
 

SCALAR EQUILIBRIA FOR n-PERSON GAMES 

 

by 

 

NARAKORN ENGSUWAN 

 

Presented to the Faculty of the Graduate School of 

The University of Texas at Arlington in Partial Fulfillment 

of the Requirements 

for the Degree of 

 

DOCTOR OF PHILOSOPHY 

 

THE UNIVERSITY OF TEXAS AT ARLINGTON 

August 2013 

 

 
  



 

Copyright © by NARAKORN ENGSUWAN 2013 

All Rights Reserved 



 

iii 
 

ACKNOWLEDGEMENTS 
 

 Many people have assisted and supported in the completion of my doctoral 

program. I extend my sincere gratitude to you all. 

In particular, I would like to express my deep appreciation to my supervising 

professor, Dr. H.W. Corley. This dissertation would not have been completed without 

his guidance, suggestions, and help. His scholarly advice and continual encouragement 

were invaluable in directing me academically and personally throughout my years at UT 

Arlington. He contributed enormously to my personal and intellectual development. I 

am also grateful to Dr. Don Liles, Dr. Victoria Chen, and Dr. Jay Rosenberger, who 

funded, supervised, and advised me as research assistant during the first two year of my 

doctoral program. In addition, I am thankful to the other members of my committee, Dr. 

Jamie Rogers, for their time and suggestions. These professors are but a few of the 

teachers who have instilled in me their knowledge and encouraged me to develop my 

skills. I am most grateful to you all. 

I acknowledge with appreciation many friends at COSMOS for our valuable 

discussions on many things.  

I also appreciate the assistance of the support staff at the Industrial 

Manufacturing and Systems Engineering, in particular, to Julie Estill, Richard Zercher, 

and Kim Williams, whose assistance I often required.     



 

iv 
 

Most importantly, I express my sincere appreciation to my family for their love, 

support, and understanding - especially my father, Wiwat Engsuwan; and my mother, 

Veenus Engsuwan; and my sisters Supanee and Nopparat Engsuwan. My gratitude 

extends to all other family members in Thailand.  

July 25, 2013 



 

v 
 

ABSTRACT 

 
SCALAR EQUILIBRIA FOR  

n-PERSON GAMES 

 

NARAKORN ENGSUWAN, PhD 

 

The University of Texas at Arlington, 2013 

 

Supervising Professor:  H.W. Corley 

 In this dissertation we develop a scalarization approach for one-shot, n-person 

games by defining the notion of Scalar Equilibria. We first show that existing solution 

concepts can be represented as Scalar Equlibria. For example, Regret, Disappointment, 

and Joint Equilibrium can be determined by defining Regret, Disappointment, and Joint 

Scalar Equilibria. These scalar equilibria are useful for finding pure strategies when 

pure Regret, Disappointment, and Joint Equilibria do not exist. Next, we present the 

Maximin Scalarization Equilibrium to yield maximin solution concept.  

 In addition, we propose other Scalar Equilibria for various notions of rationality. 

The Aspiration Scalar Equilibrium is developed for an aspiration criterion when players 

have specified payoff aspiration levels. Then Risk, Greedy and Cooperative Scalar 

Equilibrium are developed for risk, greed, and cooperative criteria, respectively. 
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Moreover, Sequential, Simultaneous, and Priority Scalar Equilibria are developed as 

well as Coalition Scalar Equilibria. In a Sequential Scalar Equilibrium we sequentially, 

in some chosen order, apply other scalarizations to Scalar Equilibrium of the game until 

we find a unique one if possible. In a Simultaneous Scalar Equilibrium we combine the 

criteria for various scalarizations into one. Effectively the multiple criteria are applied 

simultaneously. In a Priority Scalar Equilibrium players are prioritized as their ability to 

get their highest payoff. A Coalition Scalar Equilibrium consider fixed teams of players 

seek team payoffs that are then divided among the players. Finally, we presented 

examples to illustrate the usage and theoretical aspects of these equilibria. 
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CHAPTER 1 

INTRODUCTION 

 

Decisions are made constantly by individuals, groups, companies, and societies. 

In particular, game theory is the study of strategic economic and social interactions 

among the agents, also known as players. In the existing decision-making models of 

game theory, the players are usually assumed to be rational in sense that they 

consistently pursue their own welfare and goals as they define them. However, in many 

of these cases the agents do not realize that they are playing a game. They have some 

inaccurate idea of their opponents, their environment, their goals, the actions available 

to them, and the payoffs associated with any combination of actions for all players. 

Therefore, the players often use heuristics that are generated from experience and that 

may not yield a perfect outcome for them. The proposed research will provide heuristics 

in the form of scalarizations to obtain pure strategy equilibria for one-shot games in 

normal form where a game is depicted by a matrix. In other words, the players will 

make collective decision by maximizing some scalar function. 

In these games the players will be assumed to pursue their individual goals. That 

pursuit may involve pre-game negotiation. In one-shot games, each player makes a 

single decision resulting in a single outcome, as opposed to repeated games where the 

players can learn each other’s tendencies. The proposed research focuses on new 
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scalarizations that are applied to one-shot, n-person games. In this chapter we present 

relevant literatures, give basic concepts in game theory, and outline our contribution. 

 

1.1 Literature review 

 A systematic study of game theory effectively began with von Neuman and 

Morgenstern [1], who studied zero-sum noncooperative games, as well as cooperative 

games where coalitions can be formed. Nash [2] developed their results to the n-person, 

non-zero-sum case for noncooperative games by notion of the Nash Equilibrium. In his 

solution concept, rational players are assumed to be selfish and act in their individual 

self-interest in the sense that each player considers his best responses to the possible 

joint actions of the other players. The result is that no player can improve his expected 

payoff in the Nash equilibrium by unilaterally changing his pure or mixed strategy. If he 

did so, the amount of payoff he would lose is called regret, which is an enforcement 

mechanism their essentially eliminates the distinction behavior cooperative and 

noncooperative games. Therefore, modern game theory [3-7] usually assumes that any 

joint rational action by the players must be a Regret Equilibrium (RE), as a Nash 

Equilibrium is called here, to be sustainable.  

 However, the RE has weaknesses as illustrated in social dilemmas, such well-

known games as the Prisoner’s Dilemma and Chicken games [8-10]. For example, the 

paradox of Prisoner’s Dilemma is that the unique RE is strictly dominated by another 

outcome and thus may not present the actual cooperative behavior of players in such a 
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situation. Moreover, multiple pure or mixed REs often exist for a game. Thus, two 

rational players could choose from different REs to yield an outcome that is not an RE. 

 To improve these weaknesses, Schelleing’s focal point effect [11], Harsanyi’s 

Bayesian equilibrium point [12], Harsanyi’s purification of mixed equilibria [13], 

Selton’s perfect equilibrium [14], Myerson’s proper equilibrium [15], and van Damme’s 

quasi-perfect equilibrium [16] have been proposed for refinement of REs. 

 Furthermore, Harsanyi and Selton [17] also used notions of payoff dominance 

and risk dominance to yield a unique RE. Aumann [18] considered possible epistemic 

ways what players’reason about their opponents to obtain REs, and also defined the 

concept of correlated equilibria [19]. Kahneman and Tversky [20] developed Prospect 

Theory as an alternative to expected utility theory. Brams [21] eliminated mixed 

strategies and defined a non-myopic pure equilibrium that always exists. Shalev [22] 

developed a non-Nash equilibrium emphasizing loss aversion with respect to reference 

points for the players. For only two-person games, Rabin [23] defined a fairness 

equilibrium that is not always an RE. Stirling [24] outlined an approach for satisficing 

solutions with respect to aspiration levels for the players.  

 Insuwan [25] and Corley [26] presented an alternative, the Disappointment 

Equilibrium (DE), for n-person nonzero-sum games in normal form for possible use 

when an RE is not satisfactory. It selects a player’s best strategy based on the 

disappointment that the responses of his opponents would cause him for each of his 

strategies. The stability enforcement mechanism for a DE is that the strategies of every 

n-1 players maximize the expected payoff for the remaining players’ DE strategies. For 
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any player to change strategies would negate the situation. Finally, Charoensri [27][28] 

studied a new optimization criterion called compromise criterion. Then Corley [29] 

applied the compromise criteria to n-person noncooperative games and developed 

Compromise Equilibrium (CE), which is the prototype of the scalarizations here. 

 In most one-shot, n-person games players seek a decision that is a pure strategy 

of a game, not a mixed strategy. One reason is that pure DEs and REs do not always 

exist. Another reason is that even the concept of mixed strategies has been challenged 

as problematic [30]. Rubenstein [31] gave two different interpretation of mixed 

strategies. The first is that the mixed strategies interpretation lacks the knowledge of the 

players’ information, so the random choices are made by less than rigorous unspecified 

factors; The second interpretation is that the game players stand for a large population 

of agents. The mixed strategy represents the distribution of pure strategies chosen by 

each population. However, this does not provide any justification for the case when 

players are individual agents. Game theorists’ attitude about mixed strategies are thus 

now ambivalent. 

 The advantage of the Scalar Equilibrium (SE) approach is that each player can 

choose a pure strategy within the context of the players’ individual decision criteria, 

which are here assumed identical for all players. These decision criteria, amount to 

notions of rationality, and a collective rationality may be either prescribed or may be 

due to common beliefs. This situation might occur in arbitration, or in online 

competition at a website according to specified rules, or in situations where a 

preliminary agreement is made by the players.  The various decision criteria in this 
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research consists of greed, cooperation, no risk, high risk, no aspiration, and aspiration. 

We therefore present here some new scalarizations for various notions of rationality. 

 

1.2 Definitions and Notation 

We follow the standard notation of [5].  Let ))(,)(,( NiiNii uSN  be an n-

person, one-shot games in normal form, where },...,1{ nN   is the set of players, iS  is 

the finite set of pure strategies for player ,i and ),...,( 1 ni ssu is the von Neumann - 

Morgenstern utility of player i  for a pure strategy profile 1( ,..., )ns s  X .j N jS  Write  

X  j N jS S and X { } .  j N i j iS S Player 'i s set of mixed strategies is denoted by . iS  A 

mixed-strategy profile 1( ,..., )n   X SS jNj   is an n-tuple of individual 

mixed strategies, where ( )i is is the probability that player i chooses pure strategy 

.i is S Write X    j N jS S and X { } .    j N i j iS S When clear from context, is will 

also represent the unique  i iS for which ( ) 1. i is  For any  i iS  the strategy 

profile 1 1 1( ,..., , , ,..., )i i i n      is abbreviated as ( , ).i i   For any ,S  we can 

thus write .,...,1),,( niii    If  i is identified with the pure strategy ,it  then 

( , ) i it will be used. Similarly we may write ).,( iit   The utility function RSui :  is 

extended to expected utility over S  by writing 

1
1( ,..., )

( ) ( ) ( ,..., ). 
 

   j j i n
n

i s s j NS
u s u s s In addition, vectors are represented by boldface 

lowercase Roman letter such as x and y, while ix  denotes the component ith of vector x. 
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We next define the RE and DE for later reference here. 

Definition 1.2.1 [4] For the game , a strategy S*  is an RE if and only if the 

payoff )( *iu for player ni ,...,1  satisfies  

).,(max)( **
iiii uu

i


 

                                                                     
 

Definition 1.2.2 [25] For the game ,  a strategy S*  is a DE if and only if the 

payoff )( *iu , ni ,...,1 satisfies 

),(max)( *

,...,,,...,

*

111
iiii uu

nii


 



  for .,...,1,,,...1),( niijnjS jj   

Definition 1.2.3 [25] For the game ,  a strategy S* is a Joint Equilibrium (JE)  if 

and only if the strategy * is both an RE and DE. 

 

1.3 Dissertation Contributions 

The proposed dissertation will make the following contributions:  

1. Give theoretical results for the scalar approach to general n-person games; 

2. Develop new scalarizations, based on various notions of rationality, for 

finding pure strategy solutions; 

3. Present computational examples to explain (1) and (2). 

In Chapter 2 of this proposed we explain the general approach of scalarizations 

and the prototype CE. Then in Chapter 3 we present scalarizations for existing solution 

concept. The Regret, Disappointment, Joint, and Maximin Scalar Equilibria are 

developed. We proposed a scalarization for aspiration levels of the players in Chapter 4. 
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In Chapter 5 the Risk Scalar Equilibrium, Greedy Scalar Equilibrium, and Cooperative 

Scalar Equilibrium is presented. We develop Risk, Greedy, and Cooperative Scalar 

Equilibrium in Chapter 6. In Chapter 7, we represent Coalition Scalar Equilibrium. In 

Chapter 8, we give an application of SEs. Finally, in Chapter 9, we discuss future 

research. 
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CHAPTER 2 

SCALARIZATIONS 

 

 In this chapter the scalarization of n-person games is developed. Both a general 

approach and a prototype scalarization are presented. 

 

2.1 General approach to scalarization 

 In this research we present the general scalar approach for one-shot n-person 

games. Let Ssss n  ),...,( 1 and )),(),...,(()( 1 sususu n  where )(sui  is the von 

Neumann - Morgenstern (VNM) utility for player .,...,1, nii   We transform each 

vector ,),( Sssu   into a scalar value between 0 and 1 when a prescribed notion of 

rationality is either agreed upon by the players or enforced by external arbiters. 

Rationality means here acting consistently to achieve one’s specified goal. The decision 

criteria are tantamount to notions of rationality. A list is shown in Table 2.1.  

In Table 2.1, we indicate the spectrum of various criteria categories considered 

here. First, we have the scale from greed to cooperation. Greed occurs when a player 

wants a maximum payoff, and we develop a new scalarization that captures the essence 

of an RE. Similarly, one based on cooperation emulated DE. In the risk spectrum, we 

develop a scalarization that minimizes risk. The aspiration criterion ranges from a 

player having no target value to a definite one. For priority criteria, players are given 
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different priority for games. Finally, the sequential criteria are used when the multiple 

solutions exist and we apply secondary, tertiary criteria, etc,. Simultaneous are 

compromise between several ones. Scalarizations are developed for range of criteria 

categories. 

Table 2.1 Range of Criteria 

Criteria 

Greed  Cooperation 

No risk  Risk 

No aspiration  Aspiration 

No player priority  Player priority 

Simultaneous  Sequential 

Individual  Coalition 
 

A scalarization considers payoff combinations of all possible strategies, and the 

result is termed as a Scalar Equilibrium (SE). We next state our scalar procedure.  

2.1.1. Scalar Approach 

a) For ni ,...,1  create a numerator which is ( ))(( sui − (a number based on all 

possible payoffs for the players and related to the notion of rationality)) 

b) For ni ,...,1  create a denominator which is ((the maximum value of utility 

function ))(( su ) − (a number based on all possible payoffs for the players and 

related to the notion of rationality))  
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c) Form each ratio, 
(b) 2.1.1 from rdenominato

(a) 2.1.1 from numerator

i

iiratio , for ,,...,1 ni   then make 

a product of all iratio . 

Define a scalar transformation formula ( 



n

i
iratiosuT

1

))(( ) consistent with the notion 

of rationality being considered. 

We next formally define Scalar Equilibrium (SE) for the game .  

Definition 2.1.1 Let ))(,)(,( NiiNii uSN  be an one-shot n-person game. Let

),...,( **
1 nsss  be a pure strategy profile of   maximizing the scalar transformation T

specifying some notion of rationality.  Then s is an SE of  if and only if for all 

)).(),...,(())(),...,((, **
11 susuTsusuTSs nn   

An SE ),...,( **
1

*
nsss    is termed an equilibrium for the following reason. No 

player would change his strategy since the scalar measure of rationality cannot be 

improved or because an arbitrator based his decision on the scalarization value. The 

prototype SE from Charoensri [27] is next presented. 

 

2.2 Prototype SE: Compromise Equilibria 

An optimization criterion for selecting compromise or fair solutions to a 

mathematical decision problem is shown here to one-shot n-person game theory. 

Charoensri [26][27] studied the compromise criterion to give reasonable and 

computationally tractable solutions for multidimensional objective function. 
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Corley [28] applied the compromise criterion to n-person games. The CE, a 

global scalarization, is an SE defined as follows. Let )(sui be the associated von 

Neumann - Morgenstern (VNM) utility for player nii ,...,1,  ; and let 

)).(),...,(()( 1 sususu n  ))(( suT assigns a single real number in (0,1] for each payoff in 

the utility matrix of n-person games. A compromise would be a vector s  of pure 

strategies that gives each player a highest scalar value with the following property. All 

players achieve a payoff with similar ratios between their lowest and highest possible 

payoffs in the payoff matrix. 

 In particular, denote )(max suM iSsi 
 and ).(min sum iSsi 

  Now define 

RSuT )(: by  
















 )
1
1)((...)

