
− B ≥ 0. Hence X1 ≥ X̃1. The

above proof shows that (4.3.2) is true for k = 0.

Assume that the inequalities in (4.3.2) hold for k = l − 1. Then from Lemma

4.2.1 (b), we get

Xl+ 1
2
= R(Xl)[αI + (B −DXl)]

−1 +Xl.

Therefore,

Xl+ 1
2
− X̃l+ 1

2
= R(Xl)[αI + (B −DXl)]

−1 +Xl

−R(X̃l)[α1I + (B −DX̃l)]
−1 − X̃l

≥ (α1I − A+XlD)(Xl − X̃l)[α1I + (B −DX̃l)]
−1.

By Lemma 2.8.1, we know that α1I +(B−DX̃l) is an M -matrix. Hence [α1I +(B−

DX̃l)]
−1 ≥ 0. From α1 ≥ max

1≤i≤n
aii, we get (α1I−A+XlD) ≥ 0. Hence Xl+ 1

2
≥ X̃l+ 1

2
.

The inequality Xl+1 ≥ X̃l+1 can be derived analogously.

The above proof shows that (4.3.2) is also true for k = l. Hence, by induction,

we have proved that (4.3.2) holds for all positive integers k.

From this chapter, we find a way to improve ADI method. Although it is still

linearly convergent, not as good as doubling algorithm SDA([24]), ADDA([41]) to be

discussed in the next chapter. However, it is the analysis of two parameters in ADI

method that inspires us to create our ADDA method.
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CHAPTER 5

Doubling Verses High-Order Algorithms

In this chapter, we will use the Sylvester equation as an example to compare

doubling algorithm with high-order algorithms.

5.1 The Smith Method

Consider the numerical solutions of a matrix equation

XA+BX = C, (5.1.1)

in which X is an unknown m × n matrix, A, B and C are known matrices of sizes

n× n, m×m and m× n respectively.

Suppose Im is the m×m identity matrix and α is a nonzero scalar, then (5.1.1)

can be written as

(αIm −B)X(αIn − A)− (αIm +B)X(αIn + A) = −2αC.

Pre-multiply by (αIm −B)−1 and post-multiply by (αIn − A)−1 to get

X − EXF = W, (5.1.2)

where

E = (αIm −B)−1(αIm +B),

F = (αIn + A)(αIn − A)−1,

W = −2α(αIm −B)−1C(αIn − A)−1.
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It is easy to see, from (5.1.2) and with initial X0 = 0, we can apply (5.1.2)

iteratively to generate a series for X

X =
∞∑
i=1

Ei−1WF i−1. (5.1.3)

Barnett and Storey in [5] have suggested (5.1.3) as a method for the practical

solution of (5.1.1) while the rate of convergence is slow in general. Now if {Yi} is the

sequence of matrices defined iteratively by

Y0 = W, Yi+1 = Yi + E2iYiF
2i , (5.1.4)

then it follows by induction that

Yk =
2k∑
i=1

Ei−1WF i−1 (5.1.5)

for all i. Smith in [36] showed that Yi converges to X very rapidly as i → ∞. So

we refer to (5.1.3) the Smith method. Since it only calculates the 2ith terms, we also

call it the doubling algorithm.

5.2 The Tripling Algorithm

It is natural to consider higher order algorithms. First let us think about a

tripling algorithm. Suppose we have E and F , satisfy

Xk+1 = Xk + F 3kXkE
3k + F 2·3kXkE

2·3k ,

then

Lemma 5.2.1. We have a tripling algorithm,

Xk =
3k−1∑
i=0

F iX0E
i. (5.2.1)
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Proof.

X0 = X0.

X1 = X0 + FX0E + F 2X0E
2.

X2 = X1 + F 3X1E
3 + F 6X1E

6

= (X0 + FX0E + F 2X0E
2) + (F 3X0E

3 + F 4X0E
4 + F 5X0E

5)

+ (F 6X0E
6 + F 7X0E

7 + F 8X0E
8)

=
32−1∑
i=0

F iX0E
i.

Assuming (5.2.1) is right for Xk, consider Xk+1

Xk+1 = Xk + F 3kXkE
3k + F 2·3kXkE

2·3k

=
3k−1∑
i=0

F iX0E
i +

3k−1∑
i=0

F i+3kX0E
i+3k +

3k−1∑
i=0

F i+2·3kX0E
i+2·3k

=
3k−1∑
i=0

F iX0E
i +

2·3k−1∑
i=3k

F iX0E
i +

3k+1−1∑
i=2·3k

F iX0E
i

=
3k+1−1∑
i=0

F iX0E
i.

Thus (5.2.1) is true for k + 1. The induction is completed.

Next we calculate flops1 of the doubling and tripling algorithms:

(Doubling) Xk+1 = Xk + F 2kXkE
2k .

(Tripling) Xk+1 = Xk + F 3kXkE
3k + F 2·3kXkE

2·3k .

Note here F is of size m×m, and E is n× n.

1Count every + and × as 1 flop.

35



For the doubling algorithm,

calculation : flops

(F 2k−1

)2 → F 2k : m2(2m− 1)

(E2k−1

)2 → E2k : n2(2n− 1)

F 2kXkE
2k : mn(2m− 1) +mn(2n− 1)

+ : mn

For tripling algorithm,

calculation : flops

(F 2·3k−1

) · (F 3k−1

) → F 3k : m2(2m− 1)

F 3k · F3k → F 2·3k : m2(2m− 1)

(E2·3k−1

) · (E3k−1

) → E3k : n2(2n− 1)

E3k · E3k → E2·3k : n2(2n− 1)

F 3kXkE
3k , F 2·3kXkE

2·3k : 2mn(2m+ 2n− 2)

+ : 2mn

Thus Flop(Tripling) = 2 ·Flop(Doubling). Here function Flop(·) means the number

of flops.

Analysis:

If we calculate k0 steps with the tripling algorithm, we can get to 3k0th entry.

But if we use doubling algorithm, with the same number of flops, we can get

to 22·k0 = 4k0th entry, which means the doubling algorithm is faster than the tripling

since it goes further.
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5.3 High Order Algorithms

For those algorithms with order higher than 3, we can compare these algorithms

with doubling algorithm(the Smith method). We generalize higher order algorithms

as follows

Lemma 5.3.1. High-order algorithm:

Xk+1 = Xk + F lkX0E
lk + F 2·lkX0E

2·lk + · · ·+ F (l−1)lkX0E
(l−1)lk

=
l−1∑
i=0

F i·lkX0E
i·lk

Proof. The proof is easily achieved by induction in the same way as for that for the

tripling.

When we count for flops, for example, the term F lk , we compute it as

F lk = F lk−1·l = F (l−1)·lk−1 · F lk−1

,

where both of the last two entries can be found as the results in the last iteration.

As counted in Section 5.2, Flop(high− order) = (l − 1) · Flop(Doubling).

Analysis:

If we calculate k0 steps with lth order algorithm, we can get to lk0th term. But

if we use doubling, with the same number of flops, we can get to 2(l−1)k0th. And

lk0

2(l−1)k0
= (

l

2l−1
)k0 < 1, for l ≥ 3.

Here we can see higher order algorithms are slower than the doubling since doubling

gets further. Thus we can conclude that Doubling algorithm is the best of all, which

makes it unnecessary for us to seek tripling and high order algorithms.
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CHAPTER 6

ADDA: Alternating Directional Doubling Algorithm

The basic idea of the doubling algorithm for an iterative scheme is to compute

only the 2kth approximations, instead of every approximation in the process as we

mentioned in chapter 5. The idea traces back to 1970s (see [2] and references therein).

Recent resurgence of interests in the idea has led to efficient doubling algorithms for

various nonlinear matrix equations. The interested reader is referred to [13] for a more

general presentation. The use of a structure-preserving doubling algorithm (SDA) to

solve an MARE was first proposed and analyzed by Guo, Lin, and Xu [24]. For

an MARE (1.0.1), SDA simultaneously computes the minimal nonnegative solutions

of an MARE (1.0.1) and its complementary M-Matrix Algebraic Riccati Equation

(cMARE)

Y CY − Y A−BY +D = 0. (6.0.1)

In this chapter, we shall present our ADDA for the MARE in this way: framework,

analysis, and then optimal ADDA. We name it ADDA after taking into consideration

that it is a doubling algorithm and relates to the Alternating-Directional-Implicit

(ADI) iteration for Sylvester equations (see chapter 4). Interested readers can refer

to Appendix A for the development of ADDA applied toM -matrix Sylvester equation

which leads to an improvement of the Smith method. Some numerical examples will

be given in section 8.1.

These doubling algorithms are very fast and efficient as they are globally and

quadratically convergent, except for the so-called critical case [13], which is to be

studied in detail in Chapter 7. Specifically, suppose W is irreducible and singular.
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Then there exist u, x ∈ Rm and v, y ∈ Rn, all entrywise positive vectors, such that

[9, 17]

W

x
y

 = 0,

u
v


T

W = 0. (6.0.2)

We call an MARE (1.0.1) is in the critical case if uTx = vTy. For the critical case,

the doubling algorithms converge linearly [13], and thus are slow compared to the

non-critical case. An improved method will be given in chapter 7. Define

H
def
=

Im
−In

W =

B −D

C −A

 . (6.0.3)

H is singular if and only if W is singular, and (6.0.2) implies

H

x
y

 = 0,

 u

−v


T

H = 0. (6.0.4)

6.1 A Fundamental Theorem

Before we start introducing ADDA, let us look at a theorem, which may have

independent interest of its own and lays the foundation of our optimal ADDA in

terms of its rate of convergence subject to certain nonnegativity condition. To the

best of our knowledge, it is new. Define the generalized Cayley transformation

C (A;α, β)
def
= (A− αI)(A+ βI)−1 (6.1.1)

of a square matrix A, where α, β are scalars such that A+ βI is nonsingular. Given

square matrices A and B, define

f(α, β)
def
= ρ(C (A;α, β)) · ρ(C (B; β, α)), (6.1.2)

g(β)
def
= ρ

(
(A+ βI)−1

)
· ρ(B − βI), (6.1.3)

provided all involved inverses exist. It can be seen that g(β) ≡ f(0, β).
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Theorem 6.1.1 (Wang, Wang and Li). For two M -matrices A ∈ Rn×n and B ∈

Rm×m, define f and g by (6.1.2) and (6.1.3), and set

αopt
def
= max

i
A(i,i), βopt

def
= max

i
B(i,i). (6.1.4)

(a) If both A and B are singular, then f(α, β) ≡ 1 for α > αopt and β > βopt, and

g(β) ≡ 1 for β > βopt;

(b) If one of A and B is nonsingular, then f(α, β) for α > αopt and β > βopt is

strictly increasing in α and β and f(α, β) < 1, and g(β) for β > βopt is strictly

increasing in β and g(β) < 1.

Consequently, f can be defined by continuity for all α ≥ αopt and β ≥ βopt and g can

be defined by continuity for all β ≥ βopt. Moreover, we have

min
α≥αopt,β≥βopt

f(α, β) = f(αopt, βopt), min
β≥βopt

g(β) = g(βopt). (6.1.5)

Proof. Both A + βI and B + αI are nonsingular M -matrices for α > 0 and β > 0;

thus f and g are well-defined for α > αopt and β > βopt since αopt ≥ 0 and βopt ≥ 0.

In what follows, we will prove the claims for f only. Similar arguments work for g

and thus are omitted.

Assume for the moment that both A and B are irreducible M -matrices. Write

A = sI −N , where s ≥ 0 and N ≥ 0, and N is irreducible. By the Perron-Frobenius

theorem [Theorem 3.1.1], there is a positive vector u such that Nu = ρ(N)u. It can

be seen that λmin(A) = s−ρ(N) ≥ 0, where λmin(A) is as defined in Lemma 2.8.1(d).

We have

−C (A;α, β)u = (αI − A)(A+ βI)−1u = [α− λmin(A)][λmin(A) + β]−1u.

Since −C (A;α, β) ≥ 0 and irreducible for α > αopt and β > 0, it follows from the

Perron-Frobenius theorem that

ρ(C (A;α, β)) = ρ(−C (A;α, β)) = [α− λmin(A)][λmin(A) + β]−1.
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Similarly, we have for α > 0 and β > βopt,

ρ(C (B; β, α)) = [β − λmin(B)][λmin(B) + α]−1.

Finally for α > αopt and β > βopt,

f(α, β) = ρ(C (A;α, β)) · ρ(C (B; β, α))

=
α− λmin(A)

λmin(A) + β
· β − λmin(B)

λmin(B) + α

= h1(α)h2(β),

where

h1(α) =
α− λmin(A)

λmin(B) + α
, h2(β) =

β − λmin(B)

λmin(A) + β
.

Now if both A and B are singular, then λmin(A) = λmin(B) = 0 and thus f(α, β) ≡ 1

which proves Item (a). If one of A and B is nonsingular, then λmin(A) + λmin(B) > 0

and thus

h′1(α) =
λmin(A) + λmin(B)

(λmin(B) + α)2
> 0, h′2(β) =

λmin(A) + λmin(B)

(λmin(A) + β)2
> 0.

So f(α, β) is strictly increasing in α and β for α > αopt and β > βopt and

f(α, β) < lim
α→∞
β→∞

f(α, β) = 1.

This is Item (b).

Suppose now that A and B are possibly reducible. Let Π1 ∈ Rn×n and Π2 ∈

Rm×m be two permutation matrices such that

ΠT
1 AΠ1 =



A11 −A12 . . . −A1q

A22 . . . −A2q

. . .
...

Aqq


, ΠT

2 BΠ2 =



B11 −B12 . . . −B1p

B22 . . . −B2p

. . .
...

Bpp


,
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where Aij ∈ Rni×nj , Bij ∈ Rmi×mj , all Aii and Bjj are irreducible M -matrices, and

all Aij ≥ 0 and Bij ≥ 0 for i ̸= j. It can be seen that

f(α, β) = max
i,j

ρ(C (Aii;α, β)) · ρ(C (Bjj; β, α)).

If one of A and B is nonsingular, then one of Aii and Bjj is nonsingular for each

pair (Aii, Bjj) and thus all ρ(C (Aii;α, β)) · ρ(C (Bjj; β, α)) are strictly increasing in

α and β for α > αopt and β > βopt; so is f(α, β). Now if both A and B are singular,

then there is at least one pair (Aii, Bjj) for which both Aii and Bjj are singular and

irreducible. By Item (a) we just proved for the irreducible and singular case, for that

pair ρ(C (Aii;α, β)) ·ρ(C (Bjj; β, α)) ≡ 1 for α ≥ αopt and β ≥ βopt. Since for all other

pairs (Aii, Bjj),

ρ(C (Aii;α, β)) · ρ(C (Bjj; β, α)) ≤ 1

by Item (a). Thus f(α, β) ≡ 1.

6.2 Framework of ADDA

The framework in this section actually works for any algebraic Riccati equation,

provided all involved inverses exist. It is just that in general we are not able to

establish a convergence theory similar to the one to be given in the next section for

an MARE.

For any solution X of an MARE (1.0.1) and Y of the cMARE (6.0.1), it can be

verified that

H

 I

X

 =

 I

X

R, H

Y
I

 =

Y
I

 (−S), (6.2.1)

where

H =

B −D

C −A

 , R = B −DX, S = A− CY. (6.2.2)
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Given any scalars α and β, we have

(H − βI)

 I

X

 ( R + αI) = (H + αI)

 I

X

 ( R− βI),

(H − βI)

Y
I

 (−S + αI) = (H + αI)

Y
I

 (−S − βI).

If R + αI and S + βI are nonsingular, then

(H − βI)

 I

X

 = (H + αI)

 I

X

C (R; β, α), (6.2.3a)

(H − βI)

Y
I

C (S;α, β) = (H + αI)

Y
I

 . (6.2.3b)

Suppose for the moment that A+ βI and B + αI are nonsingular and set

Aβ = A+ βI, Bα = B + αI, (6.2.4)

Uαβ = Aβ − CB−1
α D, Vαβ = Bα −DA−1

β C, (6.2.5)

and

Z1 =

 B−1
α 0

−CB−1
α I

 , Z2 =

I 0

0 −U−1
αβ

 , Z3 =

I B−1
α D

0 I

 .

