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ABSTRACT

QUANTITATIVE ANALYSIS OF SURFACE ENHANCED RAMAN SPECTRA

SHUO LI, Ph.D.

The University of Texas at Arlington, 2013

Supervising Professor: Jean Gao

Quantitative analysis of Raman spectra using surface-enhanced Raman scatter-

ing (SERS) nanoparticles has shown the potential and promising trend of development

in vivo molecular imaging. One of the key job is from the intensities of Raman sig-

nals to predict the quantities of analytes. Direct classical least squares (DCLS) and

multivariate calibration (MC) are commonly used models. DCLS relies on source

Raman signals as the references. But the inherent Instability of Raman signals make

the DCLS model biased. MC model relies on a batch of training mixture Raman

signals together with the ground truth mixing concentrations to build the multivari-

ate multiple linear regression models, so as to reduce the bias from the instability

of source Raman signals. But it also brings in the more variables than observations

problem. Latent variable regression (LVR) model avoids that problem by extracting

low dimensional latent variables (LVs) (or extracted features) to do regression with

concentrations. Among several LVR methods, partial least squares regression (PLSR)

algorithms are more robust, since their LVs both represent original Raman signals

and predict concentrations. In this thesis, quantitative analysis models and method-
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s are compared to show why PLSR algorithms are more robust for the purpose of

quantitative analysis of Raman spectra.

Only PLSR cannot handle the instable background of Raman signals. Baseline

correction methods are commonly used as the preprocessing to find a slowly changed

baseline under the signal as the estimated background. Raman peaks are extracted

then by subtracting the baseline from the Raman signal. But baseline correction

methods are usually time consuming iterative processes, and normally they cannot

deal with the multi-scale property of Raman peaks. We designed a simple algorithm,

called continuous wavelet transform (CWT) based partial least squares regression

(CWT-PLSR) that uses the average CWT coefficients of mixture Raman signals to do

PLSR with mixing concentrations. It extracts the multi-scale information of Raman

peaks and so is more robust than traditional baseline correction methods.

PLSR balances two purposes, representing Raman signals and predicting con-

centrations, in the objective function. But the proportion of each purpose is fixed in

the objective function of PLSR. To improve the flexibility of PLSR, we designed a

new continuum regression (CR) method that use a tuning parameter to control the

proportion of each purpose in the objective function and it gives more reasonable

weights to Raman peaks. It beats other two CR methods by embracing PCR, RRR

and PLS as three special cases, and is simply achieved by NIPALS algorithm.

Tuning parameters of PLSR and CR methods are normally decided by time-

consuming cross-validation methods. And some parameters have infinite numbers of

possible values in continuous ranges. There is no way to test every value by cross-

validation methods. Nonparametric Bayesian models of these methods are needed to

decide the parameters automatically from the training data. As a foundation work,

we design a probabilistic PLS regression model to give a probabilistic view of the
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PLSR methods. Future Bayesian models can be achieved by adding reasonable priors

of the parameters.
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CHAPTER 1

INTRODUCTION

1.1 Introduction to Quantitative Analysis of Raman Spectra

1.1.1 Raman Spectra

Raman scattering or Raman effect is the physical phenomenon when the monochro-

matic laser light interacts with molecular vibrations or other excitations, resulting in

the energy of the laser photons being shifted upwards or downwards. The shifts in

energy are referred as Raman frequencies or Raman shifts. A characteristic range of

Raman shifts, which give the unique spectral information of a particular molecule,

are collectively referred to as the Raman spectrum [1,2]. Keren et al. [3] and Zavaleta

et al. [4] reported three properties of Raman spectrum: (a) Source spectra do not

change when the pure Nano-Tags are mixed; (b) The mixture spectrum equals to the

summation of the source spectra; (c) Within certain range of concentrations, the in-

tensities of source spectra are approximately linearly related to the concentrations of

pure Nano-Tags. With these properties, Raman spectroscopy technique can be used

to study vibrational, rotational, and other low-frequency modes in a system relying

on Raman scattering.

But the inherent weak magnitude of Raman scattering limits the sensitivity and

as a result, the biomedical applications of Raman spectroscopy. The development of

the surface-enhanced Raman spectroscopy or scattering (SERS) offers an exciting

opportunity to overcome this serious signal to noise problems inherent in Raman

spectroscopy.
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1.1.2 Surface-enhanced Raman Spectroscopy (SERS)

The SERS-nanoparticles, normally silver or gold colloids or substrate containing

silver or gold, are designed to enhance the intensities of Raman spectra. When surface

plasmons of silver or gold are excited by the laser, they result in an increase in the

electric fields surrounding the metal. Given that Raman intensities are proportional

to the electric field, there is a large increase in the measured signal [2].

With such large enhancement, SERS has been regarded as one of the most

sensitive techniques that can provide the spectral fingerprint of every chemical com-

pound and has been a routine method used as an analytical tool in food industry,

pharmaceutical, chemical and biological community [5] to investigate the composi-

tion of materials. It has been applied by Cheung et al. [6] to quantify the banned

food dye, by Lai et al. [7] to analyze sulfa drugs, by Strickland and Batt [8] to

detect carbendazim, by Rainer et al. [9] to determine the amount of creatinine in

human serum, and by authors in [10–12] to detect DNA sequence. It also has been

studied in the field of biomedical diagnostics, especially in the research of cancer

detection. Antibody conjugated nanoparticles, which can be attached to specific pro-

teins in cancer cells, are injected into body. Cancer can be detected by imaging large

amount of such nanoparticles gathered in certain place inside body by Raman imag-

ing techniques. Kim et al. [13] used the antibody-conjugated SERS dots to target

the surface receptor HER2 and CD10 of breast cancer cells (MCF-7) and floating

leukemia cells (SP2/O) in living cells. Keren et al. [3] demonstrated the ability of

the modified Raman microscope to detect single-walled carbon nanotubes (SWNTS)

conjugated with arginine-glycine-aspartate (RGD) peptide fractions in an integrin

positive U87MG tumor model in living mice. These RGD peptide fractions bind to

αvβ3 integrin, which is overexpressed in angiogenic vessels and various tumor cells.

Zavaleta et al. [4] demonstrated the picomolar sensitivity and multiplexing capabili-
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ties of SERS nanoparticles and showed SERS to be a potential noninvasive preclinical

imaging technique. Kennedy et al. [14] also developed nanoparticle probes for SERS

imaging of cell surface receptor proteins.

1.1.3 Quantitative Analysis of Raman Spectra

In order to estimate the amount of the receptor proteins and so the amount of

cancer cells, the so called quantitative analysis of surface-enhanced Raman spectrum,

which is from the Raman spectrum of the mixed Nano-Tags to determine the mixing

concentration of each pure Nano-Tag, is the key job. A simple way is based on the

direct classical least squares (DCLS) model, which is used in literatures [3,4,15]. The

preparation of training data is easy, but the model has an unavoidable biased problem.

The more commonly used methods are multivariate approaches such as principal

component regression (PCR) [6,7,16–18] and partial least squares regression (PLSR)

algorithms [6–9, 16–22], which are essentially based on the multivariate calibration

model that can reduce that bias.

1.1.4 Instable Background and Preprocessing

In reality a Raman signal obtained from the spectroscopy is composed of the

Raman spectrum together with an instable background and some generated noises

which makes the Raman signal irreproducible (shown in Fig. 1.1). This inherent

instable background is mainly because of the emission of fluorescence [23]. Besides,

some instrumental factors, like variations in laser power or wavelength, optical train

variations or irreproducible sample placement, and the change of position and angel

of Ag or Au sol attached on analyte molecules during time [21], will also give instable

signals. In order to reduce the effects of backgrounds and noises on the quantitative

analysis, baseline correction methods [24] are usually used as the preprocessing to

3
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Figure 1.1: Instable Raman signals of two samples of mixed Nano-Tags. Signals with
the same color are five duplicate Raman signals of one sample obtained at different
time.
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extract the Raman spectra from Raman signals. Fig. 1.2 shows the results of the

baseline correction.
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1.2 Motivations and Contributions

As introduced in section 1.1.3, several methods are currently used in litera-

tures for quantitative analysis of SERS. In Chapter 2 we analyze the mathematical

definitions and essential meanings of those models and methods, explain the suit-

able situation for each method and illustrate PLSR is more reasonable when doing

the quantitative analysis of SERS. Also, since there are several variants and algo-

rithms of PLSR methods, we analyze the differences between variants and details of

algorithms to help readers easier to choose and implement them.

Traditional PLSR only considers the whole intensities of Raman signals without

separating the Raman peaks (Raman spectrum) from the instable background. So

PLSR itself can not solve the instable background problem mentioned in section

1.1.4. Inspired by the work of [25], in chapter 3, we design a new continuous wavelet

transform (CWT) based PLSR method (CWT-PLSR) that only uses the Raman

peaks to do the quantitative analysis. This method can effectively reduce random

noise and avoid the influences of instable backgrounds and noisy peaks. It can omit the

time consuming preprocessing, such as smoothing, de-noising and baseline correction,

and so is more convenient.

As will be explained in chapter 2, LVR methods, including Principal Compo-

nent Regression (PCR), Reduce Rank Regression (RRR) and Partial Least Square

Regression (PLSR), actually combine feature extraction and multiple multivariate

linear regression. PCR gives high weights to big Raman peaks that span big intensity

variances, but may ignore weak peaks that are highly related to concentrations, so

PCR is not effective enough; RRR extracts features in an opposite way, giving high

weights to peaks whose intensities are highly correlated with concentrations, but may

ignore the strong peaks that have big variances, so RRR is not robust enough; PLSR

balances two objectives, so is more robust than RRR, and more effective than PCR.
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But the balance is not flexible enough. Continuum regression methods (CR) can

adjust the proportions of two objectives in the objective function, so the weights can

be assigned to the Raman peaks in an optimized way. In chapter 4, we give a new

continuum regression method (NCR) that embraces PCR, RRR and PLS as three

special cases.

The number of features (components) extracted by PLSR methods have to

be determined by the time consuming cross-validation methods. Also the tuning

parameter of CR has infinite possible values, there is no way to test every values

by cross-validation methods. Bayesian nonparametrics models of these methods are

needed to decide these parameters automatically from the training data. In chapter

5, we design a probabilistic PLS regression model that provides a probabilistic view of

the traditional PLSR model. It also provide a foundation to develop further Bayesian

PLS model.

1.3 Experiment Setup Description

1.3.1 Notations

In this paper, the Raman spectrum and the Raman signal of the pure Nano-

Tags are called source spectrum and source signal, noted as the (Dx × 1) vector s̃

and s. The Raman spectrum and the Raman signal of the mixture Nano-Tags are

called mixture spectrum and mixture signal, noted as the (Dx × 1) vector x̃ and x.

Rows of the (Dy ×Dx) matrixes S̃ = [s̃1, ..., s̃Dy ]
T and S = [s1, ..., sDy ]

T contains all

Dy source spectra and preprocessed source signals, and each of them has Dx Raman

shifts. Source signals are collected from the solutions of pure materials with the

concentration α. Rows of the (N ×Dx) matrix X = [x1, ...,xN ]
T are N preprocessed

mixture signals obtained from samples of mixed Nano-Tags, and each sample is mixed

6
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Figure 1.3: Pure and mixture Raman signals of different Nano-Tags. D:C-90:10, for
example, means the ratio of volume of DTTC and CV is 90% : 10%

by those Dy pure Nano-Tags. Rows of the (N ×Dy) matrix Y = [y1, ...,yN ]
T are the

corresponding ground truth ratios of mixing volumes of those pure Nano-Tags.

1.3.2 Data Sets

The data sets we are working on are collected from the Raman spectroscopy

system with 20×, 0.4NA lens and 785nm laser wavelength. Raman shifts range from

-79.65cm−1 to 2071.80cm−1 with 1044 Raman shifts values. All Nano-Tags are made

from 54.67nm Au Nano-particles, coated with the dyes: DTTC and Cresyl violet (CV)

(in data set 1); HITC and IR140 (in data set 2); DOTC, DTTC, HITC and IR140 (in

data set 3). The pure Nano-Tag solutions are prepared with a concentration of 1.1e10
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Nano-Tags/ml. Then with 11 ratios of volume {(0 : 100%), (10% : 90%), . . . , (90% :

10%), (100% : 0)} we mix two pure Nano-Tags solutions in the first two groups, and

with 21 ratios of volume {(25% : 25% : 25% : 25%), (20% : 25% : 25% : 25%), (15% :

25% : 25% : 25%), . . . , (0 : 25% : 25% : 25%), (25% : 20% : 25% : 25%), (25% :

15% : 25% : 25%), . . . , (25% : 25% : 25% : 5%), (25% : 25% : 25% : 0)}, we mix four

pure Nano-Tags solutions in the third group (the missing percentages are made up

with water), and get three groups of mixture Nano-Tag solution samples. For each

pure and mixture Nano-Tag solution sample, we collect 5 duplicated Raman signals,

with 20s integration. To avoid the affect of the strong signal intensity from Rayleigh

scattering and some noise frequencies on two sides, from 1044 Raman shifts, we extract

the middle range (90th-900th) frequencies (from 160.13cm−1 to 1845.00cm−1). So for

data set 1 and 2 (DTTC-CV and HITC-IR140), the ground truth ratio matrix is

Y ∈ ℜ55×2, and the mixture spectra matrix is X ∈ ℜ55×811. And for data set 3

(DOTC-DTTC-HITC-IR140), the ground truth ratio matrix is Y ∈ ℜ105×4, and the

mixture signals matrix is X ∈ ℜ105×811. Also we average each 5 duplicates for both

pure and mixture signals, and get pure average signals S̄ ∈ ℜ2×811 (data set 1,2) and

S̄ ∈ ℜ4×811 (data set 3); and mixture average signals X̄ ∈ ℜ11×811 and X̄ ∈ ℜ21×811,

and the average ground truth ratio matrixes Ȳ ∈ ℜ11×2 and Ȳ ∈ ℜ21×4. The duplicate

and average source signals are shown in Fig. 1.3a-Fig. 1.3c, and the average mixture

signals are shown in Fig. 1.3d-Fig. 1.3f.

