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ABSTRACT 

OPTIMIZATION MODELS FOR LEISHMANIASIS CONTROL: 

A CASE FOR BIHAR, INDIA 

 

Kaushik Gorahava, Ph.D. 

The University of Texas at Arlington, 2013 

 

Supervising Professor: Jay M. Rosenberger 

 Leishmaniasis, is a family of infectious diseases, which mostly affects poor and 

developing countries. The highest prevalence and mortality rate of Visceral Leishmaniasis (VL) 

the world over occurs in Bihar state of India. Many disease control methods are available; 

however, procedures aimed at reducing sandfly population by spraying insecticide have been the 

most effective for controlling VL in Bihar. In this dissertation, optimization models for the control of 

Leishmaniasis are developed and analyzed. Novel optimization models are built and analyzed to 

identify the optimal amount of insecticide allocated for controlling the spread of VL in Bihar. Since 

the vector (disease transmitting insects) Phlebotomus Argentipes, responsible for the spread of 

this disease, are zoophilic in nature, the implication from this research study recommends 

schematic allocation of insecticide based on both human and cattle populations. Six models were 

developed for analyzing insecticide intervention to control the spread of VL in Bihar. All model 

formulations were calibrated using estimates of entomological, insecticide toxicity, demographical 
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and budget related parameters from appropriate literature sources. A mathematical model for 

comparing the options of spraying insecticide in preplanned number of sites (houses and cattle 

sheds) was developed. An existing model of VL transmission dynamics in Bihar state was revised 

to include the effects of insecticide intervention. The two main optimization models developed 

were: linear and nonlinear. The linear optimization model recommends optimal insecticide 

allocation amount between the two types of sites. This model optimizes sandfly mortality using 

limited financial resources available to the public health department. The nonlinear optimization 

model optimizes the number of humans saved from infection. Results from the optimization 

models were analyzed to study the impact of considering state and district level demographic 

data on number of human infections saved. A qualitative analysis of the comparison of the four 

optimization models was performed to recommend best insecticide spray campaign policy.  
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CHAPTER 1  

INTRODUCTION 

 

1.1 Visceral Leishmanisis as a Public Health Concern 
 

Visceral Leishmaniasis (VL) is an infectious disease spread by the bite of an infected 

sandfly, which is fatal if not treated. Also called Kala-Azar in India, it is transmitted to the human 

population when a susceptible human is bitten by an infected female sandfly. Although Silva and 

Grunewald [1] reported that male sandflies are known to feed on blood, blood is also a source of 

protein and iron to develop eggs for female sand flies. When infected sand flies bite susceptible 

humans and susceptible sand flies bite infected humans, the parasite (Leishmania Donovani) is 

transmitted between the sandfly and human populations. In epidemiology, the disease carrying 

agent (sandflies in case of Visceral Leishmaniasis) are called vectors and humans who get 

infected by the disease are called hosts. In southern Asia, (sandfly) species Phlebotomus 

Argentipes is the primary vector of Leishmania donovani as shown by Ilango [2]. Since India’s 

economy depends on agriculture, it has a sizable cattle population which is often visited by 

sandflies for feeding and mating purposes. 

Bora [3] reported that untreated cases of this disease have up to 90% death rate. 

Jamison [4] estimated that in 1990, the global burden of Leishmaniasis was 0.86 million and 1.2 

million disability-adjusted life years lost, for women and men respectively and in India the figures 

were estimated as 0.5 million and 0.68 million for women and men, respectively. The Indian state 

of Bihar is the epicenter of the VL endemic area of South Asia, it unfolds into neighboring states 

of Jharkhand, West Bengal, and Uttar Pradesh and also extends to some regions of Bangladesh 

and Nepal as mentioned by Das et al. [5] . As per a W.H.O. training module [6], an initiative was 

jointly launched in 2005, by the governments of India, Bangladesh,
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 and Nepal to reduce the annual incidences of VL at district level to lower than one per 10000 

persons by 2015. Vector control procedures have been very effective for controlling the spread of 

VL in Bihar. As an intervention measure, the Bihar government undertakes insecticide residual 

spraying (IRS) two times every year. The first round is carried out in February-March, and the 

second round in May-June, each round spanning a 60-day period as described in the W.H.O. 

report [7]. The Public health department of Bihar, India, considers only the human population size 

of each district for computing the amount (weight) of insecticide (presently 

dichlorodiphenyltrichloroethane or DDT) to be allocated to each district for each round of spray 

campaign. As per the present “National programmes of insecticide residual spray for VL vector 

control” in India, 0.0375 kilograms DDT is allocated per capita per round of spray as mentioned in 

the W.H.O. report [7]. The present insecticide allocation of 0.0375 kilograms DDT per individual 

may be sub optimal. Additionally, the host preference of sandfly species needs to be considered 

in computing insecticide allocation. Since the vectors responsible for the spread of this disease 

are known to feed on both humans and cattle, it is imperative that both human dwellings as well 

as cattle sheds are targeted in the insecticide spray campaign. The cattle population in a district, 

which is also a host for sandflies, is presently not included in insecticide allocation calculations. If 

separate insecticide quantity is allocated to reduce the sandfly density present in cattle shelters, it 

might help in reducing the vector population effectively .This might help to reduce disease 

incidences in humans better. 

Spraying only at cattle sheds in brazil, had caused increased sandfly density in 

unprotected human dwellings and if only cattle sheds are sprayed with insecticide then this might 

cause increased transmission of Leishmania Donovani to humans as reported by Bern et al. [8]. 

Bongiorno et al. [9] mentioned that each sandfly species is known to have a different preference 

for the blood of different animals. The blood feeding preference of different sandfly species for the 

blood of various hosts, are available in literature. Mukhopadhyay and Chakravarty [10] found that 

female sandflies (P. Argentipes) in Bihar had a preference for bovine blood (68%), followed by 
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human blood (18%), and avian blood (4%), hence showing them to be zoopholic. Sharma and 

Singh [11] concluded from examined soil samples of Bihar that P. Argentipes showed a higher 

tendency to breed in the alkaline soil of cattle sheds in contrast to P. Papatasi, which are more 

likely to breed in the soil with neutral pH found in human houses. Sharma [12] reported that cattle 

sheds, where the soil might have high content of moisture and organic matter such as cow dung, 

provide a breeding site for P. Argentipes. It is imperative that the insecticide residual spraying 

efforts target cattle sheds (sites) in addition to houses (sites).  

 

1.2. Research Motivation 

The public health department runs programs in order to reduce the disease burden of 

prevalent diseases like Malaria and Kala Azar. Amongst them are insecticide intervention, public 

awareness campaigning, testing and treatment of diseases in government run hospitals. 

Insecticide residual spraying is an important operation undertaken by the public health 

department and insecticide material cost is a major cost component accounting for up to 45% of 

the total cost of insecticide intervention activities as shown by Conteh et al. [13]. Simulating the 

outcomes of such an expensive operation by employing a mathematical model can aid better 

decision making. Each year limited financial resources are available to the public health 

department to run various programs. Optimal allocation of available resources can help to 

achieve highest possible reduction of the disease burden on the population. Planned fund 

allocation for different activities each year, can help receive optimum benefits from the 

investment. It would be better to plan the spray campaign, to account for differences in sandflies 

blood preference towards humans and cattle as described by Palit et al. [14]. The benefit can be 

in terms of: increased mortality in sandflies or reduced number of human infections in a year. 

Mathematical models to systematically analyze levels of different intervention activities carried out 

by the public health department would be valuable. A mathematical framework to identify an 
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optimal allocation of insecticide based on local human as well as cattle populations might be 

useful.  

Motivated by the above problem background, six models were developed to analyze the 

benefits received by schematically allocating insecticide sprayed at human as well as cattle 

dwellings, both at state level and district level. A mathematical function aimed at comparing 

preplanned options of spraying insecticide at different number of sites was formulated. Two 

optimization models aimed at recommending optimal insecticide allocation for achieving highest 

possible sandfly mortality and number of human infections saved were formulated. A system of 

coupled differential equations from literature was revised to include the effect of spraying 

insecticide at a given number of sites. This system of ordinary differential equations was 

calibrated such that it modeled the existing transmission dynamics of VL in Bihar as closely as 

possible. An expression for the basic reproduction number was derived. Since the disease 

prevails in Bihar, the value of the basic reproduction number was expected to be greater than 

one. The value of the basic reproduction number was verified to be greater than one using the 

parameter estimates chosen from literature. On simulating the model, the infected human and 

sandfly populations stabilized at non-zero steady state values. Finally, all optimization models 

were compared to recommend best insecticide spray campaign policy. 
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CHAPTER 2  

REVIEW OF LITERATURE  

 

This chapter presents a review of literature that helped to formulate the research criteria, 

build the models and perform this dissertation research.  

  

2.1 Literature Sources for Model Formulation 

 Literature was studied for finding the best way to model insecticide intervention, chose 

parameters for the model and the metric to be optimized. Parameter estimates were searched 

from literature to model the vector and host populations, the budget allocation and VL 

transmission dynamics in Bihar, India. Only when parameter estimates specific to VL 

transmission in Bihar were unavailable, estimates of a similar infectious disease were used.  

 

Metric chosen for optimizing in the linear model:  

Stauch et al. [15] have built and analyzed a mathematical model that includes VL 

transmission and intervention parameters to study the effects of different intervention strategies 

(treatment regimes, early case detection and vector-related intervention). Their model predicts 

that if the vector density is reduced by 80%, then VL infections might be eliminated. The highest 

possible reduction in vector density might be possible by increasing their death rate. Death rate 

might be maximized (using available money), if optimal insecticide amount is allocated per person 

and per cattle. Hence, insecticide induced death rate has been chosen as a metric to be 

optimized in the linear optimization model. 
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Metric chosen for optimizing in the nonlinear model:  

Mathematical models in literature describe incorporating disease control strategies and 

measuring their impact using a metric. Lichiello and Turnock [16] have presented performance 

measures used by public health and social service agencies. Caetano and Yoneyama [17] have 

modeled an optimal control problem for Dengue epidemics that minimizes the “cost functional” 

comprising of insecticide application costs, educational campaign costs, and indirect costs of lost 

working days, low morale and treatment. The Health Metrics Network [18] have defined 

“improved health” and “reduced mortality” as the two health outcomes in their basic framework of 

health system monitoring. Stoto and Cosler [19] recommend using an appropriate “time horizon” 

and “incremental cost-effectiveness ratio” to compare two or more interventions for policy makers. 

Stringer et al. [20] have proposed “HIV free survival” for lower income countries as it captures the 

essential purpose of the programme to prevent mother-to-child HIV transmission. The 2010-2011 

UNAIDS Performance Monitoring Report [21] proposed “number of infections averted” as an 

outcome measure for HIV prevention programs. The nonlinear optimization model in this 

dissertation also uses “number of human infections averted” as a performance metric of the 

insecticide spray campaign.  

 

Review of blood preference of sandflies: 

Gebre-Michael et al. [22] have studied the natural blood meal sources of different 

phlebotomine sand flies species in the VL endemic regions of north-west Ethiopia. Based on a 

dissection of a sample of 281 freshly engorged female P.orientalis they reported that a majority 

(91.6%) of them fed on bovine blood, 2.2% on human blood, 2.6% on both blood source (bovine 

and human) and 3.7% on unidentified blood sources. The authors recommended that the 

penchant of P. orientalis for cattle blood might be of epidemiological significance for controlling 

the disease. Palit et al. [14] and Mukhopadhyay and Chakravarty [10] have studied the blood 

meal preference of two main prevalent sandfly species (P. Argentipes and P. Papatasi) in West 
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Bengal and North Bihar respectively. They concluded that sandfly species P. Argentipes are 

zoopholic by nature.  

Kawaguchi et al. [23] had introduced a parameter called “human visitation rate” of 

mosquitoes to model malaria transmission dynamics. A similar parameter (human visitation 

proportion) is used in our models, which quantifies the proportion of sandfly population that visits 

human and cattle sites based on their attraction rate towards human and cattle blood. This 

feeding behavior of the sandfy species has been directly incorporated in all optimization models 

developed in this dissertation. This parameter is a constant (fraction) in the linear optimization 

model and is expressed as a function of time in the differential equations model. 

 

Literature review of insecticide decay rate: 

Reithinger et al. [24] compared four different insecticides for reducing transmission of 

sandfly borne-diseases to dogs in Brazil. They presented the anti-feeding and survival rates of 

female sandflies exposed to dogs treated with different insecticides. In general, there was a 

reduction in the anti-feeding effect (except diazinon treated dogs) and death rates of exposed 

sandflies. Literature was searched to find a function to represent the decay of repellent and lethal 

effects of an insecticide. Molina et al. [25] and Miró et al. [26] examined the repellent and lethal 

effect of topical Permethrin solution and imidacloprid-permethrin combination, respectively, to 

protect dogs from sandfly bites. Courtenay et al. [27] have studied the effect of topical 

deltamethrin pour-on insecticide to protect dogs from VL in Brazil. They have used an exponential 

decay function to fit the data of decay of insecticide effects. This dissertation research also uses 

an exponential function to model the decay of insecticide’s lethal and repellent effects. 

 

Literature review on transmission term: 

The rate of contact between vector and host individuals in vector-host disease models is 

captured by the disease-transmission term. Wonham et al. [28] analyzed the differences in 
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predictions from vector-host models due to the form of disease-transmission term assumed. The 

three different forms of disease-transmission terms are: reservoir frequency dependence, mass 

action, and susceptible frequency dependence.  

The reservoir frequency dependence assumes that biting rate of vectors (sandflies) is 

saturated and is not limited by reservoir (human) density. As per this biological assumption, the 

biting rate (per unit time) by sandflies is the maximum possible number of bites per day made by 

a single sandfly and depends on the sandflies’ gonotrophic cycle. The biting rate of vector’s on 

reservoirs increases with the population density of vectors. At disease free equilibrium, the 

reservoir to vector transmission rate is a function of both biting rate and ratio of vector and 

reservoir densities, whereas the vector to reservoir transmission rate is a function of only biting 

rate. Reservoir frequency dependence assumption was used by: Favier et al. [29]  to derive a 

method to compute the reproduction number for Dengue in Brazil; Cruz-Pacheco et al. [30] to 

model the transmission dynamics of West Nile virus between the avian and vector populations. 

Nishiura et al. [31] modeled reciprocal infection between human and mosquito populations under 

reservoir frequency dependence assumption. Their Dengue transmission dynamics also 

considers an alternate blood source, similar to our differential equations model with a cattle 

population which deflects bites that would have come on humans.  

Mass action assumes that biting rate is a function of both reservoir and vector population 

densities. At disease free equilibrium the reservoir to vector transmission rate is a function vector 

population density, whereas the vector to reservoir transmission rate is a function of reservoir 

population density. The assumption of mass action is valid only up to a threshold value of 

reservoir population density. 

Under susceptible frequency dependence assumption, the vector-to-reservoir disease-

transmission term is the same as that for the reservoir frequency dependence assumption, 

however the reservoir-to-host term is different. Susceptible frequency dependence assumes that 

the vector biting rate is not a function of either the reservoir population density or the vector 
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population density and hence is not limited by them. The vector biting rate by one vector is the 

same as that for reservoir frequency dependence. The vector biting rate on one reservoir reaches 

a maximum value when the vector density reaches a threshold value beyond which the vector 

biting rate remains constant, even if the vector density increases. Many researchers have 

modeled infectious disease transmission using susceptible frequency dependence. Chowell et al. 