It can be verified that

M0
def
= Z3Z2Z1(H − βI) =

 E0 0

−X0 I

 , (6.2.6a)

L0
def
= Z3Z2Z1(H + αI) =

I −Y0

0 F0

 , (6.2.6b)

where

E0 = I − (β + α)V −1
αβ , Y0 = (β + α)B−1

α DU−1
αβ , (6.2.7a)

F0 = I − (β + α)U−1
αβ , X0 = (β + α)U−1

αβCB
−1
α . (6.2.7b)
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Pre-multiply the equations in (6.2.3) by Z3Z2Z1 to get

M0

 I

X

 = L0

 I

X

C (R; β, α), M0

Y
I

C (S;α, β) = L0

Y
I

 . (6.2.8)

Our development up to this point differs from SDA of [24] only in our inclusion

of two parameters α and β. The significance of doing so will be demonstrated in

our later comparisons on convergence rates in section 6.5 and numerical examples

in section 8.2. From this point forward, ours is the same as in [24]. The idea is to

construct a sequence of pairs {Mk, Lk}, k = 0, 1, 2, . . . such that

Mk

 I

X

 = Lk

 I

X

 [C (R; β, α)]2
k

, Mk

Y
I

 [C (S;α, β)]2
k

= Lk

Y
I

 ,

(6.2.9)

and at the same time Mk and Lk have the same forms as M0 and L0, respectively,

i.e.,

Mk =

 Ek 0

−Xk I

 , Lk =

I −Yk

0 Fk

 . (6.2.10)

The technique for constructing {Mk+1, Lk+1} from {Mk, Lk} is not entirely new and

can be traced back to 1980s in [12, 18, 30] and more recently in [3, 7, 37]. The idea

is to seek suitable M̌, Ľ ∈ R(m+n)×(m+n) such that

rank
(
(M̌, Ľ)

)
= m+ n, (M̌, Ľ)

 Lk

−Mk

 = 0 (6.2.11)

and setMk+1 = M̌Mk and Lk+1 = ĽLk. It is not hard to verify that if the equations in

(6.2.9) hold, then they hold for k replaced by k+1, i.e., for the newly constructedMk+1

and Lk+1. The only problem is that not every pair {M̌, Ľ} satisfying (6.2.11) leads
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to {Mk+1, Lk+1} having the forms of (6.2.10). For this, we turn to the constructions

of {M̌, Ľ} in [14, 15, 24, 29]:

M̌ =

 Ek(Im − YkXk)
−1 0

−Fk(In −XkYk)
−1Xk In

 , Ľ =

Im −Ek(Im − YkXk)
−1Yk

0 −Fk(In −XkYk)
−1

 ,

with which Mk+1 = M̌Mk and Lk+1 = ĽLk have the forms of (6.2.10) with

Ek+1 = Ek(Im − YkXk)
−1Ek, (6.2.12a)

Fk+1 = Fk(In −XkYk)
−1Fk, (6.2.12b)

Xk+1 = Xk + Fk(In −XkYk)
−1XkEk, (6.2.12c)

Yk+1 = Yk + Ek(Im − YkXk)
−1YkFk. (6.2.12d)

By now I have presented the framework of ADDA:

1. Pick suitable α and β for (best) convergence rate;

2. Compute M0 and L0 of (6.2.6) by (6.2.4), (6.2.5), and (6.2.7);

3. Iteratively compute Mk and Lk by (6.2.12) until convergence.

Associated with this general framework arise a few questions:

1. Are the iterative formulas in (6.2.12) well-defined, i.e., do all the inverses exist?

2. How do we choose best parameters α and β for fast convergence?

3. What do Xk and Yk converge to if they are convergent?

4. How much better is ADDA than the doubling algorithms: SDA of Guo, Lin,

and Xu [24] and SDA-ss of Bini, Meini, and Poloni [11]?

The first three questions will be addressed in the next section while the last question

will be answered in section 6.5.

45



6.3 Analysis

Recall that W defined by (1.0.2) is a nonsingular or an irreducible singular M -

matrix. An MARE (1.0.1) has a unique minimal nonnegative solution Φ in chapter 3

and the cMARE (6.0.1) has a unique minimal nonnegative solution Ψ . Some proper-

ties of Φ and Ψ are summarized in Theorem 6.3.1 below. They are needed in order

to answer the questions we posed at the end of the previous section.

Theorem 6.3.1 ([19, 20, 21]). Assume (7.0.1).

(a) An MARE (1.0.1) has a unique minimal nonnegative solution Φ, and and its

cMARE (6.0.1) has a unique minimal nonnegative solution Ψ ;

(b) If W is irreducible, then Φ > 0 and A − ΦD and B − DΦ are irreducible M -

matrices;

(c) If W is nonsingular, then A− ΦD and B −DΦ are nonsingular M -matrices;

(d) Suppose W is irreducible and singular. Let u1, v1 ∈ Rm and u2, v2 ∈ Rn be

positive vectors such that

W

v1
v2

 = 0,

u1
u2


T

W = 0. (6.3.1)

1. If uT1 v1 > uT2 v2, then B−DΦ is a singular M -matrix with1 (B−DΦ)v1 = 0

and A− ΦD is a nonsingular M-matrix, and Φv1 = v2 and Ψv2 < v1;

2. If uT1 v1 = uT2 v2 (the so-called critical case), then both B−DΦ and A−ΦD

are singular M-matrices, and Φv1 = v2 and Ψv2 = v1;

3. If uT1 v1 < uT2 v2, then B −DΦ is a nonsingular M-matrix and A − ΦD is

a singular M -matrix, and Φv1 < v2 and Ψv2 = v1.

(e) I − ΦΨ and I − ΨΦ are M-matrices and they are nonsingular, except for the

critical case in which both are singular.

1[19, Theorem 4.8] says in this case DΦv1 = Dv2 which leads to (B −DΦ)v1 = Bv1 −Dv2 = 0.
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Recall our goal is to compute Φ as efficiently and accurately as possible and,

as a by-product, Ψ , too. In view of this goal, we identify X = Φ and Y = Ψ in all

appearances of X and Y in section 6.2. In particular

S = A− CΨ, R = B −DΦ, (6.2.2′)

and (6.2.9) and (6.2.10) yield immediately

Ek = (I − YkΦ) [C (R; β, α)]2
k

, (6.3.2a)

Φ−Xk = FkΦ [C (R; β, α)]2
k

, (6.3.2b)

Ψ − Yk = EkΨ [C (S;α, β)]2
k

, (6.3.2c)

Fk = (I −XkΨ) [C (S;α, β)]2
k

. (6.3.2d)

Examining (6.3.2), we see that ADDA will converge if Xk and Yk are uniformly

bounded with respect to k, and if

ρ(C (R; β, α)) < 1, ρ(C (S;α, β)) < 1, (6.3.3a)

because then Ek and Fk are uniformly bounded with respect to k, and

[C (R; β, α)]2
k

→ 0, [C (S;α, β)]2
k

→ 0 (6.3.3b)

as k → ∞, implying that Φ−Xk → 0 and Ψ − Yk → 0 as k → ∞. This is one of the

guiding principles in [24] which enforces

α = β ≥ max
i,j

{A(i,i), B(j,j)} (6.3.4)

which in turn ensures that Xk and Yk are uniformly bounded and also ensures (6.3.3a)

and thus (6.3.3b) because, by Theorem 6.3.1(c), both2 S and R are nonsingular M -

2That R is a nonsingular M -matrix is stated explicitly in Theorem 6.3.1(c). For S, we apply

Theorem 6.3.1(c) to the cMARE (6.0.1) identified as an MARE in the form of (1.0.1) with its

coefficient matrix as

 A −C

−D B

 .
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matrices if3 W is a nonsingular M -matrix. Later Guo, Iannazzo, and Meini [22]

observed that SDA of [24] still converges even ifW is a singular irreducibleM -matrix.

This observation was formally proved in [13]. Guo, Iannazzo, and Meini [22, Theorem

4.4] also proved that taking

α = β = max
i,j

{A(i,i), B(j,j)} (6.3.5)

makes the resulting SDA converge the fastest subject to (6.3.4). Another critical

implication of (6.3.4) is that it makes −E0 and −F0, Ek and Fk for k ≥ 1, and Xk

and Yk for k ≥ 0 all nonnegative [24], a property that enables SDA of [24] (with

some minor but crucial implementation changes [42]) to compute Φ with deserved

entrywise relative accuracy as argued in [42].

We would like our ADDA to have such a capability as well, i.e., computing Φ

with deserved entrywise relative accuracy. To this end, we require

α ≥ αopt
def
= max

i
A(i,i), β ≥ βopt

def
= max

j
B(j,j), (6.3.6)

but allow α and β to be different, and seek to minimize the product of the spectral

radii

ρ(C (R; β, α)) · ρ(C (S;α, β)),

rather than each individual spectral radius. Later in Theorem 6.3.3, we will see that

it is this product, not each individual spectral radius, that ultimately reflects the true

rate of convergence. In particular, convergence is guaranteed if the product is less

than 1, even if one of the spectral radii is bigger than 1. Moreover, the smaller the

product, the faster the convergence.

That the rate of convergence of a doubling algorithm on a matrix Riccati-type

equation is dependent on the product of some two spectral radii is not new. In fact,

the convergence analysis in [22, 24, 29] all suggested that.

3This is the case studied in [24].
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The assumption (7.0.1) implies that A and B are nonsingular M -matrices by

Lemma 2.8.1(e). Therefore both αopt > 0 and βopt > 0.

Lemma 6.3.1 (Wang, Wang and Li). Assume (7.0.1). If α > 0 and β > 0, then

Aβ, Bα, Uαβ, and Vαβ defined in (6.2.4) and (6.2.5) are nonsingular M-matrices.

Furthermore, both Uαβ and Vαβ are irreducible if W is irreducible.

Proof. If α > 0 and β > 0,

Ŵ = W +

αI 0

0 βI

 =

B + αI −D

−C A+ βI

 ≥ min{α, β} · I +W

is a nonsingular M -matrix. As the diagonal blocks of Ŵ , Aβ and Bα are nonsingular

M -matrices; so are their corresponding Schur complements Vαβ and Uαβ in Ŵ by

Lemma 2.8.1(e). If also W is irreducible, then Ŵ is a nonsingular irreducible M -

matrix, and thus both Uαβ and Vαβ are nonsingular irreducible M -matrices again by

Lemma 2.8.1(e).

Theorem 6.3.2 (Wang, Wang and Li). Assume (7.0.1) and (6.3.6).

(a) We have

E0 ≤ 0, F0 ≤ 0, C (R; β, α) ≤ 0, C (S;α, β) ≤ 0, (6.3.7)

0 ≤ X0 ≤ Φ, 0 ≤ Y0 ≤ Ψ. (6.3.8)

If W is also irreducible, then

E0 < 0, F0 < 0, C (R; β, α) < 0, C (S;α, β) < 0, (6.3.7′)

0 ≤ X0 < Φ, 0 ≤ Y0 < Ψ. (6.3.8′)

(b) Both I − YkXk and I −XkYk are nonsingular M -matrices for all k ≥ 0.
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(c) We have

Ek ≥ 0, Fk ≥ 0, 0 ≤ Xk−1 ≤ Xk ≤ Φ, 0 ≤ Yk−1 ≤ Yk ≤ Ψ for k ≥ 1.

(6.3.9)

If W is also irreducible, then

Ek > 0, Fk > 0, 0 ≤ Xk−1 < Xk < Φ, 0 ≤ Yk−1 < Yk < Ψ for k ≥ 1.

(6.3.9′)

Proof. Our proof is largely the same as the proofs in [22, p.1088].

(a) That C (R; β, α) ≤ 0 and C (S;α, β) ≤ 0 is fairly straightforward because R and

S are M -matrices and α and β are restricted by (6.3.6). For E0 and F0, we note

E0 = V −1
αβ [Vαβ − (β + α)I] (6.3.10a)

= V −1
αβ (B − βI −DA−1

β C), (6.3.10b)

F0 = U−1
αβ [Uαβ − (β + α)I] (6.3.10c)

= U−1
αβ (A− αI − CB−1

α D). (6.3.10d)

Since Aβ, Bα, Vαβ, and Uαβ are nonsingular M -matrices by Lemma 6.3.1, we have

A−1
β ≥ 0, B−1

α ≥ 0, V −1
αβ ≥ 0, U−1

αβ ≥ 0.

Therefore E0 ≤ 0, F0 ≤ 0, X0 ≥ 0, and Y0 ≥ 0. Equations (6.3.2b) and (6.3.2c) for

k = 0 yields Φ−X0 ≥ 0 and Ψ − Y0 ≥ 0, respectively.

Now suppose W is irreducible. By Lemma 6.3.1, both Uαβ and Vαβ are irre-

ducible. So U−1
αβ > 0, V −1

αβ > 0, and no columns of Vαβ − (β+α)I and Uαβ − (β+α)I

both of which are nonpositive are zeros. Therefore E0 < 0 and F0 < 0 by (6.3.10a)

and (6.3.10c). Theorem 6.3.1(b) implies that (S + βI)−1 > 0, (R + αI)−1 > 0, and

no columns of S − αI and R− βI both of which are nonpositive are zeros, and thus

C (S;α, β) = (S + βI)−1(S − αI) < 0, C (R; β, α) = (R + αI)−1(R− βI) < 0.
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Finally

Φ−X0 = F0ΦC (R; β, α) > 0, Ψ − Y0 = E0Ψ C (S;α, β) > 0

because Φ > 0 and Ψ > 0 by Theorem 6.3.1(b) and (6.3.7′).

(b) and (c) We have I − X0Y0 ≥ I − ΦΨ and I − Y0X0 ≥ I − ΨΦ. Suppose for

the moment that W is nonsingular. Then both I − ΦΨ and I − ΨΦ are nonsingular

M -matrices by Theorem 6.3.1(e), and thus I − X0Y0 and I − Y0X0 are nonsingular

M -matrices, too, by Lemma 2.8.1(b).

Now suppose W is an irreducible singular matrix. By Theorem 6.3.1(d), we

have ΨΦv1 ≤ v1, where v1 > 0 is defined in Theorem 6.3.1(d). So ρ(ΨΦ) ≤ 1 by

[9, Theorem 1.11, p.28]. By part (a) of this theorem, 0 ≤ X0 < Φ and 0 ≤ Y0 < Ψ .

Therefore 0 ≤ X0Y0 < ΦΨ . Since ΦΨ is irreducible, we conclude by [9, Corollary 1.5,

p.27]

ρ(Y0X0) = ρ(X0Y0) < ρ(ΨΦ) = ρ(ΦΨ) ≤ 1,

and thus I − Y0X0 and I −X0Y0 are nonsingular M -matrices. This proves part (b)

for k = 0.

Since E0 ≤ 0 and F0 ≤ 0, and I − Y0X0 and I − X0Y0 are nonsingular M -

matrices, we deduce from (6.2.12) that

E1 ≥ 0, F1 ≥ 0, X1 ≥ X0, Y1 ≥ Y0.

By (6.3.2b) and (6.3.2c),

Φ−X1 = F1Φ [C (R; β, α)]2 , Ψ − Y1 = E1Ψ [C (S;α, β)]2 , (6.3.11)

yielding Φ−X1 ≥ 0 and Ψ−Y1 ≥ 0, respectively. Consider nowW is also irreducible.

We have, by (6.3.7′) and (6.3.8′) and (6.2.12),

E1 > 0, F1 > 0, X1 > X0 ≥ 0, Y1 > Y0 ≥ 0,
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and then X1 < Φ and Y1 < Ψ by (6.3.11). This proves part (c) for k = 1.

Part (b) for k ≥ 1 and part (c) for k ≥ 2 can be proved together through the

induction argument. Detail is omitted.

One important implication of Theorem 6.3.2 is that all formulas in section 6.2

for ADDA are well-defined under the assumptions (7.0.1) and (6.3.6).

Next we look into choosing α and β subject to (6.3.6) to optimize the conver-

gence speed. We have (6.3.2) which yields

0 ≤ Φ−Xk = (I −XkΨ) [C (S;α, β)]2
k

Φ [C (R; β, α)]2
k

(6.3.12a)

≤ [C (S;α, β)]2
k

Φ [C (R; β, α)]2
k

, (6.3.12b)

0 ≤ Ψ − Yk = (I − YkΦ) [C (R; β, α)]2
k

Ψ [C (S;α, β)]2
k

(6.3.12c)

≤ [C (R; β, α)]2
k

Ψ [C (S;α, β)]2
k

. (6.3.12d)

Now ifW is a nonsingularM -matrix, then both R and S are nonsingularM -matrices,

too, by Theorem 6.3.1(c). Therefore

ρ(C (R; β, α)) < 1, ρ(C (S;α, β)) < 1 under (6.3.4), (6.3.13)

implying Xk → Φ and Yk → Ψ as k → ∞. This is what was proved in [24]. But for

irreducible singularM -matrixW with uT1 v1 ̸= uT2 v2, it is proved in [22] that one of the

spectral radii in (6.3.13) is less than 1 while the other one is equal to 1, still implying

Xk → Φ and Yk → Ψ as k → ∞. Furthermore, [22, Theorem 4.4] implies that the best

choice is given by (6.3.5) in the sense that both spectral radii in ρ(C (R;α, α)) and

ρ(C (S;α, α)) are minimized subject to α ≥ max
i,j

{A(i,i), B(j,j)}.

We can do better by allowing α and β to be different, with the help of Theo-

rem 6.1.1. The main result is summarized in the following theorem.
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Theorem 6.3.3 (Wang, Wang and Li). Assume (7.0.1) and (6.3.6). We have

lim sup
k→∞

∥Φ−Xk∥1/2
k ≤ ρ(C (S;α, β)) · ρ(C (R; β, α)), (6.3.14a)

lim sup
k→∞

∥Ψ − Yk∥1/2
k ≤ ρ(C (R; β, α)) · ρ(C (S;α, β)). (6.3.14b)

The optimal α and β that minimize the right-hand sides of (6.3.14) are α = αopt and

β = βopt.

Proof. Since all matrix norms are equivalent, we may assume that ∥ · ∥ is consistent.