1.3.3 Evaluation Methods and Criteria

In order to take fully use of all three data sets, we use three cross-validation

methods to evaluate the predicting ability of methods:

• Cross-Validation on Duplicate testing signals (CVD): all 5 duplicate mixture

signals collected from the same sample are treated as the testing samples, and
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all the other duplicate mixture signals are treated as the training samples. It-

eratively, until every duplicate signal is treated as the testing sample once.

• Cross-Validation on Average testing signals (CVA): the average signal of the

5 duplicate mixture signals collected from the same sample is treated as the

testing sample and all the other duplicate mixture signals are treated as training

samples. Iteratively, until every average signal is treated as the testing sample

once.

• Cross-Validation on Average testing Average training spectra (CVAA): one av-

erage signal is treated as the testing sample and all the other average signals

are treated as training samples. Iteratively, until every average signal is treated

as the testing sample once.

Square Root of Mean Squares Error (RMSE) is used as the criterion for evaluating

the prediction accuracy. It is defined as:

RMSE =

√√√√ 1

NDy

N∑
i=1

Dy∑
j=1

(ŷi,j − yi,j)2,

in which, ŷi,j and yi,j are elements of the matrix of estimated ratios Ŷ and ground

truth ratios Y respectively of the ith sample and the jth Nano-Tag. Dy is number of

pure Nano-Tags and N is number of testing signals.
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CHAPTER 2

MODELS AND METHODS COMPARISON

In this chapter, we analyze the mathematical definitions and essential meanings

of those models and methods, explain the suitable situation for each method and

illustrate PLSR is more reasonable when doing the quantitative analysis of SERS.

Also, since there are several variants and algorithms of PLSR methods, we analyze

the differences between variants and details of algorithms to help readers easier to

choose and implement them. It is organized as following, in section 2.1, we compare

several models, including direct classical least squares model, full spectrum calibration

model, selected (or weighting) calibration model and latent variable regression (LVR)

model. Based on the properties of Raman spectra, we demonstrate LVR is better

than the other models. So in section 2.2, Principal component regression (PCR),

reduced-rank regression (RRR), orthonormalized PLS (OPLS), partial least squares

regression (PLSR), canonical correlation regression (CCR), PLS Wold 2-block mode

A (PLS-W2A) and robust canonical analysis (RCA) are compared to show only PLSR

algorithms extract features for both representing and predicting purposes.

2.1 Models for Quantitative Analysis of SERS

2.1.1 Direct Classical Least Squares (DCLS)

Based on the properties of Raman spectra, theoretically the mixture spectrum

can be modeled as a linear combination of the source spectra with the mixing ratios

as the weights:

x̃ = S̃
T
y+ ẽ, (2.1)

10



where elements of the Dx× 1 vector ẽ are the random noises at all Raman shifts. For

example, two solutions of pure Nano-Tags, whose source spectra are s̃1 and s̃2, and

both with the concentration of α, are mixed into one sample with the ratio of mixing

volume as 30% : 70% (y is [0.3, 0.7]T ). Then the concentration of each Nano-Tag

in the mixture sample is 0.3α and 0.7α. Based on the property (c), the two source

spectra are approximately 0.3s̃1 and 0.7s̃2. And based on the property (a) and (b),

the mixture spectrum should approximately be 0.3s̃1 + 0.7s̃2 = S̃
T
y. By minimizing

the sum square errors ẽT ẽ, the mixing concentrations are estimated as

αŷ = α(S̃S̃
T
)−1S̃x̃. (2.2)

In a Raman signal, usually the positions of Raman peaks only occupy a small

part of all Raman shifts. And in the sum square errors, too many mixing errors are

from the background noises, which will affect the estimated result. So naturally a

modified way is to only use D selected Raman peaks from the source and mixture

spectra, where Dy < D < Dx, and the model is changed into:

x̃s = S̃
T

s y+ ẽs, (2.3)

with the D × 1 vector x̃s and Dy × D matrix S̃s are selected subsets of x̃ and S̃

respectively.

DCLS model is simple since it only requires source spectra as the training data.

But in reality it is difficult to get the perfect source spectra S̃ and mixture spectra

x̃ in (2.1), instead, we can only get the preprocessed mixture signal x a nd source

signals S, which can be expressed as

x = x̃+ ex and S = S̃+ Es, (2.4)
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where ex and rows of Es are the unremoved background and noises or preprocessing

errors. So in model (2.1), all the estimations are based on certain unreliable source

signals, which may cause the biased results.

One way to reduce the bias is to treat S̃ as unknown parameters, and use a

batch of mixture signals together with their ground truth mixing concentrations to

directly find the relationship between mixture signals and concentrations. In the

following subsections, the models we will introduce are based on this idea.

2.1.2 Multivariate Calibration

Combine model (2.4) and model (2.1), we can get x = S̃
T
y + ẽ + ex. If we

observe N mixture signals, together with their ground truth mixing concentrations,

we can get the multivariate calibration model [26] as

X = YS̃+ Ẽ+ Ex, (2.5)

in which X and Y are given, unknown parameters S̃ need to be estimated, rows of Ẽ

and Ex are random noises and preprocessing errors. The purpose of the calibration

is from spectra to estimate concentrations, so it is convenient to rewrite (2.5) into a

multiple multivariate linear regression model

Y = XB+ Er + Ẽr, (2.6)

where the matrix of regression coefficients B is actually the general inverse matrix

of S̃, Er = −ExB can be treated as the bias items and Ẽr = −ẼB is the matrix of

regression errors. Instead of solving (2.6), normally it is equivalent to solve

Y = XB+ Ẽr, , (2.7)

with X and Y are centered (zero-mean matrixes). This model uses all Raman shifts

information, so it is called Full Spectrum Multivariate Calibration (FSMC). Also since
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(2.6) is a least squares model, model (2.5) is also called inverse least squares (ILS)

in [27]. If the rank of the covariance matrix XTX equals to Dx, by minimizing the

trace of ErE
T
r , B is solved as:

B̂ = (XTX)−1XTY. (2.8)

Then given a new preprocessed testing mixture signal x, the mixing concentrations

of each Nano-Tag can be predicted as ŷ = B̂
T
(x− µx) + µy, where µx and µy are the

mean vectors of rows of X and Y.

Zavaleta et al. [4] claimed that source Raman spectra will not change when the

pure Nana-Tags are injected into a living organism, nor did they change as a function

of tissue depth. So in real applications, it is practical to do the calibration in vitro,

and do the predictions in vivo.

Usually there are hundreds of or thousands of Raman shifts, and only small

amount of samples are available, so one problem of FSMC is the covariance matrix

XTX in (2.8) is not invertible. To solve this singularity problem, an SVD based

method [28] can be used to calculate the generalized inverse of XTX (described in

Appendix A.1). But this general inverse method can not deal with the overfitting

problem [29] caused by the limited number of training data.

Normally the overfitting will cause very big absolute values of elements of B̂.

So to solve the overfitting problem, ridge regression (RR) [30] adds a constraint

||B||F < τ , where ||.||F is the Frobenius norm defined as ||B||F = tr(BTB), and tr(.)

is the trace of the matrix. The solution of RR is:

B̂ = (XTX+ κI)−1XTY, (2.9)

where I is the (Dx × Dx) identity matrix and κ is a small number. RR solves the

overfitting problem in FSMC model, the limitation is that it treats all Raman shifts
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equally in the regression and sometimes Raman peaks want to have more weights to

estimate the regression coefficients.

A simple way is first to selectK Raman shifts out of all by some feature selection

methods, where K < N . Then the training samples becomes (N × K) matrix Xs,

and the estimated matrix of coefficients becomes B̂ = (XT
s Xs)

−1XT
s Y. This is called

Selected Multivariate Calibration (SMC) [26] Model. The problem of SMC is that

some weak Raman peaks and background Raman shifts that contain quantitative

information will easily be discarded, which affects the accuracy.

2.1.3 Latent Variable Regression (LVR)

To deal with the information lost problem in SMC model, instead of choosing

only a few Raman shifts, latent variable regression (LVR) model [31, 32] linearly

combines all Raman shifts (variables) with K groups of weights W = [w1, ...,wK ] ∈

RDx×K , and extracts features

T = XW, (2.10)

where T = [t1, ..., tK ] is a (N ×K) matrix containing K unrelated Latent Variables

(LVs) of the zero-mean matrix X. Then the multivariate regression is done between

T and the zero-mean matrix Y

Y = TC+ Ẽr, (2.11)

in which C is the matrix of regression coefficients, Ẽr is the same as the one in

(2.7). If the Raman signals are thought as data points in a high dimensional space,

the small numbers of data points actually stay in a low dimensional subspace. LVR

model is actually to find a K-dimensional subspace to project those data points, then
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the regression analysis is done between the projections T and the concentrations Y.

Similar to (2.8), C is solved as:

C = (TTT)−1TTY. (2.12)

In LVR model, the regression coefficients matrix B in (2.6) is actually decomposed

as:

B = WC = W(WTXTXW)−1WTXTY. (2.13)

Given a testing mixture signal x, the concentrations ŷ can be predicted as:

ŷ = BT (x− µx) + µy. (2.14)

With a reasonable choice of numbers of extracted features K, normally selected

by a cross-validation method, LVR can reduce the overfitting problem, and so is more

robust than FSMC. The linear combination or the projection in (2.10) is actually the

feature extraction, with columns of T are the new extracted features. So comparing

RR, LVR also provides a way for biological feature extraction. And since the extracted

features contain the information of all Raman shifts (linear combinations of them),

it avoids the information lost problem in SMC.

2.2 LVR Methods

The weights vectors W in (2.10) are usually found by solving a constraint opti-

mization problem. For different purposes of feature extraction, different LVR methods

have different objective functions and constraints. In this section, we compare those

purposes and formulations of several LVR methods, including Principal Component

Regression (PCR), Reduce Rank Regression (RRR), Orthonormalized Partial Least

Squares Regression (OPLSR) and Partial Least Square Regression (PLSR), Canonical

Correlation Regression (CCR), PLS Wold 2-block mode A (PLS-W2A) and robust
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canonical analysis (RCA). Then explain why PLSR methods (including PLS2 and

SIMPLS) are better than other methods for quantitative analysis of SERS. In the

following subsections, both X and Y are zero-mean matrixes. All the indexes i and

j in the following formulations are defined as i = 1, 2, . . . , K and j = 1, 2, . . . , (i− 1).

2.2.1 Principal Component Regression (PCR)

PCR uses Principal Component Analysis (PCA) to find W. PCA is a technique

widely used for dimensionality reduction and feature extraction [29]. The goal of PCA

is to make T retains the variation or information presented in X as much as possible.

The successive formulation of PCA is to seek wi one by one, and at each time get an

unrelated component (LV) ti that has the biggest variance:

obj. max
wi

Jpcr1 = var(ti) s.t. ||wi|| = 1; tTi tj = 0, (2.15)

with var(ti) = tTi ti is the sample variance of ti. ||wi|| = wT
i wi is the Euclidean

norm of wi. The first constraint normalizes the lengthes of the weight vectors as 1.

The second constraint makes sure the new LV is unrelated (independent) with the

previous ones. The number of components (LVs) we can have is limited by the rank of

X. From (2.15), weight vectors {wi}Ki=1 are solved as the first K eigenvectors of XTX

(in this paper, the first K eigenvectors means the first K eigenvectors corresponding

to the first K biggest eigenvalues). Since the covariance matrix XTX is a symmetric

matrix and all eigenvectors are orthonormal, the K-dimensional subspace is spanned

by columns of W.

Another formulation called the simultaneous formulation of PCA is to find all

wi at once:

obj. max
W

Jpcr2 =
K∑
i

(tTi ti) s.t. ||wi|| = 1; tTi tj = 0. (2.16)
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Jolliffe [33] proved the equivalence between the simultaneous and successive formula-

tion of PCA, and gave the solution of W also as the first K eigenvectors of XTX.

