OPTIMIZED ESTIMATES BASED ON MULTIPLE SENSOR CONFIGURATION
KNOWLEDGE

by
ROOCHI MISHRA

Presented to the Faculty of the Graduate School of
The University of Texas at Arlington in Partial Fulfillment
of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT ARLINGTON
August 2013

Copyright (©) by Roochi Mishra 2013
All Rights Reserved

To my family and friends.

ACKNOWLEDGEMENTS

I would like to thank my supervising professor Dr. Victoria Chen and co-
supervising professor Dr. Brian Huff for constantly motivating and encouraging me,
and also for their invaluable advice during the course of my doctoral studies. I wish
to thank my academic advisor Dr. Jay Rosenberger for his interest in my research
and for taking time to serve in my dissertation committee.

COMMITTEE
Supervising Professor : Dr. Victoria C. Chen
Co-Supervising Professor : Dr. Brian Huff
Committee Member : Dr. Jay Rosenberger
Graduate Advisor : Dr. Sheik Imrhan

July 19, 2013

v

ABSTRACT

OPTIMIZED ESTIMATES BASED ON MULTIPLE SENSOR CONFIGURATION
KNOWLEDGE

Roochi Mishra, Ph.D.

The University of Texas at Arlington, 2013

Supervising Professors: Victoria C. P. Chen, Brian L. Huff

There has been an increase in the usage of sensor technology as they are adapt-
able for use in different environments, many of which are hostile to direct human
observation, such as regions affected by land mines or forest fires. The sensors used
to monitor developing situations are small inexpensive computing devices with lim-
ited processing capabilities, limited power supply and may be destroyed in the event
that they are monitoring, without suffering a great financial cost. Also, since these
devices are inexpensive, multiple sensors can be deployed for the same application
where the sensors are placed or attached to a mobile platform in a particular con-
figuration or shape. However, because these devices are inexpensive, they do not
possess all the software and hardware necessary to produce accurate observed data
from the environment they are deployed in. Moreover, there are additional factors
such as atmospheric conditions, network delays, sensor characteristics etc. that may
affect the measures being monitored and therefore, the data observed and produced

as output by the sensors may be inaccurate.

The issue of obtaining accurate estimates of location and orientation from in-
accurate observed sensor data has been subjected to thorough investigation in the
literature. However, in the application environment of multiple Global Positioning
Satellite (GPS) sensors attached to a mobile robot platform, these previous methods
do not take advantage of the sensor configuration information to produce more accu-
rate estimates of the measures being observed. In this dissertation the authors will
demonstrate that in fact, with the use of the sensor configuration and the inaccu-
rate observed sensor data, it is possible to obtain accurate estimates of location and
orientation of the deployed sensors.

In this dissertation, we propose several concrete issues and their respective so-
lutions for the framework of the mobile robot platform with GPS sensors attached in
a particular configuration to be operational. We use optimization techniques to fit
estimates of locations and orientations of the sensors on the mobile platform given
observed data that is highly unstable when the platform is stationary or in motion,
while taking advantage of the known configuration knowledge. To deal with outliers
and missing data, we use statistical and heuristic weighting techniques to favor accu-
rate observed sensor data over inaccurate data. Moreover, the production of estimates
through the use of optimization has to conform to the real-time constraints when the
platform is in motion and therefore, we introduce sliding windows to be able to gen-
erate updated estimates. Furthermore, depending on the size of the sliding window,
the task of correcting the lag between the estimate over the sliding window and the
estimate with respect to the current time-step is also considered to produce more

accurate results.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS

ABSTRACT . . . e

LIST OF ILLUSTRATIONS o

LIST OF TABLES o e

Chapter

1.

INTRODUCTION o o o .

1.1
1.2
1.3

1.4
1.5

2.1
2.2
2.3
2.4

2.5

Sensor Devices and Data L.
Data Fusion
Motivating Examples L oo
1.3.1 Monitoring Robot Location
1.3.2 Monitoring Movement of Forest Line of Fire
Problem Statement 0oL

Outline of the Dissertation

. LITERATURE REVIEW

Quadratic Programming in MATLAB®
Time Series Analysis
Handling Missing Values
Statistical Process Control
2.4.1 Multivariate SPC Charts : Hotelling 7%

Data Fusion

3. METHODOLOGY e

vil

v

x1
xxiii

Page

=~

SN BN

3.1 Obtaining An Estimate Using Quadratic Optimization and Known
Sensor Configurationo
3.1.1 Case A: Mobile platform is stationary
3.1.2 Case B: Mobile platform is in motion

3.2 Position and Orientation Estimation

3.3 Outlier Analysis and Weighting,
3.3.1 Huber Weight Function in Robust Regression
3.3.2 Standardized Deleted Residuals
3.3.3 Huff Weight Function

3.4 Sliding Windows and Correction for Lag
3.4.1 Sliding Windowo
3.4.2 Correction For Lag

RESULTS

4.1 Experimental Set-Up
4.1.1 Stationary Experimental Set-Up
4.1.2 Movement Experimental Set-Up
4.1.3 Quadratic Optimization Set-Up

4.2 Graphical Analysiso

4.3 Time Series Analysis

4.4 Obtaining An Estimate Using Quadratic Optimization and Known
Sensor Configurationo

4.5 Unweighted Quadratic Optimization Estimates of Locations of GPS
Sensors for Stationary Platform

4.6 Weighted Quadratic Optimization Estimates of Locations of GPS Sen-

sors for Stationary Platforms

viii

18
19
25
27
29
30
31
32
34
34
36
39
39
39
40
41
41
50

o8

o8

60

d.

4.7

4.8

4.9

4.10

4.11

4.12

Unweighted Quadratic Optimization Estimates of Locations of GPS

Sensors for Stationary Platform using Sliding Windows
Huff Weighted Quadratic Optimization Estimates of Locations of GPS
Sensors for Stationary Platform using Sliding Windows
4.8.1 Huff Weight Function With No Threshold
4.8.2 Huff Weight Function With Threshold Value =3.5
Quadratic Optimization Estimates of Locations of GPS Sensors for

Moving Platform
Unweighted Quadratic Optimization Estimates of Locations of GPS

Sensors for Moving Platform using Sliding Windows
4.10.1 Location Estimates Using Path 1
4.10.2 Location Estimates Using Path 2
Weighted Quadratic Optimization Estimates of Locations of GPS Sen-
sors for Moving Platform using Sliding Windows
4.11.1 Location Estimates Using Path 1
4.11.2 Location Estimates Using Path 2
Performance

4.12.1 Deriving Orientation from Quadratic Optimization Estimates
of Locations of GPS Sensors For A Moving Platform

4.12.2 Performance Using Correction For Lag
4.12.3 Performance Using Dynamic Sliding Window Size
4.12.4 Performance Using Correction For Lag Combined with Dy-
namic Sliding Window Size

4.12.5 Summary of Performance Metrics for Lag Correction and Dy-

namic Sliding Window Size

CONCLUSIONS AND FUTURE WORK

X

5.1 Concluding Remarks . .
5.2 Future Work
REFERENCES

BIOGRAPHICAL STATEMENT

Figure
3.1
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17

4.18

LIST OF ILLUSTRATIONS

Page
Calculation of orientation of mobile platform. 28
Location of Eight Sensors (CG = Center of Gravity) UTM Coordinates. 40

Plots of UTM X (Green) and Y (Blue) Positions of Sensors vs. Time. 43

Scatter Plots of Sensors UTM Y values vs. X values. 44
Plots of Distances between Two Sensors vs. Time. 45
Plots of Distances between Two Sensors vs. Time (contd.). 46
Plots of Distances between Two Sensors vs. Time (contd.). 47
Normal Probability Plots UTM X Coordinates for All Sensors. 48
Normal Probability Plots UTM Y Coordinates for All Sensors. 49
Time Series Analysis for Sensor 1. 51
Time Series Analysis for Sensor 2. 52
Time Series Analysis for Sensor 3. 53
Time Series Analysis for Sensor 5. 54
Time Series Analysis for Sensor 6. 55
Time Series Analysis for Sensor 7. 56
Time Series Analysis for Sensor 8. 57

GPS Sensors Observed Locations UTM Y Coordinates vs. X Coordinates. 59
GPS Sensors Observed and Estimated Stationary Locations UTM Y
Coordinates vs. X Coordinates using Base Optimization. 59
GPS Sensors Observed and Estimated Stationary Locations UTM Y

Coordinates vs. X Coordinates using Huber Weighted Optimization. . 61

x1

4.19

4.20

4.21

4.22

4.23

4.24

4.25

4.26

4.27

4.28

GPS Sensors Observed and Estimated Stationary Locations UTM Y
Coordinates vs. X Coordinates using Huff Weighted Optimization.

GPS Sensors Observed and Estimated Stationary Locations UTM Y
Coordinates vs. X Coordinates using Huber Weighted Optimization with
Observed Data from Sensor 1 and Sensor 5only.
GPS Sensors Observed and Estimated Stationary Locations UTM Y
Coordinates vs. X Coordinates using Huber Weighted Optimization with
Observed Data from Sensor 1 and Sensor 8 only.

GPS Sensors Observed and Estimated Stationary Locations UTM Y Co-

ordinates vs. X Coordinates using Huff x Huber Weighted Optimization.

GPS Sensors Observed and Estimated Stationary Locations UTM Y
Coordinates vs. X Coordinates using Deleted Residuals Optimization.

GPS Sensors Observed and Estimated Stationary Locations UTM Y
Coordinates vs. X Coordinates Summary of Weighted and Unweighted
Optimization.
Estimates for Location of GPS Sensors UTM Y Coordinates vs. X Coor-
dinates for Stationary Platform with Different Sizes of Sliding Window.
Estimates for Location of GPS Sensors UTM Y Coordinates vs. X Coor-
dinates for Stationary Platform with Different Sizes of Sliding Window
(combd.).

GPS Sensors Estimated Stationary Locations UTM Y Coordinates vs.

X Coordinates using Sliding Windows of Size = 1,5 and 10 Comparison.

Estimates for Location of GPS Sensors UTM Y Coordinates vs. X Co-
ordinates for Stationary Platform with Huff Weighting Function No
Threshold and Different Sizes of Sliding Window.

xil

62

62

63

63

64

65

67

68

69

4.29

4.30

4.31

4.32

4.33

4.34

4.35

4.36

4.37

Estimates for Location of GPS Sensors UTM Y Coordinates vs. X Co-
ordinates for Stationary Platform with Huff Weighting Function No
Threshold and Different Sizes of Sliding Window (contd.).
GPS Sensors Estimated Stationary Locations UTM Y Coordinates vs. X
Coordinates with Huff Weighting Function No Threshold using Sliding
Windows of Size = 1,5 and 10 Comparison.
Estimates for Location of GPS Sensors UTM Y Coordinates vs. X Coor-
dinates for Stationary Platform with Huff Weighting Function Threshold
= 3.5 and Different Sizes of Sliding Window.
Estimates for Location of GPS Sensors UTM Y Coordinates vs. X Coor-
dinates for Stationary Platform with Huff Weighting Function Threshold
= 3.5 and Different Sizes of Sliding Window (contd.).
GPS Sensors Estimated Stationary Locations UTM Y Coordinates vs.
X Coordinates with Huff Weighting Function Threshold = 3.5 using
Sliding Windows of Size = 1,5 and 10 Comparison.
Location Estimates Using Quadratic Optimization with No Weights
(+veX — North,+veY — East) Sliding Window = 1 For Sensors 1-8. .
Location Estimates Using Quadratic Optimization with No Weights
(+veX — North,+veY — Fast) Sliding Window = 1 For Sensors 1-8
(combd.).
Location Estimates Using Quadratic Optimization with No Weights
(+veX — North,4+veY — Fast) Sliding Window = 1 For Sensors 1-8
(contd.).
Location Estimates Using Quadratic Optimization with No Weights
(+veX — North,4+veY — Fast) Sliding Window = 1 For Sensors 1-8

72

73

5

76

7

80

81

82

4.38

4.39

4.40

4.41

4.42

4.43

4.44

4.45

4.46

Location Estimates Using Quadratic Optimization with No Weights
(+veX — North,+veY — East) Sliding Window = 5 For Sensors 1-8. .
Location Estimates Using Quadratic Optimization with No Weights
(+veX — North,4+veY — Fast) Sliding Window = 5 For Sensors 1-8
(combd.). L
Location Estimates Using Quadratic Optimization with No Weights
(+veX — North,+veY — Fast) Sliding Window = 5 For Sensors 1-8
(combd.).
Location Estimates Using Quadratic Optimization with No Weights
(+veX — North,+veY — Fast) Sliding Window = 5 For Sensors 1-8
(contd.).
Location Estimates Using Quadratic Optimization with No Weights
(+veX — North,4+veY — FEast) Sliding Window = 10 For Sensors 1-

Location Estimates Using Quadratic Optimization with No Weights
(+veX — North,4+veY — FEast) Sliding Window = 10 For Sensors 1-
8 (comtd.).
Location Estimates Using Quadratic Optimization with No Weights
(+veX — North,+veY — Fast) Sliding Window = 10 For Sensors 1-
8 (comtd.).
Location Estimates Using Quadratic Optimization with No Weights
(+veX — North,4+veY — Fast) Sliding Window = 10 For Sensors 1-

Location Estimates Using Quadratic Optimization with No Weights

(+veX — North, +veY — East) Sliding Window = 100 For Sensors 1-8.