1
1)(())((

11

11

nn

nn

mM
msu

mM
msusuT , for all .Ss  

The CE s  is the solution to the scalar optimization problem )).((max suT
Ss

 Moreover, it 

is shown in [26] that the set of CEs, defined as ),( Compromise Su satisfies 

),(Vmax )( Compromise SuSu  the set of Pareto maxima of ).(Su   

We now determine the CE for an example game and compare the results to the 

game’s REs and DEs in the following game.  
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Example 2.2.1 [27]  Two-person game with 3 x 3 payoff matrix. 

  Player II 
  1  2  3  

 
1  (3,4) (2,2) (2,1) 

Player I 
2  (2,3) (7,1) (7,4) 

 
3  (2,1) (5,6) (6,5) 

Figure 2.1 Payoff matrix of Example 2.2.1. 

Calculate the ),(max
},,{
},,{

321
321



 ii uM




  and ),(min
},,{
},,{

321
321



 ii um




 where ),( iu is the 

payoff value for player ith, i =1, 2. So, we obtain ,71 M .21 m ,62 M .12 m  

We calculate the Compromise scalar value using the transformation,  

























1
1),(

1
1),(

),(
22

22

11

11

mM
mu

mM
mu

T jiji
ji


 for all .3,2,1, ji  

   
Player II 

  1  2  3  

 
1  0.2222 0.0555 0.0277 

Player I 
2  0.0833 0.1666 0.6666 

 
3  0.0277 0.6666 0.6944 

Figure 2.2 Compromise matrix of Example 2.2.1. 

 

 

 



 

13 
 

  Player II 

  1  2  3  

 
1  (0,0)  (5,2) (5,3) 

Player I 
2  (1,1) (0,3) (0,0) 

 
3  (1,5) (2,0) (1,1) 

               Figure 2.3 Regret matrix of Example 2.2.1 

 
  Player II 

  1  2  3  

 
1  (0,0) (1,4) (1,4) 

Player I 
2  (5,1) (0,5) (0,1) 

 
3  (4,3) (1,0) (0,0) 

               Figure 2.4 Disappointment matrix of Example 2.2.1 

From Figure 2.2-2.4, the results are includes as follows. REs are at 

4) (3,),( 11  and 4). (7,),( 32   DEs are at 4) (3,),( 11  and 5). (6,),( 33    

The JE is at 4). (3,),( 11  CE is at 5). (6,),( 33   No RE is a CE.  The CE is a DE, 

but one DE is not a CE. The reason that some DEs and REs are best solution is that 

DEs, like REs, are only local maxima in Definition 1.2.1 and 1.2.2. A JE in Definition 

1.2.3 is also local but a smaller subset of .S  
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CHAPTER 3 

SCALAR EQUILIBRIA FOR EXISTING 

SOLUTION CONCEPTS 

 

In this chapter we present new scalar equilibria based on various notions of 

rationality for finding pure strategy solutions. 

 

3.1 Regret, Disappointment, and Joint Scalar Equilibria 

In this section, it is shown that REs, DEs, and JEs can be determined by the 

scalarization. These scalarizations are useful for finding pure strategies approximating 

an RE, DE, or JE when such pure equilibria do not exist. 

 

3.1.1 The concept of Regret, Disappointment, and Joint Matrices 

We first define the concepts of Regret, Disappointment, and Joint Matrices 

[25][26] abbreviated respectively as RMs, DMs, and JMs.  

 

3.1.1.1 The Regret Matrix   

Let )(),(max)( sussusR iiiiSsi
ii

 
be the regret function of any payoff for player 

,,...,1, nii  and )).(),...,(()( 1 sRsRsR n  Let ),(max iiiSs
ssu

ii


 be a maximum value of 
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expected payoff when all player strategies fixed except player .,...,1, nii  )(sRi is a 

transformation of a player’s payoff function for pure strategies to a loss function. In 

particular, a player’s regret function gives the amount he would lose by not choosing his 

best response to fixed pure strategies of his opponent. For any normal form game, the 

regret function is completely described by a Regret Matrix (RM) obtained from the 

payoff matrix for the players.  

Result 3.1.1.1.1 [25] A strategy *s  for   is a pure RE if and only if this strategy *s  

yields 0)( * sRi  for every player ,,...,1, nii    in the RM. 

 

3.1.1.2 The Disappointment Matrix   

Let )(),(max)( sussusD iiiiSsi
ii

  

be the disappointment function of any payoff 

for player ,,...,1, nii  and )).(),...,(()( 1 sDsDsD n  Let ),(max iiiSs
ssu

ii
 

 be a maximum 

value of expected payoff when we fixed only the strategies of player .,...,1, nii   )(sDi

gives the amount he would lose for a fixed pure strategy of the player if his opponents 

did not choose the pure strategies yielding his maximum payoff function. For any 

normal form games the disappointment function is completely described by a 

Disappointment Matrix (DM) obtained from the payoff matrix for the players. 

Result 3.1.1.2.1[25] A strategy *s  for   is a pure DE if and only if this strategy *s  

yields 0)( * sDi  for every player ,,...,1, nii    in the DM. 
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3.1.1.3 The Joint Matrix  

Let )()()( sDsRsJ iii  be the joint function of any payoff for player 

,,...,1, nii  and )).(),...,(()( 1 sJsJsJ n  As before, the joint function is completely 

described by a Joint Matrix (JM) obtained from the RM and DM for the players. The 

next result immediately follows. 

Result 3.1.1.3.1 A strategy *s  for   is a pure JE if and only if this strategy *s  yields 

0)( * sJ i  for every player ,,...,1, nii    in the JM. 

Proof. 

Since a strategy *s  is a pure JE, we obtain that 0)( * sRi  and 0)( * sDi  for 

each player .,...,1, nii   It follows that )()()( *** sDsRsJ iii  =0 for every player 

,,...,1, nii    in the JM. ■ 

 

3.1.2 Regret, Disappointment, and Joint Scalar Equilibria 

The Regret, Disappointment, and Joint Scalar Equilibria are next presented. 

 

3.1.2.1 Regret Scalar Equilibria 

The Regret Scalar Equilibrium (RSE) is defined for   as follows. Let )(sRi be 

the regret function of any payoff for player ,,...,1, nii  and )).(),...,(()( 1 sRsRsR n  

))(( sRT assigns a single real number in [0,1] for each regret value in the RM of n-

person games, where 
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















 )
1)(

1(...)
1)(

1()
1)(

1())((
21 sRsRsR

sRT
n

 for all .Ss  

We seek *s  that solves the scalar optimization problem )).((max sRT
Ss

 

The RSE is a pure strategy approximation to an RE, where no player can 

unilaterally change strategies and improve his payoff. It represent a greedy criteria. \ 

Theorem 3.1.2.1.1 The game   has an RE *s  if and only if 1))(( * sRT . 

Proof. 

It is first shown that if *s is RE, then .1))(( * sRT  Since *s is RE, there exists a 

strategy that gives 0)(),(max)( **  
sussusR iiiiSsi

ii

 for every player .,...,1, nii   It 

follows that .1)
1)(

1(...)
1)(

1()
1)(

1())(( **
2

*
1

* 
















sRsRsR

sRT
n  

It is next shown that if ,1))(( * sRT  then an n-person noncooperative game   

has an RE .*s  Since ,1))(( * sRT  there exist 0)(),(max)( **  
sussusR iiiiSsi

ii

 for 

every player .,...,1, nii   By the definition 3.1.1.1, the n-person noncooperative game 

  has a pure RE. It follows that an RSE is a pure RE. ■ 

It should be noted that a RSE for a game with no pure RE is not necessarily a 

good solution since the regret value for player i  is local regret only, i.e., regret with 

respect to a fixed strategy is  for the remaining 1n  players. 
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3.1.2.2 Disappointment Scalar Equilibria 

The Disappointment Scalar Equilibrium (DSE) is developed for   as follows. 

Let )(sDi be the disappointment function of any payoff for player ,,...,1, nii  and 

)).(),...,(()( 1 sDsDsD n  ))(( sDT assigns a single real number in [0,1] for each regret 

value in the DM of n-person games, where 

















 )
1)(

1(...)
1)(

1()
1)(

1())((
21 sDsDsD

sDT
n

, for all .Ss
 

We seek *s   that solves the scalar optimization problem )).((max sDT
Ss

 

A DSE is a pure strategy approximation of a DE and represent a cooperative 

criteria. 

Theorem 3.1.2.2.1 The game   has an DE *s  if and only if 1))(( * sDT . 

Proof. 

It is first shown that if *s is DE, then .1))(( * sDT  Since *s is DE, there exists a 

strategy that gives 0)(),(max)( **   

sussusD iiiiSsi
ii

 for all player .,...,1, nii   It 

follows that .1)
1)(

1(...)
1)(

1()
1)(

1())(( **
2

*
1

* 
















sDsDsD

sDT
n  

It is next shown that if .1))(( * sDT  then an n-person noncooperative game   

has a DE .*s  Since ,1))(( * sDT  there exist 0)(),(max)( **   

sussusD iiiiSsi
ii

 for 

all player .,...,1, nii  By the definition 3.1.2.1, the n-person noncooperative game   

has a pure  DE. It follows that a DSE is a pure DE. ■ 
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It should be noted that a DSE for a game with no pure DE is not necessarily a 

good solution since the disappointment value is local disappointment only, i.e., 

disappointment for player i  with respect to a single fixed strategy .is  

 

3.1.2.3 Joint Scalar Equilibria 

The Joint Scalar Equilibrium (JSE) is developed for   as follows.  

Let )()()( sDsRsJ iii  be the joint function of any payoff for player 

,,...,1, nii  and )).(),...,(()( 1 sJsJsJ n  ))(( sJT assigns a single real number in [0,1] 

for each joint value in the Joint Matrix of n-person games, where 

















 )
1)(

1(...)
1)(

1()
1)(

1())((
21 sJsJsJ

sJT
n

, for all .Ss
 

We seek *s  as the JS that solves the scalar optimization problem )).((max sJT
Ss  

Theorem 3.1.2.3.1 The game   has an JE *s  if and only if 1))(( * sJT . 

Proof. It is first shown that if *s is JE, then .1))(( * sJT  Since *s is JE, there exists a 

strategy that gives .0)()()( ***  sDsRsJ iii  for all player .,...,1, nii   It follows 

that .1)
1)(

1(...)
1)(

1()
1)(

1())(( **
2

*
1

* 
















sJsJsJ

sJT
n

 

It is next shown that if ,1))(( * sJT  then a game   has an JE .*s  Since 

,1))(( * sJT  there exist 0)()()( ***  sDsRsJ iii  for all player .,...,1, nii   By the 
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definition 3.1.3.2, the n-person noncooperative game   has a pure  JE. It follows that a 

JSE is a pure JE. ■ 

 

3.1.3 Examples of Regret, Disappointment, and Joint Scalar Equilibria 

We now determine the RSE, DSE, and JSE for the following example games. 

Example 3.1.3.1 Prisoner’s Dilemma 

  Player II 
  )(1 Defect  )(2 Cooperate  

Player I )(1 Defect  (1,1) (5,0) 

 )(2 Cooperate  (0,5) (3,3) 
                 Figure 3.1 Payoff matrix of Example 3.1.3.1. 

  Player II 
  )(1 Defect  )(2 Cooperate  

Player I )(1 Defect  (0,0) (0,1) 

 )(2 Cooperate  (1,0) (2,2) 
                   Figure 3.2 Regret matrix of Example 3.1.3.1. 

 
  Player II 

  )(1 Defect  )(2 Cooperate  

Player I )(1 Defect  (4,4) (0,3) 

 )(2 Cooperate  (3,0) (0,0) 
                   Figure 3.3 Disappointment matrix of Example 3.1.3.1. 
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  Player II 
  )(1 Defect  )(2 Cooperate  

Player I )(1 Defect  (4,4) (0,4) 

 )(2 Cooperate  (4,0) (2,2) 
                   Figure 3.4 Joint matrix of Example 3.1.3.1. 

We calculate Regret Scalar values using the transformation  

















 )

1),(
1()

1),(
1(),(

21 jiji
ji RR

T


 , for all .2,1, ji  

  Player II 
  )(1 Defect  )(2 Cooperate  

Player I )(1 Defect  1.0000 0.5000 

 )(2 Cooperate  0.5000 0.1111 
                   Figure 3.5 Regret scalar matrix of Example 3.1.3.1. 

We calculate Disappointment Scalar values using the transformation 

















 )

1),(
1()

1),(
1(),(

21 jiji
ji DD

T


 , for all .2,1, ji  

  Player II 
  )(1 Defect  )(2 Cooperate  

Player I )(1 Defect  0.0400 0.2500 

 )(2 Cooperate  0.2500 1.0000 
                   Figure 3.6 Disappointment scalar matrix of Example 3.1.3.1. 

We calculate Joint Scalar values using the transformation 

















 )

1),(
1()

1),(
1(),(

21 jiji
ji JJ

T


 , for all .2,1, ji  
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  Player II 
  )(1 Defect  )(2 Cooperate  

Player I )(1 Defect  0.0400 0.2000 

 )(2 Cooperate  0.2000 0.1111 
                   Figure 3.7 Joint scalar matrix of Example 3.1.3.1. 

From Figures 3.2 – 3.7, we have the following results. The RSE is (Defect, 

Defect) with payoff (1,1) that is the same result as RE. The DSE is (Cooperate, 

Cooperate) with payoff  (3,3) that is the same result as DE. There are no JE. The JSE 

are (Cooperate, Defect) and (Defect, Cooperate) with payoff (0,5) and (5,0), 

respectively. Note that the JSE is not a JE, however. 

Example 3.1.3.2 Recall Example 2.2.1. 

 
  Player II 

  1  2  3  

 
1  (0,0) (6,8) (6,7) 

Player I 
2  (6,2) (0,8) (0,1) 

 
3  (5,8) (3,0) (1,1) 

               Figure 3.8 Joint matrix of Example 3.1.3.2. 

We calculate Regret Scalar values using the transformation 

















 )

1),(
1()

1),(
1(),(

21 jiji
ji RR

T


 , for all .3,2,1, ji  
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Player II 

  1  2  3  

 
1  1.0000 0.0555 0.0417 

Player I 
2  0.2500 0.2500 1.0000 

 
3  0.0833 0.6667 0.2500 

          Figure 3.9 Regret scalar matrix of Example 3.1.3.2. 

We calculate Disappointment Scalar values using the transformation 

















 )

1),(
1()

1),(
1(),(

21 jiji
ji DD

T


 , for all .3,2,1, ji  

   
Player II 

  1  2  3  

 
1  1.0000 0.1000 0.1000 

Player I 
2  0.0833 0.1667 0.5000 

 
3  0.0500 0.5000 1.0000 

          Fig 3.10 Disappointment scalar matrix of Example 3.1.3.2. 

We calculate Joint Scalar values using the transformation 

















 )

1),(
1()

1),(
1(),(

21 jiji
ji JJ

T


 , for all .3,2,1, ji  

From Figures 3.9 - 3.11, the results are includes as follows. RSEs are at 

4) (3,),( 11  and 4) (7,),( 32   that is the same results as REs.  DSEs are at 
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4) (3,),( 11  and 5) (6,),( 33   that are the same results as DEs. JSE is at 

4) (3,),( 11   that is the same results as JE. 

   
Player II 

  1  2  3  

 
1  1.0000 0.0204 0.0179 

Player I 
2  0.0476 0.1111 0.5000 

 
3  0.0185 0.2500 0.2500 

          Fig 3.11 Joint scalar matrix of example 3.1.3.2. 

Example 3.1.3.3 Two-person Payoff matrix with 3 x 3 with no pure RE and DE 

   
Player II 

  1  2  3  

 
1  (9,2) (3,6) (3,5) 

Player I 
2  (1,5) (5,4) (4,6) 

 
3  (3,7) (4,5) (6,5) 

                Figure 3.12 Payoff matrix of Example 3.1.3.3. 

   
Player II 

  1  2  3  

 
1  (0,4) (2,0) (3,1) 

Player I 
2  (8,1) (0,2) (2,0) 

 
3  (6,0) (1,2) (0,2) 

                   Figure 3.13 Regret matrix of Example 3.1.3.3. 
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Player II 

  1  2  3  

 
1  (0,5) (6,0) (6,1) 

Player I 
2  (3,2) (0,2) (1,0) 

 
3  (3,0) (2,1) (0,1) 

                   Figure 3.14 Disappointment matrix of Example 3.1.3.3. 
 

   
Player II 

  1  2  3  

 
1  (0,9) (8,0) (9,2) 

Player I 
2  (11,3) (0,4) (3,0) 

 
3  (9,0) (3,3) (0,3) 

                   Figure 3.15 Joint matrix of Example 3.1.3.3. 

We calculate Regret Scalar values using the transformation 

















 )

1),(
1()

1),(
1(),(

21 jiji
ji RR

T


 , for all .3,2,1, ji  

   
Player II 

  1  2  3  

 
1  0.2000 0.3333 0.1250 

Player I 
2  0.0556 0.3333 0.3333 

 
3  0.1429 0.1667 0.3333 

          Figure 3.16 Regret scalar matrix of Example 3.1.3.3. 
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We calculate Disappointment Scalar values using the transformation  

















 )

1),(
1()

1),(
1(),(

21 jiji
ji DD

T


 , for all .3,2,1, ji  

   
Player II 

  1  2  3  

 
1  0.1667 0.1428 0.0714 

Player I 
2  0.0833 0.3333 0.5000 

 
3  0.2500 0.1667 0.5000 

          Fig 3.17 Disappointment scalar matrix of Example 3.1.3.3. 

