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ABSTRACT 

 
COOPERATIVE CONTROL OF MULTI-AGENT SYSTEMS; 

STABILITY, OPTIMALITY AND ROBUSTNESS 

 

Kristian Hengster Movrić, PhD 

 

The University of Texas at Arlington, 2013 

 

Supervising Professor:  Frank L. Lewis 

In this work design methods are given for distributed synchronization control of multi-

agent systems on directed communication graphs. Conditions are derived based on the relation 

of the graph eigenvalues to a region in a complex plane that depends on the single-agent 

system and the solution of the local Riccati equation. The synchronizing region concept is used.  

Cooperative observer design, guaranteeing convergence of the local estimates to their true 

values, is also proposed. The notion of convergence region for distributed observers is 

introduced. A duality principle is shown to hold for distributed observers and controllers on 

balanced graph topologies. Application of cooperative observers is made to the distributed 

synchronization problem. Three dynamic regulator architectures are proposed for cooperative 

synchronization. 

In the second part this work brings together stability and optimality theory to design 

distributed cooperative control protocols, which guarantee consensus and are globally optimal 

with respect to a structured performance criterion. Here an inverse optimality approach is used 

together with partial stability to consider cooperative consensus and synchronization algorithms. 
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A new class of digraphs is defined admitting a distributed solution to the global optimal control 

problem. 

The third part of this work investigates cooperative control performance under 

disturbances, and distributed static output-feedback control. Control design for the state 

consensus in presence of disturbances is investigated. Derived results are also applicable to 

multi-agent systems with heterogeneous agents.  If, on the other hand, one constrains the 

control to be of the static output-feedback form, one needs to redefine the synchronizing region 

as the output-feedback synchronizing region. 

Contributions to Discrete-time Multi-agent Consensus Problem 

The main contribution to the discrete-time multi-agent consensus problem is the 

proposed design method based on local Riccati feedback gains, guaranteeing cooperative 

stability and convergence to consensus. 

Contributions to Globally Optimal Distributed Control Problem 

The globally optimal distributed synchronization control protocols are investigated. The 

main contribution is in merging the notions of inverse optimality and partial stability to guarantee 

robust stabilization to the noncompact consensus manifold. Furthermore, second contribution is 

the introduction of the class of digraphs that gives a distributed solution to a structured global 

optimal control problem. 

Contributions to Cooperative Robustness of Multi-agent Systems 

The robustness properties of asymptotic and exponential stability are applied in the 

context of cooperative stability for consensus. The results are based on Lyapunov functions for 

noncompact manifolds, and the pertinent stability and robustness properties are further 

elaborated. Distributed and local observers are utilized for disturbance compensation. 



 

vi 

 

Contributions to Distributed Output-feedback for State Synchronization 

An application of the cooperative stability analysis, via synchronizing region, to the 

distributed output-feedback is presented. It is shown that the guaranteed synchronizing region 

for output-feedback can be both bounded and unbounded.  
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CHAPTER 1 

INTRODUCTION 

This chapter presents a brief introduction to multi-agent systems considered in this work 

and the control problems as they appear throughout this dissertation. Concepts of partial 

stability applied to synchronization are introduced as well as inverse optimality of cooperative 

control protocols. The issue of the robustness of cooperative control systems and the effect that 

the disturbances exert on a multi-agent system are introduced. Possibly utilization of static 

output-feedback is also addressed. Topics and contributions of the following chapters are briefly 

summarized here, providing a layout of the body of work expounded in this dissertation. 

1.1 Multi-Agent Systems and Synchronization 

The main topic of this dissertation is cooperative control of multi-agent systems for 

synchronization. In a multi-agent system each agent is a subsystem, granted with some form of 

autonomy that justifies the decomposition of a total system into its agent subsystems. It is 

assumed that agents are dynamical systems with inputs whose states reside in a state space 

i i
x X∈ , and their dynamics is described by differential or difference equations. The state 

space of the total system is naturally taken as the direct product of state spaces of individual 

agents, 1 2tot N
X X X X= × × ×� , with the total state being 

1 2
( , , , )

N
x x x x= � . In case of all agents 

having the same state space, X , the total space is 
N

totX X= . 

State consensus is a dynamic property of a multi-agent system, with states as elements 

of de facto the same state space, i
x X∈ , where lim ( , ) 0t i jd x x→∞ = , ( , )i j∀ , where 

:d X X× → �  is the distance function on the state space. A subset 
tot

S X⊂  characterized by 

i jx x= , ( , )i j∀ , is an embedding of X  into 
tot

X , and we call it the consensus subset, for if the 

total state of the system is in that subset then the multi-agent system is in the state of 

consensus. If all the state spaces are manifolds, so is the total space and the consensus subset 
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becomes the consensus manifold. Via an embedding the consensus manifold has all the 

topological properties of an individual agent state space, in particular if X  is noncompact so will 

be the consensus manifold as well.  

In case of agents having different state spaces the state consensus is generally not 

defined, but one can define output consensus if all agent outputs are elements of the same 

output space, Y .  Such problems do not appear when one considers collections of identical 

agents, where state and output spaces are the same for every agent, together with their 

dynamics. 

1.2 Distributed Control 

Achieving asymptotic stability of a consensus manifold is the control goal, and the 

control to achieve that aim is assumed distributed. If one were to consider centralized control 

then the multi-agent system control problem would reduce to controlling a single system, albeit 

a large one. However, the assumption, we choose to adopt here, is that each agent's input 

signal can depend only on states of some proper subset of the collection of all agents. This 

assumption is made due to inherently distributed nature of multi-agent systems, where one 

cannot expect the total state to be available for the purpose of controlling a single agent. Even if 

this were possible one would be faced with the difficulty of increasing complexity of a controller 

with the increasing number of agents. This would mean greater communication load and price 

of the controller.  

If the controller of each agent is constrained to use only the states of those agents that 

are in some neighborhood of the respective agent, then one has a distributed control structure. 

This makes distributed control eo ipso a constrained control problem. Such controller does not 

suffer from increasing complexity when increasing the number of agents, since it depends only 

on the limited number of agents, those that are in some local neighborhood. 

This work focuses primarily on identical agents, having linear time-invariant dynamics, 

and their consensus problem, though references are made to heterogeneous agents. 
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1.3 Discrete-time Cooperative Control Design for Synchronization 

The last two decades have witnessed an increasing interest in multi-agent network 

cooperative systems, inspired by natural occurrence of flocking and formation forming. These 

systems are applied to formations of spacecrafts, unmanned aerial vehicles, mobile robots, 

distributed sensor networks etc. 1. Early work with networked cooperative systems in 

continuous and discrete time is presented in 2,3,4,5,6,7. These papers generally referred to 

consensus without a leader. By adding a leader that pins to a group of other agents one can 

obtain synchronization to a command trajectory using a virtual leader 5, also named pinning 

control 8,9. The graph properties complicate the design of synchronization controllers due to the 

interplay between the eigenvalues of the graph Laplacian matrix and the required stabilizing 

gains. Necessary and sufficient conditions for synchronization are given by the master stability 

function, and the related concept of the synchronizing region, in 9,10,11. For continuous-time 

systems synchronization was guaranteed 9,12,13 using optimal state feedback derived from the 

continuous time Riccati equation. It was shown that, using Riccati design for the feedback gain 

of each node guarantees an unbounded right-half plane region in the s-plane. For discrete-time 

systems such general results are still lacking, though 14 deals with single-input systems and 

undirected graph topology and 15 deals with multivariable systems on digraphs. These were 

originally inspired by the earlier work of 16,17, concerning optimal logarithmic quantizer density 

for stabilizing discrete time systems.  

1.4 Distributed Observer Design in Discrete-time 

Results from cooperative control design in discrete-time can be applied with needed 

modifications to the problem of distributed observation. Output measurements are assumed and 

cooperative observers are specially designed for the multi-agent systems. Potential applications 

are distributed observation, sensor fusion, dynamic output regulators for synchronization, etc. 

For the needs of consensus and synchronization control we employ the cooperative tracker, or 

pinning control 7,23,6. The key difference between systems in continuous-time, 11,9,12, and 
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discrete-time, 25,26,28, is in the form of their stability region. More precisely, in continuous-time 

the stability region, as the open left-half s-plane, is unbounded by definition, so the 

synchronizing region can also be made unbounded. On the other hand, the discrete-time 

stability region, as the interior of the unit circle in the z-plane, is inherently bounded and, 

therefore, so are the synchronizing regions. This makes conditions for achieving discrete-time 

stability more strict than the continuous-time counterparts. 

1.5 Optimal Cooperative Control 

Optimal cooperative control was recently considered by many authors-

33,34,36,37,38,39, to name just a few. Optimality of a control protocol gives rise to desirable 

characteristics such as gain and phase margins, that guarantee robustness in presence of 

some types of disturbances 40,41. The common difficulty, however, is that in the general case 

optimal control is not distributed 34,36. Solution of a global optimization problem generally 

requires centralized, i.e. global, information. In order to have local control that is optimal in some 

sense it is possible e.g. to consider each agent optimizing its own, local, performance index. 

This is done for receding horizon control in 33, implicitly in 13, and for distributed games on 

graphs in 35, where the notion of optimality is Nash equilibrium.  In 37 the LQR problem is 

phrased as a maximization problem of LMI's under the constraint of the communication graph 

topology. This is a constrained optimization taking into account the local character of 

interactions among agents.  It is also possible to use a local observer to obtain the global 

information needed for the solution of the global optimal problem, as is done in 34. In the case 

of agents with identical linear time-invariant dynamics, 38 presents a suboptimal design that is 

distributed on the graph topology. 

Optimal control for multi-agent systems is complicated by the fact that the graph 

topology interplays with system dynamics. The problems caused by the communication 

topology in the design of global optimal controllers with distributed information can be 

approached using the notion of inverse optimality, 41. There, one chooses an optimality 
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criterion related to the communication graph topology to obtain distributed optimal control, as 

done for the single-integrator cooperative regulator in 36. This connection between the graph 

topology and the structure of the performance criterion can allow for the distributed optimal 

control. In the case that the agent integrator dynamics contains topological information, 39 

shows that there is a performance criterion such that the original distributed control is optimal 

with respect to it. 

1.6 Multi-agent Systems with Disturbances 

When disturbances act on the multi-agent system the control law designed for the 

undisturbed system cannot generally guarantee that the control goal shall be attained. However, 

building on the classical results on the existence of Lyapunov functions for asymptotically stable 

systems, and their use in assessing the effect that disturbances exert on those systems, 46, it is 

possible to extend such reasoning to partially stable systems, 41, in particular those systems 

that reach consensus or synchronization.  With Lyapunov functions for asymptotic stability one 

is able to ascertain the effect of disturbances on the multi-agent system, and to derive 

conditions on those disturbances that allow for asymptotic stability or uniform ultimate 

boundedness along the target set.  Cooperative asymptotic stability is in that sense robust to 

this specific class of disturbances.  Furthermore, with the means to quantify the effect of 

disturbances one also gains the ability to compensate it by an appropriate control law.  

Robustness of the distributed synchronization control for the nominal, i.e. undisturbed, 

system guarantees cooperative asymptotic stability of consensus, or cooperative ultimate 

uniform boundedness with respect to consensus, in presence of certain disturbances, 46.  This 

inherent property can be exploited in special cases of heterogeneous and nonlinear agents. 

Nevertheless, in case of general disturbances one needs to compensate for their effects in 

order to retain the qualitative behavior of the nominal system.  For that purpose disturbance 

estimates are used.  In Chapter 6, disturbances are assumed to act on both the leader and the 
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following agents. Therefore both the leader's and the agents' disturbances need to be estimated 

and compensated.  Local and distributed estimation schemes are employed for that purpose. 

1.7 Output-feedback-Stability and Optimality 

In realistic applications one generally cannot use the full state of each agent for 

feedback control purposes. This difficulty is usually overcome by using some observer to 

estimate the full state from the system's inputs and outputs. This way one obtains a dynamic 

output controller. However this controller has its dynamics and is more complicated then the 

static state controller. Bearing this in mind, it behooves one to investigate conditions under 

which the static output control suffices. Static output control combines the simplicity of static full 

state controllers with the availability of the system outputs. No additional state observation is 

needed. It was shown, in 60, that passive systems are able to output synchronize using static 

output feedback under very mild assumptions. However, here, one is primarily interested in the 

state synchronization, and therefore one can apply the concept of the synchronizing region to 

static output feedback. This line of thought reduces the multi-agent cooperative stability of 

consensus using output distributed feedback to robust output stabilization for a single agent. 

Furthermore, under certain conditions, one can parameterize the cooperatively stabilizing output 

distributed controllers by a quadratic optimality criterion, as was done for the static state 

distributed control in Chapter 4. Chapter 7 brings results along those lines in a more general 

setting of two-player zero-sum games. It is shown that, under additional conditions, the 

proposed distributed output-feedback is a solution of the specially structured two-player zero-

sum game. 

1.8 Outline of the Dissertation 

The dissertation is organized as follows.  Chapter 2 introduces the discrete-time multi-

agent systems and synchronization problem. A short survey of graph theoretic results that are 

used throughout the dissertation is given in this chapter.  Discrete-time synchronizing region is 

introduced and discrete-time Lyapunov method gives a part of the synchronizing region. 
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Discrete-time Riccati equation (DARE) is used with its guaranteed complex gain margin region 

to yield a sufficient condition on graph eigenvalues for synchronization. The work of Keyou You 

and Lihua Xie uses a modified Riccati inequality, i.e. H
∞ -type Riccati inequality, while the 

author uses 
2

H -type Riccati equation. Both methods are presented for the sake of 

completeness. 

Chapter 3 deals with distributed observation and output-feedback cooperative control. 

Contrary to the case presented in Chapter 2,26 and 28, perfect information on the state of the 

neighbouring systems is not presumed. Output measurements are assumed and cooperative 

observers are specially designed for the multi-agent systems. Potential applications are 

distributed observation, sensor fusion, dynamic output regulators for synchronization, etc.  

Conditions for cooperative observer convergence and for synchronization of the multi-agent 

system are shown to be related by a duality concept for distributed systems on directed graphs. 

Sufficient conditions are derived that guarantee observer convergence as well as 

synchronization. This derivation is facilitated by the concept of convergence region for a 

distributed observer, which is analogous, and in a sense dual, to the synchronization region 

defined for a distributed synchronization controller. Furthermore, the proposed observer and 

controller feedback designs have a robustness property like the one originally presented in 

Chapter 2, 28, for controller design. 

Chapter 4 introduces globally optimal distributed synchronization protocols. In this 

chapter are considered fixed topology directed graphs and linear time-invariant agent dynamics.  

First, theorems are provided for partial stability and inverse optimality of a form useful for 

applications to cooperative control, where the synchronization manifold may be noncompact.  In 

our first contribution, using these results, we solve the globally optimal cooperative regulator 

and cooperative tracker problems for both single-integrator agent dynamics and also agents 

with identical linear time-invariant dynamics.  It is found that globally optimal linear quadratic 

regulator (LQR) performance cannot be achieved using distributed linear control protocols on 
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arbitrary digraphs.  A necessary and sufficient condition on the graph topology is given for the 

existence of distributed linear protocols that solve a global optimal LQR control problem.  In our 

second contribution, we define a new class of digraphs, namely, those whose Laplacian matrix 

is simple, that is, has a diagonal Jordan form.  On these graphs, and only on these graphs, 

does the globally optimal LQR problem have a distributed linear protocol solution. If this 

condition is satisfied, then distributed linear protocols exist that solve the global optimal LQR 

problem only if the performance indices are of a certain form that captures the topology of the 

graph.  That is, the achievable optimal performance depends on the graph topology. 

Chapter 5, extends results of Chapter 4 to slightly more general but still quadratic 

performance indices. The constraint on graph topology of Chapter 4 can be relaxed, and 

optimal cooperative controllers developed for arbitrary digraphs, containing a spanning tree, by 

allowing state-control cross-weighting terms in the performance criterion. Then, requiring that 

the performance criterion be positive (semi) definite leads to conditions on the matrix P in 

( )
T

V x x Px= , or equivalently on the control Lyapunov function, which should be satisfied for the 

existence of distributed globally optimal controller.  This condition is milder than the conditions 

in Chapter 4, where the performance index is taken without the state-control cross-weighting 

term. 

Chapter 6 discusses the effects of disturbances on the multi-agent systems. Those 

effects are quantified by a Lyapunov function for stability as presented in Chapter 4. Properties 

of relevant types of stability are further elaborated for the needs of this chapter. In particular, the 

class of coordinate transformations preserving the stability properties is investigated and 

characterized. It is shown that systems that are asymptotically or exponentially stable with 

respect to some manifold share a robustness property to a certain class of disturbances. This 

class is characterized by growth bounds with respect to the target manifold. Since most of the 

disturbances are no expected to pertain to this specific class one resorts to disturbance 

estimation and compensation. Leader's and agents' disturbances are estimated and 
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compensated using local and distributed observers. A number of special applications were 

considered; the case of there being an input driving the leader, which needs to be distributively 

observed by all the following agents, the case of second-order double-integrator systems with 

disturbances acting on the leader and the agents, and the case of heterogeneous agents.   

Chapter 7 brings an extension of the cooperative stability analysis via synchronizing 

region, used originally for full-state feedback, to the case of output-feedback. It examines static 

distributed output-feedback control for state synchronization of identical linear time-invariant 

agents. Static output-feedback, guaranteeing the control goal of multi-agent system 

synchronization, is easy to implement, without any need for state observation.  Cooperative 

stability of state synchronization is addressed using results derived from the single agent robust 

stability properties of the local output-feedback gain. It is shown that the guaranteed 

synchronizing region for output-feedback can be both bounded and unbound.  The chosen 

distributed output-feedback control is also a solution of the specially structured two-player zero-

sum game problem, under appropriate additional stipulations. Conditions for that are more 

conservative than those for simple cooperative synchronization.  In a special case this game 

theoretic framework reduces to the optimal output-feedback control.  Conditions are found, 

under which the distributed output-feedback control is optimal with respect to a quadratic 

performance criterion. These imply state synchronization. 

Chapter 8 outlines future work directions. Current results are briefly mentioned. 

Application of the design methods developed in this dissertation to multi-agent systems with 

fixed control signal time-delay is partially developed.  Identical agents are described by linear 

delay-differential equations. This brings one even closer to reality, since distributed 

communication causes delays in control signals.   

Also, a related field of output synchronization is addressed. Output synchronization is 

practically important in that one usually requires synchronization of only some states, or just 

outputs of the system, while other states need only remain bounded.  
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CHAPTER 2 

DISCRETE TIME RICCATI DESIGN OF LOCAL FEEDBACK GAINS FOR 

SYNCHRONIZATION 

2.1 Introduction 

The last two decades have witnessed an increasing interest in multi-agent network 

cooperative systems, inspired by natural occurrence of flocking and formation forming. These 

systems are applied to formations of spacecrafts, unmanned aerial vehicles, mobile robots, 

distributed sensor networks etc., 1. Early work with networked cooperative systems in 

continuous and discrete time is presented in 2,3,4,5,6,7. These papers generally referred to 

consensus without a leader. By adding a leader that pins to a group of other agents one can 

obtain synchronization to a command trajectory using a virtual leader 5, also named pinning 

control 8,9. Necessary and sufficient conditions for synchronization are given by the master 

stability function, and the related concept of the synchronizing region, in 9,10,11. For 

continuous-time systems synchronization was guaranteed 9,12,13 using optimal state feedback 

derived from the continuous time Riccati equation. It was shown that, using Riccati design for 

the feedback gain of each node guarantees an unbounded right-half plane region in the s-plane. 

For discrete-time systems such general results are still lacking, though 14 deals with single-

input systems and undirected graph topology and 15 deals with multivariable systems on 

digraphs. These were originally inspired by the earlier work of 16,17, concerning optimal 

logarithmic quantizer density for stabilizing discrete time systems. 

In this chapter we are concerned with synchronization for agents described by linear 

time-invariant discrete-time dynamics. The interaction graph is directed and assumed to contain 

a directed spanning tree. For the needs of consensus and synchronization to a leader or control 

node we employ pinning control 5,8. The concept of synchronizing region 9,10,11 is 

instrumental in analyzing the synchronization properties of cooperative control systems.  The 

synchronizing region is the region in the complex plane within which the graph Laplacian matrix 
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eigenvalues must reside to guarantee synchronization. The crucial difference between systems 

in continuous time and discrete time is the form of the stability region. For continuous-time 

systems the stability region is the left half s-plane, which is unbounded by definition, and a 

feedback matrix can be chosen, 9,13 such that the synchronizing region for a matrix pencil is 

also unbounded. On the other hand the discrete-time stability region is the interior of the unit 

circle in the z-plane, which is inherently bounded.  Therefore, the synchronizing regions are 

bounded as well. This accounts for stricter synchronizability conditions in discrete-time, such as 

those presented in 14,15. 

In the seminal paper, 18, is given an algorithm based on H
∞ -type Riccati equation for 

synchronization control of linear discrete-time systems that have no poles outside the unit circle. 

The case of consensus without a leader is considered. 

This chapter extends results in 15 to provide conditions for achieving synchronization of 

identical discrete-time state space agents on a directed communication graph structure. It 

extends results in 18 to the case of unstable agent dynamics. This work considers 

synchronization to a leader dynamics. The concept of discrete time synchronizing region in the 

z-plane is used. 

The graph properties complicate the design of synchronization controllers due to the 

interplay between the eigenvalues of the graph Laplacian matrix and the required stabilizing 

gains. Two approaches to testing for synchronizability are given which decouple the graph 

properties from the feedback design details.  Both give methods for selecting the feedback gain 

matrix to yield synchronization.  The first result, based on an H∞ -type Riccati inequality, gives 

a milder condition for synchronization in terms of a circle whose radius is generally difficult to 

compute.  The second result is in terms of a circle whose radius is easily computed from an 2H

-type Riccati equation solution, but gives a stricter condition.  Both are shown to yield known 

results in the case of single-input systems on undirected graphs.  Based on the given designs, 
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results are given on convergence and robustness of the design.  An example illustrates the 

usefulness and effectiveness of the proposed design. 

2.2 Graph Properties and Notation 

Consider a graph ( ),G V E  with a nonempty finite set of N vertices 
1

{ , , }
N

v v= �V  and a 

set of edges or arcs ⊆ ×E V V . It is assumed that the graph is simple, i.e. there are no 

repeated edges or self-loops ( , ) ,i iv v i∉ ∀E . General directed graphs (digraphs) are considered, 

and it is taken that information propagates through the graph along directed arcs. Denote the 

connectivity matrix as [ ]ijE e=  with 0 if ( , )ij j ie v v> ∈  E  and 0
ij

e =  otherwise. Note that 

diagonal elements satisfy 0iie = . The set of neighbors of node i
v  is denoted as 

{ : ( , ) }i j j iv v v= ∈N E , i.e. the set of nodes with arcs coming into i
v . Define the in-degree 

matrix as the diagonal matrix ( )NdddiagD …1=  with 
i ij

j

d e=∑  the (weighted) in-degree of 

node i  (i.e. the i-th row sum of E ). Define the graph Laplacian matrix as L D E= − , which 

has all row sums equal to zero.  

A path from node 
1i

v  to node 
ki

v  is a sequence of edges 

( ) ( ) ( )
1 2 2 3 1

, , ,, ,
k ki i i i i i

v v v v v v
−

… , with ( )
1
,

j ji iv v
−

∈E  or ( )
1

,
j ji iv v

−
∈ E  for { }2, ,j k= … . A 

directed path is a sequence of edges ( ) ( ) ( )
1 2 2 3 1
, , , , , ,

k ki i i i i iv v v v v v
−

… , with ( )
1
,

j ji iv v
−

∈E  for 

{ }2, ,j k= … .  The graph is said to be connected if every two vertices can be joined by a path. 

A graph is said to be strongly connected if every two vertices can be joined by a directed path.  

The graph is said to contain a (directed) spanning tree if there exists a vertex, 0v , such that 

every other vertex in V  can be connected to 0v  by a (directed) path starting from 0v . Such a 

special vertex, 0v , is then called a root node.  
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The Laplacian matrix L  has a simple zero eigenvalue if and only if the undirected graph 

is connected. For directed graphs, the existence of a directed spanning tree is necessary and 

sufficient for L  to have a simple zero eigenvalue. 

A bidirectional graph is a graph satisfying 0 0ij jie e> ⇔ > . A detailed balanced graph is 

a graph satisfying i ij j ji
e eλ λ=  for some positive constants 

1
...

N
λ λ .  By summing over the 

index i it is seen that then [ ]
1 N

λ λ…  is a left zero eigenvector of L . 

The Laplacian matrix of a detailed balanced graph satisfies L P= Λ , for some diagonal 

matrix 0Λ >  and Laplacian matrix 
T

P P=  of some undirected graph. That is, the Laplacian is 

symmetrizable. In fact (1 / )idiag λΛ = .  The concept of a detailed balanced graph is related to 

the reversibility of an associated Markov process. 

Given the graph ( ),=G V E , the reversed graph 'G  is a graph having the same set of 

vertices ' =V V  and the set of edges with the property ' '
T

ij jiE e E e= = =       .  That is, the 

edges of G  are reversed in 'G . 

We denote the real numbers by � , the positive real numbers by 
+� , and the complex 

numbers by � . 

( ),C O r  denotes an open circle in the complex plane with its center at O ∈�  and 

radius .r   The corresponding closed circle is denoted as ( ),C O r . 

For any matrix A , ( ) ( )min max
,A Aσ σ , are the minimal and the maximal singular 

values of A  respectively.  For any square matrix A , the spectral radius ( ) ( )maxA eig Aρ =  is 

the maximal magnitude of the eigenvalues of A . For a positive semidefinite matrix A , 
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0min ( )Aσ >
 denotes the minimal nonzero singular value.  Note that for symmetric L , 

0min 2
( ) ( )L Lσ λ

>
= , the graph Fiedler eigenvalue. 

2.3 State Feedback for Synchronization of Multi-Agent Systems 

Given a graph ( ),G V E , endow each of its N  nodes with a state vector i

n
x ∈�  and a 

control input, 
m

iu ∈� , and consider at each node the discrete-time dynamics 

 ( ) ( ) ( )1 .
i i i

x k Ax k Bu k+ = +  (1) 

Assume that ( )BA,  is stabilizable and B  has full column rank m . Consider also a leader 

node, i.e. control node or command generator 

 ( ) ( )0 01x k Ax k+ = , (2) 

with 0

n
x ∈� .  For example, if 2n =  and A  has imaginary poles, then the leader's trajectory 

is a sinusoid.  

The cooperative tracker or synchronization problem is to select the control signals iu , 

using the relative state of node i  to its neighbors, such that all nodes synchronize to the state of 

the control node, that is, ( ) ( )0
lim 0,

i
k

x k x k i
→∞

− = ∀ . These requirements should be fulfilled for 

all initial conditions, ( )0ix . If the trajectory ( )0x k  approaches a fixed point, this is usually called 

the consensus problem. 

To achieve synchronization, define the local neighborhood tracking errors  

 ( ) ( )0

i

i ij j i i i

j N

e x x g x xε
∈

= − + −∑ , (3) 

where the pinning gain, 0ig ≥ , is nonzero if node iv  can sense the state of the control node.  

The intent here is that only a small percentage of nodes have 0ig > , yet all nodes should 

synchronize to the trajectory of the control node using local neighbor control protocols, 8.  It is 
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assumed that at least one pinning gain is nonzero.  Note that the local neighborhood tracking 

error represents the information available to agent i for control purposes. 

Choose the input of agent i as the weighted local control protocol 

 ( )
1

1i i i iu c d g Kε
−

= + + , (4) 

where c
+

∈�  is a coupling gain to be detailed later.  Then, the closed-loop dynamics of the 

individual agents are given by 

 
( ) ( ) ( ) ( )kBKgdckAxkx iiiii ε

1
11

−
+++=+

. (5) 

Defining the global tracking error and state vector 
1

T
T T

N

nNε ε ε = ∈ … � , 

1

T
T T

N

nN
x x x = ∈ … � , one may write 

 ( ) ( ) ( ) ( ) ( )0n n
k L G I x k L G I x kε = − + ⊗ + + ⊗ , (6) 

where ( )1
, ,

N
G diag g g= …  is the diagonal matrix of pinning gains and 

0 0
( ) 1 ( )x k x k= ⊗  with 

1
N∈�  the vector of 1’s.  The global dynamics of the N -agent system is given by 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 1

01 Nx k I A c I D G L G BK x k c I D G L G BKx k
− − + = ⊗ − + + + ⊗ + + + + ⊗

 
. (7) 

Define the global disagreement error, 
0

( ) ( ) ( )k x k x kδ = − , 3.  Then one has the global error 

dynamics 

 ( ) ( )1 ck A kδ δ+ = , (8) 

where the closed-loop system matrix is 

 ( ) ( )
1

c N
A I A c I D G L G BK

− = ⊗ − + + + ⊗
 

. (9) 

We shall refer to the matrix 

 ( ) ( )GLGDI +++=Γ
−1

 (10) 



 

16 

 

 

as the (weighted) graph matrix and to its eigenvalues, k
Λ , 1...k N= , as the graph matrix 

eigenvalues. Assume the graph contains a directed spanning tree and has at least one nonzero 

pinning gain, ig , connecting into the root node i.  The graph matrix Γ  is nonsingular since 

L G+  is nonsingular, if at least one nonzero pinning gain, ig , connects into the root node, 19.  

The following result shows the importance of using weighting by 1
( )I D G

−+ + . 

Lemma 2.1. Given the control protocol (4), the eigenvalues of Γ  satisfy ( )1,1
k

CΛ ⊆ , 

1...k N= , for any graph. 

Proof: This follows directly from the Geršgorin circle criterion applied to ( ) ( )
1

I D G L G
−

Γ= + + + , 

which has Geršgorin circles ,
1 1

i i i

i i i i

d g d
C

d g d g

+

+ + + +

 
 
 

.  These are all contained in ( )1,1C .  ▄ 

Lemma 2.1 reveals that weighting restricts the possible positions of the graph 

eigenvalues to the bounded known region ( )1,1C . The non-weighted protocol i iu cKε=  yields 

graph eigenvalues in the region ( , )
ii i

i

C d g d+∪  , which is larger than ( )1,1C . Examples 2.1 

and 2.2 show situations where synchronization using control law of the form i iu cKε=  cannot 

be guaranteed, whereas using weighted protocol (4) achieves synchronization. 

The next result is similar to results in 6, 9, 14. 

Lemma 2.2. The multi-agent systems (5) synchronize if and only if ( ) 1<Λ− BKcA kρ  for all 

eigenvalues kΛ , 1...k N= , of graph matrix (10). 

Proof:  Let J  be a Jordan form of Γ . Then there exists a nonsingular matrix 
N N

R
×∈� , such 

that 
1R R J−Γ = . By (9), it is obtained that 
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1

1

( ) ( )

0

0 0

n c n N

N

R I A R I I A cJ BK

A c BK

A c BK

−⊗ ⊗ = ⊗ − ⊗

− Λ × ×

= ×

− Λ

 
 
 
  

�
, (11) 

where ‘× ’ denotes possibly nonzero elements. By (11), one has ( ) 1
c

Aρ <  if and only if 

( ) 1
k

A c BKρ − Λ <  for all 
kΛ . From (8), the multi-agent systems (5) synchronize if and only if 

( ) 1
c

Aρ < . Thus, the multi-agent systems (5) synchronize if and only if ( ) 1<Λ− BKcA kρ  for all 

kΛ . ▄ 

For synchronization, one requires asymptotic stability of the error dynamics (8).  It is 

assumed that ( ),A B  is stabilizable.  If the matrix A  is unstable or marginally stable, then 

Lemma 2.2 requires that 0kΛ ≠ , 1...k N= , which is guaranteed if the interaction graph 

contains a spanning tree with at least one nonzero pinning gain into the root node. 

Definition 2.1:  Let Γ  be a graph matrix, and let kΛ , 1...k N= , be the eigenvalues of Γ . A 

covering circle, ( )0 0,C c r , of the eigenvalues of Γ  is an open circle centered at 0c ∈�  

containing all the eigenvalues, 
kΛ , 1,...,k N= . 

Definition 2.2:  For a matrix pencil, A sBK−  with s ∈� , the synchronizing region of the matrix 

pencil is a subset 
c

S ⊆ �  such that ( ){ }1cS s A sBKρ= ∈ − <� . 

Given the choice of K , the synchronizing region cS  of the matrix pencil A sBK−  is 

determined. The synchronizing region was discussed in 9, 10, 11, 13. 

Definition 2.3:  The complex gain margin region, 
cU ⊆ � , for some stabilizing feedback matrix 

K , given a system ( )BA, , is a connected region containing 1 , such that ( ) 1, .
c

A sBK s Uρ − < ∀ ∈  
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Definitions 2.2 and 2.3 express the connection between the synchronizing region cS  of a matrix 

pencil A sBK−  and the complex gain margin region cU , given that the choice of K stabilizes 

the system ( , )A B , i.e. ( ) 1<− BKAρ . The complex gain margin region, defined as a 

connected region, is contained in the synchronizing region, which may be generally 

disconnected. In 18, an example of a disconnected synchronizing region was given. 

Lemma 2.3. Matrices BKcA kΛ−  are stable for all eigenvalues kΛ  if and only if they satisfy 

, {1, , }kc S k NΛ ∈ ∀ ∈ … . 

Proof: This follows from Definition 2.2. ▄ 

Based on these constructions, the main results of this chapter may now be stated. We 

develop two approaches that provide sufficient conditions for synchronization and give formal 

design methods for the synchronizing control (4), one based on an H
∞ -type Riccati inequality 

and one based on an 
2H -type Riccati equality. 

2.4 Design Based on H
∞ -type Riccati Inequality 

In what follows, the design of K  in (4) will be studied based on a modified H∞ -type 

Riccati inequality. Without loss of generality, we further assume that diag( , )
s u

A A A= , where 

s s
s

n nA ×∈�  is stable and all the eigenvalues of u u
u

n nA ×∈�  lie on or outside the unit circle. 

Accordingly, write [ ]
T T T

s u
B B B=  . 

Let us first analyse the structure of the system. Since ( , )A B  is stabilizable, the 

unstable part ( , )u uA B  is controllable. From the multi-input reachable canonical form, 43, there 

exists a non-singular real matrix V  such that 
1

u
A V A V

−=�  and 
1

uB V B
−=�  take the form 
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1 1

2 20 0
, ,

0 0 0 0
m m

A b
A b

A B

A b

… …   
… …   

= =   
   … … 

×
×



×



× ×
×� �

� � � � � � � �  (12) 

where ‘× ’ denotes possibly nonzero elements and ( , )j jA b  is controllable. Note that elements 

of matrices in (12) need not be scalars, but rather blocks in general. Using the above form, a 

result on the solution to a modified Riccati inequality can be developed.  

Lemma 2.4. Assume that 
1

1 1n n
M

×
∈�  and 2

2 2n n
M

×
∈�  are two symmetric positive definite 

matrices. Given any 12
1 2n n

M
×

∈� , let  

 
1

max 12 1 12

min 2

( )
.

( )

T
M M M

M

σ
β

σ

−

>  (13) 

Then 
1 12

12 2

T

M M
M

M Mβ
 
  
	  is a positive definite matrix. 

Proof: According to the Schur complement condition, a symmetric block matrix 

11 12

12 22

T

M M
M

M M
=
 
 
 

 is positive definite if both 11
M  and 

1

22 12 11 12

T
M M M M

−−  are positive definite.  

Now, it follows from (13) that 

1 1

2 12 1 12 min 2 max 12 1 12
)( ) 0.(

T T
M M M M M M MI M Iβ βσ σ− −− >− ≥  

Together with 
1 0M > , one has from Schur complement that 0M > . ▄ 

Lemma 2.5. Consider a single input state-space system with A  being unstable and ( , )A B  

stabilizable.  Then, a necessary and sufficient condition for the existence of a positive definite 

matrix 0P >  solving 

 
2 1

(1 ) ( )
T T T T

P A PA A PB B PB B PAδ −> − −  (14) 

is  
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1/ | ( ) | .
u

i

i

Aδ λ< ∏  

Proof: (Necessity) In conformity with the partition diag( , )s uA A A= , partition P  as 

12

12

T

u

sP P
P

P P

 
=  
 

.  Pre- and post-multiplying (14) by  

1
12

0

uI P P

I

− 
 
 

−  and 
1

12

0
T

u

I

P P I−

 
 
 −

, yields 

2 1
(1 ) ( ) ,

T T T T

u u u u u u u u u u u u u
P A P A A P B B P B B P Aδ −′ ′ ′ ′> − −  

where 1

12 .T

u u u sB B P P B
−′ = +   By continuity, there exists a sufficiently small 0ε >  such that 

2 1

1 21 1
( / )

(1 ) ( )

( )

0.

T T T T

u u u u u u u u u u u u u
T T T T T

u u u u u u u u u u u u u u

P A P A A P B B P B B P A

A P B B A A P B B P B B P A

δ ε

ε δ ε

−

− − −

′ ′ ′ ′> − − +

′ ′ ′ ′ ′ ′= + + +
>

. 

The equality in the second line follows by applying the Kailath variant. Since both sides of the 

inequality are positive definite, taking the determinant of both sides gives 

2 2 1

2 2

2 2

det( ) det( ) det( ) det( (1 ) ( ) )

1 (1 ) det( ) det( )

det( ) det( ),

T T

u u u u u u u u u
T

u u

u uT

u u u

u u

P A P I P B B P B B

B P B
A P

B P B

A P

δ ε

δ
ε

δ

−′ ′ ′ ′> − − +
′ ′

= − −
′ ′ +

>

 
 
 

 

where the equality holds due to the identity det( ) det( )I MN I NM− = −  for compatible matrices 

,M N . The fact that 
2 1δ <  is used in the last inequality. Note that det( ) 0

u
P >  implies 

1det( ) 1 / | ( ) | .u

u i

i

A Aδ λ−< = ∏   Sufficiency follows from Lemma 5.4 of 21.  ▄ 

For multi-input systems, one has the following result.  Results of Lemma 2.4 and 

Lemma 2.5 are used in the proof. 

Lemma 2.6.  Given (0,1]δ ∈ , consider the modified H∞ -type Riccati inequality  
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2 1(1 ) ( ) .T T T T

P A PA A PB B PB B PAδ −> − −  (15) 

Assume that A  is unstable and ( , )A B  is stabilizable. Then there exists a critical value 

(0,1)
c

δ ∈  such that if 
c

δ δ< , then there exists a positive definite solution P  to (15). Moreover, 

c
δ  is bounded below by 

 *1/ | ( )  | ,u

c i cm
i

Aδ λ δ ′≥ ∏ 	  (16) 

where j
A  is given in (12), ( )

u

i j
Aλ  are the unstable eigenvalues of j

A , and the index *m  is 

defined by 
*

{1, , }

arg max | ( ) |u

i j

ij m

m Aλ
∈ …

 
=  

 
∏ .  Furthermore, if A  is stable, one has that 1cδ = . 