Beside maximizing variances of LVs, another objective function of PCA is to

minimize the representing error [29] or to minimize the information in the residual

matrix. The corresponding formulation is

min
W

Jpcr3 = ||X−TPT
x ||F , (2.17)

with ||.||F is the Frobenius norm, and columns of Px are loading vectors. The equiv-

alence between (2.17) and (2.16) is proved in Appendix A.2.

Both two objective functions of PCA, maximizing total variances (2.16) and

minimizing representation errors (2.17), show the score vectors of PCA T are the

best K dimensional representation of X. Or say, W of PCR gives more weights to

the Raman shifts that have bigger variances of the intensities, which may not be the

locations of Raman peaks, but the random peaks or noisy peaks. And some weak

Raman peaks that are highly correlate with Y, may not get big weights. So for

prediction purpose, LVs of PCR may not be efficient enough.

2.2.2 Reduced-Rank Regression (RRR) and Orthonormalized Partial Least Squares

Regression (OPLSR)

The goal of RRR [34] is to make T the best rank K approximation to Y. The

objective function is to minimize the approximation (or regression) error. Plus the

constraints of unrelated (independent) LVs, the formulation of RRR is

obj. min
W

Jrrr = ||Y−TPT
y ||F s.t. tTi tj = 0. (2.18)

Columns of Py are the regression coefficients between ti and Y. The calculation of

Py is in Appendix A.3. The solution of W can be calculated [35] as the first K

eigenvectors of (XTX)−1(XTYYTX).
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The purpose of OPLSR [36] is to extract features that are correlate with columns

of Y most without considering the variances of LVs. The objective function is de-

scribed as [37,38]:

obj. max
W

Jopls = tr(TTYYTT) s.t. TTT = I, (2.19)

which is actually derived from the formulation of

obj. max
W

tr{(TTT)−1(TTYYTT)} s.t. tTi tj = 0, (2.20)

which is proved in Appendix A.3. (2.20) can be rewritten as

obj. max
W

K∑
i=1

(var(ti)
−1||cov(ti,Y)||2) s.t. tTi tj = 0, (2.21)

which is also proved in Appendix A.3. var(.) is defined in (2.15) and cov(ti,Y) = tTi Y

is the sample covariance vector between ti and each column of Y. ||cov(ti,Y)||2 =∑Dy

j=1 cov(ti,yj)
2 = tTi YYT ti. (2.20) is equivalent to the formulation of RRR in

(2.18), which is proved in Appendix A.3. That is to say OPLSR and RRR are

essentially the same. Their W gives more weights to the Raman shifts, where the

intensities of Raman spectra are more correlated with the concentrations Y, without

considering representing the Raman spectra. The problem is it may give more weights

to the weak Raman peaks or even background that are more correlated with the

concentrations, instead of the main Raman peaks with higher intensities. So they are

sensitive to the small changes of intensities, which make the predictions not robust

enough.

2.2.3 PLS Regression (PLSR)

Developed from the partial least squares (PLS) technique, which is originally de-

signed to model the relationships between several data blocks or sets of variables [39],
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and is achieved by the nonlinear iterative partial least squares (NIPALS) algorith-

m, PLSR algorithms, mainly including PLS2 and SIMPLS, are especially used for

the purpose of regression and prediction [40]. PLS2 is based on the NIPALS al-

gorithm [40–43]. For the special case of one dimensional response variable Y, it is

called PLS1 [44]. Hoskuldsson [42] analyzed several statistical properties of PLS2 and

Wold et al. [40] gave a good picture of PLS2. Another PLSR algorithm, designed by

de Jong [45], is called SIMPLS algorithm, which improves NIPALS by avoiding the

deflation on original data matrixes.

The purpose of PLSR is to maximize the covariance between T and concentra-

tions Y [35]:

obj. max
wi

||cov(ti,Y)||2 s.t. ||wi|| = 1; tTi tj = 0, (2.22)

where cov(ti,Y) is the vector of sample covariances between ti and columns of Y.

Comparing the objective function in (2.22) with (2.15) and (2.21), we can see PLSR

is the compromise between RRR and PCR. It makes T both represent X and ap-

proximate Y simultaneously. W of PLSR gives higher weights to the Raman shifts

that have both big variances of intensities and high correlations with concentrations,

which are more likely to be the positions of main Raman peaks.

The objective function in (2.22) equals to maximize wT
i X

TYYTXwi, with the

normalization constraint of wi, for i = 1, w1 is the first eigenvector of XTYYTX.

But for i = 2, . . . , K, because of the the independence constraint of the LVs, there is

no closed form solution to W in (2.22). PLS2 [44] and SIMPLS [45], are designed to

solve this problem. In the following two subsections we will compare the the details

of two algorithms.
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2.2.3.1 PLS2

PLS2 [40, 42] iteratively deflates on X to get residual matrix Xi and get the

corresponding projection direction ri by solving the following problem:

obj. max
ri

rTi X
T
i YYTXiri, s.t. ||ri|| = 1, (2.23)

withXi is got from a deflation process in Algorithm 1, in which, eig(A) means getting

the first eigenvector of matrixA corresponding to the biggest eigenvalue. Hoskuldsson

[42] proved that the independence constraint tTi tj = 0 in (2.22) is satisfied after the

deflation process. R = [r1, . . . , rK ] in (2.23) are weight vectors of residual matrix Xi,

which are different with W. The relation between ri and wi is ti = Xiri = Xwi [46].

After deflation, W can be calculated asW = R(PTR)−1 [40] orW = P(PTP)−1 [47].

Algorithm 1 PLS2 Deflation Process

1: for i = 1 to K do

2: ri = eig(XT
i YYTXi); % Get projection directions ri

3: ti = Xiri; % Get score vectors ti

4: pi = XT
i ti/(t

T
i ti); % Get loading vectors pi

5: Xi+1 = Xi − tip
T
i ; % Get the residual matrices of Xi

6: end for

7: Store R = [r1, ..., rK ]; P = [p1, ...,pK ]

ri is actually the left singular vector ofX
T
i Y. Since the size of matrixXT

i YYTXi

is big, step 2 in Algorithm 1 is time consuming. The faster way is to first calculate

the right singular vector di by eig(Y
TXiX

T
i Y), then use the relationship between left

and right singular vector, ri = XT
i Ydi/||XT

i Ydi||, to get ri.
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2.2.3.2 SIMPLS

Instead of based on residual matrixes Xi, SIMPLS directly looks for directions

of projections in the original X space by projecting the cross covariance matrix XTY

on to orthogonal subspace P⊥
i = I − Pi−1P

+
i−1 iteratively to satisfy the unrelated

constrain, with P+
i−1 = (PT

i−1Pi−1)
−1PT

i−1 is the Moore-Penrose inverse of Pi−1 and

Pi−1 = [p1, . . . ,pi−1] is the loading matrix. The objective function of SIMPLS in

each iteration is:

obj. max
wi

wT
i P

⊥
i X

TYYTXP⊥
i wi, s.t. ||wi|| = 1. (2.24)

wi can be solved as the first eigenvector of P⊥
i X

TYYTXP⊥
i corresponding to the

biggest eigenvalue. de Jong [45] proved that these wi satisfy the constrain tTi tj = 0

in (2.22). The SIMPLS algorithm is summarized in [45].

2.2.4 Symmetric and Asymmetric Relation

PCR, RRR or OPLSR, PLSR have the asymmetrical relationship between X

and Y [44], because these methods are from X to predict Y, and only get LVs of X.

These methods are only suitable for the low dimensional and independent response

variables Y. If Dy > N or there is collinearity between columns of Y, LVR methods

with the symmetrical relationship between X and Y, which get the LVs for both X

and Y, have to be used. It is called symmetrical relationship because Both X and Y

can be predictor or response matrix. In the following subsections, we will introduce

three such methods, including CCA, PLS-W2A and RCA.

For symmetric relation LVR methods, the components number K is limited

by the rank of both X and Y: K ≤ min(rank(X), rank(Y)). But for asymmetric

relation LVR methods, K is limited by the rank of X: K ≤ rank(X). In our appli-

cation of quantitative analysis of Raman spectra, normally we only want to predict
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concentrations Y from Raman spectra X, and the number of pure Nano-Tags (rank

of Y) is usually low, which will limit the number of LVs used in the model and so the

effectiveness of the model if we use the symmetric relation LVR methods.

2.2.5 Canonical Correlation Regression (CCR)

CCR is based on the technique of canonical correlation analysis (CCA) [48]. The

purpose of CCA is to find K pairs of LVs of X and Y, {(ti = Xwi,ui = Yvi)}Ki=1,

such that each LV within each set is only correlated with a single LV in the other set.

The objective function is to maximize the correlation coefficients of two LVs. The

first way to describe CCA is the successive formulation:

obj. max
(wi,vi)

Jccr1 = corr(ti,ui)

s.t. tTi tj = 0; uT
i uj = 0; tTi uj = 0; tTj ui = 0

(2.25)

where corr(ti,ui) =
tTi ui√

tTi ti
√

uT
i ui

is the sample correlation coefficient between two

LVs. The constraints make sure the components are unrelated. Because the scales

of wi and vi do not affect the correlation coefficient value, it is always proper to fix

the projection variance as a constant, usually as 1. So (2.25) is usually rewritten as

(e.g., [48, 49]):

obj. max
(wi,vi)

Jccr2 = tTi ui

s.t. tTi ti = 1; uT
i ui = 1; tTi tj = 0; uT

i uj = 0; tTi uj = 0; tTj ui = 0.

(2.26)

Appendix A.4 shows W and V are calculated as the first K eigenvectors of matrix

(XTX)−1(XTY)(YTY)−1(YTX) and (YTY)−1(YTX)(XTX)−1(XTY). Besides suc-

cessive formulation, CCA has another equivalent simultaneous formulation [49,50]:

obj. max
(wi,vi)

Jccr3 =
K∑
i=1

(tTi ui)

s.t. tTi ti = 1; uT
i ui = 1; tTi tj = 0; uT

i uj = 0; tTi uj = 0; tTj ui = 0.

(2.27)

22



As discussed in section 2.1.2, the singularity problem of the covariance matrix

XTX in the solution of CCR and RRR or OPLSR can be solved by the generalized

inverse of XTX based on SVD (described in Appendix A.1). Another commonly

used way (e.g., [49]), similar to RR, named regularized CCA (rCCA), is to add a

regularized term κ to the covariance matrix:

(XTX+ κI)−1(XTY)(YTY+ κI)−1(YTX)W = WΛ. (2.28)

Similar to RRR and OPLS, W of CCR also gives higher weights to the Raman

shifts that more correlate with LVs of Y. The combinational weights ci of columns of

Y make CCR can also deal with the collinearity in matrix Y. When the numbers of

pure Nano-Tags in the mixtures are more than sample numbers and the existence of

certain pure Nano-Tags are highly correlated in the mixtures, CCR is a substitution

of RRR and OPLS.

2.2.6 PLS Wold 2-Block mode A (PLS-W2A)

Another variant of PLS, named PLS-W2A by Wegelin (Wold’s Two-block mode

A PLS [43]), which is especially used for modeling and predicting between two data

blocks [41]. Nowadays it is also commonly used for feature extraction application-

s [51–53]. PLSR methods only find LVs of dependent variables to relate with each

independent variable, and they assume the independent variables are unrelated. Sim-

ilar to CCR, PLS-W2A can handle the collinearity between columns of Y and even

the ill-conditional problem in matrix Y (numbers of variables of Y is bigger than the

numbers of samples). It gets K pairs of unrelated LVs {(ti = Xwi,ui = Yvi)}Ki=1 for

both data blocks X and Y that have the maximum sample covariances:

obj. max
wi,vi

cov(ti,ui)

s.t. wT
i wi = ai; t

T
i tj = 0; tTi uj = 0; vT

i vi = ai; u
T
i uj = 0; tTj ui = 0.

(2.29)
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where ai is a constant to fix the length ofwi and vi. cov(ti,ui) is the sample covariance

between ti and ui.

Similar to PLSR, there is no closed form solution to W and V in (2.29). Based

on NIPALS algorithm, PLS-W2A uses the deflation process on both X and Y, which

is summarized in Algorithm 2, to satisfy the independence constraints. Here ri and

di are the projection directions corresponding to the deflated data Xi and Yi instead

of the original data X and Y. For i = 1, X1 = X and Y1 = Y, so r1 is the same as

w1 and d1 is the same as v1. But for i = 2, . . . , K, they are different. The relation

is ti = Xiri = Xwi and ui = Yidi = Yvi. After getting all the loading vectors

P = [p1, ...,pK ] and Q = [q1, ...,qK ], all the combinational weights vectors W and

V can be calculated as W = P(PTP)−1 and V = Q(QTQ)−1.