Xiv

84

85

86

87

88

89

90

91

92

4.47

4.48

4.49

4.50

4.51

4.52

4.53

4.54

4.55

4.56

Location Estimates Using Quadratic Optimization with No Weights
(+veX — North,4veY — Fast) Sliding Window = 100 For Sensors 1-8
(contd.).
Location Estimates Using Quadratic Optimization with No Weights
(+veX — North,+veY — Fast) Sliding Window = 100 For Sensors 1-8
(combd.).
Location Estimates Using Quadratic Optimization with No Weights
(+veX — North,4+veY — Fast) Sliding Window = 100 For Sensors 1-8

Location Estimates of Sensor 1 UTM X Coordinates vs. Time No Weights
Sliding Window = 10 (+veX — North,+veY — Fast)
Location Estimates of Sensor 1 UTM Y Coordinates vs. Time No Weights
Sliding Window = 10 (+veX — North, +veY — East).
Location Estimates of Sensor 1 UTM X Coordinates vs. Time No Weights
Sliding Window = 100 (+veX — North,+veY — East)
Location Estimates of Sensor 1 UTM Y Coordinates vs. Time No Weights
Sliding Window = 100 (+veX — North,+veY — East).
Location Estimates Using Quadratic Optimization with No Weights
(+veX — North,+veY — East) Sliding Window = 1 For Sensors 1-8. .
Location Estimates Using Quadratic Optimization with No Weights
(+veX — North,+veY — Fast) Sliding Window = 1 For Sensors 1-8

Location Estimates Using Quadratic Optimization with No Weights
(+veX — North,+veY — Fast) Sliding Window = 1 For Sensors 1-8
(comtd.).

XV

93

94

97

98

99

102

4.57

4.58

4.59

4.60

4.61

4.62

4.63

4.64

4.65

Location Estimates Using Quadratic Optimization with No Weights
(+veX — North,+veY — Fast) Sliding Window = 1 For Sensors 1-8
(contd.).
Location Estimates Using Quadratic Optimization with No Weights
(+veX — North,+veY — East) Sliding Window = 5 For Sensors 1-8. .
Location Estimates Using Quadratic Optimization with No Weights
(+veX — North,+veY — Fast) Sliding Window = 5 For Sensors 1-8
(combd.).
Location Estimates Using Quadratic Optimization with No Weights
(+veX — North,+veY — Fast) Sliding Window = 5 For Sensors 1-8
(contd.).
Location Estimates Using Quadratic Optimization with No Weights
(+veX — North,4+veY — Fast) Sliding Window = 5 For Sensors 1-8
(comtd.).
Location Estimates Using Quadratic Optimization with No Weights
(+veX — North,4+veY — FEast) Sliding Window = 10 For Sensors 1-

Location Estimates Using Quadratic Optimization with No Weights
(+veX — North,+veY — Fast) Sliding Window = 10 For Sensors 1-
8 (comtd.).
Location Estimates Using Quadratic Optimization with No Weights
(+veX — North,4+veY — Fast) Sliding Window = 10 For Sensors 1-

Location Estimates Using Quadratic Optimization with No Weights
(+veX — North,4+veY — FEast) Sliding Window = 10 For Sensors 1-

105

106

107

108

109

111

4.66 Location Estimates Using Quadratic Optimization with No Weights

(+veX — North,+veY — FEast) Sliding Window = 100 For Sensors 1-8.

4.67 Location Estimates Using Quadratic Optimization with No Weights
(+veX — North, +veY — FEast) Sliding Window = 100 For Sensors 1-8
(contd.).

4.68 Location Estimates Using Quadratic Optimization with No Weights
(+veX — North,+veY — Fast) Sliding Window = 100 For Sensors 1-8
(contd.).

4.69 Location Estimates Using Quadratic Optimization with No Weights
(+veX — North,4+veY — FEast) Sliding Window = 100 For Sensors 1-8
(contd.).

4.70 Location Estimates of Sensor 1 UTM X Coordinates vs. Time No Weights
Sliding Window = 10 (+veX — North,+veY — East)

4.71 Location Estimates of Sensor 1 UTM Y Coordinates vs. Time No Weights
Sliding Window = 10 (+veX — North, +veY — East).

4.72 Location Estimates of Sensor 1 UTM X Coordinates vs. Time No Weights
Sliding Window = 100 (+veX — North,+veY — East)

4.73 Location Estimates of Sensor 1 UTM Y Coordinates vs. Time No Weights
Sliding Window = 100 (+veX — North,+veY — East)

4.74 Location Estimates Using Quadratic Optimization with Huff Weights
(+veX — North,+veY — East) Sliding Window = 1 For Sensors 1-8. .

4.75 Location Estimates Using Quadratic Optimization with Huff Weights
(+veX — North,+veY — Fast) Sliding Window = 1 For Sensors 1-8
(contd.).

xXvii

114

115

116

117

119

120

121

125

4.76

4.77

4.78

4.79

4.80

4.81

4.82

4.83

4.84

Location Estimates Using Quadratic Optimization with Huff Weights
(+veX — North,+veY — Fast) Sliding Window = 1 For Sensors 1-8
(contd.).
Location Estimates Using Quadratic Optimization with Huff Weights
(+veX — North,+veY — Fast) Sliding Window = 1 For Sensors 1-8
(combd.).
Location Estimates Using Quadratic Optimization with Huff Weights
(+veX — North,+veY — East) Sliding Window = 5 For Sensors 1-8. .
Location Estimates Using Quadratic Optimization with Huff Weights
(+veX — North,4+veY — Fast) Sliding Window = 5 For Sensors 1-8
(contd.).
Location Estimates Using Quadratic Optimization with Huff Weights
(+veX — North,+veY — East) Sliding Window = 5 For Sensors 1-8
(comtd.).
Location Estimates Using Quadratic Optimization with Huff Weights
(+veX — North,+veY — FEast) Sliding Window = 5 For Sensors 1-8
(combd.). L
Location Estimates Using Quadratic Optimization with Huff Weights
(+veX — North,+veY — East) Sliding Window = 10 For Sensors 1-8.
Location Estimates Using Quadratic Optimization with Huff Weights
(+veX — North,+veY — East) Sliding Window = 10 For Sensors 1-8

Location Estimates Using Quadratic Optimization with Huff Weights
(+veX — North,+veY — East) Sliding Window = 10 For Sensors 1-8
(comtd.).

Xviil

127

128

129

130

131

132

133

4.85

4.86

4.87

4.88

4.89

4.90

4.91

4.92

4.93

4.94

Location Estimates Using Quadratic Optimization with Huff Weights
(+veX — North,+veY — East) Sliding Window = 10 For Sensors 1-8

Location Estimates Using Quadratic Optimization with Huff Weights

(+veX — North,+veY — East) Sliding Window = 100 For Sensors 1-8.

Location Estimates Using Quadratic Optimization with Huff Weights
(+veX — North,+veY — Fast) Sliding Window = 100 For Sensors 1-8
(combd.).
Location Estimates Using Quadratic Optimization with Huff Weights
(+veX — North,4+veY — FEast) Sliding Window = 100 For Sensors 1-8
(contd.).
Location Estimates Using Quadratic Optimization with Huff Weights
(+veX — North, +veY — Fast) Sliding Window = 100 For Sensors 1-8
(comtd.).
Location Estimates of Sensor 1 UTM X Coordinates vs. Time Huff
Weights Sliding Window = 10 (+veX — North, +veY — FEast).
Location Estimates of Sensor 1 UTM Y Coordinates vs. Time Huff
Weights Sliding Window = 10 (+veX — North, +veY — Fast)
Location Estimates of Sensor 1 UTM X Coordinates vs. Time Huff
Weights Sliding Window = 100 (+veX — North, +veY — FEast).
Location Estimates of Sensor 1 UTM Y Coordinates vs. Time Huff
Weights Sliding Window = 100 (+veX — North, +veY — East)
Location Estimates Using Quadratic Optimization with Huff Weights
(+veX — North,+veY — East) Sliding Window = 1 For Sensors 1-8. .

Xix

136

137

138

139

140

141

142

143

144

146

4.95 Location Estimates Using Quadratic Optimization with Huff Weights
(+veX — North,+veY — Fast) Sliding Window = 1 For Sensors 1-8
(contd.).

4.96 Location Estimates Using Quadratic Optimization with Huff Weights
(+veX — North,+veY — Fast) Sliding Window = 1 For Sensors 1-8
(combd.).

4.97 Location Estimates Using Quadratic Optimization with Huff Weights

(+veX — North,+veY — Fast) Sliding Window = 1 For Sensors 1-8

4.98 Location Estimates Using Quadratic Optimization with Huff Weights
(+veX — North,+veY — East) Sliding Window = 5 For Sensors 1-8. .
4.99 Location Estimates Using Quadratic Optimization with Huff Weights
(+veX — North,4+veY — Fast) Sliding Window = 5 For Sensors 1-8
(comtd.).
4.100Location Estimates Using Quadratic Optimization with Huff Weights
(+veX — North,4+veY — Fast) Sliding Window = 5 For Sensors 1-8
(combd.). L
4.101Location Estimates Using Quadratic Optimization with Huff Weights
(+veX — North,+veY — Fast) Sliding Window = 5 For Sensors 1-8
(combd.).
4.102Location Estimates Using Quadratic Optimization with Huff Weights
(+veX — North, +veY — East) Sliding Window = 10 For Sensors 1-8.
4.103Location Estimates Using Quadratic Optimization with Huff Weights
(+veX — North,+veY — East) Sliding Window = 10 For Sensors 1-8
(comtd.).

XX

147

148

150

151

152

153

154

4.104Location Estimates Using Quadratic Optimization with Huff Weights
(+veX — North,+veY — East) Sliding Window = 10 For Sensors 1-8
(contd.).
4.105Location Estimates Using Quadratic Optimization with Huff Weights
(+veX — North,+veY — East) Sliding Window = 10 For Sensors 1-8
(combd.).

4.106Location Estimates Using Quadratic Optimization with Huff Weights

(+veX — North,+veY — East) Sliding Window = 100 For Sensors 1-8.

4.107Location Estimates Using Quadratic Optimization with Huff Weights
(+veX — North,+veY — Fast) Sliding Window = 100 For Sensors 1-8
(contd.).
4.108Location Estimates Using Quadratic Optimization with Huff Weights
(+veX — North, +veY — Fast) Sliding Window = 100 For Sensors 1-8
(comtd.).
4.109Location Estimates Using Quadratic Optimization with Huff Weights
(+veX — North, +veY — FEast) Sliding Window = 100 For Sensors 1-8
(combd.). L
4.110Location Estimates of Sensor 1 UTM X Coordinates vs. Time Huff
Weights Sliding Window = 10 (+veX — North, +veY — Fast).
4.111Location Estimates of Sensor 1 UTM Y Coordinates vs. Time Huff
Weights Sliding Window = 10 (+veX — North, +veY — East).
4.112Location Estimates of Sensor 1 UTM X Coordinates vs. Time Huff
Weights Sliding Window = 100 (+veX — North, +veY — East).
4.113Location Estimates of Sensor 1 UTM Y Coordinates vs. Time Huff

Weights Sliding Window = 100 (+veX — North, +veY — East).

xXx1

156

157

158

159

160

161

163

164

165

166

4.114Comparison of Performance for Path 1 w.r.t Sliding Windows and Weights

for UTM X Coordinates. 168
4.115Comparison of Performance for Path 1 w.r.t Sliding Windows and Weights

for UTM Y Coordinates. 169
4.116Comparison of Performance for Path 2 w.r.t Sliding Windows and Weights

for UTM X Coordinates. 171
4.117Comparison of Performance for Path 2 w.r.t Sliding Windows and Weights

for UTM Y Coordinates. 172
4.118Path 1 Orientation of Platform vs. Time for Various Sliding Windows

= 1,5,10,100. 173
4.119Box Plot Comparison Path 1 Orientation Error w.r.t Sliding Windows

= 1,5,10,100. 174
4.120Comparison of Performance for Path 1 w.r.t Lag Correction for Full

Path and No Turning Path Using Lag Correction for X-Coordinates. . 176
4.121Comparison of Performance for Path 1 w.r.t Lag Correction for Full

Path and No Turning Path Using Lag Correction for Y-Coordinates. . 177
4.122Comparison of Performance for Path 1 w.r.t Huff Weights and Dynamic

Sliding Window Size. 179
4.123Comparison of Performance for Path 1 w.r.t Huff Weighted Dynamic

Sliding Window Size. L 181

xxii

Table
4.1

4.2

LIST OF TABLES

Summary of Performance Metrics for UTM X-Coordinates Comparing
Mean, Median And Standard Deviation of the Absolute Error of Loca-
tion Estimates for Center of Gravity for Mobile Platform.
Summary of Performance Metrics for UTM Y'-coordinates Comparing
Mean, Median And Standard Deviation of the Absolute Error of Loca-

tion Estimates for Center of Gravity for Mobile Platform.

xx1il

Page

CHAPTER 1
INTRODUCTION

There are many areas of the world where constant monitoring is needed to
learn about an environment or observe developing situations. Sensor devices allow
us to remotely supervise potentially inhospitable environments and provide the data
needed to make decisions as a result of changes in these locations. Depending on the
application, more than one type of sensor may be used with wide-varying reliability.
To be able to make a coherent decisions based on newly received data, we must develop
a method to aggregate different types of sensor information, while determining the
precision and accuracy of the data being received. This dissertation aims to provide
a framework for processing sensor data from multiple sources, in order to as increase
the reliability of the sensor data system, which in turn increases the quality of our

decision-making process.