By (6.3.12b), we have

∥Φ−Xk∥1/2
k ≤

∥∥∥[C (S;α, β)]2
k
∥∥∥1/2k

· ∥Φ∥1/2k ·
∥∥∥[C (R; β, α)]2

k
∥∥∥1/2k

.

which goes to ρ(C (S;α, β)) · ρ(C (R; β, α)) as k → ∞, unless Φ = 0 in which case

both sides are 0 for all k. Thus (6.3.14a) holds. Similarly we have (6.3.14b). Since

R = B −DΦ and S = A− CΨ are M -matrices and DΦ ≥ 0 and CΨ ≥ 0,

α ≥ max
i
A(i,i) ≥ max

i
S(i,i), β ≥ max

j
B(j,j) ≥ max

j
R(j,j).

By Theorem 6.1.1, ρ(C (R; β, α)) · ρ(C (S;α, β)) is either strictly increasing if at least

one of R and S is nonsingular or identically 1, subject to (6.3.6). So in any case,

α = αopt and β = βopt minimize the product ρ(C (S;α, β)) · ρ(C (R; β, α)).

6.4 Optimal ADDA

We are now ready to present our ADDA, basing on the framework in section 6.2

and analysis in section 6.3.

Algorithm 6.4.1.

ADDA for an MARE XDX − AX −XB + C = 0 and,

as a by-product, for the cMARE Y CY − Y A−BY +D = 0.
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1 Pick α ≥ αopt and β ≥ βopt;

2 Aβ
def
= A+ βI, Bα

def
= B + αI;

3 Compute A−1
β and B−1

α ;

4 Compute Vαβ and Uαβ as in (6.2.5) and then their inverses;

5 Compute E0 by (6.3.10b), F0 by (6.3.10d), X0 and Y0 by (6.2.7);

6 Compute (I −X0Y0)
−1 and (I − Y0X0)

−1;

7 Compute X1 and Y1 by (6.2.12c) and (6.2.12d);

8 For k = 1, 2, . . ., until convergence

9 Compute Ek and Fk by (6.2.12a) and (6.2.12b)

(after substituting k + 1 for k);

10 Compute (I −XkYk)
−1 and (I − YkXk)

−1;

11 Compute Xk+1 and Yk+1 by (6.2.12c) and (6.2.12d);

12 Enddo

Remark 6.4.1. ADDA differs from SDA of [24] only in its initial setup – Lines 1 – 5

that build two parameters α and β into the algorithm. In [42], we explained in detail

how to make critical implementation changes to ensure computed Φ and Ψ by SDA

to have entrywise relative accuracy as much as the input data deserves. The key is

to use the GTH-like algorithm [1, 43] to invert all nonsingular M -matrices. Every

comment in [42, Remark 4.1], except the selection of its sole parameter for SDA applies

here. We shall not repeat most of those comments to save space.

About selecting the parameters α and β, Theorem 6.3.3 suggests α = αopt and

β = βopt for the best convergence rate. But when the diagonal entries of A and B

are not known exactly or not exactly floating point numbers, the diagonal entries

of A − αI and B − βI needed for computing E0 by (6.3.10b) and F0 by (6.3.10d)

may suffer catastrophic cancelations. One remedy to avoid such possible catastrophic
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cancelations is to take α = η · αopt and β = η · βopt for some η > 1 but not too close

to 1. This will slow down the convergence, but the gain is to ensure computed Φ and

Ψ by ADDA have deserved entrywise relative accuracy. Usually ADDA converges

so fast, such a little degradation in the optimality of α and β does not increase the

number of iteration steps needed for convergence.

Recall the convergence of ADDA does not depend on both spectral radii ρ(C (S;α, β))

and ρ(C (R; β, α)) being less than 1. In fact, often the larger one is bigger than 1 while

the smaller one is less than 1 but the product is less than 1. It can happen that the

larger one is so big that implemented as exactly given in Algorithm 6.4.1 ADDA can

encounter overflown in Ek or Fk before Xk and Yk converge with a desired accuracy.

This happened in one of our test runs. To cure this, we notice that scaling Ek and

Fk to ηEk and η−1Fk for some η > 0 has no effect on Xk+1 and Yk+1 and thereafter.

In view of this, we devise the following strategy: at every iteration step after Ek and

Fk are computed, we pick η such that ∥ηEk∥ = ∥η−1Fk∥, i.e., η =
√
∥Fk∥/∥Ek∥,

and scale Ek and Fk to ηEk and η−1Fk. Which matrix norm ∥ · ∥ is not particularly

important and in our tests, we used the ℓ1-operator norm ∥ · ∥1. 3

The optimal ADDA is the one with α = αopt and β = βopt. Since there is

little reason not to use the optimal ADDA, except for the situation we mentioned in

Remark 6.4.1 above, for the ease of presentation in what follows we always mean the

optimal ADDA whenever we refer to an ADDA, unless explicitly stated differently.

6.5 Comparisons with Existing Doubling Algorithms

In this section, we will compare the rates of convergence among our ADDA, the

structure-preserving doubling algorithm (SDA) of [24], and SDA combined with the

shrink-and-shift technique (SDA-ss) of [11].
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The right-hand sides in (6.3.14) provide an upper bound on convergence rate

of ADDA. It is possible that the bound may overestimate the rate, but we expect

in general it is tight. To facilitate our comparisons in what follows, we shall simply

regard the upper bound as the true rate, and without loss of generality, assume

αopt
def
= max

i
A(i,i) ≥ βopt

def
= max

i
B(i,i). (6.5.1)

Let λmin(S) be the eigenvalue of S in (6.2.2′) with the smallest real part among all its

eigenvalues. We know λmin(S) ≥ 0, and let λmin(R) be the same for R also in (6.2.2′).

We have the convergence rate for the optimal ADDA

radda =
αopt − λmin(S)

βopt + λmin(S)
· βopt − λmin(R)

αopt + λmin(R)
. (6.5.2)

Estimates in (6.3.14) with α = β hold for SDA. Apply [22, Theorem 4.4] to conclude

that the convergence rate for the optimal SDA is

rsda =
αopt − λmin(S)

αopt + λmin(S)
· αopt − λmin(R)

αopt + λmin(R)
(6.5.3)

upon noticing (6.5.1).

In order to see the convergence rate of the optimal SDA-ss, we outline the

algorithm below. For

β ≥ βopt
def
= max

j
B(j,j), (6.5.4)

set

Ĥ = I − β−1H, Â = I + β−1A, B̂ = I − β−1B, (6.5.5)

where H is defined as in (6.2.2). With S and R given by (6.2.2′), we have

Ĥ

I

Φ

 =

I

Φ

 R̂, Ĥ

Ψ
I

 Ŝ =

Ψ
I

 , (6.5.6a)

R̂ = I − β−1R, Ŝ = (I + β−1S)−1. (6.5.6b)
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Note that Â is a nonsingular M -matrix, and let

M̂0 =

 Ê0 0

−X̂0 I

 , L̂0 =

I −Ŷ0

0 F̂0

 , (6.5.7)

where

Ê0 = B̂ + β−2DÂ−1C, Ŷ0 = β−1DÂ−1, (6.5.8a)

F̂0 = Â−1, X̂0 = β−1Â−1C. (6.5.8b)

It can be verified that Ĥ = L̂−1
0 M̂0, substituting which into the equations in (6.5.6)

to get

M̂0

I

Φ

 = L̂0

I

Φ

 R̂, M̂0

Ψ
I

 Ŝ = L̂0

Ψ
I

 .

The rest follows the same idea in [24] (and also in section 6.3). SDA-ss seeks to

construct a sequence of pairs {M̂k, L̂k}, k = 0, 1, 2, . . . such that

M̂k

I

Φ

 = L̂k

I

Φ

 R̂
2k

, M̂k

Ψ
I

 Ŝ
2k

= L̂k

Ψ
I

 , (6.5.9)

and at the same time M̂k and L̂k have the same forms as M̂0 and L̂0, respectively,

i.e.,

M̂k =

 Êk 0

−X̂k I

 , L̂k =

I −Ŷk

0 F̂k

 . (6.5.10)

The formulas (6.2.12) for advancing from the kth approximations to the (k+1)st ones

remain valid here after placing a ”hat” over every occurrence of E, F , X, and Y there.

At the end, we will have the following equations for errors in the approximations X̂k

and Ŷk:

Φ− X̂k = (I − X̂kΨ)Ŝ
2k

ΦR̂
2k

≤ Ŝ
2k

ΦR̂
2k

, (6.5.11)

Ψ − Ŷk = (I − ŶkΦ)R̂
2k

ΨŜ
2k

≤ R̂
2k

ΨŜ
2k

. (6.5.12)
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Consequently

lim sup
k→∞

∥Φ− X̂k∥1/2
k

, lim sup
k→∞

∥Ψ − Ŷk∥1/2
k ≤ ρ(R̂) · ρ(Ŝ). (6.5.13)

In view of this inequality, (6.5.4) and Theorem 6.1.1, we conclude that the convergence

rate of the optimal SDA-ss is

rsda-ss =
1− β−1

optλmin(R)

1 + β−1
optλmin(S)

=
βopt − λmin(R)

βopt + λmin(S)
. (6.5.14)

Now we are ready to compare all three rates of convergence. To simplify notations,

we drop the subscript “opt” to α and β, and write λS = λmin(S) and λR = λmin(R).

We have

radda
rsda

=
β − λR
α− λR

· α+ λS
β + λS

= 1− (λR + λS)(α− β)

(α− λR)(β + λS)
, (6.5.15)

radda
rsda-ss

=
α− λS
α+ λR

= 1− λR + λS
α+ λR

, (6.5.16)

rsda-ss
rsda

=
β − λR
β + λS

· α+ λS
α− λS

· α+ λR
α− λR

= 1− (λR + λS)[α(α− β)− λS(α− λR)− α(β − λR)]

(β + λS)(α− λS)(α− λR)
. (6.5.17)

If λR+λS = 0 (which happens in the critical case), then all three ratios are 1. In fact,

for the critical case radda = rsda = rsda-ss = 1 and thus the three doubling algorithms

converge linearly [13]. Suppose, in what follows, that λR + λS > 0, and recall (6.5.1).

The first ratio

radda/rsda ≤ 1 always,

with equality for α = β, as expected. The ratio can be made much less than 1 if

α/β ≫ 1. The second ratio

radda/rsda-ss < 1 always.
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There is no definitive word on the third ratio because the sign of

ζ
def
= α(α− β)− λS(α− λR)− α(β − λR)

can change, dependent on different cases. If ζ > 0, then SDA-ss is faster than SDA;

otherwise it is slower.

It is worth pointing out that for SDA-ss it is very important how the shift-and-

shrink (6.5.5) is done. For example, instead of (6.5.1), if

max
i
A(i,i) < max

i
B(i,i). (6.5.18)

Then we still have (6.5.14), but, instead of (6.5.3),

rsda =
β − λS
β + λS

· β − λR
β + λR

. (6.5.19)

Then

rsda
rsda-ss

=
β − λS
β + λR

= 1− λR + λS
β + λR

< 1

always, indicating SDA-ss is slower than SDA. To overcome this, when (6.5.18) holds,

SDA-ss should be applied to the cMARE (6.0.1), instead, and as a by-product, Φ is

computed as the minimal nonnegative solution to the complementary MARE of the

cMARE (6.0.1).

6.6 Doubling Algorithms by General Bilinear Transformations

The doubling algorithms SDA, SDA-ss, and ADDA are constructed, respec-

tively, by

Cayley transformation: t→ C (t;α, α) = (t− α)/(t+ α) for SDA,

shrink-and-shift transformation: t→ t/β − 1 for SDA-ss,

generalized Cayley transformation: t→ C (t;α, β) = (t− α)/(t+ β) for ADDA.
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These transformations are three special cases of the following more general bilinear

(also called Möbius) transformation:

t→ B(t;α, α1, β, β1)
def
= (α1t− α)/(β1t+ β). (6.6.1)

It is tempting to ask if some faster doubling algorithm than ADDA could be con-

structed with this bilinear transformation because of two additional parameters α1

and β1 to work with. In what follows we shall explain that optimal ADDA is still the

best among all possible doubling algorithms coming out of (6.6.1).

The framework in section 6.2 can be modified to accommodate B(t;α, α1, β, β1)

upon noticing that, similar to (6.2.3),

(β1H − βI)

 I

X

 = (α1H + αI)

 I

X

B(R; β, β1, α, α1),

(6.6.2a)

(β1H − βI)

Y
I

B(S;α, α1, β, β1) = (α1H + αI)

Y
I

 . (6.6.2b)

Assuming no breakdown occurs, i.e., all involved inverses exist, in the end we will

have error equations, similar to those in (6.3.2),

Φ−Xk = (I −XkΨ) [B(S;α, α1, β, β1)]
2k Φ [B(R; β, β1, α, α1)]

2k , (6.6.3a)

Ψ − Yk = (I − YkΦ) [B(R; β, β1, α, α1)]
2k Ψ [B(S;α, α1, β, β1)]

2k . (6.6.3b)

There are four cases to consider

1. α1 ̸= 0 and β1 ̸= 0. Since B(t;α, α1, β, β1) = (α1/β1) · C (t;α/α1, β/β1), both

equations in (6.6.3) are the same as those for ADDA with the generalized Cay-

ley transformation C (t;α/α1, β/β1). This implies that any resulting doubling

algorithm is an ADDA.
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2. α1 ̸= 0, β1 = 0 (and then β ̸= 0 in order for B(t;α, α1, β, β1) to be well-defined):

(a) If α = 0, then B(t;α, α1, β, β1) = (α1/β)t and thus the equations in (6.6.3)

become

Φ−Xk = (I −XkΨ)S
2kΦR−2k , Ψ − Yk = (I − YkΦ)R

−2kΨS2k . (6.6.4)

Convergence ofXk and Yk to Φ and Ψ , respectively, is no longer guaranteed.

(b) If α ̸= 0, then B(t;α, α1, β, β1) = (α/β)[t(α/α1)
−1 − 1] and thus the

equations in (6.6.3) are the same as those for an SDA-ss. This implies that

any resulting doubling algorithm is an SDA-ss.

3. α1 = 0 (and then α ̸= 0 in order for B(t; β, β1, α, α1) to be well-defined), β1 ̸= 0.

This case is essentially the same as the previous one: α1 ̸= 0, β1 = 0.

4. α1 = β1 = 0, i.e., B(t;α, α1, β, β1) is constant. This is the trivial case. Con-

vergence of Xk and Yk to Φ and Ψ , respectively, is not possible because no

information on H is built into the algorithm.

In summary, possible doubling algorithms derivable from the general bilinear trans-

formation are SDA, SDA-ss, ADDA, the trivial ones by B(t;α, α1, β, β1) ≡ 1 or

B(t;α, α1, β, β1) ≡ 0, and the one by B(t;α, α1, β, β1) = t. Among all, optimal

ADDA is the best.

In principle, possible doubling algorithms can also be constructed by noticing

that, similar to (6.2.3) and (6.6.2),

h(H)

 I

X

 =

 I

X

h(R), h(H)

Y
I

 [h(S)]−1 =

Y
I

 ,

where h(·) is a rational function (or any other more complicated function). But

without knowing a particular effective h(·), such a generality has no practical value.
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CHAPTER 7

d-ADDA: Deflating irreducible singular M -matrix Riccati equation

Doubling algorithms are linear convergence for critical case. So in this chapter

we will propose a deflation technique to improve the rate of convergence of doubling

algorithms. Since the necessary condition for being in the critical case is H being

singular, to speed up the convergence, Guo, Iannazzo, and Meini [22] proposed to

shift away its eigenvalue 0 to a properly chosen positive number η:

Ĥ = H + ηzwT,

before SDA is applied, where z =

x
y

, and w ∈ Rm+n is entrywise nonnegative

such that wTz = 1. Dramatic improvements in reducing the number of iterative steps

required for convergence were witnessed. In this chapter, we propose an alternative

approach – deflation – to deflate out the eigenvalue 0 of H, before a doubling algo-

rithm, ADDA in this case, is applied. The idea of shifting away and that of deflating

out known eigenpairs are two common numerical techniques in eigenvalue computa-

tions, but often the deflation idea is preferred. We also argue that this shifting idea

of Guo, Iannazzo, and Meini should be combined with ADDA, instead of SDA, for

better performance.

In the rest of this chapter, A, B, C, and D, unless explicitly stated differently,

are reserved for the coefficient matrices of an MARE (1.0.1) for which

W defined by (1.0.2) is an irreducible singular M -

matrix, and (6.0.2) holds, where 0 < u, x ∈ Rm and

0 < v, y ∈ Rn.

(7.0.1)
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Note that assuming (6.0.2) here is more for notational convenience later than a ne-

cessity because W being an irreducible singular M -matrix implies the existence of

0 < u, x ∈ Rm and 0 < v, y ∈ Rn that satisfy (6.0.2).

This chapter is organized as follows. We begin by laying out our deflating

framework and its convergent analysis in section 7.2, followed by the analysis of

convergence in section 7.3 and then give out two efficient numerical realizations of

the framework in sections 7.4 and 7.5. We outline the shifting approach of Guo,

Iannazzo, and Meini [22] in section 7.6 for comparison purpose.