Algorithm 2 PLS-W2A Deflation Process

1: for i = 1 to K do

2: ri = eig(XT
i YiY

T
i Xi);di = eig(YT

i XiX
T
i Yi);

3: ti = Xiri;ui = Yidi;

4: pi = XT
i ti/(t

T
i ti);qi = YT

i ui/(u
T
i ui);

5: bi = uT
i ti/(t

T
i ti);% Get regression coefficient

6: Xi+1 = Xi − tip
T
i ;Yi+1 = Yi − uiq

T
i ;

7: end for

2.2.7 Robust Canonical Analysis (RCA)

Tishler et al. [54] presented an “Intercorrelations Analysis” method or “Canoni-

cal Covariance”, which is similar to PLS-W2A. In that paper, RCA is used as modeling

method, later Tishler and Lipovetsky [55] presented a RCA regression model for pre-
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diction, which solves all eigenvectors of XTYYTX at once. Rosipal and Kramer [44]

named it as PLS-SB, and Wegelin [43] called it PLS-SVD, since it is actually PLS-

W2A without deflation process. The projection directions W of RCA are the first K

eigenvectors of the generalized eigenfunctions:

XTYYTXW = WΛ, (2.30)

with the diagonal elements of the diagonal matrix Λ are descending ordered eigen-

values. RCA is a kind of compromise between CCA’s non-deflation and PLSW2A’s

covariance as objective. The math description can be illustrated as:

obj. max
wi,vi

tTi ui s.t. ||wi|| = ||vi|| = 1; wT
i wj = vT

i vj = 0 (2.31)

Comparing with Equation (2.29), RCA releases the unrelated components constraints.

So LVs in RCA are not necessary mutually unrelated, and there is overlapped infor-

mation between the LVs and so RCA is not efficient enough.

2.3 Experiment

2.3.1 Methods Specification

For DCLS, in order to reduce the influence of the instability of pure Ra-

man spectra, we use average source signals S̄ as the standard sources to estimate:

Ỹ = XS̄
T
(S̄S̄

T
)−1. For RR and rCCR, the parameter κ in Equation (2.9) and E-

quation (2.28) are set as 0.1. To maximize the performance of all the latent variable

regression methods, the component number K needs to be optimized for each data

set and each cross-validation method. Every possible component number is tested,

the one giving the lowest RMSE returns as the optimized one K∗. The results are in

Table 2.1. Also we used the iteratively curve-fitting baseline correction method [24]

to remove the backgrounds, and the polynomial curve-fitting order pOrder needs to
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Table 2.1: Optimized components number K∗ using two criteria. D is short for
evaluation method CVD; A is for CVA; AA is for CVAA

Methods Data Set 1 Data Set 2 Data Set 3
D A AA D A AA D A AA

PCR 8 8 8 3 3 3 30 30 20
OPLS 27 25 8 8 8 7 30 30 18
PLS2 4 3 3 3 3 3 20 28 17
SIMPLS 4 3 11 3 3 3 29 29 14

be decided. Different orders (from 3 to 10) are tested, the one giving the lowest RMSE

returns as the optimized pOrder∗. The results are in Table 2.2.

Table 2.2: Optimized curve fitting order pOrder∗ for baseline correction. D is short
for evaluation method CVD; A is CVA; AA is CVAA

Methods Data Set 1 Data Set 2 Data Set 3
D A AA D A AA D A AA

DCLS - 8 4 - 3 3 - 6 6
RR 10 6 6 3 3 3 8 8 4
PCR 6 6 6 3 3 3 6 6 4
OPLS 10 6 6 4 4 3 8 8 4
PLS2 6 6 8 3 3 3 6 8 4
SIMPLS 6 6 6 3 3 3 8 8 4
rCCR 10 6 6 3 3 3 8 8 4

2.3.2 Results

In Table 2.3, we show the estimated errors of different regression methods,

using three data sets and three cross-validation methods. The results of CVA and

CVAA tend to be better than CVD, since the average testing signals will reduce the

influence of instable backgrounds. And CVA is better than CVAA, since CVA has

more training samples than CVAA.
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Table 2.3: Estimation errors for each methods on three data sets. Each data set use
three evaluation methods. The bold face represents the best result.

Methods Data set 1 Data set 2 Data set 3
CVD CVA CVAA CVD CVA CVAA CVD CVA CVAA

DCLS – 6.11 2.87 – 16.44 16.37 – 64.01 64.01
RR 2.75 1.62 1.77 4.37 4.22 4.28 2.85 2.68 2.94
PCR 2.50 1.39 1.73 3.24 3.13 3.14 3.01 2.92 2.89
OPLS 2.53 1.39 1.71 4.09 3.96 3.87 3.07 2.92 3.04
PLS2 2.48 1.37 1.68 3.18 3.07 3.06 2.83 2.68 2.93
SIMPLS 2.58 1.37 1.41 3.30 3.19 3.18 2.84 2.67 2.92
rCCR 2.75 1.63 1.77 4.37 4.22 4.28 2.85 2.68 2.94
PLS-W2A 8.08 4.84 4.18 9.40 9.34 9.32 7.33 7.33 7.33
RCA 7.79 4.16 4.10 4.83 4.71 5.61 5.26 5.22 5.23

For DCLS method, CVA tests each duplicate mixture signal and CVAA tests

each average mixture signal. We leave CVD as empty. The results of DCLS is worse

than other calibration methods, because the source signals are not reliable enough,

especially in data set 3. (We find that the heights of the Raman peaks in the mixture

are higher than those in source signals. Theoretically they should be lower, since

the concentrations of each pure nano-tag is lower in the mixture solution.) Most of

the results of LVR methods (PLS2, SIMPLS, PCR, OPLS) are better than those of

RR, which means the latent space calibration model is better than the full spectrum

calibration model, because there may be noise in certain latent dimensions, and by

choosing the optimized component number K∗, most noise are removed. CCR, PLS-

W2A and RCA are bad for data set 1 and 2, and relatively better in data set 3. That

is because of the limited number of components problem. In data set 1 and 2, rank of

Y is 1, so only one component can be used, and in data set 3, only four components

can be used, so the accuracy is relatively increased. In the end, the similar results

of PLSR methods proves that PLS2 and SIMPLS are almost the same, and they are
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Figure 2.1: Percentages of X and Y represented by T of LVR methods

better than the other LVR methods, which shows the robustness of PLSR methods

(the reason is explained in section 2.2.3).

2.3.3 Discussion

2.3.3.1 Representation and Prediction Effectiveness

In order to show the effectiveness of latent variables T to represent the Raman

signals X and to predict the concentration Y, Fig. 2.1 shows how much informa-

tion of X and Y are presented in T, which can be defined as Rx = (1 − (||X|| −

||TPT ||)/||X||)× 100% and Ry = (1− (||Y|| − ||TC||)/||Y||)× 100%.

The curves of PLS2 and SIMPLS are overlapped from Fig. 2.1a to Fig. 2.1e,

which means their effectiveness are almost the same. The effectiveness of PLS2, SIM-

PLS and PCR for representing X are similar (Fig. 2.1a - Fig.2.1c), but for predicting
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Figure 2.2: Relation between latent variables and concentrations, for data set 1.
Elements Y1 are the mixing ratios of CV, and elements of Y2 are the mixing ratios
of DTTC. K is the number of components used in LVR methods

Y, PLS2 and PCR is better than PCR (Fig. 2.1d - Fig.2.1f). The effectiveness of

OPLS for both purposes are the worst, and until the number of components is big

enough (around 20), it get close to the other three methods. Fig. 2.1 explains why

the prediction accuracy of PLSR is better than PCR (Table 2.3), and the components

used are less (Table 2.1).

2.3.3.2 Calibration Effectiveness

In order to see the calibration effectiveness of LVR methods, we run OPLS,

PLS2 and PCR on data set 1, using three component numbers (K=4, K=8, K=20),

and with 50 mixture signals and corresponding mixing ratios as the training samples,
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and get the score T and coefficients C in (2.11). Fig. 2.2 shows the relation between

the ratios of the ith nano-tag Yi and TCi, where Ci is the ith column of C. It

illustrates that the low dimensional representation (or weighted mean) of spectra

intensities (T) and the relative concentrations of pure components (Y) are linearly

related, which explains why calibration methods work well on Raman spectra data.

It also demonstrates the calibration effectiveness of these methods is increasing with

more components used, and PLS2 is more effective than PCR and OPLS, because its

convergence is the fastest.

2.4 Conclusion

For quantitative analysis of Raman spectra, we group the current methods into

four models. And base on the properties of Raman spectra, and the fact that usually

data points stay in a low dimensional subspace, we analyze why the latent variable

regression model outperforms the other three. Among the LVR methods, we divide

them into two groups based on the symmetrical relation between two input matrixes.

For our application, asymmetric relation methods are better than symmetric relation

methods because the later has the limited component number problem. By comparing

the objective function and constraints form of LVR methods, we illustrate PLS2 and

SIMPLS are almost the same, both belonging to PLSR methods, and both are better

than PCR and OPLS (or RRR) because they are combination of best representation

of predictor X and best prediction of response Y.
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CHAPTER 3

CONTINUOUS WAVELET TRANSFORM BASED PLSR

Traditional PLSR only considers the intensities information of Raman signals

without separating the Raman peaks from the instable background, which affects the

quantity prediction accuracy. Continuous wavelet transform (CWT) is an effective

way to extract the peak information and automatically remove the background [25].

To use both peak shape information of Raman spectrum and the correlation between

peak heights and concentrations, we design a CWT based PLS (CWT-PLSR) that

uses the average CWT coefficients of Raman spectra and the mixing concentrations

to do PLS regression. It is robust to random noises and instable baseline and the

performance is better than traditional PLSR and baseline correction based PLSR.

3.1 CWT-PLSR

In this section, we introduce a continuous wavelet transform (CWT) based

PLSR algorithm which can automatically remove the background and extract the

Raman spectrum (peaks). CWT [56] can be described as:

C(a, b) =

∫
R

x(τ)ψa,b(τ)dτ, (3.1)

with x(τ) is one Raman signal, τ is the time variable, here means different Raman

shifts, ψa,b(τ) =
1√
a
ψ( τ−b

a
) is any scaled and translated wavelet function, a = 1, 2, ..., s

is the scale, b = 1, 2, ..., Dx is the translation and C(a, b) is the 2D matrix of wavelet

coefficients.
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3.1.1 CWT-PLSR Algorithm

The CWT-PLS algorithm includes two parts: training (modeling) part and

testing (predicting) part. Given training data: mixture Raman signals X and mixing

concentrations Y, maximum wavelet scale s and PLS components number K, the

training part is:

1. For every Raman signal (each row of X), get its CWT coefficients C in (3.1) with

Mexican hat mother wavelet [25];

2. Calculate the average coefficients of C along the scale dimension as Mean(C) =

1
s

∑s
a=1C(a, b), and store them in one row of matrix D;

3. Instead of using X, using D and Y to do PLSR, and return the PLSR coefficients

Θ;

Then given a testing Raman signal x, the testing part is:

1. Get the CWT coefficients C of x, and calculate its average coefficients d;

2. Estimate the mixing concentrations y.

The whole algorithm is summarized in Algorithm 3. The definition of Mexican hat

function [56] is

ψ(τ) = (
2√
(3)

π−1/4)(1− τ 2)e−τ2/2. (3.2)

Curves of Mexican hat wavelet function with 4 different scales are shown in Fig. 3.1.

3.1.2 Principles of CWT-PLSR

3.1.2.1 Remove the Baseline and Random Noise

The baseline of the Raman signal is assumed to change slowly and monotonically

in any small region, so it can be locally approximated as a constant G plus an odd
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Algorithm 3 CWT-PLSR Algorithm
Input: X, Y, x, K, s

Output: y

1: for i = 1 to N do

2: C = CWT (X(i, :), s);

3: D(i, :) =Mean(C);

4: end for

5: Θ = PLSR(D,Y, K);

6: C = CWT (x, s);

7: d =Mean(C);

8: y = (d−Mean(D))Θ+Mean(Y);
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Figure 3.1: Mexican hat wavelet functions with different scales.

function B(τ). Similar to [25], the intensities of the Raman signal x(τ) at any small

region [τ1, τ2] can be represented as following:

x(τ) = P (τ) +B(τ) +G+ E(τ); τ ∈ [τ1, τ2], (3.3)

If [τ1, τ2] is the region of the Raman peak, P (τ) is the real Raman peak; otherwise if

it is the region of the background, P (τ) = 0. B(τ) is the background function with
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zero mean, G is a constant, E(τ) is the random noise. The coefficients in (3.1) can

be rewritten as:

C(a, b) =

∫
R

P (τ)ψa,b(τ)dτ +

∫
R

B(τ)ψa,b(τ)dτ

+

∫
R

Gψa,b(τ)dτ +

∫
R

E(τ)ψa,b(τ)dτ.

(3.4)

Because the wavelet function ψa,b(τ) is a zero-mean function, the third term in (3.4) is

zero. And for symmetric wavelet, like Mexican Hat wavelet, B(τ) is an even function,

the second term is zero. Also the zero-mean random noise function E(τ) tends to be

canceled out by the convolution with the symmetric wavelet function, so the fourth

term tends to be zero. Thus, only the term with real peak P (τ) is left in (3.4).