Proof:  Since ( , )A B  is stabilizable, there exists a 0P >  solving the inequality 

1
( ) .

T T T T
P A PA A PB B PB B PA

−> −  

Then, a sufficiently small 0δ >  exists such that 2 1(1 ) ( ) .T T T T
P A PA A PB B PB B PAδ −> − −  

In addition, for any positive ζ δ≤ , one has that 

2 1
(1 ) ( ) .

T T T T
P A PA A PB B PB B PAζ −> − −  

Hence, the existence of a positive 
c

δ , as required in the lemma, is guaranteed. In fact, it 

can be obtained as 

 { }2 1

0
sup | ( 0 s.t. 1 ) ( )

T T T T

c
P A PA A PB B P B AP B P

δ
δδ δ

−

>
= ∃ > > − −  (17) 

Let m  be the number of inputs. 

a) If 1,m = which corresponds to B  being a vector, it follows from Lemma 2.5 

that 1/ | ( ) |
u

c i c

i

Aδ λ δ ′= =∏ . Therefore, (16) holds. 

For the multi-input case, the result for single-input system, i.e. Lemma 2.5, is used in 

steps together with (12) and Lemma 2.4 to construct the following result. 
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b) Assume that 1m > . Case a) implies that given any positive 
cδ δ ′< , there 

exists a 0
j

P >  such that 

 

2 1

2 2

(1 ) ( )

(1 )( ) ( ) 0,

T T T T

j j j j j j j j j j j j j
T T

j j j j j j j j j j j

P A P A A P b b P b b P A

P A K KP A A b P A b

δ
δ δ

−− + −

= − − − − − >
 (18) 

with the control gain 
1

( )
T T

j j j j j j j
K b P b b P A

−= . Note that for any 0,β >  
 0j j
P Pβ= >  also 

solves the modified Riccati inequality (18). Now, let 

1 1 2

(d ,ia )gP P Pβ=  and 
1 1 2

diag( , )K K K=� . It 

follows that 

1 1

2 2

1 1 1 1 11 1

1 12

1 1

2 21

(1 )( ) ( )

,

TT

T

A PP A B K A B K

M

A P

M

M M

M

δ δ

β

− − − − −
 
 
 

� �� � � � �

�	

� �� �
�

	�
�

�
 

where 0
j

M >�  and 
12M�  are independent of β  and 

1 1

2 2

1 1,
0 0

A b
A B

A b

× ×
= =   
      

� � . 

By Lemma 2.4, there exists a sufficiently large β  such that 0M >� .  Continuing in the same 

fashion, one can find 
P  and K�  such that 

 
2 2

(1 )( ) ( ) 0.
T T

A B KA BPKA PAP δ δ− − − − >− � �� �� ��� ���  (19) 

Let 
1T

u
V PP V

− −
= �  and 

1

u
K KV

−
= � .  It follows from (19) that  

2 2
(1 )( ) ( ) 0.

T T

u u u u u u u u u u u
P A P A A B P AK KBδ δ− − − − − >  

Since sA  is stable, there exists a positive definite matrix sP  such that 

0T
s s s sP A P A− > . Denoting diag(0, )

u
K K=  and 1diag( , )

s u
P P Pβ= , one can similarly 

establish that there exists a positive 
1

β  such that  

 
2 2

(1 )( ) ( ) 0.
T T

P A PA A BK P A BKδ δ− − − − − >  (20) 
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Note that for any 
m n

K
×

∈ � , one can verify that  

1
( ) ( ) ( ) .

T T T T T
A BK P A BK A PA A PB B PB B PA

−− − ≥ −  

Whence, together with (20), it follows that 

2 1
(1 ) ( ) .

T T T T
P A PA A PB B PB B PAδ

−
> − −  

Thus, given any c
δ δ ′< , there exists a 0P >  which solves the modified Riccati inequality (15). 

This implies that .c cδ δ ′≥   If A  is stable, it follows that 1
c

δ =  since for any positive cδ δ< , 

there always exists a positive definite solution to (15). ▄ 

In general, 
c

δ  can be found by solving an LMI, see Proposition 3.1 of 22. 

The term appearing in Lemma 2.6 involving a product of unstable eigenvalues, 

( )u

ii
Aλ∏ , deserves further attention. It is related to the intrinsic entropy rate of a system, 

( )2
log

i

u

i
Aλ∑ , describing the minimum data-rate in networked control system that enables 

stabilization of an unstable system, 20. The product of unstable eigenvalue magnitudes of 

matrix A  itself is the Mahler measure of the respective characteristic polynomial of A . 

It is well recognized that Lemma 2.6 is of importance in the stability analysis of Kalman 

filtering with intermittent observations, 21, and the quadratic stabilization of an uncertain linear 

system (cf. Theorem 2.1 of 17). In fact, it is also useful for the design of a control gain in (4) to 

solve the synchronization problem, which is delivered as follows. 

Theorem 2.1. H∞ -type Riccati Inequality Design for Synchronization.  Given systems (1) with 

protocol (4), assume that the interaction graph contains a spanning tree with at least one 

pinning gain nonzero that connects into a root node. Then 0,
i

iΛ > ∀ . If there exists ω ∈�  

such that 

 {1, , }( ) max |1 | ,
j cj Nδ ω ω δ∈ … − Λ <	  (21) 
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where c
δ  is obtained by (17), then there exists 0P >  solving (15) with ( )δ δ ω= .  Moreover, 

the control gain  

1
( )

T T
K B PB B PA

−= , 

and coupling gain, c ω= , guarantee synchronization. 

Proof:  By Lemma 2.6, there exists 0P >  solving (15). Thus, only the second part needs to be 

shown.  Denote 1
j j

δ ω= − Λ , it is found that  

2 1

2 1

*
( ) ( )

(1 | | ) ( )

(1 ) ( ) 0,

j j

T T T T

j

T T T T

P A BK P A BK

P A PA A PB B PB B PA

P A PA A PB B PB B PA

ω ω

δ

δ

−

−

− − Λ − Λ

= − + −

≥ − + − >

 

where * denotes complex conjugate transpose.  Thus, it follows that ( ) 1jA BKρ ω− Λ < . The rest 

of the result follows from Lemma 2.2.  ▄ 

Remark 2.1. For the single input case, i.e., rank( )=1,B  the sufficient condition given in Theorem 

2.1 is also necessary. This follows directly from Theorems 3.1 and 3.2 of 14. 

In 18, an equation similar to (15) is used for synchronization design in the case where there is 

no leader, and no poles of the agent dynamics are outside the unit circle. 

The conditions of Lemma 2.2 are awkward in that the graph properties, as reflected by 

the eigenvalues k
Λ , and the stability of the local node systems, as reflected in ( )A BK− , are 

coupled. Theorem 2.1 is important because it shows that feedback design based on the 

modified Riccati inequality allows a separation of the feedback design problem from the 

properties of the graph, as long as it contains a spanning tree with a nonzero pinning gain into 

the root node.  Specifically, it reveals that if Riccati-based design is used for the feedback K  at 

each node, then synchronization is guaranteed for a class of communication graphs satisfying 

condition (21). This condition is appealing because it allows for a disentanglement of the 
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properties of the individual agents’ feedback gains, as reflected by c
δ , and the graph topology, 

described by kΛ , relating these through an inequality. 

2.5 Design Based on 
2

H -type Riccati Equation 

An 2
H -type Riccati design method for finding gain K  in (4) that guarantees 

synchronization is now presented. 

Theorem 2.2. 
2

H -type Riccati Design for Synchronization.  Assume that the interaction graph 

contains a spanning tree with at least one pinning gain nonzero that connects into the root 

node. Then 0,
i

iΛ > ∀ . Let 0P >  be a solution of the discrete-time Riccati-like equation 

 
1( ) 0T T T T

A PA P Q A PB B PB B PA
−− + − =  (22) 

for some prescribed 0
T

Q Q= > . Define  

 

1/2
1/2 1 1/2

max
: ( ( ) )

T T T
r Q A PB B PB B PAQσ

−− − −=    . 
(23) 

Then the protocol (4) guarantees synchronization of multi-agent systems (5) for some K 

if there exists a covering circle ( )0 0
,C c r  of the graph matrix eigenvalues k

Λ , 1k N= …  such 

that 

 
0

0

r
r

c
< . (24) 

Moreover, if condition (24) is satisfied then the choice of feedback matrix,  

 ( ) PABPBBK
TT 1−

= , (25) 

and coupling gain, 

 

0

1
c

c
= , (26) 

guarantee synchronization.  ▄ 
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Theorem 2.2 is motivated by geometrical considerations as shown in Figure 2.1.  

Condition (24) means that the covering circle ( )0 0,C c r  is homothetic to a circle concentric with 

and contained in the interior of ( )1,C r . It will be shown in Lemma 2.7 that the synchronizing 

region of the 
2

H -type Riccati feedback gain selected as in Theorem 2.2 contains ( )1,C r .  

Therefore, synchronization is guaranteed by any value of c  radially projecting ( )0 0,C c r  to the 

interior of ( )1,C r . One such value is given by (26). Homothety, as understood in this work, 

refers to a radial projection with respect to the origin, i.e. zero in complex plane. 

 

Figure 2.1 Motivation for proof of Theorem 2.2. Riccati design circle ( )1,C r  and covering circle 

 of graph matrix eigenvalues. 

The following technical lemmas are needed for the proof of Theorem 2.2. 

Lemma 2.7.  The synchronizing region for the choice of K  given in Theorem 2.2 contains the 

open circle ( )1,C r . 

Proof: By choosing the state feedback matrix as (25), with 0>P  a solution of equation (22) one 

has 

 ( ) 0
T T T

A PA P Q K B PB K− + − = . (27) 

From this equation one obtains by completing the square 

 ( ) ( ) 0
TT T T

A PA P Q K B PBK A BK P A BK P Q− + − = − − − + = . (28) 

1

r

c0

r0

( )0 0,C c r
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Therefore, given the quadratic Lyapunov function ( ) T
V y y Py= , ny ∈� , the choice of 

feedback gain stabilizes the system ( )BA, .  At least a part of the synchronizing region S  can 

be found as 

 * 2( ) ( ) ( Re ) ( Re ) Im ( )T T
A sBK P A sBK A sBK P A sBK s BK PBK P− − = − − + < , (29) 

where * denotes complex conjugate transpose (Hermitian adjoint), s ∈� . Therefore from 

equations (27) and (29) one has 

 

*

2 2

2

2

2

( ) ( )

2Re ( ) Re ( ) Im ( )

(1 1 )( )

( ) (1 1 )( )

1

T T T T T

T T

T T T

T T

A sBK P A sBK P

A PA P sK B PB K s BK PBK s BK PBK

A PA P s BK PBK

Q K B PB K s BK PBK

Q s K B PBK

− − −

= − − + +

= − − − −

= − + − − −

= − + −

 (30) 

This is the condition of stability if 

 
2

1 0
T T

Q s K B PBK− − > , (31) 

which gives a simple bounded complex region, more precisely a part of the complex gain 

margin region U , 

 ( )2 2 1/2 1/2

max1 1 1 ( ) ( )
T T T

Q s K B PBK s Q BK P BK Qσ − −> − ⇒ > − . (32) 

This is an open circle ( )1,C r  specified by 

 
( )

2

1/ 2 1/ 2

max

1
1

T T
s

Q K B PBKQσ
− −

− < . (33) 

Furthermore expressing K  as the 
2H -type Riccati equation state feedback completes the 

proof.  ▄ 
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In 18, it is shown that in case of all the agent dynamics being marginally stable, that is, no 

unstable poles and only nonrepeated poles on the unit circle, the synchronizing region (in the 

sense of this chapter) is ( )1,1C . 

Lemma 2.8. Given the circle ( )1,C r  in the complex plane, which is contained in the 

synchronizing region S  for the 
2

H -type Riccati choice of gain (25), the system is guaranteed to 

synchronize for some value of 0>c  if the graph matrix eigenvalues k
Λ , 1...k N= , are 

located in such a way that  

 1 ,
k

c r kΛ − < ∀ ,  (34) 

for that particular c  in (26). 

Proof:  It follows from Lemmas 2.2, 2.3, and 2.7. ▄ 

Based on these constructions the proof of Theorem 2.2 can now be given. 

Proof of Theorem 2.2. 

Given ( )1,C r  contained in the synchronizing region S  of matrix pencil A sBK− , and the 

properties of dilation (homothety), and assuming there exists a directed spanning tree in the 

graph with a nonzero pinning gain into the root node, it follows that synchronization is 

guaranteed if all eigenvalues 
k

Λ  are contained in a circle ( )0 0
,C c r  similar with respect to 

homothety to a circle concentric with and contained within ( )1,C r . 

The center of the covering circle 0c  can be taken on the real axis due to symmetry and 

the radius equals 
0 0

max
k

k

r c= Λ − . Taking these as given, one should have 

 0

0
1

r r

c
< . (35) 
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If this equation is satisfied then choosing 
0

1/c c=  maps with homothety the covering circle of 

all eigenvalues ( )0 0,C c r  into a circle ( )0 0
1,C r c  concentric with and, for 0 0/r r c> , contained 

in the interior of the circle ( )1,C r . ▄ 

If there exists a solution 0P >  to Riccati equation (22), B  must have full column rank.  

Assuming B  has full column rank, there exists a positive definite solution P  to (22) only if 

( )BA,  is stabilizable. 

2.6 Relation Between the Two Design Methods 

In this section the relation between Theorem 2.1 and Theorem 2.2 is drawn.  By 

comparing (34) to (21) it is seen that a similar role is played by c
δ  in Theorem 2.1 and r in 

Theorem 2.2.  The latter can be explicitly computed using (23), but it depends on the selected 

Q .  On the other hand, c
δ  is found by numerical LMI techniques.  See Lemma 2.6.  Further, in 

Theorem 2.1, ω ∈�  plays a role analogous to 
0

1/ c  in Theorem 2.2.  Theorem 2.1 relies on 

analysis based on the circle (1, )
c

C δ , whereas Theorem 2.2 uses (1, )C r .  Both circles are 

contained in the synchronizing region of the respective designed feedbacks.  

More importantly, Theorem 2.2 gives synchronization conditions in terms of the radius r 

easily computed as (23) in terms of an 
2

H -type Riccati equation solution.  Computing the 

radius 
c

δ  used in Theorem 2.1 must generally be done via an LMI.  However, the condition in 

Theorem 2.1 is milder than that in Theorem 2.2.  That is, (1, )C r  is generally contained in 

(1, )
c

C δ , so that systems that fail to meet the condition of Theorem 2.2 may yet be found to be 

synchronizable when tested according to the condition in Theorem 2.1.  This result is 

summarized in the following theorem. 

Theorem 2.3.  Define r by (23) and c
δ  as in (17).  Then c

r δ≤ .  
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Proof:  Assume there exists a positive definite solution to (15) for some δ , denoted as Pδ , then 

it follows that 

1 2 1
( ) ( )

T T T T T T T
A P A P A P B B P B B P A A P B B P B B P Aδ δ δ δ δ δ δ δδ− −− − < −  

This means, 2 1
; ( ) 0

T T T
Q Q A P B B P B B P Aδ δ δ δ δδ −∃ > ≥  such that  

1
( )

T T T T
A P A P A P B B P B B P A Qδ δ δ δ δ δ

−
− − = − . 

Therefore, there exists a positive definite solution of the Riccati equation (22) for such Qδ . 

According to the existence of positive definite solution to (15) for 0
c

δ δ< <  there also exists 

the solution of (22) with the corresponding Qδ . Since the guaranteed synchronization region for 

each Pδ  is 1s δ− <  choosing ;
c

Qδ δ δ< , although guaranteeing the existence of positive 

definite Pδ , thus providing sufficient condition for synchronization, does not necessarily give the 

largest guaranteed circular synchronization region, i.e. generally 1 cs r δ− < ≤ . ▄ 

Note that following the design proposed by Theorem 2.2 the matrix Q  is given, and it 

explicitly determines the size of the guaranteed synchronizing region (23) if there exists a 

positive definite solution of (22) for that given choice of Q . Finding general 0Q >  that 

maximizes r  would involve an LMI just as finding the value of c
δ  does. 

2.7 Robustness of the 
2

H  Riccati Design 

The following lemma is motivated by the conjecture that if the conditions of Theorem 2.2 

hold there is in fact an open interval of admissible values of the coupling constant c . This has 

the interpretation of robustness for the 
2

H -type Riccati design in sense that synchronization is 

still guaranteed under small perturbations of c  from value given by (26). 
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Lemma 2.9. Taking 01arccos: 2

max ≥−= rα  and denoting the angle of an eigenvalue of the 

graph matrix Γ by : arg
k k

φ = Λ , a necessary condition for the existence of at least one 

admissible value of c  is given by  

 
2Re

1 , ,k

k

r k
Λ

> − ∀
Λ

 (36) 

which is equivalent to 

 max
, .

k
kφ α< ∀  (37) 

Furthermore, the interval of admissible values of c , if non-empty, is an open interval 

given as a solution to a set of inequalities 

 
2 2 2 2

max maxcos cos cos cos cos cos
, .

k k k k

k k

c k
φ φ α φ φ α− − + −

< < ∀
Λ Λ

 (38) 

Finally if (24) holds then the solution of (38) is non-empty and contains the value (26). 

Proof:  If solution c  exists, the equations 

 
22 2

1 2 Re 1 0
k k k

c r c c rΛ − < ⇒ Λ − Λ + − <  (39) 

are satisfied simultaneously for every k  for at least one value of c . Therefore k∀  (39) has an 

interval of real solutions for c .  From that, and the discriminant of (39), relation (36) follows. 

One therefore has 
2

max

Re
cos 1 cosk

k

k

rφ α
Λ

= > − =
Λ

 meaning maxk
φ α< . Bearing that in mind, 

expression (36) can further be equivalently expressed as 

22 2

max2 cos cos 0k k kc c φ αΛ − Λ + < , 

Solving this equation for kc Λ  yields N  intervals in (38). The intersection of these N  open 

intervals is either an open interval or an empty set.  Now given that ( )0 0
,

k
C c rΛ ∈  one finds 

that 
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2 2 2 2

max max

min

2 2 2 2

max max

max

cos cos cos cos cos cos

cos cos cos cos cos cos

k k k k

k k

k k k k

k k

φ φ α φ φ α

φ φ α φ φ α

− − − −
<

Λ Λ

+ − + −
<

Λ Λ

 (40) 

where 
min max

,
k k

Λ Λ  are extremal values for fixed k
φ , as determined by ( )0 0

,C c r . Namely, for 

min max
,

k k
Λ Λ  one has 

2 2

0
0 0 2 2

0 0 0

2 cos 1 0
k k

k k

r
c r

c c c
φ

Λ Λ
Λ − = ⇒ − + − =

 

which gives 

2

2 0

0max,min 2

0

cos cos 1
k k k

r
c

c
φ φΛ = ± − −

  
  

   
. If (24) is satisfied then, 

2

2 0

max 2

0

cos 1
r

c
α < − , 

used in (40) together with expression for 
min max

,k kΛ Λ  implies the non-emptyness of the interval 

solution of (38), and guarantees that 
0

1c c=  is a member of that interval.  Furthermore, if the 

assumptions of Theorem 2.2 are satisfied with equality, then the lower and higher limit of every 

subinterval (40) in fact become equal to 
01 / c .  ▄ 

Condition (37) means that the graph matrix eigenvalues 
k

Λ  must be inside the cone in 

complex plane shown in Figure 2.1. It is evident from the geometry of the problem that 

eigenvalues 
k

Λ  located outside the cone determined by (36), (37) cannot be made to fit into the 

region ( )1,C r  by scaling with real values of c . It should be noted that condition (24) is stronger 

than condition (37) and condition (38) has also been derived in 14.  

2.8 Application to Real Graph Matrix Eigenvalues and Single-input Systems 

In this section condition (24) of Theorem 2.2 is studied in several special simplified 

cases and it is shown how this condition relates to known results.  The special case of real 
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eigenvalues of Γ  and single input systems at each node allows one to obtain necessary and 

sufficient condition for synchronization. 

Corollary 2.1. Let graph ( ),G V E  have a spanning tree with pinning into the root node, and all 

eigenvalues of Γ  be positive, that is, 0kΛ >  for all k . Define 
min max0 k<Λ ≤ ≤Λ ≤ ≤Λ� � . A 

covering circle for k
Λ  that also minimizes 

0 0/r c , is ( )0 0,C c r  with 

 
0 max min

0 max min

.
r

c

Λ − Λ
=

Λ + Λ
 (41) 

Then, condition (24) in Theorem 2.2 becomes 

 
max min

max min

.r
Λ − Λ

<
Λ + Λ

 (42) 

Moreover, given that this condition is satisfied, the coupling gain choice (26) reduces to 

 

min max

2
.c =

Λ +Λ
 (43) 

Proof:  For graphs having a spanning tree with pinning into the root node, and all eigenvalues of 

Γ  real, one has 
min0 < Λ . Note that in that case 0=kϕ  k∀  and 2

max

2
1cos r−=α  so that 

necessary condition (37) is satisfied.  Furthermore inequalities (38) become 

1 1
.

k k

r r
c

− +
< <

Λ Λ
 

From this, a necessary and sufficient condition for the existence of a nonempty intersection of 

these N  intervals is 

min max

1 1
,

r r− +
<

Λ Λ
 

where the extremal values min maxmin max
,

k k
Λ = Λ Λ = Λ  min,max min,maxk

Λ = Λ  are the same for 

every k  and are determined as in the proof of Lemma 2.9.  
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The sought interval is given as 

min max

1 1
,

r r
c

− +
∈

Λ Λ
.  This interval implies condition (42).  

Therefore, the sufficient condition (24) is equivalent to (42). Examining the positions of 

eigenvalues on the real axis it is found that for the minimal covering circle ( )0 0,C r c  one has 

min max

0
,

2
c

Λ + Λ
=  

max min

0 max 0 0 min
.

2
r c c

Λ −Λ
= Λ − = −Λ =  

So 

max min 0

max min 0

.
r

r
c

Λ −Λ
= <

Λ + Λ
 

Note that in the case of real eigenvalues k
Λ  their minimal covering circle has also the minimal 

ratio 
00 cr  of all covering circles ( )0 0,C c r . This shows that (42) expresses the sufficient 

condition (24) specialized to Γ  having all real eigenvalues. Theorem 2.2 then also gives the 

choice of c  (43). ▄ 

This special case concerning real eigenvalues of the graph matrix Γ  bears strong 

resemblance to the case presented and studied in 14, concerning undirected graphs. For, note 

that if one uses the non-weighted protocol, 
i i

u cKε= , instead of (4), then, the eigenvalues 
k

Λ  

used in the analysis of this chapter are those of ( )GL + , not Γ  in (10). However, the condition 

that the eigenvalues of ( )GL +  be real is related to the graph being undirected.  It is noted that, 

even if all eigenvalues of ( )GL +  are real, the eigenvalues of Γ  may be complex, and vice 

versa.  The importance of weighting is discussed in Lemma 2.1. 
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The radius r  in (23) for Riccati-based design is important since it is instrumental in 

determining sufficient condition (24) in Theorem 2.2 as well as in Lemma 2.8.  In the case of 

single-input systems the expression (23) simplifies. 

Remark 2.2.  If the node dynamics (1) are single-input, define r by (23) with the choice of 

* *

* *

*

T T

T

T

A P BB P A
Q P A P A

B P B
= − + , where 

* 0P >  is a positive definite solution of the Riccati 

equation  

 
* *

* *

*
0

1

T T
T

T

A P BB P A
P A P A

B P B
− + =

+
. (44) 

Then 

 

( )
1

.
u

u

r
Aλ

=
∏

 (45) 

where ( )A
uλ  are the unstable eigenvalues of the system matrix A  indexed by u .  

This follows from Theorem 2.2 of 16. Namely putting Q  as defined into (22) yields the 

solution 
*

P P= .  In case of single-input systems 
n

B ∈�  and u  is a scalar, so the result in 16 

applies.  Note that if the solution to (44) is only positive semi-definite, a regularizing term must 

be added to (44) as is done in 16.  

Note that 
*

P  defined as a solution to Riccati equation (44) becomes the solution of (22) 

for the choice of Q  given in Remark 2.2.  This means, in the context of this chapter, that 
2

H -

type Riccati feedback gain for that specific choice of Q , applied to single-input systems, 

maximizes the value of r  considered here to be the radius of ( )1,C r  in the complex plane, 

rather than just the real interval 16.  The following remark combines the above results.  

Remark 2.3. If systems (1) are single-input and the Γ  matrix of the graph ( ),G V E  has all 

eigenvalues real, selecting Q  as in Remark 2.2, gives the condition (24) in the form 
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 ( ) max min

max min

u

u

Aλ
Λ + Λ

<
Λ − Λ

∏ . (46) 

Moreover this condition is necessary and sufficient for synchronization for any choice of 

the feedback matrix K  if all the eigenvalues of A  lie on or outside the unit circle.  Sufficiency 

follows by Corollary 2.1 and Remark 2.2, assuming the conditions of Theorem 2.2 hold. 

Necessity follows from 14. 

The next result shows another case where a simplified form of r in Theorem 2.2 can be 

given.  It follows directly from simplification of (23). 

Corollary 2.2. Let matrix B  be invertible and Q I= , then one has 

 

( )
1/2

max

1

T
r

A PAσ
= . (47) 

2.9 Numerical Example 

This example shows the importance of weighting by ( )
1

1i i i iu c d g Kε
−

= + +  in protocol (4), 

and features unstable individual agent dynamics. The graph is directed and connected. The 

Laplacian L  and the pinning gains matrix G  are given as 

3 1 1 1 0

1 3 1 1 0

1 1 3 0 1

0 0 1 2 1

0 1 0 1 2

L

− − − 
 − − − 
 = − − −
 

− − 
 − − 

,  diag(30,0,0,0,30)G = . 

The individual agent dynamics are given by (1), with ( )BA,  in controllable canonical form, 

0 1 0 0

0 0 1 , 0

0.2 0.2 1.1 1

A B= =

−

   
   
   
      

. 

The eigenvalues of A  are 4324.0,4134.0,1190.1)( −=Aeig , therefore the uncontrolled systems 

are unstable. 
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Figure 2.2 shows the non-weighted graph eigenvalues, that is the eigenvalues of 

( )L G+ , and the weighted counterparts, that is the eigenvalues of ( ) ( )
1

I D G L G
−

Γ = + + + , with 

the synchronizing region (1, )C r  also displayed. Clearly the non-weighted graph eigenvalues do 

not satisfy the sufficient condition, (24) while the weighted ones do.  Therefore the protocol 

ii cKu ε=  cannot be guaranteed to yield synchronization, while the weighted protocol (4) does.  

It is interesting that the non-weighted graph eigenvalues are real, while the weighted ones may 

be complex. 

   

(a)             (b) 

Figure 2.2 (a) Non-weighted graph eigenvalues and their covering circle.  (b) Weighted graph 

matrix eigenvalues, their covering circle, and the synchronization region (dashed circle). 

 

The gain matrix K  for the protocols (4) was designed using Theorem 2.2.  Relevant 

values for the design are 
0 00.5083, 0.3333, 0.6684r r c= = =  , rcr <= 4987.000

. We 

selected  
30.20Q I= .  Figure 2.3 shows the dynamics of a multi-agent system in the case that 

the coupling gain c is improperly chosen. Synchronization is not achieved. 
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(a)      (b) 

 

(c) 

Figure 2.3 State trajectories of 5 agents; (a) First, (b) Second and (c) Third state component, for 

an improper choice of c . 

Simulated trajectories with the coupling gain chosen by (25), (26) are depicted in Figure 2.4.  All 

nodes synchronize to the control node trajectory. 

   

(a)     (b) 

 

(c) 

Figure 2.4 State space trajectories of 5 agents; (a) First, (b) Second and (c) Third state 

component, for proper value of c . 
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2.10 Conclusion 

This chapter provides conditions for achieving synchronization of identical discrete time 

state space agents on a communication graph structure.  The concept of discrete synchronizing 

region in the z-plane is used.  Two conditions for synchronization are given which decouple the 

graph properties from the feedback design details.  The first result, based on an H
∞ -type 

Riccati inequality, gives a milder condition for synchronization in terms of a radius that is 

generally difficult to compute.  The second result is in terms of a radius easily computed from an 

2
H -type Riccati equation solution, but may give too conservative a condition.  Both are shown 

to yield known results in the single-input case.  Example is given to illustrate the proposed 

feedback design and simulations justify the used approach. 
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CHAPTER 3 

DISTRIBUTED OBSERVATION AND DYNAMIC OUTPUT COOPERATIVE FEEDBACK 

3.1 Introduction 

The last two decades have witnessed an increasing interest in multi-agent network 

cooperative systems, inspired by natural occurrences of flocking and formation forming in 

nature. In the technical world these systems are applied in formations of spacecrafts, unmanned 

aerial vehicles, mobile robots, distributed sensor networks etc. 9. Early work with networked 

cooperative systems in continuous and discrete time is presented in 1,3,4,7. These papers 

referred to consensus without a leader, i.e. the cooperative regulator problem, where the final 

consensus value is determined solely by the initial conditions. Necessary and sufficient 

conditions for the distributed systems to synchronize are given in 5,6,10. On the other hand by 

adding a leader that pins to a group of agents one can have synchronization to a command 

trajectory through pinning control, 7,23, for all initial conditions.  We term this the cooperative 

tracker problem. An elegant approach for investigating sufficient conditions for a system to 

synchronize is provided by the concept of synchronization region, 6,8,11. This concept allows 

for the control design problem to be decoupled from the graph topology, yielding simplified 

formulations of sufficient conditions for synchronization to the leader trajectory.  

For continuous-time systems it is shown in 9,12, that, by using state feedback derived 

from the Riccati equation, synchronization can be achieved for a broad class of communication 

graphs. Synchronization in continuous time using dynamic compensators or output-feedback is 

considered in 11,12,24,24. For discrete-time cooperative systems such general results are still 

lacking, although there are references to special cases of single-input systems and undirected 

graph topology, 25, and its extension to directed graphs, 26. These results were originally 

inspired by the earlier work of 15,16, concerning optimal logarithmic quantizer density for 

stabilizing discrete-time systems. 
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In this chapter we are concerned with systems of individual agents described by 

identical linear time-invariant discrete-time dynamics. The graph is assumed directed, of fixed 

topology, and containing a directed spanning tree.  Contrary to the case presented in 26 and 28, 

perfect information on the state of the neighbouring systems is not presumed. Output 

measurements are assumed and cooperative observers are specially designed for the multi-

agent systems. Potential applications are distributed observation, sensor fusion, dynamic output 

regulators for synchronization, etc. For the needs of consensus and synchronization control we 

employ the cooperative tracker, or pinning control, 7,23,6. The key difference between systems 

in continuous-time, 11,9,12 and discrete-time, 25,26,28 is in the form of their stability region. 

More precisely, in continuous-time the stability region, as the open left-half s-plane, is 

unbounded by definition, so the synchronizing region can also be made unbounded. On the 

other hand, the discrete-time stability region, as the interior of the unit circle in the z-plane, is 

inherently bounded and, therefore, so are the synchronizing regions. This makes conditions for 

achieving discrete-time stability more strict than the continuous-time counterparts. 

Conditions for cooperative observer convergence and for synchronization of the multi-

agent system are shown to be related by a duality concept for distributed systems on directed 

graphs. It is also shown that cooperative control design and cooperative observer design can 

both be approached by decoupling the graph structure from the design procedure by using 

Riccati-based design. Sufficient conditions are derived that guarantee observer convergence as 

well as synchronization. This derivation is facilitated by the concept of convergence region for a 

distributed observer, which is analogous, and in a sense dual, to the synchronization region 

defined for a distributed synchronization controller. Furthermore, the proposed observer and 

controller feedback designs have a robustness property like the one originally presented in 28 

for controller design. 

This chapter is organized as follows. Section 3.2 to 3.4. detail a local neighborhood 

observer structure. Theorem 3.1 gives a Riccati-based design method that decouples the 
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design of the observer gains from the graph topology.  The theorem gives sufficient conditions 

for the convergence of the proposed distributed observer design.  Section 3.5 demonstrates that 

the distributed observer and controller schemas are dual to one another by using the concept of 

the reverse graph. Section 3.6 presents three observer/controller regulator architectures, 

together with proofs guaranteeing that the agents synchronize and the observer errors converge 

to zero.  This demonstrates a separation principle for design of dynamic output feedback 

regulators on graph topologies. Numerical examples are given in Section 3.7. and conclusions 

are presented in Section 3.8. 

3.2 Cooperative Observer Design 

In this section we define cooperative observers on the interaction graph ( ),=G V E  and 

provide a design method for the observer gains that guarantees convergence of the observer 

errors to zero if certain conditions hold. 

The agents are coupled on a graph ( ),=G V  E  and have dynamics given as the 

discrete-time systems 

 
( ) ( ) ( )
( ) ( )kCxky

kBukAxkx

ii

iii

=

+=+1
 (48) 

A control or leader node 0  has the command generator dynamics 

 
( ) ( )

( ) ( )
0 0

0 0

1 ,

.

x k Ax k

y k Cx k

+ =

=
 (49) 

The state, input, and output vectors are 
0 0

, , , ,
n m p

i i i
x x u y y∈ ∈ ∈� � � .  Note that matrix A 

may not be stable.  This autonomous command generator describes many reference 

trajectories of interest including periodic trajectories, ramp-type trajectories, etc. 
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3.3 Observer Dynamics 

It is desired to design cooperative observers that estimate the states ( )i
x k  given 

measurements of the outputs ( )
j

y k .  Given an estimated output, ˆ ˆ
i iy Cx= , at node i, define the 

local output error  

 ˆ
i i i

y y y= −� .   

To construct an observer that takes into account information from the neighbors of node i, 

define the local neighborhood output disagreement 

 ( ) ( )0

o

i ij j i i i

j

e y y g y yε = − + −∑ � � � �   (50) 

where the observer pinning gains are, 0ig ≥ , with 0ig >  only for a small percentage of nodes 

that have direct measurements of the output error 
0y�  of the control node.  With the global state 

vector defined as 
1

T
T T

N

nN
x x x = ∈ … � , global output 

1

T
T T

N

pN
y y y = ∈ … � , the global 

output disagreement error ( )o pN
kε ∈�  is  

 ( ) ( ) ( ) ( ) ( )0
1o

m m
k L G I y k L G I y kε = − + ⊗ + + ⊗� � .  (51) 

Throughout this chapter it is assumed that 
0 0 0

ˆ 0x x y= ⇒ ≡� , i.e. the control node state is 

accurately known.  Then, define the distributed observer dynamics 

 ( ) ( ) ( ) ( ) ( )
1

1
ˆ ˆ1 1

o

i i i i i i
x k Ax k Bu k c d g F kε

−
+ = + − + + . (52) 

where F  is an observer gain matrix and 1c  a coupling gain.  This algorithm has local 

neighborhood output disagreement (50) weighted by 1(1 )i id g
−+ + . The importance of using 

this weighting is shown in Example 3.1.  The global distributed observer dynamics then has the 

form 

 

( ) ( )
1

1
ˆ ˆ( 1) ( ) ( ) ( )N Nx k I Ax k I Bu k c I D G L G Fy k

−
+ = ⊗ + ⊗ + + + + ⊗ � ,
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( ) ( ) ( ) ( )
1 1

1 1
ˆ ˆ( 1) ( ) ( ) ( )

N N
x k I A c I D G L G FC x k I Bu k c I D G L G Fy k

− − + = ⊗ − + + + ⊗ + ⊗ + + + + ⊗
  , 

where ( )1
, ,

N
G diag g g= …  is the diagonal matrix of pinning gains. 

Defining the i-th state observer error  

ˆ( ) ( ) ( )i i ik x k x kη = − , 

the global observer error 
1

T
T T

N

nNη η η= ∈  … �  has the dynamics  

 ( ) ( ) ( ) ( )
1

11
N

k I A c I D G L G FC kη η
− + = ⊗ − + + + ⊗

 
. (53) 

Denote the global observer system matrix as  

 
1

1
( ) ( )

o N
A I A c I D G L G FC

−
= ⊗ − + + + ⊗ . (54) 

Definition 3.1: The matrix appearing in (53) and (54) is referred to as the graph matrix  

 
1( ) ( )I D G L G

−Γ = + + + . (55) 

The eigenvalues k
Λ , 1...k N= , of Γ  are instrumental in studying the stability of systems on 

the graph G . 

Lemma 3.1. If there exists a spanning tree in the communication graph G  with pinning into a 

root node, then L G+ , and hence Γ , is nonsingular, and both have all their eigenvalues in the 

open right half plane.  

Proof: 11, Lemma 5.  ▄ 

3.4 Design of Observer Gains 

It is now desired to design the observer gains F to guarantee stability of the observer 

errors and hence convergence of the estimates ˆ ( )
i

x k  to the true states ( )
i

x k .  Unfortunately, 

the stability of the observer error dynamics depends on the graph topology through the graph 

matrix eigenvalues, , 1...k k NΛ = , as shown by the following result.   
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Lemma 3.2. The global observer error dynamics (53) are asymptotically stable if and only if 

( )1 1kA c FCρ − Λ <  for all eigenvalues kΛ , Nk ...1=  of the graph eigenvalue matrix 

( ) ( )GLGDI +++=Γ
−1

. 

Proof: Perform on (53) a state-space transformation ( )o

nz T I η= ⊗ , where T  is a matrix 

satisfying 
1T T− Γ = Λ  with Λ  being a block triangular matrix.  The transformed global 

observer error system is 

 ( ) [ ] ( )11
o o

Nz k I A c FC z k+ = ⊗ − Λ ⊗  (56) 

Therefore, (53) is stable if and only if 
1NI A c FC⊗ − Λ⊗  is stable. This is equivalent to matrices 

1 k
A c FC− Λ  being stable for every k  since kΛ  are the diagonal elements of matrix Λ . ▄ 

The necessary condition for the stability of (53) is detectability of ( ),A C . Stability of 

1 kA c FC− Λ  implies detectability of ( ),A C . 

Lemma 3.2 is dual to a result in 5. Also, compare to 11.  This result is not convenient to 

use for the design of the observer gains F because it intermingles the effects of the observer 

dynamics and the graph matrix eigenvalues. It is desired to provide here an observer gain 

design method that is independent of the graph eigenvalues kΛ . The following notions facilitate 

the development of such a design technique. 