We calculate Joint Scalar values using the transformation  

















 )

1),(
1()

1),(
1(),(

21 jiji
ji JJ

T


 , for all .3,2,1, ji  

   
Player II 

  1  2  3  

 
1  0.1000 0.1111 0.0333 

Player I 
2  0.0208 0.2000 0.2500 

 
3  0.1000 0.0625 0.2500 

          Fig 3.18 Joint scalar matrix of example 3.1.3.3. 

From Figures 3.13 - 3.18, the results are includes as follows. This payoff matrix 

has no RE, DE, and JE. However, the RSE, DSE, and JSE still exist. RSEs are at 
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6), (3,),( 21  4), (5,),( 22  6), (4,),( 32  and 5). (6,),( 33    DSEs are at 

6) (4,),( 32  and 5). (6,),( 33   JSEs are at 6) (4,),( 32  and 5). (6,),( 33   

Example 3.1.3.4 Three-person game payoff matrix 

 1   2  

 1  2   1  2  

1  (50, 260, 170) (100, 200, 170)  (50, 260, 170) (100, 200, 170) 

2  (50, 160, 260) (50, 170, 260)  (130, 160, 170) (130,150,170) 
Figure 3.19 Payoff matrix of Example 3.1.3.4. 

 1   2  

 1  2   1  2  

1  (0, 0, 0) (0, 60, 0)  (80, 0, 0) (30, 60, 0) 

2  (0, 10, 0) (50, 0, 0)  (0, 0, 90) (0, 10, 90) 
Figure 3.20 Regret matrix of Example 3.1.3.4. 

 1   2  

 1  2   1  2  

1  (50, 0, 90) (0, 0, 90)  (50, 0, 0) (0, 0, 0) 

2  (80, 100, 0) (80, 30, 0)  (0, 100, 0) (0, 50, 0) 
Figure 3.21 Disappointment matrix of Example 3.1.3.4. 

 1   2  

 1  2   1  2  

1  (50, 0, 90) (0, 60, 90)  (130, 0, 0) (30, 60, 0) 

2  (80, 110, 0) (130, 30, 0)  (0, 100, 90) (0, 60, 90) 
Figure 3.22 Joint matrix of Example 3.1.3.4. 

We calculate Regret scalar values using the transformation  




















 )

1),,(
1()

1),,(
1()

1),,(
1(),,(

321 kjikjikji
kji RRR

T


 ,  
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for all .2,1,, kji  

 1   2  

 1  2   1  2  

1  1.0000 0.0164  0.0123 0.0005 

1  0.0909 0.0196  0.0110 0.0010 
Figure 3.23 Regret scalar matrix of Example 3.1.3.4. 

We calculate Disappointment scalar values using the transformation 




















 )

1),,(
1()

1),,(
1()

1),,(
1(),,(

321 kjikjikji
kji DDD

T


 ,  

for all .2,1,, kji  

 1   2  

 1  2   1  2  

1  0.0002 0.0110  0.0196 1.0000 

2  0.0001 0.0004  0.0099 0.0196 
Figure 3.24 Disappointment scalar matrix of Example 3.1.3.4. 

We calculate Joint scalar values using the transformation  




















 )

1),,(
1()

1),,(
1()

1),,(
1(),,(

321 kjikjikji
kji JJJ

T


 ,  

for all .2,1,, kji  

 1   2  

 1  2   1  2  

1  0.00022 0.00018  0.00760 0.00053 

2  0.00010 0.00025  0.00011 0.00018 
Figure 3.25 Joint scalar matrix of Example 3.1.3.4. 
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From Figures 3.20 – 3.25, the results are includes as follows.  RSE is at 

),,( 111  with payoff 170) 260, (50, that is the same result as RE. DSE is at 

),,( 121  with payoff 170) 200, (100, that is the same result as DE. JSE is at 

),,( 211   with payoff 170). 260, (50,  

 

3.2 Maximin Scalar Equilibria 

A scalarization for selecting maximin solutions to a mathematical decision 

problem is applied here to one-shot, n-person game theory. The maximin model 

maximizes the minimum gain of a player regardless of what the other player does. To 

select a pure strategy, each player chooses an action by determining the worst possible 

payoff of any of his actions for the various possible actions of his opponent, then selects 

an action yielding the best of these worst payoffs. If any player does not select his 

maximin strategy, his payoff could be worse. The Maximin Scalar Equilibrium is next 

developed. 

 

3.2.1 Maximin Scalar Equilibria for n-person games 

The Maximin Scalar Equilibrium (MSE) is developed for   as follows. Let

)(sui  be the associated von Neumann - Morgenstern (VNM) utility for player i ; and let 

)).(),...,(()( 1 sususu n  ))(( suT assigns a single real number in [0,1] for each payoff in 

the utility matrix of n-person games. 

Now define RSfT )(: by  
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





















1ˆ
...

1ˆ1ˆ
))((

22

2

11

1

nn

n

mMmMmM
suT  

where








0ˆ)(,0
0ˆ)(,1ˆ)(

ii

iiii
i msu

msumsu
for all .Ss

 

Denote ),(max suM iSsi 
 ),,(minmaxm̂ 111

...
1

221

ssf

nn Ss

Sss 




 and ),...,,(minmaxm̂ 222

...
2

112

ssf

nn Ss

Sss 




 and 

).,(minmaxm̂

11

22
11

...

nnn

Ss

Ss
Sssn ssu

nn

n









  

Definition 3.2.1.1 The *s  is an Maximin Scalar Equilibrium (MSE) if and only if the 

*s  is the solution to the scalar optimization problem )).((max suT
Ss

 

A maximin solution would be a vector *s  of pure strategies that gives the best 

of the worst possible expected payoff for each player with the following property. All 

players achieve a payoff with similar ratios between their maximin and highest possible 

payoffs in the payoff matrix. A maximin solution and MSE are risk averse criteria. 

 

3.2.2 Maximin Scalar Equilibria Examples 

We now determine MSEs for some example games 

Example 3.2.2.1 

Calculate the ),,(max
},,{
},,{

321
321



 ii uM




  ),,(minmaxm̂ 1},,{1
321




u


  and 

),(minmaxm̂ 2},,{2
321




u


  where ),( iu is the payoff value for player i, i =1, 2.  
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Hence, we obtain ,101 M ,82 M ,4ˆ 1 m .6ˆ 2 m  

   
Player II 

  1  2  3  

 
1  (10,3) (4,7) (3,6) 

Player I 
2  (2,6) (9,5) (5,6) 

 
3  (4,8) (5,4) (7,6) 

                Figure 3.26 Payoff matrix of Example 3.2.2.1.  

We calculate Maximin scalar values using the transformation  














)1ˆ)(1ˆ(
))((),(

2211

21

mMmM
T ji   

where  








0ˆ),(,0

0ˆ),(,1ˆ),(

ijii

ijiiijii
i mu

mumu



for all .3,2,1, ji  

   
Player II 

  1  2  3  

 
1  0 0.0952 0 

Player I 
2  0 0 0.0952 

 
3  0.1429 0 0.1905 

                Figure 3.27 Maximin scalar matrix of Example 3.2.2.1. 

From Figure 3.26, we obtain that MSE is at ),( 33  with payoff (7,6).  
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Example 3.2.2.2 

  Player II 
  1  2  3  

 
1  (3,4) (2,2) (2,1) 

Player I 
2  (2,3) (7,1) (7,4) 

 
3  (2,1) (5,6) (6,5) 

Figure 3.28 Payoff matrix of Example 3.2.2.2. 

Calculate the ),,(max
},,{
},,{

321
321



 ii uM




  ),,(minmaxm̂ 1},,{1
321




u


  and 

),(minmaxm̂ 2},,{2
321




u


  where ),( iu is the payoff value for player i, i =1, 2. 

Thus, we obtain ,71 M ,62 M ,2ˆ 1 m .1ˆ 2 m  

   
Player II 

  1t  2t  3t  

 
1  0.2222 0.0556 0.0278 

Player I 
2  0.0833 0.1667 0.6667 

 
3  0.0278 0.6667 0.6944 

                Figure 3.29 Maximin scalar matrix of example 3.2.2.2. 

We calculate Maximin scalar values using the transformation 














)1ˆ)(1ˆ(
))((),(

2211

21

mMmM
T ji   

where  








0ˆ),(,0

0ˆ),(,1ˆ),(

ijii

ijiiijii
i mu

mumu



for all .3,2,1, ji  
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From Figure 3.29, we obtain that MSE is at ),( 33  with payoff (6,5).  Note that 

(5,6),(6,5), and (7,4),  are intuitively the best outcomes, with (6,5)  giving the best 

scalar value. 
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CHAPTER 4 

ASPIRATION SCALAR EQUILIBRIA 

 

A new scalar equilibrium for selecting fixed goal solutions to a mathematical 

decision problem is applied here to one-shot, n-person game theory. The satisficing 

approach of Stirling in [24], [32], [33], [34] and [35] uses expected epistemic utilities. 

Since Stirling’s method requires some assumptions of the players’ behavior for decision 

problem by using some probability parameters to decide the player preference. On the 

other hand, our method called Aspiration Scalar Equilibrium here uses only VNM 

utilities. Therefore our method does not need Stirling’s questionable assumptions 

regarding players’ behavior. In addition, our method is simpler. It is obviously a 

criterion target-value end of the aspiration spectrum. 

 

4.1 The Scalar Aspiration Criterion 

The scalar aspiration criterion is developed here as follows. Let x  denote a 

Euclidean space, .nR  Let ,: 1RRf m
i   ni ,...,1 and consider the objective function 

),(()( 1 xx ff  ))(..., xnf over the feasible region .mRA   Let ,1; ipi n...,  be the real-

valued aspiration level for )(xif  on .A  Let p = ,( 1p )..., np and assume
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,1,)(|{  ipfAA iip xx .}..., n  In other words, it is desired that 

,1,)(  ipf ii x n...,  for .Ax Now for all Ax define RAfT )(: by  





n

i
ii pfT

1

);())(( xx  

 where  










 .0)(,

)(1
1

0)(,1
);(

ii
ii

ii

ii pf
fp

pf
p x

x

x
x  

Consider the following the aspiration order  Asp  on )(Af for fixed ,1, ipi ...., n  For 

any ),()(),( 21 Afff xx  write )()( 21 xx ff Asp if and only if )).(())(( 21 xx fTfT 

Write )()( 21 xx ff Asp if and only if )()( 21 xx ff Asp or )).(())(( 21 xx fTfT   The 

associated aspiration decision problem is denoted by  D ,( 1p )..., np  = )].([ Asp x
x

f
pA

 This 

problem involves finding a vector XA *x for which there is no vector Ax such 

that ).(*)( xx ff Asp The set of such *x is written as ).( Asp Af   

Lemma 4.1.1 For any ,),()(),( RpAfff i yx  if ),()( yx ff Pareto  then 

)).(())(( yx fTfT AspAsp   

Proof. Let ),()(),( Afff yx such that ).()( yx ff Pareto  We have the following cases. 

Case 1 iii pff  )()( yx for all ,1i n..., and )()( yx jj ff  for some index  j. We 

have 
)(1

1
)(1

1
yx iiii fpfp 




,  for all ,1i n..., , and 
jjjj bpfp 


 1

1
)(1

1
x

for some index j. It follows that 
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









n

i
Asp

ii

n

i ii
Asp fT

fpfp
fT

11

)).((
)(1

1
)(1

1))(( y
yx

x  

Case 2 )()( yx iii fpf  for all ..,...,1 ni   

Case 2.1 )()( yx jjj fpf   for some index j. We have 

1);(1);(  iiii pp yx ,  for all ,1i n..., , and 1);(1);(  jjijj pbpx for 

some index j.  

Case 2.2 )()( yx jjj fpf   for some index j. We have 

1);(1);(  iiii pp yx ,  for all ,1i n..., , and 

1);(
)(1

1);( 


 jji
jj

jj pb
fp

p
x

x for some index j.  

From case 2.1 and 2.2, it follows that 





n

i
Aspii

n

i
iiAsp fTppfT

11

)).(();();())(( yyxx  

Case 3 )()( yx iii ffp  for all ,1i ...., n   

Case 3.1 )()( yx jjj ffp   for some index j. 

We have 1);();(  iiii pp yx ,  for all ,1i n..., , and 1);();(  jjijj pbpx for 

some index j.  

Case 3.2 )()( yx jjj ffp   for some index j. 

We have 1);();(  iiii pp yx ,  for all ,1i n..., , and 1);();(  jjijj pbpx for 

some index j.  

From case 3.1 and 3.2, it follows that 
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



n

i
Aspii

n

i
iiAsp fTppfT

11

)).(();();())(( yyxx  

From Cases 1, 2, and 3, )).(())(( yx fTfT AspAsp  ■ 

The set of Pareto maxima of a set ),(Af  also called the efficient frontier, and is 

written ).(Par Af  Two results of the Aspiration Scalarization are now stated. 

Theorem 4.1.2 For any ,1,  iApi ,..., n ).(Par )( Asp AfAf   

Proof. To obtain a contradiction, suppose that ).(Par )( Aff x  Then there exist 

)()( Aff y such that ).()( yx ff Pareto By Lemma 4.1.1 it follows that 

)()( yx ff Asp  in contradiction to the optimality of ).(xf  We conclude that

)(Par )( Aff x  to give the result. ■ 

Theorem 4.1.3 The preference order Asp is a total order on ).(Af  

Proof. We show that Asp is reflexive, transitive, antisymmetric, and comparable. 

a. (Reflexive). Since ),()( xx ff   we have )()( xx ff Asp for any ).()( Aff x  

b. (Transitive). Let )()( yx ff Asp and )()( zy ff Asp for .,, Azyx  

Case b-1: )()( yx ff Pareto and ).()( zy ff Pareto  

Since Pareto order is transitive, we have that )(xf  comparable to )(zf  and in 

particular ).()( zx ff Pareto  Therefore, ).()( zx ff Asp  

Case b-2: )()( yx ff Pareto and )(yf  are not Pareto comparable with )(zf  with 

)).(())(( zy fTfT AspAsp   
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Case b-2.1: )(xf  is Pareto comparable with )(zf .  

We claim that ).()( zx ff Pareto  Suppose that ).()( xz ff Pareto  By Lemma 

4.1.1, we have )).(())(( xz fTfT AspAsp  Since )()( yx ff Pareto and by Lemma 4.1.1, we 

have )).(())(( yx fTfT AspAsp  Therefore we obtain ))(())(( yz fTfT AspAsp  in 

contradiction to the assumption that )).(())(( zy fTfT AspAsp  We conclude that 

).()( zx ff Pareto  Thus ).()( zx ff Asp  

Case b-2.2: )(xf  is not Pareto comparable with ).(zf  

Since )()( yx ff Pareto by Lemma 1, we have )).(())(( yx fTfT AspAsp 

Combining with )),(())(( zy fTfT AspAsp  we obtain )),(())(( zx fTfT AspAsp   i.e., 

).()( zx ff Asp  

Case b-2.3: )()( zy ff Pareto and )(xf  are not comparable with )(yf  with 

)).(())(( yx fTfT AspAsp  The proof is similar to Case b-2.1. 

From Cases b-1 and b-2, we obtain ).()( zx ff Asp  

c. (Anti-Symmetric). Let )()( yx ff Asp and ).()( xy ff Asp We must have 

).()( yx ff   To obtain a contradiction, suppose that ).()( yx ff  Immediately we have 

)()( yx ff Asp and ).()( xy ff Asp  

Case c-1: )(xf  is Pareto comparable to ).(yf  

Since )()( yx ff Asp , we obtain ).()( yx ff Pareto  Since ),()( xy ff Asp  we 

obtain ),()( xy ff Pareto which contradicts the previous conclusion. 
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Case c-2: )(xf  is not comparable to ).(yf  

Since ),()( yx ff Asp we have )).(())(( yx fTfT AspAsp   Also, since ),()( xy ff Asp  

we have )),(())(( xy fTfT AspAsp  contradicting the fact that )).(())(( yx fTfT AspAsp 

From Cases c-1 and c-2, we conclude that ).()( yx ff   

d.(Comparable). Let )()(),( Afff yx either )()( yx ff Asp or ).()( xy ff Asp  

Case d-1: )(xf  is Pareto comparable to ).(yf  

Give ).()( yx ff Pareto  Suppose that ).()( xy ff pareto  By Lemma 4.1.1, we have 

)).(())(( xy fTfT AspAsp  Since )()( yx ff Pareto and by Lemma 4.1.1, we have 

)).(())(( yx fTfT AspAsp  Therefore we obtain )).(())(( xy fTfT AspAsp  in contradiction 

to the assumption that )).(())(( yx fTfT AspAsp  We conclude that ).()( yx ff Pareto  

Thus ).()( yx ff Asp  

Case d-2: )(xf  is not comparable to )(yf with )).(())(( yx fTfT AspAsp   

Since )),(())(( yx fTfT AspAsp  we obtain ).()( yx ff Asp From Cases d-1 and d-2, 

we conclude that any )()(),( Afff yx either )()( yx ff Asp or ).()( xy ff Asp  

It follows that Asp is a total order on ).(Af ■ 

An obvious scalar equivalence of the aspiration optimization problem is   

.s.t.