That is to say, as long as the background is slowly changing and locally monotonic

in the Raman peak region with random noise, it will be automatically removed in

calculating the CWT coefficients.

3.1.2.2 Peaks Extraction

If the mother wavelet is treated as a mask function, the integration in (3.1)

is essentially a pattern matching, and the coefficients C are scores that measure

how much the shapes of the signal matching to the mask function with different

scales, at each Raman shift. For peaks extraction purpose, Mexican hat function is

chosen as the mother wavelet because it has the shape of a peak. So the positions

of Raman peaks tend to have high scores and backgrounds tend to have low scores.

And at smaller scales, the scores measure the shape in narrow ranges; at bigger

scales, the scores measure the peak shape in wider ranges. Fig. 3.2 shows the CWT

coefficients of one Raman signal. The brightness of the figure represents the intensities

of coefficients. Dimension b is the same with the dimension of Raman shifts. We
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can see at peak positions, the corresponding CWT coefficients are high, and the

coefficients are increasing as the increasing of scales.
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Figure 3.2: CWT coefficients of one Raman signal.

3.1.2.3 Why Mean(C) Works

We want to illustrate the mean values of the CWT scores along different scales

are approximately proportional to the heights of Raman peaks. Then based on the

property of Raman spectrum mentioned in section 1.1.1: the height of one Raman

peak in the mixture Raman signals is proportional to the concentration of the pure

material, we can say Mean(C) is proportional to concentration, which explains why

Mean(C) works in CWT-PLSR.

If we assume in certain Raman peak range τ ∈ R, the height function of

a Raman peak of certain nano-tag with standard concentration (100%) is P (τ),

then for 90% concentration, the height function is 90%P (τ), and for 50% concen-

tration, the height function is 50%P (τ). According to the definition of CWT in (3.1)
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and Mean(C) in section 3.1.1, the ratio of Mean(C) with 90% concentration and

Mean(C) with 50% concentration at the Raman peak is

1
s

∑s
a=1

∫
R
90%P (τ)ψa,b(τ)dτ

1
s

∑s
a=1

∫
R
50%P (τ)ψa,b(τ)dτ

=
90%

50%
, (3.5)

which is the ratio of their peak heights as well as the ratio of their mixing concentra-

tions.

Fig. 3.3 showsMean(C) of different Raman signals. We can see all blue signals

or black signals are overlapped (stable) in the lower figure; background parts become

zero, peak part become high (background removed); and signals are more smooth

(random noise removed). Also because the high intensity backgrounds are removed,

the weak peaks can be used more efficiently. In the CWT coefficients (orMean(C)),
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Figure 3.3: Average CWT coefficients along different scales. Signals with the same
color are five duplicate Raman signals of one sample collected at different time.

there are negative values (valley points in the lower figure of Fig. 3.3) that locate near

the Raman peaks. They are the convolution results between the Raman peaks and

the negative part of the Mexican hat mask (Fig. 3.1). And the depthes of the valley
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points are proportional to the heights of the Raman peaks, as well as the mixing

concentrations. So they do not affect the PLSR results.

3.1.2.4 Robustness to Noisy Peaks

CWT is based on the shape information of one signal, weak Raman peaks and

noisy peaks are not differentiable. But when consider many signals together with

the mixing concentrations information, the heights of weak Raman peaks are highly

correlated with mixing concentrations, but noisy peaks are randomly happened, there

is no correlation. Then PLS will give low weights on noisy peaks. Also when there is

noisy peaks in testing sample, since their weights are low, they will not contribute to

latent variables and the prediction. So combining CWT with PLSR will reduce the

influence of noisy peaks automatically.

3.2 Experiment

3.2.1 Methods Specification

To evaluate the effectiveness of CWT-PLSR for quantitative analysis of Raman

spectrum, in this section, we compare it with the following methods: Ridge Regression

(RR) [30]; Principle Component Regression (PCR) [33]; Orthonormalized PLS (O-

PLS) [?]; PLS2 [42]; SIMPLS(SIM) [45]; linear programming baseline correction [57]

based PLSR (P-PLS2 and P-SIM) and iteratively curve-fitting baseline correction [24]

based PLSR (I-PLS2 and I-SIM). RR needs to add a parameter κ to (XTX)−1 in the

least square solution to solve the singularity problem: B̂ = (XTX + κI)−1XTY, κ

needs to be a small number and we can simply set it as 0.1. Similar to RR, OPLS

also needs a parameter to remove the singularity problem, and it is also set as 0.1.
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Table 3.1: Optimized components number K∗

Parameter Data Set 1 Data Set 2 Data Set 3
D A AA D A AA D A AA

PCR 6 9 7 5 5 6 13 13 10
OPLS 1 2 2 2 2 1 4 4 4
PLS2 8 9 4 5 5 4 10 10 10
SIM 4 9 4 4 4 4 10 10 8
P-PLS2 5 5 5 6 4 4 21 21 19
P-SIM 5 5 4 10 4 4 21 21 11
I-PLS2 3 3 4 4 4 4 24 24 19
I-SIM 3 3 4 6 6 4 24 24 19
CWTPLS2 3 3 3 3 3 3 8 8 8
CWTSIM 3 3 3 3 3 3 8 8 8

Table 3.2: Optimized parameters

Parameter Data Set 1 Data Set 2 Data Set 3
D A AA D A AA D A AA

P-PLS2-p 5 5 5 6 11 7 7 7 7
P-SIM-p 10 10 10 11 11 11 10 10 10
I-PLS2-p 8 9 8 7 7 7 10 9 9
I-SIM-p 8 8 12 9 9 7 10 10 9
PLS2-s 15 15 14 30 30 28 10 10 9
SIM-s 15 15 14 30 30 29 8 8 8

To maximize the performance of all the latent variable regression methods,

the component number K needs to be optimized for each data set and each cross-

validation method. Every possible component number is tested, the one giving the

lowest RMSE returns as the optimized one K∗. The results are in Table 3.1.

Beside optimized component number, other parameters also need to be opti-

mized. For baseline correction based PLSR methods (P-PLS2, P-SIM, I-PLS2 and

I-SIM), the polynomial curve-fitting order p needs to be decided. For CWT-PLS

(PLS2 and SIM), the optimized wavelet scale numbers s needs to be found (PLS2-s

and SIM-s). All of the optimized parameters are found by the same way as K∗, and

summarized in Table 3.2.
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3.2.2 Results and Discussion

Table 3.3: RMSE for each method, on three data sets and three cross-validation
methods (CVD, CVA and CVAA). The bold face represents the best result.

Methods Data Set One Data Set Two Data Set Three
CVD CVA CVAA CVD CVA CVAA CVD CVA CVAA

RR 2.94 1.61 2.34 4.36 4.23 4.41 4.46 4.84 5.85
PCR 2.81 1.63 2.25 4.14 4.04 4.12 4.11 4.50 5.08
OPLS 2.94 1.54 2.08 4.20 4.09 4.41 4.46 4.84 5.85
PLS2 2.93 1.59 2.20 4.22 4.11 3.86 3.90 4.33 4.86
SIM 2.72 1.61 2.27 4.13 4.03 3.90 4.15 4.53 5.34
P-PLS2 2.78 1.47 1.56 4.27 3.99 3.74 2.89 2.75 3.05
P-SIM 2.84 1.61 2.21 4.52 4.29 4.30 2.99 2.84 3.24
I-PLS2 2.70 1.50 1.92 3.99 3.75 3.86 2.86 2.72 3.09
I-SIM 2.66 1.51 1.88 4.56 4.42 4.53 2.86 2.73 3.10
CWTPLS2 2.56 1.43 1.45 3.28 3.16 3.13 2.72 2.63 2.66
CWTSIM 2.65 1.47 1.46 3.39 3.27 3.24 2.67 2.58 2.59

In Table 3.3, we show the results of different regression methods, using three

data sets and three cross-validation methods. Most of the results of latent variable

regression methods (PLS2, SIM, PCR, OPLS) are better than those of RR, which

means the latent space calibration model is better than the full spectrum calibration

model. Baseline correction based PLSR (P-PLS2, P-SIM, I-PLS2 and I-SIM) are

usually better than PLSR (PLS2 and SIM), since they reduce the influence of the

instable backgrounds. But they are not always better because locally the baselines

may not be perfect backgrounds, and the hard cut of these baselines will lose Raman

peak information. The results of CWT-PLS methods (CWTPLS2 and CWTSIM) are

always better than other methods, and the optimized component numbers of them

are lower and more stable than other methods. These because CWT-PLSR methods

more effectively reduce the instable background and random noises, and extract more

useful peak information.
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The results of CVA and CVAA tend to be better than CVD, since the average

testing signals will reduce the influence of instable backgrounds. And CVA is better

than CVAA, since CVA has more training samples than CVAA. The results of data

set 1 is the best among three data sets. Because first, the mixing concentrations of

two nano-tags are related (summation equals to 100%), if one concentration can be

estimated, the other is easy to get; second, data set 1 has one nano-tag (DTTC)

dominating the Florence background and this background tends to linearly related to

its concentration, so the instable backgrounds in data set 1 do not affect the estimation

of the concentration of DTTC; third, the Raman peaks of two nano-tags in data set 1

have less overlaps than the other two data sets, which also decreases the difficulty of

prediction. In data set 2 the mixing concentrations of two nano-tags are also related,

but there is no dominating Florence background, so the instable mixing background

will affect the prediction more than data set 1. Plus, there are more overlaps between

Raman peaks of two nano-tags, so the results of data set 2 are worse than data set 1.

In data set 3, one nano-tag (HITC) also has a dominated background, but its results

are the worst. This because it contains four nano-tags, are there are more overlaps

between the Raman peaks in data set 3, so it increases the difficulty of prediction.

Also the mixing concentrations of four nano-tags are not related, then the dominated

background will affect the prediction of the other three. So baseline correction based

methods and CWT-PLS improve most in data set 3.

If we think the projections in (2.10) as linear combinations of the intensities of

Raman spectra at different Raman shifts, elements of each column of W are actually

the weights showing how important each Raman shift in the combination is for the

representing of Raman spectra X and relating to concentrations Y. In order to show

how efficient the algorithm is using the peak information, in Fig. 3.4, we compare the

projection direction wi of the first four components (latent variables) of PLS2 and
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Figure 3.4: Raman peaks usage demonstration: (a) average Raman signals in data set
3; (b) first four projection directions got from PLS2; (c) first four projection directions
got from CWT-PLS2. Vertical lines show the positions of selected Raman peaks

CWT-PLS2 on data set 3. We can see CWT-PLS2 gives bigger weights on peaks,

which means it use more Raman peak information to do regression than traditional

PLS2. And almost every big weights in the first (red) and second (green) component

are corresponding to Raman peaks. This illustrates that CWT-PLS2 is mainly based

on Raman peaks to predict, which makes it more reliable and robust than PLS2.

3.3 Conclusion and Future Work

We give a new CWT-PLSR algorithm for quantitative analysis of Raman spec-

trum. It treats the average CWT coefficients along different scales as the estimation

of Raman spectrum (peaks) and combines mixing concentrations to do PLS. This

method can effectively reduce random noise and avoid the influences of instable back-

grounds and noisy peaks. So it can omit the preprocessing works, such as smoothing,
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de-noising and baseline correction, and is more convenient. The experimental re-

sults illustrate its prediction accuracy outperforms the direct PLSR and some of the

baseline correction methods based PLSR, and is a robust and efficient method for

quantitative analysis of Raman spectrum.

In CWT-PLSR, we use Mean(C) as the estimation of Raman peaks without

explaining the reason why it is a robust and effective way. In the future work, we will

deeply analysis the reason why it is robust and accurate, and show the comparing

results of other estimating methods. Also we will compare it with more baseline

correction methods to show the robust performance of the multi-scale essence of

CWT-PLSR; and with DWT decomposition based multi-scale regression methods to

show the effective performance of the peak extraction essence of CWT-PLSR.
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CHAPTER 4

CONTINUUM REGRESSION

PCR maximizes variance of ti (noted as var(ti)); RRR maximizes the correla-

tion between ti and Y (noted as corr(ti,Y)); PLS maximizes covariance between ti

and Y (noted as cov(ti,Y)). So the latent variables T of PCR and RRR best repre-

sent X and best predict Y. PLS balances the portion of the two tasks (representation

and prediction) with equal weight.

Continuum regression methods balance the representation and prediction in a

flexible way, and the objective functions are combinations of var(ti) and corr(ti,Y),

balanced by weight parameters. When the parameters are continuously adjusted, the

portions of two tasks in the objective functions are also continuously adjusted. In

this paper, we propose a new tactics to combine two tasks and embrace PCR, RRR

and PLS as three special cases. It beats simple continuum regression (SCR) [58] who

only contains PLS and RRR, and PCovR [59] who only contains PCR and RRR. And

since the algorithm is based on NIPALS algorithm, it is easy to implemented.