Definition 3.2: A covering circle ( )0 0
,C c r  of the graph matrix eigenvalues k

Λ , Nk ...1= , is a 

closed circle in the complex plane centered at 
0

c ∈�  and containing all graph matrix 

eigenvalues, 
kΛ , Nk ...1= , some possibly on the boundary. 

The notion of synchronization region, 23, 6, 11, 12, has proven important for the design 

of state feedback gains for continuous-time systems that guarantee stability on arbitrary graph 
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topologies.  The synchronization region was defined for discrete-time systems in 28. The next 

definition provides a dual concept for observer design. 

Definition 3.3: For a matrix pencil A sFC− , s∈� , the convergence region is a subset, 
oS ⊆ � , 

such that ( ){ }1oS s A sFCρ= ∈ − <� . 

The convergence region might not be connected, but it is intimately related to the complex gain 

margin region defined next. 

Definition 3.4: The complex gain margin 
oU ⊆ �  for some stabilizing observer gain F , given a 

system ( )CA,  is a simply connected region in � , ( ){ }1o
U s A sFCρ= ∈ − <�  containing 

1s = . 

Note that for a stabilizing observer gain F  one has a relation 
o oU S⊆ . 

Lemma 3.3. Matrices 
1 kA c FC− Λ  are stable for all eigenvalues 

kΛ  if and only if 
1 ;k oc S kΛ ∈ ∀ . 

Proof:  follows from Definition 3.3 and 3.4.  ▄ 

The main result of this section is a design technique for the distributed observer gain F  

that does not depend on the graph eigenvalues and guarantees observer stability under a 

certain condition.  It is presented in the following theorem. 

Theorem 3.1. Riccati Design of Distributed Observer Gains. Given systems (48) assume the 

interaction graph contains a spanning tree with at least one pinning gain nonzero that connects 

into the root node. Let 0>P  be a solution of the discrete-time observer Riccati equation, 

 ( )
1

0T T T T
APA P Q APC CPC CPA

−

− + − = , (57)
 

where 0>= T
QQ .  Choose the observer gain matrix as 

 ( )
1

T T
F APC CPC

−

= . (58) 

Define  
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 ( )( )
1/2

1
1/2 1/2

max: T T T

obsr Q APC CPC CPA Qσ
−

−
− − =

  
. (59) 

Then the observer error dynamics (53) are stable if there exists a covering circle ( )0 0,C c r  of the 

graph matrix eigenvalues kΛ , 1...k N=  such that 

 
obsr

c

r
<

0

0 . (60) 

If (60) is satisfied then taking the coupling gain 

 
1

0

1
c

c
=  (61) 

makes the observer error dynamics (53) stable.  ▄ 

The next technical lemma is needed in the proof of Theorem 3.1. 

Lemma 3.4. The convergence region, 
o

S , for the observer gain F  given in Theorem 3.1., 

contains the circle ( )1,
obs

C r . 

Proof: The observer Riccati equation (57) can be written as 

 ( )
1

0T T T
APA P Q F CPC F

−

− + − = . (62)
 

Select any symmetric matrix 0P > .  Then 

 

*

* *

21 1

2

2

( ) ( )

2Re ( ) ( )

(2Re )

(1 1 )

T T T T T T

T T T T T T

T T T T T T T

T T T

T T T

A sC F P A sC F P

APA P s FCPA sAPC F s sFCPC F

APA P sAPC CPC CPA s APC CPC CPA

APA P s s FCPC F

APA P s FCPC F

− −

− − −

= − − − +

= − − +

= − − −

= − − − −

 (63) 

A sufficient condition for the stability of ( )A sFC−  is that this be less than zero.  Inserting (62) 

this is equivalent to 

 
2

1 0
T T

Q s FCPC F− + − < . (64)
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This equation furnishes the bound  

 ( )
2

1/2 1/2

max

1
1

( )T T
s

Q F CPC F Qσ − −
− < . (65) 

Furthermore, expressing F  as (58) one obtains 

 ( )( )
2

1
1/2 1/2

max

21
1

T T T
obss r

Q APC CPC CPA Qσ
−

− −
− < =

. (66) 

This is an open circle ( )1,
obs

C r , and for s ∈�  in that circle ( ) 1
T T T

A sC Fρ − < , but this also 

means that ( ) 1A sFCρ − <  since transposition does not change the eigenvalues of a matrix. ▄ 

The guaranteed circle of convergence ( )1,
obs

C r , being simply connected in the complex 

plane and containing 1s =  is contained within the observer gain margin region oU . 

Proof of Theorem 3.1: 

Given ( )1,
obs

C r  contained in the convergence region oS  of matrix pencil A sFC− , and the 

properties of dilation (homothety), assuming there exists a directed spanning tree in the graph 

with a nonzero pinning gain into the root node, it is clear that synchronization is guaranteed if all 

eigenvalues kΛ  are contained in a circle ( )0 0,C c r  similar with respect to homothety to a circle 

concentric with and contained within ( )1,
obs

C r . Homothety, as understood in this chapter, refers 

to a radial projection with respect to the origin, i.e. zero in complex plane. That is, it must be 

possible to bring ( )0 0,C c r  into ( )1,
obs

C r  by scaling the radii of all graph eigenvalues by the 

same constant multiplier. 

The center of the covering circle 0c  can be taken on the real axis due to symmetry and 

the radius equals 
00 max cr k

k
−Λ= . Taking these as given, it is straightforward that one should 

have  
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 0

0 1

obsr r

c
< .  

If this equation is satisfied then choosing 
01/c c=  maps with homothety the covering 

circle of all eigenvalues ( )0 0,C c r  into a circle ( )0 0
1,C r c  concentric with and, for 

0 0
/r r c> , 

contained in the interior of the circle ( )1,
obs

C r . ▄ 

Note that in (57) there is a condition 0P > , and one must have C  of full row rank. A necessary 

condition for the existence of a solution 0P >  to (57) is detectability of ( ),A C . 

For the sake of computational simplicity, the covering circle ( )1, obsC r  is used to prove 

sufficiency. If, however, this covering circle is found not to satisfy (60), there could be other 

covering circles satisfying this condition, e.g. those having smaller 00 cr  ratio. 

The following lemma highlights the robustness property of the proposed distributed 

observer design. It formalizes the fact that under the sufficient condition of Theorem 3.1 

observer convergence is robust to small changes of the coupling gain value. 

Lemma 3.5. If the sufficient condition (60) of Theorem 3.1 is satisfied then there exists an open 

interval of values for the observer coupling gain 1c  guaranteeing convergence, obtained as an 

intersection of a finite family of open intervals, as in Chapter 2, 28. The value given by (61) is 

contained in all the intervals, whence it is contained in their intersection. 

Proof: The same as for the analogous result of Chapter 2. ▄ 

3.5 Duality Between Cooperative Observer and Controller Design 

In this section a duality property is given for cooperative observers and cooperative 

controllers on communication graphs, where 1 2c c c= = . It proves to be convenient to consider 

non-weighted observer and controller protocols given by 

 ( ) ( ) ( ) ( ) ( )2 01
i

i i ij j i i i

j N

x k Ax k c BK e x x g x x k
∈

 
+ = + − + − 

 
∑ , (67) 
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 ( ) ( ) ( ) ( ) ( ) ( )1 0
ˆ ˆ1

i i i ij j i i i

j

x k Ax k Bu k c F e y y g y y k
 

+ = + − − + − 
 
∑ � � � � . (68) 

The next result details the duality property for the distributed controllers (67) and 

observers (68).  For this result, it is required that the interaction graph of the observer be the 

same as the interaction graph for the control design, as assumed throughout this chapter, but in 

addition in needs to be balanced. 

Theorem 3.2. Consider a networked system of N  identical linear agents on a balanced 

communication graph G  with dynamics ( , , )A B C  given by (48).  Suppose the feedback gain 

K  in protocol (67) stabilizes the global tracking error dynamics (8) having closed-loop system 

matrix 

 
2 ( )

c N
A I A c L G BK= ⊗ − + ⊗ . (69) 

Then, assuming 
1 2c c c= = , the observer gain 

TF K=  in protocol (68) stabilizes the global 

observer error dynamics (53) having closed loop observer matrix 

 
1( )T T T

o N
A I A c L G FB= ⊗ − + ⊗ , (70) 

for a networked dual system of N  identical linear agents ( , , )T T TA C B  on the reverse 

communication graph 'G . 

Proof: Similar to the proof given in 13 for continuous-time systems. ▄ 

Though weighting is not used in this section the importance of weighting is detailed in Example 

3.1, subsection 3.7.1. 

3.6 Three Regulator Configurations of Observer and Controller 

In this section are presented three different methods of connecting observers and 

controllers at node i  into a cooperative dynamic output feedback regulator for cooperative 

tracking. The observer graph and controller graph need not be the same.  In the case that the 

observer and controller graph are not the same the sufficient conditions of Theorem 2.1 of 
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Chapter 2 and Theorem 3.1 of Chapter 3 apply separately to the respective graphs. The 

following results are derived under a reasonable simplifying assumption of having those two 

graphs equal, but apply similarly to the more general case. The development of this section is a 

discrete-time version of the continuous-time results of 13.  The cooperative regulators should 

have an observer at each node and a control law based on the observed outputs, and the 

separation principle should hold. This is the case for the following three system architectures. 

3.6.1 Distributed Observers and Controllers 

In this dynamic regulator architecture, the controller uses a distributed feedback law 

 ( )
1

2
ˆ1i i i iu c d g Kε

−
= + + , (71) 

where 

 ( ) ( )ii

j

ijiji xxgxxe ˆˆˆˆˆ
0 −+−=∑ε , (72) 

is the estimated local neighborhood tracking error. The observer is also distributed and of the 

form (52).  Thus, both the controller and the observer depend on the neighbor nodes.  The 

global state and estimate dynamics are given as 

 ( ) ( ) ( ) ( )
1

2 0
ˆ( 1) ( ) ( )Nx k I A x k c I D G L G BK x x k

−
+ = ⊗ − + + + ⊗ −  (73) 

 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1 1

1 1

1

2 0

ˆ ˆ1 ( )

ˆ ( )

Nx k I A c I D G L G FC x k c I D G L G Fy k

c I D G L G BK x x k

− −

−

 + = ⊗ − + + + ⊗ + + + + ⊗
 

− + + + ⊗ −

 (74) 

Note that the assumption, 
0 0x̂ x= , was used in (73).  The global state error then follows from 

 ( ) ( ) ( ) ( ) ( ) ( )
1 1

2 2 01 ( ) ( )Nx k I A c I D G L G BK x k c I D G L G BK x kη
− − + = ⊗ − + + + ⊗ + + + + ⊗ +

 
,  

which further yields the global error dynamics 

 
( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

1 1

2 21 ( )

,

N

c c

k I A c I D G L G BK k c I D G L G BK k

A k B k

δ δ η

δ η

− −
+ = ⊗ − + + + ⊗ + + + + ⊗

= +
(75) 

and 
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( ) ( ) ( ) ( )

( )

1

11 ( )
N

o

k I A c I D G L G FC k

A k

η η

η

−
+ = ⊗ − + + + ⊗

=
. (76) 

The entire error system is then  

 ( ) ( )1
0

c c

o

A B
k k

A

δ δ

η η

    
+ =     

    
. (77) 

Under the conditions detailed in Theorem 2.1 of Chapter 2 and Theorem 3.1 of Chapter 3, the 

error system, (77), is asymptotically stable, implying , 0δ η →  asymptotically.  This guarantees 

synchronization of all the agents' states to the control node state. 

3.6.2 Local Observers and Distributed Controllers 

In this architecture, the controller is the distributed form (71), (72).  On the other hand, 

the observers are now local 

 ( ) ( ) ( ) ( )ˆ ˆ1
i i i i

x k Ax k Bu k Fy k+ = + + � . (78) 

and do not use information from the neighbors.  Then, the state observation error ˆ
i i i

x xη = −  

dynamics is 

( ) ( ) ( )kFCAk ii ηη −=+1 , 

or globally 

 
( ) ( ) ( )kFCAIk n ηη −⊗=+ 1 .

 (79) 

Then, the overall error dynamics are  

 ( )
( )

( )k
FCAI

BA
k

N

cc


















−⊗
=+









η

δ

η

δ

0
1 . (80) 

Now, the observer gain F is easily selected using, for instance, Riccati design so that ( )A FC−  

is asymptotically stable.  The feedback gain is selected by Theorem 3.2.  Then, under the 

hypotheses of Theorem 3.2, synchronization is guaranteed. 
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3.6.3 Distributed Observers and Local Controllers 

In this architecture the controller is local of the form  

 ˆ
i i

u Kx= − , (81) 

which does not depend on the neighbors.  On the other hand, the observer is distributed and 

given by protocol (52), with 

( ) ( )0

o

i ij j i i i

j

e y y g y yε = − + −∑ � � � . 

Note that instead of 
0y�  in (50), which is assumed identically equal to zero, here one uses the 

control node output 
0y .  In global form this yields  

 
1 1 0

ˆ( 1) ( ) ( )

ˆ ˆ( 1) ( ) ( ) ( ) ( )

N N

N

x k I Ax k I BKx k

x k I A BK x k c FC k c FCx kη

+ = ⊗ − ⊗

+ = ⊗ − + Γ ⊗ − Γ ⊗
. (82) 

Expressing ˆ,x x  through ˆ,x x xη = −  gives 

 
1 1 0

1 0

1 1 0

1 0

( 1) ( ) ( ) ( ),

ˆ( 1) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( )

( ) ( ) ( )

( ) ( ),

N N

N N N

N N

N

o

x k I A BK x k I BK k

k I A BK x k I BK k I A BK x k c FC k c FCx k

I A BK k I BK k c FC x k

I A c FC k c FCx k

A k c FCx k

η

η η η

η η η

η

η

+ = ⊗ − + ⊗

+ = ⊗ − + ⊗ − ⊗ − − Γ ⊗ + Γ ⊗

= ⊗ − + ⊗ − Γ ⊗ −

= ⊗ − Γ ⊗ + Γ ⊗

= + Γ ⊗

(83) 

Global tracking error dynamics now follows as 

 ˆ( 1) ( ) ( ) ( ) ( )N Nk I A k I BK x kδ δ+ = ⊗ − ⊗ . (84) 

Using that 
0 0 0

ˆ ( )x x x x x xη η δ η= − = − − + = − −  one finds 

 
0( 1) ( ) ( ) ( )( ( ) ( ))N Nk I A BK k I BK k x kδ δ η+ = ⊗ − + ⊗ − . (85) 

Neither (83) nor (85) are autonomous systems since an exogenous input is present in form of 

control node state 
0 ( )x k .  However, if one looks at the dynamics of 

0
( ) ( ) ( )k k x kϑ η= −  it 

follows that ( 1) ( )
o

k A kϑ ϑ+ = , and ( 1) ( ) ( ) ( ) ( )
N N

k I A BK k I BK kδ δ ϑ+ = ⊗ − + ⊗ . Or, more clearly in 

matrix form 
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( )

( 1) ( )
0

N N

o

I A BK I BK
k k

A

δ δ

ϑ ϑ

 ⊗ − ⊗   
+ =     

    
. (86) 

The control gain K  is easily selected using, e.g. Riccati design, so that ( )A BK−  is 

asymptotically stable.  The observer gain is selected by Theorem 3.1.  Then, under the 

hypotheses of Theorem 3.1, synchronization, 0δ → , is guaranteed. 

Note that the observer in (46) is biased since 0ϑ →  implies 0xη → .  Thus, the 

observers effectively estimate the tracking errors, converging to 0
ˆ ( ) ( ) ( ) ( )

i i i
x k x k x k kδ= − = . 

Remark 3.1: The three proposed observer/controller architectures differ in the amount of 

information that must be exchanged between neighbors for observation and control. When both 

the observer and controller are distributed, each agent requires a significant amount of 

computation and communication to produce the estimate of its own state, since neighbor 

outputs need to be measured and state, i.e. output, estimates need to be communicated 

between neighbors. Also the control input requires all the estimated neighbor states. Local 

observers and distributed controller architecture require less computations and communication, 

since the state of each agent is estimated using only its own inputs and outputs, and only the 

state estimates need to be communicated between neighbors. The architecture using 

distributed estimation and local controller is interesting because for control purposes agents do 

not need to communicate with their neighborhoods, though communication is needed for 

distributed estimation. The specific eigenvalues of A BK− , A FC− , ,
o c

A A  that appear in the 

augmented state equations (77), (80), (86) determine the time constants in each of the three 

architectures. 
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3.7 Numerical Examples 

3.7.1 Example 1 

This example shows the importance of using the weighting in observer algorithm (4) 

and the control law (21).  Consider a set of 5 agents with dynamics given by (48) with ( ), ,A B C  

in controllable canonical form  

[ ]
0 1 0 0

0 0 1 , 0 , 0 0 1

0.2 0.2 1.1 1

A B C

   
   = = =   
   −   

      . 

The control node has the dynamics (49). The control node is pinned into two of the 

nodes, and the graph structure is given by  

3 1 1 1 0

1 3 1 1 0

1 1 3 0 1

0 0 1 2 1

0 1 0 1 2

L

− − − 
 − − − 
 = − − −
 

− − 
 − − 

, diag(30,0,0,0,30)G = . 

   

(a)      (b) 

Figure 3.1 (a) Non-weighted graph eigenvalues and their covering circle.  (b) Weighted graph 

matrix eigenvalues, their covering circle, and convergence region of observer (dashed circle). 
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Figure 3.1a shows the non-weighted graph eigenvalues, that is, the eigenvalues of 

( )GL + , along with their covering circle. Figure 3.1b shows the magnified part of Figure 3.1a 

containing the weighted counterparts, that is the eigenvalues of ( ) ( )
1

I D G L G
−

Γ= + + + , their 

covering circle and the observer convergence region ( )1, obsC r  displayed in dashes. Dashed 

lines marking a sector in complex plane depict the region wherein the eigenvalue covering 

circles should lie so that they be scalable to the observer convergence region.  It can be verified 

that the non-weighted eigenvalues in Figure 3.1a do not satisfy the sufficient condition (60) 

given in Theorem 3.1, while the weighted eigenvalues in Figure 3.1b do.  

It is interesting that the non-weighted eigenvalues are real, while the weighted eigenvalues here 

are complex. 

3.7.2 Example 2 

This example gives a set of numerical simulations for the three different observer-

controller architectures in Section 3.6.  The dynamics and the communication graph used are 

the same as in Example 1. 

Example 2a. Perfect state measurements 

In this simulation it is assume that perfect state measurements are available.  That is, 

the cooperative control law is used assuming full state feedback, as in Chapter 2.  This provides 

a baseline for comparison of the performance of the three dynamic regulator designs given in 

Section 3.6. Figure 3.2 shows the state components of the 5 nodes and the leader control node. 

Figure 3.3 shows the first components of the state tracking errors.  All nodes synchronize to the 

state of the leader. 
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(a)      (b) 

 

(c) 

Figure 3.2 States of the nodes and the control node with perfect state measurements (a) First 

state components, (b) Second state components, (c) Third state components. 

 

Figure 3.3 First state tracking error component with perfect state measurements. 

 

Example 2b. Distributed observers and controllers 

This simulation is for the case of distributed observers and controllers given as design 

3.6.1 in Section 3.6.  Figure 3.4 depicts the first state components of all 5 agents and the control 

node, as well as the first components of the tracking errors δ  and the first components of the 

observer errors η .  Synchronization is achieved. 
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(a)      (b) 

 

(c) 

Figure 3.4 Distributed observers and controllers. (a) First state components, showing 

synchronization, (b) First tracking error components, (c) First observer error components. 

 

Example 2c. Local observers and distributed controllers 

This simulation is for the case of local observers and distributed controllers given as 

design 3.6.2 in Section 3.6.  Figure 2.5 depicts the first state components of all 5 agents and the 

control node, as well as the first components of the tracking errors δ  and the first components 

of the observer errors η .  Synchronization is achieved. 
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(a)      (b) 

 

(c) 

Figure 3.5 Local observers and distributed controllers. (a) First state components, showing 

synchronization, (b) First tracking error components, (c) First observer error components. 

 

Example 2d. Distributed observers and local controllers 

This simulation is for the case of distributed observers and local controllers given as 

design 3.6.3 in Section 3.6.  Figure 3.6 depicts the first state components of all 5 agents and the 

control node, as well as the first components of the tracking errors δ  and the first components 

of the observer errors η .  Synchronization is achieved.  

Note that the observer errors in Figure 3.6c do not converge to zero since the observers 

estimate the tracking errors, converging to 
0

ˆ ( ) ( ) ( ) ( )i i ix k x k x k kδ= − = . 

0 5 10 15
-1

-0.5

0

0.5

1

1.5
Firs t s tate com ponent-local observer and dis tributed controller

0 5 10 15
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8
Firs t track ing error com ponent-loc al observer and dis tributed controller

0 1 2 3 4 5 6 7 8 9 1 0
-0 .8

-0 .6

-0 .4

-0 .2

0

0 .2

0 .4

0 .6
F irs t  o bs e rve r e rro r c o m p on en t -lo c a l o bs e rve r a nd  d is t ribu ted  c o n t ro l le r



 

60 

 

 

   

(a)      (b) 

 

(c) 

Figure 3.6 Distributed observers and local controllers. (a) First state components, showing 

synchronization, (b) First tracking error components, (c) First observer error components. 

 

Remark 3.2: It is interesting to compare the time constants of state synchronization and 

estimate convergence for the three dynamic regulator architectures. The observations are in 

accordance with the remark made after Section 3.6. Compared to perfect state measurement, 

distributed observers and controllers took almost twice as long for state synchronization, and 

almost the same for estimate convergence alone. The case of distributed controller and local 

observer needed the shortest time for state synchronization, shorter even than in case of local 

controller and distributed observer. For the system considered, it appears to be more 

advantageous to make observation faster by using a local observer, then to simplify the control 

law. Depending on the specific eigenvalues, perhaps for some other system it would pay more 

to use a local controller with distributed observer. 
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3.8 Conclusion 

Algorithms that do not depend on the topological properties of the graph were given to 

design observer gains and feedback control gains for cooperative systems on directed 

communication graphs.  Riccati design for the observer and controller gains guarantees stability 

if a certain condition in terms of the graph eigenvalues holds.  A duality principle for distributed 

systems on balanced graphs was given.  Three cooperative regulator designs were presented, 

each using cooperative observers and feedback controllers, which guarantee synchronization of 

multi-agent systems to the state of a control node using only output feedback.  Furthermore, the 

separation principle is shown to be valid in all three cases for multi-agent systems on graphs.  

These results are an extension of results for continuous-time systems in 11, 13, and, by duality, 

of the results obtained for distributed feedback control systems in 28.  Presented results could 

be extended to time-varying graphs in future work.  
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CHAPTER 4 

OPTIMAL DISTRIBUTED CONTROL 

4.1 Introduction 

The last two decades have witnessed an increasing interest in multi-agent network 

cooperative systems, inspired by natural occurrences of flocking and formation forming. Early 

work with networked cooperative systems in continuous and discrete time is presented in 

1,5,3,4,7,6.  Early work generally referred to consensus without a leader, where the final 

consensus value is determined solely by the initial conditions.  We term this the cooperative 

regulator problem. Necessary and sufficient conditions for the distributed systems to 

synchronize were given. On the other hand, by adding a leader that pins to a group of other 

agents one can have synchronization to a command trajectory through pinning control, 5, 23, 8 

for all initial conditions.  We term this the cooperative tracker problem. It is shown in 12, 13 that, 

by using state feedback derived from the local algebraic Riccati equation, synchronization can 

be achieved for a broad class of communication graphs. Synchronization using dynamic 

compensators or output feedback is considered in 9,13,25. 

Cooperative optimal control was recently considered by many authors-

33,34,36,37,38,39, to name just a few. Optimality of a control protocol gives rise to desirable 

characteristics such as gain and phase margins, that guarantee robustness in presence of 

some types of disturbances, 40,41. The common difficulty, however, is that in the general case 

optimal control is not distributed, 34,36. Solution of a global optimization problem generally 

requires centralized, i.e. global, information. In order to have local distributed control that is 

optimal in some sense it is possible e.g. to consider each agent optimizing its own, local, 

performance index. This is done for receding horizon control in 33, implicitly in 13, and for 

distributed games on graphs in 35, where the notion of optimality is Nash equilibrium.  In 37 the 

LQR problem is phrased as a maximization problem of LMI's under the constraint of the 

communication graph topology. This is a constrained optimization taking into account the local 
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character of interactions among agents.  It is also possible to use a local observer to obtain the 

global information needed for the solution of the global optimal problem, as is done in 34. In the 

case of agents with identical linear time-invariant dynamics, 38 presents a suboptimal design 

that is distributed on the graph topology. 

Optimal control for multi-agent systems is complicated by the fact that the graph 

topology interplays with system dynamics. The problems caused by the communication 

topology in the design of global optimal controllers with distributed information can be 

approached using the notion of inverse optimality, 41. There, one chooses an optimality 

criterion related to the communication graph topology to obtain distributed optimal control, as 

done for the single-integrator cooperative regulator in 36. This connection between the graph 

topology and the structure of the performance criterion allows for the distributed optimal control. 

In the case that the agent integrator dynamics contains topological information, 39 shows that 

there is a performance criterion such that the original distributed control is optimal with respect 

to it. 

In this chapter are considered fixed topology directed graphs and linear time-invariant 

agent dynamics.  First, theorems are provided for partial stability and inverse optimality of a 

form useful for applications to cooperative control, where the synchronization manifold may be 

noncompact.  In our first contribution, using these results, we solve the globally optimal 

cooperative regulator and cooperative tracker problems for both single-integrator agent 

dynamics and also agents with identical linear time-invariant dynamics.  It is found that globally 

optimal linear quadratic regulator (LQR) performance cannot be achieved using distributed 

linear control protocols on arbitrary digraphs.  A necessary and sufficient condition on the graph 

topology is given for the existence of distributed linear protocols that solve a global optimal LQR 

control problem.  In our second contribution, we define a new class of digraphs, namely, those 

whose Laplacian matrix is simple, i.e. has a diagonal Jordan form.  On these graphs, and only 

on these graphs, does the globally optimal LQR problem have a distributed linear protocol 
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solution. If this condition is satisfied, then distributed linear protocols exist that solve the global 

optimal LQR problem only if the performance indices are of a certain form that captures the 

topology of the graph.  That is, the achievable optimal performance depends on the graph 

topology. 

The structure of this chapter is the following; Section 4.2 deals with stability of possibly 

noncompact invariant manifolds, motivated by partial stability. Section 4.3 introduces conditions 

of optimality and inverse optimality and the connection with stability.  These results  are applied 

in Sections 4.4 and 4.5. Section 4.4 discuses optimal leaderless consensus and pinning control 

for single-integrator agent dynamics, and Section 4.5 gives the optimality results for general 

linear time-invariant agent dynamics.  

In Sections 4.4 and 4.5 it is found that optimality for a standard LQR performance index 

is only possible for graphs whose Laplacian matrix satisfies a certain condition.  In Section 4.6 

this condition is further discussed and shown to be satisfied by certain classes of digraphs, 

specifically for those graphs whose Laplacian matrix has a diagonal Jordan form.  This condition 

holds for undirected graphs.  Conclusions are given in Section 4.7. 

4.2 Asymptotic Stability of the Consensus Manifold 

This section presents concepts of partial stability applied to noncompact manifolds. The 

definitions are based on neighbourhoods of a manifold and avoid the need for global 

coordinates, in contrast to usual formulation of partial stability, e.g. 41.  The fact that a manifold 

to which convergence is to be guaranteed is noncompact means that usual approaches for 

compact manifolds based on proper Lyapunov functions are not applicable as such. 

Furthermore when dealing with noncompact manifolds one makes the distinction between non-

uniform and uniform stability. 

In the cooperative control consensus problem, where there are N  agents with states 

ix ∈� , 1...i N= , it is desired for all agents to achieve the same state, that is ( ) ( ) 0
i j

x t x t− →  
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as t → ∞ , ,i j∀ . Then the consensus manifold, : (1)S span= , where [ ]1 1 1 1
T N= ∈� � , is 

noncompact. 

Let the system dynamics be given as 

( , ) ( ) ( )x f x u f x g x u= = +� , 

where ( )f x , ( )g x , and ( )u t  are assumed to be such that the existence of a unique solution 

to the initial value problem is guaranteed. 

Definition 4.1: Let S  be a manifold embedded in a topological space X . A neighborhood ( )SD  

of S  is an open set in X  containing the manifold S  in its interior.  

Definition 4.2:  Let S  be a manifold embedded in a metric space ( , )X d , and let ( )SD  be a 

neighborhood of S . An ε -neighborhood of ( )S S⊂D  is defined as 

{ }( ) ( , )S x X d x Sε ε= ∈ <U , where ( , ) : inf ( , )
y S

d x S d x y
∈

=  is the distance from x X∈  to S  as 

given by the metric d . 

Note that in the case of compact manifolds any neighborhood ( )SD  contains some ε -

neighborhood, but in the case of noncompact manifolds this need not be true. For the needs of 

defining stability of noncompact manifolds, one uses neighborhoods that contain some ε -

neighborhood.  We call such neighborhoods regular. 

Definition 4.3: A manifold S  is said to be (Lyapunov) stable if there exists a regular 

neighborhood ( )SD  of S , such that for every ε -neighborhood ( )SεU  contained in it, there 

exists a subneighborhood ( )SV  satisfying the property (0) ( ) ( ) ( )x S x t Sε∈ ⇒ ∈V U  0t∀ ≥ . If 

( )SD  can be taken as the entire space X , then the stability is global. 

If S  is Lyapunov stable and furthermore there exists a neighborhood ( )SW  of S  

satisfying the property (0) ( ) ( ( ), ) 0x S d x t S∈ ⇒ →W  as t → ∞ , then S  is asymptotically stable. If 

( ( ), ) 0d x t S →  we say that the trajectory ( )x t  converges to S . 
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If S  is Lyapunov stable and for every ε -neighborhood ( )SεU  of S , there exists a 

subneighborhood ( ) ( )S Sε⊆V U  containing a δ -neighborhood ( )SδV  then S  is uniformly 

stable.  In this case the stability conclusion can be phrased as 0ε∀ > , 0δ∃ >  such that 

( )( ) ( )( )0 , ,    0d x S d x t S tδ ε< ⇒ < ∀ ≥ . 

If a manifold is uniformly stable and asymptotically stable so that some neighborhood 

( )SW  contains a δ -neighborhood ( )SδW  satisfying the property 

(0) ( ) ( ( ), ) 0x S d x t Sδ∈ ⇒ →W  as t →∞ , uniformly
1
 on ( )SδW , then S  is uniformly 

asymptotically stable. 

If a manifold is uniformly asymptotically stable and there exist constants , 0K σ >  such 

that ( ( ), ) ( (0), )
t

d x t S Kd x S e
σ−

≤ , for all (0)x  in some δ -neighborhood ( )SδW  then the partial 

stability is exponential. ■ 

A sufficient condition for the various types of stability of a manifold, possibly 

noncompact, is given as the following theorem, motivated by 41, Chapter 4. 

Theorem 4.1. (Partial Stability). Given a manifold S , possibly noncompact, contained in a 

neighborhood S⊃D , if there exists a 1C  function :V →�D  and a class K function α  such 

that 

fo

(

r

)

 

0

( ) ( ( , ))

(

\

)  0 for

V x x S

V x x

V

x

x

d S

x

Sα

∈

≥ ∈

= ⇔

≤ ∈�

 

  

D

 

  

D

 

then S  is Lyapunov stable. If furthermore there is a class K function β  such that 

( ( , )) ( ) ( ( , ))d x S V x d x Sα β≤ ≤  

                                                 
1
 In this context, uniform convergence means 0, 0 . . ( ( ), )T s t d x t S t Tε ε∀ > ∃ > < ∀ ≥    , where T  

depends on ε  and 
0

( , )d x S , but not on 
0

x  itself. 
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then the stability is uniform. If in addition there is a class K function γ  such that 

( ) ( ( , ))V x d x Sγ< −�  

then the stability is uniformly asymptotic. If there exist , , , 0a b c p >  such that  

( , ) ( ) ( , )
p p

ad x S V x bd x S≤ ≤  

( ) ( , )
p

V x cd x S< −�  

then the stability is exponential.  

Proof: Take any ( )SεU , then on the boundary ( )Sε∂U  one has ( , )d x S ε=  yielding a bound 

( ) ( )V x α ε≥ . Taking ( )η α ε=  and defining { }( ) ( )x S V x
η

η= ∈ <D D  one has for x η∈D  

that ( ( , ))d x Sα η<  meaning that ( , )d x S ε<  which implies that ( )Sη ε⊆D U . Taking (0)x η∈D , 

owing to the nonincreasing property of ( )V x , one obtains 

( ( ( ), ) ( ( )) ( (0)) ( )d s t S V x t V xα α ε≤ ≤ < , 0t∀ ≥ , 

guaranteeing 
 ( ) ( ) 0x t S tε∈ ∀ ≥U   , proving the Lypapunov stability of S .  

However there is no guarantee that, due to noncompactness, one does not have 

inf ( , ) 0
x

d x S
η∈∂

=
D

 which means that theη  level set of ( )V x  is not bounded away from the 

manifold S . This is remedied by the uniformity requirement since then one can choose 0δ >  

such that ( ) ( )β δ α ε= , and by the previous argument for (0) ( )x Sδ∈V  

( ( ( ), ) ( ( )) ( (0)) ( ) ( )d s t S V x t V xα β δ α ε≤ ≤ < =  

Uniform asymptotic and exponential stability follow from the proof analogous to partial stability 

results in 41. ■ 

The purpose of class K functions is to bind the level sets of the Lyapunov function away from 

the manifold and away from infinity, allowing the interpretation of a value of the Lyapunov 
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function as a measure of the distance from the manifold. For global conclusions one would 

require ∞
K , as an analog of properness, i.e. radial unboudedness.  

Remark 4.1: Note that the uniformity property is always found in the case where the manifold 

S  is compact. However, since we are dealing here with a noncompact manifolds, the 

difference needs to be emphasized. Theorem 4.1 will be used together with the inverse 

optimality approach of the next section, to guarantee asymptotic stabilization to a consensus 

manifold that is also optimal. 

Remark 4.2: In case partial stability conditions are satisfied one does not necessarily have 

bounded trajectories. Trajectories are constrained to a noncompact set, and finite escape to 

infinity, while remaining in the noncompact neighborhood of S , is thereby not precluded. 

Therefore, in order to avoid such an occurrence one needs to independently impose that 

solutions can be extended for all time. Since linear systems are globally Lipschitz solutions 

cannot escape to infinity in finite time. However, in more general cases, with nonlinear 

dynamics, an additional, proper, Lyapunov function could be used to guarantee boundedness of 

trajectories to a compact set. Note that this does not contradict the stability of a noncompact 

set, since La Salle invariance principle can be used to guarantee convergence to (a subset of) 

such a set.  

Note that the requirements on the Lyapunov function specialize in case of compact 

manifolds to familiar conditions, 41. In that case all bounded open neighborhoods are 

precompact. Specifically when one considers an equilibrium point the conditions specialize to 

{ }for \ 0 , for( ) 0  0, ( ) ( ) 0V x x V x x Vx xα= ⇔ = ≥ ∈ ≤ ∈�    D  D . 

In case of linear systems and pertaining quadratic partial stability Lyapunov functions 

( ) 0
T

V x x Px= ≥  the target manifold S  is the null space of the positive semidefinite matrix P . 
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Also the uniformity condition is automatically satisfied since 
2 2

min 0 max
( ) ( )

T
P y y Py P yσ σ

>
≤ ≤ , 

where kery P
⊥

∈ , and y  serves as the distance from the null space. 

4.3 Inverse Optimal Control 

This section presents inverse optimality notions for specific application to the consensus 

problem.  Inverse optimality is a property of a stabilizing control ( )u xφ= , e.g. guaranteed by a 

control Lyapunov function ( )V x , that is optimal with respect to some positive (semi) definite 

performance index. Let the system be given by the affine-in-control form 

 ( , ) ( ) ( )x f x u f x g x u= = +� . (90) 

Certain results of optimal control can be explicitly derived for systems in this form, e.g. 

Hamilton-Jacobi-Bellman equation. 

4.3.1 Optimality 

The following lemma details the conditions for optimality of a stabilizing control under an 

infinite horizon criterion, 41. 

Lemma 4.1. (Optimality) Consider the control affine system (90). Let S  be a target manifold, 

possibly noncompact. Given the infinite horizon optimality criterion 

 
0

0

( , ) ( , )J x u x u dt

∞

= ∫ L , (91) 

if there exist functions )(xV , )(xφ , and class K  functions γα ,  satisfying the following 

conditions 

)),(())(,()(

0)(

)),(()(

0)(

SxdxxfxV

Sxx

SxdxV

SxxV

γφ

φ

α

−≤∇

∈⇐=

≥

∈⇔=

 

( , ( )) 0

( , ) 0

H x x

H x u

φ =

≥
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with     ( , ) ( , ) ( ) ( , )T
H x u x u V x f x u= + ∇L  

then the feedback control ( )u xφ=  is optimal with respect to the performance index (91) and 

asymptotically stabilizing with respect to the target set S . Furthermore the optimal value of the 

performance index is 

 ))0(())(,( 0 xVxxJ =φ . ■ 

Conditions 1, 2 and 4 show that ( )V x  is a control Lyapunov function for the closed loop system 

guaranteeing asymptotic stability of the set S , by Theorem 4.1. If S  is taken as a point, i.e. a 

compact manifold of dimension zero, then those conditions become the familiar conditions on 

the Lyapunov function stabilizing an equilibrium point  

(0) 0

( ) ( ) 0

(0) 0

V

V x x xα

φ

=

≥ ≠

=

   

( ) ( , ( )) 0T
V x f x xφ∇ < . 