7.1 Deflating an Irreducible Singular MARE

Assume that (7.0.1) holds. We have three cases: µ = uTx − vTy > 0, µ = 0,

and µ < 0. The case µ < 0 can be converted to the case µ > 0 by transposing (1.0.1)

to get

ZDTZ − ZAT −BTZ + CT = 0, (7.1.1)

where Z = XT. This MARE has the unique minimal nonnegative solution ΦT, and AT −DT

−CT BT


v
u

 = 0,

y
x


T AT −DT

−CT BT

 = 0

as the result of (6.0.2), and the new µ for (7.1.1) is positive. By Theorem 6.3.1, we

have ΦTv = u.

If m = 1 and µ ≥ 0, then B − DΦ = 0 by Theorem 6.3.1(c). An MARE

(1.0.1) after setting X = Φ becomes C − AΦ = 0 to give Φ = A−1C because A is a

nonsingular M -matrix.

In light of these considerations, without loss of generality, we assume from now

on

µ = uTx− vTy ≥ 0, m ≥ 2. (7.1.2)
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By Theorem 6.3.1, Φx = y. In what follows, we will first present a general framework

for deflating an irreducible singular MARE with (7.1.2), and then its convergence

analysis. Two numerical realizations of the framework will be discussed in detail in

Remark 7.3.2.

7.2 General Framework

The framework starts with a nonsingular matrix V ∈ R(m+n)×(m+n) such that

V −1z = δe1, z =

x
y

 . (7.2.1)

Any numerical realization of this framework in Remark 7.3.2 is simply a way of

constructing such a matrix V .

Φ satisfies the MARE (1.0.1), or equivalently,

H

I

Φ

 =

I

Φ

R, R = B −DΦ (7.2.2)

which is equivalent to

V −1HV V −1

I

Φ

 = V −1

I

Φ

R. (7.2.3)

Partition

V −1 =


m n

m U11 U12

n U21 U22

. (7.2.4)
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Assuming that (U11 + U12Φ)
−1 exists, we have from (7.2.3)

V −1HV V −1

I

Φ

 (U11 + U12Φ)
−1

= V −1

I

Φ

 (U11 + U12Φ)
−1 [(U11 + U12Φ)R (U11 + U12Φ)

−1] . (7.2.5)

Since

V −1

I

Φ

 (U11 + U12Φ)
−1 =

 I

(U21 + U22Φ) (U11 + U12Φ)
−1

 ,

we rewrite (7.2.5) as

V −1HV

I

Φ̃

 =

I

Φ̃

 R̃, (7.2.6)

where

Φ̃ = (U21 + U22Φ) (U11 + U12Φ)
−1 , (7.2.7)

R̃ = (U11 + U12Φ)R (U11 + U12Φ)
−1 . (7.2.8)

Lemma 7.2.1 (Wang, Wang and Li). The first column of V −1HV is 0; so is that of

Φ̃.

Proof. We have from (7.2.1) V e1 = δ−1z. Thus V −1HV e1 = δ−1V −1Hz = 0, i.e., the

first column of V −1HV is 0. To show Φ̃e1 = 0, we notice

δe1 = V −1z = V −1

x
y

 = V −1

 x

Φx

 = V −1

I

Φ

x =

(U11 + U12Φ) x

(U21 + U22Φ) x


which gives

x = δ (U11 + U12Φ)
−1 e1, (U21 + U22Φ) x = 0. (7.2.9)

Therefore δΦ̃e1 = (U21 + U22Φ) x = 0 yielding Φ̃e1 = 0, as claimed.
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Keeping in mind Lemma 7.2.1, we define matrices Ã, B̃, C̃, D̃, and Â, B̂, Ĉ,

D̂ by the following partitioning

V −1HV =


m n

m B̃ −D̃

n C̃ −Ã

 =



1 m−1 n

1 0 b −d

m−1 0 B̂ −D̂

n 0 Ĉ −Â

. (7.2.10)

In particular,

Ã = Â, B̃ =


1 m−1

1 0 b

m−1 0 B̂

, C̃ =

( 1 m−1

0 Ĉ

)
, D̃ =


n

1 d

m−1 D̂

. (7.2.11)

Equation (7.2.6) says X̃ = Φ̃ satisfies the following ARE

X̃D̃X̃ − ÃX̃ − X̃B̃ + C̃ = 0. (7.2.12)

This ARE may have many solutions, and X̃ = Φ̃ is just one of them. If this particular

solution X̃ = Φ̃ is known, then the minimal nonnegative solution Φ of an MARE

(1.0.1) can be recovered as follows:

(U21 + U22Φ)(U11 + U12Φ)
−1 = Φ̃,

⇒ U21 + U22Φ = Φ̃(U11 + U12Φ)

= Φ̃U11 + Φ̃U12Φ,

⇒ U21 − Φ̃U11 = (−U22 + Φ̃U12)Φ.

Thus if (−U22 + Φ̃U12)
−1 exists, then

Φ = (−U22 + Φ̃U12)
−1(U21 − Φ̃U11). (7.2.13)
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While this formula suggests that it needs to do two matrix multiplications and to

solve m linear systems of dimension n to recover Φ from Φ̃ in general, later we will

see for the two realizations in Remark 7.3.2. It actually costs negligibly O(m + n)

and O(mn) flops (in comparison to the cost that will be incurred by Algorithm 7.2.1

later for computing Φ̃), respectively.

Lemma 7.2.1 allows us to write

Φ̃ =

(
0 Φ̂

)
, Φ̂ = Φ̃(:,2:m). (7.2.14)

In what follows, we look for a determining ARE for Φ̂. To this end, we substitute

Φ̃ =

(
0 Φ̂

)
and the expressions in (7.2.11) for Ã, B̃, C̃, D̃ into (7.2.12) to get

(
0 Φ̂

) d

D̂

(
0 Φ̂

)
− Ã

(
0 Φ̂

)
−
(
0 Φ̂

)0 b

0 B̂

+

(
0 Ĉ

)
= 0

⇔
(
0 Φ̂D̂Φ̂

)
−

(
0 ÃΦ̂

)
−

(
0 Φ̂B̂

)
+

(
0 Ĉ

)
= 0

⇔ Φ̂D̂Φ̂− ÂΦ̂− Φ̂B̂ + Ĉ = 0.

This says that X̂ = Φ̂ is a solution of the following ARE:

X̂D̂X̂ − ÂX̂ − X̂B̂ + Ĉ = 0 (7.2.15)

which is equivalent to

Ĥ

Im−1

X̂

 =

Im−1

X̂

 (B̂ − D̂X̂), Ĥ =


m−1 n

m−1 B̂ −D̂

n Ĉ −Â

. (7.2.16)

The complementary algebraic Riccati equation (cARE) of (7.2.15) is

Ŷ ĈŶ − Ŷ Â− B̂Ŷ + D̂ = 0, (7.2.17)
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or equivalently

Ĥ

Ŷ
I

 =

Ŷ
I

 [−(Â− ĈŶ )].

In the above deflation framework, we assume that both

U11 + U12Φ, −U22 + Φ̃U12

are invertible. Later in Remark 7.3.2, this assumption will be verified for the two

realizations of this framework there.

Theorem 7.2.1 (Wang, Wang and Li). Assume (7.0.1) and (7.1.2). Suppose U11 +

U12Φ is nonsingular, and define Φ̂ as in (7.2.14). Then

eig(Ĥ) = {λ1, · · · , λm−1, λm+1, . . . , λm+n}, (7.2.18)

eig(B̂ − D̂Φ̂) = {λ1, . . . , λm−1}, (7.2.19)

and cARE (7.2.17) has a unique solution Ψ̂ , if exists, satisfying

eig(Â− ĈΨ̂) = {−λm+1, . . . ,−λm+n}, (7.2.20)

where λi (i = 1, . . . ,m+ n) are H’s eigenvalues as specified in Theorem 6.3.1.

Proof. Equation (7.2.18) is a consequence of Theorem 6.3.1, the preceding reduction

that leads to the definition of Ĥ in (7.2.16), and (7.2.10).

We have (7.2.6) – (7.2.8). Since Rx = (B −DΦ)x = 0 by Theorem 6.3.1, using

(7.2.9) we find

R̃e1 = (U11 + U12Φ)R(U11 + U12Φ)
−1e1 = δ−1(U11 + U12Φ)Rx = 0

and thus the partitioning

R̃ = B̃ − D̃Φ̃ =


1 m−1

1 0 R̃12

m−1 0 R̃22

 (7.2.21)
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which together with (7.2.11) and Φ̃ =

(
0 Φ̂

)
give R̃22 = B̂ − D̂Φ̂. Since

eig(R̃) = eig(R) = {λ1, . . . , λm}

and 0 = λm < Reλm−1 ≤ · · · ≤ Reλ1 by Theorem 6.3.1, we have (7.2.19).

Let Z ∈ R(m+n−1)×n be a basis matrix of Ĥ’s invariant subspace associated

with the eigenvalues λm+1, . . . , λm+n. If Z(m:m+n−1,:) is invertible, then Ψ̂ exists and

is unique, and moreover Ψ̂ = Z(1:m−1,:)[Z(m:m+n−1,:)]
−1 and (7.2.20) holds [28].

Theorem 7.2.2 (Wang, Wang and Li). Assume (7.0.1) and (7.1.2). Suppose both

U11 + U12Φ and −U22 + Φ̃U12 are nonsingular. Then ARE (7.2.15) constructed as

above has a particular solution X̂ = Φ̂ characterized uniquely by (7.2.19), and the

minimal nonnegative solution Φ can be recovered by (7.2.13) with Φ̃ =

(
0 Φ̂

)
.

Proof. The existence of Φ̂ is a consequence of the constructive deflation procedure

above, and Φ̂ satisfies (7.2.19) by Theorem 7.2.1. That this particular solution X̂ = Φ̂

is uniquely characterized by (7.2.19) follows from the relation between the solutions

of ARE (7.2.15) and the invariant subspaces of Ĥ [28].

Theorem 7.2.2 suggests a natural way to compute Φ by first solving ARE

(7.2.15) for Φ̂ by Algorithm 6.4.1 and then recovering Φ by (7.2.13). This leads

to the following deflated Alternating-Directional Doubling Algorithm (dADDA).

Algorithm 7.2.1.

dADDA for an MARE XDX − AX −XB + C = 0 with (7.0.1).

1 Compute µ = uTx− vTy;

2 If µ ≥ 0, then

3 compute Â, B̂, Ĉ, and D̂ as defined by (7.2.10) and (7.2.11);

4 solve (7.2.15) by Algorithm 6.4.1 for Φ̂;

5 recover Φ by (7.2.13) with Φ̃ =

(
0 Φ̂

)
;
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6 else

7 compute ΦT instead by working with (7.1.1);

8 Enddo

Remark 7.2.1. There are a few practically important issues to resolve for this

dADDA.

1. In building ARE (7.2.15), we need U11+U12Φ to be nonsingular, and in recover-

ing Φ by (7.2.13), we need −U22 + Φ̃U12 to be nonsingular. These requirements

are satisfied for each of the realizations in Remark 7.3.2, where we will also

investigate the conditioning of both matrices.

2. Both (7.2.19) and (7.2.20) uniquely characterize the particular solution Φ̂ of

(7.2.15) and the particular solution Ψ̂ , if exists, of (7.2.17), respectively. Specif-

ically, Φ̂ is the unique solution of (7.2.15) such that all eigenvalues of B̂ − D̂Φ̂

have positive real parts and Ψ̂ is the unique solution of (7.2.17) such that all

eigenvalues of Â − ĈΨ̂ have nonpositive real parts. These characterizations in

principle can be used to verify that the computed solution of (7.2.15) at Line

4 of Algorithm 7.2.1 is the right one. But such a verification can only be per-

formed at the end of the iterative process. In the next subsection we will show

that with a proper restriction on α and β, this kind of verification becomes

unnecessary, i.e., Line 4 of Algorithm 7.2.1 will always produces the right Φ̂.

3. What should α and β be for fast convergence at Line 4 of Algorithm 7.2.1?

Remark 7.2.2. So far, the existence of Ψ̂ is assumed, not proven. If it exists, it

is uniquely characterized by (7.2.20). One way to look into this existence issue,
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naturally, is to relate Ψ̂ to the minimal nonnegative solution Ψ of the original the

cMARE (6.0.1). We shall do it now. Ψ satisfies the cMARE (6.0.1), or equivalently,

H

Ψ
I

 =

Ψ
I

 (−S), S = A− CΨ. (7.2.22)

In the same way as we gotten (7.2.6), we can get

V −1HV

Ψ̃
I

 =

Ψ̃
I

 (−S̃), S̃ = Ã− C̃Ψ̃ , (7.2.23)

where

Ψ̃ = (U11Ψ + U12) (U21Ψ + U22)
−1 , (7.2.24)

S̃ = (U21Ψ + U22)S (U21Ψ + U22)
−1 , (7.2.25)

assuming (U21Ψ + U22)
−1 exists. Equation (7.2.23) says Ỹ = Ψ̃ satisfies the following

ARE

Ỹ C̃Ỹ − Ỹ Ã− B̃Ỹ + D̃ = 0 (7.2.26)

which is the complementary ARE of (7.2.12). Partition

Ψ̃ =

1 ψ

m−1 Ψ̂

 (7.2.27)
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and substitute this and (7.2.11) into (7.2.26) to getψ
Ψ̂

(
0 Ĉ

)ψ
Ψ̂

−

ψ
Ψ̂

 Â−

0 b

0 B̂


ψ
Ψ̂

+

 d

D̂

 = 0

⇔

ψĈΨ̂
Ψ̂ ĈΨ̂

−

ψÂ
Ψ̂Â

−

 bΨ̂

B̂Ψ̂

+

 d

D̂

 = 0

⇔


ψ(ĈΨ̂ − Â)− bΨ̂ + d = 0,

Ψ̂ ĈΨ̂ − Ψ̂ Â− B̂Ψ̂ + D̂ = 0.

This says that Ŷ = Ψ̂ is a solution of the complementary ARE (7.2.17) and ψ satisfies

ψ(Â − ĈΨ̂) = −bΨ̂ + d. Thus Ψ̂ exists, provided U21Ψ + U22 is nonsingular. Later

we will show that if µ ̸= 0, then U21Ψ + U22 is nonsingular for the two realizations

in Remark 7.3.2. Unfortunately it is always singular in the critical case as confirmed

by the following lemma. But we emphasize that U21Ψ + U22 is nonsingular is just a

sufficient condition, not a necessary one, i.e., Ψ̂ may still exist even if U21Ψ + U22 is

singular. For example, Ψ̂ still exists in all the critical case examples in section 8.2

and in [41]. 3

Lemma 7.2.2 (Wang, Wang and Li). If µ = 0, then (U21Ψ + U22)y = 0 and thus

U21Ψ + U22 is always singular in the critical case.

Proof. In the critical case µ = 0, Ψy = x by Theorem 6.3.1. Therefore

δe1 = V −1z = V −1

x
y

 = V −1

Ψy
y

 =

(U11Ψ + U12) y

(U21Ψ + U22) y


which implies (U21Ψ + U22)y = 0.
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7.3 Convergence Analysis

Assume, as in ADDA for the original MARE (1.0.1), that

α ≥ αopt
def
= max

i
A(i,i), β ≥ βopt

def
= max

j
B(j,j). (6.3.6)

By Theorem 7.2.1, X̂ = Φ̂ = Φ̃(:,2:m) and Ψ̂ are such that

Ĥ

I

Φ̂

 =

I

Φ̂

 R̂, R̂ = B̂ − D̂Φ̂, eig(R̂) = {λ1, . . . , λm−1}, (7.3.1a)

Ĥ

Ψ̂
I

 =

Ψ̂
I

 (−Ŝ), Ŝ = Â− ĈΨ̂ , eig(Ŝ) = {−λm+1, . . . ,−λm+n}. (7.3.1b)

Lemma 7.3.1 (Wang, Wang and Li). Assume (7.0.1) and (6.3.6). Let R = B−DΦ

and S = A− CΨ , and R̂ and Ŝ as given by (7.3.1). Then

ρ(C (Ŝ;α, β)) = ρ(C (S;α, β)), ρ(C (R̂; β, α)) < ρ(C (R; β, α)) (7.3.2)

and in particular

ρ(C (Ŝ;α, β)) · ρ(C (R̂; β, α)) < ρ(C (S;α, β)) · ρ(C (R; β, α)) ≤ 1. (7.3.3)

Proof. By Theorem 6.3.1(b), both R and S are irreducible M -matrices. Since by

(6.3.6)

α ≥ max
i
A(i,i) ≥ max

i
S(i,i), β ≥ max

j
B(j,j) ≥ max

j
R(j,j),

we have ρ(C (S;α, β)) ·ρ(C (R; β, α)) ≤ 1 by analysis in section 6.3. This is the second

inequality in (7.3.3). The first inequality is a consequence of (7.3.2) which we now

prove. It follows from Theorem 6.3.1(d) and Theorem 7.2.1 that

eig(R̂) ⊂ eig(R), 0 ∈ eig(R), 0 ̸∈ eig(R̂), and eig(Ŝ) = eig(S).