1.1 Sensor Devices and Data

Sensor devices are small computing devices used to measure attributes in a
given local setting for the purposes of relaying that data for further processing to
other computing devices with more resources.

Sensor devices generally possess low processing and memory capabilities, limited
power supply and are low in cost. Due to this low cost, they are generally spread
in bulk around the territory from which we want to obtain data. The low cost

indirectly implies that these sensor devices are not rigorously verified and validated

and therefore, the data that is obtained from such devices is subject to high variance

and bias.

1.2 Data Fusion

Depending on the type of application, different sensors are used to collect differ-
ent types of data. Global Positioning System (GPS) sensors are capable of providing
location and time information in different atmospheric conditions. Accelerometers
measure speed and direction. Other sensors such as gyroscopic sensors, temperature
sensors etc. also exist. In any given application, it is possible that one or more dif-
ferent types of sensors will be deployed for the purposes of collecting data. In these
situations, it is important to combine the information not only across different sen-
sors measuring the same information, but also across the different types of sensors to

provide one effective measure for making a decision.

1.3 Motivating Examples

The size and cost effectiveness of sensors make it a versatile tool in a variety of
environmental conditions. The small form factor of these devices allow for deployment
in areas where they are mostly imperceptible, while the low cost allows multiple

redundant sensors to be set up for the purposes of collecting data.

1.3.1 Monitoring Robot Location

One possible application is for the monitoring of mobile robot platforms in
areas to search for hidden landmines in war-torn regions. This type of mobile robot
requires a multitude of sensors attached to a moving platform such as GPS sensor
units for ascertaining the location of the platform and accelerometers to obtain the

speed and direction as the platform moves over uncertain and possibly rugged terrain.

2

Other sensors are attached to the mobile platform to determine whether the landmine
exists in current location of the mobile platform. This is a very useful task for which
sensors are vital, since human lives need not be risked in the very dangerous task
of retrieving unexploded landmines. This application also demonstrates the different
types of sensors used, the number of each type of sensor used and the necessity of
position of the robot to be precise and accurate to assist in the decision of whether
or not a landmine is located at the current location of the platform.

The application space under which our framework is relevant is a sub-section of
the application of monitoring hazardous environments using mobile robot platforms.
In this case, multiple GPS and accelerometer sensors are attached to a mobile robot
platform. With the GPS information received by a base station, the location of mobile
platform must be estimated so as to track and direct the path of the mobile platform.
This dictates that the information received should be accurate and precise. However,
in the initial studies, it has been noted that there is a high degree of variance and
bias in the GPS data from the sensors. To combat this situation, we propose multiple

tasks for obtaining the best estimate for the location of the mobile platform.

1.3.2 Monitoring Movement of Forest Line of Fire

Another application of sensor technology is in determining fire conditions in
a forest, where sensors spread across an area can provide data about temperature,
location and the speed with which the line of fire is moving. Again here, the data
from multiple sensors and multiple types of sensors need to be combined with high
precision and accuracy so as to detect fires and keep them from spreading further and
causing harm. Additionally, with the possibility of a sensor being consumed in the

fire, the lack of data is as important as the actual data.

1.4 Problem Statement

As discussed in the previous sections, data from sensor deployments can be
used for various applications. As per our problem space, we attempt to estimate the
location and track the movement of a mobile robot platform given minimal initial
time-invariant knowledge. To resolve issues relating to high variance and potential
bias in the received GPS coordinate data from the sensors, we propose the following
tasks :

1. Obtaining An Estimate using Quadratic Optimization and Known Sensor Con-
figuration : Given the configuration of multiple sensors arranged on the mobile
platform in addition to the observed measurements from all the sensors, an
estimate of the location of the sensors of the platform can be obtained using
quadratic optimization. For the case when the mobile platform is stationary,
all the observed measurements may be considered. For calculating the estimate
while when the mobile platform is in motion, the estimates are continually
updated.

2. Position and Orientation Estimation : In this task, the problem of estimating
position and orientation of a mobile platform is further explored in the context
of GPS sensors and using the quadratic optimization solution for estimating the
location of the mobile platform for known sensor configurations.

3. Outlier Analysis and Weighting : The accuracy of the data received from the
GPS sensors is subject to atmospheric conditions, satellite constellations, indi-
vidual sensor characteristics and noise. Additionally, some of these data may
be erroneous. These issues lead to the data having low reliability, making it
difficult to yield accurate estimates for location and orientation. Moreover, de-
pending on our analysis of historical data of the sensors, we may be able to

identify sensors which have been closer to the true values and thus, should be
4

assigned higher weights, hence contributing more to the resulting estimate of

the location. The outlier analysis and the weighting schemes will provide the

framework for favoring accurate data with respect to the sensor configuration
for the purposes of increasing the accuracy of the estimates of location of the
sensors and platform.

4. Sliding Windows and Correction for Lag : Besides the impact of missing data
on accuracy of the estimates, the estimates are also subject to real-time utility
constraints when the platform is in motion. It is also not feasible to store all
observed data that has been collected over long period of time. It is necessary
to strike a balance between the amount of historical data stored along with the
new observed data and the accuracy of the estimates produced. The amount
of historical data stored also depends on the path information and the rate of
change in the position and orientation of the mobile platform. In the cases of
using a large amount of historical data, the calculation of the estimates may not
be able to respond quickly to sudden changes such as turns, leading to lag. This
needs to be accounted for and corrected to produce more accurate estimates of
position.

For the purposes of producing a demonstration of the efficacy of these solu-
tions, we are limiting the application space to that of GPS sensors on a mobile robot
platform. We will be using minimal domain information for estimating the location
and orientation of the GPS sensors. One may imply that this solution would not be
applicable under general conditions with different data characteristics than GPS sen-
sors, but we intend to show that our framework is indeed adaptable as the application
requires it to be. Regardless of the application space and type of sensors used, the
framework of improving the quality of information from these sensors will remain the

same.

1.5 Outline of the Dissertation

This dissertation is divided into the following chapters: (a) The necessary
background information is discussed in Chapter 2; (b) Chapter 3 features a discussion
of our approach and methodology to solving the above detailed issues; (¢) Chapter
4 shows the results of our approaches; (d) Chapter 5.2 provides a summary of our

results and an outline for future work.

CHAPTER 2
LITERATURE REVIEW

This chapter of the dissertation reviews the different approaches our research
took for the tasks listed in Section 1.4. However, not all of these methods were utilized

in the current solutions to the aforementioned tasks.

2.1 Quadratic Programming in MATLAB®)

Quadratic programming [1] is a type of mathematical optimization problem
that involves a quadratic objective function and linear constraints. The standard

form a quadratic programming problem is shown in Equation 2.1:

1
MIN f(x) = §XTQX-|—CTX

st.Ax <b

Ex=d (2.1)

where x € R, x and c are column vectors with n elements and Q is a symmetric n X n
matrix, x° is a transpose of x. Additionally, the area of quadratically constrained
quadratic programming allows a generalization of not only having a quadratic objec-
tive but also having quadratic constraints. Quadratic programs can be solved using
a variety of algorithms, some of which are [2]:
1. Trust Region Reflective Algorithms : Trust regions [2] follow the idea of ap-
proximating the objective with a simpler function that reflects the behavior

of the objective at a particular point z in a neighborhood N, thus creating a

trust-region subproblem. The point z is updated if the objective function value
decreases; otherwise the neighborhood N is shrunk and all steps are repeated.
. Active Set Algorithm : From [3], in quadratic programming, the active set
algorithm initializes by finding a feasible solution after which the constraints
are divided into active and inactive. Equality constraints are always active and
the algorithm can continue searching for a solution within the reduced subset
of active constraints. Whether the constraint is active or inactive is decided
by computing Lagrange multipliers of the current active set and reducing the
active set to contain only non-negative Lagrange multiplier results and then
repeat the search for infeasible constraints.

. Sequential Quadratic Programming (SQP) Algorithm : As developed in [2],
the active set algorithm and the SQP algorithm are similar except that the
SQP algorithm takes every iterative step in a region constrained by bounds.
Additionally, it may take an iterative step that returns an invalid objective
value, which is corrected in the next iteration by taking a smaller step. In
case constraints are not met, a merit function is calculated that combines the
objective and constraint functions. This merit function is then minimized with
relaxed constraints. The SQP algorithm is also capable of using second-order
approximation on the constraints, if a solution is still not found.

. Interior Point Algorithm : As implemented in [2], the interior point approach
consists of solving a sequence of approximate minimization problems with a
conversion of inequality constraints to equality constraints using slack variables
and an added logarithmic term called a barrier function. Solving the approx-
imate problem requires two steps, a direct step (solving Karush-Kuhn-Tucker
equations) via a linear approximation and then a conjugate gradient step using

a trust-region.

2.2 Time Series Analysis

As per [4] and [5], time series analysis is one of the methods to obtain a
statistical model of data when there is a correlation introduced by the sampling of
adjacent points in time. The time domain approach is generally motivated by the
assumption that correlation between adjacent points in time is accounted for by a
dependence of the current value on the past values and therefore, modeling of future
values of that time series contains a parametric function of the current and past values.
One of the seminal approaches to analyzing time series data was developed by Box
and Jenkins [6] which involved a class of models called autoregressive integrated
moving average (ARIMA) models to handle the modeling and forecasting of time
series data. The advantage that ARIMA models have over other statistical models is
the use of multiplicative models, such that the observed data are assumed to result
from the products of factors involving differential or difference equation operators
responding to a white noise input. Initially, classical regression methods are tested
to check if they are sufficient for modeling the trends and seasonal effects generally
noted in time series data.

For time series analysis to be an effective tool to model time series data, it is
imperative to conduct initial tests to find out if the data in hand follows a time series
model or not. By obtaining a time series plot, one can look for no consistent trends
and sharp jagged-ness, all of which are hallmarks of time series data. The first model
to be tested against the data is the autoregressive model of order 1 : AR(1) as seen
in Equation 2.2 with assumptions that errors are i.i.d and N(0,02) and properties

of errors w; are independent of . The AR(1) model

Ty = 0 + ¢12L’t_1 + wy (22)

works when lag 1 values of the series show a linear association, positive or negative.
Then, residual analysis is conducted to note serious issues such as non-constant vari-
ance and outliers. It is also interesting to check the sample autocorrelation function
(ACF) plot where the lag (time steps between observations) is plotted on the x-axis
and the autocorrelation function value is plotted on the y-axis. Lines indicating sta-
tistical significance bounds are also plotted and to obtain a good ACF for residuals,
the autocorrelation should not exceed the statistical significance boundaries. This is
to make sure that there is no significant autocorrelation in the residuals. If significant

autocorrelation is present in the residuals, a different model should be tested.

2.3 Handling Missing Values

Working with unreliable sensors may lead to data not being received from the
sensors. There are various reasons for that to happen, such as atmospheric conditions,
delays from GPS satellites, sensor characteristics etc. Missing data is a phenomenon
that cannot simply be ignored and [7] reviews the different methods available cur-
rently to account for missing data. Initially, the type of missing data must be identified
out of four possible types :

1. Missing by Definition of the subpopulation : If a sample was not collected
from a particular subpopulation due to omission, then these should be elimi-
nated/noted before handling the true missing values.

2. Missing completely at random (MCAR) : Here the missing data may form a
random distribution throughout the data.

3. Missing at random (MAR) : Here the missing data for a variable are MAR if the
likelihood of missing data on the variable is not related to the response variable,
after controlling for other variables in the data set.