4.3.2 Inverse Optimality 

If the feedback control ( )u xφ=  is asymptotically stabilizing, then there exists a 

Lyapunov function ( )V x  satisfying the conditions of Lemma 4.1 by the inverse Lyapunov 

theorems 41,42.  In inverse optimality settings an asymptotically stabilizing control law ( )u xφ=  

is given. Then the performance integrand ( , )x uL  and Lyapunov function )(xV  are to be 

determined. In this work we are concerned with nonnegative performance index integrands, so 

this is to be contrasted with the more general inverse optimality where the performance 

integrand need not be nonnegative, as long as it guarantees a stabilizing control. That the 

performance integrand must be positive (semi-) definite imposes constraints on ( )V x . 
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Lemma 4.2a. (Inverse optimality) Consider the control affine system (1). Let )(xu φ=  be a 

stabilizing control, with respect to a manifold S . If there exist scalar functions )(xV  and )(1 xL  

satisfying the following conditions 

1

( ) 0

( ) ( ( , ))

( ) ( ( , ))

V x x S

V x d x S

L x d x S

α

γ

= ⇔ ∈

≥

≥

 

 1

1

1
( ) ( ) ( ) ( ) ( ) ( ) ( ) 0

4

T T T
L x V x f x V x g x R g x V x

−+ ∇ − ∇ ∇ =  (92) 

11
( ) ( ) ( )

2

T
x R g x V xϕ −= − ∇  

then )(xu φ=  is optimal with respect to the performance index with the integrand 

1( , ) ( )
T

x u L x u Ru= +L . Moreover the optimal value of the performance criterion equals 

0 0( , ( )) ( )J x x V xφ = . 

Proof: Assume one has an optimal control problem (90), (91) with the optimality performance 

integrand in (91) 
1( , ) ( ) T

x u L x u Ru= +L . Then Lemma 4.1 states the solution of optimal problem 

can be obtained by forming the Hamiltonian 

1( , ) ( ) ( ) ( ( ) ( ) )
T T

H x u L x u Ru V x f x g x u= + + ∇ + . 

This gives the optimal control in form of  

( , ) 2 ( ) ( ) 0T T
H x u u R V x g x

u

∂
= + ∇ =

∂
, 

11
( ) ( ) ( )

2

T
u x R g x V xφ −= = − ∇

 

This feedback control vanishes on the set S  since the gradient ( )V x∇  equals zero there. The 

Hamiltonian evaluated at this optimal control equals zero since  

1

1

1
( , ( )) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0

4

T T T
H x x L x V x f x V x g x R g x V xφ −= + ∇ − ∇ ∇ = . 
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This Hamiltonian can then be concisely written in quadratic form 

1
1

1

1

4

1

2

( , )

1

4

( ) ( ) 0.

T T

T

T

T T T

L V gR g V

T T T T

Ru
R

T

H x u L u Ru V f V gu

u Ru V gR g V V gu

u R u

φ
φ φ

φ φ

−= − + ∇ ∇

−

= −
=

= + + ∇ + ∇

= + ∇ ∇ + ∇

= − − ≥

��

����
��������

 

The value of the performance criterion then follows as 

0 0 0

0

0 0 00

0 0

( , ) ( ) ( , ) ( , )

( , ) ( ) ( ( )) ( , )

T
J x u dt V x f x u dt H x u dt

dV
dt H x u dt V x V x t H x u dt

dt

∞ ∞ ∞

∞ ∞ ∞

→

≥ ≥

= = − ∇ +

= − + = − → ∞ +

∫ ∫ ∫

∫ ∫ ∫������
���� ����

L

. 

The optimum is reached precisely at ( )u xφ= , for which the integral on the right side vanishes, 

and by asymptotic stability assumption ( ( )) 0V x t → , thus the optimal value of the performance 

criterion equals 
*

0 0 0
( ) ( , ( )) ( )J x J x x V xφ= = . ■ 

That this optimal feedback control ( )u xφ=  is stabilizing follows also from the 

Lyapunov equation 

1

1 1

1

1

1 1

1
( )

2

1 1

4 2

1
( ) ( ) ( ( , ))

4

T T T T T

T T T T

T T

V x V f V gu V f V gR g V

L V gR g V V gR g V

L x V gR g V L x d x Sγ

−

− −

−

= ∇ + ∇ = ∇ − ∇ ∇

= − + ∇ ∇ − ∇ ∇

= − − ∇ ∇ ≤ − ≤ −

�

 

By the assumptions of Lemma 4.2a the Lyapunov function ( )V x  satisfies all the conditions of 

the Theorem 4.1 for partial stability.  

In the linear quadratic case, i.e. BuAxx +=� , QxxL
T=1

, PxxxV T=)( , the Hamilton 

Jacobi Bellman equation (HJB) (3) becomes the Algebraic Riccati equation (ARE) 

 01 =−++ −
PBPBRPAPAQ

TT . (93) 
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The next more general result allows state-control cross-weighting terms in the 

performance integrand L . This result is used in the following chapter. 

Lemma 4.2b (Inverse optimality with cross weighting terms) Consider the control affine system 

(1). Let )(xu φ=  be a stabilizing control, with respect to a manifold S . If there exist scalar 

functions ( )V x  and 
1 2( ), ( )L x L x  satisfying the following conditions 

2

( ) 0

( ) ( ( , ))

( ) 0

V x x S

V x d x S

L x x S

α

= ⇔ ∈

≥

= ⇐ ∈

 

1

1 2 2

1
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0

4

T T TT
L x V x f x L x V x g x R L x g x V x

−
+ ∇ − + ∇ + ∇ =        

1

2

1
( ) ( ( ) ( ) ( ))

2

T T
x R L x g x V xφ −= − + ∇

 

1 2
( ) ( ) ( ( , ))

T
L x L x R d x Sφ φ φ γ+ + ≥  

then )(xu φ=  is optimal with respect to the performance index with the integrand 

1 2
( , ) ( ) ( )

T
x u L x L x u u Ru= + +L .  Moreover, the optimal value of the performance criterion 

equals 
0 0( , ( )) ( )J x x V xφ = . 

Proof: Assume one has an optimal control problem (90), (91) with the optimality performance 

integrand in (91) 
1 2

( , ) ( ) ( )
T

x u L x L x u u Ru= + +L . Then Lemma 4.1 states the solution of optimal 

problem can be obtained by forming the Hamiltonian 

1 2( , ) ( ) ( ) ( ) ( ( ) ( ) )
T T

H x u L x L x u u Ru V x f x g x u= + + + ∇ + . 

This gives the optimal control in form of  

2( , ) 2 ( ) ( ) ( ) 0T TH x u u R L x V x g x
u

∂
= + + ∇ =

∂  

1

2

1
( ) ( ( ) ( ) ( ))

2

T Tu x R L x g x V xφ −= = − + ∇  
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This feedback control vanishes on the set S  since the gradient ( )V x∇  and 2
( )L x  equal zero 

there. The Hamiltonian evaluated at this optimal control equals zero since 

1

1 2 2

1 1

2 2

1

2

1 1

1 2 2 2

1
( , ( )) ( ) ( ) ( ( ) ( ) ( ))

2

1 1
( ( ) ( ) ( )) ( ( ) ( ) ( ))

2 2

1
( ) ( ) ( ) ( ) ( ( ) ( ) ( ))

2

1 1

2 2

T T

T

T T T T

T T T T

T T T

H x x L x L x R L x g x V x

R L x g x V x R R L x g x V x

V x f x V x g x R L x g x V x

L V f L R L L R g

φ
−

− −

−

− −

= + − + ∇

+ − + ∇ − + ∇

+∇ + ∇ − + ∇

= + ∇ − − ∇
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2 2

1 1 1 1

2 2

1 1 1

1 2 2 2

1

1

2 2

1

4

1 1 1 1

4 2 2 2

1 1 1

4 2 4

1
0

4

T

T T T T T T T

T T T T T

T T TT

V L R L

V gR g V L R g V V gR L V gR g V

L V f L R L L R g V V gR g V

L V f V g g VL R L

−

− − − −

− − −

−

+

+ ∇ ∇ + ∇ − ∇ − ∇ ∇

= + ∇ − − ∇ − ∇ ∇
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This Hamiltonian can then be concisely written in quadratic form 

1 1 1
1 2 2 2

1 2

1 1 1

4 4 2

1 1 1

2 2 2

2

2
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1 1 1

4 4 2
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T T T T

T

T

T

T T

L V gR g V L R L L R g V

T T T T T

R

T T
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H x u L L u u Ru

V f V gu
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φ
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The optimal value of the performance criterion then follow as in Lemma 4.2a. ■ 

That this optimal feedback control ( )u xφ=  is stabilizing follows also from the Lyapunov 

equation 
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1

2

1 1 1

1 2 2 2

1 1

2

1
( ) ( )

2

1 1 1

4 2 4

1 1

2 2

T T T T T T

T T T T

T T T T

V x V f V gu V f V gR L g V

L L R L L R g V V gR g V

V gR g V V gR L

−

− − −

− −

= ∇ + ∇ = ∇ − ∇ + ∇

= − + + ∇ + ∇ ∇

− ∇ ∇ − ∇

�

 
1 1

1 2 2

1 2

1 1
( )

4 4

( ) ( ) ( ( , ))

T T T

T

L x V gR g V L R L

L x L x R d x Sφ φ φ γ

− −
= − − ∇ ∇ +

= − − − ≤ −

 

By the assumptions of Lemma 4.2b the Lyapunov function ( )V x  satisfies all the conditions of 

the Theorem 4.1 for partial stability. 

4.4 Optimal Cooperative Control for Quadratic Performance Index and Single-integrator Agent 

Dynamics 

This section considers inverse optimality of consensus protocols for the leaderless and 

pinning control cases, 3,4,8. We call these respectively the cooperative regulator and 

cooperative tracker problem. This section considers only single integrator dynamics 

 
i i

x u= ∈� � , (94) 

or in global form 

 x u=� , (95) 

where [ ]TNxxx …1=  and [ ]
1

T

N
u u u= … .  More general dynamics are considered in 

the next section. 

4.4.1 Optimal Cooperative Regulator 

In the leaderless consensus or cooperative regulator problem, 32, where there are N  

agents with states 
i

x ∈� , 1..i N= , it is desired for all agents to achieve the same state, that 

is ( ) ( ) 0
i j

x t x t− →  as t →∞, ( , )i j∀ . Then the consensus manifold, : (1)S span= , where 
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[ ]1 1 1 1
T N

= ∈� � , is noncompact. Therefore to apply inverse optimality to the cooperative 

regulator problem, 32, one needs the partial stability results of Theorem 4.1. 

Define the local neighborhood error as 

 ( )
i ij i j

j

e x xη = −∑ . (96) 

The overall local neighborhood error vector [ ]1

T

Ne η η= …  is equal to e Lx= . Then a local 

voting protocol that guarantees consensus is given as 

i i
u η= − , 

1, or in global form  

 u Lx= − , (97) 

which gives the global closed loop system  

 x Lx= −� . (98) 

Lemma 4.3. If the graph has a spanning tree then 0 is a simple eigenvalue of the graph 

Laplacian matrix. Furthermore the control law u Lx=−  solves the cooperative regulator problem, 

1, 5, for the system (95). ■ 

If the condition of Lemma 4.3 is satisfied then the measure of the distance from the consensus 

manifold is given by any norm of the local neighborhood disagreement vector e Lx= . 

The following theorem states sufficient conditions for optimality of a distributed control 

law.  This shows when the distributed control (97) is globally optimal on the graph. 

Theorem 4.2.  Let the system be given as (95), then for some 0TR R= >  the control u Lx= −  is 

optimal with respect to the performance index  

 

0

0 0

( , ) ( ) ( )
T T T T T

J x u x L RLx u Ru dt e Re u Ru dt

∞ ∞

= + = +∫ ∫
, (99) 
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and is stabilizing to a manifold which is the null space of L  if there exists a positive semidefinite 

matrix 0TP P= ≥  satisfying 

 P RL= . (100) 

Proof: First note that since R  is nonsingular the null space of P  equals that of L . The 

Lyapunov function ( ) T
V x x Px=  equals zero on the null space of P  and is greater than zero 

elsewhere since 0P ≥ . If one introduces the orthogonal complement of the null space of P  

one has 
2

0min( ) ( )
T

V x x Px P yσ >= ≥  where 0x x y= + , 
0 ker , kerx P y P

⊥∈ ∈  . Since y  is a 

measure of the distance ( ,ker )d x P  the Lyapunov function is found to satisfy the conditions of 

Lemma 4.2. 

The part of the performance integrand 
2

1 0 min( ) ( )T T T TL x x Qx x L RLx L RL yσ >= = ≥  

satisfies the condition of Theorem 4.1. The Algebraic Riccati equation (93) given as 

1 0TL RL PR P−− =  

is satisfied by 
TP RL L R= = , and 

1u Lx R Px−= − = − . Therefore all the conditions of Lemma 

4.2 are satisfied by this linear quadratic problem, which concludes the proof. ■ 

This result was first given in 36. 

Note that the time derivative of Lyapunov function ( ) T
V x x Px=  equals 

2

0min( ) ( ) 2 ( )T T T T T
V x x PL L P x x L RLx L RL yσ >= − + = − ≤ −� , 

guaranteeing asymptotic stability of the null space of L  or equivalently that of P . Also, since 

2

0max( ) ( )T
V x x Px P yσ >= ≤ , according to Theorem 4.1, the stability is uniform. If the graph 

has a spanning tree, by Lemma 4.3, zero is a simple eigenvalue of L  and thus the null space of 

P  is the consensus manifold (1)span . Then, consensus is reached. 
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Remark 4.3: The constraint RL P=  is a joint constraint on the graph topology and performance 

criterion. This can easily be met in the case of undirected graphs 
T

L L=  by selecting R I= , in 

which case P L=  and T
Q L L= . The value of the optimality criterion is then given as 

*

0 0 0 0( ) ( ) T
J x V x x Lx= =  which is the graph Laplacian potential, 32. Moreover 

0min ( )Lσ >
 in the 

proof equals 
2( )Lλ , the Fiedler eigenvalue of the graph. Also the constraint (100) is seen to be 

met by detail balanced graphs with 
1

R
−

= Λ  where 
1L P−Λ =  is a symmetric Laplacian matrix. 

For general digraphs, since P  is symmetric, the constraint (100) implies the condition  

 0
T

RL L R= ≥ . (101) 

More discussion about condition (100) is given in Section 4.7.  

4.4.2 Optimal Cooperative Tracker 

In case of the optimal cooperative tracker for system (95) it is desired for all agents to 

synchronize to the state 0x  of a leader node.  That is 
0

( ) ( ),
i

x t x t i→ ∀ .  It is assumed that the 

leader node has dynamics 
0 0x =� .  A distributed control law that accomplishes this is given by 

 0( ) ( )
i

i ij j i i i

j

u e x x g x x
∈

= − + −∑
N

 (102) 

with 0
i

g ≥  the pinning gains which are nonzero only for a small number of agents i. This 

corresponds in global form to the distributed tracker control law 

 ( )u L G δ= − + , (103) 

where 
01x xδ = −  is the global tracking disagreement vector and 

1( )NG diag g g= … .  This gives 

the global closed-loop dynamics  

 
( )x L G δ= − +� , (104) 

and the global closed-loop tracking disagreement dynamics system 

 ( )u L Gδ δ= = − +� . (105) 
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This must be asymptotically stabilized to the origin. That means that partial stability notions 

need not be used, and the sought solution P  of the Algebraic Riccati Equation (93) must be 

positive definite. 

Lemma 4.4. If the graph has a spanning tree, given that there exists at least one non zero 

pinning gain connecting into a root node, then L G+  is nonsingular, and the control 

( )u L G δ= − +  solves the cooperative tracking problem, 19, for the system (95). 

If the conditions of Lemma 4.4 are satisfied, then the measure of distance from the target state 

01 x  is given by any norm of the local neighborhood error vector ( )e L G δ= + . 

The next result shows when the distributed control (103) is globally optimal on the 

graph. 

Theorem 4.3. Let the error dynamics be given as (105), and the conditions of Lemma 4.4 be 

satisfied. Then for some 0TR R= >  the control ( )u L G δ= − +  is optimal with respect to the 

performance index  

 
0

0

0

( , ) ( ( ) ( ) )

( ) ,

T T T

T T

J u L G R L G u Ru dt

e Re u Ru dt

δ δ δ
∞

∞

= + + +

= +

∫

∫

 (106) 

and is stabilizing to the reference state 
01x  if there exists a positive definite matrix 0TP P= >  

satisfying 

 ( )P R L G= + . (107) 

Proof: The Lyapunov function ( ) 0T
V Pδ δ δ= > , and 

1( ) ( ) ( ) 0T T T
L Q L G R L Gδ δ δ δ δ= = + + >  

satisfy the conditions of Lemma 4.2. The Algebraic Riccati equation 

1( ) ( ) 0T
L G R L G PR P

−+ + − =  

is satisfied by P , and 1
( )u L G R Pδ δ−= − + = −  thus proving the theorem. ■ 



 

80 

 

 

Similar remarks about the constraint between R  and L G+  apply here as in Remark 4.3. Under 

conditions of Lemma 4.4 and (107) P  is nonsingular since both R  and L G+  are. For 

undirected graphs, one choice that satisfies (107) is R I= . Then P L G= + . A more general 

choice is any R  that commutes with L G+ . More discussion about condition (107) is relegated 

to Section 4.6. 

Remark 4.4: Both in the optimal cooperative regulator and tracker performance criteria, the 

expressions Lx  and ( )L G δ+ , respectively, play a prominent role. In either case one can 

concisely write the performance index as  

0

0

( , ) ( )
T T

J e u e Re u Ru dt

∞

= +∫ . 

4.5 Optimal Cooperative Control for Quadratic Performance Index and LinearTime-invariant 

Agent Dynamics 

This section considers inverse optimality of consensus protocols for the leaderless and 

pinning control cases for agents having states 
n

ix ∈�  with linear time-invariant dynamics 

n
i i ix Ax Bu= + ∈� � , 

or in global form 

 ( ) ( )
N N

x I A x I B u= ⊗ + ⊗�
 
 (108) 

4.5.1 Optimal Cooperative Regulator 

In the cooperative regulator problem it is desired for all agents to achieve the same 

state, that is ( ) ( ) 0
i j

x t x t− →  as t →∞, ( , )i j∀ .  Define the local neighborhood error as 

 ( )
i ij i j

j

e x xη = −∑ . (109) 

where n

iη ∈� .  The overall local neighborhood error vector 
1

T
T T

Ne η η =  …  is equal to  

( )
n

e L I x= ⊗ . 
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Then, a distributed control that guarantees consensus is given as  

2i i
Ku c η= − , 

for an appropriate coupling gain 0c >  and local feedback matrix 2
K , as shown in 13. In global 

form this is the local voting protocol 

 2
( )u c L K x= − ⊗ , (110) 

which gives the global closed loop system 

 
2( )

N
x I A cL BK x= ⊗ − ⊗�

 
 (111) 

The next result shows when the distributed control (110) is globally optimal on the 

graph. 

Theorem 4.4. Let the system be given as (108). Suppose there exist a positive semidefinite 

matrix 
1 1 0TP P= ≥ , and a positive definite matrix 

2 2 0TP P= >  satisfying 

 
1 1P cR L= , (112) 

 
1

2 2 2 2 2 2 0T T
A P P A Q P BR B P

−+ + − = ,
 

(113) 

for some 
2 2 1 1 2 20, 0, 0T T TQ Q R R R R= > = > = >   and a coupling gain 0c > .  Define the feedback 

gain matrix 
2K  as 

 1

2 2 2

T
K R B P

−= . (114) 

Then the control 
2u cL K x= − ⊗  is optimal with respect to the performance index  

 
0

2

2 1 2 2 1 2 2 1 2

0

( , )

( ) ( )( ) ( ) ( ) ,T T T T

J x u

x c L K R R L K cR L A P P A x u R R udt

∞

=

 ⊗ ⊗ ⊗ − ⊗ + + ⊗ ∫
 (115) 

and is stabilizing to the null space of n
L I⊗  for sufficiently high coupling gain c  satisfying (117). 

Proof: Form the matrix 
1 2P P P= ⊗ . Since 

2
P  is nonsingular the null space of P  equals the null 

space of 
1 nP I⊗  which by nonsingularity of 

1R  is the same as that of 
n

L I⊗ . Therefore by 
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positive semidefiniteness the Lyapunov function 
1 2( ) ( )T T

V x x Px x P P x= = ⊗  is zero on the null 

space of 
nL I⊗  and positive elsewhere. By the arguments similar to those presented in the 

proof of Theorem 4.2 this Lyapunov function satisfies the conditions of Theorem 4.1. 

Also,  

 2

1 2 1 2 2 1 2 2( ) ( ( ) ( )( ) ( ))T T T T
L x x Qx x c L K R R L K cR L A P P A x= = ⊗ ⊗ ⊗ − ⊗ +  (116) 

equals zero on the null space of 
nL I⊗ , and satisfies the condition of Lemma 4.2 if the value of 

the coupling gain is taken as 

 max 1 2 2 2 2

0min 1 2 2 2

( ( ))

( )

T

T T

R L Q K R K
c

L R L K R K

σ

σ >

⊗ −
>

⊗
. (117) 

Since 

2

2 1 2 2 1 2 2

2

1 2 2 2 1 2 2 2 2

( ) ( )( ) ( )

( ),

T T

T T T

Q c L K R R L K cR L A P P A

c L R L K R K cR L Q K R K

= ⊗ ⊗ ⊗ − ⊗ +

= ⊗ + ⊗ −
 

one has  

2

0min 1 2 2 2 max 1 2 2 2 2( ) ( ( )) 0 0T T T
c L R L K R K c R L Q K R K Qσ σ> ⊗ − ⊗ − > ⇒ ≥ , 

which gives the lower bound on the coupling gain c . The algebraic Riccati equation for system, 

(108),  

1( ) ( ) ( ) ( ) 0
N N N N

T T
I A P P I A Q P I B R I B P

−⊗ + ⊗ + − ⊗ ⊗ = , 

written as, 

1 1

1 2 1 2 1 2 1 2 1 2

1 1

1 2 2 1 1 1 2 2 2

( ) ( ) 0

( ) ( ) 0

T T

T T

P A P P P A Q P P B R R P B P

P A P P A Q PR P P BR B P

− −

− −

⊗ + ⊗ + − ⊗ ⊗ ⊗ =

⊗ + + − ⊗ =
 

is satisfied by the choice of 
1 2P P P= ⊗  since 

2

2 1 2 2 1 2 2

2 1

1 2 2 2 1 2 2 2 2

1 1 1

1 1 1 2 2 2 1 2 2 2 2

1 1

1 2 2 2 1 2 2 2 2

( ) ( )( ) ( )

( )

( )

( ),

T T

T T T

T T

T T

Q c L K R R L K cR L A P P A

c L R L K R K cR L Q P BR B P

P R P P BR B P P Q P BR B P

Q P BR B P P Q P BR B P

−

− − −

− −

= ⊗ ⊗ ⊗ − ⊗ +

= ⊗ + ⊗ −

= ⊗ + ⊗ −

= ⊗ + ⊗ −
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where 2 1

1 1 1 1 1

T
Q c L R L PR P

−= =  is introduced for notational simplicity. It follows by the conditions 

(112), (113) of the Theorem that 

1 1 1

1 2 2 2 2 2 2 1 1 1 1 2 2 2( ) ( ) ( ) 0T T T T
P A P P A Q P BR B P Q PR P P BR B P

− − −⊗ + + − + − ⊗ = . 

By conditions (112), (113) and (114) the control satisfies  

1

2

1 1 1 1

1 2 1 2 1 1 2 2

( )

( )( )( )

N

N

T

T T

u cL K x R I B Px

R R I B P P x R P R B P x

−

− − − −

= − ⊗ = − ⊗ =

− ⊗ ⊗ ⊗ = − ⊗
. 

Therefore, all the conditions of the Theorem 4.1 are satisfied, completing the proof.  ■ 

Note that the time derivative of the Lyapunov function ( ) T
V x x Px=  equals 

2

1 1

1 2 2 1 2

2

2 1 2 2

( ) 2 2 ( )

( ( ) 2 ( )( )( ) )

( ( ) ( )( ))

N

N N

T T

T T T

T T T

V x x Px x P I Ax cL BK x

x P P A A P P I B R R I B P x

x Q c L K R R L K x x Qx

− −

= = ⊗ − ⊗

= ⊗ + − ⊗ ⊗ ⊗

= − + ⊗ ⊗ ⊗ ≤ −

� �

 

implying asymptotic stability to the nullspace of Q, which equals the null space of 
nL I⊗  (c.f. 

(116)). 

If the conditions of Lemma 4.3 hold then ker ( 1 )L span= , and under the conditions of 

Theorem 4.4 consensus is reached. 

Remark 4.5: The graph topology constraint (112) is similar to the constraint (100), and 

comments similar to those stated in Remark 4.3 apply here as well. There exists a 
2 2 0T

P P= >  

satisfying (113) if ( , )A B  is stabilizable and 
2( , )A Q  is observable. The value of the coupling 

gain c must be sufficiently great to overpower the, generally, indefinite terms stemming from the 

drift dynamics as in condition (117). If the communication graph satisfies conditions of Lemma 

4.3 the null space of 
nL I⊗  equals the synchronization manifold : (1 )S span α= ⊗ , 

nα∈� , 

therefore synchronization is asymptotically achieved in the optimal way. 
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4.5.2 Optimal Cooperative Tracker 

In the pinning control or cooperative tracker problem, 8,9 it is desired for all the agents 

to reach the state 
0

x  of a leader or control node 0, that is 
0

( ) ( ) 0
i

x t x t− →  as t →∞, i∀ . It is 

assumed that 
0 0

x Ax=� .  

Consider the optimal cooperative tracker problem for the system (108) and define the 

local neighborhood tracking error as 

 0
( ) ( )

i ij i j i i

j

e x x g x xη = − + −∑  (118) 

where 
n

i
η ∈� . The pinning gains 0

i
g ≥  are nonzero only for a few nodes directly connected 

to a leader node. The overall local neighborhood tracking error is equal to ( ) ne L G I δ= + ⊗ , 

where the global disagreement error is 
01x xδ = − ⊗ . Then a distributed control that guarantees 

synchronization is given as 2i i
cKu η= − , for an appropriate coupling gain 0c >  and local 

feedback matrix 
2

K . In global form this is  

 
2( )u c L G K δ= − + ⊗ , (119) 

with 
1

( ... )
N

G diag g g=  the diagonal matrix of pinning gains.  This gives the global dynamics  

 2( )
N

x I Ax c L G BK δ= ⊗ − + ⊗� . (120) 

To achieve synchronization the global disagreement system 

 ( ) ( )
N N

I A I B uδ δ= ⊗ + ⊗� , (121) 

or, with control 
2( )u c L G K δ= − + ⊗ , 

 
2( ( ) )

N
I A c L G BKδ δ= ⊗ − + ⊗� , (122) 

must be asymptotically stabilized to the origin. This means that partial stability notions need not 

be used, and the sought solution P  of the Algebraic Riccati Equation (93) must be positive 
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definite. Stability of (122) to the origin is equivalent to asymptotic reference tracking and 

synchronization. This disagreement system can be stabilized using the distributed control law 

(119), 13.  

The next result shows when the distributed control (119) is globally optimal on the 

graph.  Conclusions of Lemma 4.2a allow for the following result stated as a theorem. 

Theorem 4.5. Let the error dynamics be given as (122), and conditions of Lemma 4.4 be 

satisfied. Suppose there exist a positive definite matrix 
1 1 0

T
P P= > , and a positive definite 

matrix 
2 2 0T

P P= >  satisfying 

 1 1( )P cR L G= + , (123) 

 1

2 2 2 2 2 2 0T T
A P P A Q P BR B P

−+ + − = , (124) 

for some 
2 2 1 1 2 20, 0, 0

T T T
Q Q R R R R= > = > = >   and a coupling gain 0c > . Define the feedback 

gain matrix 
2K  as 

 
1

2 2 2

T
K R B P

−= . (125) 

Then the control 
2( )u c L G K δ= − + ⊗  is optimal with respect to the performance index  

2

0 2 1 2 2 1 2 2 1 2

0

( , ) (( ) ) ( )(( ) ) ( ) ( ) ( )
T T T T

J u c L G K R R L G K cR L G A P P A u R R udtδ δ δ
∞

= + ⊗ ⊗ + ⊗ − + ⊗ + + ⊗  ∫ , (126) 

and is stabilizing to the origin of (121) for sufficiently high coupling gain c  satisfying (127). 

Proof: Form the matrix 
1 2P P P= ⊗ . Since 1

P  and 2
P  are nonsingular so is P . The 

Lyapunov function ( ) 0T
V Pδ δ δ= > , by the arguments similar to those presented in the proof of 

Theorem 4.3. This Lyapunov function satisfies the conditions of Theorem 4.1, specialized to a 

single equilibrium point. Also,  

1

2

2 1 2 2 1 2 2

( )

[ (( ) ) ( )(( ) ) ( ) ( )]

T

T T T

L Q

c L G K R R L G K cR L G A P P A

δ δ δ

δ δ

=

= + ⊗ ⊗ + ⊗ + + ⊗ +
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is positive definite and satisfies the condition of Theorem 4.1 if the value of the coupling gain is 

taken as 

 max 1 2 2 2 2

min 1 2 2 2

( ( ) ( ))

(( ) ( ) )

T

T T

R L G Q K R K
c

L G R L G K R K

σ

σ

+ ⊗ −
>

+ + ⊗
. (127) 

Since 

2

2 1 2 2 1 2 2

2

1 2 2 2 1 2 2 2 2

(( ) ) ( )(( ) ) ( ) ( )

( ) ( ) ( ) ( )

T T

T T T

Q c L G K R R L G K cR L G A P P A

c L G R L G K R K cR L G Q K R K

= + ⊗ ⊗ + ⊗ − + ⊗ +

= + + ⊗ + + ⊗ −
 

one has  

2

min 1 2 2 2 max 1 2 2 2 2(( ) ( ) ) ( ( ) ( )) 0 0
T T T

c L G R L G K R K c R L G Q K R K Qσ σ+ + ⊗ − + ⊗ − > ⇒ > , 

which gives the lower bound on the coupling gain c .  The Algebraic Riccati equation (93) for 

system (121), 

1( ) ( ) ( ) ( ) 0
N N N N

T T
I A P P I A Q P I B R I B P

−⊗ + ⊗ + − ⊗ ⊗ = ,
 

written as 

1 1

1 2 1 2 1 2 1 2 1 2

1 1

1 2 2 1 1 1 2 2 2

( ) ( ) 0

( ) ( ) 0,

T T

T T

P A P P P A Q P P B R R P B P

P A P P A Q PR P P BR B P

− −

− −

⊗ + ⊗ + − ⊗ ⊗ ⊗ =

⊗ + + − ⊗ =
 

is satisfied by the choice of 
1 2P P P= ⊗  since 

2

2 1 2 2 1 2 2

2 1

1 2 2 2 1 2 2 2 2

1 1 1

1 1 1 2 2 2 1 2 2 2 2

1 1

1 2 2 2 1 2 2 2 2

(( ) ) ( )(( ) ) ( ) ( )

( ) ( ) ( ) ( )

( )

( )

T T

T T T

T T

T T

Q c L G K R R L G K cR L G A P P A

c L G R L G K R K cR L G Q P BR B P

P R P P BR B P P Q P BR B P

Q P BR B P P Q P BR B P

−

− − −

− −

= + ⊗ ⊗ + ⊗ − + ⊗ +

= + + ⊗ + + ⊗ −

= ⊗ + ⊗ −

= ⊗ + ⊗ −

 

where 2 1

1 1 1 1 1( ) ( )T
Q c L G R L G PR P

−= + + =  is introduced for notational simplicity. It follows by the 

conditions (123), (124) of the theorem that 

1 1 1

1 2 2 2 2 2 2 1 1 1 1 2 2 2( ) ( ) ( ) 0
T T T T

P A P P A Q P BR B P Q P R P P BR B P
− − −⊗ + + − + − ⊗ =  

By conditions (123), (124) and (125), the control u  satisfies  
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1

2

1 1 1 1

1 2 1 2 1 1 2 2

( ) ( )

( )( )( ) .

N

N

T

T T

u c L G K R I B P

R R I B P P R P R B P

δ δ

δ δ

−

− − − −

= − + ⊗ = − ⊗

= − ⊗ ⊗ ⊗ = − ⊗
 

Therefore, all the conditions of the Theorem 4.1 are satisfied, completing the proof.  ■ 

Note that the time derivative of the Lyapunov function ( ) TV Pδ δ δ=  equals 

2

1 1

1 2 2 1 2

2

2 1 2 2

( ) 2 2 ( ( ) )

( ( ) 2 ( )( )( ) )

( (( ) ) ( )(( ) )) 0,

N

N N

T T

T T T

T T T

V P P I A c L G BK

P P A A P P I B R R I B P

Q c L G K R R L G K Q

δ δ δ δ δ

δ δ

δ δ δ δ

− −

= = ⊗ − + ⊗

= ⊗ + − ⊗ ⊗ ⊗

= − + + ⊗ ⊗ + ⊗ ≤ − <

��

 

implying asymptotic stability of (122) to the origin.  

Remark 4.6: The graph topology constraint (123) is similar to the constraint (107), and 

comments similar to those stated there apply here as well. This constraint is further discussed in 

Section 4.6. There always exists a 
2 2

0
T

P P= >  satisfying (124) if ( , )A B  is stabilizable and 

2
( , )A Q  observable. The value of the coupling gain c must be sufficiently great to overpower 

the, generally, indefinite terms stemming from the drift dynamics 
i

Ax , as in condition (127). 

4.6 Constraints on Graph Topology 

In this section we introduce a new class of digraphs which, to our knowledge, has not 

yet appeared in the cooperative control literature.  This class of digraphs admits a distributed 

solution to an appropriately defined global optimal control problem.   

The essential conditions for global optimality of the distributed control (97) or (103) for 

the cooperative regulator and the cooperative tracker, respectively, are respectively (100) and 

(107).  Both of these have the same form involving either the Laplacian matrix, L , or the pinned 

graph Laplacian, L G+ . 

This section investigates classes of graphs that satisfy those conditions. Generally one 

can express these conditions as  

 RL P= , (128) 
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where 0TR R= > , L  is a singular (i.e. the graph Laplacian) or nonsingular (i.e. the pinned 

graph Laplacian) M-matrix, and 0TP P= ≥ , a singular or nonsingular positive definite matrix.  

Equivalently  

 0TRL L R= ≥  (129) 

For the following classes of graph topologies one can satisfy this condition. 

4.6.1 Undirected Graphs 

Given that the graph is undirected, then L  is symmetric, i.e. T
L L=  so the condition 

(128) becomes a commutativity requirement  

 
TRL L R LR= = . (130) 

See Remark 4.3, where it is shown that the choice R I=  always satisfies this condition for 

undirected graphs.  Then P L= . 

More generally, condition (130) is satisfied by symmetric matrices R  and L  if and only 

if R  and L  have all eigenvectors in common. Since L  is symmetric it has a basis of 

orthogonal eigenvectors, and one can construct R  satisfying (130) as follows. Let T  be an 

orthogonal matrix whose columns are eigenvectors of L , then 
T

L T T= Λ  with Λ  a diagonal 

matrix of real eigenvalues. Then for any positive definite diagonal matrix Θ  one has that 

0TR T T= Θ >  commutes with L  and satisfies the commutativity requirement (130).  Note that 

the R  so constructed depends on all the eigenvectors of the Laplacian L  in (128) (i.e. the 

graph Laplacian or the pinned Laplacian as appropriate). 

4.6.2 Detailed Balanced Graphs 

Given a detail balanced graph (cf. Section 2.2), its Laplacian matrix is symmetrizble, 

that is there exists a positive diagonal matrix 0Λ >  such that L P= Λ  where P  a symmetric 

graph Laplacian matrix. Then, condition (128) holds with 
1

R
−= Λ . Recall that for detailed 



 

89 

 

 

balanced graphs, the diagonal elements of R  in the leaderless case are then the elements of 

the left eigenvector of the Laplacian for the eigenvalue of zero. 

4.6.3 Directed Graphs with Simple Laplacian 

In this section we introduce a new class of digraphs which, to our knowledge, has not 

yet appeared in the cooperative control literature.  This class of digraphs admits a distributed 

solution to an appropriately defined global optimal control problem. 

Given a directed graph, let it be such that Laplacian matrix L  (either the graph 

Laplacian or the pinned graph Laplacian) in (128) is simple, i.e. there exists a basis of 

eigenvectors so that its Jordan form is diagonal. Then the Laplacian matrix is diagonalizable, so 

there exists an invertible matrix T  such that 
1

TLT
− = Λ  is diagonal. Then one has that  

1 T T T T
TLT T L T

− −= Λ = Λ = , 

whence it follows that  

T T T
T TL L T T= . 

Therefore, 0T TR T T R= = >  satisfies the condition (129), 45. Note that this R  depends on all 

the eigenvectors of the Laplacian L  in (128).  This discussion motivates the following theorem. 

Theorem 4.6. Let L  be a Laplacian matrix (generally not symmetric).  Then there exists a 

positive definite symmetric matrix 0
T

R R= >  such that RL P=  is a symmetric positive 

semidefinite matrix if and only if L  is simple, i.e. there exists a basis of eigenvectors of L . 

Proof: (i)  Let L  be simple.  Then it is diagonalizable, i.e. there exists a transformation matrix T  

such that 
1TLT− = Λ , where Λ  is a diagonal matrix of eigenvalues of L . Then  

1 T T T TTLT T L T− −= Λ = Λ = , 

implying 1 ,− − =T T T
T TLT T L  which implies that

 
( ) ( )

T T T
T T L L T T= . Let 

T
R T T= . Obviously, 

0
T

R R= >  and 0T TP RL T TL T T= = = Λ ≥  since 0Λ ≥  ( x∀  0   T T T T
x Px x T Tx y y y≤ = Λ = Λ ∀ ), 

45. 
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(ii) Let L  be a Laplacian matrix.  Suppose there exists 0TR R= >  satisfying the 

condition RL P=  is a symmetric positive semidefinite matrix.  Then one needs to show that L  

is simple.  To show this, we will prove the contrapositive by contradiction.  So we suppose the 

negation of the contrapositive.  That is, suppose L  is not simple but that there exists 

0
T

R R= >  satisfying the condition RL P=  is a symmetric positive semidefinite matrix.  

Since L  is not simple, there exists a coordinate transformation bringing L  to a Jordan 

canonical form 

1
T LT J

−
= , 

with nonzero superdiagonal (otherwise L  would be simple). Then one has 

1 T T T T
RL RTJT P P T J T R

− −
= = = = . But then ( ) ( )

T T T
T RT J J T RT= . Therefore there exists 

2 2
0

T T
R T RT R= = >  such that 

2 2

T
R J J R= . Without loss of generality let us assume that the 

first Jordan block is not simple, and with a slight abuse of notation 2,11
R  will refer to the 

corresponding block in 
2

R .Then one has that 2,11 2,11 2,11 2,11
( ) ( )

T T
R I E I E R R E E Rλ λ+ = + ⇒ = , where 

E  is a nilpotent matrix having ones on the superdiagonal. This identity means that the first row 

and first column of 
2,11

R  are zero, except for the last entry. However then 2
R  cannot be 

positive definite, since there are vanishing principal minors (Sylvester's test). ■ 

Since the simplicity of the Laplacian matrix is a necessary and sufficient condition for 

the topology constraint (128) to be satisfied, one can state the following theorem relating the 

graph Laplacian matrix (unpinned or pinned) to the optimality of decentralized cooperative 

control as given in previous sections of this chapter. 