Thus ρ(C (Ŝ;α, β)) = ρ(C (S;α, β)). The proof of [41, Theorem 2.1] implies that

ρ(C (R; β, α)) = [β − λmin(R)][λmin(R) + α]−1,
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where λmin(R) = 0 is the eigenvalue of R with the smallest absolute value among

all eigenvalues of R. Since −C (R; β, α) = −(βI − R)(αI + R)−1 > 0, by the

Perron-Frobenius theorem 3.1.1, we know ρ(C (R; β, α)) is a simple eigenvalue with

the greatest magnitude among all eigenvalues of −C (R; β, α), i.e., ρ(C (R; β, α)) is

strictly larger than the absolute value of any other eigenvalue of −C (R; β, α). Since

λmin(R) = 0 ̸∈ eig(R̂) ⊂ eig(R), the eigenvalues of −C (R̂; β, α) are precisely those of

−C (R; β, α), except ρ(C (R; β, α)). Thus ρ(C (R; β, α)) is bigger than the absolute

value of any eigenvalue of −C (R̂; β, α). Therefore

ρ(C (R̂; β, α)) < ρ(C (R; β, α)),

as was to be shown.

Theorem 7.3.1 (Wang, Wang and Li). Assume (7.0.1) and (7.1.2). Suppose U11 +

U12Φ is nonsingular. Let {Êk}, {F̂k}, {X̂k}, {Ŷk} be the sequences generated by

ADDA applied to (7.2.15) with no breakdowns, i.e., all involved inverses exist. If

(6.3.6) holds, then X̂k and Ŷk converge quadratically to Φ̂ and Ψ̂ , respectively, and

lim sup
k→∞

∥Φ̂− X̂k∥1/2
k ≤ ρ(C (Ŝ;α, β)) · ρ(C (R̂; β, α)) < 1, (7.3.4a)

lim sup
k→∞

∥Ψ̂ − Ŷk∥1/2
k ≤ ρ(C (R̂; β, α)) · ρ(C (Ŝ;α, β)) < 1, (7.3.4b)

where ∥ · ∥ is any matrix norm.

Proof. Inequalities in (7.3.4) are the consequences of

Φ̂− X̂k = (I − X̂kΨ̂)
[
C (Ŝ;α, β)

]2k
Φ̂
[
C (R̂; β, α)

]2k
, (7.3.5a)

Ψ̂ − Ŷk = (I − ŶkΦ̂)
[
C (R̂; β, α)

]2k
Ψ̂
[
C (Ŝ;α, β)

]2k
. (7.3.5b)
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Take (7.3.4a) for example. We have by (7.3.5a)

(Φ̂− X̂k)

(
I − Ψ̂

[
C (Ŝ;α, β)

]2k
Φ̂
[
C (R̂; β, α)

]2k)
= (I − Φ̂Ψ̂)

[
C (Ŝ;α, β)

]2k
Φ̂
[
C (R̂; β, α)

]2k
. (7.3.6)

Since by Lemma 7.3.1∥∥∥∥[C (Ŝ;α, β)
]2k∥∥∥∥1/2k ∥∥∥∥[C (R̂; β, α)

]2k∥∥∥∥1/2k

→ ρ(C (Ŝ;α, β)) · ρ(C (R̂; β, α)) < 1,

Γ
def
= Ψ̂

[
C (Ŝ;α, β)

]2k
Φ̂
[
C (R̂; β, α)

]2k
→ 0 as k → ∞. Therefore for sufficiently

large k, (I − Γ )−1 exists and1

∥Φ̂− X̂k∥1/2
k ≤ ∥(I − Γ )−1∥1/2k ∥I − Φ̂Ψ̂∥1/2k

×
∥∥∥∥[C (Ŝ;α, β)

]2k∥∥∥∥1/2k

∥Φ̂∥1/2k
∥∥∥∥[C (R̂; β, α)

]2k∥∥∥∥1/2k

. (7.3.7)

Letting k → ∞ in both sides of (7.3.7) leads to (7.3.4a) because as k → ∞,

∥(I − Γ )−1∥1/2k → 1, ∥I − Φ̂Ψ̂∥1/2k → 1, ∥Φ̂∥1/2k → 1,∥∥∥∥[C (Ŝ;α, β)
]2k∥∥∥∥1/2k

→ ρ(C (Ŝ;α, β)),

∥∥∥∥[C (R̂; β, α)
]2k∥∥∥∥1/2k

→ ρ(C (R̂; β, α)).

That X̂k and Ŷk converge quadratically to Φ̂ and Ψ̂ , respectively, is a consequence of

the inequalities in (7.3.4).

Remark 7.3.1. A few comments are in order:

1. If µ ̸= 0, ADDA applied to the original MARE (1.0.1) is already quadratically

convergent [41]. But it is only linearly convergent if µ = 0 [13]. Theorem 7.3.1

says that ADDA applied to the deflated ARE (7.2.15) is still quadratically

convergent.

1We assume ∥·∥ is a consistent matrix norm. This does not lose any generality because all matrix

norms are equivalent and thus lim sup
k→∞

∥Φ̂− X̂k∥1/2
k

does not change with the norm used.
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2. ADDA applied to the original MARE (1.0.1) generates monotonic sequences,

under (6.3.6). But this monotonicity property is generally lost in the sequences

{X̂k} and {Ŷk} generated by ADDA applied to (7.2.15).

3. Theorem 6.3.2 says that under (6.3.6) ρ(C (S;α, β)) · ρ(C (R; β, α)) is mini-

mized at α = αopt and β = βopt, leading to the optimal ADDA in [41].

For the current case, for fast convergence we should pick α and β such that

ρ(C (Ŝ;α, β)) · ρ(C (R̂; β, α)) is minimized subject to (6.3.6). While it is not

clear whether ρ(C (Ŝ;α, β)) · ρ(C (R̂; β, α)) is also minimized at α = αopt and

β = βopt, intuitively selecting α = αopt and β = βopt should be good. This is

what we will do in our numerical tests in section 8.2. 3

Remark 7.3.2. Two numerical realizations of the deflating framework given in sec-

tion 7.2 will be discussed in detail in next two sections. Assume, throughout these

two sections, (7.0.1) and (7.1.2).

7.4 By Elimination

Given an integer i0 (1 ≤ i0 ≤ m+ n), set

PT = (ei0 , e2, . . . , ei0−1, e1, ei0+1, . . . , em+n) ∈ R(m+n)×(m+n), (7.4.1)

a permutation matrix. Pz swaps z(1) and z(i0) and serves as a pivoting strategy (or

without one when i0 = 1), where z is given as in (7.2.1). Set

L−1 =

 1

−ẑ Im+n−1

 , L =

1

ẑ Im+n−1

 , (7.4.2a)

V −1 = L−1 P, V = PTL, (7.4.2b)

where

ẑT = z−1
(i0)

(z(2), . . . , z(i0−1), z(1), z(i0+1), . . . , z(m+n)).
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Then V −1z = z(i0)e1. We just mentioned that Pz serves as a pivoting strategy.

We call it a complete pivoting if i0 = argmaxi z(i), and a partial pivoting if i0 =

argmax1≤i≤m z(i). Simply setting i0 = 1 corresponds to no pivoting. For the complete

pivoting, ∥V ∥1∥V −1∥1 ≤ (m+n)2; but otherwise ∥V ∥1∥V −1∥1 can be very large if z(i0)

is tiny relative to some other entries of z. The involved formulas can be substantially

complicated when i0 > m, but are much simpler when i0 ≤ m, especially so when

i0 = 1. In all of our examples in section 8.2 as well as those in the literature, z = 1m+n

and thus it makes no difference with or without a pivoting strategy.

We can write

PT = P = I − wwT, w = e1 − ei0 . (7.4.3)

Partition

L−1 =


m n

m L11 0

n L21 I

, w =

m w1

n w2

, P =


m n

m P11 P12

n P21 P22

.
Use (7.4.2a) and (7.4.3) to see

L11 =

 1

−ẑ(1:m−1) Im−1

 , L21 = −ẑ(m:m+n−1)e
T
1 , (7.4.4a)

L =


m n

m L−1
11 0

n −L21 I

, L−1
11 =

 1

ẑ(1:m−1) Im−1

 , (7.4.4b)

Pii = I − wiw
T
i , Pij = −wiw

T
j for i ̸= j. (7.4.4c)

So the four submatrices Uij of V
−1 = L−1P partitioned as in (7.2.4) are

U11 = L11(I − w1w
T
1 ), U12 = −L11w1w

T
2 , (7.4.5a)

U21 = L21(I − w1w
T
1 )− w2w

T
1 , U22 = −L21w1w

T
2 + I − w2w

T
2 . (7.4.5b)
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Equations (7.2.7) and (7.2.13) that relate Φ and Φ̃ remain valid, provided that U11 +

U12Φ and −U22 + Φ̃U12 are invertible, as ensured by Theorem 7.4.1 below.

Lemma 7.4.1 (Sherman-Morrison-Woodbury). Let E, F ∈ Rp×q. The matrix Ip −

EFT is invertible if and only if Iq − FTE is nonsingular. Moreover

(Ip − EFT)−1 = Ip + E(Iq − FTE)−1FT.

Proof. Suppose matrix Ip − EFT is invertible, then


p q

p Ip 0

q −FT Iq




p q

Ip − EFT E

0 Iq




p q

Ip 0

FT I

 =


p q

p Ip 0

q −FT Iq




p q

Ip E

FT Iq



=


p q

p Ip E

q 0 Iq − FTE


It is easy to see that with non-singularity of Ip − EFT, we also have Iq − FTE

invertible. The proof of the other direction is almost the same. Moreover, we have

(Ip + E(Iq − FTE)−1FT)(Ip − EFT)

=Ip − EFT + E(Iq − FTE)−1FT(Ip − EFT)

=Ip − EFT + E(Iq − FTE)−1(FT − FTEFT)

=Ip − EFT + E(Iq − FTE)−1(Iq − FTE)FT

=Ip − EFT + EFT

=Ip.

Since Ip − EFT is square, we have (Ip − EFT)−1 = Ip + E(Iq − FTE)−1FT.

Theorem 7.4.1 (Wang, Wang and Li). Let Uij be defined by (7.4.1) – (7.4.5). Then

both U11 + U12Φ and −U22 + Φ̃U12 are invertible, where Φ̃ relates to Φ by (7.2.7).
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Proof. We have by (7.4.5)

U11 + U12Φ = L11(I − w1w
T
1 )− L11w1w

T
2 Φ

= L11

[
I − w1(w

T
1 + wT

2 Φ)
]
.

Since L11 is invertible, U11+U12Φ is invertible if and only if I−w1(w
T
1 +wT

2 Φ) is. By

Lemma 7.4.1, I − w1(w
T
1 + wT

2 Φ) is invertible if and only if

ζ
def
= 1− (wT

1 + wT
2 Φ)w1 ̸= 0.

There are three cases to consider:

1. If i0 = 1, then w1 = 0 and w2 = 0 and thus ζ = 1− (wT
1 + wT

2 Φ)w1 = 1 > 0;

2. If 1 < i0 ≤ m, then w1 = e1 − ei0 and w2 = 0 and thus

ζ = 1− (wT
1 + wT

2 Φ)w1 = 1− wT
1 w1 = −1 < 0;

3. If i0 > m, then w1 = e1 and w2 = −ei0−m and thus

ζ = 1− (wT
1 + wT

2 Φ)w1 = −wT
2 Φw1 = Φ(i0−m,1) > 0

since Φ > 0 by Theorem 6.3.1.

Thus U11 + U12Φ is invertible and moreover

(U11 + U12Φ)
−1 =

[
I + ζ−1w1(w

T
1 + wT

2 Φ)
]
L−1

11

=


L−1

11 , for i0 = 1,[
I − w1w

T
1

]
L−1
11 , for 1 < i0 ≤ m,[

I + Φ−1
(i0−m,1) e1(e

T
1 − Φ(i0−m,:))

]
L−1

11 , for m < i0.

(7.4.6)

79



Getting to −U22 + Φ̃U12, we have

−U22 + Φ̃U12 = L21w1w
T
2 − I + w2w

T
2 − Φ̃L11w1w

T
2 , (7.4.7)

U21 + U22Φ = L21(I − w1w
T
1 )− w2w

T
1 + (−L21w1w

T
2 + I − w2w

T
2 )Φ,

(7.4.8)

(U11 + U12Φ)
−1 L11w1w

T
2 =

[
I + ζ−1w1(w

T
1 + wT

2 Φ)
]
w1w

T
2 . (7.4.9)

Again there are three cases to consider:

1. If i0 = 1, then w1 = 0 and w2 = 0 and thus −U22 + Φ̃U12 = −I;

2. If 1 < i0 ≤ m, then w1 = e1 − ei0 and w2 = 0 and thus also −U22 + Φ̃U12 = −I;

3. If i0 > m, then w1 = e1 and w2 = −ei0−m and thus

(U11 + U12Φ)
−1 L11w1w

T
2 = ζ−1w1w

T
2 . (7.4.10)

Therefore by (7.4.8) and (7.4.10)

Φ̃L11w1w
T
2 = (U21 + U22Φ) (U11 + U12Φ)

−1 L11w1w
T
2

=
[
L21(I − w1w

T
1 )− w2w

T
1 + (−L21w1w

T
2 + I − w2w

T
2 )Φ

]
ζ−1w1w

T
2

= ζ−1
[
−w2w

T
2 + ζL21w1w

T
2 + Φw1w

T
2 + ζw2w

T
2

]
= (1− ζ−1)w2w

T
2 + L21w1w

T
2 + ζ−1Φw1w

T
2 .

Combine this with (7.4.7) to get

−U22 + Φ̃U12 = −I + ζ−1w2w
T
2 − ζ−1Φw1w

T
2

= −
[
I − ζ−1(w2 − Φw1)w

T
2

]
(7.4.11)

which, by Lemma 7.4.1, is invertible if

1− ζ−1wT
2 (w2 − Φw1) = −ζ−1 = −Φ−1

(i0−m,1) ̸= 0.
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Thus −U22 + Φ̃U12 is invertible, too, and moreover

(
−U22 + Φ̃U12

)−1

=


−I, for i0 ≤ m,

−
[
I − (ei0−m + Φ(:,1))e

T
i0−m

]
, for i0 > m.

(7.4.12)

This completes the proof.

The inversion formulas (7.4.6) and (7.4.12), together with (7.4.4) and (7.4.5),

lead to fast algorithms via (7.2.7) and (7.2.13) to go from one of Φ and Φ̃ to the other

at the cost of O(m+ n) flops. The numerical stability of going from Φ̃ to Φ this way

depends on ∥U11 + U12Φ∥1∥(U11 + U12Φ)
−1∥1 and ∥ − U22 + Φ̃U12∥1∥(−U22 + Φ̃U−1

12 ∥1

for which we have, provided |ẑ(i)| ≤ 1 for 1 ≤ i ≤ m+ n− 1,

∥U11 + U12Φ∥1 ≤


(m+ 1), if i0 ≤ m,

(m+ 1)

(
1 + max

1≤j≤m
Φ(i0−m,j)

)
, if i0 > m,

(7.4.13a)

∥(U11 + U12Φ)
−1∥1 ≤


(m+ 1), if i0 ≤ m,

(m+ 1)

(
Φ−1
(i0−m,1) + max

2≤j≤m

Φ(i0−m,j)

Φ(i0−m,1)

)
, if i0 > m,

(7.4.13b)

and

∥ − U22 + Φ̃U12∥1


= 1, if i0 ≤ m,

≤ 1 + Φ−1
(i0−m,1)(1 + ∥Φ(1,:)∥1), if i0 > m,

(7.4.14a)

∥(−U22 + Φ̃U12)
−1∥1


= 1, if i0 ≤ m,

≤ 1 + ∥Φ(1,:)∥1, if i0 > m.

(7.4.14b)

In particular, if i0 ≤ m, all bounds by (7.4.13) and (7.4.14) are independent of Φ and

Φ̃, and thus calculating Φ or Φ̃ via (7.2.7) or (7.2.13) is numerically stable.
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It is rather straightforward to extract Â, B̂, Ĉ, and D̂ from

V −1HV = (I − z̃eT1 )PHP (I + z̃eT1 )

= PHP − z̃(eT1 PHP ) + (PHP z̃)eT1 − (eT1 PHP z̃)z̃e
T
1 . (7.4.15)

where z̃ = (0, ẑT)T. The right-hand side of (7.4.15) lends itself for a fast evaluation

of V −1HV . In the case i0 = 1, we have2

Φ̃ =

(
0 Φ(:,2:m)

)
, Φ̂ = Φ(:,2:m), Φ(:,1) = x−1

(1)

[
y − Φ(:,2:m)x(2:m)

]
, (7.4.16)

and

B̂ = B(2:m,2:m) − x−1
(1) x(2:m)B(1,2:m), D̂ = D(2:m,:) − x−1

(1) x(2:m)D(1,:), (7.4.17a)

Ĉ = C(:,2:m) − x−1
(1) yB(1,2:m), Â = A− x−1

(1) yD(1,:). (7.4.17b)

Note also in this case

Â− Φ̂D̂ = A− ΦD. (7.4.18)

This is because Φ(:,1) = x−1
(1)

[
y − Φ̂x(2:m)

]
, and thus

Â− Φ̂D̂ = A− x−1
(1) yD(1,:) − Φ̂(D(2:m,:) − x−1

(1) x(2:m)D(1,:))

= A− x−1
(1)

[
y − Φ̂x(2:m)

]
D(1,:) − Φ̂D(2:m,:)

= A− Φ(:,1)D(1,:) − Φ̂D(2:m,:)

= A− ΦD.