[32] modeled the transmission dynamics of dengue fever in the Mexican state of Colima, under 

the susceptible frequency dependence assumption. The disease transmission term in this 

dissertation research was formulated under “reservoir frequency dependence” assumption 

described by Wonham et al. [28] versus “susceptible frequency dependence” assumption used by 

Mubayi et al. [33]. 

 

Literature review on average herd size per cattle shed: 

Khan and Usmani [34] have surveyed the rural areas of North West Frontier Province of 

Pakistan and found a high variability in the number of animals per household (4.2 ± 13.5 Buffalo 

per household and 1.7 ± 1.3 cattle per household). Boukary et al. [35] have collected data from 

the rural area of Torodi, Niger in sub-Saharan Africa and found that on an average, number of 

cattle owned per household is 18 ± 17. Barrett [36] presented average number of cattle per 

household across 8 communal lands in Zimbabwe as 7. Gupta [37] has quoted the average 

number of cattle owned by a family as 4.3 for a village studied in the state of Uttar Pradesh. 

Erenstein [38] surveyed 18 villages spread across 3 clusters in the Trans-Gangetic Plains of India 

and found that the average livestock herd size per household is almost universal (Mean(s.d.,n, 

p)=4.6(2.6,18,ns)). Average herd size per cattle shed estimate from Erenstein [38] is used in our 

modeling study, since this estimate is from India and does not have high variability. 
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VL incidence rate and underreporting estimation in literature: 

Singh et al. [39] used stratified sampling to select houses in the East Champaran district, 

to provide “population based estimates” of the number of VL cases in that district, which can used 

as a guide for resource allocation for VL elimination campaigns. They have estimated the annual 

VL incidence rate for the high and medium-incidence stratums combined as 21.9 cases per 

10000 per year, (90% CI: 14.0–34.2). Singh et al. [40] have used population stratified by age and 

sex variables to obtain better estimation of underreporting of VL cases in Vaishali district in Bihar. 

Singh et al. [40] computed the underreporting factor, by comparing the “number of VL 

cases” from house to house survey with those recorded by passive case detection. Our models 

use the underreporting percentage estimated by Mubayi et al. [33]. 

 

2.2 Contributions to Literature 

The novel ideas which this dissertation contributes to literature are tabulated in Table 2.1.  

 
 

Table 2.1. Literature review versus contributions made by this research. 

Serial 
number Literature review Contribution to literature 

1 

Presently in Bihar the insecticide 
allocation (amount) for each spray round 
is 0.0375 kilograms per person as 
recommended by a W.H.O. report [7]. 

The models proposed in this dissertation recommend 
optimal insecticide allocation (amount in kilogram) per 
person as well as per cattle. 

2 
Susceptible-Infected-Recovered models 
generally have only 3 mutually exclusive 
compartments 

Both government and private hospitals are included in the 
differential equations model presented in this dissertation. 
The under-reporting percentage is included, accounting for 
infected individuals not reporting to government clinics. 

3 Natural birth and death rate of humans 
are generally used in vector-host models. 

Instead of birth rate for humans, recruitment rate is used, 
thus incorporating the immigration rate of humans. 
Different disease-induced death rates for infected and 
treatment compartments are included. 

4 
Only biological parameter distribution is 
generally considered in uncertainty and 
sensitivity analysis. 

Spray campaign budget’s distribution was estimated from 
literature. Thus, the impact of uncertainty in financial 
parameter is also studied in the uncertainty and sensitivity 
analysis. 
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Table 2.1—Continued 

5 

Kawaguchi et al. [23] have introduced the 
parameter: “human visitation rate” to 
quantify the proportion of sand flies 
visiting human and cattle sites. 

The attraction rate of the main vector (P. Argentipes) has 
been used to compute the “human visitation proportion” of 
sandflies in Bihar. This parameter is modeled as a function 
of time in the differential equations model to incorporate 
the dynamic human population. 

6 
Deterioration of insecticide’s intervention 
is usually not incorporated in vector-host 
models. 

The deterioration of insecticide’s repellent and lethal 
effects with time is incorporated in both linear and 
nonlinear models. The insecticide sprayed in houses has a 
different decay rate than the insecticide sprayed in cattle 
sheds. The decay rate for repellent effect has been 
estimated from Molina et al. [25]. The initial efficacy for 
lethal effect and repellent effects has been taken from 
appropriate literature sources. 

7 

A model for optimizing insecticide 
induced death rate or human infections 
averted, was not found in present 
literature review. 

The metric optimized by the linear model is: Insecticide 
induced death rate. 

The metric optimized by the nonlinear model is: 
Cumulative human infections averted. 

8 

A model that can be simulated by 
choosing any day, on which insecticide 
effect becomes active, was not found in 
present literature review. 

In the differential equations model, any day of the 
simulation run can be chosen as the day on which 
insecticide is sprayed. 

 
 
Only 31 districts in Bihar have been classified as VL affected districts. Table 2.2 provides 

a summary of the different modeling approaches developed and the data sets (Bihar state or 31 

VL affected districts) for which they can be simulated. Model numbers 3, 4, and 5 account for 

dynamically varying human and sandfly populations. Model numbers 3 and 6 do not provide 

optimal insecticide allocations and can be simulated by using either the data set of Bihar state or 

the 31 VL affected districts of Bihar state. Models 3 and 6 can be simulated by providing a 

(preplanned) number of sites to be sprayed with insecticide. 

 
 

Table 2.2. Summary of Models Developed 

Model no. Model name Dynamic Optimizatio
n model Data set Described in section 

1 Two-dimensional linear 
optimization No Yes State level 3.2.1 

2 Multi-dimensional linear 
optimization No Yes District level 3.2.2 
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Table 2.2—Continued 

3 Differential equations model 
with insecticide intervention Yes No Both state and 

district level 3.2.3 

4 Two-dimensional nonlinear 
optimization Yes Yes State level 3.2.4 

5 Multi-dimensional nonlinear 
optimization Yes Yes District level 3.2.5 

6 BMCR function No No Both state and 
district level 3.3.2 

 
 

All four optimization models are solved to obtain the optimal number of sites to be 

sprayed to optimize either sandfly mortality or cumulative number of human infections at the time 

the second round of spray starts in Bihar (after a ninety day gap). The two-dimensional linear 

model recommends spraying only in houses using the 2012 VL budget of Bihar [41] (which is also 

the present policy of allocating insecticide based on human population only). However, the two-

dimensional linear model’s recommendation saves the least number of human infections, ninety 

days after spray. As compared to the two-dimensional linear model’s recommendation, the two-

dimensional nonlinear model’s recommendation, (which considers human as well as cattle 

populations) saves 22 % more human infections, ninety days after spray. The multi-dimensional 

nonlinear model’s recommendation, which considers both human and cattle populations 

(including other demographic data) at district level, saves 64 % more human infections, ninety 

days after spray. The model which computes the insecticide allocation amount by considering: 

first the (state level) cattle population and second the (district level) demographic data including 

human and cattle populations; saves increasing number of human infections. 
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CHAPTER 3  

METHODOLOGY  

 

 The sources for data, assumptions made before model formulation, and derivation of the 

model equations are presented in this chapter. The linear model is analyzed to derive a closed 

form solution.  

 

3.1 Data Sources 

The sources of data for the models developed in this dissertation are presented below. 

 

3.1.1 Data Sources for the Linear Optimization Model 

The estimates of human and cattle population sizes for the 31 VL affected districts of Bihar have 

been taken from the 2010-2011 budget allocation document from the public health department of 

Bihar [42] and 1982 Cattle Census [43], respectively. The average livestock herd size (number of 

cow equivalents per household) was assumed to be the average number of cattle per cattle shed 

in Bihar state, in line with previous studies from Erenstein [38]. The insecticide spray campaign 

cost equation was formulated using data from the 2010-2011 budget document [42]. The 

insecticide spray campaign’s total cost was calculated by collating the costs related to materials 

and implementation (including salaries, spray equipment, and miscellaneous expenses). The cost 

equation (derived in section 3.2.1) included both the direct and the indirect costs associated with 

implementation of insecticide spray campaign. The cost data included a total of 10,686 villages 

cared for by 354 public health centers (PHCs) from the 2010-2011 budget document [42]. The 

number of occupied residential houses was estimated from the 1991 Census of India [44] for the 

VL affected districts (excluding Arwal district’s data). 
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Due to financial constraints it is not possible to spray insecticide at all houses and cattle 

sheds in a district. The two decision variables were defined as: “kilograms of insecticide allocated 

per person” and “kilograms of insecticide allocated per cattle.” The optimization models proposed 

in this dissertation aim to optimize the amount of insecticide allocated per person and per cattle 

(per capita hereafter). When available financial resources are not enough to procure insecticide to 

cover all sites in the district or state, it is referred to as a “resource limited case”, and it is used to 

formulate some of the constraints in the optimization models. 

The natural sandfly death rate was estimated using 2 years monthly data of the daily 

probability of survival of P. Papatasi from Srinivasan and Panicker [45]. The mortality of P. 

Argentipes’s 24 hours after spraying with DDT and Deltamethrin were estimated from Huda et al. 

[46] and Dinesh et al. [47], respectively. The lethal effect of insecticide in the linear optimization 

model is assumed to decay exponentially over time as presented by Courtenay et al. [27]. Dinesh 

et al. [47] and Jacusiel [48] were referred for estimating the insecticide’s lethal effect decay rates, 

inside houses and cattle sheds (Chapter 4). The decay rates are assumed: to have the same 

value on each day after insecticide application (are not functions of time) and are assumed to be 

equal for both DDT and Deltamethrin. A parameter (human visitation proportion, Q), similar to 

“human visitation rate” of mosquitoes presented by Kawaguchi et al. [23], is used to quantify the 

proportion of sandfly population visiting human and cattle sites. The epidemiological and 

demographical parameters of the host and vector populations were estimated by consulting 

previous studies (Table 3.1 and Table 3.2). The demographic parameters used in the objective 

function as well as in the constraints are described in Table 3.1.  
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Table 3.1. Bihar’s demographic parameters for linear optimization model. 

Symbol Definition Units 
Estimates : 

Mean (SD) 

g Number of PHCs in Bihar Number of government clinics 
354 (2010 VL budget of 

Bihar [41])  

Nh Size of the affected human population of 

the 31 VL affected districts in Bihar 
Number of humans 

33,898,857 (2010 VL 

budget of Bihar [41])  

Nc Size of the cattle population in the 31 VL 

affected districts in Bihar 
Number of cattle 

21,571,585 (Cattle 

Census, 1982 [43]) 

Nv Size of the sandfly population in Bihar Number of sandflies 

Assumed constant in the 

model 

H Total number of houses in Bihar Number of houses 

7,933,615 (Census of 

India, 1991 [44]) 

 

β  
Average herd size per cattle shed Number of cattle equivalents 4.6 (2.6) (Erenstein [38]) 

Z =  
Number of cattle sheds Number of cattle sheds 

4,689,475 (Cattle Census, 

1982 [43])  

 SD: standard deviation  

 
 

Table 3.2 defines the insecticide toxicity and entomological parameters used in the linear 

optimization model’s objective function and constraints. 
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Table 3.2. Insecticide toxicity and entomological parameters in the linear optimization model. 

Symbol Definition Units Estimates 

Mean (SD) (95% CI) (Reference) 

 Female sandflies’ feeding preference 

for human blood 

Dimensionless  

179.2 10-03 (95% CI, 15.14--20.72) 

(Mukhopadhyay and Chakravarty [10])  

 = 1 - 

 

Female sandflies’ feeding preference 

for cattle blood 

Dimensionless  

820.8  10-03 (Mukhopadhyay and Chakravarty 

[10])  

Q Human visitation proportion of P. 

Argentipes based on blood preference 

A proportion between 0 

and 1 

 

0.2554 (Estimated in section 4.1.1) 

 Time elapsed after the spray of 

insecticide 

Days  

User-defined value 

 Per capita death rate of sandflies sandfly 

deaths/day/sandfly 

 

0.0759 (0.0162) (Srinivasan and Panicker [45]) 

Ih Amount of DDT consumed per 200 m2 

house 

kg/house  

533  10-03 (Walker [49]) 

Ih Amount of Deltamethrin consumed 

per 200 m2 house 

kg/house  

400 10-03   (Walker [49])  

Ik Amount of DDT consumed per cattle 

shed 

kg/cattle shed  

533 10-03 /2 = 266.5 10-03 (Walker [49])  

Ik Amount of Deltamethrin consumed 

per cattle shed 

kg/cattle shed  

400×10-03 /2 = 200  10-03 (Walker [49])  

Ct0 Initial efficacy of DDT (in houses and 

cattle sheds) 

Dimensionless  

0.54 (95% CI, 48.7--59.3) (Huda et al. [46]) 

Ct0 Initial efficacy of Deltamethrin (in 

houses and cattle sheds) 

Dimensionless  

9.75 10-01 (Dinesh et al. [47]) 

 Decay rate of both insecticides’ lethal 

effect inside houses 

Per day  

0.012 (0.009) ( Estimated in section 4.1.1 ) 

 Decay rate of both insecticides’ lethal 

effect inside cattle sheds 

Per day  

0.081 (0.055) ( Estimated in section 4.1.1) 

CI: confidence interval , kg : kilogram  
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3.1.2 Data Sources for the Nonlinear Optimization Model 

The nonlinear optimization model uses the same parameter symbols and estimates as 

those used in the linear optimization model. However, the following parameter symbols and 

estimates (Table 3.3) are different and are used specifically to obtain numerical results for the 

nonlinear model and for comparison of the models. 

 
 

Table 3.3. Parameter symbols and estimates specific to the differential equations model. 

Symbol Definition Units Estimates 

Mean (SD) 

References 

H Total number of residential 

houses in Bihar state 

Number of 

houses 

16316527 Census of India 2001 

[50] 

 Estimated number of residential 

houses in VL affected district i 

Number of 

houses 

Refer Table 4.6 Estimated in section 

4.3.1 

 Total number of cattle in Bihar 

state 

Number of 

cattle 

19249457 18th Livestock census 

2007 [51] (assumed as 

23 million with 20% 

growth) 

 Estimated number of cattle in 

VL affected district i 

Number of 

cattle 

Refer Table 4.6 Estimated in section 

4.3.1 (assumed 20% 

growth in each district) 

 =  Number of cattle sheds in 

district i 

Number of 

cattle sheds 

Refer table in appendix 

A  

Sharma and Singh [11]  

 Total actual human population 

of 31 VL affected districts in 

Bihar 

Number of 

persons 

87716860 2011 census of India 

[52]  

 Actual number of humans in VL 

affected district i 

Number of 

persons 

Table A.1 Appendix A 
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Table 3.3—Continued 

 Total VL affected persons in 31 

VL affected districts of Bihar 

Number of VL 

affected 

persons 

32393812 State Health Society 

report [53]  

 VL affected human population in 

district i 

Number of VL 

affected 

persons 

Table A.1 Appendix A 

g Total number of government 

clinics in VL affected districts of 

Bihar 

Number of 

clinics 

310 State Health Society 

report [53]  

 Number of government clinics in 

VL affected district i 

Number of 

clinics 

Table A.1 Appendix A 

Λ Human recruitment rate persons added 

per day per 

person 

3194.41 Estimated in section 

4.3.1  

 decay rate of insecticide’s 

repellent effect 

per day 0.0936 (0.0506) Estimated in section 

4.3.1 (Table 4.5) 

 Spray campaign implementation 

cost 

Rupees 96.80 million  Bihar’s budget 2012-

2013  [41]   

 Upper limit of available budget 

for spray campaign 

Rupees 220.48 million Bihar’s budget 2012-

2013  [41]  (Table 4.7) 

t Simulation time starting at  

and ending at . 