Theorem 4.7.  The distributed control in cooperative regulator and tracker problems for single 

integrator agent dynamics (95) is optimal under optimality criterion 
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0

0

( , ) ( )
T T

J e u e Re u Ru dt

∞

= +∫ ,

 

for some 0R > , with pertaining error functions, if and only if the Laplacian matrix in (128) is 

simple. 

Proof: If the control law is optimal then the constraint (128) on , ,P R L  is satisfied, hence, by 

Theorem 4.6, L  is simple. If, conversely L  is simple, then there is a quadratic performance 

criterion with respect to which the cooperative distributed control given by L  is inversely 

optimal. ■ 

Remark 4.7: These results place conditions on the graph topology that guarantee that the 

cooperative stabilizing distributed control is optimal with respect to a structured performance 

criterion, which in turn guarantees asymptotic consensus or synchronization. The following 

section will allow for a more general form of performance criterion which yields optimal control 

for general directed graphs. 

4.7 Conclusion 

This chapter presents inverse optimality of consensus and pinning control algorithms in 

cases of single-integrator and general linear time-invariant agent dynamics. A partial stability 

motivated result on stability of noncompact invariant manifolds is used in optimality and inverse 

optimality conditions to guarantee optimality of cooperative control achieving asymptotic 

consensus or synchronization under a positive semidefinite performance integrand. The 

optimality requirement imposes constraint between communication graph topology and the 

structure of performance integrand. 
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CHAPTER 5 

OPTIMAL COOPERATIVE CONTROL FOR GENERAL DIGRAPHS: PERFORMANCE INDEX 

WITH CROSS-WEIGHTING TERMS 

5.1 Introduction 

When dealing with general directed graphs the constraint (100) on the graph Laplacian 

L , or (107) on the pinned graph Laplacian L G+ , is too restrictive.  These constraints only hold 

for a special class of digraphs whose Laplacian matrix (or pinned Laplacian L G+ ) has 

diagonal Jordan form.  This constraint can be relaxed, and optimal cooperative controllers 

developed for arbitrary digraphs, by allowing state-control cross-weighting terms in the 

performance criterion, 44. Then, requiring that the performance criterion be positive (semi) 

definite leads to conditions on kernel matrix P  in ( )
T

V x x Px= , or equivalently on the control 

Lyapunov function, which should be satisfied for the existence of distributed globally optimal 

control law.  This condition is milder than the conditions (100), (107) where no cross-weighting 

term is allowed in the performance index. 

In the following subsections we treat the optimal cooperative regulator and tracker for 

single-integrator dynamics, including a state-control cross weighting term in the performance 

index.  In Section 5.4. we discuss the resulting constraint conditions on the graph topology that 

must be satisfied by the graph Laplacian for existence of an optimal controller of distributed 

form.  It is shown that, unlike conditions (100) and (107), these new conditions can be satisfied 

for arbitrary directed graphs, containing a spanning tree, by proper selection of the performance 

index weighting matrices. 

Sections 5.5 and 5.6 treat the optimal cooperative regulator and tracker for linear time-

invariant agent dynamics.  Again, it is shown that, if cross-weighting terms are allowed in the 

performance index, then the conditions required for existence of a distributed optimal controller 

can be satisfied on arbitrary digraphs. Conclusion is provided in section 5.7. 
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5.2 Optimal Cooperative Regulator- Single-integrator Agent Dynamics 

This section considers the cooperative regulator problem for single-integrator agent 

dynamics i i
x u=�  or in global form (95).  Since the consensus manifold is noncompact, it is 

necessary to use the partial stability results in Theorem 4.1 

Using the distributed control protocol Lxu −=  gives the closed-loop system 

x Lx=−� . 

The conclusions of Lemma 4.2b allow for the following result. 

Theorem 5.1. Let the system be given as (95). Then for some 0
T

R R= >  the control 

( )u x Lxφ= = −  is optimal with respect to the performance index 0

0

( , ) ( , )J x u x u dt

∞

= ∫L  with 

the performance integrand 

( , ) 2 ( ) 0
T T T T T

x u x L RLx u Ru x L R P u= + + − ≥L , 

and is stabilizing to a manifold which is the null space of of L  if there exists a positive 

semidefinite matrix 0
T

P P= ≥ , having the same kernel as L , satisfying the inequality 

condition 

 
1

0
T

L P PL PR P
−

+ − ≥ . (131) 

Proof:  Let ( )
T

V x x Px=  be a partial stability Lyapunov function. Then  

 
21 1

0 min
( ) 2 ( ) ( )

T T T T
V x x PLx x PL L P x x PR Px PR P yσ

− −

>
= − = − + ≤ − ≤�   

where 
0

x x y= + , kery P
⊥

∈ . Thus the control is stabilizing to the null space of P . Also the 

performance integrand equals 

 ( , )

T T

T T
xL RL L R P

x u x u
uRL P R

−
=

−

   
      

  
L . 
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One has ( , ) 0x u ≥L  if 0R >  and the Schur complement inequality (131) holds. The control is 

optimal since 

1

2

1 1

1
( ) ( )

2

1 1
(2( ) 2 ) (2 )

2 2

T T
u x R L g V

R RL P x Px R RL x

Lx

φ
−

− −

= = − + ∇

= − − + = −

= − .

 

The performance integrand evaluated at the optimal control satisfies  

1

21

min

( , ( )) 2 ( )

2 2 2

( )

( )

T T T T T

T T T T T

T T T

x x x L RLx x LRLx x L R P Lx

x L RLx x L RLx x PLx

x PL L P x x PR Px

PR P y

φ

σ

−

−

= + − −

= − +

= + ≥

≥

L

             

             

             

 

Hence, all the conditions of Lemma 4.2b of Ch. 4 are satisfied, which concludes the proof. ■ 

If the graph has a spanning tree, then by Lemma 4.3, zero is a simple eigenvalue of L and thus 

the null space of L is the consensus manifold (1)span .  Then, consensus is reached by all 

agents. 

Note that if the constraint P RL=  in (100) is met as in previous sections, the cross-

weighting term in ( , )x uL  in the proof vanishes, so that and the performance criterion is 

quadratic and therefore ( , ) 0x u ≥L .  That is, substituting P RL=  into (131) shows that (131) is 

satisfied. 

Remark 5.1: The kernels of P  and L  in (131) need not be the same, but under condition (131) 

their relation is given by the following result. 

Proposition 5.1. Let there exist a symmetric positive semidefinite P  satisfying (131) for some 

 L , and 0R >  then ker kerL P⊆ . 
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The proof of this proposition uses a result on symmetric positive semidefinite matrices 

summarized in the following lemma, which is not difficult to prove. 

Lemma 5.1. Given a positive semidefinite symmetric matrix 0Q ≥  the kernel of Q  equals the 

set where the pertaining quadratic form satisfies 0
T

x Qx = .  

Note that this result, albeit straightforward, is not trivial since a nonsymmetric matrix Q  

generally does not share this property. 

Now, to prove the proposition, notice that under (131) 
1T

L P PL PR P
−

+ −  is a 

symmetric positive semidefinite matrix. Consider the quadratic form  

1
) 0( TT

x L P PL PR P x
−

+ − ≥ . 

Assume kerx L∈  but kerx P∉ , then for such an x   

1 1 1

0

0 ( ) ( ) 0
TT T T T T

x L Px x PLx x PR Px x PR Px Px R Px
− − −

=

+ − ≥ ⇒ − = − ≥������ . 

However, since 0R >  this forces 0Px = , whence it follows kerx P∈ , which is a contradiction. 

Therefore, one has ker kerx L x P∈ ⇒ ∈  meaning ker kerL P⊆ , which proves the 

proposition. ■ 

More discussion about the condition (131) is provided in Section 5.4. 

5.3 Optimal Cooperative Tracker- Single-integrator Agent Dynamics 

In case of the optimal cooperative tracker for the single-integrator agent dynamics 

system (95), one has the global disagreement error dynamics (105), which must be stabilized to 

the origin.  This means that partial stability notions need not be used, and the sought matrix P  

must be positive definite.  Therefore, for the optimal cooperative tracker problem the applied 

logic is the same, the only difference being that positive semidefiniteness is replaced by positive 

definiteness in the performance index and Lyapunov function. 
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Theorem 5.2.  Let the error dynamics be given as (105), and the conditions of Lemma 4.4 be 

satisfied. Then for some 0TR R= >  the control ( ) ( )u L Gφ δ δ= = − +  is optimal with respect to 

the performance index  

0

0

( , ) ( , )J u u dtδ δ
∞

= ∫L  

with the performance integrand 

( , ) ) ( ) 2 (( ) ) 0(
T T T T T

u L G R L G u Ru L G R P uδ δ δ δ= + + + + + − >L , 

and is stabilizing the origin for (105) if there exists a positive definite matrix 0
T

P P= ≥ , 

satisfying the following inequality 

 
1

( ) ( ) 0
T

L G P P L G PR P
−

+ + + − >  (132) 

Proof:  Let ( )
T

V Pδ δ δ=  be a Lyapunov function. Then  

1
( ) 2 ( ) ( ( ) ( ) ) 0

T T T T
V P L G P L G L G P PR Pδ δ δ δ δ δ δ

−
= − + = − + + + < − <� . 

Thus the control is stabilizing to the origin.  Also the performance integrand equals 

[ ]
( ) ( ) ( )

0,
( )

( , )

T T

T T
L G R L G L G R P

u
uR L G P R

u
δ

δδ
+ + + −

>
+ −

=
   
     

L

 

and ( , ) 0x u >L  if 0R >  and inequality (132) holds (by Schur complement).  The control is 

optimal since 

1

2

1 1

1
( ) ( )

2

1 1
(2( ( ) ) 2 ) (2 ( ))

2 2

( ) .

T T
u R L g V

R R L G P P R R L G

L G

φ δ

δ δ δ

δ

−

− −

= = − + ∇

= − + − + = − +

= − +

 

The performance integrand evaluated at the optimal control satisfies  
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1

( , ( )) ) ( ) ) ( ) 2 (( ) )( )

2 ( ) ( ) 2 ( ) ( ) 2 ( )

( ( ) ( ) ) 0.

( (T T T T T T

T T T T T

T T T

L G R L G L G R L G L G R P L G

x L G R L G L G R L G P L G

P L G L G P PR P

δ φ δ δ δ δ δ δ δ

δ δ δ δ δ δ

δ δ δ δ
−

= + + + + + − + − +

= + + − + + + +

= + + + > >

L

             

             

 Hence all the conditions of Lemma 4.2b of Ch. 4 are satisfied, which concludes the proof. ■ 

Note that if the constraint ( )P R L G= +  in (107) is met as in previous sections, the 

cross-weighting term in ( , )uδL  in the proof vanishes, so that the performance criterion is 

quadratic and therefore ( , ) 0x u >L .  That is, ( )P R L G= +  guarantees that (132) is satisfied.  

More discussion about the condition (132) is provided in Section 5.4. 

5.4 Condition for Existence of Distributed Optimal Control With Cross-Weighting Terms in the 

Performance Index 

Conditions (131) and (132), which allow state-control cross-weighting terms in the 

performance index, express joint constraints on the graph matrices L , or L G+ , and the choice 

of matrix R  that are less strict than the conditions (100) and (107), respectively, that guarantee 

the existence of an optimal controller of distributed form when no cross-weighting term is 

allowed. In particular, note that if condition (100) or (107) hold then, respectively, (131) and 

(132) hold as well, and the cross-weighting terms equal zero. The additional freedom stemming 

from allowing the presence of cross-weighting terms in the performance integrand allows for 

more general graph topologies excluded under the Riccati conditions (100) or (107) to be 

inverse optimal.  

Conditions (100) and (107) are only satisfied by digraphs that have a simple Jordan 

form for L  or L G+ , respectively.  This includes undirected graphs and the detail balanced 

digraphs.  It is now shown that conditions (131) and (132) can be satisfied for arbitrary digraphs.  

For arbitrary digraphs, a matrix P  having the same kernel as L  and satisfying the 

optimal cooperative regulator condition (131) can be constructed as follows.  To find 
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0
T

P P= ≥  such that 
1

0
T

L P PL PR P
−

+ − ≥  and ker kerP L=  one can solve the equivalent 

inequality 

1T
L P PL PR P

−
− − ≤ − , 

by solving an intermediate Lyapunov equation 

1T
L P PL Q PR P

−
− − = − ≤ − , 

with 0
T

Q Q= ≥ , ker kerQ L= .  The solution P  to this Lyapunov equation exists since L−  

is stabilizing to its nullspace, and equals 

0

0
T

L L
P e Qe d

τ τ
τ

∞

− −
= ≥∫ . 

That 
T

P P=  follows from the construction, and if L  has a simple zero eigenvalue, which is 

necessary for consensus, ker ker kerP Q L= = . Since P  is bounded for any fixed Q , and the 

solution P  does not depend on R , choosing R  big enough, in the sense of any matrix norm, 

will make 
1

PR P Q
−

≤ . And such P  satisfies condition (131). 

A similar method can be used to construct, for any digraph, the required matrix P  for 

the optimal tracker condition (132). 

5.5 General Linear Time-invariant Systems- Cooperative Regulator 

This section deals with agents having states 
n

ix ∈�  with drift dynamics 

n

i i ix Ax Bu= + ∈� � , or in global form (108).  Since the synchronization manifold, null space of 

nL I⊗ ,  is noncompact, the partial stability Theorem 4.1 must be used. 

Theorem 5.3.  Let the system be given as (108).  Define the local feedback matrix to be 
2

K  

such that the cooperative feedback control 
2

u cL K x= − ⊗ , with a scalar coupling gain 0c > , 
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makes (108) asymptotically converge to the consensus manifold, i.e. achieve consensus. Then 

there exists a positive semidefinite matrix 0
T

P P= ≥ , satisfying 

 
2

2 2
( ) ( ) ( ) ( ) 0

T T

N N
c L K R L K P I A I A P⊗ ⊗ − ⊗ − ⊗ ≥  (133) 

 
1

2 2
( ( )) ( ( )) ( ) ( ) 0

T T

N N N N
P cL BK I A cL BK I A P P I B R I B P

−

⊗ − ⊗ + ⊗ − ⊗ − ⊗ ⊗ ≥  (134) 

for some 0
T

R R= > . And the control 
2

u cL K x= − ⊗  is optimal with respect to the 

performance index 0

0

( , ) ( , )J x u x u dt

∞

= ∫L  with the performance integrand 

2

2 2 2

( , )

( ) ( ) ( ) ( ) 2 ( ) ( ) 0,
T T T T T T

N N N

x u

x c L K R L K P I A I A P x u Ru x c L K R P I B u

=

⊗ ⊗ − ⊗ − ⊗ + + ⊗ − ⊗ ≥      

L

 

and is stabilizing to the null space of P  for sufficiently high coupling gain c . 

Proof: Since the cooperative feedback is assumed to make (108) synchronize the closed loop 

system matrix 2cl N
A I A cL BK= ⊗ − ⊗  defines a partially stable system with respect to the 

consensus manifold. This manifold equals the kernel of nL I⊗  if L  contains a spanning tree. 

Then for any positive semidefinite matrix 0
T

Q Q= ≥ , having the kernel equal to the consensus 

manifold, there exists a solution 0
T

P P= ≥  to the Lyapunov equation 

T

cl cl
PA A P Q+ = −  

0

0
T

cl AclA
P e Qe d

τ τ
τ

∞

= ≥∫  

with kernel equal to the consensus manifold.  
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The inequality (133) is satisfied for sufficiently high values of the coupling gain 0c > , and 

inequality (134) is satisfied via Lyapunov equation by choosing 0
T

R R= >  sufficiently big, in 

the sense of matrix norms, such that 
1

0 ( ) ( )
T

N N
P I B R I B P Q

−
≤ ⊗ ⊗ ≤ . 

Let ( )
T

V x x Px=  be a partial stability Lyapunov function. Then 

[ ]

[ ]
1

2

2 2

2 2

( ) 2 2 (( ) ( ) )

( ( ) ( ) ) ( ) ( )

( ) ( )

( ) ( ) 0

T T

N

T T T T T

N N

T T

N N

T T T

cl cl

T T

N N

V x x Px x P I A x c L BK x

x P I A I A P x cx P L BK x cx L BK Px

x P I A cL BK I A cL BK P x

x PA A P x x Qx

x P I B R I B Px
−

=

= = ⊗ − ⊗

= ⊗ + ⊗ − ⊗ − ⊗

= ⊗ − ⊗ + ⊗ − ⊗

+ = −

≤ − ⊗ ⊗ ≤

� �

 

The quadratic form 0
T

x Qx ≥  serves as a measure of distance from the consensus manifold. 

Thus the control is stabilizing to the consensus manifold, as assumed. Also the performance 

integrand equals 

[ ]
2

2 2 2

2

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

( , )

0

T T T

T T N N N

N

xc L K R L K P I A I A P c L K R P I B
x u

ucR L K I B P R

x u

⊗ ⊗ − ⊗ − ⊗ ⊗ − ⊗

⊗ − ⊗

=

≥
  
    

L

 

and ( , ) 0x u ≥L  if inequalities (133) and (134) hold (by Schur complement). The control is 

optimal since 

1

2

1

1

2

2 2

1
( ) ( )

2

1
(2( ( ) ( ) 2( )

2

1
(2 ( )) ( )

2

) )

T T

N N

T T

u x R L g V

R cR L K I B P x I B Px

R cR L K x c L K x

φ
−

−

−

= = − + ∇

= − ⊗ − ⊗ + ⊗

= − ⊗ = − ⊗

 

The performance integrand evaluated at the optimal control satisfies 
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[ ]

[ ]

2

2

2

2 2 2

2

2

2 2

2

( , ( )) ( ) ( ) ( ) ( )

( ( 2 ( ) ( ) ( )

( ) ( ) 2 ( )( )

( ) ( ) 2 ( )

( ) (

) )

T T T

T T T

T T T

T T T

T T

T

N N

N

N N N

N N

N

x x x c L K R L K P I A I A P x

x L K R L K cx c L K R P I B L K x

x P I A I A P x cx P I B L K x

x P I A I A P x cx P L BK x

x cL BK I A P P c

c x

φ

−

= ⊗ ⊗ − ⊗ − ⊗

+ ⊗ ⊗ ⊗ − ⊗ ⊗

= − ⊗ + ⊗ + ⊗ ⊗

= − ⊗ + ⊗ + ⊗

= ⊗ ⊗ +

−

  

  

L

[ ]

[ ]
2

1

)

( ) ( ) 0
T T T

cl

T T

cl

N

N N

L BK I A x

x A P PA x x Qx x P I B R I B Px
−

−

=

⊗ ⊗

− − = ≥ ⊗ ⊗ ≥
 

Hence all the conditions of Lemma 4.2b of Chapter 4 are satisfied, which concludes the proof. ■ 

Specifying the form of P  and R  as 
1 2

P P P= ⊗ ,
 
 

1 2
R R R= ⊗  and assuming further that 

1

2 2 2

T
K R B P

−
= , where 

2
P  is a solution of local Riccati equation 

1

2 2 2 2 2 2
0

T T
P A A P Q P BR B P

−
+ + − =  

as used in Theorems 4 and 5, 12,32 the inequality (134) becomes  

1 1

1 2 1 2 2 1 2 2 1 1 1 2 2 22
( ) 0

T T T T T
cPL P BK P P A A P cL P K B P PR P P BR B P

− −
⊗ − ⊗ + + ⊗ − ⊗ ≥ . 

Equivalently, since 

1

2 2 2 2 2 2 2 22 2
0

T T T T
P BK K B P P BR B P K R K

−
= = = ≥ , 

one has 

1

1 1 1 1 1 2 1 2 2
( ) ( ) 0

T T T
c PL L P PR P K R K P K R K Q

−
+ − ⊗ − ⊗ − ≥ . 

Note the similarity to condition (131) introduced in single integrator consensus problem 

Section 5.1. If condition (131) is satisfied then for sufficiently high value of the coupling gain c 

this constraint can be met. 

Clearly if Riccati conditions (112), (113) are satisfied then the cross-weighting term 

vanishes  

1

2 2( ) ( ) ( ) ( )
T T

N N
cR L K I B P c L K R I B P

−
⊗ = ⊗ ⇔ ⊗ = ⊗ . 
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One should also note that choosing 
1

2 2 2

T
K R B P

−
=  affords an infinite interval of positive values 

for coupling gain c  that achieve synchronization, 32, which allows one to find a sufficiently high 

value of c  to satisfy inequality (133) without worrying about loosing synchronization.  The same 

applies whenever one needs to choose c  to be, for any purpose, sufficiently big. 

If the communication graph is connected, then by Lemma 4.3 the null space of 
nL I⊗  

equals the synchronization manifold : (1 )S span α= ⊗ , nα∈� , therefore synchronization is 

asymptotically achieved in the optimal way. 

5.6 General Linear Time-invariant Systems- Cooperative Tracker 

If the goal is to synchronize dynamics (108) to the leader’s trajectory 
0 0

x Ax=� , i.e. 

solve the cooperative tracking problem, then one should use the global error system 

0
1x xδ = − ⊗ , with the same global error dynamics 

 ( ) ( )
N N

I A I B uδ δ= ⊗ + ⊗� . (135) 

Theorem 5.4. Let the system be given as (135). Define the local feedback matrix to be 2
K  such 

that the cooperative feedback control 
2

( )u c L G K δ= − + ⊗ , with a scalar coupling gain 0c > , 

makes (135) asymptotically converge to the origin. Then there exists a positive definite matrix 

0
T

P P= > , satisfying  

 
2

2 2
(( ) ) (( ) ) ( ) ( ) 0

T T

N N
c L G K R L G K P I A I A P+ ⊗ + ⊗ − ⊗ − ⊗ >

 (136) 

 
1

2 2( ( ) ( )) ( ( ) ( )) ( ) ( ) 0
T T

N N N N
P c L G BK I A c L G BK I A P P I B R I B P

−

+ ⊗ − ⊗ + + ⊗ − ⊗ − ⊗ ⊗ >  (137) 

for some 0
T

R R= > . And the control 
2

( )u c L G K δ= − + ⊗  is optimal with respect to the 

performance index 0

0

( , ) ( , )J u u dtδ δ
∞

= ∫L  with the performance integrand 
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2

2 2

2

( , ) (( ) ) (( ) ) ( ) ( )

2 (( ) ) ( ) 0

T T T T

T T

N N

N

u c L G K R L G K P I A I A P u Ru

c L G K R P I B u

δ δ

δ

δ= + ⊗ + ⊗ − ⊗ − ⊗ +

+ + ⊗ − ⊗ >

  

  

L

. 

Proof: Since the cooperative feedback is assumed to stabilize (135) to the origin the closed loop 

system matrix 2
( )

cl N
A I A c L G BK= ⊗ − + ⊗  defines a stable system. Then for any positive 

definite matrix 0
T

Q Q= > , there exists a solution 0
T

P P= >  to the Lyapunov equation  

T

cl cl
PA A P Q+ = −  

0

0
T

cl clA A
P e Qe d

τ τ
τ

∞

= >∫
 

The inequality (136) is satisfied for sufficiently high values of the coupling gain 0c > , and 

inequality (137) is satisfied via Lyapunov equation by choosing 0
T

R R= >  sufficiently big, in 

the sense of matrix norms, such that 
1

0 ( ) ( )
T

N N
P I B R I B P Q

−
≤ ⊗ ⊗ < . 

Let ( ) 0
T

V Pδ δ δ= >  be a Lyapunov function.  Then 

1

2

2 2

2 2

( ) 2 2 (( ) (( ) ) )

( ( ) ( ) ) (( ) ) (( ) )

( ( ( ) ) ( ( ) ) )

( ) ( ) ( ) 0.

T T

T T T T T

T T

T T T T T

cl cl

N

N N

N N

N N

V P P I A c L G BK

P I A I A P c P L G BK c L G BK P

P I A c L G BK I A c L G BK P

PA A P Q P I B R I B P

δ δ δ δ δ δ

δ δ δ δ δ δ

δ δ

δ δ δ δ δ δ
−

= = ⊗ − + ⊗

= ⊗ + ⊗ − + ⊗ − + ⊗

= ⊗ − + ⊗ + ⊗ − + ⊗

= + = − < − ⊗ ⊗ ≤

��

 Thus the control is stabilizing to the origin, as assumed. Also the performance integrand equals 

[ ]
2

2 2 2

2

(( ) ) (( ) ) ( ) ( ) (( ) ) ( )

(( ) ) ( )

0

( , )

T T T

T

T N N N

N

c L G K R L G K P I A I A P c L G K R P I B
u

ucR L G K I B P R

u
δ

δδ
+ ⊗ + ⊗ − ⊗ − ⊗ + ⊗ − ⊗

+ ⊗ − ⊗

>

=
  
    

L

 

and ( , ) 0uδ >L  if inequalities (136), (137) hold (by Schur complement).  The control is optimal 

since 
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1

2

1

1

2

2

2

1
( ) ( )

2

1
(2( (( ) ) ( ) ) 2( ) )

2

1
(2 (( ) ))

2

( )

T T

N N

T T

u R L g V

R cR L G K I B P I B P

R cR L G K

c L G K

φ δ

δ δ

δ

δ

−

−

−

= = − + ∇

= − + ⊗ − ⊗ + ⊗

= − + ⊗

= − + ⊗

 

The performance integrand evaluated at the optimal control satisfies  

[ ]

2 2

2 2 2 2

2 2

( , ( )) (( ) ) (( ) ) ( ) ( ) (( ) (( )

2 (( ) ) ( ) (( ) )

( ) ( ) 2 ( )(( )

) )
T T T T

T T

T T T

T

N N

N

N N N

c L G K R L G K P I A I A P L G K R L G K

c c L G K R P I B L G K

P I A I A P c P I B L G

cδ φ δ δ δ δ

δ δ

δ

δ δ

δ

= + ⊗ + ⊗ − ⊗ − ⊗ + + ⊗ + ⊗

+ ⊗ − ⊗ + ⊗

= − ⊗ + ⊗ + ⊗ + ⊗

−

  

  

L  

                 

               

[ ]

[ ]

[ ]

2

2

2 2

1

)

( ) ( ) 2 (( ) )

( ( ) ) ( ( ) )

( ) ( ) 0

T T T

T

T T T

N N

T

N N

T T

cl cl N N

K

P I A I A P c P L G BK

c L G BK I A P P c L G BK I A

A P PA Q P I B R I B P

δ

δ δ δ δ

δ δ

δ δ δ δ δ δ
−

− −

= − ⊗ + ⊗ + + ⊗

= + ⊗ ⊗ + + ⊗ ⊗

= − − = > ⊗ ⊗ ≥

               

               

               

 

Hence all the conditions of Lemma 4.2b of Chapter 4 are satisfied, which concludes the proof. ■ 

Specifying the form of P  and R  as 
1 2

P P P= ⊗ , 
1 2

R R R= ⊗ , and assuming further that 

1

2 2 2

T
K R B P

−
= , where 

2
P  is a solution of the local Riccati equation 

1

2 2 2 2 2 2
0

T T
P A A P Q P BR B P

−
+ + − = , as used in Theorems 4.4 and 4-5 of Chapter 4, the inequality 

(137) becomes 

1 1

1 2 1 2 2 1 2 2 1 1 1 2 2 22
( ) ( ) ( ) 0

T T T T T
cP L G P BK P P A A P c L G P K B P PR P P BR B P

− −
+ ⊗ − ⊗ + + + ⊗ − ⊗ > . 

Equivalently, since 

1

2 2 2 2 2 2 2 22 2
0

T T T T
P BK K B P P BR B P K R K

−
= = = ≥ , 

one has 

1

1 1 1 1 1 2 2 2 1 2 2 2 2
( ( ) ( ) ) ( ) 0

T T T
c P L G L G P P R P K R K P K R K Q

−
+ + + − ⊗ − ⊗ − > . 
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Note the similarity to condition (132) introduced in single-integrator consensus problem Section 

5.2. If condition (132) is satisfied then for sufficiently high value of the coupling gain c this 

constraint can be met. 

Remark 5.2: Due to the connection of this inequality and the one in the earlier section with 

inequalities for single-integrator systems (131) and (132) respectively, conclusions in Remark 

5.1. on constructing the suitable 
1

P  apply here as well. 

Clearly if Riccati conditions (123), (124) are satisfied then the cross-weighting term vanishes  

1

2 2(( ) ) ( ) (( ) ) ( )
T T

N N
cR L G K I B P c L G K R I B P

−
+ ⊗ = ⊗ ⇔ + ⊗ = ⊗ . 

One should also note that choosing 
1

2 2 2

T
K R B P

−
=  affords an infinite interval of positive values 

for coupling gain c  that achieve stabilization, 32, which allows one to find a sufficiently high 

value of c  to satisfy inequality (136) without worrying about stability of the closed-loop system. 

5.7 Conclusion 

In order to lift the constraints on the graph topology detailed in Chapter 4 one can use a 

more general form of a performance index, such as one containing state-control cross-weighting 

terms. It is found that multi-agent systems with agents having considered dynamics on any 

directed graph, achieving consensus or synchronization, are inverse optimal with respect to this 

more general performance index. Inverse optimality gives favorable properties to a partially 

stabilizing control law such as robustness and guaranteed gain margins, 41. 
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CHAPTER 6 

MULTI-AGENT SYSTEMS WITH DISTURBANCES 

6.1 Introduction 

The last two decades have witnessed an increasing interest in multi-agent network 

cooperative systems, inspired by natural occurrence of flocking and formation forming. These 

systems are applied to formations of spacecrafts, unmanned aerial vehicles, mobile robots, 

distributed sensor networks etc., 1. Early work with networked cooperative systems in 

continuous and discrete time is presented in 2,3,4,5,6,7. These papers generally refer to 

consensus without a leader. We call this the cooperative regulator problem.  There the final 

state of consensus depends on initial conditions.  By adding a leader that pins to a group of 

other agents one can obtain synchronization to a command trajectory using a virtual leader 5, 

also named pinning control 8, 9. We call this the cooperative tracker problem. In the cooperative 

tracker problem all the agents synchronize to the leader's reference trajectory.  Necessary and 

sufficient conditions for synchronization are given by the master stability function, 10, and the 

related concept of the synchronizing region, in 9,10,11. For continuous-time systems, 

synchronization was guaranteed, 9,12,13 using local optimal state feedback derived from the 

continuous time algebraic Riccati equation.  It was shown that using Riccati design of the 

feedback gain for each node guarantees an unbounded right-half plane synchronization region 

in the s-plane. This allows for synchronization under mild conditions on the directed 

communication topology. 

Dual to the distributed synchronization control problem is the distributed estimation 

problem, 13,30. Distributed estimators are used when agents are only able to measure relative 

information in their local neighborhoods.  Output measurements are assumed and cooperative 

disturbance observers can be designed for the multi-agent systems.  Potential applications are 

distributed observation, distributed disturbance estimation, sensor fusion, and dynamic output 

regulators for synchronization.  Conditions for cooperative observer convergence are shown in 
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13 to be related by a duality concept to distributed synchronization control conditions for 

systems on directed graphs. 

This chapter is concerned with the effects of disturbances on multi-agent systems. 

Building on the classical results on the existence of Lyapunov functions for asymptotically stable 

systems and their use in assessing the effect the disturbances exert on those systems, 46, it is 

possible to extend such reasoning to partially stable systems, in particular those systems that 

reach consensus or synchronization.  With Lyapunov functions for partial stability one is able to 

ascertain the effect of disturbances on the partial stability of systems, and to derive conditions 

on those disturbances that allow for asymptotic partial stability or uniform ultimate boundedness 

along the target set.  Partial asymptotic stability is in that sense robust to this specific class of 

disturbances.  Furthermore, with the means to quantify the effect of disturbances one also gains 

the ability to compensate for it by an appropriate control law. In order to construct such a 

compensating control disturbances need to be known.  However, the fact that disturbances are 

usually inaccessible to direct measurement introduces the need for disturbance estimation. 

The unified approach to disturbance estimation of the leader's and agents' disturbances 

in multi-agent systems is presented.  Disturbance estimation and related compensation is used 

to guarantee asymptotic state synchronization of agents that are influenced by disturbances.  

The interaction graph is directed and assumed to contain a directed spanning tree.  For the 

needs of consensus and synchronization to a leader or control node we employ pinning control.  

However, with disturbances present, the distributed feedback pinning control designed for 

disturbance free systems no longer guarantees synchronization.  Robustness of the distributed 

synchronization control for the nominal system indeed guarantees asymptotic cooperative 

stability or cooperative ultimate uniform boundedness in presence of some disturbances, 46. 

This property can be exploited in special cases of heterogeneous and nonlinear agents. 

Nevertheless, in the general case of disturbances one needs to compensate for their effect in 

order to retain the qualitative behavior of the nominal system.  For that purpose disturbance 
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estimates are used.  In this chapter disturbances are assumed to act on both the leader and the 

following agents. Therefore both the leader's and the agents' disturbances need to be estimated 

and compensated. Leader's disturbance estimate is obtained by all agents via a distributed 

estimator, while the local agents' disturbances can be estimated by local observers or, in a 

special instance, a distributed observer.   

The structure of this chapter is the following; Section 6.2 presents stability definitions 

and properties in a topological way which is more general than usually presented in the 

literature, 41, under the name of partial stability. Converse Lyapunov result for partial stability is 

also given in this section for the sake of completeness since inverse Lyapunov functions are 

used in later sections.  Coordinate transformations that preserve the introduced stability notions 

are also briefly addressed. Section 6.3 gives the means to quantitatively assess the effect 

disturbances have on multi-agent systems and also allows characterizing the classes of 

disturbances to which the multi-agent system under consideration is robust. Section 6.4 

introduces the leader's and the agents' disturbance estimation schemes. The results of Section 

6.4 are applied in Section 6.5 and Section 6.6.  Section 6.5 is concerned with the case of a 

multi-agent system having a leader driven by an input.  Section 6.6 applies the same results to 

the multi-agent system comprised of second-order double-integrator agents with agents' 

disturbances as well as the leader's input present.  Section 6.7 and 6.8 discuss how the 

robustness property of the nominal system and disturbance compensation can be used to 

address cases of multi-agent systems with heterogeneous and nonlinear agents. The example 

of a Lienard system was investigated in Section 6.8 since those systems are known to have an 

attractive limit cycle, furnishing an example of a nontrivial invariant set for an isolated agent.  

Section 6.9 gives a numerical example based on the case presented in Section 6.6 that justifies 

the proposed observer schemes and control laws.  Concluding remarks are given in Section 

6.10. 
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6.2 Stability Definitions and Properties 

This section introduces partial stability properties and basic results that are used later in 

the chapter. Definitions given here describe partial stability in a general coordinate free way, in 

terms of neighborhoods of a target set. 

Definition 6.1: Let S  be a manifold embedded in a Euclidean space X . A neighborhood ( )SD  

of S  is an open set in X  containing the manifold S  in its interior.  

Definition 6.2: Let S  be a manifold embedded in a metric space ( , )X d , and let ( )SD  be a 

neighborhood of S . An ε -neighborhood of ( )S S⊂D  is defined as 

{ }( ) ( , )S x X d x Sε ε= ∈ <U , where ( , ) : inf ( , )
y S

d x S d x y
∈

=  is the distance from x X∈  to S  as 

given by the metric d . 

Note that in the case of compact manifolds S , any neighborhood ( )SD  contains some 

ε -neighborhood of S , but in the case of noncompact manifolds this need not be true.  For the 

needs of defining stability of noncompact manifolds S , one uses neighborhoods of S  that 

contain some ε -neighborhood of S .  We call such neighborhoods regular. 

Definition 6.3: A manifold S  is said to be (Lyapunov) stable if there exists a regular 

neighborhood ( )SD  of S , such that for every ε -neighborhood ( )SεU  contained in it, there 

exists a subneighborhood ( )SV  satisfying the property (0) ( ) ( ) ( )x S x t Sε∈ ⇒ ∈V U  0t∀ ≥ . If 

( )SD  can be taken as the entire space X , then the stability is global. 

If S  is Lyapunov stable and furthermore there exists a neighborhood ( )SW  of S  

satisfying the property (0) ( ) ( ( ), ) 0x S d x t S∈ ⇒ →W  as t → ∞ , then S  is asymptotically stable. If 

( ( ), ) 0d x t S →  we say that the trajectory ( )x t  converges to S . 
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If S  is Lyapunov stable and for every ε -neighborhood ( )SεU  of S , there exists a 

subneighborhood ( ) ( )S Sε⊆V U  containing a δ -neighborhood ( )SδV  then S  is uniformly 

stable.  In this case the stability conclusion can be phrased as 0ε∀ > , 0δ∃ >  such that 

( )( ) ( )( )0 , ,    0d x S d x t S tδ ε< ⇒ < ∀ ≥ . 

If a manifold is uniformly stable and asymptotically stable so that some neighborhood 

( )SW  contains a δ -neighborhood ( )SδW  satisfying the property 

(0) ( ) ( ( ), ) 0x S d x t Sδ∈ ⇒ →W  as t →∞ , uniformly
2
 on ( )SδW , then S  is uniformly 

asymptotically stable. 

If a manifold is uniformly asymptotically stable and there exist constants , 0K σ >  such 

that ( ( ), ) ( (0), )
t

d x t S Kd x S e
σ−

≤ , for all (0)x  in some δ -neighborhood ( )SδW  then the partial 

stability is exponential. ■ 

The following results address generally time-varying systems, where qualitative 

properties depend on initial time 
0t ; 

0 0( )x t x= .  The existence of a Lyapunov function in case of 

uniform-in-time
3
 asymptotic stability of the origin is a familiar result guaranteed under mild 

assumptions on the closed loop dynamics  

 
( , )x f t x=� , (138) 

46, and for the case of uniform asymptotic stability of an invariant manifold S  the existence 

follows from an analogous consideration, using the Massera's lemma (Lemma 6.2).  To present 

the proof, one needs the following definitions and results. Results are presented in a slightly 

more general form than needed here; in particular, they are suited for time-varying systems. 

                                                 
2
 In this context, uniform convergence means 0, 0 . . ( ( ), )T s t d x t S t Tε ε∀ > ∃ > < ∀ ≥    , where T  

depends on ε  and 
0

( , )d x S , but not on 
0

x  itself. 