))((max

A

fTAspAx p




x

x
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The next theorem shows that the payoff matrix determines the set of ),...,( 1 npp

for which there is an A*x yielding each component’s aspiration level. The set of 

Pareto maxima of a set ,A  also called the efficient frontier, and is written Par .A  

Theorem 4.1.4  Let P = Par for  solution  aspirationan  is There:),...,{( 1 npp   

)},...,(D 1 npp and  let Q = Par .,...,1,)(:))(),...,(( 1 niAfff in xxx  Then P = Q. 

 Proof. It is first shown that PQ. Let ),...,( 1 npp P. By definition there exists an 

aspiration solution to ,(D 1p )...., np  If ,( 1p )..., np Q, there exists ),(( *
1 xf ))(..., *xnf

that dominates ,( 1p )....., 2p  But for nifp ii ,...,1),( **  x , thus ,( *
1p )..., *

np dominates

,( 1p )..., np in contradiction to ,( 1p )..., np Q. Thus, PQ. 

It is next shown that QP. Let ),ˆ(( 1 xf ))ˆ(..., 2 xf Q in which case ,ˆ( 1p )ˆ..., np

for )ˆ(ˆ xii fp  that is in P. Because these aspiration levels can be achieved, QP. 

Hence we conclude that P = Q. ■ 

 

4.2 Aspiration Scalar Equilibria 

We apply the aspiration criterion to n-person games when each player has a 

target value to be achieved. Let Ss be a vector of pure strategies for players ,1 n..., ; 

let )(sui be the associated von Neumann - Morgenstern (VNM) utility for player i; and 

let )).(),...,(()( 1 sususu n ))(( suT assigns a single real number in (0,1] for each payoff 

in the utility matrix of n-person games. For all Ss define RSuT )(: by  
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



n

i
ii pssuT

1

);())((  

 where  










 .0)(,

)(1
1

0)(,1
);(

ii
ii

ii

ii psu
sup

psu
ps  

 For the aspiration transformation, when achieved payoff  )(sui is equal or 

greater than aspiration level ip , of player .i  Thus, we assigned 1 value to iratio  for 

player .i Otherwise, we assign the term 
)(1

1
sup ii 

to iratio  for player .i  The smaller 

)(sui  is less than ,ip the smaller the iratio  is. 

Definition 4.2.1 The s  is an Aspiration Scalar Equilibrium (ASE) if and only if the s  

is the solution to the scalar optimization problem )).((max suT
Ss

 

We now determine the ASE for some example games in the following games. 

Example 4.2.2 

   Player 2    Player 2  

 (a) 1  2  3  (b) 1  2  3  

 1  (3,4) (2,2) (2,1) 1  0.2222 0.0555 0.0277 

Player 1 2  (2,3) (7,1) (7,4) 2  0.0833 0.1666 0.6666 

 3  (2,1) (5,6) (6,5) 3  0.0277 0.6666 0.6944 

Figure 4.1 (a) Payoff, (b) compromise matrices for the Example 4.2.2. 

Note: (8,8) and (7,5) is not possible for both players. No value of 1 is attained for any 

).,(   From Figures 4.1 – 4.2, the results are as follows. CE at (6,5).),( 33    The 

ASE for 8,8 21  pp  is at (7,4).),( 32  The ASEs for 5,7 21  pp  are at
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(7,4)),( 32   and (6,5).),( 33  The ASE for 5,6 21  pp  are at (6,5).),( 33   

The ASEs for 5,7 21  pp  are at (7,4)),( 32   and (6,5).),( 33   

   Player 2    Player 2  

 (a) 1  2  3  (b) 1  2  3  

 1  0.0333 0.0204 0.0179 1  0.1000 0.0417 0.0333 

Player 1 2  0.0238 0.0625 0.1000 2  0.0556 0.2000 0.5 

 3  0.0179 0.0833 0.0833 3  0.0333 0.333 0.5 

 (c) 1  2  3  (d) 1  2  3  

 1  0.1250 0.0500 0.4000 1  0.1667 0.0625 0.0500 

Player 1 2  0.0667 0.2000 0.5000 2  0.0833 0.200 0.500 

 3  0.0400 0.5000 1.0000 3  0.0500 1.000 1.000 

Figure 4.2 Aspiration matrices of the Example 4.2.2 (a) for 8,8 21  pp  (b) 
5,7 21  pp (c) 5,6 21  pp  (d) 5,5 21  pp . 

   Player 
II 

   Player 
II 

 

 (a) 1  2  3  (b) 1  2  3  

 1  0.1111 0.0500 0.0417 1  0.1250 0.0500 0.4000 

Player I 2  0.0625 0.1667 0.3333 2  0.0667 0.2000 0.5000 

 3  0.0417 1.0000 0.5000 3  0.0400 0.5000 1.0000 

 (c) 1  2  3      

 1  0.2000 0.0556 0.0417     

Player I 2  0.0833 0.2500 1.0000     

 3  0.0417 0.3333 0.5000     

Figure 4.3 Aspiration matrices of Example 3.3.2.2 (a) for 6,5 21  pp  (b) 
5,6 21  pp (c) 4,7 21  pp . 
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From Figure 4.1(a) and Theorem 4.1.4, we can get the Pareto maximum 

aspiration levels {(5,6), (6,5), (7,4)} for which there exist a solution to D ,( 1p )..., np . 

Then, we find Aspiration matrices for each aspiration levels. From Figure 4.3, we can 

get an aspiration solution )1))((max( suTAsp for the Pareto set of payoffs. 

Example 4.2.3 

   Player 2    Player 2  

 (a) 1  2  3  (b) 1  2  3  

 1  (10,3) (4,7) (4,6) 1  0.1666 0.2777 0.2222 

Player 1 2  (2,6) (9,5) (5,7) 2  0.0741 0.4444 0.3703 

 3  (4,8) (5,6) (7,5) 3  0.3333 0.2963 0.3333 

Figure 4.4 (a) Payoff, (b) compromise matrices for Example 4.2.3. 

From Figures 4.4 – 4.5 the results show that CE is ),( 22   with payoff of (9,5).  

The ASE for aspiration level 11,11 21  pp  and 10,10 21  pp  is at ),( 11 

(10,3), while the ASE for aspiration level 8,8 21  pp  is at (10,3).),( 11   The 

ASE when 5,8 21  pp  is at (7,4).),( 22   

From Figure 4.4 (a), we can get the Pareto maximum aspiration levels {(4,8), 

(5,7), (9,5), (10,3)} for which there exist a solution to D ,( 1p )..., np . Then, we find 

Aspiration matrices for each aspiration levels. From Figure 3.34, we can get an 

aspiration solution )1))((max( suTAsp for the Pareto set of payoff. 
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   Player II    Player II  

 (a) 1  2  3  (b) 1  2  3  

 1  0.05556 0.0250 0.0208 1  0.1250 0.0357 0.0285 

Player I 2  0.01667 0.0476 0.0333 2  0.0222 0.0833 0.0417 

 3  0.03125 0.0238 0.0333 3  0.0476 0.0333 0.0417 

 (c) 1  2  3  (d) 1  2  3  

 1  0.1667 0.1000 0.0667 1  0.3333 0.2000 0.2000 

Player I 2  0.0476 0.2500 0.1250 2  0.1429 1.0000 0.2500 

 3  0.2000 0.0833 0.1250 3  0.2000 0.2500 0.5000 

Figure 4.5 Aspiration matrices of Example 4.2.3 (a) for 11,11 21  pp  (b) 
10,10 21  pp  (c) 8,8 21  pp  (d) 5,8 21  pp . 

 

   Player II    Player II  

 (a) 1  2  3  (b) 1  2  3  

 1  0.1667 0.5000 0.3333 1  0.2000 0.5000 0.2500 

Player I 2  0.1111 0.2500 0.5000 2  0.1250 0.3333 1.000 

 3  1.0000 0.3333 0.2500 3  0.5000 0.5000 0.333 

 (c) 1  2  3  (d) 1  2  3  

 1  0.3333 0.1667 0.1667 1  1.0000 0.1429 0.1429 

Player I 2  0.1250 1.0000 0.2000 2  0.1111 0.5000 0.1667 

 3  0.1667 0.2000 0.2222 3  0.1429 0.1667 0.2500 

Figure 4.6 Aspiration matrices of Example 4.2.3 (a) for 8,4 21  pp  (b) 
7,5 21  pp  (c) 5,9 21  pp  (d) .3,10 21  pp  

 
We next show the comparison our method with Stirling et al.’s method [31]. 
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4.3 Comparison of ASE with Stirling’s method 

Example 4.3.1 Prisoner’s Dilemma Payoff Matrix [34] 
  Player II 

  Defect (D) Cooperate (C) 

Player I Defect (D) (2,2) (4,1) 

 Cooperate (C) (1,4) (3,3) 
                 Figure 4.7 Payoff matrix of Prisoner’s Dilemma. 

 
We now demonstrate the complexity of Stirling’s approach [24] for comparison. 

In this method, we need to create the interdependence mass function from selectability 

and rejectability mass function for each joint option. In addition, we have to know the 

characteristics of game for creating assumption to define joint rejectability mass 

function. For Prisoner’s dilemma example, two attitudes in players’ minds may affect 

their decision. First, dissociation is that the agents go their separate ways without 

regarding cooperation. Second, vulnerability is that the agents expose themselves to 

individual risk in the hope of improving the joint outcome. Let  [0, 1] be a 

dissociation index and a measure of the joint value the players place on rejecting the 

joint option (C, C). Let  [0, 1] be a vulnerability index and a measure of the joint 

value the players place on rejecting the joint option (D, D). With these assumptions and 

constraints on  and  , we define the joint rejectability mass function: ,),(
21

CCp RR

,
2

1),(
21

 
DCp RR ,

2
1),(

21

 
DCp RR .),(

21
DDp RR  Then, we find the 

conditional selectability on joint rejectability, )|,( 2121| 2121
wwvvp RRSS for all ),( 21 vv and 

),( 21 ww in action space ),,(),,{( DCCC  )},(),,( DDCD , from which the 
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interdependence mass function may be obtained by the product rule:

).,(),|,(),,,( 212121|2121 2121212121
wwpwwvvpwwvvp RRRRSSRRSS  Note that no aspiration 

levels are used in Stirling’s method. From [24][34], we get conditional selectability 

function in Table 4.1. 

 
Table 4.1 Conditional selectability for satisficing Prisoner’s Dilemma 

 

                                          ),|,( 2121| 2121
wwvvp RRSS  

                               ),( 21 ww                       
),( 21 vv  ),( CC  ),( DC  ),( CD  ),( DD  

),( CC  0 0 0 1 
),( DC  0 0 0 0 
),( CD  0 0 0 0 
),( DD  1 1 1 0 

  

We obtain the joint selectability by substituting the conditional selectability 

interdependence function given by Table 4.1 and joint rejectability mass function into 

),,,( 21212121
wwvvp RRSS ).,(),|,( 212121| 212121

wwpwwvvp RRRRSS   The joint selectability 

function is following: ,),(
21

CCp SS ,0),(
21

DCp SS ,0),(
21

DCp SS ),(
21

DDp SS

.1   After finding joint rejectability mass function, selectability mass function and 

conditional credibility for the satisficing Prisoner’s Dilemma, we compare the 

selectability function with rejectability following ),(),( 2121 2121
wwpbwwp RRSS  of all 

decision pairs, 21 , ww  in action space. We can get the satisficing solution shown as 
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satisficing equilibrium set parameterized by  and  , for the special case b=1, is 














.for                     )},(),,{(

for                          )},{(
for                          )},{(

2
1

2
1

b







DDCC
DD
CC

  

In comparison, an ASE method  yields {(C,C)}, {(D,C)}, and {(C,D)}for the 

aspiration levels ,3,3 21  pp 1,4 21  pp  and  4,1 21  pp , respectively. 

  Player II   Player II  
 (a) D C (b) D C 
Player I D 0.2500 0.3333 D 0.3333 1.0000 
 C 0.3333 1.0000 C 0.2500 0.5000 
 (c) D C    
 D 0.3333 0.2500    
 C 1.0000 0.5000    

Figure 4.8 Aspiration matrices of Example 5.1.2.1 (a) for 3,3 21  pp  (b) 
1,4 21  pp  (c) .4,1 21  pp  

From Figure 4.8, we obtain an aspiration solution )1))((max( suTAsp for each 

aspiration level. Although (D, C) and (C, D) strategies for 1,4 21  pp  and 

4,1 21  pp , respectively, can make the aspiration solution, the expected payoffs for 

the strategies are undesired and unfair for players which one of them get the worst 

payoff. In addition, (C, C) for 3,3 21  pp  can also create aspiration solution which is 

the fairest strategy for the game. Moreover, if we reduced the aspiration levels from 

3,3 21  pp  to ,2,2 21  pp we will also get strategy (D, D) that get desired level. 
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Example 4.3.2  
  Player II 
  1t  2t  3t  

 
1s  (3,4) (2,2) (2,1) 

Player I 
2s  (2,3) (7,1) (7,4) 

 
3s  (2,1) (5,6) (6,5) 

Figure 4.9 Payoff matrix of Example 4.3.2. 

From Stirling’s method [31], we need to create the interdependence mass 

function from selectability and rejectability mass function for each joint option. In 

addition, we have to know the characteristics of game for creating assumption to define 

joint rejectability mass function. For this example, let  [0, 1] be an index measure of 

the joint value the players place on rejecting the joint option ).,( 11 ts  Let  [0, 1] be 

an index measure of the joint value the players place on rejecting the joint option 

).,( 22 ts  Let  [0, 1] be an index measure of the joint value the players place on 

rejecting the joint option ).,( 33 ts With these assumption, we define the joint rejectability 

mass function: ,),( 1121
tsp RR ,

2
1),( 2121

 
tsp RR ,

2
1),( 3121

 
tsp RR

 

,
2

1),( 2121

 
tsp RR ,),( 2121

tsp RR ,
2

1),( 3221

 
tsp RR  

,
2

1),( 1321

 
tsp RR  ,

2
1),( 2321

 
tsp RR  .),( 3321

tsp RR    

Then we find the conditional selectability on joint rejectability, |,( 21| 2121
vvp RRSS

)21ww for all ),( 21 vv and ),( 21 ww in action space ),,(),,(),,(),,(),,{( 3222122111 tststststs  
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)},(),,(),,( 332313 tststs  from which the interdependence mass function may be obtained 

by the product rule: ),,,( 21212121
wwvvp RRSS ).,(),|,( 212121| 212121

wwpwwvvp RRRRSS   

We obtain the joint selectability by substituting the conditional selectability 

interdependence function given by Table 4.2 and joint rejectability mass function into 

).,(),|,(),,,( 212121|2121 2121212121
wwpwwvvpwwvvp RRRRSSRRSS  The joint selectability 

function is following: ,),( 1121
 tsp SS ,0),( 2121

tsp SS ,0),( 3121
tsp SS

 

),( 2121
tsp SS ,0 ,1),( 2121

 tsp SS ,0),( 3221
tsp SS ,0),( 1321

tsp SS  

,0),( 2321
tsp SS  .22),( 3321

tsp SS  

Table 4.2 Conditional selectability for Example 4.3.2 
 

                                                              ),|,( 2121| 2121
wwvvp RRSS  

 ),( 21 ww  

),( 21 vv  ),( 11 ts  ),( 21 ts  ),( 31 ts  ),( 12 ts  ),( 22 ts  ),( 32 ts  ),( 13 ts  ),( 23 ts  ),( 33 ts  
),( 11 ts  0 0 0 0 1 0 0 0 1 
),( 21 ts  0 0 0 0 0 0 0 0 0 
),( 31 ts  0 0 0 0 0 0 0 0 0 

),( 12 ts  1 1 1 0 0 0 0 0 0 
),( 22 ts  0 0 0 0 0 0 0 0 0 
),( 32 ts  1 1 0 1 0 0 0 0 1 

),( 13 ts  0 0 0 0 0 0 0 0 0 

),( 23 ts  0 0 0 0 0 0 0 0 0 

),( 33 ts  1 0 1 0 1 1 1 1 0 
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After finding joint rejectability mass function, selectability mass function and 

conditional credibility for Example 4.3.2, we compare the selectability function with 

rejectability following ),(),( 2121 2121
wwpbwwp RRSS  of all decision pairs, 21 , ww  in 

action space. We can get the satisficing solution shown as satisficing equilibrium set 

parameterized by , and  , for the special case b=1, is 



























.,for      )},(),,{(
,for      )},(),,{(
,for      )},(),,{(

for                  )},{(
for                  )},{(
for                   )},{(

3
1

3322

3
1

2
1

3311

2
1

2211

3
1

33

22

2
1

11

b












tsts
tsts
tsts

ts
ts
ts

  

   Player 
II 

   Player 
II 

 

 (a) 1t  2t  3t  (b) 1t  2t  3t  

 1s  0.1111 0.0500 0.0417 1s  0.1250 0.0500 0.4000 

Player I 2s  0.0625 0.1667 0.3333 2s  0.0667 0.2000 0.5000 

 s3 0.0417 1.0000 0.5000 3s  0.0400 0.5000 1.0000 

 (c) 1t  2t  3t      

 1s  0.2000 0.0556 0.0417     

Player I 2s  0.0833 0.2500 1.0000     

 s3 0.0417 0.3333 0.5000     

Figure 4.10 Aspiration matrices of Example 4.3.2 (a) for 6,5 21  pp  (b) 
5,6 21  pp (c) 4,7 21  pp . 
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In comparison, an ASE method yields )},{( 23 ts , )},{( 33 ts , and )},{( 32 ts  for 

the aspiration levels ,6,5 21  pp ,5,6 21  pp  and  ,4,7 21  pp  respectively. 