In Remark 7.2.2, we show Ψ̂ exists if U21Ψ+U22 is nonsingular, and in Lemma 7.2.2

we show U21Ψ+U22 is always singular if µ = 0. Theorem 7.4.2 asserts that U21Ψ+U22

is guaranteed nonsingular if µ ̸= 0. Thus the existence of Ψ̂ is unresolved for the case

µ = 0, but otherwise Ψ̂ exists. We point out that Ψ̂ does exist for all our critical case

examples in section 8.2 though.

2This is not a misprint: the last m− 1 columns of Φ̃ are the same as those of Φ.

82



Theorem 7.4.2 (Wang, Wang and Li). Let Uij be defined by (7.4.1) – (7.4.5). Then

U21Ψ + U22 is singular when and only when µ = 0.

Proof. We already know that U21Ψ + U22 is singular when µ = 0 by Lemma 7.2.2.

But the conclusion of the theorem is stronger than this. The proof below uses the

explicit expressions for Uij given in (7.4.5) which gives

U21Ψ + U22 =
[
L21(I − w1w

T
1 )− w2w

T
1

]
Ψ − L21w1w

T
2 + I − w2w

T
2 . (7.4.19)

There are three cases to consider.

1. If i0 = 1, then w1 = 0 and w2 = 0 and thus (7.4.19) becomes

L21Ψ + I = −x−1
(1) ye

T
1 Ψ + I

which is nonsingular if and only if 1−x−1
(1) e

T
1 Ψy ̸= 0. Now for µ > 0, Ψy < x by

Theorem 6.3.1 and then x−1
(1) e

T
1 Ψy < x−1

(1) e
T
1 x = 1 implying 1 − x−1

(1) e
T
1 Ψy > 0.

But for µ = 0, Ψy = x by Theorem 6.3.1 and then x−1
(1) e

T
1 Ψy = x−1

(1) e
T
1 x = 1

implying 1− x−1
(1) e

T
1 Ψy = 0.

2. If 1 < i0 ≤ m, then w1 = e1 − ei0 and w2 = 0. Write P1 = I − w1w
T
1 which

is the permutation matrix that swaps the first entry and the i0th entry of x.

(7.4.19) becomes

L21(I − w1w
T
1 )Ψ + I = −x−1

(i0)
yeT1 P1Ψ + I

which is nonsingular if and only if 1 − x−1
(i0)

eT1 P1Ψy ̸= 0. Now for µ > 0,

Ψy < x by Theorem 6.3.1 and then x−1
(i0)

eT1 P1Ψy < x−1
(i0)

eT1 P1x = 1 implying

1 − x−1
(i0)

eT1 P1Ψy > 0. But for µ = 0, Ψy = x by Theorem 6.3.1 and then

x−1
(i0)

eT1 P1Ψy = x−1
(i0)

eT1 P1x = 1 implying 1− x−1
(i0)

eT1 P1Ψy = 0.

3. If i0 > m, then w1 = e1 and w2 = −ej0 , where j0 = i0 −m. We have

L21 = −ŷeT1 , ŷ = y−1
(j0)

y − ej0 + y−1
(j0)
x(1) ej0 .
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It can be verified that L21(I − w1w
T
1 ) = 0. Therefore

U21Ψ + U22 = −w2w
T
1 Ψ − L21w1w

T
2 + I − w2w

T
2

= ej0e
T
1 Ψ − ŷeTj0 + I − ej0e

T
j0

= I − (ŷ + ej0)e
T
j0
+ ej0e

T
1 Ψ

= I −
(
ŷ + ej0 −ej0

) eTj0

eT1 Ψ


which, by Lemma 7.4.1, is invertible if and only if

I2 −

 eTj0

eT1 Ψ

(
ŷ + ej0 −ej0

)
(7.4.20)

is invertible. Use ŷ + ej0 = y−1
(j0)

y + y−1
(j0)
x(1) ej0 to simplify the matrix (7.4.20)

to  −y−1
(j0)
x(1) 1

−y−1
(j0)

[
eT1 Ψy + x(1) e

T
1 Ψej0

]
1 + eT1 Ψej0


whose determinant is y−1

(j0)

[
eT1 Ψy − x(1)

]
. Now if µ > 0, then Ψy < x by The-

orem 6.3.1 and thus y−1
(j0)

[
eT1 Ψy − x(1)

]
< 0. If µ = 0, then Ψy = x by Theo-

rem 6.3.1 and thus y−1
(j0)

[
eT1 Ψy − x(1)

]
= 0 implying U21Ψ + U22 is singular.

This completes the proof.

7.5 By Orthogonal Transformation

We take V to be an orthogonal matrix Q ∈ R(m+n)×(m+n) such that QTz = δe1.

Partition

Q =


m n

m Q11 Q12

n Q21 Q22

. (7.5.1)
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Then V −1 = QT gives Uij = QT
ji and consequently

Φ̃ =
(
QT

12 +QT
22Φ

) (
QT

11 +QT
21Φ

)−1
, (7.5.2a)

Φ = (−QT
22 + Φ̃QT

21)
−1(QT

12 − Φ̃QT
11), (7.5.2b)

assuming QT
11 + QT

21Φ and −QT
22 + Φ̃QT

21 are invertible. We know Φ̃e1 = 0 by

Lemma 7.2.1, and Φ̂ = Φ̃(:,2:m) satisfies ARE (7.2.15).

Possible candidates for Q include a product of m+ n− 1 Givens rotations or a

Householder transformation [16]. In what follows, we will use V = Q, the Householder

transformation such that Qz = −∥z∥2 e1, as an example, partly because then both

QT
11 +QT

21Φ and −QT
22 + Φ̃QT

21 are guaranteed invertible3 by Theorem 7.5.1 below.

The Householder transformation V = Q such that Qz = −∥z∥2 e1 is given by

Q = I − 2wwT, w =
z − δe1

∥z − δe1∥2
=
z − δe1
γ

, (7.5.3)

where

δ = −∥z∥2, γ = ∥z − δe1∥2 =
√

2x(1)∥z∥2 + 2∥z∥22. (7.5.4)

Partition w =

w1

w2

, where

0 < w1 = γ−1(x− δe1) ∈ Rm, 0 < w2 = γ−1y ∈ Rn. (7.5.5)

3This is not so for the Householder transformation such that Qz = ∥z∥2 e1. For example, m =

n = 2, B =

 3 −1

−1 3

, D = 12,2, A = B, and C = D. For this example W14 = 0, 1T
4 W = 0,

Φ = 1
212,2, Ψ = 1

212,2, and thus µ = 0. We have QT
11 + QT

21Φ =

1 1

0 0

 for the Householder

transformation Q such that Q14 = 2e1, but QT
11 + QT

21Φ =

 −1 −1

−2/3 2/3

 for the Householder

transformation Q such that Q14 = −2e1.

85



Then the four submatrices Qij as defined by (7.5.1) are

Q11 = Im − 2w1w
T
1 , Q12 = −2w1w

T
2 , (7.5.6a)

Q22 = In − 2w2w
T
2 , Q21 = −2w2w

T
1 . (7.5.6b)

Theorem 7.5.1 (Wang, Wang and Li). Let Q ∈ R(m+n)×(m+n) be the Householder

transformation as given by (7.5.3) and (7.5.4). Then both QT
11+Q

T
21Φ and −QT

22+Φ̃Q
T
21

are invertible, where Φ̃ relates to Φ by (7.5.2a).

Proof. We have (7.5.3) – (7.5.6), and thus

QT
11 +QT

21Φ = Im − 2w1w
T
1 − 2w1w

T
2 Φ = Im − 2w1(w

T
1 + wT

2 Φ).

By Lemma 7.4.1, QT
11+Q

T
21Φ is invertible if and only if 1−2(wT

1 +wT
2 Φ)w1 ̸= 0 which

we will verify. We have

ζ
def
= 1− 2(wT

1 + wT
2 Φ)w1 (7.5.7)

= 1− 2wT
1 w1 − 2wT

2 Φw1

= 1− 2
∥x− δe1∥22

γ2
− 2wT

2 Φw1

= −
x(1)∥z∥2 + ∥x∥22
x(1)∥z∥2 + ∥z∥22

− 2wT
2 Φw1 < 0 (7.5.8)

because x > 0, y > 0, Φ > 0, and wi > 0. So QT
11 +QT

21Φ is invertible and

(
QT

11 +QT
21Φ

)−1
= Im +

2w1(w
T
1 + wT

2 Φ)

1− 2wT
1 w1 − 2wT

2 Φw1

.

Next we have

−QT
22 + Φ̃QT

21 = −I + 2w2w
T
2 − 2Φ̃w1w

T
2 = −

[
I − 2(w2 − Φ̃w1)w

T
2

]
which is invertible if and only if

1− 2wT
2 (w2 − Φ̃w1) = 1− 2(wT

2 w2 − wT
2 Φ̃w1) ̸= 0
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which we will now verify. We have

wT
2

(
QT

12 +QT
22Φ

)
= wT

2

[
−2w2w

T
1 + (I − 2w2w

T
2 )Φ

]
= (−2wT

2 w2)w
T
1 + (1− 2wT

2 w2)w
T
2 Φ,(

QT
11 +QT

21Φ
)−1

w1 =

[
1 +

2wT
1 w1 + 2wT

2 Φw1

1− 2wT
1 w1 − 2wT

2 Φw1

]
w1

=
1

1− 2wT
1 w1 − 2wT

2 Φw1

w1,

wT
2 Φ̃w1 = wT

2

(
QT

12 +QT
22Φ

)
·
(
QT

11 +QT
21Φ

)−1
w1

=
(−2wT

2 w2)w
T
1 w1 + (1− 2wT

2 w2)w
T
2 Φw1

1− 2wT
1 w1 − 2wT

2 Φw1

,

wT
2 w2 − wT

2 Φ̃w1 =
wT

2 w2 − wT
2 Φw1

1− 2wT
1 w1 − 2wT

2 Φw1

,

1− 2(wT
2 w2 − wT

2 Φ̃w1) =
1− 2wT

1 w1 − 2wT
2 w2

1− 2wT
1 w1 − 2wT

2 Φw1

= − 1

1− 2wT
1 w1 − 2wT

2 Φw1

> 0,

as expected.

Remark 7.5.1. Theorem 7.5.1 is proved under the inherited conditions x > 0, y > 0,

Φ > 0, and Φx = y. Carefully examining the proof, one finds that the condition of

the theorem can be relaxed to

x ≥ 0, x ̸= 0, y ≥ 0, Φ ≥ 0,

and Φ̃ relates to Φ by (7.5.2a). Since Φx = y is never referenced, it is not required. 3

The above proof also yields

(
QT

11 +QT
21Φ

)−1
= Im + 2ζ−1w1(w

T
1 + wT

2 Φ), (7.5.9a)(
−QT

22 + Φ̃QT
21

)−1

= −
[
In − 2ζ(w2 − Φ̃w1)w

T
2

]
, (7.5.9b)
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where ζ is defined by (7.5.7). With the help of (7.5.9), we can express any one of Φ

and Φ̃ in terms of the other via a rank-one update. Details are as follows. By (7.5.2),

we have

Φ̃ =
[
−2w2w

T
1 + (I − 2w2w

T
2 )Φ

] [
I + 2ζ−1w1(w

T
1 + wT

2 Φ)
]

=
[
Φ− 2w2(w

T
1 + wT

2 Φ)
] [
I + 2ζ−1w1(w

T
1 + wT

2 Φ)
]

= Φ+ 2ζ−1Φw1(w
T
1 + wT

2 Φ)

− 2w2(w
T
1 + wT

2 Φ)− 4ζ−1w2 (w
T
1 + wT

2 Φ)w1︸ ︷︷ ︸
scalar

(wT
1 + wT

2 Φ)

= Φ+ 2ζ−1Φw1(w
T
1 + wT

2 Φ)− 2
[
1 + 2ζ−1(wT

1 + wT
2 Φ)w1

]
w2(w

T
1 + wT

2 Φ)

= Φ+ 2
{
ζ−1Φw1 −

[
1 + 2ζ−1(wT

1 + wT
2 Φ)w1

]
w2

}
(wT

1 + wT
2 Φ), (7.5.10a)

Φ =
[
−In + 2ζ(w2 − Φ̃w1)w

T
2

] [
−2w2w

T
1 − Φ̃(I − 2w1w

T
1 )
]

=
[
−In + 2ζ(w2 − Φ̃w1)w

T
2

] [
−Φ̃− 2(w2 − Φ̃w1)w

T
1

]
= Φ̃+ 2(w2 − Φ̃w1)w

T
1

− 2ζ(w2 − Φ̃w1)w
T
2 Φ̃− 4ζ(w2 − Φ̃w1)w

T
2 (w2 − Φ̃w1)︸ ︷︷ ︸

scalar

wT
1

= Φ̃+ 2
[
1− 2ζwT

2 (w2 − Φ̃w1)
]
(w2 − Φ̃w1)w

T
1 − 2ζ(w2 − Φ̃w1)w

T
2 Φ̃

= Φ̃+ 2(w2 − Φ̃w1)
{[

1− 2ζwT
2 (w2 − Φ̃w1)

]
wT

1 − ζwT
2 Φ̃

}
. (7.5.10b)

Equation (7.5.10b) will become handy in coding up Algorithm 7.2.1, where recovering

Φ is needed from computed Φ̂ by (7.5.10b) with Φ̃ =

(
0 Φ̂

)
. Equation (7.5.10a)

expresses Φ̃ in terms of Φ. The cost of getting one of Φ and Φ̃ from the other is only

O(mn) flops. The numerical stability of doing so depends on ∥QT
11 +QT

21Φ∥2∥(QT
11 +
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QT
21Φ)

−1∥2 and ∥ −QT
22 + Φ̃QT

21∥2∥(−QT
22 + Φ̃QT

21)
−1∥2 for which we have, upon using

∥wi∥2 ≤ 1 for i = 1, 2,

∥QT
11 +QT

21Φ∥2 ≤ 1 + 2(1 + ∥Φ∥2), (7.5.11a)

∥(QT
11 +QT

21Φ)
−1∥2 ≤ 1 + 2|ζ−1|(1 + ∥Φ∥2), (7.5.11b)

∥ −QT
22 + Φ̃QT

21∥2 ≤ 1 + 2(1 + ∥Φ̃∥2), (7.5.11c)

∥(−QT
22 + Φ̃QT

21)
−1∥2 ≤ 1 + 2|ζ|(1 + ∥Φ̃∥2). (7.5.11d)

Lower and upper bound on |ζ| can be easily gotten from (7.5.8), for example

∥x∥22/∥z∥22 ≤ |ζ| ≤ 1 + 2∥Φ∥2.

Thus calculating Φ or Φ̃ via (7.5.2) is numerically stable unless ∥x∥22 ≪ ∥z∥22.

Extractions of the coefficient matrices Â, B̂, Ĉ, and D̂ for ARE (7.2.15) can be

easily done from the partitioning (7.2.10) for

V −1HV = (I − 2wwT)H(I − 2wwT)

= H − 2wwTH − 2HwwT + 4(wTHw)wwT, (7.5.12)

where the expression in the right-hand side of (7.5.12) suggests an economical way

to numerically compute V −1HV .

In Remark 7.2.2, we show Ψ̂ exists if U21Ψ+U22 is nonsingular, and in Lemma 7.2.2

we show U21Ψ+U22 is always singular if µ = 0. Theorem 7.5.2 asserts that U21Ψ+U22

is guaranteed nonsingular if µ ̸= 0. Thus the existence of Ψ̂ is unresolved for the case

µ = 0, but otherwise Ψ̂ exists. We point out that Ψ̂ does exist for all our critical case

examples in section 8.2 though.

Theorem 7.5.2 (Wang, Wang and Li). Let Q ∈ R(m+n)×(m+n) be the Householder

transformation as given by (7.5.3) and (7.5.4). U21Ψ +U22 is singular when and only

when µ = 0.
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Proof. We have by (7.5.6) and Uij = QT
ji that

U21Ψ + U22 = −2w2w
T
1 Ψ + I − 2w2w

T
2 = I − 2w2(w

T
2 + wT

1 Ψ)

which is invertible if and only if 1− 2(wT
2 +wT

1 Ψ)w2 ̸= 0 which we now verify. Recall

(7.5.4) and (7.5.5) and that Ψy < x for µ > 0 and Ψy = x for µ = 0. We have

2(wT
2 + wT

1 Ψ)w2 =
2yTy + 2(x+ ∥z∥2e1)TΨy

γ2

≤ yTy + (x+ ∥z∥2e1)Tx
x(1)∥z∥2 + ∥z∥22

= 1,

where the equality occurs when and only when µ = 0. Therefore 1−2(wT
2 +w

T
1 Ψ)w2 ≥

0 with equality when and only when µ = 0.