3
 Uniform-in-time means that stability and convergence do not depend on initial time 

0
t . 
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Proposition 6.1.  Given a possibly noncompact invariant manifold S  and the dynamical system 

(138), S  is uniformly stable if and only if there exists a class K  or ∞K  function α  and 0c >  

such that  

( ( ), ) ( ( (0), ))d x t S d x Sα≤  

(0)x∀  such that ( (0), )d x S c< .  

The manifold S  is uniformly asymptotically stable if there exist a class KL  function β  

and 0c >  such that 

 
0 0( ( ), ) ( ( ( ), ), )d x t S d x t S t tβ≤ − , (139) 

(0)x∀  satisfying ( (0), )d x S c< .  

If the system is time-invariant one can simply write ( ( ), ) ( ( (0), ), )d x t S d x S tβ≤  picking 

initial time arbitrary. 

Proof follows by analogy with results presented in 46, where the usual Euclidean norm, ⋅ , is 

replaced with a more general distance, ( , )d S⋅ .  ■ 

The qualification of stability types in Proposition 6.1 refers to local stability. For global stability 

one needs ∞
K  functions and the condition to hold 0c∀ > . 

Note that the use of class KL  function guarantees uniformity of asymptotic stability in 

this case for different reason than presented in 46. There, uniformity of convergence with 

respect to the initial time was a consequence of the dependence of the KL  class function on 

0t t− , while here it is because of the dependence on ( , )d x S  and 
0t t−  both, guaranteeing 

uniformity of convergence to S  with respect to initial time as well as uniformity of convergence 

along the manifold S , i.e. depending on 
0

( , )d x S , which is the one we are mainly interested 

here. The proof of the Proposition 6.1 follows by analogy to the reasoning presented in 46. 
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We are motivated to prove the following result concerning the existence of a Lyapunov 

function for uniformly asymptotically partially stable systems.  

Theorem 6.1. (Converse Lyapunov theorem) Suppose the system ( , )x f t x=�  has its solutions 

defined for all future times 
0

t t≥ , where 0t  is the initial time, and is uniformly asymptotically 

stable with respect to the manifold ( )S S⊂ U .  If the system satisfies the following technical 

condition 

 ( , ) ( , ) ( , )xd x S f t x Ld x S∇ ≤ , (140) 

on the neighborhood ( )SU , then there exists a Lyapunov function defined there satisfying  

1 2

3

( ( , )) ( , ) ( ( , )),

( , ) ( ( , )),

d x S V t x d x S

V t x d x S

α α

α

≤ ≤

≤ −�
 

4( , ) ( ( , )),V t x d x Sα∇ ≤  

for 
1 2 3 4
, , ,α α α α  class K  functions. ■ 

The following lemma presents a useful technical result. It serves in comparison systems 

involving Lyapunov functions, as well as providing an elegant proof of sufficiency of the 

Lyapunov condition for partial stability types as described in Proposition 6.1. 

Lemma 6.1. Given a dynamical system, ( )y yα= −� , with 
0 0

( )y t y= , where α  is a locally 

Lipschitz class K  function defined on [ )0, a , there exists a class KL  function σ  defined on 

[ ) [ )0, 0,a × ∞  such that 
0 0

( ) ( , )y t y t tσ= − .  

Lemma 6.2. Massera's lemma, 46.  Let [ ): 0, (0, )g ∞ → ∞ , be a continuous strictly decreasing 

function with ( ) 0g t →  as t → ∞ . Let [ ): 0, (0, )h ∞ → ∞ , be a continuous nondecreasing 

function.  Then there exists a function ( )G t  such that  

( )G t  and '( )G t  are class K  functions defined on [ )0, ∞ . 
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For every continuous ( )u t , such that 0 ( ) ( )u t g t≤ ≤ , 0t∀ ≥ , there exist positive 

constants, 
1 2
,K K , independent of u , such that 

1

0

( ( ))G u t dt K

∞

≤∫  and 

2

0

'( ( )) ( )G u t h t dt K

∞

≤∫ . ■ 

In the following lemma the implicit assumption is made that the manifold S  is embedded in the 

Euclidean space, with its usual differential and vector space structure. The neighborhood ( )SU  

under consideration is thus a subset of the Euclidean space inheriting all the differential 

structure. 

Lemma 6.3. The gradient of the distance function ( , )xd x S∇  is uniformly bounded.  

Proof: Assume one chooses two arbitrary points , ( )x y S∈U , and that the infimum distance 

from the manifold S  is actually attained at points 
0 0
,x y S∈  such that 

0

0

( , ) : inf ( , ) ( , ),

( , ) : inf ( , ) ( , ).

z S

z S

d x S d x z d x x

d y S d y z d y y

∈

∈

= =

= =
 

Then 
0 0( , ) ( , ) ( , ) ( , ) ( , ) ( , )d y S d y x d y x d x x d y x d x S≤ ≤ + = + , wherefrom it follows that 

( , ) ( , ) ( , )d y S d x S d y x− ≤ . 

Exchanging x  and y  one obtains ( , ) ( , ) ( , ) ( , )d x y d x S d y S d x y− ≤ − ≤ , therefore  

( , ) ( , ) ( , )d x S d y S d x y− ≤ , 

proving Lipschitz continuity of the function ( , )d S⋅ . This also means that each directional 

derivative satisfies  

0

( , ) ( , ) ( , )
lim 1
t

d x tv S d x S d x tv x

tv tv→

+ − +
≤ = , 

implying boundedness of the gradient, ( , )
x
d x S∇ , on ( )SU .  ■ 
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Remark 6.1: Here the vector space structure of ( )SU  is implicitly used. Otherwise the term 

x tv+  makes no sense. Also, the assumption that the infimum distance is attained for some 

point on the manifold S  can be made redundant if one invokes the property of infimum, that it 

can be approached arbitrarily closely. Then one can use an approximating point on the manifold 

S , introducing arbitrarily small deviations from the actual infimum. However, since the 

deviations are allowed to be arbitrarily small, the derived inequalities hold just as well. 

Proof of Theorem 6.1. 

Let us denote the solution to the dynamics ( , )x f t x=�  with initial state x  at time 0t  as 

0
( ) ( , , )x t t t xφ= . Since 

0 0
( ( ), ) ( ( ( ), ), )d x t S d x t S t tβ≤ −  one has 

0 0
( ( , , ), ) ( ( , ), )d t t x S d x S t tφ β≤ − . 

Let us make use of the following three technical conditions  

 The solution 
0

( ) ( , , )x t t t xφ=  can be extended 
0

t t∀ ≥ , 

( , )
x
d x S K∇ < , ( )x S∀ ∈ U , 

( , ) ( , ) ( , )
x
d x S f t x Ld x S∇ ≤ , ( )x S∀ ∈U . 

Since ( , ) ( , ) ( , )
x

d
d x S d x S f t x

dt
= ∇  one has  

( , ) ( , ) ( , ) ( , )x

d
d x S d x S f t x Ld x S

dt
= ∇ ≤ , 

( , ) ( , ) ( , )
d

Ld x S d x S Ld x S
dt

⇒ − ≤ ≤  

0 0( ) ( )

0 0( ( ), ) ( , ) ( ( ), )
L t t L t t

d x t S e d x S d x t S e
− − −≤ ≤  

establishing a different bound on ( , )d x S .  Let the Lyapunov function be defined as  

( , ) ( ( ( , , ), ))

t T

t

V t x G d t x S dφ τ τ
+

= ∫ , 

with function G  whose existence is guaranteed by Massera's lemma.  Then  
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( )
( ( , ) ) ( ( ( , , ), )) ( ( ( , ), )

t T t T t T

L t

t t t

G d x S e d G d t x S d G d x S t d
τ τ φ τ τ β τ τ

+ + +
− − ≤ ≤ −∫ ∫ ∫ , 

( )

1

0

( ( , )) : ( ( , ) ) ( ( , ) )

t T T

L t Ls

t

d x S G d x S e d G d x S e ds
τα τ

+
− − −= =∫ ∫ , 

2

0

( ( , )) : ( ( ( , ), )) ( ( ( , ), )

t T T

t

d x S G d x S t d G d x S s dsα β τ τ β
+

= − =∫ ∫ . 

Further, one makes use of the assumption that the orbit can be extended to all future times. For 

compact manifolds, local Lipschitz continuity on a compact neighborhood guarantees 

extendibility of solutions to all future times, but for neighborhoods of general noncompact 

manifolds this condition needs to be imposed since an escape to infinity in finite time along the 

noncompact manifold remains a possibility. 

The time derivative of the Lyapunov function equals 

[ ]

( , ) ( , ) ( , ) ( , )

( ( ( , , ), )) ( ( , )) '( ( ( , , ), ) ( , ) ( , , ) ( , , ) ( , ) .

t T

t x

t

d
V t x V t x V t x f t x

dt t

G d t T t x S G d x S G d t x S d S t x t x f t x dφφ φ τ φ φ τ φ τ τ
+

∂
= +∇

∂

= + − + ∇ +∫ 

 

Owing to the identity ( , , ) ( , , ) ( , ) 0,t xt x t x f t x tφ τ φ τ τ+ ≡ ∀ ≥ , one has 

( , ) ( ( ( , , ), ) ( ( , )) ( ( ( , ), )) ( ( , ))
d

V t x G d t T t x S G d x S G d x S T G d x S
dt

φ β= + − ≤ − . 

Since, by assumption on the existence of solution for all future times, T  can be chosen 

arbitrarily large, so that as ( , ) 0Tβ ⋅ →  when T → ∞ , one will have, by continuity, that 

( , ) 0G Tβ ⋅ →� .  Hence 

3( , ) ( ( , )) : ( ( , ))
d

V t x G d x S d x S
dt

α≤ − = − . 

One also has the bound on the gradient 
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( , ) '( ( , )) ( , )

t T

x x

t

V t x G d S d S dφφ φ φ τ
+

∇ = ∇∫ , 

which implies ( , ) '( ( , )) ( , )

t T

x x

t

V t x G d S d S dφφ φ φ τ
+

∇ ≤ ∇∫ . 

If ( , )
x
f t x M∇ < , which is satisfied in particular by linear systems, then ( )

2

M t

x e
τφ −< , 

furnishing the bound 

( )

( )

( )

4

( , ) '( ( , )) ( , )

'( ( , ))

'( ( ( , ), ))

'( ( ( , ), )) : ( ( , )).

t T

M t

x

t

t T

M t

t

t T

M t

t

t T

Ms

t

V t x G d S d S e d

G d S Ke d

G d x S t Ke d

G d x S s Ke ds d x S

τ
φ

τ

τ

φ φ τ

φ τ

β τ τ

β α

+
−

+
−

+
−

+

∇ ≤ ∇

≤

≤ −

≤ =

∫

∫

∫

∫

 

The existence of a class K function 4α  is guaranteed by Massera's lemma (Lemma 6.2). 

In case of time-invariant dynamics the solution satisfies 
0 0

( ) ( , , ) ( , )x t t t x t t xφ φ= = −� , 

with no explicit dependence on the initial time 
0

t .  This means that the expression for the 

Lyapunov function becomes 

0

( , ) ( ( ( , , ), )) ( ( ( , ), ))

( ) ( ( ( , ), )) ,

t T t T

t t

T

V t x G d t x S d G d t x S d

V x G d s x S ds

φ τ τ φ τ τ

φ

+ +

= = −

=

∫ ∫

∫

�

�  

with no explicit time dependence.  Since solutions are assumed to exist for all future times, one 

can use the above expression with T → ∞ , yielding  

0

( ) ( ( ( , ), ))V x G d s x S dsφ
∞

= ∫ � . 
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The above integral exists by Massera's lemma (Lemma 6.2).  ■ 

The special case of uniform asymptotic stability, in which one has exponential stability, 

where the KL class function 
0

( ( , ), )d x S t tβ −  is the exponential, 0

0

( )
( ( , , ), ) ( , )

t t
d t t x S Kd x S e

σφ − −
≤ , 

proves to be sufficiently general for our purposes.  In that case, a Lyapunov function can be 

chosen as 

2( , ) ( ( , , ))

t T

t

V t x d t x dφ τ τ
+

= ∫ . 

The class K functions 
1 2 3
, ,α α α  become quadratic functions of ( , )d x S , and 

4
α  is a linear 

function of ( , )d x S , 46. 

2 2

1 2

2

3

( , ) ( , ) ( , ),

( , ) ( , ),

c d x S V t x c d x S

V t x c d x S

≤ ≤

≤ −�
 

4
( , ) ( , )V t x c d x S∇ ≤ . 

The following developments necessitate a precise definition of the neighborhoods under 

consideration.  

Definition 6.4: A constrained regular neighborhood of S  is a regular neighborhood of S  

contained in some ε -neighborhood of S .  

Therefore, constrained regular neighborhoods of S  are those that contain some ε -

neighborhood and are contained in some ε -neighborhood of S .  Note that ε -neighborhoods 

themselves are constrained regular neighborhoods by definition. These are precisely the 

neighborhoods relevant for our sense of stability. 

One should bear in mind that the stability properties of Definition 6.3 are not invariant 

with respect to all homeomorphisms or even diffeomorphisms. One can have a 

homeomorphism mapping a constrained regular neighborhood onto one that is not constrained 

regular.  An example is easily constructed; the diffeomorphism ( , ) ( ', ') ( , )x
x y x y x ye=� , 
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preserves the x-axis and maps a constrained regular neighborhood of the x-axis to a 

neighborhood of the x'-axis that is not constrained regular.  The dynamical system 

2

,

x

y y

=

= −

�

�
 

which is exponentially stable with respect to the x-axis, is transformed to 

' 2

' ',

x

y y

=

=

�

�
 

which is clearly not stable with respect to the x'-axis, although the x'-axis remains invariant. 

Linear coordinate transformations, being uniformly continuous, with uniformly continuous 

inverse, indeed preserve the stability notions of Definition 6.3. This is elaborated in the following 

lemma. 

Lemma 6.4.  Let a mapping : ( )h S X→U , defined on a neighborhood, ( )S X⊆U , of S , be a 

homeomorpism onto its image, ( ( )) ( ( ))h S h S=V U . The property of neighborhoods of S  being 

constrained regular, and subsequently the sense of distance from S , are preserved under the 

mapping h  if there exist class K  functions ,α β  such that  

( ( , )) ( ( ), ( )) ( ( , ))d x S d h x h S d x Sα β≤ ≤ . 

Such coordinate transformations also preserve the convergence of the trajectory to the manifold 

S .  Likewise, any Lyapunov function, ( )V x , for uniform stability with respect to the manifold S  

retains its uniformity properties in the transformed coordinates. 

Proof: It suffices to show that such a mapping maps constrained regular neighborhoods of S  

onto constrained regular neighborhoods of the image of S . The same needs to hold for the 

inverse mapping. 

 If ( )SU  satisfies ( , ) , ( )d x S c x S≤ ∀ ∈ U , then ( ( ), ( )) ( )d h x h S cβ≤  ( )x S∀ ∈U . 

Hence ( ( ))y h S∀ ∈ U , 
2

( , ( )) ( )d y h S c cβ≤ = .  If a neighborhood ( )SU  of S  is regular, i.e. it 
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contains some ε -neighborhood ( )SεU , then the exterior of ( )SεU  in ( )SU , ( ) \ ( )S SεU U , gets 

mapped to the exterior of 
( )

( ( ))h Sα εU  in ( ( ))h SU .  So, the image ( ( ))h SU  contains 

( )
( ( ))h Sα εU ; therefore it is a regular neighborhood. If the same property does not hold for the 

inverse mapping, one would have h  violating one of its bounds imposed by functions ,α β .  

Also, if ( ( ), ) 0d x t S →  as t → ∞ , one has ( ( ( )), ( )) ( ( ( ), ) 0d h x t h S d x t Sβ≤ →  as t → ∞ , so 

that the property of the convergence of trajectories is preserved under the mapping h . 

As for the Lyapunov function ( )V x , let it satisfy the condition 

1 2
( ( , )) ( ) ( ( , ))d x S V x d x Sα α≤ ≤  

for some class K functions 1 2,α α .  Let ( )x h y=  be the mapping satisfying the condition of the 

Lemma, 

( ( , )) ( ( ), ( )) ( ( , ))d y S d h y h S d y Sα β≤ ≤ . 

Then one finds that  

1 1

1 1 2 2( ( ( , ( ))) ( ( ( ), )) ( ( )) ( ( ( ), )) ( ( ( , ( )))d y h S d h y S V h y d h y S d y h Sα α α α α β− −≤ ≤ ≤ ≤ . 

Defining class K  functions 
1 1

α α α=� � , 
2 2

α α β=� �  and V V h=� �  one has  

1 1

1 2( ( , ( ))) ( ) ( ( , ( )))d y h S V y d y h Sα α− −≤ ≤�� � , 

which is the uniformity condition in the transformed coordinates, y , owing to the fact that the 

composition of class K functions is again a class K function, 46. A similar argument applies to 

the condition on the derivative of the Lyapunov function, completing the proof. ■ 

Remark 6.2: Uniformly continuous homeomorphisms having uniformly continuous inverse 

satisfy the condition of Lemma 6.4. Uniform continuity of the mapping guarantees the upper 

bound, and uniform continuity of the inverse guarantees the lower bound. Linear 

transformations, in particular, belong to this class.  This requirement should be contrasted with 
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the simpler continuity condition that is a defining property of a homeomorphism. 

Homeomorphisms preserve open sets, while homeomorphisms satisfying the more stringent 

condition of Lemma 6.4 preserve constrained regular neighborhoods, describing the presented 

notions of stability. These are preserved for compact manifolds and their precompact 

neighborhoods, by virtue of compactness, under usual homeomorphisms, but for general 

noncompact manifolds the additional condition of Lemma 6.4 is needed. 

Therefore, when using coordinate transformations on dynamical systems exhibiting 

stability with respect to a noncompact manifold S , one should exercise care since 

homeomorphisms, and even diffeomorphisms, do not preserve the stability properties unless 

they satisfy the more stringent condition of Lemma 6.4.  This, in particular, applies to feedback 

linearization methods, when transformations of single-agent state-space comprise the 

transformation of the total state-space X , and the target manifold S  embedded in it.  More 

subtly, one can have topologically equivalent systems that do not exhibit the same stability 

properties if the target set is noncompact. 

6.3 Assessing the Effects of Disturbances on Multi-agent Systems Using Lyapunov Functions 

This section introduces the dynamics of the multi-agent system with an optional 

presence of the leader.  The agents are assumed to be in control affine form, and of the same 

order.  Here the Lyapunov functions are used to quantify the effect that disturbances have on 

the uniformly asymptotically stable closed-loop undisturbed system.  Specified to linear time-

invariant systems, bounds on disturbances are expressed in a more precise way, using 

quadratic Lyapunov functions.  

6.3.1 Multi-agent System Dynamics with Disturbances 

Consider a multi-agent system with an optional presence of a leader.  Agents are 

described as nodes of a directed graph endowed with dynamics. Edges of the graph represent 

the communication structure, i.e. denote which agents' states are available for the purpose of 
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the cooperative feedback to a given agent. It is assumed that the full state of neighboring 

agents is available for feedback purposes.  Assume that the leader node dynamics is  

 0 0 0( )x f x ξ= +� , (141) 

and the N  identical agents have dynamics in the control affine form 

 
( ) ( )i i i i ix f x g x u ξ= + +� , (142) 

with 0 ,
n

i
x x i∈ ∀�   and 0 ,

p

i
u u i∈ ∀�  .  For the purposes of this chapter, functions ,f g  

describe a nominal system.  Signals iξ  and 0ξ  are the agent's and leader's disturbances.  The 

nature of the disturbances can be various.  Disturbance terms can even come from unmodelled 

dynamics, allowing different drift dynamics of each agent, as long as the dynamical systems are 

of the same order. This furnishes an instance of a state dependent disturbance ( )
i i

xξ . 

Definition 6.5:  The distributed consensus or synchronization problem is to find distributed 

feedback controls ( )iu x  for agents that guarantee lim ( ) ( ) 0 ,i j
t

x t x t i j
→∞

− = ∀  when there is no 

leader, and ( )iu δ , where 0i ix xδ = − , that guarantee 0lim ( ) ( ) 0i
t

x t x t i
→∞

− = ∀  when the 

leader 0x  is present.  We call the former cooperative regulator problem and the latter 

cooperative tracker problem. The target sets are the consensus manifold : , ( , )
i j

S x x i j= ∀   in 

the total state-space 
Nn

X = �  and : 0,iS iδ = ∀  , subset of the 
0

( , )xδ  space 
( 1)N n

X
+= � . 

Assumption 6.1. One has found the cooperative feedback control law ( )u x  that guarantees 

asymptotically stable consensus for the nominal system, i.e. solves the cooperative regulator 

problem. Alternatively, one has the cooperative feedback control law ( )u δ  that guarantees 

asymptotically stable synchronization of the nominal system, i.e. solves the cooperative tracker 

problem for the nominal system.  Asymptotic stability is assumed uniform. 

The closed loop nominal systems are given as  
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1( ) : ( ) ( ) ( )

cl
x F x F x G x u x= = +� , (143) 

 
2 0 0

0 0

( , ) : ( ) ( ) ( ) ( ),

( ),

clF x F x F x G x u

x f x

δ δ δ= = − +

=

�

�
 (144) 

where 
1

( ) ( ) ( )
T T

N

T

F x f x f x=   � , 
1

( ) ( ( ),..., ( ))
N

G x diag g x g x= , and x  in (144) is replaced by 

0
xδ + . Under Assumption 6.1, by the converse Lyapunov theorem (Theorem 6.1), there exist 

Lyapunov function for stability of the consensus manifold, ( )V x , and a Lyapunov function 

0( , )V xδ  for the error signals 0i ix xδ = − , for the closed loop nominal systems (143), (144), 

respectively.  Actually, the latter case is a classic case of partial stability, 41, in which δ  

measures the distance from 0δ =  subspace of the total 0( , )xδ  space.  Note that a special 

case of the Lyapunov function, 0( , )V xδ , for partial stability, having the form ( )V δ , suffices in 

some instances.  The effects of disturbances can be assessed using those Lyapunov functions. 

Just as in the classical case, 46, one has asymptotic stability with respect to the consensus 

manifold or uniformly ultimately bounded consensus
4
, depending on the kind of bounds that the 

disturbances satisfy. To elaborate further on different types of disturbance bounds, let us start 

with the following result formulated as a theorem. The Lyapunov functions under consideration 

are allowed to depend explicitly on time, for the sake of generality and because this changes 

nothing conceptually, as long as they satisfy the same time independent uniformity bounds. This 

generalization allows one to treat time-varying agents as well. 

Theorem 6.2.  Let the closed loop nominal systems (143), (144), satisfy the Assumption 6.1.  

Let the disturbances satisfy the uniform growth bound 

 5
( ) ( ( , ))x d x Sξ α≤ , (145) 

for the cooperative regulator problem, and 

                                                 
4
  The uniformly ultimately bounded consensus means that ( 0) ( 0) . . ( ( ), )T s t d x t S t Tε ε∃ > ∃ > < ∀ >    . 
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0 0 5

( ) ( ) ( )x xξ ξ α δ− ≤ , 
0

Mξ < , (146) 

for the cooperative tracker problem.  Then, for a proper choice of class K  function 
5

α , one has 

asymptotic stability in presence of disturbances.  If the disturbances and the Lyapunov functions 

satisfy the uniform bound for some 
1 2
,M M  

 1( , )V t x Mξ∇ ≤ , (147) 

for the cooperative regulator problem, and  

 
0 0 1

( , , )( )V t x Mδ δ ξ ξ∇ − ≤ , 
0 00 2

( , , )x V t x Mδ ξ∇ <  (148) 

for the cooperative tracker problem, then the resulting convergence to consensus is uniformly 

ultimately bounded. 

Proof:  With the cooperative feedback control, ( )u x , satisfying Assumption 6.1 for the nominal 

system (143), the closed loop nominal system 

1( ) ( ) ( ) ( )
cl

x F x G x u x F x= + =� , 

is uniformly asymptotically stable with respect to the consensus manifold S .  Therefore, by 

Theorem 6.1, there exists a Lyapunov function, ( , )V t x , for uniform asymptotic stability with 

respect to the consensus manifold 
NnS ⊂� . 

With the cooperative feedback control, ( )u δ , satisfying Assumption 6.1 for the nominal 

system (144), the closed-loop nominal system 

0 2 0

0 0

( ) ( ) ( ) ( ) ( , ),

( ),

clF x F x G x u F x

x f x

δ δ δ= − + =

=

�

�
 

is uniformly asymptotically stable to the 0δ =  subspace.  Therefore, by Theorem 6.1, there 

exists a Lyapunov function, 
0

( , , )V t xδ , for uniform asymptotic stability with respect to 0δ =  

subspace.  Those functions satisfy the following 
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1 2

31

( , ) 0; ( , ) 0

( ( , )) ( , ) ( ( , ))

( , ) ( , ) ( , ) ( ) ( ( , ))
T

cl

d

dt t

V t x V t x x S

d x S V t x d x S

V t x V t x V t x F x d x S

α α

α
∂

∂

≥ = ⇔ ∈

≤ ≤

+∇ ≤ −=

  

 

for the cooperative regulator and 

0

1

0 0

0 0

0 2

0 0 0 0 32 ,

( , , ) 0; ( , , ) 0 0

( ) ( , , ) ( )

( , , ) ( , , ) ( , , ) ( , ) ( , , ) ( ) ( )T

xcl
t

V t x V t x

V t x

d
V t x V t x V t x F x V t x f x

dt
δ

α

δ δ δ

δ δ α δ

δ δ δ δ δ α δ
∂

+∇
∂

> = ⇔ =

≤ ≤

= +∇ ≤ −

  

 

for the cooperative tracker.  The 
1 2 3
, ,α α α  are some class K  functions.  In the presence of 

disturbances the global system (143) takes the form 

 
1( )clx F x ξ= +� , (149) 

and the error system (144) equals 

 
2 0 0

0 0 0

( , ) ,

( ) .

clF x

x f x

δ δ ξ ξ

ξ

= + −

= +

�

�
 (150) 

In that case Lyapunov functions for nominal cooperative regulator and tracker systems, 

respectively, satisfy 

 
3( , ) ( ( , )) ( , )

d
V t x d x S V t x

dt
α ξ≤ − + ∇ , (151) 

and 

 
00 3 0 0 0 0( , , ) ( ) ( , , )( ) ( , , )

x

d
V t x V t x V t x

dt
δδ α δ δ ξ ξ δ ξ≤ − + ∇ − + ∇ . (152) 

If there exists a class K , or globally ∞K, function 
3
( ( , ))d x Sα�  such that 

 3 3( ( , )) ( , ) ( ( , ))d x S V x t d x Sα ξ α− +∇ ≤ − � , (153) 
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then (151) implies that the consensus is uniformly asymptotically achieved in spite of the 

disturbances.  The same applies to the asymptotic stability for the cooperative tracker problem 

(152) if there exists 3( )α δ�  such that 

 
00 0 03 0 3( ) ( , , )( ) ( , , ) ( )xV t x V t xδα δ δ ξ ξ δ ξ α δ− + ∇ − + ∇ ≤ − � . (154) 

Gradient of the Lyapunov function satisfies the growth bound 
4

( , ) ( ( , ))V t x d x Sα∇ ≤ , in the 

case of the cooperative regulator problem, or the bound 
40( , , ) ( )V t xδ δ α δ∇ ≤ , and 

0 40( , , ) ( )x V t xδ α δ∇ ≤ , in the case of the cooperative tracker problem.  If the disturbances 

satisfy bounds 
5

( ) ( ( , ))x d x Sξ α≤ , or 
0 0 5

( ) ( ) ( )x xξ ξ α δ− ≤  and 
0

Mξ < , it is possible 

that for a proper choice of class K  functions 3 4 5, ,α α α  and bound M  one can guarantee 

uniform asymptotic stability in presence of disturbances, 46.  In that case one has a sought 
3

α� , 

class K  function, such that 

3 4 5 3
( , ) ( ( , )) ( ( , )) ( ( , )) : ( ( , ))

d
V x t d x S d x S d x S d x S

dt
α α α α≤ − + = − � , 

for the cooperative regulator and 

0 3 4 5 3
( , , ) ( ) ( )( ( ) ) : ( )

d
V t x M

dt
δ α δ α δ α δ α δ≤ − + + = − � , 

for the cooperative tracker.  In the case of the uniform bounds (147), (148), the resulting 

convergence to consensus is uniformly ultimately bounded, since for sufficiently large ( , )d x S  

or δ  the derivative of a Lyapunov function is negative, 46. The numerical value of the ultimate 

bound depends on the choice of the Lyapunov function.  This concludes the proof.  ■ 

Disturbances coming from unmodelled dynamics are likely to satisfy the former case, 

and generally unknown disturbances that come from the environment are more likely to fit into 

the latter case.  If the nominal cooperative tracker admits a Lyapunov function 
0

( , , )V t xδ  having 
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a special form, ( , )V t δ , the robustness conditions of Theorem 6.2 simplify. This shall be the 

case in the following subsection. 

6.3.2 Specification to Linear Time-invariant Systems 

Having agents and the leader in a form of linear time-invariant systems, one can derive 

more specific bounds on the disturbances and the region of attraction, using quadratic 

Lyapunov functions.  The dynamics of the leader and N  identical agents is given as 

 
0 0 0x Ax ξ= +� , (155) 

 
i i i i

x Ax Bu ξ= + +� , (156) 

with 0 , ;
n

ix x i∈ ∀� , 0 , ;
p

iu u i∈ ∀� .  For the purposes of this chapter matrices ,A B  describe 

the nominal system.  Signals iξ  and 0ξ  are the agent and leader disturbances.  The global 

systems for cooperative regulator and tracker problems with disturbances are respectively 

 
( ) ( )x I A x I B u ξ= ⊗ + ⊗ +� , (157) 

and defining the global disagreement vector 
1

T
T T

Nδ δ δ =  � , where 
0i i

x xδ = −  one has 

the system 

 
0

( ) ( )I A I B uδ δ ξ ξ= ⊗ + ⊗ + −� . (158) 

Here 
0 0 0

T
T Tξ ξ ξ=   � .  Define the local neighborhood error as 

 
0( ) ( )i ij j i i i

j

e e x x g x x= − + −∑ . (159) 

The linear cooperative feedback control is chosen as 

 
i iu cKe= . (160) 

In global form this is u cL Kx= − ⊗  or ( )u c L G Kδ= − + ⊗ , depending on whether there are 

nonzero pinning terms or not.  The closed loop nominal systems are 

 1clx A x ξ= +� , (161) 
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 2 0clAδ δ ξ ξ= + −� . (162) 

The closed-loop system matrices  and  

need to be asymptotically stable with respect to the consensus manifold, or with respect to 

 subspace, respectively.  Note that, because of the linearity of the drift dynamics,  

does not explicitly appear in (162). This, in particular, motivates our choice of  for the 

cooperative tracker feedback control instead of a more general control law , as well as 

our choice of the Lyapunov function , instead of .  These choices reduce the 

linear cooperative tracker problem to a classical problem of asymptotic stability of the origin.  

One possible choice of the local feedback gain  that stabilizes  and  is given by the 

following lemma. 

Lemma 6.5.  Assume that a graph has a spanning tree with at least one pinning gain nonzero, 

connecting into the root node when pinning is present. Let the pair  be stabilizable. 

Choose the local feedback gain  as 

 , (163) 

where  is the solution to the algebraic Riccati equation 

 . (164) 

Then the closed loop system matrix  is asymptotically, exponentially, stable to the 

consensus manifold if the coupling gain is sufficiently great so that 

 , (165) 

where  are the positive eigenvalues of the  matrix, and the closed loop matrix  is 

asymptotically, exponentially, stable if the coupling gain is sufficiently great so that 

1cl N
A I A cL BK= ⊗ − ⊗

2
( )

cl N
A I A c L G BK= ⊗ − + ⊗

0δ = 0x

( )u δ

0
( , )u xδ

( )V δ
0

( , )V xδ

K 1clA 2clA

( , )A B

K

1 T
K R B P

−=

P

1 0T T
A P PA Q PBR B P

−+ + − =

1clA

0

1

2 min Rej j

c
λ >

≥

0jλ > L 2clA
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 , (166) 

where  are the eigenvalues of the  matrix. 

Proof is given in 13. ■ 

With this result, one can guarantee that the linear multi-agent systems, (155), (156), 

satisfy Assumption 6.1. The following conclusions apply when disturbances are assumed to act 

on the system. 

Corollary 6.1.  If disturbances, , satisfy the uniform growth bound, 
5
, given 

that a growth constant  is sufficiently small, one has uniform asymptotic stability of 

consensus.  If disturbances satisfy the bound , one has uniformly ultimately 

bounded convergence to consensus.  For the cooperative tracker, the disturbance bound 

 implies asymptotic stability, given that a growth constant  is sufficiently small.  

On the other hand, the disturbance bound  implies uniform ultimate boundedness of 

the error dynamics.  

Proof: The relevant Lyapunov functions for the linear systems (161), (162), satisfying 

Assumption 6.1, exist in quadratic form as  and  with 

matrices , , where ; the consensus manifold.  Therefore one has a 

Lyapunov function for the uniform asymptotic stability satisfying 

 and the Lyapunov function satisfying .  

In presence of disturbances one finds the following identities 

                                                 
5 This is a slight abuse of notation. The disturbance ξ , as a part of the vector field defining dynamics of 

the system, is not an element of the state space X , but of the tangent space 
x

TX , and ( , )d Sξ  is a 

distance from the consensus manifold in that tangent space. However for linear systems on Euclidean 

vector spaces, 
Nn
� , this ought to cause no confusion.  

1

2min Rej j

c
λ

≥

jλ L G+

i
ξ ( , ) ( , )d S Cd x Sξ <

C

( , )d S Mξ <

0 Cξ ξ δ− < C

0 Mξ ξ− <

1 1
( ) 0

T
V x x Px= ≥

2 2
( ) 0

T
V Pδ δ δ= >

1
0P ≥

2
0P > 1ker P S=

2

1 1 0min 1
( ) ( ) ( , )

T
V x x Q x Q d x Sσ

>
= − ≤ −�

2 2
( ) 0

T
V Qδ δ δ= − <�
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  (167) 

and  

 , (168) 

where , with , and . 

Owing to the fact that both quadratic forms in (167),  and , measure the distance 

from the consensus manifold, they are equivalent in the sense of distance norms, i.e. they can 

be bounded by above and below by a scaled distance from the consensus manifold . 

Hence, for  one can state  

  (169) 

for some real constant .  If there exists a disturbance bound  or 

 one will have asymptotic convergence to consensus manifold  in the former 

case if a growth constant  is sufficiently small, or uniform ultimate boundedness in the latter 

case, 46. 

For cooperative tracker, positive definiteness of  and  allow for an application of 

the classical results on disturbances, 46. According to those results one has, respectively, 

asymptotic stability and uniform ultimate boundedness with respect to the origin of the 

synchronization error system. ■ 

Note that a more general bound on , by a K class function of  that 

satisfies the linear growth bound locally, also suffices. 

1 1 1
( ) 2

T T
V x x Q x x Pξ= − +�

2 2 2 0
( ) 2 ( )

T T
V Q Pδ δ δ δ ξ ξ= − + −�

1 0Q ≥ 1 1ker kerQ P= 2 0Q >

1

T
x Px

1

T
x Q x

( , )d x S

1V

2

1 0min

2

0 min 1 1

2

0 min

0min

1 1( ) ( ) ( , ) 2( ) (

( ) ( , ) 2

( ) ( , ) ( , ) ( , )

( ( ) ( , ) ( , )) ( , ),

)V x Q d x S

Q d x S P x P

Q d x S Kd x S d S

Q d x S Kd S d x S

P x Pσ

σ ξ

σ ξ

σ ξ

ξ
>

>

>

>

≤ − + ⋅

≤ − +

≤ − +

≤ − −

�

0K > ( , ) ( , )d S Cd x Sξ <

( , )d S Mξ < S

C

2P 2Q

( , )d Sξ ( , )d x S
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In many realistic cases of disturbances the robustness alone, stemming naturally from 

the asymptotic or the exponential cooperative stability of the disturbance free systems, does not 

suffice. In those instances it becomes advantageous to measure or estimate the disturbances 

acting on the leader and the following agents, so that those could be compensated for, even if 

only in part.  Disturbance estimation schemes for the leader's and agents' disturbances are 

presented in the next section. 

6.4 Disturbance Estimators 

In this section we introduce the disturbance estimation of the leader's and the agents' 

disturbance. The important fact is that in cooperative tracker problem, in addition to its own 

disturbance signal , each agent also needs to know the leader's disturbance . In reality 

those need to be replaced with their estimates.  This introduces the need for estimators of the 

leader's and the agents' disturbances.  

In the following subsections, local and distributed observers are introduced for the 

purpose of estimating local disturbances. Local observers are a natural choice for estimating the 

agents' disturbances if measurements of those disturbances are available. In the special case 

of all agents having the same disturbance generator one can estimate the local disturbances by 

a distributed observer. In fact if only relative disturbance measurements are available to all 

agents, except to a few that know the absolute reference value, one needs to use the 

distributed observer.  Leader's disturbance observer naturally has a distributed form. 

6.4.1 Estimating Disturbances on the Agents 

This and the following subsection are concerned with estimating the agents' 

disturbances.  Apart from the leader's disturbance estimate  each agent needs to know only 

its own disturbance estimate , not at all its neighbor's disturbances.  This is a consequence 

of the fact that disturbances acting on agents are assumed independent, so  acts solely on 

agent .  

i
ξ 0ξ

0ξ̂

ˆ
iξ

iξ

i
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Assume that the disturbance acting on agent  is modelled by the following linear 

disturbance signal generator 

  (170) 

The disturbance acting on the agent  cannot be measured directly,but a related quantity , 

the output of the disturbance generator, is accessible to measurements.  Thus one uses the 

pertaining disturbance generator to design a local estimator. 

  (171) 

If the matrix  is Hurwitz the estimate error  will converge to zero. This is a 

classical local Luenberger estimator.  If and only if the pair  is detectable one can design 

the observer gain  that guarantees stability of , i.e. convergence of estimate to the 

true value of the disturbance. 

6.4.2 Case of Identical Disturbance Generators for all Agents 

In the special case when the disturbance generators for all agents are the same, a 

distributed disturbance observer can make all disturbance estimates converge to the true values 

of the disturbance signals, as long as there is a pinned reference value of 0 to some agents. 