Days   

 Insecticide induced death rate of 

sandflies 

Number of 

sandflies killed 

per day per 

sandfly 

Computed from equation 

3.29  

Derived in section 3.2.3 

Note: subscript “i” is used to denote the district number of one of the 31 districts 
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3.2 Assumptions and Model Formulation 

The assumptions made to formulate the different models in this dissertation are 

described in this section. 

 

3.2.1 Two-dimensional Linear Optimization Model 

The two dimensional linear optimization model proposed has three main components. 

The objective function (equation 3.4) is the first component, which captures the insecticide-

induced death rate. The model aims to maximize the objective function. The insecticide-induced 

death rate is assumed as an addition of death rates achieved by spraying insecticide in houses 

and cattle sheds. The decision variables (output from the model) in the objective function are the 

amount of insecticide allocated per person and per cattle.  

Table 3.4 defines the notations representing the objective function, material and spray 

campaign implementation cost, available amount of state budget and per capita allocated amount 

(weight) used in the linear optimization models.  

 
 

Table 3.4. Linear model’s objective function, budget constraint & decision variables. 

Symbol Definition Units Description 

 
Insecticide-induced death rate of 

sandflies 

sandfly 

deaths/day/sandfly 

Objective function value obtained 

from the model (Equation 3.4) 

 
Total cost of insecticide materials and 

spray campaign implementation 
Rs. 

Budget constraint in the model 

(Equation 3.5) 

 
Upper bound on the budget available for 

the spray campaign 
Rs. 

User-defined (budget) value in the 

model 

  
Insecticide allocated per capita for a 60-

day spray period 
kg/person 

Decision variable value obtained 

from the model 

  
Insecticide allocated per cattle for a 60-

day spray period 
kg/cattle 

Decision variable value obtained 

from the model 
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Table 3.4—Continued 

 
Number of houses sprayed with 

insecticide 
Number of houses 

Decision variable value obtained 

from the model 

 
Number of cattle sheds sprayed with 

insecticide 

Number of cattle 

sheds 

Decision variable value obtained 

from the model 

Rs: Rupees 

 
 

The deteriorating lethal effect of the insecticide is captured by temporal exponential 

functions ( , equation 3.1 and , equation 3.2) which include parameters, decay rate(  

and ) and initial efficacy ( ). The estimates of  and  are assumed equal for both DDT and 

Deltamethrin and have the same value on each day after insecticide application. The sandfly 

population proportions that are killed on the  day after insecticide application inside houses 

and cattle sheds, respectively, are given by 

 
     (3.1) 

and 

.    (3.2) 

 

The units of both  and  are the number of sandflies killed/(sandfly·day). 

The value of initial efficacy ( ) for insecticide (both DDT and Deltamethrin) is assumed 

equal in both houses and cattle sheds. The assumed daily distribution of the sandfly population at 

sprayed and unsprayed sites is shown in Figure 3.1, which depends on blood meal preference 

parameter, Q. The objective function (equation 3.4) is formulated using this distribution of sandfly 

populations. Below the (objective function) insecticide-induced death rate at sprayed sites on the 

day post spray, is derived. Each day, a sandfly is assumed to die, either a natural death or 

due to the insecticide’s lethal effect. The linear optimization models ignore the repellent effect of 

the insecticide. It is assumed that all sandflies that visit an insecticide-treated cattle shed or 

house, get exposed to the insecticide and a proportion of them die based on the insecticide’s 
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lethal effect on that day. The term “spray coverage” is used in this dissertation to refer to the 

number of houses ( ) and cattle sheds ( ) where insecticide is applied.  

 
 

 

Figure 3.1. Daily distribution of the sandfly population based on their blood feeding 

behavior. 

 
 

Total sandfly death rate can be computed by adding the natural death rate ( ) and the 

insecticide induced death rate ( ) at sprayed sites. The objective function equation (insecticide-

induced death rate) is derived below. The daily sandfly deaths at different locations are 

enumerated in Table 3.5. 
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Table 3.5. Sandfly deaths at different sites. 

Serial no. Number of sandfly deaths on any day after spraying Formula 

1 Natural deaths in sprayed houses 

2 Insecticide-induced deaths in sprayed houses 

3 Natural deaths in unsprayed houses 

4 Natural deaths in sprayed cattle sheds 

5 Insecticide-induced deaths in sprayed cattle sheds 

6 Natural deaths in unsprayed cattle sheds 

 
 

The total death rate, obtained by adding all six components (Table 3.5), is expressed as  

    (3.3) 

 

Where, q - the percentage increase in the natural sandfly death rate. The objective function of the 

linear optimization model (insecticide induced death rate) is  

 

    (3.4) 

 

The third term on the left hand side of equation 3.3 (natural death rate) is not multiplied 

by a weight, as sandfly natural deaths occur equally at every site (sprayed and unsprayed). The 

first and second terms of the objective function (equation 3.4) can be interpreted as the 

insecticide-induced death rates in houses and cattle sheds, respectively.  
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The budget constraint (equation 3.6) is the second component of the model. It ensures 

that the total spray campaign cost (materials and implementation) is always less than or equal to 

the state budget available for the insecticide spray campaign. Table 3.6 enumerates the costs 

related to material and implementation of spray campaign. 

 
 

Table 3.6. Costs related to insecticide spray campaign. 

Symbol Material cost Unit Estimates 

N1 Cost per kg of insecticide (DDT) Rs./kg of DDT 90 (Walker [49])  

N1 Cost per kg of insecticide (Deltamethrin) Rs./kg of Deltamethrin 810 (Walker [49])  

 Implementation cost: Personnel and maintenance Unit Estimates 

N2 Number of spraying teams or squads allocated per 10 lakh population of 

a district 

Squads/person 55/106 (2010 VL budget of Bihar  

[42]) 

N3 Number of supervisors per squad Number of 

supervisors/squad 

1 (2010 VL budget of Bihar [42])    

N4 Number of field workers per squad Number of workers/squad 5 (2010 VL budget of Bihar [42]) 

N5 Salary paid to each supervisor/day of the 60-day spray period Rs./day/supervisor 145 (2010 VL budget of Bihar 

[42])   

N6 Salary paid to each field worker/day of the 60-day spray period Rs./day/worker 118 (2010 VL budget of Bihar 

[42])  

N7 Number of days allocated for spraying activity each time spraying is 

carried out 

Number of days 60 (2010 VL budget of Bihar 

[42]) 

N8 Funds allocated per squad for the repair and purchase of spray 

equipment per 60-day spray period 

Rs./squad/60-day spray 

period 

950 (2010 VL budget of Bihar 

[42])   

 Implementation cost: Operational expenses Unit Estimates 

N9 Funds allocated to the district for the transportation of DDT/PHC in the 

district (assumed per 60-day spray period) 

Rs./ PHC 3500 (2010 VL budget of Bihar 

[42])  

N10 Funds allocated to the district as office expense per squad in the district 

(assumed per 60-day spray period) 

Rs./squad 250 (2010 VL budget of Bihar 

[42])   

N11 Funds allocated as contingency/squad (assumed per 60-day spray 

period) 

Rs./ squad 250 (2010 VL budget of Bihar 

[42]) 

N12 Total funds allocated per district for general vehicle mobility/month of 

spray period 

Rs./ month 20000 (2010 VL budget of Bihar 

[42]) 

N13 Funds allocated per district for PHC vehicle mobility/day/PHC for the 60-

day spray period 

Rs./day/PHC 650 (2010 VL budget of Bihar 

[42]) 

N14 Funds allocated for supervision/affected PHC (assumed per 60-day spray 

period) 

Rs./affected PHC 2000 (2010 VL budget of Bihar 

[42])   

N15 Funds allocated for education and communication activities per affected 

PHC (assumed per 60-day spray period) 

Rs./affected PHC 2000 (2010 VL budget of Bihar 

[42])  
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Exchange rate in the year 2000 for table 3.6 was assumed as: 1 USD = INR 45. [54]  

 
The spray campaign cost equation is derived below, assuming that insecticide is sprayed 

only once per year rather than the existing policy of spraying twice per year in Bihar. 

The total cost of executing the insecticide intervention program is a sum of the material (for a 

given insecticide) and implementation costs from Table 3.6, and is expressed as 

 

 

 

 

 

         (3.5) 

 

The decision variable   was introduced to obtain the amount of insecticide allocated to 

the cattle population. Total spray campaign cost can be simplified to  

 

 

 

 

 

   (3.6) 

 

The first two terms of equation 3.6 can be interpreted as: the material cost of the 

insecticide allocated to houses ( ), to cattle sheds ( ) respectively. The third term is the 

spray campaign’s implementation cost ( ), which comprises field supervisors and spray 

worker’s wages, the repair and purchase of spray equipment, office expenses, a contingency, 

insecticide transportation and storage, supervisors’ travel allowances, and public awareness 

activities (Table 3.6). 

The third component of the linear optimization model comprise of the remaining 

constraints (inequalities 3.7, 3.8, 3.9, 3.10 and 3.13), which are related to insecticide consumption 

and sites sprayed at, under the insecticide intervention program. It is assumed that the available 

budget is not enough to spray all houses and cattle sheds (resource-limited cases). The number 

of houses (cattle sheds) sprayed at, can vary between 0 and H (K), so the constraints for  and 

 can be written as  
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     (3.7) 

 

and 

 

 

 

 

 

     (3.8) 

 

respectively. 

The number of houses and cattle sheds that can be covered during the spray campaign 

are expressed as 

 

 

 

 

     (3.9) 

 

and  

 

 

 

 

 

     (3.10) 

 

respectively.  

When all sites are sprayed with insecticide, equations 3.11 and 3.12 give the maximum 

values for the decision variables  and  in terms of demographic parameters:  

 

     (3.11) 

 

and  

 

 

 

 

 

     (3.12) 
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The non-negativity constraints for the two decision variables give  

 

 

 

 

 

     (3.13) 

 

All optimization models assume that there are only two types of sites to be sprayed at: 

human dwellings and cattle sheds (mixed dwellings do not exist). The other assumptions made 

are: the insecticide necessary to spray one cattle shed is assumed to be half of that required to 

cover one house; cattle are the only non-human hosts that sandflies bite; all houses are assumed 

to have an average area of 200 m2 based on a previous estimate from Walker [49]. Based on the 

assumptions made and the three above-described components, the 2 dimensional linear 

optimization model formulation can be described as: 

Maximize,  

 

    (3.4) 

 

Subject to, 

 

    (3.6) 

 

     (3.7) 

 

     (3.8) 

 

     (3.9) 
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     (3.10) 

 

      (3.13) 

 

The linear optimization model formulation in terms of  and  only (by substituting 

equations 3.9 and 3.10 in 3.4) is described below.  

Maximize, 

 

    (3.14) 

 

Subject to, 

 

    (3.6) 

 

     (3.15) 

 

     (3.16) 

 

3.2.2 Multi-dimensional Linear Optimization Model 

Considering separate decision variables ( and ) for each of the 31 VL affected districts 

in Bihar state, the above linear optimization problem can be re-formulated as a 62 dimensional 

linear optimization problem. (Note: The single budget constraint for entire Bihar state is , 

same as the above 2 dimensional linear optimization model). To ensure that each district is 

allocated a minimum insecticide amount as per the present allocation policy as mentioned in the 
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W.H.O. report [7], the lower bound on all decision variables  has been taken as 

 The spray campaign implementation cost for district i, in terms of number of affected 

humans and government clinics from 2010 VL budget of Bihar [42], is expressed as  

 

   (3.17) 

 

As per the 2010 VL budget of Bihar [42], the implementation cost is an addition of three 

components. The first component is the money allocated per affected person in the population 

for: spray team supervisor’s salary, spray worker’s salary, repair and purchase of spray 

equipment, office expenses and contingency allowance. The second component is the money 

allocated per government clinic for: insecticide transportation, mobility of vehicles for supervision, 

and activities related to information, education and communication. The third component is a 

constant amount of money allocated for mobility of vehicles to conduct miscellaneous activities. 

The 62 dimensional linear optimization model formulation can be presented as  

Maximize  

 

    (3.18) 

 

Subject to 

 

    ,  i = 1,…,31 (3.19) 

 

     ,  i = 1,…,31    (3.20) 

 

        ,  i = 1,…,31     (3.21) 
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      ,  i = 1,…,31    (3.22) 

 

             ,   i = 1,…,31    (3.23) 

 

               ,   i = 1,…,31     (3.24) 

 

3.2.3 Differential Equations Model with Insecticide Intervention 

Some assumptions were made to simplify the original transmission dynamics model 

developed by Mubayi et al. [33]. The insecticide’s lethal and repellent effects were incorporated in 

the simplified transmission dynamics model. Table 3.7 describes the state variables in the 

simplified transmission dynamics model (Figure 3.2). 

 
 

Table 3.7. State variables in the simplified model. 

State variables Definition 

S(t) Number of susceptible humans 

I(t) Number of infected humans 

G(t) Number of infected humans undergoing treatment at public health facilities 

T(t) Number of infected humans undergoing treatment at private health facilities 

R(t) Number of recovered humans  

(t) Total human population size = S(t) + I(t) + G(t) + T(t) + R(t) 

X(t) Number of susceptible sandflies 

Z(t) Number of infected sandflies 

(t) Total sandfly population size = X(t) + Z(t) 

“t” denotes the  day of the simulation run 
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The simplified model consists of 5 humans (host) compartments and 2 sandfly (vector) 

compartments. The simplified transmission dynamics model uses parameters defined in Table 

3.2, Table 3.4 and Table 3.8 below.  

 
 
Table 3.8. Transmission dynamics model parameter symbols, definitions, estimates, and 

their corresponding references. 

Parameter Definition Estimate: Mean 

(S.D.) (C.I. range) 

Reference 

p Proportion of infected humans choosing to seek 

treatment in public health clinics 

 Mubayi et al. [33]  

 

η Treatment seeking rate per capita /day 

(s.d.= /day) 

Sud et al. [55]  

 Per capita recovery rate for G class individuals /day Mubayi et al. [33]  

 

 Per capita recovery rate for T class individuals /day Mubayi et al. [33]  

 Disease related mortality in I class /day Zerpa et al. [56]  

 Disease related mortality in treatment (G and T) 

classes 

/day 

 

Bora [3]  

 Natural mortality rate per capita in humans  Mubayi et al. [33]  

 Transmission probability per bite from infected 

vector to susceptible human 

0.74 (0.27–1.00) Wonham et al. [28]  

 Transmission probability per bite from infected 

human to susceptible vector 

0.69(0.23–1.00) Wonham et al. [28]  

C Mean bite rate per sandfly 0.09 (0.03–0.16) Wonham et al. [57]  

Ct0r Initial efficacy of DDT’s repellent effect (both in 

houses and cattle sheds) 

0.81 (95% CI: 0.763-

0.858) 

Courtenay et al. [27]  

 Spray campaign implementation cost Rs.  million Bihar’s budget 2012-2013  

[41] 
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Figure 3.2 presents the simplified vector-host model, which shows the transmission of VL 

between the vector and host populations. 

 
 

 

Figure 3.2. Simplified VL transmission dynamics model. 