7.6 Shifting Approach of Guo, Iannazzo, and Meini

Having recognized slow convergence of SDA on irreducible singular MAREs

in the critical case, Guo, Iannazzo, and Meini [22] proposed to perform a rank-one

update on H to shift away one of H’s eigenvalue 0, and then apply SDA on the

resulting ARE (which is no longer an MARE, however).

Suppose an MARE (1.0.1) with (7.0.1) and µ = uTx− vTy ≥ 0. Pick η ∈ R to

be specified in a moment, and let

Ĥ = H + ηzwT ≡


m n

m B̂ −D̂

n Ĉ −Â

, (7.6.1)

where w ∈ Rm+n is entrywise nonnegative such that wTz = 1. This gives arise the

following ARE

X̂D̂X̂ − ÂX̂ − X̂B̂ + Ĉ = 0. (7.6.2)
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It is proved in [22] that X̂ = Φ is the solution of (7.6.2) uniquely characterized by

eig(R̂) = {λ1, . . . , λm−1, η},

and at the same time the complementary ARE of (7.6.2) has the solution Ψ̂ uniquely

characterized by

eig(Ŝ) = {−λm+1, . . . ,−λm+n},

where

R̂ = B̂ − D̂Φ, Ŝ = Â− ĈΨ̂ .

In solving (7.6.2) by SDA [24], Guo, Iannazzo, and Meini [22] picked

w = 1m+n/(1
T
m+nz) (7.6.3)

for simplicity, and

α = β = η = max{αopt, βopt} (7.6.4)

to ensure4 η ∈ eig(R̂) contributes nothing to ρ(C (R̂; η, η)), where αopt and βopt are

as in (6.3.6).

It has been noted [41] that compared to ADDA, SDA will experience slow

convergence if αopt and βopt differ substantially. Naturally applying ADDA to (7.6.2)

would likely lead to a faster algorithm for the same reason. The rate of convergence

of ADDA on (7.6.2) is determined by ρ(C (Ŝ;α, β)) · ρ(C (R̂; β, α)), and we will pick

α = αopt, β = βopt, η = βopt, (7.6.5)

as discussed in Remark 7.3.1 and to make sure η ∈ eig(R̂) contributes nothing to

ρ(C (R̂; β, α)).

4Recall that SDA is ADDA (Algorithm 6.4.1) after setting α = β, and its rate of convergence is

determined by ρ(C (Ŝ;α, α)) · ρ(C (R̂;α, α)).
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For their references in the section 8.2, we denote these two methods for solving

the MARE (1.0.1) via ARE (7.6.2) by SDAs and ADDAs, respectively, with the suffix

“s” standing for the shift in (7.6.1). We will use the parameters in (7.6.3) and (7.6.4)

for SDAs and those in (7.6.3) and (7.6.5) for ADDAs.
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CHAPTER 8

Numerical examples

In this chapter, we present numerical examples for ADDA in section 8.1 first

and then for d-ADDA in section 8.2.

8.1 Numerical Examples of ADDA

In this section, we shall present a few numerical examples to test numerical

effectiveness of ADDA, in comparison with SDA and SDA-ss, as well as their ability

to deliver entrywise relative accurate numerical solutions as argued in [42]. We will

use two error measures to gauge accuracy in a computed solution Φ̂: the Normalized

Residual (NRes)

NRes =
∥Φ̂DΦ̂− AΦ̂− Φ̂B + C∥

∥Φ̂∥(∥Φ̂∥∥D∥+ ∥A∥+ ∥B∥) + ∥C∥
, (8.1.1)

a commonly used measure because it is readily available, and the entrywise relative

error (ERErr),

ERErr = max
i,j

|(Φ̂− Φ)(i,j)|/Φ(i,j) (8.1.2)

which is not available in actual computations but is made available here for testing

purpose. In the case of ERErr, the indeterminant 0/0 is treated as 0. In using (8.1.1)

hereafter, we use ℓ1-operator norm ∥ · ∥1 as an example. For all practical purpose,

any matrix norm should work just fine.

Both errors defined by (8.1.1) and (8.1.2) are 0 if Φ̂ is exact, but numerically

they can only be made as small as O(u) in general, where u is the unit machine

roundoff. As we will see, to achieve Φ̂ with deserved entrywise relative accuracy,
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tiny NRes, as tiny as O(u), is not sufficient. To get some idea about what deserved

entrywise relative accuracy should be expected, we will first outline some of the main

perturbation results in [42] and then present them along with our numerical results.

Let1 W be perturbed to W̃ in such a way that

|Ã− A| ≤ ϵ|A|, |B̃ −B| ≤ ϵ|B|, |C̃ − C| ≤ ϵC, |D̃ −D| ≤ ϵD, (8.1.3)

where 0 ≤ ϵ < 1. It has been shown [42] that Φ̃(i,j) = 0 if and only if Φ(i,j) = 0, under

(8.1.3) and the assumption that both W and W̃ are M -matrices. This fact paves the

way to investigate how much each entry changes relatively.

Split A and B as

A = D1 −N1, D1 = diag(A), (8.1.4a)

B = D2 −N2, D2 = diag(B). (8.1.4b)

Correspondingly

A− ΦD = D1 −N1 − ΦD, B −DΦ = D2 −N2 −DΦ,

and set

λ1 = ρ(D−1
1 (N1 + ΦD)), λ2 = ρ(D−1

2 (N2 +DΦ)), λ = max{λ1, λ2}, (8.1.5)

τ1 =
miniA(i,i)

maxj B(j,j)

, τ2 =
minj B(j,j)

maxiA(i,i)

. (8.1.6)

If W is nonsingular, then A − ΦD and B − DΦ are nonsingular M -matrices by

Theorem 6.3.1; so λ1 < 1 and λ2 < 1 [38, Theorem 3.15 on p.90] and thus 0 ≤ λ < 1. If

W is an irreducible singular M -matrix, then by Theorem 6.3.1(d)

1. if uT1 v1 > uT2 v2, then λ1 < 1 and λ2 = 1;

2. if uT1 v1 < uT2 v2, then λ1 = 1 and λ2 < 1;

1We’ll denote each perturbed counterpart by the same symbol but with a tilde.
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3. if uT1 v1 = uT2 v2, then λ1 = λ2 = 1.

The third case uT1 v1 = uT2 v2, the so-called critical case, is rather extreme. It is argued

in [21] that for the critical case for sufficiently small ∥W̃ −W∥ there exists a constant

θ such that

1. ∥Φ̃− Φ∥ ≤ θ∥W̃ −W∥1/2;

2. ∥Φ̃− Φ∥ ≤ θ∥W̃ −W∥ if W̃ is also singular.

This θ is only known by its existence.

The following results are taken from [42]. They are more informative, but do

not work for the critical case. Suppose that W is a nonsingular M -matrix or an

irreducible singular M -matrix with uT1 v1 ̸= uT2 v2, ϵ in (8.1.3) is sufficiently small, and

W̃ is an M -matrix. We have

1.

|Φ− Φ̃| ≤
[
2γϵ1n,m +O

(
ϵ2
)]
Φ, (8.1.7)

where γ is given by

(A− ΦD)Υ + Υ (B −DΦ) = D1Φ+ ΦD2, γ = max
i,j

Υ(i,j)/Φ(i,j). (8.1.8)

2.

|Φ− Φ̃| ≤
[
2mnκχ ϵ+O

(
ϵ2
)]
Φ, (8.1.9)

where κ is given by

(A− ΦD)Φ1 + Φ1(B −DΦ) = C, κ = max
i,j

(Φ1)(i,j)/Φ(i,j),

and dependent on different cases, χ is given by

(a) for nonsingular M -matrix W ,

χ = max

{
1 + λ1 + (1 + λ2)τ

−1
1

1− λ1 + (1− λ2)τ
−1
1

,
1 + λ2 + (1 + λ1)τ

−1
2

1− λ2 + (1− λ1)τ
−1
2

}
≤ 1 + λ

1− λ
.

(8.1.10)

95



Example radda rsda-ss rsda ϱ(I − ΦΨ) ϱ(I − ΨΦ)

8.1.1 (ξ = 1.5) 0.58 0.75 0.64 0.5 0.5

8.1.1 (ξ = 1 + 10−6) 1− 10−6 1− 7 · 10−7 1− 10−6 1− 2 · 10−6 1− 2 · 10−6

8.1.2 0.06 0.14 0.25 6.3 · 10−2 6.3 · 10−2

8.1.3 0.11 0.11 1− 2 · 10−4 5.9 · 10−2 1.1 · 10−1

Table 8.1. Rates of convergence of ADDA, SDA-ss, and SDA

(b) for singular M -matrix W with uT1 v1 ̸= uT2 v2,

χ = 2×


1 + λ1 + 2τ−1

1

1− λ1
, if uT1 v1 > uT2 v2,

1 + λ2 + 2τ−1
2

1− λ2
, if uT1 v1 < uT2 v2.

(8.1.11)

It is proved both γ and κ are finite [42]. Between (8.1.7) and (8.1.9), the linear term in

the former is sharp while the one in the latter is not. But (8.1.9) is more informative

in that it reveals the critical role played by the spectral radii λi in Φ’s sensitivity.

In view of these perturbation results under (8.1.3) with ϵ = O(u), it is rea-

sonable to define the deserved entrywise relative accuracy in any computed Φ̂ to be

that the associated ERErr is about O(γu) or O(κχu). In our examples in the next

subsection, we shall compare ERErr against (m+n)γu to verify if all of our computed

Φ̂ at convergence have the deserved entrywise relative accuracy.

All computations are performed in MATLAB with u = 1.11× 10−16. Optimal

parameters as specified in section 6.5 are used for ADDA, SDA, and SDA-ss. Kahan’s

stopping criteria [43]:

(Xk+1 −Xk)
2
(i,j)

(Xk −Xk−1)(i,j) − (Xk+1 −Xk)(i,j)
≤ ϵ · (Xk+1)(i,j) for all i and j (8.1.12)

is used to terminate iterations, where ϵ is a pre-selected tolerance. After numer-

ous numerical experiments, we find that ϵ about 10−10 to 10−12 works the best for

computed Φ̂ to achieve its deserved accuracy without wasting the last iteration step.
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Example λ1 λ2 2γ κ κχ

8.1.1 (ξ = 1.5) 0.78 1.0 15.0 3.0 84.0

8.1.1 (ξ = 1 + 10−6) 1− 6.7 · 10−7 1.0 6.0 · 106 1.0 · 106 1.2 · 1013
8.1.2 1 0.4 3.2 · 102 30.9 1.6 · 102
8.1.3 0.11 1 2.1 · 104 1.1 4.8 · 104

Table 8.2. Parameters in the first order error bounds

Since ADDA is SDA if αopt = βopt for which there are numerous tests in litera-

ture, our examples will mainly focus on the case:

αopt
def
= max

i
A(i,i) ̸= βopt

def
= max

i
B(i,i).

We will present three examples here. More examples can be found in [41]. Table 8.1

summarizes rates of convergence for ADDA, SDA-ss, and SDA for the examples,

computed according to (6.5.2), (6.5.3), and (6.5.14). Also included in the table are

quantities ϱ(I − ΦΨ) and ϱ(I − ΨΦ) which tell us how accurately all inverses of M -

matrices I − XkYk and I − YkXk arising from the methods may be computed [43].

Table 8.2 summarizes various stability parameters in the first order error bounds at

the beginning of this section. They can and will be used to explain the entrywise

relative accuracy in computed Φ̂.

Example 8.1.1. In this example, m = n = 2 and

B =

 3 −1

−1 3

 , D = 12,2, A = ξ ·B, C = ξ ·D.

Making ξ = 1 and scaling W by 10−3 recovers a null recurrent case example in [6]

(see also [22, Test 7.2]). It can be verified that Φ = 1
2
12,2 and Ψ = 1

2ξ
12,2. Note also

W is an irreducible singular M -matrix:

W14 = 0,

 12

ξ−1 · 12


T

W = 0.
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Figure 8.1 shows plots for ξ = 1.5 and ξ = 1 + 10−6: the left ones for NRes and the

right ones for ERErr. The horizontal dotted line in the right plots are (m+ n)γu. If

ERErr falls below the dotted line, we regard the computed Φ̂ as having the deserved

entrywise relative accuracy. We will follow this way of presenting iteration histories

in the rest of examples.

The case in which ξ = 1 is the critical case for which the doubling algorithms

still converge but only linearly [13]. But for 0 < ξ ̸= 1 all three methods converge

quadratically. In Figure 8.1 for ξ = 1.5, ADDA is the fastest, SDA comes in second,

and SDA-ss is the slowest. Little differences between SDA and ADDA for ξ = 1 +

10−6 as expected and both are faster than SDA-ss, but not by much, and all three

algorithms take about 24 iteration steps, about 3 times as many as that for ξ = 1.5.

3

Example 8.1.2.

A =



3 −1

3
. . .

. . . −1

−1 3


∈ Rn×n, C = 2In, B = 10A, D = 10C.

W is an irreducible singular M -matrix: W12n = 0, but uT1 v1 ̸= uT2 v2. For testing

purpose, we have computed for n = 100 an “exact” solution2 Φ and Ψ by the com-

puterized algebra system Maple with 100 decimal digits. This “exact” solution Φ’s

2Thanks to an anonymous referee, these exact solutions can also be constructed explicitly. How-

ever, evaluating such explicitly constructed solutions does not guarantee the smallest entries in

magnitude to be fully accurate due to harmful cancelations, unless the evaluation is done in a float-

ing point arithmetic environment with precision about twice as much as the IEEE double precision

floating point arithmetics. We outline the construction as follows. Since A is the sum of In and

a special circulant matrix, we have [10, p.356] A = QΛQ∗, where Q is unitary and Λ is diagonal

and both are complex and known explicitly. Here Q∗ is the complex conjugate transpose of Q. Let
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Figure 8.1. Example 8.1.1 for ξ = 1.5 and ξ = 1 + 10−6. The case for ξ = 1 + 10−6 is so
much close to the critical case, convergence by the three algorithms looks like linear, except
towards the very end. Note also much larger error bounds for the case ξ = 1 + 10−6 than
for the case ξ = 1.5. SDA-ss is actually slightly slower than SDA (and ADDA) for the two
runs. .

entries range from 5.7 · 10−31 to 6.3 · 10−2 and Ψ ’s entries range from 5.7 · 10−30 to

6.3 ·10−1. Despite of this wide range of magnitudes in their entries, all three methods

ΦQ = Q∗ΦQ. MARE ΦDΦ−AΦ−ΦB+C = 0 can be transformed to 20Φ2
Q−ΛΦQ−10ΦQΛ+2I = 0

whose interested solution can be constructed from a basis matrix of the invariant subspace of10Λ −20I

2I −Λ

 associated with those eigenvalues of positive real parts. It can be seen that one

such a basis matrix takes the form (XT
1 , X

T
2 )

T with diagonal Xi, and consequently ΦQ = X2X
−1
1 is

diagonal. The n diagonal entries of ΦQ can then be computed by solving n scalar quadratic equa-

tions 20t2 − 11µt+ 2 = 0 in t for each diagonal entry µ of Λ, and picking the root t such that µ > t

(because B −DΦ = Q(20Λ− 20ΦQ)Q
∗. Similarly ΨCΨ − ΨA−BΨ +D = 0 can be transformed to
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Figure 8.2. Example 8.1.2. Uneven convergence towards entries with widely different
magnitudes. ERErr is still large even when NRes is already tiny before Φ̂ is fully entrywise
converged. .

are able to deliver computed Φ̂ and Ψ̂ with entrywise relative errors at the level of

O(u). See Figure 8.2. Notice how little improvements in ERErr for the first four

iterations, even though NRes decrease substantially during the period. For example,

at iteration 5,

ADDA SDA-ss SDA

NRes 1.6950 · 10−17 7.4124 · 10−15 5.7149 · 10−11

ERErr 2.0093 · 10−3 6.6470 · 10−2 8.1583 · 10−1

This is because it takes a while for the tiny entries to gain some relative accuracy. 3

Example 8.1.3 ([6, 22]). This is essentially the example of a positive recurrent

Markov chain with nonsquare coefficients, originally from [6]. Here

A = 18 · I2, B = 180002 · I18 − 104 · 118,18, C = 12,18, D = CT.

2Ψ2
Q−ΨQΛ− 10ΛΨQ+20I = 0 whose interested solution is also diagonal for the same reason, where

ΨQ = Q∗ΨQ. As by-product, one can argue that ΨQ = 10ΦQ to conclude Ψ = 10Φ.
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Figure 8.3. Example 8.1.3. ADDA and SDA-ss are barely distinguishable. Both are much
faster than SDA. .

It is known Φ = 1
18

· 12,18 = ΨT. In this example, A and B differ a great deal in

magnitude. Figure 8.3 shows the performance of the three methods. We see that

ADDA and SDA-ss are about the same, and both are much faster than SDA. 3

Along with three examples above, we have conducted numerous other tests,

including many random ones. We come up with the following two conclusions about

speed and accuracy for the three doubling algorithms:

• ADDA is always the fastest among all three. SDA-ss can even run slower than

SDA when maxiA(i,i) and maxj B(j,j) are about the same or differ within a factor

of two. However, when maxiA(i,i) and maxj B(j,j) differ by a factor over, say 10

for example, ADDA and SDA-ss take about the same number of iterations to

deliver fully converged Φ̂ and both can be much faster than SDA.