4. NI missing values : These are missing values that are neither MAR or MCAR
10

Traditional approaches to handling missing values are listwise or case deletion (works
well if sample is large and values are MCAR), pairwise deletion (it may produce a co-
variance matrix that is not positive definite), mean substitution or mean substitution
for subgroups (attenuates variance and can produce inconsistent bias), all of which
may result in biases in a positive or a negative direction, increase in Type II errors
and underestimate correlations and [weights. Newer methods use expectation max-
imization (EM) or imputations [8]. Imputation is the direct replacement of missing
subjects by new subjects from an identifiable source population based on observed
subject characteristics. If the missing data follows MAR, the subject is randomly
chosen from the same source population or from the estimation of the distribution
of the test result in the source population. Using the estimation of the distribution
for replacement purposes requires in complex situations with multivariate factors,
a multivariate regression model to estimate the underlying distribution of the test
result. This method is known is known as single imputation procedure. Multiple
imputation takes into account that the initial estimate of the distribution had miss-
ing values. Therefore, several or multiple imputed data sets based on random draw
from different estimated underlying distributions are used. An average is calculated
to get pooled estimates of the association which results in lowering the variance of
the combined estimate. [7] also makes mention of full information maximum like-
lihood estimation algorithms such as structural equation modeling and hierarchical
modeling. In conclusion, both multiple imputation and full information maximum

likelihood approaches work well on large samples.

2.4 Statistical Process Control

In [9], statistical process control (SPC) is defined as a powerful collection of

problem-solving tools useful in achieving process stability and improving capability
11

through the reduction of variability. One of the tools of performing statistical process
control is through the use of control charts. A control chart is a graphical display of
a quality characteristics that has been measured or computed from a sample versus
the sample number or time. A control chart consists of a center line, an upper control
limit (UCL) and a lower control limit (LCL). A center line represents the average
value of the quality characteristic corresponding to the in-control state. The purpose
of UCL and LCL is to define the region within which the process is in control; if a
sample point selected falls between the UCL and LCL, the process is in control. If the
data are beyond the control limits, then the process is out of control. A control chart
is analogous to hypothesis testing which defines a rejection region and then tests the
sample point whether the data falls in the rejection region or not. The general model

for a control chart is given in Equation 2.3 :

UCL = py, + koy,
CenterLine = i,

LCL = pu, — ko, (2.3)

where w is a sample statistic, p,, is the mean of w and the standard deviation of w is
0w There are as many control charts as there are sample statistics that characterize
some quality attribute of interest. There are variable control charts such as the She-
whart X, R, S, CUSUM, Exponentially Weighted Moving Average (EWMA) charts;
attribute control charts such as P, NP, C and U charts; and multivariate control charts
such as Hotelling 72, Multivariate EWMA charts and Principal Components Control
charts [10]. For the purposes of deriving a model for the location of GPS sensors,
multivariate SPC charts were deemed more appropriate as it was believed that mul-

tiple quality characteristics would affect the output of a GPS sensor, alongwith the

12

multiple quality characteristics being possibly correlated. The most versatile chart is

the Hotelling 72 control charts.

2.4.1 Multivariate SPC Charts : Hotelling 7

The author of [9] establishes that the Hotelling 7% control chart is analogous to
the univariate Shewhart z chart. The Hotelling 72 statistic is shown in Equation 2.4,
where n = 1 for individual observations, m is the number of samples, p is the number
of quality characteristics observed in each sample, Z is the sample mean vector and

S is the covariance matrix.
T° = (z—2)S 'z — 7) (2.4)

The corresponding control chart for Phase I is shown in Equation 2.5 where /Ba7%7m—21?—1

is the upper a percentage point of a beta distribution, with the other two elements
being parameters to the § distribution. Since n = 1, it has been shown that approx-

imations using F and y? distribution are likely to be inaccurate.

ver = =V,

m)

LCL = 0 (2.5)

(Sl
i
i
L

The control chart for Phase II is shown in Equation 2.6.

~_ pm+1)(m—1)
UCL = (= mp) Fopm—p

LCL = 0 (2.6)

In multivariate SPC, the cause of a signal sensing out of control situation may be
caused by one of p variables or between two or more of the variables. To obtain the
variable that is causing the signal, orthogonal decomposition of T2 into its princi-

pal components and then interpret the principal components is one approach. The
13

authors of [11] present Mason-Young-Tracy (MYT) decomposition technique to a
signaling T? statistic where MYT decomposition is shown in Equation 2.7 where T?
is an unconditional Hotelling’s T2 for the first variable of the observation vector X.

The other terms are conditional terms with their formulas given in Equation 2.8

T2 - T12 + T221 + te + Tp2_1’27“_’p71 (27)
=2
7 = —(xl fl) Unconditional
51
L 2
7}2.172,,,,,1-_1 = (z; 2%'1’2’""]_1) Conditional (2.8)
85.1,2,...,5—1

Through the application of the sequential algorithm for MYT decomposition as de-
scribed in [11], it is possible to interpret unconditional signaling terms as they mea-
sure whether an individual observation is within control, while a signaling conditional
term signifies that the observation of the corresponding set of variables is counter to
the relationship established by the historical data. The authors of [12] used the
MYT decomposition algorithm to study the consistency of impurity profiles of drug
substances where signals in the conditional components were interpreted as being due
to the fouling of the relationship among impurities, thus, discovering not just signals

for individual impurities but also those between impurities and transition points.

2.5 Data Fusion

From [13], we can define data fusion as the combination of information from
disparate sources that are aiming to measure the same quantity, attribute or char-
acteristic to provide the best estimate of the attribute. There are three general

approaches to performing data fusion:
14

1. Dempster-Shafer Theory: It is also known as the theory of belief functions
and is considered to be a generalization of the Bayesian theory of subjective
probability. Dempster-Shafer does not require exact probabilities for each ques-
tion of interest; instead, it allows for belief functions to base degrees of belief
for questions of interest, even though degrees of belief may or may not have
mathematical properties. DS theory is based on two ideas:

(a) The idea of obtaining degrees of belief for one question from subjective
probabilities for a "related” question
(b) When the degrees of belief are based on independent items of evidence, DS
theory allows for them to be combined.
One use of this theory was in [14], where ultrasonic sensors were returning
data with large uncertainties due to the presence of highly shiny surfaces and
Dempster-Shafer theory was used as a filtering factor on the sensor model to
reduce uncertainty. Dempster Shafer theory was used as opposed to a Bayes
theory since the requirement was to build a grid of surroundings of the robot and
assign three values as a measure of belief/mass : occupied, empty and unknown.
Using Dempster’s rule of combination allows for a calculation of confidence by
using the masses of those three states of a grid.

2. Bayes Theory : Bayes’ theory of data fusion uses Bayes’ rule to combine succes-
sive measurements of the state of a system from a single source, which involves
obtaining a new estimate for the target state given the previous old estimate.

3. Fuzzy Logic : Fuzzy logic is the reasoning approach that is approximate where
fuzzy logic variables have a truth value that ranges between 0 and 1 as opposed
to binary variables that have truth values that are either 0 or 1. For example, in
[15], the authors attempt to correlate and fuse information from sensor data ob-

tained from maritime sources and attempts to track the paths of ships through

15

the use of Adapative Fuzzy Logic Correlation using messages containing only
positional data. The use of fuzzy logic was in terms of the value of confidence
that needed to be used based on which type of sensor or data source was pro-
viding the information. Moreover, different fuzzy logic membership functions
need to be defined based on the different applications, but the authors ran into
issues when different fuzzy logic memberships needed to be fused.
Closer to one of our goal applications, the authors in [16] aimed to produce less biased
estimates of the performance measured in probability of detection and probability of
false alarm through the use of Fuzzy probabilities, Bayes theory and Dempster-Shafer
Theory in an grid-map area by dividing the mapped area into grid square each of
which uses sensors to produce confidence values. These confidence values are then
used in data fusion for a final indicator about the presence of a land-mine by using a
voting mechanism, where the votes are summed together and divided by the number
of sensors. Their results indicate that Bayes’ theory and Dempster-Shafer theory are

more robust than Fuzzy Logic, which gave unpredictable results.

16

CHAPTER 3
METHODOLOGY

This section will describe the methodology for the tasks discussed in Chapter
1. Briefly the issues are :

1. Obtaining An Estimate using Quadratic Optimization and Known Sensor Con-
figuration.

2. Position and Orientation Estimation.

3. Outlier Analysis and Weighting.

4. Sliding Windows and Correction for Lag.

Section 3.1 clarifies and distills our approach for estimating a measure using
the observed data from multiple sensors, the configuration of the multiple sensors
and the cost based solution to reducing error using quadratic optimization. Section
3.2 outlines the application of the quadratic optimization for estimating the position
and orientation of a mobile platform. Section 3.3 details our plan for handling the
issue of assessing the reliability of the data that we are receiving from the sensors
through the use of outlier analysis techniques and weighting. Section 3.4 shows our
strategy for dealing with missing observations using sliding windows and corrections
for lag in estimates due to inefficient sliding window size through a demonstration of
the consequences of using improper window sizes when using a sliding window scheme
for optimization resulting in a time lag. Subsequently, the results of these approaches

and performance metrics are presented Chapter 4 in their respective sections.

17

3.1 Obtaining An Estimate Using Quadratic Optimization and Known Sensor Con-

figuration

Sensors that measure some aspect of the physical world provide data at varying
rates which are provided as input for analysis and estimation. As previously dis-
cussed, this data is subject to large variance and high bias, along with errors. These
data or errors may or may not follow a particular distribution and may or may not be
identically and independently distributed. For the purposes of estimating the actual
value of the measure that is being recorded, we can use an optimization based tech-
nique to reduce the errors between the observed measures and the estimated measure,
while constraining the estimated measure to follow the configuration of the sensor as
provided. Concretely, for the purposes of obtaining an estimate for the location of
the mobile robot platform, we have developed a method for estimating the location
of the mobile platform in this section, with estimation of orientation discussed in Sec-
tion 3.2. Quadratic optimization was used due to visual inspection techniques which
showed the random structure of the data violating all classical statistical assumptions
with results discussed in Chapter 4. Initially, we discuss the quadratic optimization
solution for the stationary case where the mobile platform is not moving and extend
the same principles to the case where the platform is in motion. Subsequently,

1. Case A : Platform is stationary.
2. Case B : Platform is in motion.

As we proceeded through the steps of analysis, we opted to use an optimization based

technique for location and orientation estimation.

18

3.1.1 Case A: Mobile platform is stationary

In our current application, the components that are available for the purposes
of building an optimization framework to determine an estimate for the location of
the mobile robot platform are:
1. Distances between each sensor on the mobile robot platform: These are distance
values that stay constant for a particular application instance and are defined
by the user. The complete collection of all these distances define the “sensor
configuration” of the platform with sensors attach at its various points. This is
denoted by the notation a;;, where 4, j are the numbers of sensors out of the m
available sensors in the system and listed for each ¢ < j for all possible number
of sensors.
2. Number of sensors: Also defined by the user, denoted by m.
3. The observed values of locations of each sensor: These are GPS coordinates in
meters on two dimensions represented as z and y values (z,y). This is denoted
by the notation (x;;, v;:), where i is the sensor identification number and ¢ is
the value of the time-step (in our application, the time-step used is seconds)
during which the observed values were recorded.
Additionally, we denote the estimated location of the sensors in a fashion similar
to the observed values of the locations of the sensors by using x and y coordinates,
designated as (Tit, Uir), where i is the sensor identification number. This estimate
is calculated over all the data available in the stationary case. In Section 3.1.2 and
3.4, there is a discussion over the time-frame used in calculating the estimates when
the platform is in motion.

The task we wish to solve is given the observed values of the locations of the
sensors and the distances between the sensors, where do we estimate the sensors to be

located 7 The error/cost that we are minimizing is the distance between an observed

19

value of the location of the sensor and the estimated value of the location of the

same sensor. More concretely, let us consider the case for 3 GPS sensors in the first

time-step of operation of the stationary platform using the following notation where

the starting time t4 4+ = 1 and the ending time is t.,q = n:

1.
2.

8.
9.

true known distance between sensor 1 and sensor 2 : ajs.

true known distance between sensor 2 and sensor 3 : ao3.

. true known distance between sensor 1 and sensor 3 : aj3.

. observed (x,y) location for sensor 1 at time-step 1: (211, y1.1).