4.1 Continuum Regression Methods

4.1.1 PCovR

PCovR [59] combines two criterions (JPCR1 and JRRR) with a weight parameter

α:

obj. min
T
α||X−TPx||2 + (1− α)||Y−TPy||2. (4.1)

The lengths of the projecting vectors {wi}Ki=1 do not affect the objective function

(proved in Appendix A.2 and Appendix A.3) so the constraint TTT = IK does not
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lose generality. And the solution of T can be calculated as the first K eigenvectors

of αXXT + (1 − α)YYT , and W and Py can be computed as: W = X−T and

Py = WTXTY. Then the PCovR regression coefficients are B = WPy. When

α = 0, PCovR equals to RRR or OPLS; when α = 1, it equals to PCR; when

0 < α < 1, it is a compromise between two tasks. But de Jong [59] demonstrated

PCovR doesn’t embrace PLS.

4.1.2 Simple Continuum Regression (SCR)

SCR [58, 60] (or called canonical ridge analysis in [61]) is between RRR (or

OPLS) and PLS. And the objective function is:

obj. max
wi

||cov(Xwi,Y)||2

(1− γ)||Xwi||2 + γ||wi||2
, (4.2)

which can be written as:

obj. max
wi

||cov(Xwi,Y)||2

s.t. (1− γ)||Xwi||2 + γ||wi||2 = 1,

(4.3)

||cov(Xwi,Y)||2 = wT
i X

TYYTXwi. When γ = 0, it equals to RRR, when γ = 1, it

equals to PLS.wi is solved as the first eigenvector of [(1−γ)XT
i Xi+γI]

−1(XT
i YYTXi),

and Xi is the ith residual matrix of X calculated by a deflation process similar to

Algorithm 1.

4.2 New Continuum Regression Method

de Jong [59] presented the limitation of PCovR is from the summation of two

criterions in the objective function. In the summation formulation Equation (4.1),

only one big criterion can make the total criterion big and compensate the other small

one. So the solution may focus on one criterion. In order to force both criterions to
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be big, multiplication of two may be superior to the summation. And the limitation

of SCR is it can not achieve PCR.

4.2.1 Formulation

Considering the two limitations listed above, we design the objective function

as:

obj. max
wi

[wT
i (X

TX)1−αwi]
−1(wT

i X
TYYTXwi)

s.t. tTi tj = 0, i = 1, ..., K, j = 1, ..., i− 1,

(4.4)

When α = 0, Equation (4.4) becomes Equation (2.20), and it is RRR; when α = 1,

Equation (4.4) equals to Equation (2.22), and it is PLS; when α = ∞, the portion

of wT
i X

TYYTXwi can be ignored, and it becomes PCR. Since the length of wi does

not affect the value of the objective function, we can always change the length of wi

to make wT
i (X

TX)1−αwi = 1, so the objective function (4.4) can be written as:

obj. max
wi

wT
i X

TYYTXwi

s.t. wT
i (X

TX)1−αwi = 1 and tTi tj = 0.

(4.5)

4.2.2 Algorithm

When i = 1, w1 is solved as the first eigenvector of (XTX)(α−1)(XTYYTX).

The calculation of (XTX)(α−1) can be done by the eigen-decomposition of XTX as

XTX = UΣUT first, Σ is diagonal matrix with diagonal elements are eigenvalues.

Then (XTX)(α−1) = UΣ(α−1)UT . When i = 2, ..., K, wi is calculated as the first

eigenvector of (XT
i Xi)

(α−1)(XT
i YYTXi), with Xi is the ith residual matrix of X

calculated in Algorithm 4, in which eig(XT
i Xi) is the eigen-decomposition of XT

i Xi,

and return all eigenvectors U and eigenvalues Σ. Function powereig(H(XT
i YYTXi))

is used and introduced in Algorithm 1, which is to calculate the first eigenvector of the
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Algorithm 4 New Continuum Regression Algorithm
Input: X, Y, K

Output: B

1: for i = 1 to K do

2: [U,Σ] = eig(XT
i Xi); % eigen-decomposition.

3: H = UΣ(α−1)UT ; % calculate (XT
i Xi)

(α−1).

4: wi = powereig(H(XT
i YYTXi)); % power method

5: ti = Xiwi;% score vector of Xi.

6: pi = XT
i ti/(t

T
i ti); % loading vector of Xi.

7: Xi+1 = Xi − tip
T
i ; % residual matrix Xi+1.

8: end for

9: Store T = [t1, . . . , tK ];P = [p1, . . . ,pK ];

10: C = YTT(TTT)−1;

11: B = P(PTP)−1C;

matrix (XT
i Xi)

(α−1)(XT
i YYTXi) by using power method [62]. Steps 5-7 are deflation

process on matrix X to satisfy the constraint tTi tj = 0.

4.3 Experiment

4.3.1 Methods Specification

Before evaluate each method on three data sets with three cross-validation

methods, all Raman signals are preprocessed by baseline correction method (e.g.

iteratively curve-fitting baseline correction [24]), to remove the instable background

intensity and extract the Raman spectrum.

To evaluate the effectiveness of the new continuum regression method (NCR) for

quantitative analysis of Raman spectrum, in this section, we compare it with Ridge
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Table 4.1: Optimized pOrder∗

CR Data Set 1 Data Set 2 Data Set 3
D A AA D A AA D A AA

RR 10 6 6 3 3 3 6 8 4
PCR 6 6 6 3 3 3 6 6 4
RRR 6 8 6 3 3 3 7 7 4
PLS2 6 6 8 3 3 3 6 8 4
PCovR 6 6 5 3 4 3 6 8 4
S-CR 6 6 8 3 3 3 6 8 4
N-CR 10 10 6 3 3 3 8 8 4

Table 4.2: Optimized α∗

CR Data Set 1 Data Set 2 Data Set 3
D A AA D A AA D A AA

PCovR 1 1 0.05 1 0.05 1 0.05 0.05 1
S-CR 1 1 1 0 0 0 1 0.4 0.65
N-CR 0.1 0.1 0.25 1 1 1 0.25 0.25 8

Table 4.3: Optimized K∗

CR Data Set 1 Data Set 2 Data Set 3
D A AA D A AA D A AA

PCR 8 8 8 3 3 3 30 30 20
RRR 21 5 9 9 9 2 30 30 20
PLS2 4 3 3 3 3 3 20 28 17
PCovR 8 8 4 3 6 3 15 23 20
S-CR 4 3 3 6 6 3 20 13 15
N-CR 5 5 3 3 3 3 23 27 20

Regression (RR) [30], three latent variable regression methods (PCR [33], RRR [63],

PLS2 [42]), and other two continuum regression methods (PCovR [59] and SCR [58]),

testing on three Raman spectrum data sets and using three cross validation methods.

To maximize the performance of all methods, several parameters needs to be

optimized. First is the polynomial curve-fitting order pOrder of the baseline cor-

rection method for each data set and each cross-validation method. Different orders
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(from 3 to 10) are tested, the one giving the lowest RMSE returns as the optimized

pOrder∗. The results are in Table 4.1.

Second, all the continuum regression methods (PCovR, SCR, NCR) have a

weight parameter α to balance the portions of prediction and representation in the

model. In our experiment, we test {0, 0.05, 0.1, 0.15, ..., 0.95, 1} for PCovR and SCR;

{0, 0.05, 0.1, 0.15, ..., 0.95, 1, 2, 4, 6, 8, 10} for NCR, and the one giving the lowest RMSE

returns as the optimized α∗. The results are in Table 4.2.

Third, all the continuum regression methods (PCovR, SCR, NCR) and laten-

t variable regression methods (PCR, RRR, PLS) have to optimize the component

number K. We test different numbers (from 1 to 30) for each data set and each

cross-validation method, the one giving the lowest RMSE returns as the optimized

K∗. The results are in Table 4.3.

4.3.2 Results and Discussion

Table 4.4: RMSE, pOrder∗ and K∗ for each method, on three data sets and three
cross-validation methods (CVD, CVA and CVAA). The results are shown as: RMSE
(pOrder∗, K∗).

Methods Data Set One Data Set Two Data Set Three
CVD CVA CVAA CVD CVA CVAA CVD CVA CVAA

RR 2.75 1.63 1.77 4.37 4.22 4.28 5.75 5.35 5.87
PCR 2.50 1.39 1.73 3.24 3.13 3.14 6.01 5.84 5.79
RRR 2.65 1.50 1.77 3.51 3.38 4.02 6.36 6.14 5.86
PLS2 2.48 1.37 1.68 3.18 3.07 3.06 5.65 5.35 5.85
PCovR 2.50 1.39 1.50 3.24 3.00 3.14 5.83 5.60 5.79
SCR 2.48 1.37 1.68 3.07 2.92 3.06 5.65 5.33 5.84
NCR 2.38 1.25 1.64 3.18 3.07 3.06 5.58 5.23 5.75

In Table 4.4, we show RMSE of different regression methods, using three data

sets and three cross-validation methods, and the bold face represents the best result.
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The results of CVA and CVAA tend to be better than CVD, since the average

testing signals will reduce the influence of instable backgrounds. And CVA is better

than CVAA, since CVA has more training samples than CVAA.

The results of data set 1 is the best among three data sets. Because first, the

mixing concentrations of two nano-tags are related (summation equals to 100%), if

one concentration can be estimated, the other is easy to get; second, the Raman peaks

of two nano-tags in data set 1 have less overlaps than the other two data sets, which

also decreases the difficulty of prediction. In data set 2 the mixing concentrations of

two nano-tags are also related, but there are more overlaps between Raman peaks

of two nano-tags, so the results of data set 2 are worse than data set 1. The results

of data set 3 are the worst, because it contains four nano-tags, and there are more

overlaps between the Raman peaks in data set 3, so it increases the difficulty of

prediction.

Most of the results of latent variable methods (PLS2, PCR, RRR) are better

than those of RR, because RR is more easily to get over-fitting to the training sets and

latent variable methods do regression in a subspace, which avoid some random noise.

Within latent variable methods, RRR is worse than PCR in all situation, because

RRR doesn’t consider any representation of X, which makes it not rubost; and PLS

is better than PCR in most case, since PLS is the middle point between PCR and

RRR, and its T balances both prediction of Y and representation of X. PCovR is

always not worse than PCR, since its two extreme models are RRR (α = 0) and PCR

(α = 1), but it can be worse than PLS since it doesn’t include PLS. SCR is not worse

than PLS, since its two extreme models are RRR (α = 0) and PLS (α = 1). Our

algorithm (NCR) is also not worse than PLS, and it has more best results than the

other two CR methods (6 out of 9), because it has a bigger range of model than SCR

(from RRR to PCR), and contains PLS, which beats PCovR.
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RMSE represents the average prediction error for all the pure components

(dyes), in Table 4.5, we also show the prediction error of each pure component (dye)

in data set 3 (In data set 1 and 2, the prediction error of each dye are the same as

their RMSE). NCR also has the most best result (5 out of 12). So it is a robust

quantitative analysis method for Raman spectrum.

Table 4.5: Comparison of RMSE of each dye, for each method, by three cross-
validation methods (CVD, CVA and CVAA) on data sets 3.

CV Dyes
Methods

RR PCR RRR PLS PCovRSCR NCR

CVD
DOTC 3.57 3.80 3.22 3.47 3.86 3.47 3.57
DTTC 6.37 6.13 5.62 6.18 6.16 6.17 5.39
HITC 4.99 5.74 6.59 5.12 5.54 5.13 5.66
IR140 7.36 7.73 9.79 7.16 7.25 7.16 7.13

CVA
DOTC 3.37 3.74 3.11 3.38 3.47 3.39 3.37
DTTC 5.34 6.01 5.44 5.32 5.02 5.37 5.24
HITC 5.42 5.52 6.40 5.47 6.29 5.39 5.31
IR140 6.74 7.47 9.52 6.71 6.98 6.75 6.53

CVAA
DOTC 4.09 4.48 4.19 4.37 4.48 4.56 4.34
DTTC 5.18 5.08 5.58 5.17 5.08 5.18 5.10
HITC 4.99 4.86 5.22 4.94 4.84 5.32 4.80
IR140 8.33 8.03 7.94 8.17 8.03 8.07 8.02

4.4 Conclusion and Future Work

In this chapter, we present a new continuum regression method to do the quan-

titative analysis of Raman spectrum. It uses a continuous weight parameter to adjust

the portions of representing X and predicting Y in the objective function, and is

achieved by NIPALS algorithm. Since it contains RRR, PCR and PLS as its special

cases, its performance beats the other two CR methods (PCovR and SCR).
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In the future works, we will explain why when α =∞, NCR equals to PCR and

why the NIPALS based algorithm can effectively solve the objective function in (4.5).