From Figure 4.10 above, we can get 1))((max suTAsp  for these values. 

From these examples above, we can see that the Stirling’s method required 

numerous steps to get the solutions and is difficult to interpret. On the other hand, an 

ASE is easily computable and interpreted. 
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CHAPTER 5 

RISK, GREEDY, AND COOPERATIVE SCALAR  

EQUILIBRIA 

 

5.1 Risk Scalar Equilibria 

 A new optimization criterion for selecting risk avoiding solutions to a 

mathematical decision problem is applied here to n-person game theory. We formulate a 

new scalarization using risk dominance [17], [37]. It seeks a least risky solution in the 

sense of minimizing each player’s lost utility when the other players change strategies. 

The basic idea is that no player wants to decrease his utility much if other player 

changes strategies. This scalarization can be used as a second criterion for choosing a 

pure strategy when a game has more than one solution.  

 

5.1.1 Risk Scalar Equilibria for n-person games 

The Risk Scalar Equilibrium (RISE) is developed for   as follows. Let )(sui be 

the associated von Neumann - Morgenstern (VNM) utility for player i , and let 

)).(),...,(()( 1 sususu n  ))(( suT assigns a single real number in (0,1] for each payoff in 

the utility matrix of n-person games. Let 


















1)(

1...
1)(

1
1)(

1))((
2211 nn vsuvsuvsu

suT  for all ,Ss                                                                            
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where ),,(min)( 111111
11

ssusvv
Ss 




),...,,(min)( 222222
22

ssusvv
Ss 




 )( nnn svv

).,(min 1 nnSs
ssu

nn





In other words )( ii sv is a mimimum value of expected payoff when the 

strategies of player ,,...,1, nii   are fixed. 

Definition 5.1.1.1 The s  is an Risk Scalar Equilibrium (RISE) if and only if the s  is 

the solution to scalar optimization problem )).((max suT
Ss

 

 

5.1.2 Risk Scalar Equilibria Examples 

We now determine RISE in the following games with RISE being the sole 

criteria to illustrate its purpose. 

Example 5.1.2.1 Stag Hunt game 
  Player II 

  )(1 Hunt  )(2 Gather  

Player I )(1 Hunt  
(5,5) (0,4) 

 )(2 Gather  
(4,0) (2,2) 

Figure 5.1 Payoff matrix of Example 5.1.2.1. 

Here .2,1),,(min)()( 1},{1111
21




iuvsvv i 


 )()( 2222 vsvv
 

,2,1),,(min 2},{ 21




ju j
  

where ),(1 u and ),(2 u is the payoff value for player 1 

and player 2. Then, we obtain ,1;01  iv ,2;21  iv ,1;02  jv .2;22  jv  

Risk scalar values are calculated using the transformation 



















1),(
1

1),(
1),(

2211 vuvu
T

jiji
ji 

 , for all .2,1, ji  
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  Player II 
  )(1 Hunt  )(2 Gather  

Player I )(1 Hunt  
0.0277 0.3333 

 )(2 Gather  
0.3333 1.0000 

                     Figure 5.2 Risk scalar matrix of Example 5.1.2.1.  

From Figures 5.1 and 5.2, we obtain that RISE are at ),( 22  with payoff (2,2).  

The payoff at strategies ),( 11   is better that payoff at strategies ).,( 22   However, 

RISE is at ),( 22   instead of ),( 11  because the risk of ),( 22   is less than the risk 

of  ).,( 11   It should be noted that RISE obtains the risk dominance solution proposed 

in [17]. 

Example 5.1.2.2 

  Player II 
  1  2  3  

 
1  

(3,4) (2,2) (2,1) 

Player I 
2  

(2,3) (7,1) (7,4) 

 
3  

(2,1) (5,6) (6,5) 

Figure 5.3 Payoff matrix of Example 5.1.2.2. 

Calculate ,3,2,1),,(min)()( 1},,{1111
321




iuvsvv i 


)()( 2222 vsvv 
 

,3,2,1),,(min 2},,{ 321




ju j


where ),(1 u and ),(2 u is the payoff value for 

player 1 and player 2. Then, we obtain ,1;21  iv ,2;21  iv ,3;21  iv

,1;12  jv ,2;12  jv .3;12  jv  
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Player II 

  1  2  3  

 
1  

0.1250 0.5000 1.0000 

Player I 
2  

0.3333 0.1667 0.0417 

 
3  

1.0000 0.0333 0.0400 

          Figure 5.4 Risk scalar matrix of Example 5.1.2.2. 

 Risk scalar values are calculated using the transformation 

1),(
1

1),(
1),(

2211 





vuvu
T

jiji
ji 

 , for all .3,2,1, ji  

From Figure 5.4, we obtain that RISEs are at ),( 13   and ),( 31  with the same payoff 

(2,1).  

 

5.2 Greedy Scalar Equilibria 

 A scalarization for selecting greedy solutions to a decision problem is applied 

here to one-shot n-person games. The new scalar equilibrium finds a pure strategy when 

each player desires the maximum payoff.  

 

5.2.1 Greedy Scalar Equilibria for n-person games 

The Greedy Scalar Equilibrium (GSE) is developed for   as follows.  Let )(sui  

be the associated von Neumann - Morgenstern (VNM) utility for player nii ,...,1,  ; and 
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let )).(),...,(()( 1 sususu n  ))(( suT assigns a single real number in (0,1] for each payoff 

in the utility matrix of n-person games. 

In particular denote ).(max suM iSsi 
   Now define RSuT )(: by  

















 )
1)(

1(...)
1)(

1()
1)(

1())((
2211 suMsuMsuM

suT
nn

, for all .Ss  

In the greedy transformation, each player i  seeks his maximum payoff, so iratio is the 

term  
1)(

1
 suM ii

 to  make it close to value 1 when payoff  )(sui  is close to .iM We 

next establish that a GSE is a Pareto solution. 

Lemma 5.2.1.1 For any ,)(),( Rsusu   if )()( susu Pareto  then ))).(())(( suTsuT   

Proof.  Let ,)(),( Rsusu  such that ).()( susu Pareto  Then, )()( susu ii  for all 

ni ,...,1 and )()( susu jj  for some index  j. We have 

1)(
1

1)(
10







suMsuM iiii

, for all ni ,...,1 , and 

1
1

1)(
10







jjjj bMsuM
  for some index j.  It follows that 











n

i ii

n

i ii

suT
suMsuM

suT
11

)).((
1)(

1
1)(

1))(( ■ 

Now let )(Gr su  be the set of GSE’s for .   The set of Pareto maxima of a set ),(Su  

also called the efficient frontier, and is written Par ).(Su  
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Theorem 5.2.1.2 For any ,)( Rsu  ).(Par )(Gr SuSu   

Proof. To obtain a contradiction, suppose that ).(Par )( Susu   Then there exist 

Rsu )( such that ).()( susu Pareto   By Lemma 5.2.1.1 it follows that 

))(())(( suTsuT   in contradiction to the optimality of ).(su   We conclude that

)(Par )( Susu   to give the result. ■ 

Definition 5.2.1.3 The s  is a Greedy Scalar Equilibrium (GSE) if and only if the s  is 

the solution to scalar optimization problem )).((max suT
Ss  

 

5.2.2 Greedy Scalar Equilibria Examples 

We now determine GSEs for some example games. 

Example 5.2.2.1 Two-person Payoff matrix with 3 x 3 

  Player II 
  1  2  3  

 
1  

(3,4) (2,2) (2,1) 

Player I 
2  

(2,3) (7,1) (7,4) 

 
3  (2,1) (5,6) (6,5) 

Figure 5.5 Payoff matrix of Example 5.2.2.1. 

Calculate the ),(max
},,{
},,{

321
321



 ii uM




  where ),( iu is the payoff value for 

player ith, i =1, 2. So, we obtain ,71 M .62 M  We calculate greedy scalar values 

using the transformation 
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





























1),(
1

1),(
1),(

2211 jiji
ji uMuM

T


 for all  

   
Player II 

  1  2  3  

 
1  

0.0667 0.0333 0.0278 

Player I 
2  

0.0417 0.1667 0.3333 

 
3  0.0278 0.3333 0.2500 

Figure 5.6 Greedy scalar matrix of Example 5.2.2.1. 

From Figures 5.5-5.6, the results are includes as follows. GSEs are at

4) (7,),( 32   and 6). (5,),( 23   One GSE is an RE, but the other GSE is not. 

Thus some REs are not greedy. In particular, the GSE 4) (7,),( 32  dominates payoff 

4), (3, the other pure RE. 

Example 5.2.2.2 Prisoner’s Dilemma 

  Player II 
  )(1 Defect  )(2 Cooperate  

Player I )(1 Defect  
(1,1) (5,0) 

 )(2 Cooperate  
(0,5) (4,4) 

                 Figure 5.7 Payoff matrix of Example 5.2.2.2. 

Calculate the ),(max
},{
},{

21
21



 ii uM




 where ),( iu is the payoff value for player 

i, i =1, 2. So, we obtain ,51 M .52 M  We calculate greedy scalar values using the 

transformation 

.3,2,1, ji
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





























1),(
1

1),(
1),(

2211 jiji
ji uMuM

T


 for all .2,1, ji  

  Player II 
  )(1 Defect  )(2 Cooperate  

Player I )(1 Defect  
0.0400 0.1667 

 )(2 Cooperate  
0.1667 0.2500  

                   Figure 5.8 Greedy scalar matrix of Example 5.2.2.2. 

  Player II 
  )(1 Defect  )(2 Cooperate  

Player I )(1 Defect  
1.0000 0.2000 

 )(2 Cooperate  
0.2000 0.0400  

                   Figure 5.9 Risk scalar matrix of Example 5.2.2.2. 

From Figure 5.8, the results are includes as follows. GSEs are at 4). (4,),( 22   

Note that the GSE is not an RE even though it is based on greed. The pure RE is (1,1). 

In other words, greed can have more than one interpretation. On the other hand, the 

RISE value is 0.400 for (4,4) that is less than the value 1.0000 for (1,1) in Figure 5.9. 

Thus, in the GSE the lower risk of (1,1) is the determining factor.  

 

5.3 Cooperative Scalar Equilibria 

 A Cooperative Scalar Equilibrium related to the GSE is now developed by using 

scalarization concepts. 
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5.3.1 Cooperative Scalar Equilibria for n-person game 

The Cooperative Scalar Equilibrium (CSE) is developed for   as follows. Let

)(sui be the associated von Neumann - Morgenstern (VNM) utility for player i ; and let 

)).(),...,(()( 1 sususu n  Let ),(min iiiSs
ssu

ii
 

 be a minimum value of expected payoff 

when we fixed only the strategies of player .,...,1, nii  Denote )(max suM iSsi 
 and 

).(min sum iSsi 


 
Then we define the transformation 





















1
1)(

...
1
1)(

1
1)(

))((
22

22

11

11

nn

nn

mM
vsu

mM
vsu

mM
vsusuT for all ,Ss                                                                            

where ),,(min)( 111111
11

ssusvv
Ss  

 ),...,,(min)( 222222
22

ssusvv
Ss  

  )( nnn svv
 

).,(min 1 nnSs
ssu

nn
   

))(( suT assigns a single real number in (0,1] for each payoff in the 

utility matrix of n-person games. 

From cooperative transformation, every n-1 players chooses strategies to 

maximize the expected payoff for the remaining players’ strategy, so we make the 

interval between )(sui  and iv   as the numerator term .1)(  ii vsu  We make the 

interval between iM  and im    as the denominator term 1 ii mM  for  iratio   to make 

it close to value 1 when payoff  )(sui  is close to iM  and far from the possible 

minimum value iv  when other players change their strategies. 

Definition 5.3.1.1 The s  is a Cooperative Scalar Equilibrium (CSE) if and only if the 

s  is the solution to the scalar optimization problem )).((max suT
Ss
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5.3.2 Cooperative Scalar Equilibria Examples 

We now determine the CSE in the following example games. 

Example 5.3.2.1 Recall Example 5.2.2.2 (Prisoner’s dilemma) 

Calculate ,2,1),,(min)()( 1},,{1111
321




iuvsvv i 


 )()( 2222 vsvv
 

,2,1),,(min 2},,{ 321




ju j


where ),(1 u and ),(2 u is the payoff value for player 1 

and player 2, respectively. Cooperative Scalar values are calculated using the 

transformation 



















1
1),(

1
1),(

))((
22

22

11

11

mM
vu

mM
vu

suT jiji 
, for all .2,1, ji  

  Player II 
  )(1 Defect  )(2 Cooperate  

Player I )(1 Defect  
0.0278 0.1389 

 )(2 Cooperate  
0.1389 0.6944 

                   Figure 5.10 Cooperative scalar matrix of Example 5.3.2.1. 

  Player II 
  )(1 Defect  )(2 Cooperate  

Player I )(1 Defect  
(4,4) (0,4) 

 )(2 Cooperate  
(4,0) (0,0) 

                   Figure 5.11 Disappointment matrix of Example 5.3.2.1. 

From Figures 5.10-5.11, the results are includes as follows. CSE is at

4) (4,),( 11   that is the same as DE. It should be noted that GSE and CSE are the 
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same for Prisoner’s dilemma. Both greed and cooperation yield the best payoff for such 

player. However, (4,4) is riskier as shown in the previous example. 

Example 5.3.2.2 Stag Hunt game 

  Player II 
  )(1 Hunt  )(2 Gather  

Player I )(1 Hunt  
(5,5) (0,4) 

 )(2 Gather  
(4,0) (2,2) 

Figure 5.12 Payoff matrix of Example 5.3.2.2. 

Calculate ,2,1),,(min)()( 1},,{1111
321




iuvsvv i 


 )()( 2222 vsvv
 

,2,1),,(min 2},,{ 321




ju j


where ),(1 u and ),(2 u is the payoff value for player 1 

and player 2, respectively. So, we obtain ,1;01  iv ,2;21  iv ,1;02  jv

.2;22  jv  

Cooperative Scalar values are calculated using the transformation  



















1
1),(

1
1),(

))((
22

22

11

11

mM
vu

mM
vu

suT jiji 
, for all .2,1, ji  

  Player II 
  )(1 Hunt  )(2 Gather  

Player I )(1 Hunt  
1.0000 0.0833 

 )(2 Gather  
0.0833 0.0277 

                     Figure 5.13 Cooperative scalar matrix of Example 5.3.2.2. 
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  Player II 
  )(1 Hunt  )(2 Gather  

Player I )(1 Hunt  
(0,0) (0,4) 

 )(2 Gather  
(4,0) (2,2) 

                     Figure 5.14 Disappointment matrix of Example 5.3.2.2. 

From Figures 5.13-5.14, the results are includes as follows. The CSE is the same 

as DE. CSE is at 5). (5,),( 11   

Example 5.3.2.3 Recall Example 5.1.2.2 

Calculate ,3,2,1),,(min)()( 1},,{1111
321




iuvsvv i 


)()( 2222 vsvv 
 

,3,2,1),,(min 2},,{ 321




ju j


where ),(1 u and ),(2 u is the payoff value for 

player 1 and player 2, respectively. Then, we obtain ,1;21  iv ,2;21  iv

,3;21  iv ,1;12  jv ,2;12  jv .3;12  jv
 

  Cooperative Scalar values are calculated using the transformation 



















1
1),(

1
1),(

))((
22

22

11

11

mM
vu

mM
vu

suT jiji 
, for all .2,1, ji  

   
Player II 

  1  2  3  

 
1  

0.2222 0.0556 0.0277 

Player I 
2  

0.0833 0.1667 0.6667 

 
3  

0.0277 0.6667 0.6944 

          Figure 5.15 Cooperative scalar matrix of Example 5.3.2.3. 
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  Player II 
  1  2  3  

 
1  

(0,0) (1,4) (1,4) 

Player I 
2  

(5,1) (0,5) (0,1) 

 
3  (4,3) (1,0) (0,0) 

Figure 5.16 Disappointment matrix of Example 5.3.2.3. 