(x,¥)
. observed (x,y) location for sensor 1 at time-step n: (21, Y1.n)-
. observed (x,y) location for sensor 2 at time-step 1: (221, y2.1).
. observed (x,y) location for sensor 2 at time-step n: (g, Y2.n)-
observed (x,y) location for sensor 3 at time-step 1: (231, y31).
y)

observed (x,y) location for sensor 3 at time-step n: (3., Ys.n)-

Initially, estimates of the location of the variables will be calculated over all available

GPS values, which means that the starting time of the estimating the locations. This

is instituted for all 3 GPS sensors using the following notation:

1.
2.
3.
4.
D.
6.

estimated (x,y) location for sensor 1 at time-step 1: (Z11 , y1.1)-

estimated (x,y) location for sensor 1 at time-step n: (Ti, , Y1.n)-

estimated (x,y) location for sensor 2 at time-step n : (Ton , Yon)-

(

(x.y)

estimated (x,y) location for sensor 2 at time-step 1 : (T2 , Y2.1)-

(x.y)

estimated (x,y) location for sensor 3 at time-step 1: (31 , ¥s.1)-
(

estimated (x,y) location for sensor 3 at time-step n: (T3, , Ysn)-

For defining the cost between three sensors, we use the difference between Euclidean

distance between the observed and the estimated and the true known distance, as

shown for our example for three sensors using the notation above in Equation 3.1 for

time-step 1.

20

COST = \/($1,1 - f1\1)2 + (Y11 — yT1)2
+ \/(902,1 — 721)% + (Y21 — Y2.1)?

+ \/(733,1 —@31)% + (Y31 — ¥31)? (3.1)

Constraints are expressed in the framework as Euclidean distances between estimated
position of one sensor and the estimated position of second sensor which must be
exactly equal to the data provided by the user regarding the “sensor configuration”
of the sensors attached to the platform. The constraints for Sensor 1,Sensor 2 and

Sensor 3 is demonstrated in Equation 3.2 for time-step 1.
(T11 = Z20)” + (11 — J21)* — ajp = 0
(Tr1 = T21)* + (Jr1 — J21)” — a3 = 0
(T11 — T20)" + (11 — 921)" — ajs = 0 (3.2)
Here, it is not necessary to denote the time over which the estimates were

calculated due to the fact that we compute only one set of estimate values as the

result for the entire system of quadratic programming equations. Thus, Equations

21

3.1 and 3.2 will be reduced to Equation 3.3, over multiple time-steps t = {1...n}

while dropping the ¢ for the estimates being calculated.

n

win 2 = 3 (Ve @+)

N Z (/e =2+ (s — 27
.\ Z (/o= 2+ (e -)
s.t

(@1 — @) + (1 — o)* — af, =0
(@2 = 3)° + (2 — §3)" —az3 =0
(@1 = 3)° + (= 53)° —aly = 0 (3.3)

The ¢ index will be necessary during the case where the mobile platform is in motion
and will be re-introduced in Section 3.1.2. Additionally, each distance provided by
the user is converted into a constraint for the relative positions of the estimates of
locations of the sensors. If the relative locations of the sensors form a fully connected

graph with vertices representing the sensors and the edges representing the distances

between them, there can be only a maximum of such edges and therefore,
constraints for ¢ sensors.

The objective function in Equation 3.3 can be alternately expressed to account
for any number of sensors, or more generally, the objective and constraints can be
expressed for any m sensors over time n using Equation 3.4 with Vi, j = {1...m},i <
j. This produces one set of estimates of locations of the sensors.

min 2 = 305 (firw 0+)

i=1 t=1

s.t

(= 5P+ (5~)~ a =0 (34)

For the purposes of reducing computation costs and time, certain simplifications
of the problem statement were used. Recall that the objective statement of the
quadratic programming optimization problem to estimate locations of the sensors,
shown in Equation 3.4, involves the Euclidean distances between the observed (z,y)
UTM coordinates and the estimated (x,y) UTM coordinates for each sensor. In
linear and quadratic programming, the objective is used for the purposes of selecting
values for the location estimates (or the unknowns) are minimum and conform to
the constraints. Since the process of these selections involve comparison with only
one objective value with the another objective value, the squared errors between the
observed and the estimate locations is all that is needed, as seen in Equation 3.5 and

implemented.

min 7 = Z Z ((xm —)+ (yiy — @)2) (3.5)
i=1 t=1

With the presence of a large number of equality constraints, obtaining the es-
timates was time consuming and inaccurate due to the processing of the possibilities
by the Active-Set algorithm. To alleviate that issue, the equality constraints were
converted to inequality constraints with a small tolerance € added and subtracted to
provide some elasticity to the values of the distances between the sensors as demon-
strated in Equation 3.6 for Sensors 1 and 3, as shown generally in Equation 3.7 which
presents the entire quadratic programming problem for Vi, j = {1...m},i < j. In this

case, there are two constraints for each edge in the sensor configuration. Therefore,

the maximum number of constraints is ¢(i — 1) for ¢ sensors.

(T —23)* 4+ () — 03)° — (a3 +€)? <0

(a13 — €)* — (71 — 73)" — (—)" < 0 (3.6)

23

min 7 = ZZ %t + (Yie — 3//;)2)

(aij — € = (i = 53)° = (i — 75)° < 0 (3.7)

Additionally, computational time was further reduced through an enhanced
method of selecting starting points. Recall, that in the quadratic optimization algo-
rithms, such as Active-Set [3], selection of a starting point is provided as input and
at times the key to the success of generating appropriate solutions to the quadratic
programming problem. To ensure that the mobile platform receives updates to the
estimates of the location of the sensors in initial and subsequent iterations, the esti-
mates obtained as the result of the previous calculation are used as the starting point
for the next calculation of estimates. More concretely, the estimates obtained in it-
eration j are used as the starting point in iteration j + 1 to calculate the estimates
of location of sensors. This addition reduced the computational time of quadratic
programming problem significantly.

The estimates of locations of the sensors can be used to obtain the estimate of
the position of center of gravity of the sensor configuration on the mobile platform.
With the estimates of the locations of the actual sensors obtained directly from the

non-stationary case using Equation 3.9 or the stationary case using Equation 3.7,

—_

the location of the center of gravity of the sensor configuration (x¢%,yF%)can be

calculated using Equation 3.8 with i = {2,3,6,7} over time ¢t = {1,...,n} based
on the knowledge from observing the sensor configuration described in Section 4.1.

These sensors were selected by taking advantage of the knowledge we possess about

24

the configuration as these sensors formed a configuration without completely missing

sensors, such as Sensor 4.

xz,t
{E/tCE 2367
m
Vi
yoo = 22T (3.8)

It must be noted that the center of gravity of the platform is at a constant distance
from the locations of the sensors attached to its corners and edges as described by
the sensor configuration in Section 4.1. If the extra information regarding the missing
sensors or configuration were not available, the center of gravity can be obtained by
using a distance based formulation using the constant distance of the center of gravity

and the location of the sensors.

3.1.2 Case B: Mobile platform is in motion

When the mobile platform is in motion, the data set of observed position values
of the sensors available for estimation in the optimization framework changes from
one time-step to the next time-step. One option is to calculate the estimate of the
location and orientation of the mobile platform on a time-step by time-step basis
using only the observed values in that one particular time step while the second
option is to store the incoming data and update the estimate every time-step, using
the expanding data set of observed values for the optimization framework. It is not
possible in this case to wait and collect a large number of observed location values
and only then, calculate an estimate for the location, since when the platform is
in motion, older observed location values will no longer be relevant to determining
the value of the estimate of the location, as the platform may have moved in the

time-being to a completely different location. Also, the application subset under
25

consideration has real-time utility constraints over the estimates of locations that are
obtained. An estimate obtained in time step ¢ may not be relevant in time step ¢t + 2
or t+3. This also illustrates the storage issue of estimation since storing the observed
location values is infeasible due to sensor memory constraints and the usefulness of
the data after a certain amount of time. Therefore, in the second option, we propose
the use of sliding windows, or a sufficient number of observed values that are updated
at each time-step, to provide “fresh” estimates during motion. Sliding windows are
explained in detail in Section 3.4.

The equation described in Equation 3.7 can be used to obtain an estimate of
the location of the sensors. In the stationary case, it is customary to use all the data
for the calculation of the estimate and therefore, the total size of the data under
consideration is t = {1,...,n}. When the platform is in motion, there are real-time
constraints on when the estimate is useful. Therefore, it is not feasible to wait till the
end of the platform’s motion to provide the estimate. Depending on the constraints
established by the user, these estimates may be provided at the end of a sliding window
sized section of the data. The size of the window is defined by the number of time-steps
used in the calculation of the estimate, denoted as s. We establish that although the
total set of time-steps available to us is t = {1,...,n}, in reality the available time-
steps for use is t = {s,...,n} as estimates of location cannot be calculated without
the requisite number of time-steps for the sliding window to be complete. Please refer
to Section 3.4 for more details. Therefore, Equation 3.7 is transformed to Equation

3.9 with Vi, 7 = {1,...,m},i < j to account for the production of the estimate at the

26

end of the sliding window, where ¢ time-steps can range from {s,...,n} with sensors
Vi,j ={1,...,m},i < j and estimates are produced every time step t = {s,...,n}.
m t
min 7 = Z Z (@iw — Ti2)* + (Yiw — Uin)?)

i=1 w=t—s+1
s.t

—

(Tix = Z50)* + ip — G50)° — (a5 + €)* <0

(aij — €)* = (Tix — Tj0)* = (Uix — Gj0)* <0 (3.9)
In Equation 3.9, the limits for the inner sum delineate the observed data under
consideration as a block of data of the size of the sliding window, s, starting at time-
step t — s + 1 and ending at t. This is repeated for all values of ¢t = {s,...,n}, thus

producing a set of estimates of locations of sensors for all ¢. More details are added

in Section 3.4 with the discussion of sliding windows.

3.2 Position and Orientation Estimation

As described in Section 3.1, we can obtain the estimates of the positions of the
all sensors and the center of gravity in the sensor configuration defined by using the
quadratic programming problem described in Equations 3.7 for stationary and 3.9 for
non-stationary cases. The results for these approaches are discussed in Chapter 4. For
each estimate of location of the sensors, an orientation estimation can be calculated by
using the initial estimate as a reference orientation and the current location estimation
can be used to calculate the current orientation estimation. Additionally, orientation
is computed with reference to the North direction as 0 radians or 0°. Refer to Figure
3.1 for common angles.

Orientation estimates are calculated using the N-direction (North direction)
line as a reference and any side of the mobile platform as the opposing side and then

applying the Law of Cosines in Equation 3.10 where a is the reference distance from
27

/2

orientation = m-C orientation = C

\ /4

n
]

L C /c; a 0,2n

\
-

\ orientation = 21 - C

orientation =m+ C 3Hf2

Figure 3.1: Calculation of orientation of mobile platform.

origin, b is the distance from origin for the estimated current location, c is the distance
between the reference and the result to obtain an orientation estimate. To obtain the
difference in orientation, this is subtracted from the original orientation estimate of
the vehicle at the start of the observed data being recorded. This measure is used to
further reduce the error in calculation of location estimates in the following time-steps
through correction of lag when using large values of sliding windows. Additionally, the
sides and locations of the estimates and references must be translated to the origin.

Each estimate of orientation is calculated using estimates obtained for location of

sensors and thus, calculated at either time-step ¢t = {1,...,n}or sliding window step
t ={s,...,n} where s is the size of the sliding window.
a2 + b2 — 2
C,=cos ! | A—L 1 3.10
¢ |: 2atbt ()

Depending on the quadrant that the estimate of the current location of the platform,
orientation can be calculated using the schemes shown in Figure 3.1. If the translated

estimate lies :

28

1. Quadrant I : Quadrant I consists of the area between 0 and g, therefore, orien-
tation = C} calculated in Equation 3.10.

2. Quadrant IT : Quadrant II consists of the area between g and , therefore,
orientation = 7w — C;.

3. Quadrant III : Quadrant III consists of the area between 7 and ;, therefore,
orientation = 7w + C.

4. Quadrant IV : Quadrant IV consists of the area between 3; and 27, therefore

orientation = 27 — C}.

3.3 Outlier Analysis and Weighting

Due to the uncertainty regarding the precision and accuracy of the data, outlier
analysis and removal of the outliers may provide greater precision and reduce the
variance so as to provide a better estimate of the location of the mobile robot platform.
There exist many methods of performing outlier analysis or selecting influential points.
We use two popular methods of statistical outlier analysis for the stationary case :
Huber weight function in Iteratively Re-weighted Least Squares Robust Regression
method and Standardized Deleted Residuals to select points that are influential. In
addition to those common statistical methods, we propose the Huff weight allocation
algorithm for the stationary case and the motion case. Moreover, the Huff weight
allocation system provides an intuitive method of allocating weights to a observed
location value with respect to the relationships between the sensors and with respect
to the reliability of the sensors. Subsequently, we attempt to leverage the use of
sliding windows of different sizes and combining them with Huff weighting schemes

for added benefits.