 
 

Criss-cross (reciprocal) infection takes place between the sandfly and human 

populations, when infected sandflies bite susceptible humans and susceptible sandflies bite 

infected humans. The main difference between the simplified model developed in this dissertation 

and the model developed by Mubayi et al. [33] is that, their model does not include any 

insecticide effects whereas our model incorporates both lethal and repellent effects of the 

insecticide. There are separate compartments for humans and sandflies in (latent) development 

stages of VL, in the model developed by Mubayi et al. [33]. These latent stages are excluded in 

our simplified model. Unlike the original model, our simplified model includes the insecticide-
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induced death rate of sandflies. The original model had a constant sandfly population. Unlike the 

original model which included only the natural birth and death rates in humans (assumption of 

constant human population), our simplified model includes the human recruitment rate and VL-

induced deaths. 

Assumptions in formulating the simplified vector-host model: 

Some general assumptions include: mixed dwellings do not exist; only houses and cattle 

sheds need to be sprayed with insecticide, as sandflies are assumed to feed only on human and 

cattle blood. As some sandfly bites are deflected to the cattle populations, a constant cattle 

population is also incorporated in the model. The decay of insecticide’s lethal effect is modeled 

using the same exponential decay function, as in the linear optimization model. Every morning 

sandflies are assumed to disperse from a common resting place, travelling towards human or 

cattle dwellings in search of blood (Figure 3.3).  

 
 

 

Figure 3.3. Assumed daily sandfly population break down.  
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In Figure 3.3 the dotted lines denote the cause of death for a given proportion of the 

population. The dotted arrows & rectangles indicate the death rate for a proportion of sandfly 

population. Each vector population either visits a sprayed or unsprayed site. Some sandflies do 

not land and fly back (Figure 3.3: curved arrow) to the common resting place because of the 

insecticide’s repellent effect. As these flies are not exposed to insecticide’s lethal effect, they die 

at a natural death rate (Figure 3.3: death rates in dotted boxes). Out of the sandfly population 

proportions that visit sprayed sites, some die due to insecticide exposure, whilst others die due to 

natural causes. The sandflies that land on unsprayed sites die at a natural death rate. At the end 

of each day, the sandflies that remain alive or get repelled, fly back to the same common resting 

place. On each day of the simulation run, this process repeats.  

Although the public health department of Bihar sprays twice yearly as per 2010 VL 

budget of Bihar [42], only one spray round (on day ) is assumed in the simplified transmission 

dynamics model. A female sandfly might bite only after reaching sexual maturity and a sandfly 

reaches sexual maturity, one day after emerging from an egg as quoted by Young and Duncan 

[58]. Our simplified model assumes that (all) sandflies bite on each day of their life. Since natural 

sandfly birth and death rates do not differ statistically depending on the blood source (human or 

bovine) they feed on as reported by Harre et al. [59]; cattle are assumed as being equivalent to 

humans in this regard. The simplified transmission dynamics model is mathematically 

represented as a set of coupled differential equations (referred to as differential equations model 

hereafter). In the differential equations model, the human visitation proportion is a function of time 

and is expressed as  

 

    (3.25) 
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If no human or cattle are present at a site visited by sandflies, then they do not get a 

blood meal on that day and fly back to their common resting place. The probability of a sandfly 

biting a human from any compartment is directly proportional to the proportion of the human 

population present in that compartment. The human and sandfly populations are assumed to be 

homogeneously mixed. Each sandfly landing on a human or cattle is assumed to results in a bite. 

Either a natural death or a VL-induced death can occur to a human. Under these assumptions, 

the lethal and repellent effects are incorporated in the simplified model. 

 

Incorporating insecticide’s lethal effect: Equations 3.26 and 3.27 model the insecticide’s lethal 

effect decay (same as the linear model). 

 

    (3.26) 

 

and  

 

    (3.27) 

 

respectively. The units of both and  are the number of sandflies killed/(sandfly·day). 

Before insecticide is applied, the sandfly population is given by the instantaneous value 

from the solution of the system of coupled differential equations. After insecticide application, the 

sandfly population reduces as more sandflies are born only to those that survived until the end of 

the previous day. Table 3.9 tabulates the various possible causes of sandfly deaths on any day.  
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Table 3.9. Causes of sandfly deaths in houses and cattle sheds. 

 Cause of death after spraying Formula 

1 Natural deaths of sandflies repelled from sprayed houses 

2 
Insecticide induced and natural deaths of sandflies visiting 

sprayed houses 

3 Natural deaths of sandflies visiting unsprayed houses 

4 
Natural deaths of sandflies repelled from sprayed cattle 

sheds 

5 
Insecticide induced and natural deaths of sandflies visiting 

sprayed cattle sheds 

6 Natural deaths of sandflies visiting unsprayed cattle sheds 

 
 

The total sandfly death rate at different (sprayed and unsprayed) sites can be derived by 

adding all sandfly deaths listed in Table 3.2, and is expressed as  

 

  (3.28) 

 

The total sandfly death rate can be expressed as a sum of insecticide induced death rate 

( ) and natural death rate ( ). 

 

  (3.29) 
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Incorporating insecticide’s repellent effect: The insecticide’s repellent effect is also assumed to 

decay exponentially with time as modeled by Courtenay et al. [27]. After insecticide application, 

the proportion of sandflies repelled at time t, is expressed as  

 

    (3.30) 

 

where the unit of  is: reduced number of sandfly landings/(sandfly·day). 

Both susceptible and infected sandfly populations follow the daily distribution shown in 

Figure 3.3. Therefore, the total number of susceptible and infected sandflies visiting houses sum 

to  

 

     (3.31) 

 

and  

 

     (3.32) 

 

respectively.  

The disease transmission terms under reservoir frequency dependent assumption as 

described by Wonham et al. [28], are the rates at which infected humans and infected sandflies 

are generated and can be expressed as 

 

   (3.33) 

 

and  
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   (3.34) 

 

respectively. 

Where,  and  denote the forces of infection on susceptible humans and 

susceptible sandflies, respectively. The set of coupled ordinary differential equations representing 

the simplified transmission model including both insecticide effects is: 

 

    (3.35) 

 

   (3.36) 

 

   (3.37) 

 

  (3.38) 

 

   (3.39) 

 

  (3.40) 

 

   (3.41) 

 

    (3.42) 
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  (3.43) 

 

 

 

 

 

Assumed initial conditions for humans:   (from 2011 census of India 

[52]), S(0) = 0.9  ; I(0) = 0.07  ; G(0) = 0.0005  ; T(0) = 0.0015  ; R(0) = 0.178   

Assumed initial conditions for sandflies:  ; X(0) = 0.7  ; Z(0) = 0.3   

The above differential equations model can be simulated to obtain the number of human 

VL infections, over a time horizon. The difference between the number of human infections when 

the model is simulated without insecticide spray and with a certain level of spray is the cumulative 

number of prevented infections (Unit: person-days averted). Mathematically, it can be expressed 

as  

 cumulative infection cases without intervention – cumulative infection cases with intervention 

     

                        (3.44) 

 

3.2.4 Two-dimensional Nonlinear Optimization Model 

The function  (plotted in  0, for a given ) is the objective function 

the nonlinear optimization model aims to maximize.  
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Figure 3.4.  versus levels of spray coverage.  

 
 

The graph in Figure 3.4 is generated for a 90-day time horizon, using the data of Bihar 

state. Levels of spray coverage denote the different number of houses ( ) and cattle sheds ( ) 

sprayed with insecticide. The insecticide material cost to spray in houses and cattle sheds, 

can be expressed as  (Rs.) and  (Rs.), respectively. The total insecticide spray 

campaign cost ( ) is obtained by adding the insecticide material cost and implementation 

cost ( ). The budget constraint of the nonlinear optimization model is obtained by taking 

 less than or equal to the available state budget ( ). Using the objective function 

(  obtained from the differential equations model, the nonlinear optimization model 

formulation can be described as: 

 

    (3.45) 
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Subject to 

 

   (3.46) 

 

     (3.7) 

 

     (3.8) 

 

In terms of the decision variables  and , the above model can be re-formulated as 

 

     (3.47) 

 

Subject to, 

 

    (3.46) 

 

     (3.7) 

 

     (3.48) 

 

     (3.8) 

 

     (3.10) 

 

      (3.13) 
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The optimal number of houses recommended for spraying is a function of time ( ). To 

obtain kilogram per person  the actual human population at the time of spray ( ) can be used. 

 

3.2.5 Multi-dimensional Nonlinear Optimization Model 

The two-dimensional nonlinear optimization model has only two decision variables: 

number of houses ( ) and cattle sheds ( ), respectively, to be sprayed with insecticide in Bihar 

state. The upper bound on the budget constraint ( ) is the amount of money available to 

conduct the spray campaign in all 31 VL affected districts of Bihar state. If the number of houses 

and cattle sheds to be sprayed, in individual districts are considered as the decision variables of 

the model, a 62 dimensional optimization model is obtained. The lower bound on  for each 

district is chosen as ; so each district is allocated a minimum amount of insecticide 

as per present allocation policy from 2010-2011 budget document [42].    

To avoid any political fallback, the minimum number of houses that will be sprayed with 

insecticide is computed using the present insecticide allocation policy in Bihar. We assume the 

available budget as: Rs. 220.48 million (from Bihar’s budget 2012-2013 [41]). This research study 

models an expansionary policy. It assumes that the all the money left after subtracting the 

implementation cost (equation 3.17 from 2010-2011 budget document [42]) from the available 

budget is used for buying insecticide material. This insecticide material is first consumed for 

spraying in minimum number of houses (lower bound of ) and the surplus money is used for 

optimizing. In effect, a lower implementation cost was assumed, so the surplus money can be 

used for buying extra insecticide material for optimizing. The 62 dimensional nonlinear model 

formulation is described below: 

 

  (3.49) 
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Subject to 

 

  (3.50) 

 

  (3.51) 

 

 

 

 

 

 

 

 

 

 ,        i = 1,…,31   (3.52) 

 

          ,   i = 1,…,31   (3.53) 

 

             ,   i = 1,…,31   (3.54) 

 

               ,   i = 1,…,31    (3.55) 

 

Where,  is the single budget constraint for Bihar state. Here, Rs. 96.8 million is the 

cost of implementing the spray campaign in all 31 districts. To compute kilogram per person in 

each district ( ) use actual human population of that district at the time of spray ( ). 

 

3.3 Analysis of Linear Optimization Model 

The closed form solution for the 2 dimensional optimization model is presented in this 

section. 
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3.3.1 Optimal Solution for Two-dimensional Linear Model 

The steps towards finding possible solutions of the model are described in this section. 

The optimal values of per-capita insecticide allocated at the two sites (decision variables  and 

) are the optimal solution of the model at which the maximum insecticide-induced death rate is 

achieved. Depending on the conditions based on the model parameters (Table 3.10), an optimal 

solution can occur at one of the four distinct points in the feasible domain of the model. The 

feasible domain of the insecticide-induced death rate (objective function)  is a 2-D region 

defined by constraints 3.6, 3.7, 3.8, 3.9, 3.10 and 3.13.  represents the value of the function at 

point A in the domain. The vertical axis of the feasible domain represents the per-capita amount 

of insecticide allocated at cattle sites ( ), and the horizontal axis represents the per-capita 

amount of insecticide allocated at house sites ( ).  

 
 

 

 

 

 

 

Figure 3.5. The feasible domain of the optimization model  
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The various possible cases in Figure 3.5 are described as: (a) Case I (Case II) arises 

when constraint 3.6 intersects with constraint 3.13 (between OC and OE) resulting in point A 

(point B) as an optimal solution. (b) Case III (Case IV) arises when constraint 3.6 intersects with 

constraint 3.13 and constraint 3.7 (between OC and DE) resulting in point A (point B) as an 

optimal solution. (c) Case V (Case VI) arises when constraint 3.6 intersects with constraint 3.13 

and constraint 3.8 (between OE and CD) resulting in point A (point B) as an optimal solution. (d) 

Case VII (Case VIII) arises when constraint 3.6 intersects with constraint 3.7 and constraint 3.8 

(between DE and CD) resulting in point A (point B) an optimal solution.  

Corner points O, A, and B form the feasible domain in Figure 3.5 (a) which illustrates 

Cases I and II (details in Figure 3.5 (a) caption). In cases I and II, the optimal solution can exist at 

either point A or point B. It can be seen that the total insecticide-induced death rate at point A is 

always less than or equal to the corresponding value at point E, implying, (substituting 

the points A and E into equation 3.4) or 

 

     (3.56) 

 

Similarly, the total insecticide-induced death rate at point B is always less than or equal to 

that at point C, implying, which simplifies to 

 

     (3.57) 

 

Case I (if the optimal solution occurs at point A, Figure 3.5 (a)): Since , which simplifies 

to 
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     (3.58) 

 

Note: the interpretation of the left-hand side of inequality 3.57 can be written as the ratio of 

insecticide-induced death rate achieved (( ) to insecticide amount consumed in cattle 

sheds ( ). Similarly, the right-hand side of inequality 3.57 can be understood as the same ratio 

for house sites. Hence, inequality 3.57 shows that if the optimal solution occurs at point A, then 

the insecticide-induced death rate per kilogram of insecticide consumed for cattle sheds is 

smaller than the corresponding ratio for houses. Inequality 3.57 simplifies to 

 

    (3.59) 

 

In Case I, the optimal solution occurs at point A ( ).  

Case II (if the optimal solution occurs at point B, Figure 3.5 (a)): This implies , which 

gives 

 

    (3.60) 

 

In Case II, the optimal solution occurs at point B ( .  

Figure 3.5 (b) shows Cases III and IV (details in Figure 3.5 (b) caption). The optimal 

solution in these cases can occur at either point A or point B, and it is simple to see

 , implying, 

 

   (3.61) 

 

In cases III and IV,  satisfies obviously, and it simplifies to inequality 3.56.  



 
 

 46 

Case III (if the optimal solution occurs at point A, Figure 3.5 (b)): In Case III, (inequality 

3.58) and (inequality 3.60) are easy to see. Hence, the optimal solution will 

occur at point A, as illustrated in Figure 3.5 (b). 

Case IV (if the optimal solution occurs at point B, Figure 3.5 (b)): In Case IV,  (inequality 

3.59) and  (inequality 3.56) both hold true. Hence, the optimal solution can occur at 

point B, as illustrated in Figure 3.5 (b). 

Figure 3.5 (c) shows Cases V and VI (details in Figure 3.5 (c) caption). For both these 

cases, the optimal solution can occur only at point A or at point B.  and

 follows obviously, which simplifies, respectively, to inequality 3.55 and 

 

    (3.62) 

 

Case V (if the optimal solution occurs at point A, Figure 3.5 (c)): In Case V,  (inequality 

3.58) and  (inequality 3.55) both hold true. Hence, the optimal solution exists at point A.  

Case VI (if the optimal solution occurs at point B, Figure 3.5 (c)): In Case VI,  

(inequality 3.16) and  (inequality 3.59) hold true. Hence, the optimal solution exists at 

point B. 

Figure 3.5 (d) shows Cases VII and VIII (details in Figure 3.5 (d) caption). The optimal 

solution in these cases can occur only at point A or at point B. It is obvious that  

(inequality 3.61). The total insecticide-induced death rate ( ) at points A, E, and D certainly 

satisfy the inequality: (inequality 3.60) 

Case VII (if the optimal solution occurs at point A, Figure 3.5 (d)): In Case VII, 

(inequality 3.60) and  (inequality 3.58) hold true and hence the optimal solution 

exists at point A.  
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Case VIII (if the optimal solution occurs at point B, Figure 3.5 (d)): In Case VIII,  

(inequality 3.58) and (inequality 3.61) hold true. Hence, the optimal solution exists at 

point B. 