From Figures 5.15-5.16, we obtain that CSE is at ),( 33   with payoff (6,5).

The CSE is a DE, but the other DE is not a CSE and has a poor metric value. Thus some 

DEs are not necessarily very cooperative. In particular, the GSE 5) (6,),( 32 

dominates payoff 4), (3, the other pure DE. The significant point here is that the GSE 

and CSE matrices provide an approach to selecting among REs and DEs. The SE theory 

attempts to do so via the notion of refinements based on various approaches. Scalar 

matrices represent another approach to refining RE’s and DE’s. 
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CHAPTER 6 

SEQUENTIAL, SIMULTANEOUS, AND 

PRIORITY SCALAR EQUILIBRIA 

 

 In this chapter, Sequential, Simultaneous, and Priority Scalar Equilibria are 

developed. In a Sequential Scalar Equilibrium we sequentially, in some chosen order, 

apply other scalarizations to SEs of the game until we find a unique one if possible. In a 

Simultaneous Scalar Equilibrium we combine the criteria for carious scalarizations into 

one. Effectively the multiple criteria are applied simultaneously. In a Priority Scalar 

Equilibrium players are prioritized as their ability to get their highest payoff. 

 
 

6.1 Sequential Scalar Equilibria  

When the SEs of Chapter 3, 4, and 5 give more than one pure strategies solution, 

we may use sequential criteria to find a pure strategy that satisfies secondary criteria. 

The procedure for determining a Sequential Scalar Equilibrium (SSE) is now presented. 

 

6.1.1 Procedure of the Sequential Scalar Equlibrium 

 a) Some criteria is applied, and multiple pure strategy solutions exist. 

 b) Another criterion is then applied to the SE’s of (a) that is agreed upon by all 

players to find the best solution among the solution.  



 

66 
 

c) If multiple solutions still exist, repeated step b) until a unique solution is 

obtained if possible. 

 

6.1.2 Examples of Sequential Scalar Equilibria 

We now determine SSE in the following games. 

Example 6.1.2.1 Consider two person game with 3x3 payoff matrix that CE gives 

multiple solutions 

  Player II 
  1  2  3  

 
1  (3,4) (2,2) (5,6) 

Player I 
2  (2,3) (4,7) (7,4) 

 
3  (6,5) (4,5) (2,7) 

Figure 6.1 Payoff matrix of Example 6.1.2.1. 

   
Player II 

  1  2  3  

 
1  0.1667 0.0277 0.5556 

Player I 
2  0.0556 0.1667 0.5000 

 
3  0.5556 0.3333 0.1667 

Figure 6.2 Compromise matrix of Example 6.1.2.1. 

First we use find the best pure CE’s. From Figure 6.2, there are multiple CE’s:

),( 13   and ),( 31  with payoff (6,5) and (5,6), respectively. Next we apply the RISE 
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as a secondary criterion to find the best pure strategies among them. In Figure 6.3, after 

we apply RISE the numerical terms and find the unique pure strategy ).,( 31   

   
Player II 

  1  2  3  

 
1  xxxx xxxx 0.0833 

Player I 
2  xxxx xxxx xxxx 

 
3  0.0667 xxxx xxxx 

Figure 6.3 Risk scalar matrix of Example 6.1.2.1. 

Example 6.1.2.2 Consider two person game with 3x3 payoff matrix that GSE gives 

multiple solutions 

  Player II 
  1  2  3  

 
1  (3,5) (2,1) (6,7) 

Player I 
2  (5,2)  (8,5) (4,2) 

 
3  (4,5) (7,5) (2,6) 

Figure 6.4 Payoff matrix of Example 6.1.2.2. 

First we use the GSE to find the best pure strategies. From Figure 6.5, GSE 

gives the pure strategies ),( 22   and ),( 31  with payoff (8,5) and (6,7), respectively. 

Next we apply the CSE as a secondary criterion to find the best pure strategies among 

them. In Figure 6.6, after we use CSE to find the best solution among them, we get the 

unique pure strategy that is ).,( 31   
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Player II 

  1  2  3  

 
1  0.0556 0.0204 0.3333 

Player I 
2  0.0417 0.3333 0.0333 

 
3  0.0667 0.1667 0.0714 

Figure 6.5 Greedy scalar matrix of Example 6.1.2.2. 

   
Player II 

  1  2  3  

 
1  xxxx xxxx 0.6122 

Player I 
2  xxxx 0.5100 xxxx 

 
3  xxxx xxxx xxxx 

Figure 6.6 Cooperative scalar matrix of Example 6.1.2.2. 

Example 6.1.2.3 Consider two-person game with 3x3 payoff matrix  

  Player II 
  1  2  3  

 
1  (3,5) (2,1) (6,7) 

Player I 
2  (5,2)  (8,5) (7,7) 

 
3  (8,6) (4,5) (2,1) 

Figure 6.7 Payoff matrix of Example 6.1.2.3. 
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Player II 

  1  2  3  

 
1  0.1634 0.0204 0.7143 

Player I 
2  0.0204 0.4082 0.4286 

 
3  0.7143 0.3061 0.0204 

Figure 6.8 Cooperative scalar matrix of Example 6.1.2.3. 

First we use the CE to find the best pure strategies. From Figure 6.8, the CE 

gives the pure strategies ),( 13   and ),( 31  with payoff (8,6) and (6,7), respectively. 

Next we apply the GSE as a secondary criterion to find the best pure strategies among 

them. In Figure 6.9, after we use GSE to find the best solution among them, we get the 

unique pure strategy that is ).,( 13   

   
Player II 

  1  2  3  

 
1  xxxx xxxx 0.3333 

Player I 
2  xxxx xxxx xxxx 

 
3  0.5000 xxxx xxxx 

Figure 6.9 Greedy scalar matrix of Example 6.1.2.3. 

Second, we use the GSE to find the best pure strategies. From Figure 6.10, the 

GSE gives the pure strategies ),( 13   and ),( 32  with payoff (8,6) and (7,7), 

respectively. Next we apply the CSE as a secondary criterion to find the best pure 
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strategies among them. In Figure 6.10, after we use the CSE to find the best solution 

among them, we get the unique pure strategy that is ).,( 13   

   
Player II 

  1  2  3  

 
1  0.0556 0.0204 0.3333 

Player I 
2  0.0417 0.3333 0.5000 

 
3  0.5000 0.0667 0.0204 

Figure 6.10 Greedy scalar matrix of Example 6.1.2.3. 

   
Player II 

  1  2  3  

 
1  xxxx xxxx xxxx 

Player I 
2  xxxx xxxx 0.4286 

 
3  0.7143 xxxx xxxx 

Figure 6.11 Cooperative scalar matrix of Example 6.1.2.3. 

 

6.2 Simultaneous Scalar Equilibria  

The Simultaneous Scalar Equilibrium (SISE) may be considered as compromise 

between criteria. We next present two different methods to create the SISE. 
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6.2.1 SISE by multiplying between two SEs together 

 We create the first method of SISE by multiplying between greedy and risk 

criteria, cooperative and risk criteria, as well as greedy and cooperative criteria. 

 

6.2.1.1 Greedy and Risk criteria     

The SISE combining the greedy and risk criteria is next developed for .  Let

)(sui  be the associated von Neumann - Morgenstern (VNM) utility for player

nii ,...,1,  ; and let )).(),...,(()( 1 sususu n   Let )( ii sv be a mimimum value of expected 

payoff when we fixed only the strategies of player .,...,1, nii   

In particular denote ).(max suM iSsi 
   Now define RSuT )(: by  
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
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for all ,Ss  where ),,(min)( 111111
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ssusvv
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

),...,,(min)( 222222
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ssusvv
Ss 
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

 )( nnn svv ).,(min 1 nnSs
ssu

nn



  
))(( suT assigns a single real number in (0,1] for each 

payoff in the utility matrix of n-person games. 

Definition 6.2.1.1.1 The s  is an SISE combining greedy and risk criteria if and only if 

the s  is the solution to the scalar optimization problem )).((max suT
Ss
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Example 6.2.1.1.2 Recall 5.2.2.2 

  Player II 
  )(1 Defect  )(2 Cooperate  

Player I )(1 Defect  
0.0400 0.0333 

 )(2 Cooperate  
0.3333 0.0100  

                   Figure 6.12 Greedy and Risk scalar matrix of example 6.2.1.1.2. 

From Figure 6.12, the SISE combining greedy and risk is at 1). (1,),( 11   

 

6.2.1.2 Cooperative and Risk criteria     

The SISE combining the cooperative and risk criteria is developed for  .  Let

)(sui  be the associated von Neumann - Morgenstern (VNM) utility for player

nii ,...,1,  ; and let )).(),...,(()( 1 sususu n   Let ),(min iiiSs
ssu

ii
 

 be a minimum value of 

expected payoff when we fixed only the strategies of player .,...,1, nii  Denote 

)(max suM iSsi 
 and ).(min sum iSsi 

  Let define 
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))(( suT assigns a single real number in (0,1] for each 

payoff in the utility matrix of n-person games. 

Definition 6.2.1.2.1 The s  is an SISE combining cooperative and risk criteria if and 

only if the s  is the solution to the scalar optimization problem )).((max suT
Ss
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Example 6.2.1.2.2 Recall Example 5.1.2.1 

From Figure 6.13, SISE’s combining greedy and risk are at 1), (2,),( 13 

1), (7,),( 22  and 1). (2,),( 31   

   
Player II 

  1  2  3  

 
1  0.0083 0.0167 0.0278 

Player I 
2  0.0139 0.0278 0.0139 

 
3  0.0278 0.0111 0.0100 

Figure 6.13 Cooperative and Risk Scalar matrix of Example 6.2.1.2.2. 

 

6.2.1.3 Greedy and Cooperative criteria     

The SISE of greedy and cooperative criteria is developed for  .  Let )(sui  be 

the associated von Neumann - Morgenstern (VNM) utility for player nii ,...,1,  ; and let 
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 be a minimum value of expected payoff when we fixed only the 
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strategies of player .,...,1, nii   ))(( suT assigns a single real number in (0,1] for each 

payoff in the utility matrix of n-person games.
 

Definition 6.2.1.3.1 The s  is an SISE combining greedy and cooperation criteria if and 

only if the s  is the solution to the scalar optimization problem )).((max suT
Ss

 

Example 6.2.1.3.2 Recall 5.1.2.2 

   
Player II 

  1  2  3  

 
1  0.0148 0.0019 0.0008 

Player I 
2  0.0035 0.0278 0.2222 

 
3  0.0008 0.2222 0.1736 

Figure 6.14 Greedy and Cooperative Scalar matrix of Example 6.2.1.3.2. 

From Figure 6.14, the SISE’s combining greedy and cooperation are

4) (7,),( 32   and 6). (5,),( 23   

 

6.2.2 SISE with weighted criteria 

We create the second method of SISE by weighted the criteria. The SISE is 

developed for   as follows.  Let )(sui  be the associated von Neumann - Morgenstern 

(VNM) utility for player nii ,...,1,  ; and let )).(),...,(()( 1 sususu n  Denote .10  

Let ))(( suT be the transformation 

))(( suT ))( of  valueSE a( su )),( of  valueSEanother )(1( su  
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for all .Ss  ))(( suT assigns a single real number in (0,1] for each payoff in the utility 

matrix of n-person games. It should be noted that the well-known Hurwigz criterion 

[38] is in effect an SISE. 

Definition 6.2.2.1 The s  is an SISE if and only if the s  is the solution to the scalar 

optimization problem )).((max suT
Ss

 

Example 6.2.2.2 Recall Example 5.1.2.2 and consider GSE and RISE at the same time. 

 Given 5.0  calculate    ))( of eation valu transformGSE(5.0))(( susuT  

)),( of eation valu transformRISE)(5.01( su  

   
Player II 

  1  2  3  

 
1  

0.0959 0.2667 0.5139 

Player I 
2  

0.1875 0.1667 0.1875 

 
3  

0.5139 0.1833 0.1450 

          Figure 6.15 Simultaneous scalar matrix of Example 6.2.2.2 for 5.0  

From Figure 6.15, SISE are at 1) (2,),( 13  and 1). (2,),( 31   

Given 7.0  calculate    ))( of eation valu transformGSE(7.0))(( susuT  

)).( of eation valu transformRISE)(7.01( su  From Figure 6.16, SISE are at ),( 13 

1) (2, and 1). (2,),( 31   
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Player II 

  1  2  3  

 
1  

0.0842 0.1733 0.3195 

Player I 
2  

0.1292 0.1667 0.2458 

 
3  

0.3195 0.2433 0.1870 

          Figure 6.16 Simultaneous scalar matrix of Example 6.2.2.2 for .7.0  

Example 6.2.2.3 Recall Example 5.1.2.2 and consider GSE and CSE at the same time. 

Given 5.0  calculate    ))( of eation valu transformGSE(5.0))(( susuT  

)),( of eation valu transform(CSE)5.01( su  

   
Player II 

  1  2  3  

 
1  

0.1445 0.0444 0.0278 

Player I 
2  

0.0625 0.1667 0.5000 

 
3  

0.0278 0.5000 0.4722 

          Figure 6.17 Simultaneous scalar matrix of Example 6.2.2.3 for .5.0  

From Figure 6.17, SISE are at 6) (5,),( 23  and 4). (7,),( 32   

Given 7.0  calculate    ))( of eation valu transformGSE(7.0))(( susuT  

)).( of eation valu transformCSE)(7.01( su  From Figure 6.18, SISE are at ),( 23 

6) (5, and 4). (7,),( 32   
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Player II 

  1  2  3  

 
1  

0.1134 0.0399 0.0277 

Player I 
2  

0.0542 0.1667 0.4333 

 
3  

0.0277 0.4333 0.3833 

          Figure 6.18 Simultaneous scalar matrix of Example 6.2.2.3 for .7.0  

We summarize the SSE and SISE solution in the following table. 

Table 6.1 The SSE and SISE solution with different criteria 

Example Criteria Solution 

6.1.2.1 SSE with Compromise and Risk  ),( 31  with payoff (5,6) 
6.1.2.2 SSE with Greedy and Cooperation ),( 31  with payoff (6,7) 
6.1.2.3 SSE with Cooperation and Greedy ),( 13  with payoff (8,6) 
6.1.2.3 SSE with Greedy and Cooperation ),( 13  with payoff (8,6) 

6.2.1.2.2 SISE’s combining greedy and risk ,),( 13  ,),( 22  and 

),( 31  with payoff (2,1), 
(7,1), (2,1) 

6.2.1.3.2 SISE’s combining greedy and 
cooperation 

),( 32   and ),( 23   with 
payoff (7,4) and (5,6), 

6.2.2.2 SISE with 5.0  of GSE and RISE  ),( 13  and ),( 31  with 
payoff (2,1), (2,1) 

6.2.2.2 SISE with 7.0  of GSE and RISE ),( 13  and ),( 31  with 
payoff (2,1) and (2,1) 

6.2.2.3 SISE with 5.0  of GSE and CSE ),( 23  and ),( 32   with 
payoff (5,6) and (7,8)  

6.2.2.3 SISE with 7.0  of GSE and CSE ),( 23  and ),( 32   with 
payoff (5,6) and (7,8) 
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6.3 Priority Scalar Equilibria  

 Players are next prioritized as their ability to get their highest payoff. In other 

words, players are given preference much as in sense practical situations. The priority is 

not preemptive. It only influences the scalarization. We focus only on greediness for 

this criterion. 

 

6.3.1 Priority Scalar Equilibria for n-person games 

The Priority Scalar Equilibrium (PSE) is developed for   as follows.  Let )(sui  

be the associated von Neumann - Morgenstern (VNM) utility for player nii ,...,1,  ; and 

let )).(),...,(()( 1 sususu n  Let i  be the integer-valued priority rank for each player

,,...,1, nii   where 1 denotes the highest priority. In particular denote ).(max suM iSsi 
   

Now define RSuT )(: by  
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, for all

.Ss ))(( suT assigns a single real number in (0,1] for each payoff in the utility matrix 

of n-person games. 

Definition 6.3.1.1 The s  is a Priority Scalar Equilibrium (PSE) if and only if the s  is 

the solution to the scalar optimization problem )).((max suT
Ss  
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Note that we have used integer priorities above. In fact, we could have any 

positive numbers as priorities. A higher priority is assigned by a lower positive number. 

Therefore, some players could be given more favorable treatment for some reason by an 

arbiter. 

 

6.3.2 Priority Scalar Equilibria Examples 

We now determine PSEs in following example games. 

Example 6.3.2.1 Two-person 3 x 3 payoff matrix where Player 2 has greater priority 

than Player 1. 