29

3.3.1 Huber Weight Function in Robust Regression

The Huber weight function in Robust Regression uses the Median Absolute
Deviation (MAD) estimator instead of the Mean Square Error (MSE) to estimate the
deviation from the median. This method suits our application framework even more
so, due to the fact that we do not know the true value of the stationary location values

and therefore, can only use a median as a substitute for the true value. The Huber

weight function , wEtUBER, is calculated using the following steps for i = {1,...,m}
sensors and ¢ = {1,...,n} time-steps :
1. Calculate MAD,; = T sxmedian{|e;; —median{e;.}|}, where e;; is it resid-
ual for each sensor.
. €it
2. Calculat led dual, u;; = ——.
alculate scaled residual, u; ; VAD.,
1, |z | < 1.345
3. Calculate weight value w;/BFR = .
; 1.345
220 Ju| > 1.345
|wit]

The optimization is altered slightly to account for the new weighting terms as
described in Equation 3.12. Moreover, as the data is not analyzed using statistical
methods, the definition of residual e; is altered as well, as shown in Equation 3.11
where e,,, are the x-components residuals per sensor per time-step, e, are the y-
components residuals per sensor per time-step, z;; are the x-components per sensor
per time-step, y;; are the y-components per sensor per time-step, median{x;} is the
median of x-components, median{y;} is the median of y-components and i is the

sensor number.
Cr,, = Tiy — median{z;}
€y, = Yiq — median{y;} (3.11)

The Huber weight function steps described above are repeated to produce Hu-

ber weights for x-components w; P*® and y-components w; > of locations sep-
sy "y

30

arately but are combined in the optimization shown in Equation 3.12 with Vi,j =

{1,...,m},i < j.

m n

. _ HUBER ~\2 HUBER ~\2
min Z = Z Z <wi,tz * (mi,t —T;)" + Wi, * (Z/i,t — i))
i=1 t=1

s.t
(T = 5)* + (1 — 55)* = (ai; + €)* <0

(aij =€) = (@ —73)° = (7 — §;)* < 0 (3.12)

3.3.2 Standardized Deleted Residuals
The use of deleted residuals for the purposes of making residuals more effective
for detecting outliers is another suggested method. However, in our application space,
the predicted response is denoted by the median and the steps of the algorithm are
modified in the following manner :
1. Calculate median of the observed values for each sensor’s x and y coordinate
values and denote them as median{z;} and median{y;} Vi sensors.

2. Calculate e,,, = 2;; — median{z;} and e,,, = y;; — median{y;} Vi sensors.

eyi,t

1 —hu,

Cx; 4
1 —hu,
matrix of sensor 1.

3. Calculate d;; = and dy;; = Vi sensors where hy ; is the hat
4. Any values of dg;; and d,;; < 1.0 will be considered as outliers and removed
from estimation calculations.

The use of deleted residuals does not dictate the use of an altered form of the quadratic

optimization for sensors and using Equation 3.9 is applicable.

31

3.3.3 Huff Weight Function

The Huff weight function is another method of calculating weights on data
through the use of the mutual presence of sensor observed values. This algorithm is
outlined further in the following steps :

1. For every timestep, calculate relationship i.e. every sensor that reported in that
timestep for that sensor.

2. For every timestep, if that relationship exists, then calculate the Euclidean
distance between those sensors.

3. Calculate error by subtracting the known given distance and Euclidean distance
in Step 2 per timestep per sensor and take the absolute value.

4. Per timestep, take the sum all absolute errors divide by the number of relation-
ships and denote it as average error.

5. If the average error > threshold for that time-step, exclude all the sensor data
obtained on that timestep for the purposes of generating the estimate.

6. To determine the relative reliability of a sensor works with respect to the other
sensors reporting in at that particular timestep, take the sum of the absolute
errors of all of the distance relationships of just that sensor in that timestep
and denote it as sum of absolute error per sensor per timestep and divide them
by the number of relationships per timestep per sensor to supply the relative
error.

7. If the relative error > threshold, for a given sensor exclude the observed values
for calculating location estimates.

8. If the relative error < threshold, calculate the weighting factor per sensor
1 total number of relationships in time-step

per timestep as where

*
relative error (m—1)
(m — 1) is the maximum number of possible relationships between each sensor

per sensor per timestep. The total number of sensors is m .

32

9. The weighting factor per sensor per timestep is used as the Huff Weight, denoted
as wf{tUF ¥ of sensor 7 and at time-step .
This algorithm can be used regardless of statistical rigor on the sample of the
data in consideration, so it is appropriate to use this either when the platform is
stationary or in motion, which is not the case for Huber Weight Functions or Deleted

Residuals. The subsequent quadratic optimization cost and constraints for use with

Huff Weights is in Equation 3.13 with Vi,j = {1,...,m},i < j.

min 7 = Z Z’wHUFF (i — T:)* + (Vi — @)2)

=1 t=1
s.t

(aij —€)* — (T; — 23 — (i — 1;)° <0 (3.13)

Both Huber and Huff weight functions can be multiplied to produce another
set of weights and the application of which is shown in Equation 3.14 with Vi, j =
{1,...,m},i < j.

min 7 — Z ZwHUFF (g{tUBER s (w0, — T3)2 + wg{tUBER % (yis — @)2)

=1 t=1
s.t

(@_@)2+(@_ij)2—(@ij+€)2§0
(ai; =€) = (T = 7;)* = (5 — 75)* <0 (3.14)

All of these methods of outlier analysis and reduction are compared with one
another and additionally compared with random weight functions to show their ef-
fectiveness in improving the calculation of the estimates of location and orientation

shown in the results of Chapter 4.
33

3.4 Sliding Windows and Correction for Lag

As the data from the GPS sensors is subject to variation depending on a number
of very unpredictable factors, such as atmospheric, satellite constellation change,
sensor characteristics etc., it is very likely that during a particular time step, some of
the GPS sensors may not report the coordinate values. This leads to missing data.
Missing data may be handled in a variety of methods and some common methods
used are imputation, interpolation and others discussed in Section 2.3. However,
these methods may not be applicable to the application environment of GPS sensors
attached to a mobile platform because these methods assume that the data/output
produced follows a distribution that can be ascertained.

Furthermore, the coordinate information from GPS sensors on a mobile platform
may be limited by real-time processing time vs. utility constraints. When the estimate
is being determined while the platform is in motion, the estimates must be generated
in such a manner that it may be used by the kinematic system of the platform in
motion. Therefore, the estimate of location and orientation cannot be generated all
the way at the end of the platforms movement. Additionally, most modern GPS
sensors are capable of sending more than one data reading per second, thus capable
of providing a second by second accurate estimate, which is acceptable for a mobile
robot platform performing some real-time processing. Moreover, according to the
preliminary results we have collected, observed location and orientation vary widely
from one time-step to the next. We expect that the use of sliding windows will reduce

that variation and enact a smoothing effect on the output.

3.4.1 Sliding Window
A sliding window is a first-in-first-out queue of data of a size lower than the

total size of the data and is refreshed with new information in the following unit of

34

time by deleting the oldest member of the queue and adding the oldest member of the
newly observed data to the queue of data in consideration, which creates a “sliding”
effect. A sliding window may add new members based on time of new data or based
on rows of new data. This only is an issue if every row of new data does not represent
a singular addition in number of time-steps. In our application, we assume that the
GPS sensors generate observed values in a way where each row of new data represents
an increase of value 1 to the number of time-steps.

Using the sliding window mechanism, an estimate can be generated by every
time-unit by using a large portion of the historical observed data and the most recent
observed data. Initially, till the requisite number of rows in the sliding windows is
reached (from data point 0 to data point at the size of the sliding window), a sliding
window estimate may not be produced. However, once the requisite number of rows
(i.e. sliding window size) is reached, an estimate can be generated every singular
time-step. As the system receives a new observed data point, the oldest data point is
discarded and the newest data point is added. More concretely, for a sliding window
of size s, sliding window estimates cannot begin being generated till s time-step,
assuming that each new data point is generated every time-step. The sliding window
data queue consists of all observed data w = {t —s+1,...,t} , where t = {s,...,n}
. On receiving the first s set of new observed data at time-step t,, the sliding window
shifts such that the queue consists of all observed data wy = {(t5) — s+ 1,...,t}.
The next sliding window data set if the time-step increment in units of 1 is defined
by we = {(ts+1) —s+1,...,ts+ 1}.

With the use of sliding windows, we can generate estimates in a real time
fashion with more weight on the “older” data and less weight on the new and recent
data. Specifically, for a window of size s, the “older” data consists of all data points

{t—s+1,...,t—1} and the s element of data is occupied by the newly observed data.
35

All of these described characteristics of sliding windows will allow for the generated
estimates to experience less variance from one estimate to the next, thus creating
a smoother path of location and orientation estimates. Additionally, with a sliding
window size s > 1, the effect of missing data can be decreased as the chances of a
sensor missing all the data points in the the window are less. Therefore, missing data
in the quadratic optimization equations in Equation 3.9 do not have to be adjusted
for. Since, the cost of Equation 3.9 is additive for each present observed data, we do
not face negative consequences of missing data in the stationary case.

The reasons for using sliding windows was to establish a method of iteratively
obtaining up-to-date estimates of location and orientation of the mobile platform
during its operation. It is not feasible to wait to calculate an estimate for location
at a particular point (for example : every 1 min) in time by halting all motion to
collect data over a much longer period of time (for example : after 3 hours) and
then calculate the estimate. This is primarily the case due the possible application of
the mobile robot platform in different hostile environments where there may be real-
time constraints on the utility of data received. The selection of the size of the sliding
window is however, specific to a particular application and may be determined empir-
ically. Please refer to Section 3.1.2 to obtain the quadratic programming formulation

to obtain location estimates of the sensors.

3.4.2 Correction For Lag

For sliding windows of size 1, essentially, there is no sliding window because
to generate the estimate only the most recent data is being used and then discarded
when the new observed data is input in the system. As the size of the sliding window
increases, we face the issue of the estimates generated as lagging behind the actual

location and orientation values. The results are in the preliminary stages and therefore

36

will be discussed in Chapter 5.2. To correct for this lagging, we calculate an estimate
for the orientation and correct the estimate to location at the end of the sliding
window as the corrected estimate. Orientation is calculated as discussed in Section
3.2. The correction for lag is obtained using the following steps :

1. Calculate the estimate generated for the particular sliding window.

2. Calculate the distance between the first complete set of observed data for a
particular sensor in that window and the estimate. This generates the time
position in that sliding window where the estimate occurs.

3. To calculate the time remaining by which the estimate has to be corrected,
subtract the time position in Step 2 from the size of the sliding window.

4. Multiple the time remaining by the velocity to obtain the distance, d, the esti-
mate should be corrected.

5. Using orientation value 6, the x-component and the y-component is obtained
through (d * cos(0)) and (d * sin(f)) respectively.

6. Add the x-components and y-components to the estimate to shift the estimate
to correct for the lag.

Our results in terms of sliding window sizes shows that the issue of lag only becomes
apparent in very high sliding window sizes, such as 100 and higher but is not very
apparent for low sizes, such as {1,...,10}. The technique of lag correction has been
implemented for different window sizes to show the benefits in terms of performance

in Section 4.12.

3.4.2.1 Dynamic Sliding Window Size

Depending on the sensor configuration that the path that the mobile platform
follows, there may be long sections of the path where the platform is moving steadily

without large changes in orientation. Consequently, there are sections of the path that
37

are short and involve changes in orientation, such as curves and turns. It follows that
when the platform is on a long steady path, the more historical information retained,
the better the stability of the estimate of the locations of the sensors will be. To retain
more historical information, larger sliding window sizes are appropriate. However,
when the platform is negotiating curves and turns, retain historical information is
not as vital as the orientation is changing from one time-step to the next. Therefore,
a smaller sliding window size is recommended. To implement this, it is necessary to
know that the platform is changing orientation or turning. This information can be
obtained from the control information of the mobile platform. Moreover, this method
of adapting window sizes according to the type of path that is being followed can be
combined with the calculation for correction of lag for superior results as discussed

in Section 4.12.

38

CHAPTER 4
RESULTS

4.1 Experimental Set-Up

To obtain a working prototype of the methodologies described in the previous
chapters and to show working proof of our techniques, multiple experiments were
conducted both in the stationary case and the case where the platform is in motion.
Initially, eight GPS sensors reporting locations in latitudes and longitudes were in-
stalled in a known and static configuration on the mobile platform. Out of the eight
sensors , only seven sensors actually reported values and there was one power failure
during the initial recording of the data. All data collected before the power failure
were discarded for the purposes of these experiments. The latitudes and longitudes

were converted to the Universal Transverse Mercator (UTM) coordinate system.

4.1.1 Stationary Experimental Set-Up

To test the validity of our framework and to identify any potential problems with
our approach, the optimization framework and subsequent outlier analysis, missing
data analysis and weighting was performed on a stationary platform of eight GPS
sensors that were arranged in an outdoor field. All sensor data collection was recorded
onto a single laptop for approximately 4000 seconds. The laptop and the sensors were
rested in a stationary position outdoors and the subsequent values were obtained. The
locations of the arrangement of the sensors is shown in Figure 4.1.