This amounts to some agents knowing the absolute zero reference, while all others rely on 

relative information only. Hence, agents estimate their own disturbances, but the estimation is 

performed in a distributed fashion. Therefore, the entire multi-agent system estimates the total 

disturbance vector . This is made possible in such a form precisely because all the 

disturbance generators are assumed to be the same 

  . (172) 

i

i i i

i i iF

ξ ξ

ς ξ

= Γ

=

�

i
ξ

i
ς

ˆ ˆ ˆ( )

ˆˆ

i i i i i i

i i i

L

F

ξ ξ ς ς

ς ξ

= Γ + −

=

�

i i iL FΓ − ˆ
i i

ξ ξ−

( , )
i i

FΓ

iL i i iL FΓ −

ξ

i i

i i
F

ξ ξ

ς ξ

= Γ

=

�
0,1,...,i N=
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The distributed disturbance estimator, 13, has the form 

  (173) 

and guarantees estimate convergence to the true disturbance value if the observer system 

matrix 

  (174) 

is Hurwitz. 

Lemma 6.6.  Assume that the graph has a spanning tree with at least one pinning gain nonzero, 

connecting into the root node, and that the pair  is detectable.  Choose the local 

observer gain  as 

 , (175) 

where  is the solution to the observer algebraic Riccati equation 

 . (176) 

Then the observer system matrix (174) is asymptotically, exponentially, stable if the coupling 

gain is sufficiently great 

 , (177) 

where  are the eigenvalues of the  matrix. 

Proof is given in 13.  ■ 

Local estimation remains an option in this case as in 29, with the same choice of the 

observer gain (175),(176), guaranteeing convergence of local observer (171).  It should be 

noted that an assumption on identical disturbance generators for distinct agents might be too 

naïve for most real cases. 

2 1
ˆ ˆ ( )

ˆ

ˆˆ ,

i i ij j i i i

j

i i i

i i

c L e g

F

ξ ξ ς ς

ς ς

ξ

ς

ς

ς

= Γ − −

= −

=

− ∑
� � � �

�

2 1
( )

N
I c L G L F⊗Γ− + ⊗

( , )FΓ

1
L

1

1

T
L PF R

−=

P

1 0T T
P P Q PF R FP

−Γ + Γ + − =

2

1

2min Re
j j

c
λ

≥

jλ L G+



 

133 

 

 

6.4.3 Estimating Disturbance on the Leader with Known Leader's Disturbance Generator 

In this subsection the distributed leader's disturbance observers are introduced.  All the 

following agents need to have a leader's disturbance estimator . In case all agents know the 

leader's disturbance generating system  

 , (178) 

if one pins the measurement  into a selected few nodes then the following synchronization 

type distributed estimator architecture is available.  The distributed leader's disturbance 

estimators take the classical cooperative tracker form with local neighborhood output 

disagreement feedback 

  (179) 

where  

 
.  (180) 

If the observer system matrix  is Hurwitz then all local 

estimates  converge to the true value of the leader's disturbance  asymptotically.  The 

design of  guaranteeing stability of the observer system matrix is detailed in Lemma 6.6.  

6.4.4 Estimating Disturbance on the Leader without the Leader's Disturbance Generator 

This subsection introduces the distributed leader's disturbance observers without having 

the leader's disturbance generating system.  If the leader's disturbance generator is not known 

but there exists a finite k such that  identically then a k-th order pinned consensus 

algorithm for the cooperative observer, 

0
ˆ

iξ

0 0 0

0 0 0F

ξ ξ

ς ξ

= Γ

=

�

0ς

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

3 0

3 0

ˆ ˆ ˆ ˆ ˆ( ) ( )

ˆ ˆ ˆ ˆ ˆ( ) ( ),

i i ij j i i i

j

i i ij j i i i

j

c L e g

c L F e g

ξ ξ ς ς ς ς

ξ ξ ξ ξ ξ ξ

= Γ + − −

= Γ + − −

+

+

∑

∑

�

�

0 0 0
ˆˆ

i iFς ξ=

0 3 0 0
( )I c L G L F⊗Γ − + ⊗

0
ˆ

iξ 0ξ

3 0
,c L 

( )

0 0kξ =
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  (181) 

can guarantee convergence of all leader's disturbance estimates to the true value. Note that 

only the pinned nodes can measure the leader's disturbance  directly. Others rely on their 

local neighborhood estimates , or more precisely on local neighborhood relative estimate 

disagreement. All disturbances and their estimates are assumed to be elements of ,  

or . The coefficients  are chosen to guarantee stability, i.e. so that  converges 

to zero asymptotically. Indeed, by canonically assigning state variables 

,  one finds the system in block controllable 

canonical form 

 . (182) 

Lemma 6.7. The characteristic polynomial of the block controller canonical form matrix (182) 

equals 

 , (183) 

Proof:  Let the bases of the induction be  

,

 

verifying the assertion for the basis.  Let  be the block matrix of the form 

1
( )

0 0 0 0 0

0

ˆ ˆ ˆ ˆ( ) ( ) ,
jk

k

i j il l i i ij
j l

d
c e g

dt
ξ ξ ξ ξ ξ

−

=

 
= − + − 

 
∑ ∑

0ξ

0
ˆ

jξ

p� p n=

m k
c

0 0
ˆ

ξδ ξ ξ= −

( 1)

1 2, ,
k

ky y yξ ξ ξδ δ δ −= = =� �
1

T
T T

ky y y =  �

0 1 1

0 0 0

0 0 0

0 0

( ) ( ) ( )

Np

Np

Np

p p k p

I

I
d

y y
dt

I

c L G I c L G I c L G I−

 
 
 
 =
 
 
 − + ⊗ − + ⊗ − + ⊗ 

�

�
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� �

� �

1 2

1 2 0
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kNp k Np k k p
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Assume for  that , then one has 

the following identity for  

 

and  

 

where the coefficients in the last block row of  go from . 

 

By induction assumption, this equals  

0 1 1

0 0 0

0 0 0
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completing the induction proof. ■ 

Remark 6.3:  It should be noted that for higher order k the proposed algorithm for corrections 

 becomes increasingly complicated.  Necessary order is determined by the constraint on the 

disturbance signal .  If  is modeled by e.g. spline functions (of preferably lower order) then 

such an algorithm suffices.  Also, if the higher order derivatives are not identically zero but can 

be considered negligible, or otherwise small in some sense, compared to a finite number of 

lower order ones, the application of such an observer is still justified owing to the fact that those 

small terms introduce a comparatively small perturbation of the asymptotically stable system, 

resulting in a small steady state error. 

The choice of the coefficients  has to be made such that the asymptotic stability is 

guaranteed. This constitutes the higher order observer design problem. In case stability is 

guaranteed one has , meaning as ,  for all .  Most 

importantly the steady state error  converges to zero, which means the convergence of the 

estimate to the true value of the disturbance.  One way of choosing the coefficients  in 

relation to the graph matrix  eigenvalues is detailed in the following theorem. 

Theorem 6.3.  Let  be the single input k-th order controller canonical form matrices with 

all characteristic polynomial coefficients equal to zero 

 , .
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The optimal feedback gain  

 , (185) 

where  is the solution of the algebraic Riccati equation  

 , (186) 

gives coefficients  that guarantee stability if all the eigenvalues  of the matrix  are 

in the complex gain margin region, 29, for the Riccati feedback (185). 

Proof:  In order to simplify the determinant of a matrix polynomial  

, 

one can apply the linear transformation  reducing  to the upper triangular form, 

i.e. if , with  upper triangular, then  is the desired transformation for 

. Applying such a transformation on the matrix polynomial 

 

does not change the determinant and yields the simplified form 

, 

which is itself in an upper triangular form. The determinant is now simply the product of diagonal 

elements having the following form 

 . (187) 

For this polynomial product to be stable all the factor polynomials  need to be stable, i.e. 

Hurwitz, for every , eigenvalue of .  Using the algebraic Riccati equation  

, 
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for the k-th order system with matrices  and   

,  

the optimal feedback (185) will stabilize the system (184). Next we use the complex gain margin 

region assessed using the Lyapunov equation, where  is the solution of the Riccati equation  

, 

to guarantee an unbounded gain margin region in complex plane, 13.  Therefore, for  

sufficiently large one has stability, meaning that the characteristic polynomial of  is 

Hurwitz.  But the characteristic polynomial of  equals (187), with  instead of . 

This concludes the proof. ■ 

Remark 6.4:  The observer coefficients  can be read off from the optimal single input 

feedback. This allows for a fairly simple design procedure for the system (181). Also, this means 

that the complex gain margin region for the Riccati feedback is contained in a region of complex 

plane defined as  

. 

generalizing the concept of synchronizing region to systems described by polynomials. 

6.5 Synchronization to the Leader Driven by an Unknown Input 

This section gives a specific application of the results of previous sections on a multi-

agent system with linear time-invariant agents having a leader driven by an input.  Adding an 

input to the leader enlarges the set of possible tracking commands  one achieves 

synchronization to. Also, because of the way this input effects the system it satisfies the 
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matching condition, 46, and can be ideally completely compensated using the appropriate 

control. 

6.5.1 System Dynamics 

Assume the leader node dynamics to be of the form 

 , (188) 

and the set of  identical agents having dynamics 

 , (189) 

with , .  The global synchronization error dynamics reads 

 , (190) 

which in global form equals 

 . (191) 

Pick the distributed cooperative linear feedback control (160) , (164). Such choice of 

distributed control guarantees synchronization without the leader's input, , for  

sufficiently large, as detailed in Lemma 6.5 and 13.  In global form this leads to  

 , (192) 

and the global synchronization error dynamics equals 

 . (193) 

Even though  can be assumed stable under conditions of Lemma 6.5, the system (193) is 

not autonomous so one cannot guarantee that , i.e. that the systems (189) reach 

synchronization asymptotically. In fact the second term in (193) can be interpreted as 

disturbance , arising solely from the leader's input. That disturbance acts only on the 
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leader, but its effect is distributed to all the agents. If  is uniformly bounded, asymptotic 

stability of  guarantees uniformly ultimately bounded convergence of the system (189), 46. 

6.5.2 Estimating the Leader's Input 

One solution to the leader's input problem is adding an additional compensating input, 

equal to , to each agent, in order to compensate for the disturbance.  This leads to the 

control law 

 , (194) 

so that the -th agent’s dynamics equals 

 . (195) 

Such a choice makes the “drift” part of the agents dynamics  equal to that of 

the leader node. This results in a -system 

 

,

 (196) 

which is an autonomous system that, under the assumption that  be asymptotically stable, 

leads to synchronization; .  The problem with such a choice is that it requires  to 

be known to all agents. That means, either pinning  to each agent or off-line stored  at 

each agent. Neither of these choices seems appealing.  

However, a modified control law involving the estimator of the type introduced in 

Section 6.4, with a correction for every agent in the form 

  (197) 

leads in global form to  
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  (198) 

where , and  is the estimation error.  The augmented 

system can be written as 

 , (199) 

where it is implicitly assumed that  satisfies a, possibly high order, autonomous linear 

dynamics described by the system matrix .  Given the stability of , one can guarantee 

 if also .  But the latter is the consensus problem for the estimates 

. Crucial problem is assuring the convergence of all observation  to the 

common value equal to . 

In order to solve this observation consensus problem one uses the control 

communication graph, or more generally some subgraph of it, still containing a directed 

spanning tree since this is necessary for convergence.  Here we practically use the results of 

Section 4 to estimate the leader's disturbance signal. 

Under the condition  identically the higher order observer (181)
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or in global form 

 , (201) 
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gives asymptotic estimate convergence for the proper choice of coefficients  e.g. as detailed 

in Theorem 6.3. One should note that the increasing order k requires observers of increasing 

complexity.  The estimation error dynamics  (201) satisfies the assumption on the linear form 

of the estimation error system (199). 

If, however, one has the leader's input  modeled as an output of an autonomous 

linear system, i.e. the command generator, given in state-space form as 

, 

with the system matrix , and the output matrix , of an appropriate order, one can use the 

observation-synchronization algorithm (179) in the following form 

. 

 

Synchronization of , defined for every agent , implies the output synchronization of , 

meaning , which in turn guarantees the state synchronization; 

. One has the synchronization of estimates  if the matrix  is 

Hurwitz.  In this case also the assumption on the linear form of the estimation error  

dynamics (199) is satisfied. 

Again it should be remarked that for more complicated form of the control input , 

requiring increasing dimension of the state-space model for , the correction algorithm 

becomes increasingly complicated. 
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6.6 Application to Second-order Double-integrator Systems With Disturbances 

This section presents another application of disturbance estimation.  Here we are 

concerned with the second-order double-integrator systems with disturbances. This model of 

primarily motion systems is often studied in the literature, 48,49,49.  Let the multi-agent system 

consist of a leader 

 , (202) 

and  agents of the form 

 . (203) 

The disturbances in this case satisfy the matching condition.   

Let the agents' disturbances  be modeled as (172), or more precisely as an output of 

(172) that is not directly measurable, e.g. as detailed in the numerical example, Section 6.9.  

Note that this is more general than the case presented in Subsections 6.4.1 and 6.4.2 where it 

is assumed that the entire disturbance state acts on the agent dynamics.  Measurable output of 

the disturbance generator (172), , is used for disturbance system state estimation.  Let the 

leader's disturbance be modeled as (178) or have the identically vanishing derivative of a finite 

order, . 

Here one applies the results of Section 6.4, using the distributed observer (179) or (181) 

for the leader's disturbance and local observers (171) for agents' disturbances. The distributed 

observer (173) is applicable if some agents, root nodes in a spanning tree, know the fixed zero 

reference, 30.  The agents that have the leader state pinned into them are considered here to 

know the fixed zero reference, 30.  The estimates of  and  are computed from (171) or 

(173) and (179) or (181) respectively.  Those are then used as the compensating signal 

producing the total control signal  
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 . (204) 

The control gains  are determined by the local Riccati design, as detailed in Lemma 6.5, 

, and the observer gains are designed as detailed in Lemma 6.6, and Theorem 6.3. 

So by results of Lemma 6.5, 6.6, and Theorem 6.3, one has estimate convergence for the 

agents' and the leader's disturbances together with the asymptotic state synchronization under 

control (204). 

6.7 Application of Disturbance Compensation to Dynamical Difference Compensation 

This section investigates the effects of unmodelled dynamics and possibly 

heterogeneous agents' dynamics both described as state dependent disturbances acting on the 

nominal system.  Given the agent's dynamics in control affine form  

, 

with all agents having the same order as dynamical systems, one can assume the existence of 

a nominal drift dynamics  having the same order as .  Each agent can then be 

described as  

 . (205) 

In the case a leader is present, having dynamics given by 

 , (206) 

the choice of the nominal dynamics is suggested by (206), 

 . (207) 

The error system in that case equals 

 . (208) 
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Assuming Lipshitz continuity of , or assuming differentiability and applying contraction 

analysis, allows one to assess the contribution of the nominal nonlinear drift part, , 

in terms of .  Note that the dynamical difference of the leader and an agent under 

consideration is decomposed into two parts 

, 

first part begin due to the state discrepancy from consensus, i.e.  and the second one due to 

the inherent difference in dynamics. 

If one can find distributed feedback control laws, , for all agents such that the 

nominal agents reach consensus asymptotically then the earlier conclusions can be applied to 

the disturbance term 

  (209) 

Furthermore, the compensating input can be used, since the nominal system is again affine in 

control , such that the size of the effective disturbance  is minimized.  

It is clear that if the dynamical difference  satisfies the matching 

condition, 46, then the compensating term  can cancel it completely. In real situations 

dynamic difference observers should be used, 47. 

An example of such a case is a set of feedback linearizable agents all having the same 

(full) relative order.  As long as the same agent-state-space transformation, preserving partial 

stability notions as detailed in Lemma 6.4, brings all agents to the nonlinear controllable 

canonical form, the dynamical differences can be cancelled by using transformed control 

signals.  Such an action preserves the consensus manifold . 

Yet another interesting example is furnished by the special case of agents having the 

following form 
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. 

Thus, all agents have identical linear dynamics , but the nonlinear unmodelled dynamics 

may be different. One can use linear distributed synchronization control (160) to guarantee the 

synchronization of the nominal system.  If the disturbances are uniformly bounded 

 the uniformly ultimately bounded consensus result readily follows. If, on the 

other hand, the unmodelled dynamics is the same, i.e. , , then it satisfies 

, 

where  is the consensus affine manifold.  Thus the consensus manifold  remains an 

invariant manifold for the multi-agent system. If the contribution of the unmodelled dynamics 

satisfes uniform bounds of Theorem 6.2 robustness of the linear part of the system guarantees 

synchronization for the nonlinear system.  Such is the particular case of uniformly continuous 

functions, though this condition is not necessary. State dependent uniformly continuous 

disturbances , lumped together into a global vector, preserve the invariance of the 

consensus manifold  and satisfy the growth bound uniformly along the manifold.  A specific 

example of this instance is the topic of the next section. 

6.8 Example of State Dependent Disturbances-Agents' Dynamics Satisfying the Uniform Growth 

Bound 

This section presents an example of a multi-agent system with identical agents having 

Lienard dynamics. Such systems are guaranteed to have limit cycles. The Lienard dynamical 

system describes an oscillator, having 2-dimensional state space , with an input. The 

corresponding differential equation has the form 

  (210) 
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In the state space  with state variables , where , the 

equation (210) can be written as a system, 

 . (211) 

The limit cycle exists if  for , and . If  one can separate 

the linear and nonlinear parts of the system as 

 . (212) 

If the nonlinear function  is uniformly continuous, which is accomplished for uniformly 

bounded , negative for small , and positive for large , conclusions of previous 

paragraphs become applicable. Taking for example 

 

one has .  A linear synchronization algorithm designed for linear part of the 

system, 13, guarantees exponential partial stability with respect to the consensus manifold, with 

the pertaining robustness property.  As the nonlinear parts are the same for all agents their 

contribution to the partial stability Lyapunov function vanishes on the consensus manifold, and 

since the lumped vector of the nonlinear terms comprises a uniformly continuous function, all 

components being uniformly continuous, one can state that there exists a growth bound valid 

uniformly along the consensus manifold. 

The single agent system can be concisely written as 

 . (213) 

2�
1 2, ( )x y x y yα= = + Φ�

1

1

0

( ) ( )

x

x dφ ξ ξΦ = ∫

1 2 1

2 1

( )

( )

x x xd

x x udt

α

ψ

− Φ   
=   − +   

( ) 0yψ > 0y > lim ( )
y

y
→∞

Φ = ∞ ( )y yψ =

1 1 1

2 2

0 1 ( ) 0

1 0 0 1

x x xd
u

x xdt
α

Φ        
= − +        −        

1( )xΦ

( )yφ y y

2

2

1
( )

1

y
y

y
φ

−
=

+

1 2

1 2

0

1
( )

1

x

x d
ξ

ξ
ξ

−
Φ =

+
∫

( ) ( )i i i ix Ax x Bu xαξ= + +�



 

148 

 

 

Multi-agent system has  agents of the form (213), with  the feedback cooperative 

control for agent . One can choose the linear local neighborhood error cooperative control 

(160), with the feedback gain  designed using local Riccati design for the linear system 

.  Since  is uniformly continuous with a bounded derivative one has the following 

bound 

 , (214) 

if  is chosen so that it minimizes the distance of the state from the consensus manifold, i.e. 

.  is a positive constant satisfying .  So the disturbance stemming 

from the nonlinear part of the dynamics satisfies the uniform growth bound (145).  

If one had a leader of the form 

  (215) 

The same conclusion applies, but now the system in question is the error system  

  (216) 

Using again (160) with the local neighborhood error  modified appropriately for the pinning 

terms one obtains the closed loop system in global form 

 , (217) 

where .  Since one can assume the nominal system to be 

exponentially stable there is a classical quadratic Lyapunov function  and with the 

growth bound  one has exponential stability given that the convergence 
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rate of the nominal system is sufficiently large.  The proof of the growth bound (146) in this case 

is identical to (214) with  being the leader's state. 

 

In the case of cooperative regulator problem designing the linear distributed synchronization 

algorithm  for the system  and finding the quadratic partial stability 

Lyapunov function  for it, with distance convergence sufficiently large to overpower 

the disturbance contribution (this begin measured by the matrix ) (167), guarantees 

synchronization of the original nonlinear system globally.   

Note that these results are different than conclusions based simply on the linearization, 

since the linearization guarantees distance convergence, i.e. synchronization, only locally, while 

the Lyapunov method gives an estimate of the attraction region to an appreciable distance from 

the consensus manifold .  For all initial states in this region of attraction, the trajectory 

converges to the consensus manifold, and in particular to the limit cycle there.  For the feedback 

control signals  vanishing on the consensus manifold the dynamics on the consensus 

manifold equals the dynamics of a single free, i.e. uncontrolled, agent. 

Since all the individual free agents' limit cycles, homeomorphic to , comprise the N-

torus  in the product total space  this is an invariant set for the non-

interacting agents. The resulting limit set for interacting agents will be the intersection of the 

 with the consensus manifold .  This is a subset of the invariant set for non-interacting 

agents . The fact that a dissipative distributed consensus algorithm, , changes the 

topological nature of the invariant sets for the closed loop system, as compared to the invariant 
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sets for the aggregation of free (not controlled) systems, can be considered an onset of complex 

behaviour. This qualitatively different, complex, behaviour was absent when the agents were 

not interacting. 

6.9 Numerical Example 

This section gives numerical examples of the disturbance observation schemes and the 

control protocols introduced in this chapter, in particular Section 6.6.  Consider the leader and 5 

agents having the double integrator form (202), (203), 

. 

The leader's disturbance is modelled as , so . 

The agents' disturbances  are modelled as an output of the disturbance generator that is not 

directly measurable.  It is assumed that the output  is directly measurable and it is used in 

the disturbance observer protocols. 

 

All agents' disturbances are modelled by the same model, thought with different, 

random, initial conditions, so both local (171) and distributed (173) observer shall be applied. 

The interconnection graph and pinning gains are given by  

,  . 

First we observe the behavior of the multi-agent system when disturbances are not 

compensated, that is under the distributed synchronization control for the nominal systems. 
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Then we compensate for the leader's disturbances assuming it alone acts on the system. 

Further, the agents' disturbances are allowed to act as well. They are estimated using both local 

and distributed observer, comparing the synchronization performance in both cases.  For the 

design of the synchronization control law (204) we chose the local feedback gain using the 

Riccati design (163) , with the coupling constant . This 

corresponds to the choice  in (164).  For the observers we made the following 

choices. The local observer gain is  which is obtained from the observer 

Riccati equation (175), (176). This corresponds to the choice  in (176). The same 

observer gain was used for the distributed agents' disturbance observer (173) with the coupling 

constant .  The distributed leader input observer coefficients were chosen according to 

the Riccati design detailed in Theorem 6.3, with . This gives the necessary 

coefficients as . Coefficients were deliberately chosen to 

give slow convergence so that the effects of leader's input estimation would be discernible. 

Figure 6.1 depicts the generated agents' disturbance signals, while Figure 6.2 and 6.3 

show the observer errors for local and distributed observers. The observers are seen to 

converge to the true values of agents' disturbances since their observer errors converge to 

zero. Small periodic deviations of observer errors from zero seen in Figure 6.2 and 6.3 are 

artifacts of computing errors. 
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Figure 6.1 Disturbances acting on agents  

 

Figure 6.2 Agents' disturbance local estimate errors 

 

Figure 6.3 Agents' disturbance distributed estimate errors 

 

Figure 6.4 gives a comparison of observer convergence for local and distributed 

observers of agents' disturbances. In this particular instance the local observers converge faster 

then the distributed observer. Though generally this need not be the case, and the use of a local 
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versus a distributed observer is dictated by whether it is possible to measure absolute or only 

relative quantities. 

 

Figure 6.4 Comparison of local and distributed agents' disturbance estimate errors 

 

The leader's disturbance signal, which is also interpreted as an input, is given together 

with the agents' estimates of the same in Figure 6.5.  All agents' estimates are seen to converge 

to the leader's input signal. 

 

Figure 6.5 Leader's input distributed estimates 
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The remaining figures show the dynamics of the multi-agent system, i.e. the first states 

of all agents, in different circumstances. Figure 6.6 shows the case where the leader's input is 

not compensated, and the agents' disturbances do not act on the system. Synchronization is 

not achieved since the leader's disturbance prevents it. Notice that the effect of leader's 

disturbance gets distributed to all the following agents. Then, the leader's disturbance is 

estimated and compensated which results in synchronization to the leader's trajectory as shown 

in Figure 6.7. 

 

Figure 6.6 Agents' first states, agents disturbances do not act, there is no leader input 

compensation- synchronization to the leader is not achieved 

 

Figure 6.7 Agents' first states, leader's input is estimated and compensated, agent disturbances 

do not act, synchronization to the leader is achieved 

 

However, when the disturbances act on the agents the synchronization is not achieved, 

as depicted in Figure 6.8. Figures 6.9 and 6.10 show cases of synchronization when the agents' 
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disturbances are also estimated and compensated. First by the local observers, depicted in 

Figure 6.9, then by the distributed observers, depicted in Figure 6.10.  

 

Figure 6.8 Agents' first states, leader's input is compensated, but disturbances acting on the 

agents are not compensated. The synchronization is not achieved 

 

Figure 6.9 Agents' first states, leader's input is compensated, agents' disturbances are locally 

estimated and compensated. Synchronization is achieved. 
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Figure 6.10 Agents' first states, leader's input is compensated, agents' disturbances are 

distributively estimated and compensated. Synchronization is achieved. 

 

6.10 Conclusion 

To conclude, this chapter presents various methods of disturbance estimation in multi-

agent systems for the disturbances acting on the leader and on the following agents.  If the 

nominal system reaches synchronization exponentially then it possesses a type of cooperative 

robustness which can be quantified by a Lyapunov function.  However, in many cases such 

robustness alone does not guaranty that the control goal of synchronization is attained when 

disturbances are present.  Disturbance estimators are used to guarantee the control goal, i.e. 

synchronization, even in presence of disturbances.  Special applications were considered; the 

case of there being an input driving the leader, which needs to be distributively observed by all 

the following agents, the case of second-order double-integrator systems with disturbances 

acting on the leader and the agents, and the case of heterogeneous agents.  Computer 

simulations show effectiveness of the proposed observation schemes and control design 

methods on the example of second-order double-integrator systems.  This offers a comparison 

of multi-agent system performance with and without disturbance compensation.  It can be seen 

from the presented example that good quality disturbance estimation and compensation is a 

necessary prerequisite for high performance multi-agent systems.  
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CHAPTER 7 

COOPERATIVE OUTPUT FEEDBACK FOR STATE SYNCHRONIZATON 

7.1 Introduction 

The last two decades have witnessed an increasing interest in multi-agent network 

cooperative systems, inspired by natural occurrence of flocking and formation forming. These 

systems are applied to formations of spacecrafts, unmanned aerial vehicles, mobile robots, 

distributed sensor networks etc. 1,2,3,4,5,6,7,8,9. Early work with networked cooperative 

systems in continuous and discrete time is presented in 1,2,3,4,6,7. These papers generally 

referred to consensus without a leader. We call this the cooperative regulator problem.  There, 

the final state of consensus depends on initial conditions.  By adding a leader that pins to a 

group of other agents one can obtain synchronization to a command trajectory using a virtual 

leader, also named pinning control, 8,13,29.  We call this the cooperative tracker problem. In 

the cooperative tracker problem all the agents synchronize to the leader's reference trajectory.  

Necessary and sufficient conditions for synchronization are given by the master stability function 

10, and the related concept of the synchronizing region, 8,11,12. For continuous-time systems 

synchronization was guaranteed, 12,13, using local optimal state-feedback derived from the 

algebraic Riccati equation.  It was shown that, using Riccati design of the local feedback gain 

for each node guarantees an unbounded right-half plane synchronization region in the s-plane. 

This allows for synchronization under mild conditions on the directed communication topology. 

However, the entire state is not always available for the feedback control purposes.  In 

such instances one possible solution is to use a dynamic output-feedback, as detailed 

in,13,28,30. There, the observer based dynamic cooperative regulator was used to guarantee 

state synchronization.  This chapter investigates conditions under which state synchronization is 

asymptotically achieved by static output-feedback.  Static output-feedback is simpler, and more 

easily implementable than dynamic output-feedback. No additional state observation is needed. 
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The structure of the chapter is as follows, Section 7.2 presents the multi-agent system 

dynamics and defines the control problem.  Section 7.3 derives sufficient conditions on the 

distributed output control that guarantee the control goal.  Following sections expand on the 

results of Section 7.3.  Namely, Section 7.4 describes the distributed output-feedback in two-

player zero-sum game context. Sufficient conditions are derived that allow for a solution of the 

global two-player zero-sum game by the distributed output-feedback.  Section 7.5 specializes 

results of Section 7.4 to the case where the disturbance signal is absent, i.e. the cooperative 

globally optimal output-feedback control problem.  Conditions are shown, under which the 

considered distributed output-feedback control is optimal with respect to a quadratic 

performance criterion, implying state synchronization. Section 7.5 can be seen as 

complementing the work presented in Chapter 4 that discusses global optimality of cooperative 

control laws for consensus and synchronization in the full-state feedback case.  Section 7.6 

examines the condition on the graph topology appearing in Sections 7.4 and 7.5, and identifies 

the key property of the graph matrix that satisfies that condition.  Conclusions are presented in 

Section 7.7. 

7.2 Synchronization With Distributed Output Feedback Control 

The multi-agent system under consideration is comprised of  identical agents and a 

leader, having linear time-invariant dynamics.  Let the leader system be given as 

  (218) 

and the following agents as 

  (219) 
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Definition 7.1:  The distributed synchronization control problem, for a multi-agent system (219) 

with a leader (218), is to find distributed feedback controls, , for agents, that guarantee 

.  We call this the cooperative tracker problem. 

Define the local neighborhood error 

 , (220) 

The feedback control signal for agent i is chosen as 

 . (221) 

The expression 

 , (222) 

is the local neighborhood output error.  Let  be the synchronization error.  In global 

form one has , so 

 , (223) 

which appeared in 6,8. Given that the graph contains a spanning tree with at least one non zero 

pinning gain connecting into a root node, the matrix  is nonsingular, 6, therefore 

.  In global form, the local neighborhood output error, (222), equals 

 . (224) 

Expression (224) reflects the constraint on the information available for distributed feedback 

control. The communication topology, determined by the matrix , and the structure of the 

output matrix  determine which states, and which parts thereof, can be used for distributed 

control purposes. 

The choice of feedback (221) gives the closed loop agent system as 

 , (225) 
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which yields the dynamics in global form 

 . (226) 

The synchronization error global dynamics follows as 

 . (227) 

Lemma 7.1.  The matrix  is Hurwitz if and only if all the matrices 

 are stable, where  are the eigenvalues of the graph matrix . 

Proof:  Upon applying the state transformation, , where  is a triangular 

matrix, to , one obtains the system matrix 

 . (228) 

The block-diagonal elements of (228), , determine the stability of the original 

matrix, . ■ 

The result of Lemma 7.1. allows for the interpretation of the stability properties of system (227) 

in the context of robust stabilization for a single agent system.  Before proceeding further, a 

useful concept of a synchronizing region for output feedback is introduced.  The notion of the 

synchronizing region for output feedback appeared in 28. 

Definition 7.2:  Given matrices , and the feedback gain , the synchronizing region 

for the matrix pencil  is a subset of the complex plane, 

.  This we call the synchronizing region for output feedback. 

Hence, the matrix (228) is stable if and only if all the scaled graph matrix eigenvalues, 

, are in the synchronizing region for output feedback of the matrix pencil 

 . (229) 
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With the system  considered as given, the synchronizing region for output feedback, 

, depends on the choice of the local output feedback gain . 

7.3 Local Output Feedback Design 

This section investigates a specific choice of the local output feedback gain, , and 

the pertaining synchronizing region for output feedback.  The chosen local output feedback gain 

is determined by the solution of the output algebraic Riccati-type equation, 66, as detailed in the 

following subsection. 

7.3.1 Output Feedback Gain 

Let the local output feedback gain  satisfy the following relation for some matrix , 

 , (230) 

where the matrix  solves the output algebraic Riccati-type equation 

 . (231) 

First we show that the output-feedback (230) is stabilizing for the system . This result, 

presented here as a proposition, was mentioned in 66. 

Proposition 7.1.  Let the linear time-invariant system be given by matrices . Let there 

exists a positive definite solution, , of the output algebraic Riccati-type equation  

 . (232) 

Then, the output-feedback, 

 , (233) 

with the output gain, , satisfying 

 , (234) 

for some matrix , is a stabilizing output feedback for the matrix . 
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Proof:  Take the quadratic Lyapunov function, , for the system determined by the 

matrix .  The matrix  is chosen as a solution of the output algebraic Riccati-

type equation (232).  The time derivative of this Lyapunov function is determined by the matrix 

 

With the choice of the output feedback gain satisfying (234), this becomes 

 

hence the stability of the matrix  is guaranteed. ■ 

7.3.2 The Guaranteed Synchronizing Region for Output Feedback 

For the complex matrix pencil, , one adopts a similar approach to find the 

guaranteed synchronizing region for output feedback.  This motivates the following theorem. 

Theorem 7.1.  Let the multi-agent system be given by (218), (219).  Let the graph have a 

spanning tree with at least one non-zero pinning gain connecting to a root note.  Choose the 

distributed static output feedback control (221), where the output feedback gain, , satisfies 

(234).  Let the following abbreviations be introduced 
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i. The guaranteed synchronizing region for output feedback is an interior of an elliptic 

region in  if  and .   

ii. The guaranteed synchronizing region for output feedback reduces to the empty set if 

 and .  

iii. The guaranteed synchronizing region for output feedback is a hyperbolic region in , 

having two connected components, if  and .  

iv. The guaranteed synchronizing region for output feedback is a hyperbolic region in , 

having a single connected component if  and . 

Proof:  Take the quadratic Lyapunov function, , for the complex system (229). The 

positive definite real matrix, , is chosen as a solution of the output algebraic Riccati-type 

equation (231).  The time derivative of this Lyapunov function is determined by the matrix 

, 

which can be further written, by completing the squares, as 

 

The choice of the output feedback satisfying (230) makes this expression equal to 
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The sufficient condition guaranteeing the synchronizing region for output-feedback then 

becomes 

 

allowing the assessment of the output synchronizing region in .  In particular, this expression 

is equivalent to 

 

whence one finds the sufficient condition for the synchronizing region for output-feedback to be 

 
.(238) 
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, since on the  the inequality (238) reduces to the tautology, .  The 
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 (239) 

The conservative nature of the stability condition (239), in this case, is the price to pay 

for simplicity.  Introducing the abbreviations (235),(236), renders the condition (239) for the 

synchronizing region for output-feedback to a considerably simpler form 

 
. (240) 

The geometry in  determined by this expression can be elucidated by explicitly calculating 

the bound for .  Assuming , which, given positiveness of b, 

is necessary for the inequality (240) to hold, one can square both sides to obtain an equivalent 

inequality  
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This equals 

  

and after some straightforward algebraic manipulations one obtains an expression 
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At this point, for the sake of simplicity, further abbreviations, (237), are introduced yielding the 

expression, .  Finally, by completing the squares in , one finds 

the geometrical meaning of the inequality (240), expounded as 
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interior of the elliptic region for , or an empty set for .  If, alternatively, 

 one has a hyperbolic region.  This region has two connected components if 

, or a single connected component if .  ■ 

In case ii) of Theorem 7.1, the guaranteed synchronizing region for output-feedback 

reduces to an empty set.  However, the stability condition (240) is conservative, hence this does 

not mean that the actual synchronizing region is empty. By the result of Proposition 7.1, given 

the output-feedback gain (234), the complex number  is an element of a synchronizing 

region for output-feedback, therefore the latter cannot empty. 

 

Figure 7.1 The connected and disconnected hyperbolic regions of Theorem 7.1. 

 

Remark 7.1:  Notice that in case  one recovers the unbounded synchronizing region 

characteristic of the full-state feedback, 12,13, 
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synchronizing region for output-feedback.  As  grows this hyperbola can turn into an ellipse, 
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making the synchronizing region for output-feedback bounded.  In the case of unbounded 

hyperbolic region the asymptotes of the hyperbolae bounding the region in  give an angle 

within which all the graph matrix, , eigenvalues should reside in order that they can be 

scaled into the synchronizing region by radial projection; achieved by a coupling gain .  Of 

course, having an unbounded synchronizing region is preferable, but the existence of it is 

determined by the size of .  Depending on the system matrices, , the choice, 

, generally cannot be made.  The size of in any particular case can be interpreted as 

a measure of how different the output-feedback is from the full-state feedback. 

7.4  Synchronization of Multi-agents Systems on Graphs 

This section discusses the two-player zero-sum game framework for output-feedback 

and gives conditions under which the cooperative distributed static output-feedback is a solution 

of the global two-player zero-sum game.  The multi-agent system has a leader 

  (242) 

and the following agents, 

  (243) 

where  are the disturbance signals acting on the agents.  One is interested in the dynamics 

of the synchronization error , .  In global form this dynamics reads 

  (244) 

The output of (244) has been redefined bearing in mind its use in the control law (221). The 

system (244) has two inputs, and the theory of two-player zero-sum games, 44, can be applied.  
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Given a performance criterion, , and a dynamical system with two inputs, 

,u d , the two-player zero-sum game puts the control  and disturbance  at odds with one 

another.  The objective of the control is to minimize the performance criterion , while the 

objetive of the disturbance is to maximize it. Hence, anything one input gains in its objective is 

lost by the other.  For games in general, the concept of Nash equilibrium is of central 

importance, 35,44.  

Definition 7.3:  Given a performance criterion, , the policies  are in the Nash 

equilibrium if 

. 

According to the Nash condition, if both players are at equilibrium, then neither has any 

incentive to change the policy unilaterally, since unilateral changes make one’s performance 

worse.  The two player zero sum game has a unique solution if a game theoretic saddle point, 

, exists, that is if the value of the performance criterion at the Nash equilibrium, 

, satisfies 

 

Having introduced this much of the dynamic game theory, 44, the main result of this 

section is presented as the following theorem. 