Let .2,1 12    Calculate the ),(max
},,{
},,{

321
321



 ii uM




  where ),( iu is the 

payoff value for player i, i =1, 2. So, we obtain ,71 M .62 M  

  Player II 
  1  2  3  

 
1  

(3,4) (2,2) (2,1) 

Player I 
2  

(2,3) (7,1) (7,4) 

 
3  (2,1) (5,6) (6,5) 

Figure 6.19 Payoff matrix of Example 6.3.2.1. 

We calculate priority scalar values using the transformation 
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From Figure 6.20, we obtain that PSE is at ),( 23   with payoff (5,6).  This 

solution is reasonable because Player 2 can get the highest payoff. 

   
Player II 

  1  2  3  

 
1  

0.0513 0.0286 0.0238 

Player I 
2  

0.0357 0.0370 0.0741 

 
3  0.0238 0.1818 0.1000 

Figure 6.20 Priority scalar matrix of Example 6.3.2.1. 

Example 6.3.2.2 Recall Example 6.3.2.1. Assume now that Player 1 has greater priority 

than Player 2.  

Let .2,1 21    Calculate the ),(max
},,{
},,{

321
321



 ii uM




  where ),( iu is the 

payoff value for player i, i =1, 2. So, we obtain ,71 M .62 M  We calculate priority 

scalar values using the transformation 


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suMsuM
suT for all  

In Figure 6.21, we obtain that PSE is at ),( 32   with payoff (7,4).  The result is 

different from Example 6.3.2.1 because the priority rank has changed.  

 

 

.3,2,1, ji



 

81 
 

   
Player II 

  1  2  3  

 
1  

0.0400 0.0278 0.0256 

Player I 
2  

0.0303 0.1538 0.2000 

 
3  0.0256 0.0833 0.1111 

Figure 6.21 Priority scalar matrix of Example 6.3.2.2. 
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CHAPTER 7 

COALITION SCALAR EQUILIBRIA 

 

 Previous chapters have treated players individually. Here we consider given 

coalitions of players. In general, coalitions can be formed for any .2n  But effectively 

in the 2n  case, we merely have cooperative behavior as in the DE. We limit 

coalitions to the greedy criterion. Effectively each coalition wishes to maximize its total 

payoff. After the game is played, each coalition divides its total payoff in any way it 

chooses, perhaps using some other game-theoretic approach. In fact, there is a topic in 

game theory known as fair division [39]. 

 

7.1 Coalition Scalar Equilibria for n-person games 

The Coalition Scalar Equilibrium (COSE) is developed for   as follows.  Let

)(sui  be the associated von Neumann - Morgenstern (VNM) utility for player

nii ,...,1,  ; and let )).(),...,(()( 1 sususu n  Let k  be the number of coalitions. Let jn  

be the number of players in coalition 



k

j
j nnkjj

1

.;,...,2,1,  Let jJ  be the set of 

players in coalitions .,...,2,1, kjj  . Let )(su j  be the average value of players’ payoff 
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for each coalition ,,...,2,1, kjj   .
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  Let )(su jM  be the average 

maximum value of players’ payoff for each coalition ,,...,2,1, kjj   .)(
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In particular denote ).(max suM iSsi 
   Now define RSuT )(: by  
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, for 

all .Ss  

))(( suT  assigns a single real number in (0,1] for each payoff in the utility matrix of n-

person games. 

Definition 7.1.1 The s  is an Coalition Scalar Equilibrium (COSE) if and only if the s  

is the solution to the scalar optimization problem )).((max suT
Ss

 

 

7.2 Coalition Scalar Equilibria Examples 

Example 7.2.1 Consider the four-person game with coalitions. Player 1 and 2 form the 

first coalition, and Player 2 and 3 form the second coalition. 

 Let each player have two strategies. In particular let Player 1 have strategies 

,, 21   Player 2 have strategies ,, 21   Player 3 have strategies ,, 21   Player 4 have 

strategies ., 21    Suppose }2,1{1 J  and }.4,3{2 J  From Figure 7.1 we first obtain 
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,81 M ,62 M ,73 M ,94 M  and then 7)(1 su M and 8)(2 su M  from the 

formula .2,1,)( 

 j

n

M
su

j

Ji
i

M jj We finally calculate coalition scalar values using the 

transformation 












 )
1)()(

1()
1)()(

1())(( 21 21 susususu
suT MM , for all .Ss  

Set of strategies Payoff Set of strategies Payoff 

),,,( 1111   (3,5,6,4) ),,,( 1112   (8,4,7,3) 
),,,( 2111   (8,3,5,7) ),,,( 2112   (3,2,4,4) 
),,,( 1211   (3,5,7,9) ),,,( 1212   (8,6,6,5) 
),,,( 1121   (4,2,4,8) ),,,( 1122   (6,6,7,5) 
),,,( 2211   (7,1,5,7) ),,,( 2122   (4,3,4,3) 
),,,( 2121   (3,5,6,9) ),,,( 1222   (2,5,2,9) 
),,,( 1221   (6,2,4,7) ),,,( 2212   (4,2,5,6) 
),,,( 2221   (3,4,2,2) ),,,( 2222   (8,4,6,7) 

Figure 7.1 Payoff matrix of Example 7.2.1. 

Set of strategies Transformation 
value Set of strategies Transformation 

value 
),,,( 1111   0.0625 ),,,( 1112   0.1250 
),,,( 2111   0.1333 ),,,( 2112   0.0364 
),,,( 1211   0.2500 ),,,( 1212   0.2857 
),,,( 1121   0.0667 ),,,( 1122   0.1667 
),,,( 2211   0.0833 ),,,( 2122   0.0404 
),,,( 2121   0.1667 ),,,( 1222   0.0634 
),,,( 1221   0.0714 ),,,( 2212   0.0571 
),,,( 2221   0.0317 ),,,( 2222   0.2000 

Figure 7.2 Coalition scalar matrix of Example 7.2.1. 
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These transformation values are shown in Figure 7.2, where we obtain that COSE is at 

),,,( 1212   with payoff (8,6,6,5)  when Player 1 and 2 form the first coalition and 

Player 2 and 3 form the second coalition. 

Example 7.2.2 Recall Example 7.2.1 and Figure 7.1. Now let Player 1 and 4 form the 

first coalition and Player 2 and 3 form the second coalition. Hence }4,1{1 J  and 

}.3,2{2 J  From Figure 7.1 we first obtain ,81 M ,62 M ,73 M ,94 M  and then 

5.8)(1 su M and 5.6)(2 su M  from the formula .2,1,)( 

 j

n

M
su

j

Ji
i

M jj We finally 

calculate coalition scalar values using the transformation  














 )
1)()(

1()
1)()(

1())(( 21 21 susususu
suT MM , for all .Ss  

Set of strategies Transformation 
value Set of strategies Transformation 

value 
),,,( 1111   0.0833 ),,,( 1112   0.1250 
),,,( 2111   0.1429 ),,,( 2112   0.0370 
),,,( 1211   0.1905 ),,,( 1212   0.2222 
),,,( 1121   0.0635 ),,,( 1122   0.2500 
),,,( 2211   0.0889 ),,,( 2122   0.0417 
),,,( 2121   0.1429 ),,,( 1222   0.0625 
),,,( 1221   0.0741 ),,,( 2212   0.0556 
),,,( 2221   0.0317 ),,,( 2222   0.2000 

Figure 7.3 Coalition scalar matrix of Example 7.2.2. 
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From Figure 7.3, we obtain that COSE is now ),,,( 1122   with payoff 

(6,6,7,5)  when Player 1 and 4 form the first coalition, and Player 2 and 3 form the 

second coalition. 

Example 7.2.3 Recall Example 7.2.1 and Figure 7.1. Now let Player 1 form the first 

coalition and Player 2, 3, and 4 form the second coalition. Hence }1{1 J  and 

}.4.3,2{2 J  From Figure 7.1 we first obtain ,81 M ,62 M ,73 M ,94 M  and 

then 8)(1 su M and 33.7)(2 su M  from the formula .2,1,)( 

 j

n

M
su

j

Ji
i

M jj

 
We 

finally calculate coalition scalar values using the transformation  














 )
1)()(

1()
1)()(

1())(( 21 21 susususu
suT MM , for all .Ss  

Set of strategies Transformation 
value Set of strategies Transformation 

value 
),,,( 1111   0.0501 ),,,( 1112   0.2730 
),,,( 2111   0.3003 ),,,( 2112   0.0334 
),,,( 1211   0.1253 ),,,( 1212   0.3755 
),,,( 1121   0.0546 ),,,( 1122   0.1431 
),,,( 2211   0.1251 ),,,( 2122   0.0400 
),,,( 2121   0.1002 ),,,( 1222   0.0477 
),,,( 1221   0.0834 ),,,( 2212   0.0500 
),,,( 2221   0.0295 ),,,( 2222   0.3755 

Figure 7.4 Coalition scalar matrix of Example 7.2.3. 
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From Figure 7.4, we obtain the COSE are  ),,,( 1212   with payoff (8,6,6,5)  

and another COSE ),,,( 2222  with payoff (8,4,6,7) when Player 1 form the first 

coalition and Player 2,3, and 4 form the second coalition. 

Example 7.2.4 Recall Example 7.2.1 and Figure 7.1. Now let Player 1 form the first 

coalition, Player 2 form the second coalition, and Player 3 and 4 form the third 

coalition. Hence },1{1 J  },2{2 J and }.4,3{3 J  From Figure 7.1 we first obtain 

,81 M ,62 M ,73 M ,94 M  and then ,8)(1 su M ,6)(2 su M and 8)(3 su M  

from the formula .3,2,1,)( 

 j

n

M
su

j

Ji
i

M jj We finally calculate coalition scalar values 

using the transformation  

















 )
1)()(

1()
1)()(

1()
1)()(

1())(( 321 321 susususususu
suT MMM , for all

.Ss  

Set of strategies Transformation 
value Set of strategies Transformation 

value 
),,,( 1111   0.02083 ),,,( 1112   0.08333 
),,,( 2111   0.08333 ),,,( 2112   0.00667 
),,,( 1211   0.08333 ),,,( 1212   0.28571 
),,,( 1121   0.01333 ),,,( 1122   0.11111 
),,,( 2211   0.02778 ),,,( 2122   0.00909 
),,,( 2121   0.05556 ),,,( 1222   0.02041 
),,,( 1221   0.01905 ),,,( 2212   0.01143 
),,,( 2221   0.00794 ),,,( 2222   0.13333 

Figure 7.5 Coalition scalar matrix of Example 7.2.4. 
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From Figure 7.5, we obtain the COSE  ),,,( 1212   with payoff (8,6,6,5)  

when Player 1 forms the first coalition, Player 2 form the second coalition, and Player 3 

and 4 form the third coalition. 

Example 7.2.5 Recall Example 7.2.1 and Figure 7.1. Now let Player 1 form the first 

coalition, Player 2 and Player 3 form the second coalition, and Player 4 form the third 

coalition. Hence },1{1 J  },3,2{2 J and }.4{3 J  From Figure 7.1 we first obtain 

,81 M ,62 M ,73 M ,94 M  and then ,8)(1 su M ,5.6)(2 su M and 9)(3 su M  

from the formula .3,2,1,)( 

 j

n

M
su

j

Ji
i

M jj We finally calculate coalition scalar values 

using the transformation  

















 )
1)()(

1()
1)()(

1()
1)()(

1())(( 321 321 susususususu
suT MMM , for all

.Ss  

These transformation values are shown in Figure 7.6, we obtain the COSE   

),,,( 1212   with payoff (8,6,6,5)  and ),,,( 2222  with payoff (8,4,6,7) when 

Player 1 forms the first coalition, Player 2 and Player 3 form the second coalition, and 

Player 4 form the third coalition. 
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Set of strategies Transformation 
value Set of strategies Transformation 

value 
),,,( 1111   0.0139 ),,,( 1112   0.0714 
),,,( 2111   0.0952 ),,,( 2112   0.0062 
),,,( 1211   0.1111 ),,,( 1212   0.1333 
),,,( 1121   0.0222 ),,,( 1122   0.0667 
),,,( 2211   0.0370 ),,,( 2122   0.0071 
),,,( 2121   0.0833 ),,,( 1222   0.0357 
),,,( 1221   0.0247 ),,,( 2212   0.0125 
),,,( 2221   0.0046 ),,,( 2222   0.1333 

Figure 7.6 Coalition Scalar matrix of Example 7.2.5. 

Example 7.2.6 Recall Example 7.2.1 and Figure 7.1. Now let Player 1 form the first 

coalition, Player 2 form the second coalition, and Player 3 form the third coalition, and 

Player 4 form the fourth coalition. Hence },1{1 J  },,2{2 J },3{3 J and }.4{4 J  

From Figure 7.1 we first obtain ,81 M ,62 M ,73 M ,94 M  and then ,8)(1 su M

,6)(2 su M ,7)(2 su M and 9)(3 su M  from the formula .4,3,2,1,)( 

 j

n

M
su

j

Ji
i

M jj

We finally calculate coalition scalar values using the transformation  

















 )
1)()(

1()
1)()(

1()
1)()(

1())(( 321 321 susususususu
suT MMM , for all

.Ss  

These transformation values are shown in Figure 7.7, we obtain the COSE

),,,( 1212   with payoff (8,6,6,5)  when Player 1 forms the first coalition, Player 2 
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forms the second coalition, Player 3 forms the third coalition, and Player 4 form the 

fourth coalition. 

Set of strategies Transformation 
value Set of strategies Transformation 

value 
),,,( 1111   0.0069 ),,,( 1112   0.0476 
),,,( 2111   0.0278 ),,,( 2112   0.0014 
),,,( 1211   0.0833 ),,,( 1212   0.1000 
),,,( 1121   0.0050 ),,,( 1122   0.0667 
),,,( 2211   0.0093 ),,,( 2122   0.0018 
),,,( 2121   0.0417 ),,,( 1222   0.0120 
),,,( 1221   0.0056 ),,,( 2212   0.0033 
),,,( 2221   0.0012 ),,,( 2222   0.0556 

Figure 7.7 Coalition Scalar matrix of Example 7.2.6. 

Note that the total sum of payoffs of COSE for },2,1{1 J  }4,3{2 J  is the same as for 

},1{1 J  },4,3,2{2 J  for },1{1 J  },2{2 J  },4,3{3 J  for  },1{1 J  },3,2{2 J  

},4{3 J  and for },1{1 J  },2{2 J  },3{3 J }.4{4 J  Moreover, the total sum of 

payoffs of COSE for },2,1{1 J  },4,3{2 J for },1{1 J  },4,3,2{2 J  for },1{1 J  

},2{2 J  },4,3{3 J  for  },1{1 J  },3,2{2 J  },4{3 J  and for },1{1 J  },2{2 J  

},3{3 J }4{4 J  is greater than for },4,1{1 J  }.3,2{2 J   In addition, the 

transformation value of COSE for },1{1 J  },4,3,2{2 J  has the highest value.  
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CHAPTER 8 

APPLICATION 

 

 In this chapter we present a real life situation where SEs provide solutions for 

determining market strategies in the car industry. 

 

8.1 Scenario 

 In this application, we consider three competitors Mercedes, BMW, and Audi, 

each of which is trying to obtain the business from a finite number of customers. Each 

competitor has a fixed advertising percentage of its total budget (40%, 80%, 100%) that 

must be allocated among the potential customers. We assume here that a car company 

will get more market share that a competitor when the company allocates a larger 

advertising budget than the competitors, and the market share will be equal when all 

companies allocate the same budget of advertising. In addition, the utility function is 

market share values to Mercedes, BMW, and Audi that are shown in the Figure 8.1. We 

use Scalar Equilibria to provide pure strategies solutions for determining the advertising 

strategies for Mercedes, BMW, and Audi. 
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8.2 Calculation of SE’s 

Each company have three strategies. In particular let Mercedes (Player 1) have 

strategies ,,, 321   BMW (Player 2) have strategies ,,, 321   and Audi (Player 3) 

have strategies .,, 321   We calculate the RM and DM that are shown in Figures 8.2 - 

8.3 for comparison with SEs. 

 40% 80% 
 40% 80% 100% 40% 80% 100% 

40% (13,13,13 ) (10,20,10 ) (4,40,4) (10,10,20) (10,20,20) (4,35,15) 
80% (20,10,10) (20,20,10) (15,35,4) (20,10,20) (14,14,14) (10,25,10) 
100% (40,4,4) (35,15,4) (30,30,8) (35,4,15) (25,10,10) (25,25,12) 

  100%     
 40% 80% 100%    

40% (4,4,40) (4,15,35) (8,30,30)    
80% (15,4,35) (10,10,25) (12,25,25)    
100% (30,8,30) (25,12,25) (20,20,20)    

Figure 8.1 Payoff matrix of three car brands in the car industry. 