Because some of the cases described above give the same optimal points, the results 

can be summarized as four distinct points (Table 3.10). Each row in Table 3.10 represents one 

distinct optimal solution, whose existence depends on two conditions (I and II). The optimal 

solution is a function of user defined inputs:  and . 

 
 

Table 3.10. Optimal solution for the 2 dimensional linear model. 

Existence Solution 

symbol 
 

Condition I Condition II 

  FS 1  

 
 FS 2  

  FS 3  

 
 FS 4  

  FS 5  

  INFS Infeasible 

 
 

 The solution is valid only when 

both existence conditions are satisfied. A feasible solution (FS) does not exist (INFS) if 

. 
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FS 5 (Table 3.10) can be interpreted as: surplus money left over (

 after spraying 100% of both sites (point D in Figure 3.5). Table 3.11 collects the 

notation used for the optimal solution. 

 
 

Table 3.11. Notations of the linear model’s optimal solution. 

Notation Explanation 

FS 1 Spray the maximum possible number of houses with the given budget 

FS 2 Spray 100% of houses and then maximum possible number of cattle sheds with the remaining budget 

FS 3 Spray the maximum possible number of cattle sheds with the given budget 

FS 4 Spray 100% of cattle sheds and then maximum possible number of houses with the remaining budget 

FS 5 Spray 100% of houses and cattle sheds 

 
 
3.3.2 Benefit to Material Cost Ratio (BMCR) Comparison 

In this subsection, the simple BMCR function is developed, independent of the linear 

optimization model and is used to analyze preplanned spray coverage options. The linear 

optimization model maximizes the instantaneous (on the  after spray) insecticide-induced 

sandfly death rate using the available budget. Whereas using the BMCR approach helps identify 

the cumulative number of sandflies killed (“benefit”) per unit material cost, until the  post 

spray. The optimization model assumes a constant sandfly populaiton , in contrast the BMCR 

assumes exponentially decaying sandfly population.  

The benefit in houses and cattle sheds  days after spraying depends on 

and . The amount of insecticide consumed for spraying  houses and  cattle 

sheds is Rs.  and Rs. , respectively. The cost of insecticide material consumed to spray 

in  houses and cattle sheds can be expressed as (Rs.)  and (Rs.) , 

respectively. Two contrasting extreme spray coverage options (  and ) are compared with 

each other using BMCR function.  and  denote the options of spraying insecticide only in 
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100% cattle sheds ( ) and only in 100% houses ( ), 

respectively.  

If  houses are sprayed, (using equation 3.4) 

 

  (3.63) 

 

For option , substituting  in equation 3.63. The solution of continuous form of 

equation 3.63, which gives the number of sandflies alive on the  day can be expressed as 

 

    (3.64) 

 

Where, . 

BMCR for option  can be expressed as: 

 

   (3.65) 

 

Similarly, BMCR for  can be expressed as:  

 

   (3.66) 

 

 

 

 

 

Four different scenarios (Table 3.12) can be derived from the two BMCR’s (equations 

3.65 and 3.66) corresponding to two extreme options,  and . For a given parameter set only 
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one of the four scenarios can occur. The BMCR’s for the two options become equal at a particular 

 (= ) value for scenarios III and IV only. The last two columns in Table 3.12 recommend the 

values of time post spray ( ) until which, the BMCR is higher for a particular option. When the 

BMCR is equal for both spray coverage options, the default policy of spraying houses for all 

values of  has been recommended. 

 
 

Table 3.12. A particular scenario exists if its corresponding pair of parameter conditions is 

satisfied.  

Scenario Pair of conditions satisfied Existence of  

(when 

 ) 

The BMCR is higher in 

houses for cattle sheds 

for 

I  No   

II  No   

III  Yes  
 

IV  Yes   

Note: For an existing scenario, one of the two spray options can be selected (knowing that a high 

BMCR is desirable  days after spraying). 

 
 

Where, V =  and W = ; and ;

; -spray coverage of 100%houses; -spray coverage of 100% cattle sheds 

Although the following discussion is based on assumed spray coverage options:  and 

, it can be applied for any values of preplanned spray coverage’s:  and ) 

with nonzero values of houses and cattle sheds sprayed at. The expression for BMCR’s for both 

spray coverage options will need to be derived. Additionally, if the two preplanned options are 

being tested for 31 VL affected districts, then we will have 62 expressions: 
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and . A pseudo code similar to that described in section 3.3.3 

(for the 62 dimensional linear model) can be used to rank the 62 BMCR values,  days after 

spray. 

Remark 1: In summary, after the first round of insecticide spray (at  = 0), if the objective is to 

always maintain a higher BMCR in houses, then scenarios I and II might be helpful. If scenario I 

(II) occurs, implementing  is recommended.  

Remark 2: If it is known that the sandfly density might peak  days after the first round of 

spraying (e.g., due to the start of the rainy season) and a second round of spraying is not 

possible at time  due to financial constraints, then it is advisable to implement the spray option 

which maintains a higher BMCR at time .  

Scenario III (IV) suggests that, when , the BMCR will be higher for option ( ) 

and that, when , the BMCR will be higher for option ( ). Thus: 

 

i) If scenario III exists and  days, then implementing  is recommended, because after 

 days, the BMCR is higher for  ( , (implying that by 

implementing option , a higher reduction in sandfly density per rupee invested will have 

been achieved in  days). However, if , then implementing  is recommended, 

as  . 

ii) If scenario IV exists and  days, implementing  is recommended, as 

 . However, if   days, then implementing  is recommended, as 

 . 

 

3.3.3 Pseudo Code for Multi-dimensional Linear Model 

For solving the 62 dimensional linear model, unlike section 3.3.2, benefit from spray 

campaign is defined as the “insecticide induced death rate” on day . For decision variable of the 
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 district ( and ), compute the value of the functions :  (equation 3.67) for  and  

(equation 3.68) for  , where and  are defined as: 

 

  (3.67) 

 

and  

 

  (3.68) 

 

respectively. Then sort (rank) all 62 variables in descending order, based on their respective 

function values ( ).  

The pseudo code for the 62 dimensional linear model is presented in this section. Let 

 and  denote the lower bound on decision variables  and  respectively, for the  

district.  

1. Compute the function values:  &   .  

2. Rank the 62 variables in descending order of their respective function values. 

3. Initialize   ;  as the total money available to buy insecticide material. 

4. Compute money required to buy insecticide as per lower bound for all districts using : 

 

5. Compute  ;   

6. Use  to increase the highest ranking variable till its upper bound or until . 

7. While )  

8.         Do “consider the next highest ranked variable” 

9.              If   
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10.                       Then    “spend  to increase this variable to its upper bound” 

11.                        Update  by subtracting money spent 

12.             Elseif    

13.                       Then    “increase this variable as much as possible” 

14.                       Update   

15.              End if loop 

16.   End while loop 

Table 3.13 lists the 62 variables after sorting them in descending order of their BMCR 

values, using the parameter estimates from Table 3.1 and Table 3.2. 

 
Table 3.13. Ranking of the 62 decision variables. 

Rank 
Decision 

variable 
BMCR value Rank 

Decision 

variable 
BMCR value Rank Decision variable BMCR value Rank 

Decision 

variable 

BMCR 

value 

1  6.18 E-09 17  3.16 E-09 33  1.73 E-11 49  1.13 E-11 

2  5.63 E-09 18  3.04 E-09 34  1.71 E-11 50  1.13 E-11 

3  4.96 E-09 19  3.03 E-09 35  1.71 E-11 51  1.11 E-11 

4  4.80 E-09 20  2.96 E-09 36  1.59 E-11 52  1.09 E-11 

5  4.79 E-09 21  2.86 E-09 37  1.55 E-11 53  1.06 E-11 

6  4.78 E-09 22  2.86 E-09 38  1.50 E-11 54  1.04 E-11 

7  4.70 E-09 23  2.58 E-09 39  1.46 E-11 55  9.19 E-12 

8  4.32 E-09 24  2.58 E-09 40  1.38 E-11 56  8.76 E-12 

9  4.31 E-09 25  2.57 E-09 41  1.37 E-11 57  8.58 E-12 

10  4.12 E-09 26  2.50 E-09 42  1.34 E-11 58  8.55 E-12 

11  3.99 E-09 27  2.37 E-09 43  1.29 E-11 59  7.85 E-12 

12  3.93 E-09 28  2.32 E-09 44  1.29 E-11 60  7.81 E-12 

13  3.56 E-09 29  2.20 E-09 45  1.25 E-11 61  7.59 E-12 

14  3.41 E-09 30  1.58 E-09 46  1.21 E-11 62  6.03 E-12 

15  3.38 E-09 31  1.22 E-09 47  1.15 E-11    

16  3.29 E-09 32  2.34 E-11 48  1.14 E-11    
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Note: Subscript denotes district number from Table 4.6 ;  Unit: of BMCR is “sandflies killed per 

day per sandfly per rupee”. 

 
 

From Table 3.13 above,  has the highest BMCR value.  is first used to allocate to 

 because it has the highest rank. Figure 3.6 shows the BMCR values of each of the 62 

decision  variables. 

 
 

 

Figure 3.6. 62 decision variables sorted using BMCR values. 

 
The following values were used to generate the above graph: ; 

. 

Money available after subtracting the implementation cost from the available budget is 

. For allocating insecticide material as per the lower bound on 

all  and  variables, money spent 

. Money available for optimizing is 

 , which is first used to increase 
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If after  reaches its upper bound and money was still available ( ) then it would have 

been used to raise .  was exhausted by increasing  by a value of 9.62 e-02 (0.0962 

Kg/person  1657599 actual persons in the district 13 90 Rs./kg. = Rs. 1.4351 e+007 = ). If 

each of the 31 districts was assigned two arbitrary preplanned spray coverage options each, a 

similar pseudo code could be used to choose from preplanned spray coverage options, based on 

values of and . 
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CHAPTER 4  

COMPUTATIONAL RESULTS 

 

 In this chapter, the numerical results, the uncertainty and sensitivity analysis results for 

the linear optimization model have been discussed. The optimal solutions from the 2 dimensional 

and 62 dimensional linear models are compared with those from the 2 dimensional and 62 

dimensional nonlinear models, respectively. 

 

4.1 Linear Optimization Model 

 The computational results from the linear model are presented in this section. 

 

4.1.1. Numerical Results 

Parameter estimates of the 2 dimensional linear model are collected in Table 3.1 and 

Table 3.2. The estimation process for human visitation proportion (Q), the decay rates in houses 

( ) (from Dinesh et al. [47]) and cattle sheds ( ) (from Jacusiel [48]), are described below. 

 

Parameter estimates: The human visitation proportion is defined as the sandfly population 

proportion that visits human dwellings based on their feeding preference ( ) towards human 

blood: 

 

    (4.1) 

 

 

 

 

 

In words, only 25.5% of total sandflies ( ) visit houses each day in the linear model. The 

percentage mortality of sandflies in sprayed houses (from Dinesh et al. [47]) and sprayed cattle 
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sheds (from Jacusiel [48]), on different days after DDT was sprayed, is presented in Table 4.1. 

The estimate of  are computed using the numerical results from control group C in Jacusiel 

[48]. The average number of sandflies that visited the control group houses on each day even 

after DDT was sprayed was taken as the average number of live sandflies counted on six 

consecutive days prior to DDT application. The difference between the average number of 

sandflies present prior to spraying and the sandfly count on particular day is taken as the 

proportion of sandflies killed on that particular day. 

 
 

Table 4.1. Estimating  and  using percentage mortality values from literature. 

 

Serial 

number 

 estimates for districts: Muzafferpur, Vaishali, 

Samastipur, in Bihar state, India 

 estimates from group C: two-

storied house, having a cattle shed on 

the ground floor and living quarters on 

the first floor 

  Percentage 

mortality 

  Percentage 

mortality 

1 1 0.54 2 0.855 

2 14 0.4796 3 0.711 

3 28 0.3228 6 0.653 

4 140 0.2156 7 0.596 

 
 

To all possible pairs of values in Table 4.1, a function was fitted (using Excel 2010) to 

obtain six estimates of and  (Table 4.2). The six values were averaged (column 2 and 4) to 

obtain the final, respective estimates of and . 
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Table 4.2. Estimating and  using all possible data combinations. 

 

Serial number 

  

Combination of days 

post-treatment 

Fitted  

 value 

Combination of days 

post-treatment 

Fitted  

 value 

1 1 and 14 0.009 2 and 3 0.184 

2 1 and 28 0.019 2 and 6 0.067 

3 1 and 140 0.007 2 and 7 0.072 

4 14 and 28 0.028 3 and 6 0.028 

5 14 and 140 0.006 3 and 7 0.044 

6 28 and 140 0.004 6 and 7 0.091 

 Average = 0.012 per day, SD = 0.009 per day Average = 0.081 per day, SD = 0.055 per day 

 
 

Using the estimates of Q, and , the lethal effect’s decay functions ( : equation 3.1 

and : equation 3.2) are plotted in Figure 4.1. 

 
 

 

Figure 4.1. Decay functions of the insecticide’s lethal effect over time. 
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The models developed in this dissertation are deterministic, and their parameter values 

can be found from the field apriori. Test instance (values) of input parameters were generated 

using assumed probability distributions, to study the distribution of model outputs. Two 

insecticides (DDT and Deltamethrin) are compared as well as uncertainty and sensitivity analysis 

of model output using distributions assigned to the uncertain parameters are presented next. 

 

Estimation of : Here a different definition of BMCR is used, unlike the one defined in section 

3.3.2. Using the linear optimization model’s objective function (equation 3.4), the benefit from the 

spray campaign is defined as the insecticide induced sandfly death rate on the  day after 

spray. We compute  of 2 dimensional LP model as the time at which  

and is given by:  

 

    (4.2) 

 

Using parameter values from Table 3.1 and Table 3.2, days.  

 

Uncertain parameter estimates: Only , , , , and were assumed to be uncertain 

parameters for performing uncertainty and sensitivity analysis. The female sandfly’s feeding 

preference for human hosts ( ) was assumed to follow a normal approximation to the binomial 

proportion distribution. Normal distribution was assumed for sandfly lifespan based on the data 

collected on female sandflies fed on mouse blood as reported by Srinivasan and Panicker [60]. 

,  and Ct0 were assumed to follow a truncated (at zero) normal distribution. The six estimates 

of  and  were assumed to follow a discrete uniform distribution, since no priori information 

was available on their distribution as presented in Marino et al. [61], with each of the six estimates 

having an equal probability of occurrence. As the budget amount that might be available for each 
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future year’s spray campaign is unknown, we arbitrarily assume a uniform distribution for . 

The estimation of the minimum and maximum values of  is presented next.  

 

Estimation of minimum and maximum insecticide spray campaign costs: The maximum 

insecticide spray campaign cost (incurred when 100% of both sites are sprayed): 

 (using estimates from Table 3.1, Table 3.2 and Table 

3.6). FS 5 occurs if : surplus money is left after the spray campaign. If a small 

amount of money is allocated to the purchase of insecticide material, the minimum cost of the 

insecticide spray campaign is  (using 2010-2011 budget 

document [42]). INFS occurs if : the model cannot find a feasible solution. The 

possible range of  values are shown in Figure 4.2. 

 
 

 

Figure 4.2. Range and distribution assumed for . Figure not drawn to scale. 