• With the suggested optimal parameter selections in section 6.5, all three meth-

ods are capable of delivering computed Φ̂ with the deserved entrywise relative

accuracy as warranted by the input data.
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8.2 Numerical Examples of d-ADDA

In this section, we will also present three numerical examples to test numerical

effectiveness of d-ADDA, in comparison with ADDA, SDA, and SDA-ss. As in the

last section, we will use the normalized residual (NRes) error (8.1.1) to gauge accuracy

in a computed solution Φ and the entrywise relative error (ERErr) (8.1.2). Moreover,

we will use normalized error (NErr),

NErr =
∥ΦΦΦ− Φ∥1
∥Φ∥1

(8.2.1)

which is not available in actual computations but is made available here for testing

purpose like NRes in section 8.1. These errors defined in (8.1.1), (8.1.2) and (8.2.1)

are 0 if Φ is exact, but numerically they can only be made as small as O(u), where

u is the unit machine roundoff.

In [41, 42], it was argued that the doubling algorithms SDA [24, 22], SDA-ss [11],

and ADDA [41] all can deliver computed minimal nonnegative solutions of an MARE

with deserved entrywise relative accuracy, if properly implemented to avoid harmful

cancelations. But both our deflated ARE (7.2.15) and the shifted ARE (7.6.2) are no

longer MAREs and thus there is no guarantee that all harmful cancelations can be

avoided when SDA or ADDA is applied to either one of them. This means that in

general computed minimal nonnegative solutions Φ may not have deserved entrywise

relative accuracy if some of the entries of Φ are very tiny relative to others, even though

NRes is reduced to the level of O(u). For this reason, we will use NRes ≤ 5 × 10−14

as the stopping criteria in our tests here, instead of Kahan’s criteria [43, 41] designed

to stop the iterations only when Φ is computed to its deserved entrywise relative

accuracy.

All computations are performed in MATLAB with u = 1.11 × 10−16. Five

methods are tested, and they are
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Example ADDA SDAs ADDAs dADDAe dADDAq

8.2.1 NRes 2.1 · 10−14 3.0 · 10−15 3.0 · 10−15 5.1 · 10−15 1.0 · 10−15

NErr 3.6 · 10−7 3.5 · 10−14 3.5 · 10−14 6.3 · 10−14 7.5 · 10−15

(ξ = 1) ERErr 4.8 · 10−6 6.2 · 10−13 6.2 · 10−13 8.5 · 10−13 1.5 · 10−13

8.2.1 NRes 2.4 · 10−17 8.4 · 10−16 4.3 · 10−16 5.3 · 10−15 1.0 · 10−15

NErr 7.5 · 10−17 2.1 · 10−15 1.3 · 10−15 1.5 · 10−14 3.3 · 10−15

(ξ = 10) ERErr 2.0 · 10−3 2.4 · 1012 2.3 · 1011 5.8 · 1013 4.8 · 1012

8.2.2 NRes 4.9 · 10−16 3.6 · 10−16 2.6 · 10−16 9.9 · 10−15 7.5 · 10−16

NErr 2.2 · 10−15 1.5 · 10−15 1.1 · 10−14 2.3 · 10−14 3.2 · 10−15

ERErr 4.4 · 10−15 2.8 · 10−15 2.3 · 10−14 1.3 · 10−13 8.5 · 10−15

8.2.3 NRes 1.8 · 10−16 1.3 · 10−16 1.3 · 10−16 7.9 · 10−16 2.5 · 10−16

NErr 1.0 · 10−12 3.7 · 10−16 2.5 · 10−16 1.5 · 10−15 5.6 · 10−16

ERErr 1.5 · 10−12 3.7 · 10−16 2.5 · 10−16 1.5 · 10−15 1.0 · 10−15

Table 8.3. NRes, NErr, and ERErr at convergence for all examples. Boldfaced entries are
worth paying attention to. For the critical case (Example 8.2.1 with ξ = 1), ADDA on
the original MAREs returns solutions with NErr about O(

√
u), consistent with the error

analysis in [21], even though the corresponding NRes is already O(u). Examples 8.2.1
(ξ = 10) is special in that Φ’s entries varies greatly in magnitude and consequently SDAs,
ADDAs, dADDAe, and dADDAq have trouble getting tiny entries of Φ correct, even though
all NErr are already O(u). ADDA would have computed Φ to nearly full entrywise relative
accuracy if it had continued for two more iterations as in last section.

1. ADDA introduced in Chapter 6. We use it as a representative for all doubling

algorithms derivable from bilinear transformations, including SDA [24, 22] and

SDA-ss [11], since ADDA is the fastest among all.

2. SDAs of [22] (as outlined in section 7.6). It is the first method ever proposed

to improve SDA for irreducible singular MAREs.

3. ADDAs (as outlined in section 7.6). Since ADDA improves SDA, naturally we

would expect ADDAs improves SDAs.

4. dADDAe which is Algorithm 7.2.1 combined with the elimination approach in

subsection 7.4. For simplicity, all i0 = 1. Actually in all examples, z = 1m+n;

so there is no need to do pivoting to control ∥V ∥1∥V −1∥1.
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5. dADDAq which is Algorithm 7.2.1 combined with the Householder transforma-

tion approach in subsection 7.5.

Example 8.2.1 (Section 8.1 Example 8.1.2).

B =



3 −1

3
. . .

. . . −1

−1 3


∈ Rn×n, D = 2In, A = ξB, C = ξD.

W is an irreducible singular M -matrix:

W12n = 0,

 1n

ξ−1 · 1n


T

W = 0, µ = (1− ξ−1)n.

For testing purpose, we computed for n = 100 the “exact” solutions Φ by the com-

puterized algebra system Maple with 100 decimal digits. We find that

7.4339 · 10−4 ≤Φ(i,j) ≤ 3.8270 · 10−1, for ξ = 1, (8.2.2)

5.7251 · 10−30 ≤Φ(i,j) ≤ 6.3012 · 10−1, for ξ = 10. (8.2.3)

Large variations in magnitudes in Φ’s entries for ξ = 10 suggest that all methods,

except ADDA, may have trouble getting Φ’s tiny entries right. Indeed, they do.

Figure 8.4 plots the convergence histories of the five methods. For ξ = 1, ADDA

converges linearly because the case falls into the critical case [13]. All methods are able

to reduce NRes to about O(u) as they should. Since Φ’s entries vary in magnitude by

a factor about 500, we would expect that ERErr for all be about O(500u) = O(10−12)

which is true for all methods, except ADDA as shown in Table 8.3. It can be explained.

ADDA is applied to the original MARE in the critical case for which case it is argued

by Guo and Higham [21] that roughly speaking a perturbation of size ϵ to W will

result in an error in Φ about O(
√
ϵ). On the other hand, the shifting technique built
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Figure 8.4. Example 8.2.1. For ξ = 1 ADDA converges linearly and for ξ = 10
ADDA performs the best. Also for ξ = 10, all methods, except ADDA (which took
7 iterations in last secion, two more than here, to deliver Φ with about 15 correct
decimal digits entrywise), fail to compute accurately Φ’s tiny entries..

into SDAs and ADDAs and the deflating technique built into dADDAe and dAADAq

make the resulting ARE (7.2.15) and (7.6.2) sufficiently well-conditioned to be solved

accurately. Guo, Iannazzo, and Meini [22] have already reported that SDAs produces

more accurate solutions than SDA. Our explanation here for ERErr applies to the rest

of examples, too.

Also for ξ = 1, quadratic convergence is evident for all methods, except ADDA,

as expected. It is no longer in the critical case for ξ = 10. That partially explains
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Figure 8.5. Example 8.2.2. ADDA is even faster than SDAs. ADDAs, dADDAe, and
dADDAq work about equally well..

ADDA’s superior performance. ADDA would have computed Φ to with almost full

entrywise accuracy if it had not been stopped prematurely by one stopping criteria

NRes ≤ 5 × 10−14 used for all. In fact, this example is the same as example 8.1.2

in Section 8.1, where ADDA delivered Φ to have almost 15 correct decimal digits

entrywise in 7 iterations. The inability of the other methods to compute Φ’s tiny

entries accurately is evident from the right-bottom plot in Figure 8.4 and Table 8.3,

even though at the same time all methods are able to reduce NRes to about O(u). 3

Example 8.2.2. W is an irreducible singular M -matrix, randomly generated by the

following piece of MATLAB code:

n=100;

W=rand(2*n); W(n+1:2*n,:)=10*W(n+1:2*n,:);

W=round(1000*W); W=diag(W*ones(2*n,1))-W;

In the end, W12n = 0, and with m = n, the coefficient matrices A, B, C, and D

for an MARE (1.0.1) can be readily extracted. There are a couple of comments to

make about constructing W this way. The factor 10 applied to the last n rows in the

second line serves two purposes: (1) to make A and B differ in magnitude by a factor
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about 10, and (2) to make sure µ ≥ 0 (although not always guaranteed in theory but

often it is). At the beginning of the third line, we multiply W by 1000 and round its

entries to integers so that we can save one such a W and then move the generated W

error-free to Maple to compute the “exact” Φ for testing purpose. For this saved W ,

we find that

4.7301 · 10−3 ≤ Φ(i,j) ≤ 1.5684 · 10−2.

So all entries of Φ have about the same magnitude which suggests that tiny NRes

implies tiny ERErr. This is clearly the case as shown in Figure 8.5. What is interesting

to see is that SDAs is actually slower than ADDA. The reasons are twofold: (1) this

is not a critical case example, and (2) A and B have different magnitudes which SDAs

(and SDA) choose to ignore but ADDA doesn’t. ADDAs, dADDAe, and dADDAq

work about equally well, with dADDAe a little worse in accuracy, however. 3

Example 8.2.3. This is essentially the example of a positive recurrent Markov chain

with nonsquare coefficients, originally from [6]. Here

A = 18 · I2, B = 180002 · I18 − 104 · 118,18, C = 12,18, D = CT.

It is known Φ = 1
18

· 12,18 = ΨT and µ = 16 > 0. It is interesting to note that

both SDAs and ADDAs get the solution in X0, the initial setup for the doubling

algorithms, rather unusual and atypical3, to say the least. In fact, our Maple code

for ADDAs with arbitrary α and β but η = β gives, in exact arithmetic,

X0 ≡ Φ, Y0 ≡
1

18
· 20− β

20 + β
× 118,2.

We did not see this phenomenon in Examples 8.2.1 and 8.2.2 both of which are

nontrivial, relatively speaking. So this kind of pleasant surprise shouldn’t be expected

in general. Figure 8.6 displays convergence histories for all tested methods. That both

3More examples like this can be found in last section.
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Figure 8.6. Example 8.2.3. Again SDAs and ADDAs get the solution in X0 from their
initial setup as they should because X0 ≡ Φ, independent of α and β. Both dADDAe and
dADDAq take two iterations after the initial setup, while ADDA takes five iterations. .

NErr and ERErr for ADDA at convergence are about 10−12 can be explained by the

relevant parameters in Table 8.2. 3

From these examples as well as many more others, we come to the following

conclusions about speed and accuracy for the tested algorithms:

1. ADDA is linearly convergent for the critical case, but is able to deliver entrywise

accurate approximations to Φ, even when some of the entries of Φ are extremely

tiny relative to others. But entrywise accuracy in computed Φ is limited to

about O(
√
u).

2. The shifting technique of Guo, Iannazzo, and Meini [22] and the deflating tech-

nique in Chapter 7 can greatly improve the conditioning of an MARE in the

critical case, enabling Φ to be computed much more accurately in the sense of

making normalized error NErr to about O(u). But when Φ’s entries vary too

much in magnitude, tiny entries may lose some or even all significant digits.

When that happens, ADDA should be used directly to the original MARE.
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3. The last example is accidental for both ADDAs and SDAs in that X0 ≡ Φ,

independent of the parameters α and β. In general, ADDAs is faster than

SDAs as one might expect from the conclusion in [41] that ADDA is at least as

good as SDA and can be faster if A and B are very different in magnitude.
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CHAPTER 9

Conclusion

Throughout this thesis, after some fundamental knowledge, we first mentioned

the ADI method and the doubling algorithm before introducing our ADDA (Alternating-

Directional Doubling Algorithm), which is the combination of the alternating-directional

idea of ADI for Sylvester equation and the idea of SDA. We have proved theoretically

and numerically that our ADDA method is always the best comparing with all the

other doubling algorithms. Next, for the critical case, for which our ADDA method

converges linearly (instead of quadratically), we established a deflation method called

d-ADDA (deflated ADDA) to deflate an irreducible singular MARE. It is widely

accepted that in computing eigen-decompositions, deflation approaches are often pre-

ferred to shifting mechanisms. There we also demonstrated the effectiveness of d-

ADDA and compared it with existing methods by theoretical analysis and numerical

examples.
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APPENDIX A

Application to M -matrix Sylvester equation
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When D = 0, MARE (1.0.1) degenerates to a Sylvester equation:

AX +XB = C. (A.0.1)

The assumption (7.0.1) on its associated

 B 0

−C A

 implies that A and B are non-

singular M -matrices and C ≥ 0. Thus (A.0.1) is an M-Matrix Sylvester Equation

(MSE) as defined in [43]: both A and B have positive diagonal entries and nonposi-

tive off-diagonal entries and P = Im ⊗ A + BT ⊗ In is a nonsingular M -matrix, and

C ≥ 0.

MSE (A.0.1) has the unique solution Φ ≥ 0 and its cMARE has the solution

Ψ = 0. Apply ADDA to (A.0.1) to get

E0 = C (B; β, α) ≡ (B + αI)−1(B − βI), (A.0.2a)

F0 = C (A;α, β) ≡ (A+ βI)−1(A− αI), (A.0.2b)

X0 = (β + α)(A+ βI)−1C(B + αI)−1, (A.0.2c)

and for k ≥ 0

Ek+1 = E2
k , Fk+1 = F 2

k , (A.0.2d)

Xk+1 = Xk + FkXkEk. (A.0.2e)

The associated error equation is

0 ≤ Φ−Xk = [C (A;α, β)]2
k

Φ [C (B; β, α)]2
k

. (A.0.3)

Smith’s method [36, 43] is obtained after setting α = β in (A.0.2) always.

Alternatively, we can derive (A.0.2) through a combination of an Alternating-

Directional-Implicit (ADI) iteration and Smith’s idea in [36]. Given an approximation

XXX ≈ Φ, we compute next approximation ZZZ by one step of ADI:

112



1. Solve (A+ βI)YYY = C −XXX(B − βI) for YYY ;

2. Solve ZZZ(B + αI) = C − (A− αI)YYY for ZZZ.

Eliminate YYY to get

ZZZ = X0 + F0XXXE0, (A.0.4)

where E0, F0, and X0 are the same as in (A.0.2a) – (A.0.2c). With XXX = 0, keep

iterating (A.0.4) to get

ZZZk =
k∑

i=0

F i
0X0E

i
0.

If it converges, it converges to the solution Φ = ZZZ∞ =
∑∞

i=0 F
i
0X0E

i
0. It can be

verified that {ZZZi} relates to {Xi} by Xk = ZZZ2k . Namely, instead of computing every

member in the sequence {ZZZi}, (A.0.2) computes only the 2kth members. In view

of its connection to ADI and Smith’s method [36], we call (A.0.2) an Alternating-

Directional Smith Method (ADSM) for MSE (A.0.1). This connection to ADI is also

the reason for us to name our Algorithm 6.4.1 an Alternating-Directional Doubling

Algorithm (ADDA).

Equation (A.0.3) gives

lim sup
k→∞

∥Φ−Xk∥1/2
k ≤ ρ(C (A;α, β)) · ρ(C (B; β, α)), (A.0.5)

suggesting us to pick α and β to minimize the right-hand side of (A.0.5) for fastest

convergence. Subject to again

α ≥ αopt
def
= max

i
A(i,i), β ≥ βopt

def
= max

j
B(j,j) (6.3.6)

in order to ensure F0 ≤ 0, E0 ≤ 0 and all Fk ≥ 0 and Ek ≥ 0 for k ≥ 1, we conclude

by Theorem 6.1.1 that α = αopt and β = βopt minimize the right-hand side of (A.0.5).

113



APPENDIX B

Spectral Radius

114



Here we only give the basic definition of spectral radius and an important

property of it.

For a square matrix A, the number

ρ(A) = max
λ∈σ(A)

|λ|

is called the spectral radius of A, where σ(A) stands for the spectral of A. It is

not uncommon for applications to require only a bound on the eigenvalues of A, i.e.

precise knowledge of each eigenvalue may not be required, but only just an upper

bound on ρ(A) is all that is often needed.

A rather crude but cheap and useful property about spectral radius is that

ρ(A) ≤ ∥A∥.

The proof of this is easy. Take (λ, x) as an eigenpair of A, then we have λx = Ax,

which implies

|λ|∥x∥ = ∥λx∥ = ∥Ax∥ ≤ ∥A∥∥x∥.

So |λ| ≤ ∥A∥ for all λ ∈ σ(A).
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