Also we will compare our NCR with more CR methods to show its performance. Be-

sides, to determine the tuning parameter α, a less time consuming and more effective

Bayesian nonparametrics method need to be designed.
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CHAPTER 5

PROBABILISTIC PARTIAL LEAST SQUARES REGRESSION

5.1 Probabilistic Models

In this section, we will introduce latent variable methods PCA and CCA, and

compare their probabilistic models, which are the foundations of our presented mod-

els. Latent variable methods usually work on the centralized data set, so X and Y

denote zero mean matrixes. W = {wi}Ki=1 denotes K projecting vectors of X and

(Wx,Wy) = {(wxi,wyi)}Ki=1 denotes K pairs of projecting vectors of or X and Y.

Index i, j ∈ [1, K], and ∀i ̸= j.

5.1.1 PCA and PPCA

The goal of PCA is to reduce the dimensionality of a data set that contains a

large number of interrelated variables, and remain as much as possible of the variation

[?]. It is achieved by transforming X to a new sets of uncorrelated variables, which

are ordered so that the first few remain most variation of X. The derivation of sample

PCA is given sample sets X, to find K projecting directions (PCA loading vectors)

{wi}Ki=1 to project X, in which K ≪ Dx, and get K sets of uncorrelated projections

(principle components, or scores) that span the biggest variances of X:

obj. max
wi

var(Xwi); s.t. w
T
i wi = 1; wT

i X
TXwj = 0, (5.1)

var(Xwi) = wT
i X

TXwi is the sample variance of the ith PCA component. In order

to achieve the maximum, lengths of the projecting vectors {wi}Ki=1 are fixed to 1. The

solution of all the projecting directions W are the first K eigenvectors of covariance
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matrix XTX corresponding to the K biggest eigenvalues. wT
i X

TXwi are called the

ith principle variance.

Tipping and Bishop [64] present a Probabilistic PCA (PPCA) model to illus-

trate PCA from a probabilistic point of view, in which an observation x is treated as

random variables governed by low dimensional latent variables:

x = Wz+ µ+ ϵ,

with columns of matrix W are scaled loadings of the principle components, whose

lengthes are different from the loadings W in (5.1). z is a K dimensional vector

of random variables representing the normalized principle components, defined as

an isotropic Gaussian with unit variance: z ∼ N (0, I), µ represents the center of

data. Residual part ϵ describes the random noise outside the principle variances,

which has the same effect on each variable, so it is assumed to be isotropic Gaussian:

ϵ ∼ N (0, σ2I). The conditional distribution of x given z and the marginal distribution

of x are also Gaussian:

x|z ∼ N (Wz+ µ, σ2I) (5.2)

x ∼ N (µ,WWT + σ2I), (5.3)

with (5.3) is calculated from the properties of Gaussian distribution described in

Appendix B.1.

5.1.2 CCA and PCCA

The purpose of CCA [49] is to find the latent relationship between two or more

groups of variables from data sets. When consider two groups, CCA is achieved by

finding K pairs of projecting directions (CCA loading vectors) {(wxi,wyi)}Ki=1 for

X and Y respectively, and get K pairs of projections (canonical components) that
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correlate most and each component within each set is only correlated with a single

component in the other set:

obj. max
wxi,wyi

corr(Xwxi,Ywyi)

s.t. wT
xiX

TXwxj = 0; wT
yiY

TYwyj = 0

wT
xiX

TYwyj = 0; wT
xjX

TYwyi = 0,

(5.4)

in which corr(Xwxi,Ywyi) =
wT

xiX
TYwyi√

var(Xwxi)var(Ywyi)
represents ith canonical correlation

between two components, and for i = 1 . . . K, they are decreasing ordered. Without

affecting the result, var(Xwxi) and var(Ywyi) in (5.4) are set to 1, getting the solu-

tion ofWx andWy as the firstK eigenvectors of matrix (XTX)−1(XTY)(YTY)−1(YTX)

and (YTY)−1(YTX)(XTX)−1(XTY) corresponding to theK biggest eigenvalues [49].

Bach and Jordan [65] give a Probabilistic CCA (PCCA) model that relates two

sets of variables with a common set of latent variables under two Gaussian distribu-

tions:

x|z ∼ N (Wxz+ µx,Ψx) (5.5)

y|z ∼ N (Wyz+ µy,Ψy), (5.6)

with z follows the zero mean unit covariance Gaussian and elements of z are normal-

ized canonical components describing the normalized common variances. Wx andWy

are scaled canonical correlation directions (in X and Y space), projected on which,

two data sets are related most. Wxz and Wyz span the canonical correlation sub-

spaces in X and Y space. Ψx and Ψy model the unique variances on each dimension

of X and Y, outside their canonical correlation subspaces.
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5.2 Probabilistic PLS (PPLS)

5.2.1 PPLS Model

Based on the comparison of three PLS methods (2.22) and (2.29), we can see

all methods are essentially the same: all represent two group of variables x and y

with a few shared latent variables z. So similar to PPCA and PCCA, the PPLS can

be modeled as:

x = Wxz+ µx + ϵx and y = Wyz+ µy + ϵy

For PLS-W2A, Wy are loadings of y; and for two PLS regression models, they are

just regression coefficients between normalized PLS components z and y. Since PLS

components are unrelated to each other, we have:

z ∼ N (0, I). (5.7)

All three PLS methods requireWxz andWyz span the systematic (principle) variance

of x and y, the residual part ϵx and ϵy can be modeled as random noises, which have

the same effect on each dimension:

ϵx ∼ N (0, σ2
xI) and ϵy ∼ N (0, σ2

yI).

Then the Probabilistic PLS model can be summarized as:

x|z ∼ N (Wxz+ µx, σ
2
xI) (5.8)

y|z ∼ N (Wyz+ µy, σ
2
yI). (5.9)

From (5.8) and (5.9), the joint distribution of x and y given z is formed as:

x,y|z ∼ N (mxy|z,Sxy|z); with

Sxy|z =

 σ2
xI 0

0 σ2
yI

 ; mxy|z =

 Wxz+ µx

Wyz+ µy

 .
(5.10)
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From (5.7) and (5.10), and using the properties in Appendix B.1, the conditional

distribution of z is calculated as:

p(z|x,y) = N (mz|xy,Sz|xy);

with Sz|xy = (I+AT
uS

−1
xy|zAu)

−1

mz|xy = Sz|xyA
T
uS

−1
xy|z(u− µu)

u =

 x

y

 , µu =

 µx

µy

 , Au =

 Wx

Wy

 .

(5.11)

and the marginal distribution of x and y is calculated as:

p(x,y) = N (µu,Sxy|z +AuA
T
u )

5.2.2 PPLS Regression (PPLSR)

The finial goal of PLS regression is given a testing predictor x to predict its

response ŷ. Here we give an estimation method using PPLS model. From (5.7) and

(5.8), we can get:

z|x ∼ N (mz|x,Sz|x)

with Sz|x = (I+ σ−2
x WT

xWx)
−1;

mz|x = σ−2
x Sz|xW

T
x (x− µx)

(5.12)

And from (5.9) and (5.12), we get:

y|x ∼ N (my|x,Sy|x)

with my|x = Wymz|x + µy;

Sy|x = σ2
yI+WySz|xW

T
y

(5.13)

The calculation of (5.12) and (5.13) can be referred to Appendix B.1. The mean value

my|x of y given x can be used as the prediction of ŷ. The regression coefficients are:

B = Wy(W
T
xWx + σ2

xI)
−1WT

x .
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5.2.3 EM Algorithm for PPLSR

It is complicated to directly estimate all parameters by maximizing the log

likelihood function
∑N

n=1 ln p(xn,yn). Here we give an EM algorithm. In expectation

(E) step, it builds the distribution of latent variables p(zn|xn,yn; Θ̂) with training

data and previously estimated parameters according to (5.11), Θ̂ denotes all the

estimated parameters. We note the conditional distribution (5.11) as Q(z), which

gives the distribution of z. In maximization (M) step, we estimate the parameters by

maximizing the log likelihood:

max
Θ

N∑
n=1

Ezn|Q [ln p(xn,yn|zn; Θ)] (5.14)

The subscripts zn|Q indicates that the expectations are with respect to zn drawn

from distribution Q. Θ denotes the unknown parameters. The derivation of (5.14) is

proved in Appendix B.2.1. Set derivative of the (5.14) with respect to all parameters

to zero (the calculation is briefly summarized in Appendix B.2.2), for means of x and

y we get:

µx =
1

N

N∑
n=1

xn and µy =
1

N

N∑
n=1

yn (5.15)

These two parameters only relate to original data, so we can get them without EM

algorithm. The loading matrixes are updated as:

Ŵx =

[
N∑

n=1

(xn − µx)E[zn]
T

][
N∑

n=1

E[znz
T
n ]

]−1

Ŵy =

[
N∑

n=1

(yn − µy)E[zn]
T

][
N∑

n=1

E[znz
T
n ]

]−1
, (5.16)
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with E[zn] = mz|xy(zn) and E[znz
T
n ] = Sz|xy + E[zn]E[zn]

T are calculated in the E

step. Finally the noise levels are updated as:

σ̂2
x =

1

DxN

N∑
n=1

{Tr(E[znzTn ]Ŵ
T

xŴx)

− 2E[zn]
TŴ

T

x (xn − µx) + ∥xn − µx∥2}

σ̂2
y =

1

DyN

N∑
n=1

{Tr(E[znzTn ]Ŵ
T

y Ŵy)

− 2E[zn]
TŴ

T

y (yn − µy) + ∥yn − µy∥2}

(5.17)

Iteratively until estimated parameters are converge. The pseudo-code of the

EM algorithm is summarized in Algorithm 5.

Theoretically, the conditional log likelihood would be the criterion to control

the convergence, since it is monotone increasing and converge to a upper bound. But

for high dimensional Gaussian distribution, the probability of single data point as

well as the likelihood are zero. So in real case it can not be used to control the

convergence. Here we use mz|xy, since it is a function of all parameters. Its converge

means all parameters are converge.

5.3 Experiment

5.3.1 Results and Analysis

Using three data sets and three cross-validation methods, we test the prediction

ability of different regression methods show the accuracies in Table 5.1, bold face are

the best results. And the optimized K∗ for each method are shown in Table 5.2. RR

is worse than most latent variable regression methods because of the sparsity of the

high dimensional spectra data. OPLS uses very small number of components since it

is limited by rank(Y), but the accuracy is acceptable. This efficiency is because of
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Algorithm 5 EM Algorithm for PPLSR
Input: X, Y, K

Output: B

1: µx ← 1
N

∑N
n=1 xn; µy ← 1

N

∑N
n=1 yn;

2: X← X− µx; Y← Y− µy;

3: Initialize parameters: Θ̂ = [σ̂x, σ̂y,Ŵx,Ŵy]

4: while mz|xy(Z) is not converge do

5: Calculate mz|xy(Z),Sz|xy(Z) for N samples as in (5.11):

Sz|xy(Z) = (σ̂2
xŴ

T

xŴx + σ̂2
yŴ

T

y Ŵy + I)−1

mz|xy(Z) = Sz|xy(σ̂
−2
x Ŵ

T

x X̂
T
+ σ̂−2

y Ŵ
T

y Ŷ
T
)

with Z = [z1, . . . , zN ].

6: Calculate ΣZ =
∑N

n=1E[znz
T
n ] as in (5.16):

ΣZ = NSz|xy(Z) +mz|xy(Z)mz|xy(Z)
T

7: Estimate new Ŵx and Ŵy as in (5.16):

Ŵx = XTmz|xy(Z)
TΣ−1

Z ; Ŵy = YTmz|xy(Z)
TΣ−1

Z

8: Estimate new parameters σ̂x and σ̂y as in (5.17):

σ̂2
x = Tr{ΣZŴ

T

xŴx +XXT − 2XŴxmz|xy(Z)}/DxN

σ̂2
y = Tr{ΣZŴ

T

y Ŵy +YYT − 2YŴymz|xy(Z)}/DyN

9: end while

10: B = Wy(W
T
xWx + σ2

xI)
−1WT

x

the normalization on the variances of predictor components of OPLS, it removes the

variance of X that is unrelated with prediction.

The results of PPLSR are not the best but similar to those of PLS2 and SIM-

PLS. This is because PPLSR model is an probabilistic view of PLSR methods, and

essentially they are the same. The merit of PPLSR over PLSR is it models the obser-

59



Table 5.1: RMSE of different regression methods using different cross-validation meth-
ods.

Methods Data Set One Data Set Two Data Set Three
CVD CVA CVAA CVD CVA CVAA CVD CVA CVAA

RR 2.94 1.61 2.34 4.36 4.23 4.41 8.91 9.67 11.69
PCR 2.81 1.63 2.25 4.14 4.04 4.12 8.22 8.99 10.15
OPLS 2.94 1.54 2.08 4.20 4.09 4.41 8.91 9.67 11.69
PLS2 2.93 1.59 2.20 4.22 4.11 3.86 7.90 8.65 9.75
SIM 2.72 1.61 2.27 4.13 4.03 3.90 8.30 9.06 10.68
PPLSR 2.75 1.53 2.24 4.07 3.97 4.17 8.21 8.89 10.00

Table 5.2: Optimized K∗

CR Data Set 1 Data Set 2 Data Set 3
D A AA D A AA D A AA

PCR 6 9 7 5 5 6 13 13 10
OPLS 1 2 2 2 2 1 4 4 4
PLS2 8 9 4 5 5 4 10 10 10
SIMPLS 4 9 4 4 4 4 10 10 8
PPLSR 8 37 7 5 5 4 13 8 6

vations into systematic part and unrelated noise part with parameters, which provides

a foundation for Bayesian models to avoid the over-fitting problem that PLSR can

not avoid.