 
 
A uniform distribution is assumed for : A minimum value is estimated using the material cost 

from 2010-2011 budget document [42] (Rs. 114 million) whereas the maximum value is assumed 
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as 10% more (considering inflation) than the total fund allocation of Bihar’s budget 2012-2013 

[41] (Rs. 497.8 million). The 2012-2013 VL budget of Bihar state included funds allocated to: 

spray pumps and accessories, case search, operational costs for the spray campaigns assuming 

two rounds of spraying per year, monitoring and evaluation, supervisor travel expenses, training 

for field workers, information, education & communication activities for Kala-Azar and loss of 

wages. 

 

Comparison of insecticides: The results from the model are: (kilograms per capita) (decision 

variables: ( )), over the maximum insecticide-induced death rate (objective function) for an 

available amount of state budget. In order to yield these results, the model requires two inputs, 

the decay time ( ) and available budget ( ). The model checks for the pair of conditions 

satisfied in Table 3.10 and uses the corresponding feasible solution. The comparison of optimal 

insecticide-induced death rate for different scenarios  days after spraying is presented in Table 

4.3. The results for scenario IV is derived from estimates in Table 3.1, Table 3.2 and Table 3.6 

whereas those for scenarios I, II, and III are obtained using hypothetical values.  

 
 

Table 4.3. Optimal insecticide allocation ( ) for different scenarios  

  ( ) 

Scenario I Scenario II Scenario III Scenario IV 

DDT Deltamethrin DDT Deltamethrin DDT Deltamethrin DDT Deltamethrin 

30 0.41 e-02 

(0.41 e-

02, 0) 

0.83 e-03 (0.45 

e-03, 0) 

0.23 e-01 

(0, 0.64 e-

02) 

0.47 e-03 

(0, 0.71 e-03) 

0.97 e-03 

(0.41 e-02, 

0) 

0.19 e-03 

(0.45 e-03, 0) 

0.39 e-02 

(0, 0.64 e-

02) 

0.10 e-02 

(0, 0.71 e-03) 

90 0.87 e-03 

(0.41 e-

02, 0) 

0.17 e-03 

(0.45 e-03, 0) 

0.50 e-02 

(0, 0.64 e-

02) 

0.1 e-03 

(0, 0.71 e-03 ) 

0.50 e-04 

(0, 0.64 e-

02) 

0.1 e-04 

(0, 0.71 e-03 ) 

 

0.15 e-02 

(0.41 e-02, 

0) 

0.41 e-03 

(0.45 e-03, 0) 

Note: ( ,   varied). Unit:  is kilograms / person,  is kilograms / cattle. 
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As per the 2 dimensional linear model, the maximum possible insecticide-induced death 

rate achieved by DDT (0.15 e-02 sandflies killed/day/sandfly) in Bihar remains about three (3.72) 

times that achieved by Deltamethrin (0.41 e-03 sandflies killed/day/sandfly) up to 90 days after 

spray. For scenario IV, taking the upper bound on cost ( ) to be Rs. 114 million and  

days, the model recommends 0.41 e-02 kilograms per person of DDT or 0.45 e-03 kilograms per 

person of Deltamethrin (Table 4.3). Comparing with present allocation policy in Bihar as 

presented in the W.H.O. report [7]: 0.375 e-01 kilograms of DDT per person and 0 kilograms of 

DDT per cattle and spray of insecticide twice a year with a 90-day gap between sprays. Using 

values:  = 90 days, ( ) = (0.0375,0) and parameter values from Table 3.1 and Table 3.2 into 

equation 3.3, the maximum achievable increase in the natural sandfly death rate is q = 18 %. This 

is an estimate of percentage increase in the natural sandfly death rate effective in Bihar when the 

second round of spray starts. Substituting ( ) = (0.0375,0) in equation 3.4, the number of 

residential houses that can be sprayed with DDT is estimated as 2,385,004 (i.e., 30% of all 

residential houses). Also, if the number of houses and cattle sheds that can be covered within the 

available budget, is substituted in the left-hand side of equation 3.3, the percentage increase in 

the death rate that can be achieved a certain number of days after spraying insecticide can be 

estimated. 

Optimal insecticide-induced death rate versus budget constraints: Although the models 

developed in this dissertation can be used for qualitative analysis, the example in Figure 4.3 

shows how the percentage increase in the death rate increases when more money is available for 

executing the insecticide spray campaign.  
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Figure 4.3. Expected optimal value of the insecticide induced death rate.  

 
 
In Figure 4.3 the expected optimal values of insecticide-induced death rate is obtained by 

averaging the results from  Monte-Carlo samples.  was assumed as 90 days. The four 

uncertain parameters ( ) were assigned assumed distributions. The value of  

was varied. The insecticide-induced death rate rises almost linearly with an increase in the 

available budget. It reaches a maximum value of 0.064 sandflies dead/day/sandfly when 100% of 

both sites can be sprayed at using available budget. Even if more money were to become 

available (i.e., above Rs. 594.4 million), the insecticide-induced death rate does not exceed its 

maximum value, and surplus money would be left after completing the spray campaign. The 

insecticide-induced death rate increases very little, beyond  Rs. 500 million.  

 

4.1.2 Uncertainty and Sensitivity Analysis 

As all parameter estimates used in the linear model do not relate to the transmission 

dynamics of VL in Bihar, the resulting variations in the input parameter estimates are modeled by 

treating them as random variables as described by Sanchez and Blower [62]. Models used for 
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recommending optimal intervention strategies must account for parameter uncertainty as 

presented by Luz et al. [63]. Uncertainty analyses was performed to investigate the uncertainty in 

the model outputs due to assumed distributions in the input parameters. The model outputs 

considered for uncertainty analysis were the occurrences of the feasible solutions (FS 1, FS 2, FS 

3, and FS 4) and the distribution of the objective function value (insecticide-induced death rate). 

Multivariate sensitivity analysis is performed by sampling repeatedly from uncertain parameter 

distributions and simulating the model with each parameter value set, to identify input parameters 

that are most statistically influential the magnitude of the output parameters. Partial rank 

correlation coefficient (PRCC) was used as a sensitivity index for estimating the linear association 

strength between the input ( , , , , and ) and output parameter ( ) as presented by 

Marino et al. [61].  

 

Parameter distributions: independent samples were drawn from the probability distributions 

assigned to the five uncertain parameters ( , , , , , and ) using a Monte-Carlo 

simulation. The decision variable statistics and the percentage occurrences of each of the five 

possible solutions, are plotted in Figure 4.4. Percentage distributions of all feasible solutions were 

computed by averaging 10 Monte-Carlo samples each with a size of sampled parameter 

values. Figure 4.4, Figure 4.5 and Figure 4.6 are generated using  = 90 days and DDT as 

insecticide. 
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Figure 4.4. Percentage occurrences of the four feasible solutions of the model. 
 
 

In Figure 4.4 ,  stands for insecticide- induced death rate. Variance is calculated only 

when the decision variable or insecticide induced death rate varies with the uncertain parameters. 

For the distribution assigned to , INFS and FS 5 cannot occur. Using the input parameter 

distributions, FS 1 occurs most often (76.46%), followed by FS 4 (14.97%), FS 3 (5.27%), and FS 

2 (3.3%). Hence, spraying the required percentage of houses only is recommended the most 

number of times (in conjunction with the model solution presented in Table 3.11). 

 

14.97 

5.27 

3.30 

76.46 

0 20 40 60 80 100

FS
4

FS
3

FS
2

FS
1

% of occurence 

(  ( 0.06, 0 ) , variance( )  = 2 E−08 ,   = 0.031  , variance( ) 

( ( 0.124, 0.004)   7.1  E - 10 , 
 = 0.06  , variance( ) =  5.9 E -07   

( (0 , 0.032)  variance( ) =  1 E -07,   = 0.015  , 
variance( ) =  4.19E -08   

( ( 0.046, 0.057) , variance( ) =  1 E -07 , 
 = 0.044  , variance( ) =  3.3 E -08   
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Distribution of model outputs: The occurrences of the six possible model solutions is plotted 

(Figure 4.5), using  values in the range: ( ). 

 
 

 

Figure 4.5. Occurrences of the six possible solutions versus . 
 
 

When is between Rs. 111.0 million and Rs. 181.4 million, the optimal solution is 

either spraying the maximum possible number of houses only (80%) or spraying the maximum 

possible number of cattle sheds only (20%). The optimal solution recommended the highest 

number of times (80%), when  ranges: from Rs. 181.4 million to Rs. 463.1 million, is “spraying 

only the maximum possible number of houses” ; between Rs. 463.1 million and Rs. 590.0 million, 
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is “spraying 100% of houses and then spraying the maximum possible number of cattle sheds”. 

When  is Rs. 630.0 million, the optimal solution is spraying 100% of houses and 100% of 

cattle sheds. For   = 30 days and   = 90 days, the distributions of the optimal insecticide 

induced death rates are plotted in Figure 4.6.  

 
 

 

Figure 4.6. Distributions of the optimal insecticide induced death rate. 
 
 

Figure 4.6 shows the distributions of the optimal insecticide induced death rate when  = 

30 days and  = 90 days. Both distributions are generated by using a Monte-Carlo sample size of 

 from input parameter distributions and DDT as the insecticide. The mean death rate is 

observed to reduce from 0.0924 sandflies killed per day per sandfly to 0.0334 sandflies killed per 

day per sandfly for the same budget distribution. If the second round of spraying were carried out 

after a 30-day gap (instead of the current 90-day gap), then fewer sites might need to be covered, 

because the optimal insecticide induced death rate is 2.7 times that after 90 days. 

 

Sensitivity analysis: The sensitivity of the model outcome to the uncertainty in input parameter 

estimates is examined in this section. Uncertain parameters only affect the pair of conditions 

(Table 3.10) which make one of the five distinct solutions to be optimal. As the decision variables 

are not directly dependent on any of the four uncertain parameters chosen, the objective function 
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value (the insecticide induced death rate) was chosen as an output parameter in the sensitivity 

analysis. 

 
 

 

Figure 4.7. PRCC values of insecticide-induced death rate. 

 
 
Figure 4.7 shows the PRCC values of insecticide-induced death rate, when a particular 

feasible solution (FS) from Table 3.10 occurs. A Monte-Carlo sample size of  was used. 

PRCC values of insecticide induced death rate with respect to its corresponding uncertain input 

parameters are shown in Figure 4.7. For FS 1, the PRCCs associated with sandfly’s feeding 

preference for human blood and insecticide’s decay rate in houses are statistically significant at 5 

% level. The input parameter: decay rate of the insecticide’s lethal effect in houses (negatively 

correlated) has the most statistical influence ( ) on the magnitude of the insecticide 

induced death rate because of its estimation uncertainty. PRCCs associated with all three input 

parameters are statistically insignificant for FS 2 and FS 3. The sandfly’s feeding preference for 

human blood (positively correlated) and decay rate of the insecticide’s lethal effect in houses 
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(negatively correlated) have the most statistical influences ( ) in determining the 

magnitude of the insecticide induced death rate, for FS 2. None of the input parameters are 

influential in determining the magnitude of the insecticide induced death rate, for FS 3. The decay 

rate in cattle sheds is statistically insignificant for FS 4. Also, the decay rate of the insecticide’s 

lethal effect in houses (negatively correlated) has the most statistical influence ( ) on 

the magnitude of the insecticide induced death rate. 

 

4.2 Simulation Results of Differential Equations Model 

We have a system of first order, non-autonomous, nonhomogeneous and nonlinear 

coupled differential equations. The above system was simulated in Matlab 2009. Since ode45, a 

variable-step solver did not produce accurate solutions; ode 5, an explicit fixed step continuous 

solver was used for solving the above system. ode5 produced accurate results with the default 

step size in reasonable computational time.  

 
Figure 4.8 Human and sandfly populations with and without control.  
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Figure 4.8 is plotted by assuming that spray is done on the  day (1st February). 

(Spray coverage is assumed as: . For the system of differential equations 

without any intervention, the basic reproduction number’s expression (equation 4.3) was derived 

as 

 

(4.3)

 

Using parameter estimates from Table 3.3 and Table 3.8 and initial conditions for the set 

of equations 3.37 to 3.43, . Since , the infected humans and infected sandflies 

reach a non-zero steady state vale and the disease persists in the population, without intervention 

(Figure 4.8). 

 
4.3 Nonlinear Optimization Model 

The estimation process for parameters used in the nonlinear optimization model are 

presented in this section.  

 

4.3.1 Parameter Estimates 

Estimation of human recruitment rate ( ): Using the crude birth rate from the Profile of Bihar state 

[64] as 28.9 per 1000 persons and the total population of Bihar state from the Census of India, 

2011 [52] as 103804637, the annual birth rate is computed as 2999954 ( = 103804637  28.9 / 

1000) persons born per year. The difference between annual birth rate (2999954) and out-

migration rate of Bihar (1833994) from the migration tables in the Census of India, 2001 [65] 

(1833994 persons migrating out of Bihar per year) is estimated as the human recruitment rate 

(2999954 persons born per year - 1833994 persons migrating out per year = 1165960 persons 

added to Bihar per year = 3194.41 persons added to Bihar per day). 
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Estimation of decay rate of DDT’s repellent effect ( ): The percent reduction of Phlebotomus 

perniciosus landings on dogs treated with 65% Permethrin solution was used to estimate the 

decay rate of repellent effect of DDT on humans from Molina et al. [25]. (Note: Value for day 14 

was excluded as it was not consistent with the decreasing trend of other data values). 

 
 

Table 4.4. Estimating  using percentage reduction of landings. 

Serial number  estimates 

Post treatment days,  % reduction of landings 

1 7 78.5 

2 21 42.1 

3 28 33.1 

4 35 14.6 

5 49 1.2 

 
 

To all possible pairs of values in Table 4.4 above, a function was fitted (using Excel 2010) 

to obtain ten estimates of . The ten values were averaged (Table 4.5) to obtain the final 

estimate of . 

 
 

Table 4.5. Estimating  using all possible data combinations. 

Serial 
number 

 

Combination of days 
post-treatment 

Fitted  
 value 

1 7 and 21 0.045 
2 7 and 28 0.041 

3 7 and 35 0.06 
4 7 and 49 0.1 
5 21 and 28 0.034 
6 21 and 35 0.076 

7 21 and 49 0.127 
8 28 and 35 0.117 
9 28 and 49 0.158 

10 35 and 49 0.178 
  Average = 0.0936 per day, SD = 0.0506 per day 
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Estimated cattle population and number of residential houses for 31 VL affected districts: First, 

using cattle population data of 21 VL affected districts from 1982 cattle census of Bihar, the cattle 

population was estimated for the remaining 10 VL affected districts* (Table 4.6). Next, total cattle 

population from the 18th Livestock census [51] was distributed in the same proportion as the 1982 

cattle census [43] for each district. Number of residential houses for Arwal district^ (Table 4.6) 

was estimated by using data for 30 VL affected districts of Bihar using 1991 census of India [44]. 

The total of houses from 2001 census of India [50] was distributed in the same proportion as the 

1991 census. 

 
 

Table 4.6. Estimated district-wise number of cattle and residential houses. 