 1  2  
 1  2  3  1  2  3  
1  (27,27,27) (25,20,25) (26,0,26) (25,25,20) (15,15,15) (21,0,15) 

2  (20,25,25) (15,15,15) (15,0,21) (15,15,15) (11,11,11) (15,0,15) 

3  (0,26,26) (0,15,21) (0,0,12) (0,21,15) (0,15,15) (0,10,8) 

  3      

 1  2  3     

1  (26,26,0) (27,15,0) (27,0,0)    

2  (15,21,0) (20,15,0) (20,0,0)    

3  (0,12,0) (0,8,0) (0,0,0)    
Figure 8.2 Regret matrix of three car brands in the car industry. 
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 1  2  
 1  2  3  1  2  3  
1  (0,0,0) (3,0,3) (9,0,9) (3,3,0) (3,0,0) (9,5,5) 

2  (5,3,3) (5,0,3) (10,5,9) (5,3,0) (9,6,6) (0,15,10) 

3  (0,9,9) (5,5,9) (10,10,5) (5,9,5) (15,10,10) (15,15,8) 

  3      

 1  2  3     

1  (26,9,0) (27,5,5) (27,10,10)    

2  (15,9,5) (20,10,15) (20,15,15)    

3  (10,5,10) (15,8,15) (20,20,10)    
Figure 8.3 Disappointment matrix of three car brands in the car industry. 

 Note that the RE of Figure 8.2 dominates the DE of Figure 8.3. We next 

calculate other SEs that are shown in following figures. 

 1  2  
 1  2  3  1  2  3  
1  0.0000456 0.0000496 0.0007305 0.0000496 0.0000731 0.0001733 

2  0.0000496 0.0000731 0.0001733 0.0000731 0.0000508 0.0000650 

3  0.0007305 0.0001733 0.0002504 0.0001733 0.0000650 0.0001347 

  3      

 1  2  3     

1  0.0007305 0.0001733 0.0002504    

2  0.0001733 0.0000650 0.0001347    

3  0.0002504 0.0001347 0.0001080    
Figure 8.4 Greedy scalar matrix of three car brands in the car industry. 

 Note that the GSEs of Figure 8.4 are only good for one car company. 
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 1  2  
 1  2  3  1  2  3  
1  0.0197422 0.0106410 0.0004146 0.0106410 0.0167216 0.0006120 

2  0.0106410 0.0167216 0.0018952 0.0167216 0.0024678 0.0001185 

3  0.0004146 0.0018952 0.0119440 0.0018952 0.0001185 0.0078179 

  3      

 1  2  3     

1  0.0030798 0.0018952 0.0119440    

2  0.0018952 0.0001185 0.0021322    

3  0.0119440 0.0021322 0.0000197    
Figure 8.5 Cooperative scalar matrix of three car brands in the car industry. 

In Figure 8.5 the CSE yields cooperate DE as expected. 

 1  2  
 1  2  3  1  2  3  
1  0.0010000 0.0018553 0.0476190 0.0018553 0.0011806 0.0322581 

2  0.0018553 0.0011806 0.0104167 0.0011806 0.0080000 0.1666667 

3  0.0476190 0.0104167 0.0016529 0.0104167 0.1666667 0.0025253 

  3      

 1  2  3     

1  0.0064103 0.0104167 0.0016529    

2  0.0104167 0.1666667 0.0092593    

3  0.0016529 0.0092593 1.0000000    
Figure 8.6 Risk scalar matrix of three car brands in the car industry. 

In Figure 8.6 the RSE is actually the RE with its stability enforcement. 

In summary, from Figures 8.2-8.5, RE is (100%,100%,100%) with payoff 

(20,20,20). DE is (40%,40%,40%) with payoff (13,13,13). GSEs are (100%,40%,40%), 
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with a payoff of (40,4,4), (4,4,40), and (4,40,4), respectively. The CSE is 

(40%,40%,40%) with a payoff of (13,13,13). The RE is not a GSE. Thus, the RE is not 

greedy in this case. Moreover, the DE is a CSE. From Figure 8.6, RSE is 

(100%,100%,100%) with a payoff of (20,20,20). The RSE is same as RE.  

 1  2  
 1  2  3  1  2  3  
1  0.12500 0.04000 0.00826 0.04000 0.20000 0.00826 

2  0.04000 0.20000 0.09091 0.20000 1.00000 0.04000 

3  0.00826 0.09091 0.14286 0.09091 0.04000 0.33333 

  3      

 1  2  3     

1  0.09091 0.09091 0.14286    

2  0.09091 0.04000 0.33333    

3  0.14286 0.33333 1.00000    
Figure 8.7 Aspiration scalar matrix of three car brands in car industry for 

.14,14,14 321  ppp  
 

Now assume that all companies have an aspiration level of market share payoff, 

suppose the target payoff of Mercedes is 14, the target payoff of BMW is 14, and the 

target payoff of Audi is 14. Hence, .14,14,14 321  ppp  In this case, we find the 

ASE for .14,14,14 321  ppp  From Figure 8.7 the ASEs for 

14,14,14 321  ppp  are (80%,80%,80%) and (100%,100%,100%) with payoff  

(14,14,14) and (20,20,20), respectively. Thus the three companies should select 
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(80%,80%,80%) and (100%,100%,100%) strategies to achieved their market share 

target payoff. 

Next suppose the target payoff of Mercedes is 24, the target payoff of BMW is 

10, and the target payoff of Audi is 10. Hence,   Then, we calculate the ASE for 

.10,10,24 321  ppp  From Figure 8.8, the ASEs for 10,10,24 321  ppp  are 

(100%,80%,80%), (100%,100%,80%) and (100%,80%,100%) with payoff  (25,12,12) 

(25,12,25), and (25,12,25), respectively. Thus, the three companies should select these 

strategies to achieved their market share target. 

 1  2  
 1  2  3  1  2  3  
1  0.08333 0.01333 0.00433 0.06667 0.06667 0.04762 

2  0.20000 0.20000 0.00909 0.20000 0.09091 0.08333 

3  0.00826 0.09091 0.14286 0.09091 1.00000 1.00000 

  3      

 1  2  3     

1  0.04762 0.04762 0.05882    

2  0.00909 0.06667 0.07692    

3  0.14286 1.00000 0.20000    
Figure 8.8 Aspiration scalar matrix of three car brands in the car industry for 

.10,10,24 321  ppp  
 

Now assume that Mercedes has greater priority than BMW, and BMW has 

greater priority than Audi. Then, we calculate the priority scalar value matrix. From 

Figure 8.9, we obtain that PSE is at are (100%,40%,40%) with payoff  (40,4,4).  
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 1  2  
 1  2  3  1  2  3  
1  0.0000282 0.0000276 0.0000324 0.0000261 0.0000303 0.0000250 

2  0.0000351 0.0000408 0.0000413 0.0000385 0.0000300 0.0000461 

3  0.0006464 0.0001254 0.0000912 0.0001187 0.0000300 0.0000593 

  3      

 1  2  3     

1  0.0000319 0.0000275 0.0000376    

2  0.0000336 0.0000274 0.0000370    

3  0.0000793 0.0000547 0.0000447    
Figure 8.9 Priority scalar matrix of three car brands in the car industry when 

Mercedes has greater priority than BMW and BMW has greater priority than Audi. 
 

We next assume that Mercedes forms one coalition into itself, while BMW and 

Audi form another coalition. We then calculate coalition scalar values in Figure 8.10. In 

Figure 8.10, we obtain the COSE are (100%,40%,40%) with payoff (40,4,4). 

In summary, our method may applied to the real world situation to find the   

solution. We can use our SEs approach for finding solutions in pure strategies that 

depend on the criteria considered. 
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 1  2  
 1  2  3  1  2  3  
1  0.00128 0.00124 0.00142 0.00124 0.00154 0.00169 

2  0.00154 0.00183 0.00179 0.00183 0.00137 0.00137 

3  0.02703 0.00529 0.00413 0.00529 0.00202 0.00278 

  3      

 1  2  3     

1  0.00142 0.00169 0.00275    

2  0.00179 0.00137 0.00216    

3  0.00413 0.00278 0.00227    
Figure 8.10 Coalition scalar matrix of three car brands in the car industry when 

Mercedes form the first coalition, and BMW and Audi form the second coalition. 
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CHAPTER 9 

CONCLUSION 

 

9.1 Summary 

In the preceding chapters, a general scalarization approach for one-shot, n-

person games has been presented by defining the notion of a Scalar Equilibrium. New 

scalar equilibria for existing solution concepts based on various notions of rationality 

have been presented for finding pure strategy solutions. We showed that REs, DEs, and 

JEs can be determined by defining Regret, Disappointment, and Joint Scalar Equilibria. 

These scalar equilibria are useful for finding pure strategies when pure REs, DEs, and 

JEs do not exist. Next, we presented the Maximin Scalarization Equilibria for the 

standard maximin solution concept. Computational examples were presented for  these 

cases.   

In addition, we proposed new Scalar Equilibria with various notions of 

rationality. Aspiration Scalar Equilibria are developed for an aspiration criterion when a 

player has a target payoff goal. Risk, Greedy and Cooperative Scalar Equilibrium were 

developed for risk, greed, and cooperative criteria, respectively. On the other hand, 

Sequential and Simultaneous Scalar Equilibria combine decision criteria. In a 

Sequential Scalar Equilibrium we sequentially, in some chosen order, apply other 
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scalarizations to SEs of the game until we find a unique one if possible. In a 

Simultaneous Scalar Equilibrium we combine the criteria for various scalarizations into 

one. Effectively the multiple criteria are applied simultaneously.  

Two further Scalar Equilibria were then presented. In a Priority Scalar 

Equilibrium, players are prioritized so that higher priority players get better payoffs 

than lower priority players. A Coalition Scalar Equilibrium next considers fixed teams 

of players seek team payoffs that are then divided among the players. Examples 

illustrated the usage and theoretical aspects of all Scalar Equilibria defined here. 

 

9.2 Future work 

Future work will develop further theory for the SEs of this dissertation. Further 

SEs will be developed for other notions of rationality, i.e., decision criteria. 

Scalarizations should also be developed so that each player may pursue an individual 

criterion possibly different from the other players’ criteria. Empirical experiments 

should be presented to see how people accept the decision determined by Scalar 

Equilibria. Finally a computer program should be developed for the Scalar Equilibria  

so that SEs can be computed for games with large number of players. 

 

  



 

 
 
 
 

 

101

REFERENCES 

[1] J. Von Neumann, and O. Morgenstern, Theory of Games and Economic Behavior. 

Princeton University Press, Princeton NJ, 1944. 

[2]  J. Nash, “Equilibrium points in N-person games,” Proceedings of the National 

Academy of Sciences, vol. 36, pp.48-49, 1950. 

[3] J. Nash, “The bargaining problem,” Econometrica, vol. 18, pp.155-162, 1950. 

[4] J. Nash, “Non-cooperative games,” The Annals of Mathematics, vol.54, pp. 286-

295, 1951. 

[5] R. Myerson, Game Theory: Analysis of Conflict. Harvard University Press, 

Cambridge MA, 1991. 

[6] E. Rasmussen, Games and Information, fourth edition. Blackwell Publishing, 

Malden MA, 2007. 

[7] A. Blum and Y. Mansour, “Learning, regret minimization, and equilibria,” In: 

Nisan N, Roughgarden T, Tardos E, and Vazirani V (Editors). Algorithmic Game 

Theory, Cambridge University Press, New York, pp. 79-101 2007. 

[8] W. Poundstone,  Prisoner’s Dilemma, Anchor Books, New York, (1993). 

[9] E.C. Rosenthal, The Complete Idiot’s guide to Game Theory, Alpha Book, 2011. 

[10] M. Beckenkamp, “A game-theoretic taxonomy of social dilemmas.” Central 

European Journal of Operations Research, vol. 14, pp.337-353, 2006. 



 

 
 
 
 

 

102

[11] T. Schelling, Strategy of Conflict, Harvard University Press, Cambridge, MA, 

1960. 

[12] J. Harsanyi, “Games with incomplete information played by Bayesian players,” 

Parts I – III. Management Science, vol.14, pp.159-182, 320-334, 486-502, 1967-

1968. 

[13] J. Harsanyi, “Games with randomly disturbed payoffs: a new rationale for mixed-

strategy equilibria,” International Journal of Game Theory, vol. 2, pp. 1-23, 1973. 

[14] R. Selten, “Re-exammination of the perfectness concept for equilibrium points in 

extensive games,” International Journal of Game Theory, vol. 7, pp. 25-55, 1975. 

[15] R. Myerson R. Refinements of the Nash equilibrium concept. International 

Journal of Game Theory, vol. 4, pp. 73-80, 1978. 

[16] E. Van Damme, Stability and Perfection of Nash Equilibria, Springer-Verlag, New 

York, 1987. 

[17] J. Harsanyi, and R. Selton, A General Theory of Equilibrium Selection in Games, 

MIT Press, Cambridge MA, 1988. 

[18] R. Aumann, “Correlated equilibrium as an expression of Bayesian rationality,” 

Econometrica, vol. 55, pp.1-18, 1987. 

[19] R. Aumann and A. Brandenburger, “Epistemic conditions for Nash equilibrium,” 

Econometrica, vol. 63, pp.1161-1180, 1995. 



 

 
 
 
 

 

103

[20] D. Kahneman, and A. Tversky, “Prospect theory: an analysis of decision under 

risk,” Econometrica, vol.7, pp.263-291, 1979. 

[21] S. Brams, Theory of Moves, Cambridge University Press, New York. (1994). 

[22] J. Shalev, “Loss aversion equilibrium,” International Journal of Game Theory, 

vol. 29, pp. 269-287, 2000. 

[23] M. Rabin, “Incorporating fairness into game theory and economics,” The 

American Economic Review, vol.83, pp. 1281-1302, 1993. 

[24] W. Stirling, Satisficing Games and Making: With Applications to Engineering and 

Computer Science, Cambridge University Press, New York, 2003. 

[25] P. Insuwan, New Equilibria for Noncooperative Games, (Doctoral dissertation, 

The University of Texas at Arlington, 2007). 

[26] H.W. Corley, P. Insuwan, and N. Engsuwan, "Beyond the Nash Equilibrium: A 

Cooperative Equilibrium for Noncooperative games,” COSMOS Technical Report,  

The University of Texas at Arlington, Arlington, 2012. 

[27] S. Charoensri and H.W. Corley, “General Optimization Criteria”, (COSMOS 

Technical Report, 11-03 The University of Texas at Arlington, Arlington, 2011). 

[28] S. Charoensri, “The Equivalence and Generalization of Optimization Criteria”, 

Ph.D. dissertation, The University of Texas at Arlington, August 2011. 



 

 
 
 
 

 

104

[29] H.W. Corley, S. Charoensri, N. Engsuwan, “A Compromise Equilibrium for n-

Person Game Theory”, COSMOS Technical Report,  The University of Texas at 

Arlington, Arlington, 2012. 

[30] R. Aumann, “What is Game Theory Trying to accomplish?”, In K. Arrow and S. 

Honkapohja, Frontiers of Economics, Oxford: Basil Blackwell, 1985. 

[31] A. Rubinstein, “Comments on the interpretation of Game Theory”, Econometrica  

[32] M. S. Nokleby “Attitude Adaptation in Satisficing Games” IEEE transactions on 

Systems, Man, and Cybernetic, vol. 39(6), p.1556-1567, 2009. 

[33] J. K. Archibald, J. C. Hill, R. Johnson, and W. C. Stirling, “Satisficing 

Negotiations”, IEEE Transactions on Systems, Man, and Cybernetic, vol. 36(1), 

p.4-18, 2006. 

[34] M. S. Nokleby, W. C. Stirling, and A. Lee Swindlehurst, “Satisficing Learning 

Dynamics in the Stag Hunt”, IEEE Xplore Conference Proceedings, 2006. 

[35] W. C. Stirling, M.A. Goodrich, and D.J. Packard, “Satisficing Equilibria: A Non-

Classical Theory of Games and Decisions”, Autonomous Agents and Multi-Agent 

Systems, vol. 5, p.305-328, 2002. 

[36] Y. Collettte and P. Siarry, Multiobjective Optimization: Principles and Case 

Studies, Springer, Berlin, 2003. 



 

 
 
 
 

 

105

[37] M. Peski, “Generalized risk-dominance and asymmetric dynamics”, Journal of 

Economic Theory, vol. 5, p.305-328, 2002. 

[38] H. A. Taha, Operations Research: An Introduction, Prentice Hall, 8th edition, 

2006. 

[39] S. J. Brams and A. D. Taylor, Fair Division - From cake-cutting to dispute 

resolution Cambridge University Press, 1996. 

 

  

 



 

 
 
 
 

 

106

BIOGRAPHICAL INFORMATION 

 

Narakorn Engsuwan was born in Nakhonsawan, Thailand. He graduated with a 

B.Eng. in Computer Engineering from Chulalongkorn University in 2004. He received 

M.S. in Industrial Engineering from the University of Texas at Arlington in 2008. He 

began his Ph.D. studies in the Department of Industrial and Manufacturing Systems 

Engineering at University of Texas at Arlington in Fall 2008. 