The unrelated noise of X and Y are governed by parameters σx and σy. They

are related with the components number K. From Figure 5.1 and 5.2, we can see,

the uncertainty of the model is decreasing corresponding with the increasing number

of components it uses. The systematic part of X and Y are governed by parame-

ters Wx and Wy. Figure 5.3 shows the ability of the latent variables to represent

X. It plots 100% × norm(X −mz|xy(Z)W
T
x )/norm(X) under different componen-

t numbers. Figure 5.4 shows the ability of the latent variables to represent Y. It

plots by and 100%× norm(Y−mz|xy(Z)W
T
y )/norm(X) under different component

numbers. mz|xy(Z) ∈ RN×K are the latent variables of all samples calculated in step
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ᵟx
2

(a) (b) (c)

Figure 5.1: Relation between σx and components number K: (a) Data set 1; (b) Data
set 2; (c) Data set 3.

ᵟy
2

(a) (b) (c)

Figure 5.2: Relation between σy and components number K: (a) Data set 1; (b) Data
set 2; (c) Data set 3.

5 of Algorithm 5. We can see the representation ability of the latent variables are

increasing with the increasing numbers of components used and tent to be steady in

the end. Figure 5.3 and 5.4 also illustrate the representation and prediction ability

of the latent variables of PLSR methods. We can see the representation ability are

similar (Figure 5.3), but the prediction ability of PPLSR is lower than PLSR meth-

ods (Figure 5.4). Because PLSR methods tend to be over-fitting to training data sets

with more components used, which will affects the general prediction ability. PPLSR

uses parameter σx and σy to control the uncertainty of the data set, so the PLS

components part will not cover all information of original data sets.
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(a) (b) (c)

Figure 5.3: Representation of X by ZWT
x : (a) Data set 1; (b) Data set 2; (c) Data

set 3.

(c)(b)(a)

Figure 5.4: Prediction of Y by ZWT
y : (a) Data set 1; (b) Data set 2; (c) Data set 3.

5.4 Conclusion and Future Work

Based on the ideas of PPCA and PCCA and the connection between PLS-W2A,

PLS2 and SIMPLS, this paper presents a unified probabilistic PLS model, PPLS, to

illustrate the traditional PLS regression from a probabilistic point of view: systemat-

ic or principal components part and unrelated noise part. Though the experimental

results show it is performance is similar to PLSR methods, it provides a solid foun-

dation for future probabilistic and Bayesian models for continuum regression which

is more flexible than PLS.

So our future works are to design the probabilistic and Bayesian models for

CR methods to easily decide the tuning parameter that control the portions of two

objectives.
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APPENDIX A

Proofs in Chapter 2
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In this appendix, we present some proofs of section 2

A.1 Calculation of generalized inverse of matrix A

The generalized inverse (or pseudoinverse) can be calculated using SVD decom-

position [28]. The (m× n) matrix A as A = UΣVT , where columns of the (m×m)

matrix U are the left-singular vectors, columns of the (n × n) matrix V are the

right-singular vectors and diagonal entries of the m × n diagonal matrix Σ are the

decreasing singular values σi, with i = 1, . . . ,min(m,n). If A is the rank k matrix,

where k < min(m,n), then for i = k+1, . . . ,min(m,n), σi = 0. Then the generalized

inverse of A is calculated as A− = UkΣ
−1
k VT

k , with columns of (m × k) matrix Uk

and (n × k) matrix Vk are the first k columns of U and V, and diagonal entries of

the k × k diagonal matrix are the first k σi.

A.2 Proof for PCR

(2.17) can be written as:

min
W
JPCR3 = tr{(X−XWPT

x )
T (X−XWPT

x )}

= tr(XTX− 2XTXWPT
x +PxW

TXTXWPT
x ).

(A.1)

Take the derivative of JPCR3 to Px and set to 0, PT
x can be calculated as the gen-

eralized inverse of W (noted as W−). So the objective function in (2.17) becomes

J = ||X−XW(W)−||2, and so the lengths of projection directions do not affect the
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objective function. Without loss of generality, we can have the constraint WTW = I.

And since PT
xW = I, Px = W. So (A.1) can be rewritten as:

min
W
JPCR3 = tr(−2PT

xX
TXW+WTXTXWPT

xPx)

= tr(−2WTXTXW+WTXTXW)

= −tr(WTXTXW) = −
K∑
i

(wT
i X

TXwi)

= max
W

JPCR2.

(A.2)

A.3 Proof for RRR

(2.18) can be written as:

min
W

J = tr(YTY− 2YTXWPT
y +PyW

TXTXWPT
y ). (A.3)

Take the derivative of J to Py and set to 0, we can get

Py = YTXW(WTXTXW)−1. (A.4)

Substitute (A.4) back into (A.3), the objective function of RRR becomes

min
W

J = tr(YTY−YTXW(WTXTXW)−1WTXTY).

Since the YTY is constant, the objective function becomes:

max
W

tr[(WTXTXW)−1(WTXTYYTXW)]. (A.5)

which equals to (2.20). Because of the constraints wT
i X

TXwj = 0, WTXTXW is a

diagonal matrix, so (A.5) can be rewritten as:

max
W

K∑
i=1

(wT
i X

TXwi)
−1(wT

i X
TYYTXwi). (A.6)
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In (A.6), the scales of all {wi}Ki=1 do not affect the objective function, so they can

always be adjusted to make wT
i X

TXwi = 1. So (A.6) can be rewritten as:

max
W

K∑
i=1

(wT
i X

TYYTXwi) = tr(WTXTYYTXW), (A.7)

with the constraint WTXTXW = I, which is equal to (2.19).

A.4 Calculation of (2.25) for CCR

When i = 1, j = 0, from (2.25) we get the Lagrange function as:

L = wT
1X

TYv1 − λ1(wT
1X

TXw1 − 1)− σ1(vT
1Y

TYv1 − 1)

Take the derivative of L to w1 and v1 and set to 0, we get:

XTXw1 = λ1X
TYv1 (A.8)

YTYv1 = σ1Y
TXw1 (A.9)

By multiplying wT
1 and vT

1 on both sides of (A.8) and (A.9) respectively, we get

λ1 = σ1. From (A.9) we get v1 = σ1(Y
TY)−1YTXw1, and substitute into (A.8), we

get w1 as the first eigenvector of matrix (XTX)−1(XTY)(YTY)−1(YTX). Similarly

we get v1 as the first eigenvector of matrix (YTY)−1(YTX)(XTX)−1(XTY). The

corresponding eigenvalues are both λ21.

When i = 2, j = 1, by multiplying wT
2 and vT

2 on both sides of (A.8) and (A.9),

constraints wT
2X

TYv1 = 0 and wT
1X

TYv2 = 0 can be deduced from constraints

wT
2X

TXw1 = 0 and vT
2Y

TYv1 = 0. So the Lagrange multipliers is:

L = wT
2X

TYv2 − λ2(wT
2X

TXw2 − 1)− σ2(vT
2Y

TYv2 − 1)

− γ21(wT
2X

TXw1)− δ21(vT
2Y

TYv1)

(A.10)
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Take derivative of L to w2 and v2, and set to 0, we get

XTYv2 − λ2XTXw2 − γ21XTXw1 = 0 (A.11)

YTXw2 = σ2Y
TYv1 − δ21YTYv1 = 0 (A.12)

By multiplying wT
1 and vT

1 on both sides of (A.11) and (A.12) respectively, we get

γ21 = δ21 = 0. So constraints wT
2X

TXw1 = 0 and vT
2Y

TYv1 = 0 are also removed.

And we can getw2 and v2 as the second eigenvector of matrix (XTX)−1(XTY)(YTY)−1(YTX)

and (YTY)−1(YTX)(XTX)−1(XTY). Iteratively, until i = K, all 0 constraints

are reduced, and all W and V are calculated as the the K eigenvectors of matrix

(XTX)−1(XTY)(YTY)−1(YTX) and (YTY)−1(YTX)(XTX)−1(XTY).

A.5 Fast PLS2 Algorithm

X̄ or Ȳ have the same size as X or Y, with each row is the average vector of

matrix X or Y. Step 4-9 use power method to find the first eigenvector of YTXiX
T
i Y

corresponding to the biggest eigenvalue. Step 4-11 are the fast way to find the first

eigenvector of XT
i YYTXi. Step 12 and 13 find the ith PLS component and loading

vector ti and pi; step 14 does deflation on X. Step 17 calculates the matrix of

regression coefficients and step 18 calculates the matrix of PLS coefficients, with

W = P(PTP)−1 is the PLS projection matrix.

A.6 SIMPLS
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Algorithm 6 Fast PLS2 Algorithm
Input: X, Y, K

Output: B

1: X1 = X− X̄;

2: Y = Y− Ȳ;

3: for i = 1 to K do

4: A = YTXiX
T
i Y;

5: di = Y(1, :);

6: while di is not converge do

7: di = Adi;

8: di = di/||di||;

9: end while

10: ri = XT
i Ydi;

11: ri = ri/||ri||;

12: ti = Xiri;

13: pi = XT
i ti/(t

T
i ti);

14: Xi+1 = Xi − tip
T
i ;

15: end for

16: Store T = [t1, . . . , tK ];P = [p1, . . . ,pK ];

17: C = (TTT)−1TTY;

18: B = P(PTP)−1C;

68



Algorithm 7 SIMPLS Iterative Process

1: S = XTY; % Get cross-covariance

2: P0 = []; % P0 is empty

3: for i = 1 to K do

4: P⊥
i = I−Pi−1P

+
i−1; % Get orthogonal subspace

5: Si = P⊥
i S; % Get ith cross-covariance

6: Solve SiS
T
i wi = λiwi; % Get projection direction

7: ti = Xwi; % Get score vectors ti; % Get score vector

8: pi = XT ti/(t
T
i ti); % Get loading vector

9: Pi = [Pi−1;pi];

10: end for

11: Store T = [t1, . . . , tK ];

12: C = YTT(TTT)−1;% Get relation coefficients matrix
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APPENDIX B

Proofs in Chapter 5
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B.1 Marginal and Conditional Gaussian

Given a marginal Gaussian distribution for x and a conditional Gaussian dis-

tribution for y given x in the form:

p(x) = N(x|µ,Λ−1) and p(y|x) = N(y|Ax+ b,L−1)

the marginal distribution of y and the conditional distribution of x given y are also

Gaussian distribution, and the distribution functions are given by:

p(y) = N(y|Aµ+ b,L−1 +AΛ−1AT )

p(x|y) = N(x|Σ{ATL(y− b) +Λµ},Σ)

whereΣ = (Λ+ATLA)−1

The proof can be found in [29].

B.2 EM Algorithm Details

B.2.1 Expectation

The log likelihood function can be written as:

N∑
n=1

ln

∫
p(xn,yn, zn; Θ)dzn

=
N∑

n=1

ln

∫
Q(zn)

p(xn,yn, zn; Θ)

Q(zn)
dzn

≥
N∑

n=1

∫
Q(zn) ln

p(xn,yn, zn; Θ)

Q(zn)
dzn

=
N∑

n=1

Ezn|Q

[
ln
p(xn,yn|zn; Θ)p(zn)

Q(zn)

]
(B.1)

The last two steps are based on Jensen’s inequality rule. Since natural logarithm

function f(X) = ln(X) is a concave function, we have E[f(X)] ≤ f(E[X]). Remove

items that unrelated with Θ, to maximize (B.1) is equals to (5.14).
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B.2.2 Maximization

Since for PPLSR we have:

p(x,y|z) = 1

(2π)
Dx+Dy

2

1

|σ2
xI|1/2

1

|σ2
yI|1/2

exp{−1

2
[σ−2

x (x−Wxz− µx)
T (x−Wxz− µx)]

− 1

2
[σ−2

y (y−Wyz− µy)
T (y−Wyz− µy)]}

So (5.14) can be written as:

N∑
n=1

Ezn|Q(ln p(xn,yn|zn; Θ))

=−
N∑

n=1

Ezn|Q[
Dx

2
ln(2πσ2

x) +
Dy

2
ln(2πσ2

y)

+
1

2σ2
x

∥xn − µx∥2 +
1

2σ2
y

∥yn − µy∥2

− 1

σ2
x

zTnW
T
x (xn − µx)−

1

σ2
y

zTnW
T
y (yn − µy)

+
1

2σ2
x

Tr(znz
T
nW

T
xWx) +

1

2σ2
y

Tr(znz
T
nW

T
yWy)]

Take the expectations of zn from distribution Q to each terms, and take the derivative

to all parameters, and set to zero, we get the solutions in (5.15), (5.16) and (5.17).
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