Serial no. District name Total cattle population 

(1982 census) [43]  
Distributing the total 

18th livestock 2007 

census population in 

the same proportion as 

the 1982 cattle 

population 

District-wise number of 

occupied residential 

houses and households 

in reorganized Bihar, 

according to 1991 

census [44] 

Distributing the total no. 

of houses in 2001 

census in the same 

proportion as the 1991 

census 

 

1 Araria* 803617.52 620950.22 282665 562585.07 

2 Arwal* 803617.52 620950.22 264453.8333^ 526339.58 

3 Banka* 803617.52 620950.22 199407 396877.58 

4 Begusarai 410004 316807.52 250058 497687.71 

5 Bhagalpur 1413411 1092133.83 290086 577355.00 

6 Bhojpur 827051 639057.13 211766 421475.56 

7 Buxar* 803617.52 620950.22 128113 254981.91 

8 Darbhanga 511578 395293.12 388108 772447.12 

9 E. Champaran 988608 763891.21 449794 895220.09 

10 Gopalganj 528199 408136.06 211637 421218.81 

11 Jehanabad* 803617.52 620950.22 159491 317433.20 

12 Katihar 725337 560463.36 313858 624668.15 

13 Khagaria 317622 245424.53 170065 338478.51 

14 Kishanganj* 803617.52 620950.22 186858 371901.44 

15 Lakhlsarai* 803617.52 620950.22 100323 199671.77 

16 Madhepura 497505 384419.00 196894 391875.98 

17 Madhubani 839201 648445.36 446881 889422.38 

18 Munger 1271079 982154.78 148913 296379.92 

19 Muzaffarpur 815846 630399.09 427110 850072.38 
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Table 4.6—Continued 
20 Nalanda 555818 429477.09 262322 522096.62 

21 Patna 752078 581125.96 474943 945273.87 

22 Purnea 1985029 1533819.47 337407 671537.47 

23 Saharsa 1050076 811387.15 198611 395293.31 

24 Samastipur* 803617.52 620950.22 369199 734812.74 

25 Saran 586035 452825.57 283296 563840.94 

26 Sheohar* 803617.52 620950.22 54745 108958.38 

27 Sitamarhi 753938 582563.17 288622 574441.22 

28 Siwan 495337 382743.80 243724 485081.22 

29 Supaul* 803617.52 620950.22 229095 455965.28 

30 Vaishali 541988 418790.73 265543 528507.34 

31 W. Champaran 1010228 780596.85 364081 724626.44 

 Total 24912143.20 19249457 [50] 8198068.833 16316527 [49] 

Note: *For 10 districts marked with (*), the values were missing in the 1982 cattle population [43] and were estimated 

using the average of 21 VL affected districts of Bihar.  

^ For Arwal district, the number of residential houses was estimated using the average of the 30 district’s value from 1991 

census of India [44] . 

Assumed 20% growth in cattle population of each district for obtaining numerical results 

 
 
Estimation of upper bound spray campaign budget ( ): The various budget heads enumerated 

in Bihar’s budget 2012-2013 [41] are: 

 
 

  Table 4.7 Budget allocation as per Bihar’s budget 2012-2013 [41]  

 Serial no. Budget head Total money allocated 

1 Spray pump & accessories 4000000 

2 Operational cost for spray including spray wages (KA DDT spray, May-

June, Part I) 

211484715 

3 Monitoring and evaluation 1500000 

4 Mobility & supervision  500000 

5 Specific IEC and Advocacy for Kala-azar (VL) 3000000 

 Total 220,484,715 

Note: IEC stands for Information, education and communications  
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Estimation of : Since the analytic expression of the objective function for the 2 dimensional 

nonlinear model is unknown, the value of  was estimated by conducting simulation runs using 

parameter set in Table 3.1, Table 3.2 and Table 3.3,  . 

 

4.3.2 Check for Concavity of Objective Function 

Although the number of houses and cattle sheds sprayed at can be only integers, we relax the 

integrality constraint on the decision variables. By definition, the function  

(equation 3.44) defined on the (real numbered) feasible domain, is concave, if for every 

 in its domain and every step, , the below inequality is satisfied. 

 

  (4.4) 

 

 

 

 

 

In words, the interpolation of the function values along the line segment from  to  

should not overestimate for a concave function. Monte Carlo simulations were carried out with a 

sample size of 50000 randomly selected grid points in the feasible domain of the function 

(equation 3.44). Since each objective function value is computed by using ode5 function twice 

and simpsons function once, the concavity was violated for 880 times out of 50000 simulations 

(0.0176% of the total simulations). Out of the 880 violated grid points, the right-hand side of 

inequality 4.3 was larger than the left-hand side by a maximum percentage of 0.0099127 %. 

These violations are within the numerical errors (in Matlab) introduced due to 6 function calls to 

compute the right-hand side and 3 function calls to compute the left-hand side. Consequently, we 

would assume that the function presented in equation 3.44 is concave over the region being 

considered. Sequential quadratic programming algorithm from Matlab toolbox was used to solve 

both the 2 dimensional and 62 dimensional nonlinear optimization models. Since sequential 

quadratic programming is a gradient based method, it requires the objective function equation to 
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evaluate the gradient. Matlab function “interp2” was used to generate an approximate equation of 

the response surface by using cubic spline interpolation.  

 

4.4 Comparison of Optimization Models 

The optimal solution of 4 optimization models formulated in section 3.2 are compared and 

analyzed in this section. 

 

Comparison between the Linear and Nonlinear model:  The optimal number of sites to be sprayed 

at recommended by the two models will be compared in this section. There are some differences 

between the two models. 

1) The most important difference is: the nonlinear model is dynamic whereas the linear 

model is static with respect to time. The output from the nonlinear model is an 

accumulation of all days till the end of simulation. In the nonlinear model only the cattle 

population is static. In the linear model, the insecticide induced death rate on the final 

day, is an instantaneous value and not a function of time.  

2) The repellent effect is ignored in the linear model.  

3) The objective function in the linear model is insecticide induced death rate whereas in the 

nonlinear model it is the cumulative number of human infections averted. Apart from the 

objective functions all constraints are identical in both models. 
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Figure 4.9 Simulation time horizons. Figure not drawn to scale 

 
 
Figure 4.9 shows the simulation time horizons for linear and nonlinear models. When 

comparing the two models, the value of  was taken as 90 days for the linear model and 122 for 

the nonlinear model. Figure 4.9 above shows that the insecticide effect stays for 90 days in both 

models, as the spray takes place on the 32nd day in the nonlinear model. Even though the time 

horizon is different for both models, the results from both optimization models is comparable 

because, the insecticide effect stays in both models for a 90 day period. The time between the 

two rounds of spray as per the present policy in Bihar is also 90 days. 

The comparison of numerical results from the 4 models are presented next. The two-

dimensional linear and nonlinear models are compared in Table 4.8.  

 

 
 
 
 



 
 

 77 

Table 4.8. Comparing optimal values from two-dimensional optimization models. 

 Two-dimensional optimization model 

Function value compared 2 dimensional linear 2 dimensional nonlinear 

 (0.0156, 0) (0.0138, 0.0069) 

( ) (2578176 , 0)  (2279100 , 598100) 

Total DDT allocated  (Unit: metric tons) 1374.16 1374.15 

Maximum insecticide induced sandfly death 

rate, ^  

 

 

Maximum insecticide induced sandfly death 

rate, ^  

  

  

Maximum human infections averted, 

a( )
 
  

  

 

 
 
The 62 dimensional linear and nonlinear models are compared in Table 4.9. 

 

Table 4.9. Comparing optimal values from multi-dimensional optimization models 

 Multi-dimensional optimization model 

Function value compared 62 dimensional linear 62 dimensional nonlinear 

( ) , 

 

(2578176, 0) ( 2279130 , 598120 ) 

Total DDT allocated  (Unit: metric tons) 1374.16 1374.17 

Maximum insecticide induced sand fly death rate: 

^   ,  
 

 

Maximum insecticide induced sand fly death 

rate: ^  ,    

Maximum human infections averted: 

  ,  
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Note: ^ Unit of Insecticide induced death rate: Sandflies dead per day per sandfly.  Unit of human 

infections averted: Person days. Insecticide effect stays for 90 days in both models. = Rs. 

220.48 million. Assuming 1st  January as the first simulation day and insecticide is sprayed on 1st 

February.   have been computed using actual human and cattle population, respectively. 

 is not computed using affected human population.  for the 62 

dimensional model are obtained by adding the optimal  for each of the 31 

VL affected districts. 

 
 

The insecticide induced death rate achieved by the 2 dimensional linear model’s solution 

(on the last day of the simulation) is 12 % higher than that achieved by the 2 dimensional 

nonlinear model’s solution. The insecticide induced death rate achieved by the 62 dimensional 

linear model’s solution (on the last day of the simulation) is 27 % higher than that achieved by the 

62 dimensional nonlinear model’s solution. The number of human infections averted by the 2 

dimensional nonlinear model’s solution is 22 % higher than that achieved by the 2 dimensional 

linear model’s solution. The number of human infections averted by the 62 dimensional nonlinear 

model’s solution is 40% higher than that achieved by the 62 dimensional linear model’s solution.  

 
As shown in Figure 4.10, the linear model aims to maximize the instantaneous value of 

insecticide induced death rate on the final day. The nonlinear model aims to maximize the 

difference between the cumulative number of human infections without and with intervention. 

Henceforth, the abbreviation ‘LP’ and ‘NLP’ will be used to denote “linear optimization model” and 

“nonlinear optimization model”, respectively. 

 
 



 
 

 79 

 
 

Figure 4.10. Comparing the insecticide induced death rates  

 
 
Figure 4.10 plots the values of insecticide induced death rate, when the optimal solutions 

from the linear and nonlinear models are implemented. The NLP aims to find optimal spray 

coverage ( ) such that the area between the no spray curve: ( (0 , 0 , 122)) and with 

spray curve:  ( ) is maximized (Figure 4.11). 
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Figure 4.11 Area between curves . Figure not to scale, drawn only for 

explanatory purpose. 

 
 
Figure 4.11 shows the area between curves (0 , 0 , 122) and  (2578176, 0, 122) = 

224 million person days averted. Area between curves (0, 0, 122) and  (2279100, 

598100, 122 ) = 274 million person days averted. The initial conditions at  are from 1st January, 

2007 data and spray is assumed to take place on 1st February.  

 

Comparison between the 2 dimensional LP and NLP model results: Both optimal solutions result 

in approximately equal metric tons of insecticide required as they have the same available 

budget. The time taken for the infected human and infected sandfly populations to become less 

than one (effectively extinct), is almost the same (Figure 4.12).  
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Figure 4.12 Time taken by the infected populations to become less than one. 

 
 
Figure 4.12 shows the time (days) taken by the infected human and infected sandfly 

populations to become less than one. With LP model’s solution, the infected human and infected 

sandfly population becomes less than one earlier, as compared to the NLP model’s 

implementation (Figure 4.12). The fundamental difference between the two dimensional LP and 

NLP models is that, (for a finite time horizon) the LP model recommends spraying in maximum 

possible number of houses first with the available money, whereas the NLP model recommends 

spraying in maximum possible number of cattle sheds first for the available money. If enough 

money is available to spray in all houses then the LP model would recommend spraying in all 

houses and maximum possible number of cattle sheds. Similarly if enough money is available to 

spray in all cattle sheds in Bihar state, then the NLP model will recommend to spray in all cattle 

sheds and maximum possible number of houses.  

The reason for these differences is explained next. The cumulative area under the 

function:  is larger with the implementation of the LP model’s optimal solution 

(Figure 4.13). This implies that more sandflies are killed by implementing the LP model’s optimal 
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solution. The cumulative area under the  curve is a metric similar to the BMCR 

function developed in section 3.3.2, the difference being that the cumulative area has the unit: 

“cumulative number of sandflies killed per sandfly” versus BMCR function’s unit: “cumulative 

sandflies killed per unit cost of insecticide material.” 

 
 

 
 

Figure 4.13. Cumulative area covered by  for the two model’s solutions. 

 
 
Since , more sandflies are killed 

by implementing the optimal solution from the LP model, in the long term future. So, the LP 

model’s optimal solution should also have less number of human infections incurred ( (t) in figure 

4.14). However, the “cumulative number of human infections incurred” (blue curve in the below 

graph) is higher at the end of 10000 days. This can be explained by comparing the values of 

 by the time ( days) the number of infected sandflies become less than 

one.  
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Figure 4.14. Comparison of cumulative number of human infections incurred. 

 
 
The cumulative number of human infections incurred without spray ( ) ; 

implementing LP model’s optimal solution ( ) ; implementing the NLP model’s 

optimal solution ( ) are compared in Figure 4.14. Spray is done for both 

models on 1st February (  32). By the time the infected sandfly population becomes less than 

one ( t = 1710 days ), the NLP model’s optimal solution ( ) has already 

saved 5537.2 million person days (area between  and  

in Figure 4.14), whereas the LP model’s optimal solution has saved 4818.4 million person days 

(area between  and ( ) in figure 4.14). These figures are 

obtained by computing the cumulative area between the curves,  (Figure 4.15). 
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Figure 4.15. Cumulative number of person days averted by the two model’s solutions. 

 
 
In 1710 days, the implementation of NLP solution has gained 718.8 million person days 

over the implementation of the LP model. After 1710 days, the number of infected sandflies for 

both systems shown above (blue and red curves) will continue to approach zero. Figure 4.16 

shows the “number of humans that get infected” on different days when the two optimal solutions 

are implemented. 
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Figure 4.16 . Comparing the number of humans getting infected at time . 

 
 
Since the number of human infections at time t (given by the disease transmission term 

), for the NLP model’s solution is increasing by extremely small amounts (of the order 

of ), theoretically in the long term future (as ), the area under the NLP solution’s 

curve  will become larger than that under the LP 

solution’s curve . Therefore, after an extremely long time, the number of 

infections averted by the LP model’s solution will be larger than those averted by the NLP model’s 

solution:  as the blue and red curves will intersect in 

figure 4.15 above. The curves  intersect after an extremely long time, because 

after 1710 days, the number of sandflies is between 0 and 1, so the LP model’s solution takes a 

long time to make up for the difference of 718.8 million person days. Hence, the LP model’s 

solution kills more sandflies (Figure 4.13) and in the long term future also saves more humans 

from getting infected. 
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Figure 4.17 shows the time taken for the infected sandfly population to become less than 

one, as more money is available to conduct the spray campaign. 

 
 

 

Figure 4.17 Time taken by infected sandflies to become less than one versus budget.  

 
 
Figure 4.17 shows the time taken for the infected sandflies to become less than one 

versus available budget, using the 2 dimensional nonlinear model. Since the time taken by the 

infected sandfly population to become less than one should reach a non-zero value, after which it 

is not expected to reduce even if more budget is available, an exponential function might be a 

good fit for the above data. However, due to uncertainty in parameter estimates and 

approximation errors, the trend in data (Figure 4.17) does not seem to be exponential for the 

range of budget considered. 

 

Comparing the 62 dimensional linear and nonlinear models: A graph similar to Figure 3.4 can be 

drawn for each of the 31 VL-affected districts. For each of the 31 graphs the slope (BMCR) of the 

objective function is variable in the and  directions. The first reason for this is a difference in 
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the number of sites available for spraying in each district. The ratio of houses to cattle sheds is 

minimum for district Sheohar (0.8) and maximum for district Darbhanga (8.9). The second reason 

being: there is a difference in insecticide material cost for spraying in each house (

) and each cattle shed ( ). This model considers each district separately, 

and recommends spraying the most efficient districts (  or  variables with highest BMCR values) 

first, and thus achieves a 37 times higher insecticide induced death rate on the last day as 

compared to the 2 dimensional linear model. Since the 62 dimensional nonlinear model allocates 

insecticide cost-effectively across 62 variables, the number of human infections averted is 34% 

higher than those averted by the 2 dimensional nonlinear model. Table 4.10 compares the 

optimal allocation  recommended by the 62 dimensional LP and NLP models, 

respectively.  