There were a multitude of systemic and data errors during the collection of the

data. Sensor 4 did not produce any results and the other sensors were deprived of

39

()

80
80'G

-
A 4

=

D e——=
m
wo
L0l

N
br'G
w

w
80'
m7 YVQ
Wl Wl W
80'

80'G

(9
(9 (9

Figure 4.1: Location of Eight Sensors (CG = Center of Gravity) UTM Coordinates.

80'G

wo
1oL

power for a short while, so there is a drop in the responses. For the purposes of this
experiment, in the following optimization framework experiments, we have discarded
the data before the power outage, using only the data after the power outage, and

we do not consider Sensor 4.

4.1.2 Movement Experimental Set-Up

For the purposes of obtaining observed data from a mobile platform with eight
GPS sensors attached from a simulation, a SimuLink®) application developed in the
Mechanical and Aerospace Engineering Department at the University of Texas at
Arlington by Hakki Seval was used. The application simulates the actual movement
of the described vehicles taking into account physical and kinematic effects. As input,

the errors from the average location of each sensor in the stationary case are used to

40

create errors in the GPS sensor observed data, similar to the stationary case. The
simulation also provides the “perfect” case where the mobile platform follows the
path without any errors. This provides a mechanism of calculating the effectiveness
of our methodologies for calculating the location and orientation estimate along with

effects of outlier analysis and sliding windows.

4.1.3 Quadratic Optimization Set-Up

The quadratic optimization methods were programmed and run in MatLab®)
software tools using the Active Set Algorithm [3] with maximum number of functions
as 20000 and maximum number of iterations as 50000. The estimates for location and
orientation were calculated on an Intel® Core™ i5-3320M CPU @ 2.60GHz processor
Latitude E6430 with 4.00 GB RAM using Windows 7 64-bit operating system. For
calculating 3900 location estimates, the system takes 316.896 seconds with 42 non-
linear inequality constraints to describe the distances between seven sensors, which
implies that to generate one location estimate takes approximately 0.081255 s.

Initially, to ascertain the distributions and the behaviors of the sensors, statisti-
cal plots were used, such as the UTM xz-values of the coordinates vs. time, y-values of
the coordinates vs. time and normal probability plots followed by time-series analysis

plot,s such as auto-correlation factor plots of the stationary data.

4.2 Graphical Analysis

Figures 4.2a, 4.2b, 4.2c, 4.2d, 4.2e, 4.2g show the trend in the z-values and
y-values over time for Sensors 1, 2, 3, 5, 6, 7, 8. Figures 4.3a, 4.3b, 4.3c, 4.3d, 4.3e,
4.3f, through4.3g show the scatter plots for each of the sensors with y-values vs. x-
values. We can conclude that although, ideally, the sensor graphs over time should

show a straight line, and the scatter plots should show a tight circle of data points,

41

such is not the case. Although all of these sensors were of the same make and model,
they all show different trends of noise and variances. These results are also valid for
the distances between each of sensors for each time-step as seen in Figure 4.4 and
4.5. Additionally, the NPP plots also show that non-normality is an issue as seen
for Sensor 1 in Figures 4.7a and 4.8a, Sensor 2 in Figures 4.7b and 4.8b, Sensor 3 in
Figures 4.7c and 4.8c, Sensor 5 in Figures 4.7d and 4.8d, Sensor 6 in Figures 4.7e and

4.8e, Sensor 7 in Figures 4.7f and 4.8f and Sensor 8 in Figures 4.7g and 4.8g.

42

X-Value vs Time and Y-Value vs Time X-Value vs Time and Y-Value vs Time

5w | e o E o=
g e o - E e ks
= | 4
T T T r T T T T T T T T T T
1000 1500 zooo 2500 s000 ss00 4000 1000 1500 zooo 2s00 soo00 ssoo o000
Time Time
X-Vvalue vs Time and Y-Value vs Time X-value vs Time and Y-Value vs Time
| u
- —— e el .
o - e .
1ooo 1s00 zooa =zs00 sooo ss00 4000 1ooo 1s00 zooa zs0a sooo ssoo 4000
Time Time
M-Value vs Time and Y-Value vs Time X-Value vs Time and Y-Value vs Time
N =7
& E
=] =
T T T r T T T T T T T T T T
1000 1500 zooo 2500 s000 ss00 4000 1000 1500 zooo 2500 soo0o ssoo o000
Time Time

(e) Sensor 6. (f) Sensor 7.

X-value vs Time and Y-Value vs Time

= -
1ooo 1soa zooa 2500 scoo 3500 40co

Time

(g) Sensor 8.
Figure 4.2: Plots of UTM X (Green) and Y (Blue) Positions of Sensors vs. Time.

43

Al

Y5

Y8

25

20

10

o
@

=1
@

28

20

10

4 =

]

(d) Sensor 5 y5 vs x5. (e) Sensor 6 yg vs .

0 § 10 15 20 25 30

X8

(g) Sensor 8 yg vs 3.

30

25

20

Ya
15

o
@

(f) Sensor 7 y7 vs x7.

Figure 4.3: Scatter Plots of Sensors UTM Y values vs. X values.

44

Time Series Plots : Distances Time Series Plots : Distances Time Series Plots : Distances

& & &
B B B

Distances 112
4

Distances 1/3
4

Distances 1/5

1 1 ot
.‘ +
<] 4 <] <]
5 5 5
ARRAREAEERSRNS LA LS R AR e ARRAREAEERSRNS LA LS R AR e ARRAREAEERSRNS LA LS R AR e
0 300 700 1200 1700 2200 2700 3200 3700 4200 0 300 700 1200 1700 2200 2700 3200 3700 4200 0 300 700 1200 1700 2200 2700 3200 3700 4200
Time Time Time

(a) Sensor 1 and Sensor 2. (b) Sensor 1 and Sensor 3. (c) Sensor 1 and Sensor 5.

Time Series Plots : Distances Time Series Plots : Distances Time Series Plots : Distances
]]]
& & &

e 24 E 24 = 24
8] i] 8]
& o & o & o
a - K a N a -
- - -
~ & - &
R AR AR R R R RN R R R E R RRRARER RN R AR AR R R R RN R R R E R RRRARER RN T T T T T I T T T
0 300 700 1200 1700 2200 2700 3200 3700 4200 0 300 700 1200 1700 2200 2700 3200 3700 4200 0 300 700 1200 1700 2200 2700 3200 3700 4200
Time Time Time

(d) Sensor 1 and Sensor 6. (e) Sensor 1 and Sensor 7. (f) Sensor 1 and Sensor 8.

Time Series Plots : Distances Time Series Plots : Distances Time Series Plots : Distances
& & &
B B B
B " s 7 ; S
g g B
a4 a4 a
© + @ -
- i -
& & -
P T T T T T T P T T T T T T P T T T T T T
0 300 700 1200 1700 2200 2700 3200 3700 4200 0 300 700 1200 1700 2200 2700 3200 3700 4200 0 300 700 1200 1700 2200 2700 3200 3700 4200
Time Time Time

(g) Sensor 2 and Sensor 3. (h) Sensor 2 and Sensor 5. (i) Sensor 2 and Sensor 6 .

Figure 4.4: Plots of Distances between Two Sensors vs. Time.

45

Time Series Plots : Distances

26

22

Distances 2/7
14

$o

et

I T T T S

02 4 8 B 10

M T T T T T T T T T T T T T T rTT T

0 300 700 1200 1700 2200 2700 3200 8700 4200

Time

(a) Sensor 2 and Sensor 7.

Time Series Plots : Distances

Distances 3/6
14

{i
¥

I T T Y T S

02 4 B B 10

0 300 700 1200 1700 2200 2700 3200 3700 4200

Time

(d) Sensor 3 and Sensor 6.

Time Series Plots : Distances

26

22

Distances 5/6
14

¥

I T T T S

02 4 8 B 10

M T T T T T T T T T T T T T T rTT T

0 300 700 1200 1700 2200 2700 3200 8700 4200

Time

(g) Sensor 5 and Sensor 6.

Time Series Plots : Distances

Distances 28

I T T T S

02 4 8 B 10

M T T T T T T T T T T T T T T rTT T
0 300 700 1200 1700 2200 2700 3200 8700 4200

Time

(b) Sensor 2 and Sensor 8.

Time Series Plots : Distances

Distances 317

LR AR R RN R AR RN E RN AR RRE RN
0 300 700 1200 1700 2200 2700 3200 3700 4200

Time

(e) Sensor 3 and Sensor 7.

Time Series Plots : Distances

Distances 5/7

M T T T T T T T T T T T T T T rTT T
0 300 700 1200 1700 2200 2700 3200 8700 4200

Time

(h) Sensor 5 and Sensor 7.

Time Series Plots : Distances

M T T T T T T T T T T T T T T rTT T
0 300 700 1200 1700 2200 2700 3200 8700 4200

Time

(c) Sensor 3 and Sensor 5.

Time Series Plots : Distances

Distances 3/

LR AR R RN R AR RN E RN AR RRE RN
0 300 700 1200 1700 2200 2700 3200 3700 4200

Time

(f) Sensor 3 and Sensor 8 .

Time Series Plots : Distances

Distances 5/8

M T T T T T T T T T T T T T T rTT T
0 300 700 1200 1700 2200 2700 3200 8700 4200

Time

(i) Sensor 5 and Sensor 8.

Figure 4.5: Plots of Distances between Two Sensors vs. Time (contd.).

46

Time Series Plots : Distances

g
s
—
e
a =
2]
]

LR AR R RN R AR RN E RN AR RRE RN
0 300 700 1200 1700 2200 2700 3200 3700 4200

Time

(a) Sensor 6 and Sensor 7.

Figure 4.6: Plots of Distances between Two Sensors

Time Series Plots : Distances

8
8 4

P

5 T4

a 1 +
- i
i)

LR AR R RN R AR RN E RN AR RRE RN
0 300 700 1200 1700 2200 2700 3200 3700 4200

Time

(b) Sensor 6 and Sensor 8.

47

Time Series Plots : Distances

g
s
e e
:
e
a =
2]
]

LR AR R RN R AR RN E RN AR RRE RN
0 300 700 1200 1700 2200 2700 3200 3700 4200

Time

(c) Sensor 7 and Sensor 8.

vs. Time (contd.).

Values

Values

Values

140 145

13.5

125 13.0

12.0

24.0 245 25.0 255

235

NPP X1

Normal Scores

(a) Sensor 1.

NPP X5
-
.
3 2 1 0 1 2 3
Normal Scores
(d) Sensor 5.
NPP X&
—
=
E
E
3
E
=
s
s
I3
$
$
F
r
s
#
g
é
=
s
p—"
3 -2 1 0 1 2 3

Normal Scores

(g) Sensor 8.

Figure 4.7: Normal Probability Plots UTM X Coordinates for All Sensors.

Values

Values

240 241 242 243 244

239

NPP X2

Normal Scores

(b) Sensor 2.

NPP X6

Normal Scores

(e) Sensor 6.

48

Values

Values

NPP X3

o o

Normal Scores

(c) Sensor 3.

NPP X7

Normal Scores

(f) Sensor 7.

Values

Values

Values

15.5 16.0 16.5 17.0 175

15.0

(d) Sensor 5. (e) Sensor 6.

NPP Y8

Normal Scores

(g) Sensor 8.

NPP Y1 NPP Y2
.
.
o
-
:
.
3 -2 1 0 1 2 3
Normal Scores Normal Scores
(a) Sensor 1. (b) Sensor 2.
NPP Y5 NPP Y6
@ |
s
- 0
- a7
%]
3
=
:
; 4
-
-
3
a
- "
-3 -2 -1 0 1 2 3 -2 -1 0 2
Normal Scores Normal Scores

Values

Values

NPP Y3

Normal Scores

(c) Sensor 3.

NPP Y7

-
-
-
o
-
o
o
o
°
°
o
o
o

Normal Scores

(f) Sensor 7.

Figure 4.8: Normal Probability Plots UTM Y Coordinates for All Sensors.

49

4.3 Time Series Analysis

Time series analysis was performed using the time series functionality in R, as
the statistical plots in Section 4.2 was used to ascertain the level of autocorrelation
for the observed location data. The aim of the time series analysis was to obtain a
model of the behavior of the platform over time. The time series plot for Sensor 1 in
Figures 4.9a and 4.9d show that although the coordinates of the sensors vary widely,
they do possess a trend, and they do not have the sharp jagged-ness that is typically
associated with time series data. Moreover, the time series plots show a distinct trend
of the location values approaching a plateau followed by a distinct phase of transition.

The sample autocorrelation function (ACF) plot in Figures 4.9b and 4.9e show
that the autocorrelation function values exceed the bounds for statistical significance
for all the sensors coordinate data. Additionally, the autocorrelation factors plot for
the residuals in Figures 4.9c and 4.9f of the sensor coordinate data show that the
factors mostly exceed the bounds for statistical significance, which implies that there
is significant autocorrelation in the residuals. Similar results were obtained for the
location coordinates of other sensors and distances between the sensors at each time-
step. We can conclude that obtaining a time series model would not be suitable as

this data does not comply with the basic requirements of time series data.