Theorem 7.2.  Let the synchronization error dynamics with disturbances acting upon the agents 

be given in global form as (244).  Let the graph have a spanning tree with at least one non-zero 

pinning gain connecting to a root node.  Suppose there exist matrices , symmetric and 

positive definite, satisfying 

  (245) 

  (246) 

0
( , , )J x u d
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0
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* *
,u d

* * * *
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* *
( , )u d

* *

0 0
( ) ( , , )V x J x u d=

*

0
( ) min max ( (0), , ) max min ( (0), , )

u ud d

V x J x u d J x u d= =

1 2,P P

1 1
( )P cR L G= +

1 2 1

2 2 2 2 2 2 2 2 2 22 0
T T T T

A P P A Q P BR B P P DD P M R Mγ− − −
+ + − + + =



 

169 

 

 

for some , and the coupling gain, .  Define the 

output-feedback gain matrix, 
*

2
K , as the one satisfying 

 
* 1

2 2 2 2
( )

T
K C R B P M

−
= + , (247) 

with matrix  satisfying 

 . (248) 

for any 
*

2 2
K K≠ .  Then the control  

 
* *

2
( )u c L G K Cδ= − + ⊗ , (249) 

and the worst case disturbance 

 
* 2 1 T

d T D Pγ δ
− −

= , (250) 

are the solution of the two-player zero-sum game with respect to the performance index  

 , (251) 

where matrices  are given by 

, 

and either 

, with 

 (252) 

or 

, with 

 . (253) 

Proof:  Let the assumed output-feedback control be 

. 
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The Hamiltonian of the problem, with the quadratic value function, , equals 

  (254) 

The worst case disturbance, , is obtained from the stationarity condition 

 , (255) 

and with such a disturbance the Hamiltonian becomes  

. 

This quadratic form is determined by the matrix  

 

 (256) 

With system (244) at hand, the structured value function , and structured matrices 

 of the Theorem, one finds that the matrix (256) is equal to 

 

Choosing , of an appropriate dimension, one has  and 

. 

For the output-feedback one has 
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which is satisfied, given the global topology conditions, (245), and the local output feedback 

condition, (247), 

. 

Nothing in the conditions for output feedback, (245), (247), specifies the matrix .  Choosing 

, and using  gives 

. 

If one takes the  matrix to be  

, 

there follows that 

 

That is certainly satisfied if 

, 

. 

Alternatively, the choice  gives 

, 

suggesting the choice of  

 (257) 

or equivalently 

 , (258) 
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where . The global topology condition, (245), used in 

expressions (257), (258), gives matrices (252), (253). 

Hence, with the choice of the form of matrices , detailed in the Theorem one 

has the global output algebraic Riccati-type equation decoupled into local and global parts, 

expressing the conditions on the graph topology and the local output feedback. 

In order for the output feedback control law, (249), and the worst case disturbance, 

(255), to be in the Nash equilibrium for the two player zero sum game , the Hamiltonian, (254), 

needs to satisfy an additional requirement 66.  With the quadratic value function, 

, one has the Hamiltonian 

, 

where the worst case disturbance is given as .  With this one finds that  

. 

The matrix determining this quadratic form can be further written as 

. 

Therefore, one finds for , satisfying the output feedback condition , that 

. 

The original Hamiltonian is now expressed as 

1 2

1 1 1 1 1( ) ( )
T

Q PR P c L G R L G
−

= = + +

, , ,Q R P T

( ) 0
T

V Pδ δ δ= >

2

( ( ) ( ) )

( )

T T T T T

T T T T

H P A BKC A BKC P PDd d D P

Q C K RKC d Td

δ δ δ δ

δ δ γ

= − + − + +

+ + −

* 2 1 T
d T D Pγ δ− −=

* 2 1

2 1

2 1

( , , , ) ( ( ) ( ) ) 2

( )

( ( ) ( ) )

T T T T

T T T T T

T T T T T

H V K d P A BKC A BKC P PDT D P

Q C K RKC PDT D P

P A BKC A BKC P Q C K RKC PDT D P

δ δ δ γ δ δ

δ δ γ δ δ

δ γ δ

− −

− −

− −

∇ = − + − +

+ + −

= − + − + + +

1 1 1

2 1

2 1

1 1 1 2 1

( ) ( )

( ) ( )

( ) ( )

T T T T

T T T T

T T T T T T T

T T T T T T

KC R B P R KC R B P PBR B P

P A BKC A BKC P Q C K RKC PDT D P

A P PA Q C K RKC PBKC C K B P PDT D P

A P PA Q KC R B P R KC R B P PBR B P PDT D P

γ

γ

γ

− − −

− −

− −

− − − − −

− − −

− + − + + +

= + + + − − +

= + + + − − − +

������������

*
K

* 1
( )

T
K C R B P M

−= +

* *

1 2 1 1

( , , , )

( )
T T T T T

H V K d

PA A P Q PBR B P PDT D P M R M

δ

δ γ δ− − − −

∇ =

= + + − + +



 

173 

 

 

 

Hence one has an optimal solution, or the game theoretic saddle point equilibrium if the matrix 

 is chosen such that 

. 

Taking into account that , the matrix condition in question can be written as 

 . (259) 

This is clearly satisfied in the special case of .  

Given that  since  is fixed by the graph structure, 

, this general condition, for the purposes of the Theorem, reduces to 

.

 

With  one obtains  

. 

The first term being positive definite and equal to  from (245), 

positive definiteness of the second term guarantees the positive definiteness of the entire 
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, 

then the entire global expression (259) is positive semidefinite. This implies that if the local 

output feedback  is the solution of the local optimal problem, or the game theoretic 

problem, then the same holds for the global problem. ■ 

Remark 7.2:  Conditions in Theorem 7.2, that the  matrix be positive definite, (252),(253), are 

not trivial conditions.  For those to be satisfied, in case i) one needs to have  

 . (260) 

According to the output Riccati-type equation (260) is equivalent to  

 , (261) 

which is a condition on the size of . Also, since , (261) implies that . 

Similarly in the case ii), one must have 

 , (262) 

which is equivalent to 

 . (263) 

The expression (263) is a condition on the size of .  Both conditions (261), (263) are 

satisfied in the case . Given conditions (261), (263), choosing the constant  

sufficiently great will make the matrix  in (251), positive definite. 

7.5 Case of Optimal Output Feedback 

This section addresses the special case of the two-player zero-sum framework, when 

the noise is absent.  Setting  in (244), one recovers the system in global form  
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or, equivalently, the synchronization error system with an output, , 
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 (265) 

The game theoretic problem reduces to the optimal control problem for output-feedback.  

Theorem 7.3.  Let the synchronization error dynamics be given in global form as (265).  Let the 

graph have a spanning tree with at least one non-zero pinning gain connecting to a root node.  

Suppose there exist matrices , symmetric and positive definite, satisfying 

  (266) 

  (267) 

for some , and the coupling gain, .  Define the 

output-feedback gain matrix, 
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2
K , as the one satisfying 
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 , (272) 

for the coupling gain  sufficiently great, if . ■ 

The proof is analogous to the proof of Theorem 7.2, noting that  makes the choice of  

immaterial, and both variants for , presented in Theorem 7.2, reduce to a single choice,(272).  

Note that if the graph does not contain the spanning tree, with at least one non-zero 

pinning gain connecting to a root node, then, with all other conditions of the Theorem 7.3 

satisfied, one has optimality, with positive semidefinite Q  in (271).  This implies convergence to 

the null space of Q .  The existence of the spanning tree, i.e. the non-singularity of the graph 

matrix, L G+ , is necessary for state synchronization. 

Remark 7.3:  For (271) to be a reasonable performance criterion, the matrix  needs to be 

positive definite. This is indeed the case, with the coupling gain  sufficiently great, if the 

graph has a spanning tree with at least one non zero pinning gain connecting to the root node 

and .  That this is positive semidefinite follows from the output Riccati-type 

equation if and only if .  This is a bound on the size of  as well 

as the condition on its kernel, .  Note also that one needs to have an 

unbounded synchronizing region for output feedback, as detailed in Theorem 7.1, in order to be 

able to increase the coupling gain  without an a priori upper bound, which is convenient fo 

guarantee that .  Namely, optimality with positive definite  in (271) implies 

synchronization, but synchronization need not be optimal. Hence, the conditions on  for 

synchronization, imposed by optimality requirements of Theorem 7.3, are conservative. 

7.6 Conditions on Graph Topology 

In this section we introduce a new class of digraphs which, to our knowledge, has not 

yet appeared in the cooperative control literature.  This class of digraphs admits a distributed 
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solution to an appropriately defined global optimal control problem.  The essential conditions for 

global optimality of the distributed control (268),(270), is (266).  Generally one can express that 

condition as  

 , (273) 

where ,  is a nonsingular (the pinned graph Laplacian) M-matrix, and 

.  Equivalently, 

 . (274) 

For the following classes of graph topologies one can satisfy this condition. 

7.6.1 Undirected Graphs 

Given that the graph is undirected, then  is symmetric, i.e. , so the condition 

(128) becomes a commutativity requirement  

 . (275) 

Then, .  More generally, condition (130) is satisfied by symmetric matrices  and 

 if and only if  and  have all eigenvectors in common. Since  is 

symmetric it has a basis of orthogonal eigenvectors, and one can construct  satisfying (130) 

as follows.  Let  be an orthogonal matrix whose columns are eigenvectors of , then 

 with  a diagonal matrix of real eigenvalues.  Then for any positive definite 

diagonal matrix, , one has that  commutes with  and satisfies the 

commutativity requirement (130).  Note that the  matrix thus constructed depends on all the 

eigenvectors of the graph matrix  in (128) 
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7.6.2 Directed Graphs with Simple Graph Matrix 

Given a directed graph, let it be such that the graph matrix, , in (128) is simple, 

then there exists a matrix  depending on all the eigenvectors of the graph matrix  

that satisfies the condition (128).  This result is given in the form of the following theorem. 

Theorem 7.4.  Let  be a graph matrix (generally not symmetric).  Then there exists a 

positive definite symmetric matrix  such that  is a symmetric positive 

semidefinite matrix if and only if the matrix  is simple, i.e. there exists a basis of 

eigenvectors of . 

Proof: (i)  Let  be simple.  Then it is diagonalizable, i.e. there exists a transformation 

matrix  such that , where  is a diagonal matrix of eigenvalues of .  

Then  

, 

implying  which further implies that . 

Let . Obviously,  and  since  (  

), 45. 

(ii)  Let  be a graph matrix.  Suppose there exists  satisfying the 

condition that  be a symmetric positive semidefinite matrix.  Then one needs to 

show that  is simple.  To do this, we will prove the contrapositive by contradiction.  So 

we suppose the negation of the contrapositive.  That is, suppose  is not simple but that 

there exists  satisfying the condition  is a symmetric positive 

semidefinite matrix.  

Since  is not simple, there exists a coordinate transformation bringing  to a 

Jordan canonical form , with nonzero superdiagonal (otherwise  would 
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be simple). Then one has . But then 

. Therefore there exists  such that . 

Without loss of generality let us assume that the first Jordan block is not simple, and with a 

slight abuse of notation  will refer to the corresponding block in .  Then one has that 

, where  is a nilpotent matrix having ones on 

the superdiagonal. This identity means that the first row and first column of  are zero, 

except for the last entry. However, then  cannot be positive definite, since there are 

vanishing principal minors (Sylvester's test). ■ 

7.7 Conclusion 

This chapter examines distributed output-feedback control for state synchronization of 

identical linear time-invariant agents. Cooperative stability of state synchronization is addressed 

using results derived from the single-agent robust stability properties of the local output-

feedback gain. This development is an extension of the synchronizing region methodology, well 

known in the full-state feedback case, to the case of output-feedback. It is shown that the 

guaranteed synchronizing region for output-feedback can be both bounded and unbound.  In 

the second part of the chapter the proposed distributed output-feedback leads to a solution of a 

specially structured two-player zero-sum game problem. Conditions for that are more strict than 

those for simple cooperative synchronization.  As a special case of the two-player zero-sum 

game problem, the optimal control problem is addressed.  Conditions are found under which the 

proposed distributed output-feedback control is optimal with respect to a quadratic performance 

criterion. These imply state synchronization. 
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CHAPTER 8 

FUTURE WORK 

8.1 Introduction 

This chapter gives a brief account of some future work directions and current results on 

basis of which a future development, in the opinion of the author, should be pursued.  Prior 

chapters presented results on static and dynamic, state and output, distributed feedback control 

for the state consensus. The standing assumptions are that all agents be identical and that the 

states of neighboring agents be instantly available for the purposes of distributed feedback 

control. In realistic applications of multi-agent systems one can expect both assumptions to fail. 

Therefore, it becomes of interest to investigate multi-agent system with communication delays, 

and heterogeneous systems, where agents are not dynamically identical.  Heterogeneous multi-

agent systems are briefly mentioned in Chapter 6, in the context of the robustness of 

cooperative stability. 

Two extensions of the hitherto introduced concepts are considered. The state 

consensus problem of identical agents that have a control signal delay is mentioned first.  The 

second research direction deals with the output consensus problem for, generally, 

heterogeneous multi-agent systems. 

Distributed communication always imparts certain communication delays, and since 

multi-agent systems are assumed to function via distributed communication and control one 

needs to take the communication delays into account. Section 8.1. extends the spirit of single 

agent analysis presented in Chapters 2 and 3, as well as in 12,13,28,29,30. To summarize, this 

approach uses single agent robustness to determine the synchronizing region. This then gives 

robustness with respect to the graph topology. It is shown here that the stability analysis based 

on Lyapunov-Razuminkhin functions, 51,52, allows one to extend the notion of conventional 

synchronizing region of a matrix pencil to a delay dependent synchronizing region for matrix 

pencils with delays. Such a result can be used to investigate the dependence of robustness to 
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the graph topology in relation to control delays, and vice versa. One is looking at the robustness 

of a single agent system to communication graph topology as well as to a time-delay in controls. 

Heterogeneous agent output synchronization is the second field of future work where 

results of Chapters 3 and 6 could be applied. An approach to output synchronization, present in 

the current literature 61,62,63,64, involves output tracking via a reference model, and 

synchronization of the reference generators. In practical terms this means one has a distributed 

dynamic regulator, and agent's regulators need to communicate their states in a distributed 

fashion. Separation principle is found in a sense that output tracking of local reference 

generators is independent from the synchronization of those generators, 61,63. Therefore, one 

solves the distributed synchronization problem for reference generators and the reference 

output tracking problem for each system separately.  A simplification in the structure of such 

dynamic regulators is achieved if, instead of having regulators communicating their states, one 

can use the local output neighborhood errors as inputs to the regulators. It is plausible that with 

good output reference tracking, the difference between such a novel, simpler, algorithm and the 

more complicated ones already present, 61,62,63,64, would not change cooperative stability 

and convergence of the entire system. 

8.2 Multi-agent System Synchronization With Control Delays 

This section expounds the dynamics of multi-agent systems consisting of identical 

agents, where the agents' systems have a control signal delay. In that case, each agent is 

described by a single-delay retarded functional differential equation. The stability of retarded 

functional differential equations is a problem well known in the literature 

51,52,53,54,55,56,57,58,59, motivated by the frequent use of such equations as models in 

process control, 51. Classical results for stability of linear retarded differential equations are 

given here together with the generalization to complex equations resembling the results in 

Chapter 2, and 12, 13, for matrix pencils.  
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8.2.1 Dynamics of the Multi-agent System with Constant, Uniform, Input Signal Delay 

Let the single-agent system be given as a linear time-invariant system with control 

signal delay, which is constant in time and the same for all agents, 

 
. (276) 

Let there be a leader, whose system is given as, 

 . (277) 

The control is calculated as a linear feedback of the local neighborhood error 

, 

as  

, 

where  is the local linear feedback gain matrix to be detailed later.  This gives the closed 

loop single-agent system dynamics 

 . (278) 

Introducing the synchronization error, , one has in global form, 

 ,
 

(279) 

And the synchronization error system is given as, 

 . (280) 

This is a linear retarded functional differential equation of the form, 

 . (281) 

Existence of solutions to the initial condition problem for this equation is given by the Schauder 

fixed point theorem and uniqueness follows from Lipschitz continuity of the functional, 51.  
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However, instead of analyzing the entire global system, (280), the analysis can be 

simplified as follows. In the Laplace domain the synchronization error system, (280), can be 

written as  

 

So, the crucial object for consideration is the transfer function from the initial condition, 

 ,
 

(282) 

that needs to be asymptotically stable. The characteristic polynomial of the transfer function 

(282) is given as  

 .  (283) 

Knowing that coordinate transformations do not change the determinant of a matrix, one can 

find a coordinate transformation, , where  is an upper triangular matrix, 

thereby simplifying the expression (283) considerably.  Thus one obtains  

, 

where  are eiganvalues of . Hence, each factor in the product, , 

needs to be stable.  This is equivalent to the stability of a set of linear retarded functional 

differential equations with a single delay 

 . (284) 

These are of the form, , 52,55, and are of the order of a single agent, 

(276). It is more advantageous, however, to separate the dependence from the, possibly 
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complex, scaled eigenvalues, , of the graph matrix , and instead investigate the 

complex retarded functional differential equation 

 , (285) 

, . The aim is to guarantee a synchronizing region in the complex plane in 

dependence of the delay, , so that all scaled eigenvalues, , are in that region, which in 

turn shall guarantee stability, that is synchronization, with an admissible delay. For that purpose, 

one first looks into the classical stability results for the retarded functional differential equation, 

 , (286) 

and applies those results, mutatis mutandum, to the case of the complex retarded functional 

differential equation (285). 

8.2.2 Stability Results for Linear Single-delay Retarded Functional Differential Equation 

The following theorems will be given in the most general setting for retarded functional 

differential equations, 51,52. These are sufficient conditions for stability in presence of delays.  

Definition 8.1:  The retarded functional differential equation is the equation of the form 

 , (287) 

where ,  is generally a time dependent functional from the space of 

continuous functions on a compact interval; . The initial 

condition  is also an element of that space.  

Definition 8.2:  The trivial solution of the initial value problem is assumed to be a fixed point; 

, . Then the trivial solution of the retarded functional differential equation is stable 

(uniformly) if   such that  
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and asymptotically stable (uniformly) if it is stable and   and  such 

that  

 . ■ 

Note that, since we are dealing here with time-invariant functional, all stability properties hold 

uniformly in time. 

The next two theorems give sufficient conditions for (asymptotic) stability of the fixed 

point solution of retarded functional differential equations. 

Theorem 8.1. (Lyapunov-Krasovskii theorem).  Let  be a bounded functional, meaning it 

takes bounded (in sup norm)  to bounded vectors in . Further let  be class  

functions; that is non-decreasing positive functions having value of 0 at 0. Let there exist a 

continuous functional  on  such that for some  for all functions  satisfying 

 one has 

 
, (288) 

 . (289) 

Then, the trivial solution, , is uniformly asymptotically stable. Furthermore, the 

preimage in C of  is an invariant subset in the region of attraction in the space C. ■ 

Theorem 8.2. (Lyapunov-Razuminkhin theorem).  Let  be class  functions, and let 

 be a scalar continuous non-decreasing function.  If there exists a continuous 

function  such that for some , for all  satisfying 

, one has 

 , (290) 
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 . (291) 

Then, the trivial solution, , is uniformly asymptotically stable. Furthermore, the 

set in C where  is an invariant subset in the region of attraction in the 

space C. ■ 

Sufficient conditions for asymptotic stability are now derived for the special case of a 

linear single delay retarded functional differential equation as an application of general 

theorems of Krasovskii and Razuminkhin.  Let the system under consideration be described by 

the linear single-delay retarded functional differential equation, 

 .  (292) 

The following theorems give sufficient conditions for asymptotic stability, 52,54,55.  

Theorem 8.3. (Lyapunov-Krasovskii delay independent result).  Let there exist positive definite 

symmetric matrices  such that  

 , (293) 

Or equivalently, by Schur complement,  

 . (294) 

Then the trivial solution of the system (292), , is uniformly asymptotically stable. 

Proof:  Choose the Lyapunov-Krasowskii functional as 

. 

Then one finds the bounds  and the 

derivative turns out to be 
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, 

where  is the greatest eigenvalue of the negative definite block matrix defining the quadratic 

form. This completes the proof. ■ 

Theorem 8.4. (Lyapunov-Razuminkhin delay independent result).  Let there exist positive 

definite symmetric matrices  such that  

 , (295) 

 . (296) 

Then the trivial solution of the system (292), , is uniformly asymptotically stable. 

Proof: Choose the Lyapunov-Razuminkhin function as . The lower and upper 

bound are satisfied  

, 

and the derivative equals 

. 

Given any vectors  and a matrix , one has that  

, 

(follows from ). Therefore, one finds that 
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whence it follows, 

. 

According to the Lyapunov-Razuminkhin stability condition, if there exist  such that 

 whenever  one has asymptotic 

stability. By the condition of the Theorem, there exists a  such that  

. 

Let , then if  one has  

, 

completing the proof. ■ 

Theorem 8.5. (Lyapunov-Razuminkhin delay dependent result).  Let there exist positive definite 

symmetric matrices , and . Let the following conditions be satisfied 

 , (297) 

 , (298) 

(equivalently ). 

Then the trivial solution of the system (292), , is uniformly asymptotically stable. 

Proof:  Observe that, since the solution  of (292) is continuously differentiable, one has  
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. 

Choosing the Lyapunov-Razuminkhin function as  one finds its 

derivative to equal 

. 

We denote the integral terms in the last line of the above expression as 

, 

. 

One finds by completing the squares with  that  

 

Hence, 

 

2

2

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

t

d d d d

t

t

d d d

t

x t Ax t A x t Ax t A x t A Ax s A x s ds

x t A A x t A Ax s A x s ds

τ

τ

τ τ

τ

−

−

= + − = + − + −

= + − + −

∫

∫

�

�

( ( )) ( ) ( ) 0T
V x t x t Px t= >

2 2

( ( )) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

T T

T
t t

T

d d d d d d

t t

T T

d d

t

T T T T T

d d

t

d
V x t x t Px t x t Px t

dt

A A x t A Ax s A x s ds Px t x t P A A x t A Ax s A x s ds

x t A A P P A A x t

x s A A Px t x t PA Ax s ds x

τ τ

τ

τ τ
− −

−

= +

   
= + − + − + + − + −   
   

 = + + + 

− + −

∫ ∫

∫

� �

2 2( )( ) ( ) ( ) ( )

t

T T

d d

t

s A Px t x t PA x s ds
τ

τ τ
−

− + −∫

0

1
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

t

T T T T T T T T

d d d d

t

x s A A Px t x t PA Ax s ds x t A A Px t x t PA Ax t d

τ τ

η ϑ ϑ ϑ
− −

= − + = − + + +∫ ∫

0

2 2 2 2

2
( )( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )

t

T T T T T T

d d d d

t

x s A Px t x t PA x s ds x t A Px t x t PA x t d

τ τ

η τ τ τ ϑ τ ϑ ϑ
− −

= − − + − = − − + + − +∫ ∫

1 20, 0P P> >

1 1

1 1 1

1

1 1

1

1 1

( ( ) ( )) ( ( ) ( )) 0

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0

( ) ( ) ( ) ( ) ( ) ( ) ( ) (

T T T T T

d d

T T T T T T T T

d d d d

T T T T T T T T

d d d d

A A Px t P x t P A A Px t P x t

x t PA AP A A Px t x t PA Ax t x t A A Px t x t P x t

x t PA Ax t x t A A Px t x t PA AP A A Px t x t P x

ϑ ϑ

ϑ ϑ ϑ ϑ

ϑ ϑ ϑ

− −

−

−

+ + + + ≥

+ + + + + + + ≥

 − + + + ≤ + +  )t ϑ+

0

1

0

1

1 1

0

1

1 1 1

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

T T T T

d d

T T T T

d d

T T T T

d d

x t A A Px t x t PA Ax t d x t PA APA A Px t x t P x t d

x t PA APA A Px t x t P x t d

τ τ

τ

η ϑ ϑ ϑ ϑ ϑ ϑ

η τ ϑ ϑ ϑ

−

−

−

−

−

= − + + + ≤ + + +

≤ + + +

∫ ∫

∫



 

190 

 

 

In a similar manner, 

 

Hence, 

.

 

Inserting those bounds in the expression for the time derivative of the Lyapunov-

Razumnkhin function, one finds that 

. 

Under the condition that  one finds  

. 
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Following Razuminkhin stability condition one has that if , , 

for some , the time derivative of the Lyapunov-Razuminkin function satisfies  

. 

To find an appropriate  and , such that for  

one has , let us proceed similarly as in the proof of Theorem 8.4. If the 

condition (298) of the Theorem is satisfied then there exists  such that  

. 

Take , then  

 

so , completing the proof. ■ 

Notice that if stability is guaranteed for some  then it is also guaranteed 

, since the delay, , multiplies only positive (semi)definite terms and the matrix 

inequality is indeed satisfied for all smaller values as well. 

Corollary 8.1.  The conditions of Theorem 8.5 can be replaced by  

 
, (299) 

 
. (300) 

Proof:  Using a different square completion one obtains the bounds for the integral terms in the 

proof as, 
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In a similar manner  

 

Hence, 

 

Inserting those bounds in the expression for the derivative of the Lyapunov-Razuminkhin 

function and applying the conditions of corollary in the same manner as in the proof of Theorem 

8.5 one finds guaranteed asymptotic stability of the trivial solution. ■ 

Corollary 8.2. 55.  Assume that one has the asymptotic stability of the delay-free system 

characterized by the Lyapunov inequality 

 , (301) 

Choose . Then one has asymptotic stability for delays less than  
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Proof:  In conditions of Theorem 8.5, choose .  With  one 
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, 

is satisfied if  

. 

This is surely so if  

, 

meaning , whence the condition 

(302) on the delay follows, completing the proof. ■ 

It should be remarked that delay independent results, both Krasovskii and Razuminkhin, 

tend to give conservative stability conditions. These do not account for the actual value of the 

delay  and it is difficult to compare the effects of the delay on the known behavior of the delay 

free system. Delay dependent result, on the other hand, offers such a comparison, and allows 

for less strict stability conditions. 

8.2.3 Application to the Complex Retarded Linear Single-delay Functional Differential Equation 

Applying the results of the last section to a complex system 

  (303) 

one obtains estimates of the synchronizing region, that is the region of  for which the 

complex system, (303), is asymptotically stable.  The functions and functionals appearing in 

stability conditions are modified to accommodate for the fact that the system under 

consideration is now complex. State vectors  are allowed to be complex and the dagger, , 

denotes the hermitian adjoint, that is transposition and complex conjugation. This gives real 

valued Lyapunov-Razuminkhin functions and Lyapunov-Krasovskii functionals. Therefore one 

has 

, 
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and 

. 

The change, , in the stability conditions is justified by 

proving the results for the complex system (303), analogous to Theorem 8.3, 8.4, 8.5,. This 

shall be exemplified by presenting the proof of Theorem 8.5'. The sufficient conditions for the 

asymptotic stability of the complex system, (303), are given as the following theorems. 

Theorem 8.3'. (Lyapunov-Krasovskii delay independent result for the complex system).  Let 

there exist real positive definite symmetric matrices  such that  

 

, (304) 

or equivalently, by Schur complement,  

 . (305) 

Then, the trivial solution of (303), , is uniformly asymptotically stable. ■ 

Theorem 8.4'. (Lyapunov-Razuminkhin delay independent result for the complex equation).  Let 

there exist real positive definite symmetric matrices  such that  

 , (306) 

 . (307) 

Then, the trivial solution of (303), , is uniformly asymptotically stable. ■ 

Observing that in both the delay independent cases  multiplies a positive (semi) definite 

term, the guaranteed synchronization region shall surely be of the form  for some 

positive bound .  Even in classical cases the delay independent stability conditions are 

conservative, and especially this bounded synchronizing region is found unsatisfactory if one 

† †( ) ( ) ( ) ( ) ( )

t

t

t

V x x t Px t x Qx d
τ

ϑ ϑ ϑ
−

= + ∫

†, ( )T T

d d d d d
A A A A Aσ σ σ=� �  

0, 0P Q> >

0

T

d

T

d

A P PA Q PA

A P Q

σ

σ

 + +
< 

− 

2 1 0T T

d dA P PA Q PA Q A Pσ −+ + + <

( ) 0x t ≡

0, 0P Q> >

1P Q−≥

2
0

T T

d d
A P PA PA QA P Pσ+ + + <

( ) 0x t ≡

2
σ

rσ <

0r >



 

195 

 

 

compares it with the unbounded synchronizing region for the continuous time cooperative 

systems without delays, 13. Furthermore, it is not easy to draw comparison with the delay free 

case (case of ) from these conditions since they do not include any information on the 

delay.  These reasons compel one to adapt the delay dependent stability condition of Theorem 

8.5 and its corollaries to the case of complex linear single delay retarded functions differential 

equation. This result provides a clear connection with the delay free system.  For the sake of 

clarity the modified theorem is presented with the proof. 

Theorem 8.5'. (Lyapunov-Razuminkhin delay dependent result for the complex equation).  Let 

there exist real positive definite symmetric matrices , and . Let the following 

conditions be satisfied 

 , (308) 

 . (309) 

(equivalently: ) 

Then the trivial solution of (303), , is uniformly asymptotically stable for any delay 

. 

Proof:  Observe that, since the solution, , of (303) is continuously differentiable, one has  
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So, the original equation can be written as  
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Choosing the Lyapunov-Razuminkhin function as  one finds its 

derivative to equal 

. 

Looking at the integral terms in the last line of the above expression, we denote them  

, 

, 

One finds by completing the squares with  that  
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Hence,  

 

Inserting these inequalities in the expression for the time derivative of the Lyapunov-

Razuminkhin function one finds that 

. 

Under the condition that , one has  
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Following Razuminkhin stability condition, (c.f. Theorem 8.2) one has that if , 

, for some , the time derivative of the Lyapunov-Razuminkin function 

satisfies  

. 

To find an appropriate  and , such that for  one 

has , let us proceed similarly as in the proof of Theorem 8.4 and 8.5.  If the 

condition (309) of the Theorem is satisfied then there exists  such that  

. 

Take , then  

 

so , completing the proof. ■ 

The corollaries of Theorem 8.5 can also be similarly adapted to serve the present 

purpose. 

Corollary 8.1'.  The conditions of Theorem 8.5' can be replaced by  

 , (310) 

 . (311) 

Proof:  Using a different square completion one obtains the bounds for the integral terms in the 

proof as 
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. 

In a similar manner,  

. 

Hence 

 

Inserting those bounds in the expression for the derivative of the Lyapunov-Razuminkhin 

function and applying the conditions of the Corollary in the same manner as in the proof of 

Theorem 8.5' one finds guaranteed asymptotic stability of the trivial solution. ■ 

This corollary seemingly introduces the dependence of the condition only on , not on , 

but the down side is that now the dependence on  also appears in the condition for the 

matrix  and this complicates any effort to utilize the results of this corollary. 

Corollary 8.2'.  Assume that one has the asymptotic stability of the delay free system 

characterized by the Lyapunov inequality 

 , (312) 
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Choose . Then one has asymptotic stability for delays less than  

 . (313) 

Proof:  In conditions of Theorem 8.5 choose . The choice 

 satisfies the condition .  Then it follows that the condition of the 

Theorem 8.5, 

 

is satisfied if  

. 

This is surely so if  

, 

Implying that , whence the 

condition on the delay, (313), follows, completing the proof. ■ 

With the proofs of these analogous results one has a rigorous justification of using a 

simple change, , in the classical stability conditions, detailed in 

Theorem 8.3, 8.4, 8.5, and their corollaries, to address the stability of complex delay differential 

equation, (303). Making this change in delay dependent stability conditions leads to a 

dependence of stability of (303) on both  and .  This can be used to investigate the 

dependence of the synchronizing region for (303) on the delay . Such a delay dependent 

synchronizing region limits the maximal delay in dependence on the graph topology, or limits 

the graph topology in dependence of the maximal delay. 
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8.3 Output Consensus of Heterogeneous Agents 

This section discusses output consensus and output synchronization problems for multi-

agent systems. The state consensus problem requires all the agents to have states in the same 

state space. Otherwise the equality of states of all agents is not defined. Thus, even if one 

considers heterogeneous agents they still need to be of the same dimension, c.f. Chapter 6, 

Section 6.7. Output consensus problem requires all the system outputs to be of the same 

dimension. This allows fairly general heterogeneous agents. In fact, 32, 60, deal with passive 

affine in control agents, and show that static local neighborhood output error control guarantees 

output synchronization. Assumption on passivity allows for such a great degree of generality on 

the structure of agents' systems.  Here we do not consider passive systems, but general linear 

time-invariant systems, as presented in 61,62,63,64. 

8.3.1 Multi-agent System Dynamics and the Control Goal 

Let the multi-agent system consist of  agents of the form 

  (314) 

Let there exist a leader, having the dynamics 

  (315) 

Definition 8.3:  The distributed output consensus problem for the multi-agent system (314) is to 

find distributed controls, , such that as  , . The distributed output 

synchronization problem for the multi-agent system (314), (315), is to find distributed controls 

 such that as  , . 

8.3.2 Distributed Dynamic Control for Output Synchronization 

Define the local neighborhood output error as 

N

,

.
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 . (316) 

This signal can be used for distributed control purposes. Such a distributed control is then called 

distributed output feedback control. One can have static distributed output control, as was used 

in Chapter 7 for state consensus, or dynamic distributed output control, which seems more 

appropriate for the output consensus and synchronization problems of heterogenous multi-

agent systems, (314),(315).  

Proposition 8.1.  Let matrices , where  is stabilizable, define the linear 

time-invariant system, 

  (317) 

and the linear time invariant reference generator, 

  (318) 

Let there exist matrices solving the equations 

 . (319) 

Let  be a feedback gain such that the matrix  is Hurwitz.  Then the control 

  (320) 

makes the output  of (317) asymptotically track the reference output  of (318). 

Proof:  Under the control (320) the subspace of the total state space 
( 1)N n+� , having states 

, defined by  is invariant and stable, with respect to the dynamics (317), (318). 

On that subspace one finds that , hence .  That 

this subspace is invariant and stable follows from the dynamics 
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  (321) 

Therefore, by (319), this gives  

  (322) 

Showing both invariance and stability of the subspace .  That a feedback , 

stabilizing , exists follows from stabilizability of the pair . ■ 

The above result on output reference tracking is called the internal model principle, 61, 

and it is used for synchronization of multi-agent systems, (314), (318), as follows, 61,62,63. 

Each of the agents is endowed with a leader's state observer.  

 , (323) 

where . 

This is a distributed observation problem (c.f. Chapter 3, 6), 13,30.  One can guarantee, 

under appropriate stipulations, that all the local estimates, , converge to the true value of the 

leader's state, , (c.f. Chapter 6). Those estimates are used in the control law instead of the 

leader's state, . Hence, the distributed control takes the form 

 . (324) 

with , satisfying the equations  

 , (325) 

and the feedback gain , stabilizing the matrix . 
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Define the output synchronization error  

 , (326) 

the local reference tracking error, 

 , (327) 

and the observer error, 

 . (328) 

One has the relation, , connecting those different error signals, .  Global 

dynamics of ,  and  under the 

control protocol (323), (324), equals 

 . (329) 

It is evident from (329) that  subspace of the  space is invariant, and that on this 

subspace the  dynamics is asymptotically stable.  In fact, because of the upper triangular 

structure of the system matrix in (329), asymptotic stability of ,  and 

 is necessary and sufficient for the asymptotic stability of (329).  This 

then solves the problem of heterogeneous agents output synchronization. All agents' outputs, 

, asymptotically track the local output reference signals, , which, due to synchronization 

of the local leader's state estimates, asymptotically synchronize.  Hence, .  

The control (324) depends on the state on a single node and on the state of the local 

observer. The local observer dynamics, (323), depends on the local estimator output 

disagreement, requiering the local regulators to communicate their states, i.e. leader's state 

estimates, in a distributed fashion. 
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Bearing in mind the cascade structure of the proposed controller one might try to use a 

modified control law, 

 , (330) 

where the local neighborhood output error, (316), appears directly instead of (323). In that case 

the observer error dynamics equals 

 , (331) 

The local neighborhood output error couples the observer dynamics to the agents' dynamics. 

This term can be written as 

  (332) 

Since, by equations (325)  one has that  

 . (333) 

This then gives the global dynamics in form of 

 . (334) 

It is more advantageous for our purposes to describe the dynamics of the system (334) in the 

transformed coordinates  

 . (335) 

Applying the transformation (335) to (334) one obtains 

 . (336) 

The system (336) can be interpreted as 
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 . 

(337) 

The system (337) can be concisely written as 

 . (338) 

The dynamics (338) can be interpreted as a linear system, determined by the system matrix , 

stabilized with the proper choice of , together with a state dependent disturbance term, 

. Hence, the local output reference tracking error, , acts as a disturbance. This error is 

precisely the difference between the observer protocols (323) and (330). Depending on the 

growth bound of the disturbance term, limited by , one can have asymptotic stability of 

(337), or uniform ultimate boundedness.  Asymptotic stability implies , guaranteeing 

, and, therefore, solves the output synchronization problem, while uniform 

ultimate boundedness ensures that the deviations from the output synchronization and leader's 

state perfect estimation remain bounded. 

Clearly the proposed simplified control law, (330), requires the disturbance term to 

satisfy a certain growth bound, or equivalently, that the exponential convergence of the nominal 

system, , be sufficiently fast, (c.f. Chapter 6), 46.  Essentially, one tries to make the local 

output reference tracking sufficiently fast, in order to guarantee the asymptotic stability of the 

system (337). Additional investigation is required to determine the conditions under which this is 

achieved.  These more stringent conditions are the price to pay for simplifying the control law. 

A concluding remark on dynamic feedback control is appropriate here.  In order to solve 

the output synchronization problem one needs to stabilize the total multi-agent system on the 
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output consensus manifold. The output consensus manifold, , is a subspace of the state 

space 
Nn� , of the multi-agent system, determined by , ; in particular, for 

linear systems, (314), .  Augmenting the state space with the leader's state, 
0

x , 

one obtains the total state 
0

( , )x x  in the space 
Nn n×� � .  In this augmented space one defines 

the output synchronization manifold as a submanifold, , of 
Nn n×� � , where .  

However, we are interested in an even smaller manifold contained in 
2

S . We would like to 

consider the intersection of the submanifolds of 
Nn n×� � , determined by , for all i. 

We will denote this intersection by . But, on  one has the additional property that bounded 

 implies bounded . This property of state boundedness is not necessarily shared with the 

larger space obtained as the intersection of the submanifolds determined by .  

Hence, in the spirit of output regulation, as detailed in Proposition 8.1., one constrains the target 

set but obtains the property of state boundedness. 

By adding dynamic regulators one further augments the state space, 
Nn n×� � , to 

include the states of the regulators, . Thus, one ends up with states 
0 0

ˆ( , , )x x x  in the 

augmented space 
Nn Nn n× ×� � � . Within this augmented space, the control goal is to stabilize 

the invariant manifold determined by , (327),(328).  This manifold is contained in 

the output synchronization manifold of 
Nn Nn n× ×� � � .  Note that the entire output 

synchronization manifold need not be stable nor invariant, but stability and invariance must hold 

for the target set, . Stability properties detailed in Chapter 4 and 6 are applicable to 

the problem of stabilizing such target sets. Together with the internal model principle, 61, the 

results of Chapter 6 can be used to guarantee this control goal. 
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