 
 

Table 4.10. Optimal allocation from the multi-dimensional models. 

District 
number 

District 
name 

Lower 
bound of  

for each 
district 

Linear model Nonlinear model Upper 
bound on  

for each 
district 

    

1 Araria 151519.137 151519.1 0 151520 0 134989.2 

2 Arwal 2894.746717 2894.747 0 2890 0 134989.2 

3 Banka 894.8639775 894.864 0 890 99950 134989.2 

4 Begusarai 70305.394 70305.39 0 70310 0 68871.2 

5 Bhagalpur 10257.76266 10257.76 0 10260 127530 237420.4 

6 Bhojpur 14782.31707 14782.32 0 14780 93140 138925.5 

7 Buxar 7320.731707 7320.732 0 7320 78570 134989.2 

8 Darbhanga 112754.4794 112754.5 0 112750 0 85933.29 

9 E. 
Champaran 

184353.8696 184353.9 0 184350 0 166063.3 

10 Gopalganj 48796.57598 48796.58 0 48800 0 88725.23 

11 Jehanabad 2621.271107 2621.271 0 2620 38840 134989.2 

12 Katihar 79787.68762 79787.69 0 79790 0 121839.9 

13 Khagaria 24503.11914 229583.3 0 24500 24410 53353.16 

14 Kishanganj 50135.45966 50135.46 0 50140 48400 134989.2 

15 Lakhlsarai 7136.749531 7136.75 0 7140 18370 134989.2 
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Table 4.10—Continued 

16 Madhepura 100696.9981 100697 0 100700 0 83569.35 

17 Madhubani 96855.67542 96855.68 0 96860 0 140966.4 

18 Munger 6827.040338 6827.04 0 6830 0 213511.9 

19 Muzaffarpur 190185.5769 190185.6 0 190190 0 137043.3 

20 Nalanda 22191.90901 22191.91 0 22190 0 93364.58 

21 Patna 74597.91276 74597.91 0 74600 0 126331.7 

22 Purnea 158880.394 158880.4 0 158880 0 333439 

23 Saharsa 97171.01313 97171.01 0 97170 6360 176388.5 

24 Samastipur 133988.6961 133988.7 0 133990 0 134989.2 

25 Saran 101103.7992 101103.8 0 101100 0 98440.34 

26 Sheohar 14976.64165 108958.4 0 14980 0 134989.2 

27 Sitamarhi 127137.3827 127137.4 0 127140 0 126644.2 

28 Siwan 104219.1839 104219.2 0 104220 0 83205.17 

29 Supaul 56946.03659 56946.04 0 56950 62550 134989.2 

30 Vaishali 144571.4353 144571.4 0 144570 0 91041.46 

31 W. 
Champaran 

80700.4925 80700.49 0 80700 0 169695 

  Total 2279114 2578176 0 2279130 598120 4184665 

    Kg. required 1374176.8 0 1214776.3 159398.98   

  Metric tonnes 
required 

1374.17 0 1214.7 159.4  

  Grand total 
(Metric 
tonnes) 

1374.17 1374.1  

Note: The difference between total  (2279130) in column 6 and the lower bound of  

(2279114) in column 3, is due to approximation errors introduced by Matlab functions: ode5 and 

simpsons. In the 62 dimensional LP model, only district 13 (Khagaria), is allocated insecticide 

above its lower bound for houses. All other districts have an allocation equal to the lower bound 

based on their affected human population. Simulation time horizon,  

 
 
After allocating as per the lower bound, the 62 dimensional NLP model invests every additional 

dollar of the remaining money, in one of the 62 decision variables ( ) which 

increases the total number of infections averted (objective function). As the slope of the objective 

function for each district (Figure 3.4) is variable over the feasible domain, the model chooses to 
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increase one of the decision variable’s value as long as there is no other decision variable that 

provides a higher increase in the objective function’s value per dollar invested. 
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CHAPTER 5  

DISCUSSION AND FUTURE RESEARCH 

In this dissertation mathematical models were built and analyzed to identify the optimal 

insecticide allocation and number of sites to be covered during an insecticide spray campaign. 

The models developed provide different perspectives on optimizing insecticide allocation. The 

results can be better predicted if data is collected to find a good estimate and distribution of 

uncertain parameters. Experts from Veterinary and toxicology area need to be consulted to 

provide precautions and guidelines to be followed when spraying insecticide in cattle sheds, such 

that the quality of products obtained from cattle are not adversely affected. The minimum number 

of houses that should be sprayed with insecticide has been computed using the present policy of 

insecticide allocation in Bihar (to avoid any political fallback). This research study proposes an 

expansionary policy, since only the money left after spraying in minimum number of houses is 

available for optimizing. 

 

5.1 Linear Optimization Model 

The discussion and future work of the linear optimization model are presented in this 

section. 

 

5.1.1 Discussion on the Linear Model 

Leishmaniasis is a vector borne disease which is in urgent need of public health policy 

because of its impact on the economy and health of the populations of affected developing 

countries. Effective and optimal insecticide intervention might be able to achieve the maximum 

possible death rate in the vector population and thus help in reducing the risk of disease 

transmission to humans. The linear model provides a novel mathematical framework to obtain 
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three types of results, where the first result may help in choosing a cost effective (optimal) 

insecticide spraying strategy and the second result may help to visualize the increase in optimal 

value of insecticide induced death rate with varying levels of available budget. The third result 

might provide a better understanding of the scenarios in which a particular preplanned spray 

coverage option could be selected for achieving highest possible reduction in sandfly population 

per unit material cost. The first result helps to perform comparisons of insecticides for achieving 

maximum insecticide induced sandfly death rate with the same available budget. The public 

health department might find this information helpful in deciding between potential insecticides to 

be used for the next spray campaign. This model might be particularly helpful to Bihar’s public 

health department for deciding the next insecticide to be used considering the reduced initial 

efficacy of DDT due to the resistance developed by sandflies as reported by Dinesh et al. [47].  

 

5.1.2 Future Work on the Linear Model 

For simplicity, the model treats the spraying activity at human and cattle sites as two 

separate (mutually exclusive) projects, and recommends spraying at one of the two site types, 

based on a higher insecticide induced death rate to material cost ratio. Only insecticide’s lethal 

effect is incorporated in the model and the repellent effect is ignored. One of the limitations of this 

simple model is that the distribution of the sandfly population visiting the two types of sites is 

assumed deterministic and the same sandfly population distribution is assumed to be effective 

daily.  

In the proposed model, only the insecticide material cost is a function of the two decision 

variables. A better way of formulating the cost function might be to express the storage, 

transportation, spray equipment and personnel costs also as functions of decision variables. 

Impact of number of insecticide applications on sandfly population size and development of 

resistance in vectors can be incorporated to suggest the optimal combination of insecticide based 

control strategy at both larval and adult stages of the vector as discussed by Luz et al. [66]. 
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Optimal insecticide amount allocated per chicken can also be obtained from the model by 

incorporating the sandfly’s attraction towards avian blood and poultry population in the state.  

The average number of cattle per cattle shed (presently assumed constant), is unknown 

and can be treated as a random variable. Hence, the number of cattle sheds also becomes a 

random variable. Since, the upper bound on one constraint would be known probabilistically, the 

model can be formulated as a stochastic linear program. The problem formulation would include 

assumptions on the recourse policy. After the uncertainty in the constraint ’s upper bound is 

realized, the actual insecticide induced death rate can be calculated by solving the second stage 

problem. 

The BMCR function (presented in section 3.3.2) can be derived for comparing two 

preplanned spray coverage options in each of the 31 VL affected districts of Bihar state. A 

simplistic pseudo code similar to that developed in section 3.3.3 can be used to rank the 62 

different BMCR’s and choosing to spray in districts which yield the highest reduction in sandfly 

population per rupee invested in insecticide material. 

 

5.2 Discussion and Future Work on the Differential Equations Model 

A stability analysis will be carried out on the system of coupled ordinary differential 

equations, by assuming a fixed number of sites sprayed at and a constant value for insecticide 

effects. Since many parameters are uncertain and only known as a range, an uncertainty and 

sensitivity analysis will be performed to estimate the distribution of the number of human 

infections averted and the basic reproduction number. Features will be added to the differential 

equations system to model the situation in Bihar state more closely. The daily migration of 

humans between districts of Bihar will be incorporated in the system. The present model 

accounts for, only the number of bites deflected from humans due to the presence of the cattle 

population. The effects of seasonal variation and a dynamic cattle population on the sandlfy 

population will be studied. 
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Bonds et al. [67] has modeled natural death rate, transmission rate and recovery rate as 

functions of per capita income. In future work, the vector-host model will be modified to include 

the death rate, transmission rate and recovery rate as functions of per capita income. This might 

help in analyzing the effect of economy and the role of poverty trap on the dynamics of VL 

transmission. An alternate formulation of the disease transmission term will be derived 

considering the possibility of all sandfly bites going on only a subset of the susceptible human 

population. This formulation might be helpful to compute the expected number of humans getting 

infected at a given time. 

 

5.3 Nonlinear Optimization Model 

The discussion and future work on the nonlinear optimization model are presented in this 

section. 

 

5.3.1 Discussion on the Nonlinear Model 

In this research study a coupled differential equations model accounting for the sprayed 

insecticide’s lethal and repellent effects has been developed. The output from this differential 

equations model forms the objective function of a nonlinear optimization model. The numerical 

results from the nonlinear model are compared with the linear model which aims to maximize the 

insecticide induced death rate. This provides the public health policy makers with a comparison of 

insecticide allocation, when the criterion is increasing sandfly mortality versus increasing human 

infections. Attempting to achieve highest possible mortality in the sandfly population does not 

necessarily result in saving highest number of people from getting infected (over a short time 

horizon). Comparing the numerical results from the two-dimensional models with multi-

dimensional models provides an opportunity to study the impact of using state level and district 

level demographic data on optimal insecticide allocation.  
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All four optimization models are solved to obtain the optimal number of sites to be 

sprayed for optimizing a metric at the time the second round of spray starts in Bihar (after a ninety 

day gap). The two-dimensional linear model recommends spraying only in houses, when the 

2012 VL budget of Bihar [41] was used as available budget (in line with the present policy of 

allocating insecticide based on human population only). However, the two-dimensional linear 

model’s recommendation also saves the least number of human infections, ninety days after 

spray. The two-dimensional nonlinear model’s recommendation, computed by considering human 

and cattle populations, saves 22 % more human infections, ninety days after spray. The multi-

dimensional nonlinear model considers both human and cattle populations (including other 

demographic data) at district level, and can save 64 % more human infections, ninety days after 

spray. As more details are considered in the insecticide allocation calculations: first the (state 

level) cattle population and second the (district level) demographic data including human and 

cattle populations; the recommendation from the models can save increasing number of human 

infections.  

Another important insight obtained by qualitatively analyzing the results from the two-

dimensional linear and nonlinear optimization models is on the choice of the best spray campaign 

policy. If the goal is to save a maximum number of humans from infection in the short term or a 

second round of spray is feasible soon, then spraying in the minimum number of houses and the 

maximum possible number of cattle sheds is a better policy. In the near future, this spray 

campaign policy will help to save maximum number of humans from getting infected. If the goal is 

to save a maximum number of humans from getting infected in the long term or a second round 

of spray is not feasible in the near future, then spraying in the maximum possible number of 

houses is a better spray campaign policy. A long time after such a spray campaign policy has 

been implemented; maximum number of humans would have been saved from infection. 

 



 
 

 95 

5.3.2 Future Work on the Nonlinear Model 

Since insecticide is sprayed twice annually in Bihar state, multiple spray rounds will be 

incorporated in the model. Depending on whether the goal is to save humans from getting 

infected in the short or long term and annual frequency of spray, the best “spray campaign policy” 

will be studied using dynamic program or an optimal control method. The sandfly map, when 

completed, can be incorporated to represent the spatial and temporal distribution of sandfly 

population in different VL affected districts of Bihar. 
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APPENDIX A 

DATA SET FOR DISTRICTS  
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Appendix A  

The number of government clinics, affected human population and actual human 

population in each of the 31 VL affected districts of Bihar state are tabulated below. 

 
Table A.1. Demographic data for VL affected districts. 

Serial no. District name No. of government clinics, g (State 

Health Society report [53]) 

VL affected human population,  

(State Health Society report [53]) 

Human population,   (2011 census of 

India [52])  

1 Araria* 9 2,153,592 2806200 

2 Arwal* 3 41,144 699563 

3 Banka* 1 12,719 2029339 

4 Begusarai 11 999,274 2954367 

5 Bhagalpur 7 145,797 3032226 

6 Bhojpur 9 210,106 2720155 

7 Buxar* 4 104,052 1707643 

8 Darbhanga 14 1,602,617 3921971 

9 E. Champaran 20 2,620,283 5082868 

10 Gopalganj 10 693,562 2558037 

11 Jehanabad* 5 37,257 1124176 

12 Katihar 18 1,134,049 3068149 

13 Khagaria 6 348,271 1657599 

14 Kishanganj* 6 712,592 1690948 

15 Lakhlsarai* 2 101,437 1000717 

16 Madhepura 7 1,431,240 1994618 

17 Madhubani 18 1,376,642 4476044 

18 Munger 6 97,035 1359054 

19 Muzaffarpur 14 2,703,171 4778610 

20 Nalanda 11 315,421 2872523 

21 Patna 16 1,060,285 5772804 

22 Purnea 13 2,258,220 3273127 

23 Saharsa 7 1,381,124 1897102 

24 Samastipur* 14 1,904,426 4254782 

25 Saran 15 1,437,022 3943098 

26 Sheohar* 2 212,868 656916 

27 Sitamarhi 13 1,807,046 3419622 

28 Siwan 14 1,481,302 3318176 

29 Supaul* 11 809,393 2228397 

30 Vaishali 11 2,054,842 3495249 

31 W. Champaran 13 1,147,023 3922780 

 Total 310 32393812 87716860 
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APPENDIX B 

 
NATURAL SANDFLY DEATH RATE ESTIMATION 
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Table B. 1. Daily survival probability of P. Papatasi (Srinivasan and Panicker [45]) 

Month 

Number 

Month Daily survival probability ( ) Sandflies dead/day/sandfly ( - ln ) 

1 Mar-88 0.93 0.072571 

2 Apr-88 0.921 0.082295 

3 May-88 0.919 0.084469 

4 Jun-88 0.912 0.092115 

5 Jul-88 0.893 0.113169 

6 Aug-88 0.922 0.08121 

7 Sep-88 0.926 0.076881 

8 Oct-88 0.942 0.05975 

9 Nov-88 0.932 0.070422 

10 Dec-88 0.944 0.057629 

11 Jan-89 0.93 0.072571 

12 Feb-89 0.931 0.071496 

13 Mar-89 0.935 0.067209 

14 Apr-89 0.917 0.086648 

15 May-89 0.921 0.082295 

16 Jun-89 0.902 0.103141 

17 Jul-89 0.9 0.105361 

18 Aug-89 0.932 0.070422 

19 Sep-89 0.949 0.052346 

20 Oct-89 0.927 0.075802 

21 Nov-89 0.928 0.074724 

22 Dec-89 0.948 0.053401 

23 Jan-90 0.945 0.05657 

24 Feb-90 0.943 0.058689 

   Mean = 0.075882, s.d.= 0.016239 
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