50

Series gpsX

gpsX

too
L
0080000080
#0000
o-a-0-0-0-
00
coooo00gy
AGF
0.2 04 0.6

115 120 125 {30 {35 {40 145

g 208

T T T T T
0 500 1000 1500 2000 2500

Time Lag

(b) Sensor 1 ACF Plot of
UTM X Values.

(a) Sensor 1 Time Series
Plot of UTM X Values.

Series gpsY
i o
=
e
- it .
& o Q
& = <
<+ |
N
N& =
o
T T T T T T T
[l 500 1000 1500 2000 2500 o 10 20 30 40 50
Time: Lag

(d) Sensor 1 Time Series
Plot of UTM Y Values.

(e) Sensor 1 ACF Plot of
UTM Y Values.

Series arifit$residuals

AGF

[T
A A A T T T

0.0

T T
- ® 10 20 30 40 50

(c) Sensor 1 ACF Residuals
Plot of UTM X Values.

Series arifit$residuals

AGF

T T
- ® 10 20 30 40 50

(f) Sensor 1 ACF Residuals
Plot of UTM Y Values.

Figure 4.9: Time Series Analysis for Sensor 1.

51

Series gpsX Series arifitéresiduals

3
3
-
w L 3
= =
< o <
= o
o o I 1]
11
. L
e T
o 200 400 800 800 [10 20 30 40 50 [10 20 30 40 50
Time Lag Lag

(a) Sensor 2 Time Series (b) Sensor 2 ACF Plot of (c) Sensor 2 ACF Residuals
Plot of UTM X Values. UTM X Values. Plot of UTM X Values.

Series gpsY Series arifitéresiduals

< - ®
e ° 2
H 2
o
> w w
a S o .
@ < < < e
2
s
- o
o 3
3
o I Dil]
= - s I T T
[
T T
0 200 400 600 800 [b 10 20 30 40 50 [b 10 20 30 40 50
Time Lag Lag

(d) Sensor 2 Time Series (e) Sensor 2 ACF Plot of (f) Sensor 2 ACF Residuals
Plot of UTM Y Values. UTM Y Values. Plot of UTM Y Values.

Figure 4.10: Time Series Analysis for Sensor 2.

92

Series gpsX

Series arifit$residuals

.
2 =
E
% 5 5
5. g ¢ 5
2 4
o |
| “
’) I
.
.
o 500 1000 1500 2000 2500 3000 [b 10 20 30 40 50 [b 10
Time Lag

(b) Sensor 3 ACF Plot of
UTM X Values.

(a) Sensor 3 Time Series
Plot of UTM X Values.

(c) Sensor 3 ACF Residuals
Plot of UTM X Values.

Series arifit$residuals

Series gpsY
2 o o
= H
@ <
> © w w
A 5] 5]
& z LI
<+ =
<+ o
o 3
=
I,
o LT
o 2 °
T T T T T T T T T
[l 500 1000 1500 2000 2500 3000 o 10 20 30 40 50 o 10
Time: Lag

(e) Sensor 3 ACF Plot of
UTM Y Values.

(d) Sensor 3 Time Series
Plot of UTM Y Values.

Figure 4.11: Time Series Analysis for Sensor 3.

53

T
20 30 40 50

(f) Sensor 3 ACF Residuals
Plot of UTM Y Values.

Series gpsX Series arifitéresiduals

M
g
3 3
"
] - ©
2 3
. |1 . .
A 2 2
E
Bl z 3
r o
o o 3
q :
3
[P |
. o tortirtrt i : :
- 3 ° . LSRN RAY IR LN BRNRRY FAAREN
s T T T T T T T T T
0 500 1000 1500 2000 2500 - ° 1 20 30 40 50 - ° 1 20 30 40 50
Time: Lag Lag

(a) Sensor 5 Time Series (b) Sensor 5 ACF Plot of (c) Sensor 5 ACF Residuals

Plot of UTM X Values. UTM X Values. Plot of UTM X Values.
Series gpsY Series arifitéresiduals
“ 1& B s

T T T T T T T T T
0 500 1000 1500 2000 2500 o ® 10 20 30 40 50 o ® 10 20 30 40 50

Time Lag Lag

(d) Sensor 5 Time Series (e) Sensor 5 ACF Plot of (f) Sensor 5 ACF Residuals
Plot of UTM Y Values. UTM Y Values. Plot of UTM Y Values.

Figure 4.12: Time Series Analysis for Sensor 5.

o4

Series gpsX

gpsX
AGF

i“h

238 240 241 242 243 244

04 02 00 02 04 06 08 1.0

;" \z‘s “U 20 30 40
Time Lag
(a) Sensor 6 Time Series

Plot of UTM X Values. UTM X Values.

Series gpsY

(b) Sensor 6 ACF Plot of

a5

9.4

gpsY
ACF

8.3

““\m

9.2

nHH”H

04 .02 00 02 04 06 08 1.0

Time Lag

(d) Sensor 6 Time Series

Plot of UTM Y Values. UTM Y Values.

(e) Sensor 6 ACF Plot of

Series arifit$residuals

AGF

1T HIHH

T T
- ® 10 20 30 40 50

(c) Sensor 6 ACF Residuals
Plot of UTM X Values.

Series arifit$residuals

AGF
4

L

T T
- ® 10 20 30 40 50

Lag

(f) Sensor 6 ACF Residuals
Plot of UTM Y Values.

Figure 4.13: Time Series Analysis for Sensor 6.

%)

Series gpsX Series arifitéresiduals

5
3
"
N B
a8
3
. 3
s & w w2
3 Q Q
@ < <
<
° o
) H‘
o o m!HHHh
- < = THTFTFAT
i
o
v - B
0 500 1000 1500 2000 2500 3000 [b 10 20 30 40 50 [b 10 20 30 40 50
Time. Lag Lag

(a) Sensor 7 Time Series (b) Sensor 7 ACF Plot of (c) Sensor 7 ACF Residuals

Plot of UTM X Values. UTM X Values. Plot of UTM X Values.
Series gpsY Series arifitéresiduals
; . o et g
(d) Sensor 7 Time Series (e) Sensor 7 ACF Plot of (f) Sensor 7 ACF Residuals
Plot of UTM Y Values. UTM Y Values. Plot of UTM Y Values.

Figure 4.14: Time Series Analysis for Sensor 7.

56

Series gpsX

AGF

T T T T T T T T T
0 500 1000 1500 2000 2500 3000 o ® 10 20 30

Time Lag

(a) Sensor 8 Time Series

Plot of UTM X Values UTM X Values.

Series gpsY

(b) Sensor 8 ACF Plot of

gpsY
AGF

T T T T T T T T T
0 500 1000 1500 2000 2500 3000 o ® 10 20 30

Time Lag

(d) Sensor 8 Time Series

Plot of UTM Y Values. UTM Y Values.

(e) Sensor 8 ACF Plot of

AGF

0.0

Series arifit$residuals

(c) Sensor 8 ACF Residuals

AGF

Plot of UTM X Values.

Series arifit$residuals

| T S|
. ST
t

T T
© e 20 30 40 50

(f) Sensor 8 ACF Residuals

Plot of UTM Y Values.

Figure 4.15: Time Series Analysis for Sensor 8.

57

4.4 Obtaining An Estimate Using Quadratic Optimization and Known Sensor Con-

figuration

The observed values that were used to obtain estimates are shown in Figure
4.16. Estimates for location and orientation were produced for when the platform
is stationary and when the platform is in motion. Furthermore, when the platform
is stationary, different outlier analysis schemes are compared. When the platform
is in motion, the only outlier analysis used is the Huff weighting function, which
is compared with random weighting and includes various combinations with sliding

windows of different sizes.

4.5 Unweighted Quadratic Optimization Estimates of Locations of GPS Sensors for

Stationary Platform

Using Equation 3.4 in the optimization framework to calculate estimates for
7 out of the 8 deployed sensors, we obtained the estimated locations of each of the
sensors shown in Figure 4.17. The graph shows that the estimates of location form
the configuration shown in Figure 4.1 and the estimates lie approximately within the
area of the observed values of location of the sensors.

The results shown in Figure 4.17 are based an optimization framework that does
not account for outliers and different weights on different sensors and sensor observed
values. Therefore, this is the simplest use case of the optimization framework showing
the worst case answers for the stationary location of the seven out of eight sensors.
The removal of outliers and preferential weighting can only improve the outcome of
the objective and constraints. The next set of graphs will illustrate the results of
introducing outlier removal, weighting and handling of missing data and highlight

the stability of the proposed optimization framework.

58

Location of Sensors Y vs X Coordinates

T T T T T T
5 10 15 20 25 30

w |
~N
o
N
wn
-
£
@
[
=
]
>
>
o
=
o 4
—— Data Sensor 1
—— Data Sensor 2
Data Sensor 3
~— Data Sensor 5
—— Data Sensor 6
o |~ Daasensor7 |
—— Data Sensor 8
T
0o

X Values/m

Figure 4.16: GPS Sensors Observed Locations UTM Y Coordinates vs. X Coordinates.

Location of Estimates using No Weights

w _|
N
o
34
= EstSensor8
m EstSensor1
wn _|
B
£
@
S
§ & Est.Sensor7
> = Est.Sensor 2
o
=
= EstSensor6
= EstSensor3
o -
Data Sensor 1
Data Sensor 2
Data Sensor 3
Data Sensor 5 = Est.Sensor5
Data Sensor 6
Data Sensor 7
o Data Sensor 8
—&— Unweighted Estimate

T T T T T T T
o 5 10 15 20 25 30

X Values/m

Figure 4.17: GPS Sensors Observed and Estimated Stationary Locations UTM Y
Coordinates vs. X Coordinates using Base Optimization.

59

4.6 Weighted Quadratic Optimization Estimates of Locations of GPS Sensors for

Stationary Platforms

In the results shown in Figure 4.18, the quadratic optimization calculating lo-
cation estimates use the Huber weighting function to perform outlier analysis using
the Equation 3.12, while the results in Figure 4.19 show the location estimates on
stationary data using the Huff weighting function described in Equation 3.13. To test
the effect of the situation under which only 2 of the sensors report observed data,
the Huber weight function was calculated for only Sensor 1 and Sensor 5, with the
rest of the observed sensor data not being accounted for in the quadratic optimiza-
tion, produces the location estimates in Figure 4.20, while a similar experiment with
only Sensor 1 and Sensor 8 under consideration produces Figure 4.21 as the location
estimates. From both these experiments, we can see the orientation of the mobile
platform straightening itself slightly. This leads to the conclusion that sending more
observed data to the quadratic optimization methodology may not be useful, if this
data is erroneous. Figure 4.22 shows the effect of using a combined weight of Huff
weight x Huber weight shown in Equation 3.14. Using the method described in Sec-
tion 3.3.2 to calculate deleted residuals and apply quadratic optimization, we obtain
the results in Figure 4.22.

Figure 4.24 shows a summary of all the different techniques of outlier analysis
on stationary data to generate location estimates for the GPS sensors. From the
summary figure, we can conclude that there are slight advantages to using the different
weighting techniques, and they seem to produce more accurate estimates of location.
We cannot judge objectively the efficacy of these methods on stationary data due to
the fact that the true value of the location of the GPS sensors is not known, therefore,
we do not have accurate metrics to compare. In the case of location estimates while

the platform is in motion, the simulation described in Section 4.1.2 provides us with
60

Location of Estimates Using Huber Weights

o |
N
o
I3
= Est.Sensor 8
m EstSensor1
wn |
=1
£
3
=] x Est.Sensor7
s
> = Est.Sensor 2
o
=
m EstSensor6
= EstSensor3
o -
Data Sensor 1
Data Sensor 2
Data Sensor 3 Est.Sensor 5
Data Sensor 5 L
Data Sensor 6
Data Sensor 7
o -] .DamSensors . .
—&— Huber Weighted Estimate
T T T T T T T
0o 5 10 15 20 25 30
X Values/m

Figure 4.18: GPS Sensors Observed and Estimated Stationary Locations UTM Y
Coordinates vs. X Coordinates using Huber Weighted Optimization.

the true value of the location, thus allowing us to compare objectively the efficacy of

the quadratic solutions, sliding windows and outlier analysis schemes.

61

Y Values/m

25

20

15

10

Location of Estimates Using Huff Weights

Est.Sensor 8

=
x EstSensor1
= Est:Sensor 7
m EstSensor2
x EstSensor6
= EstSensor3
Data Sensor 1
Data Sensor 2
Data Sensor 3 Est.Sensor 5
Data Sensor 5 =
Data Sensor 6
Data Sensor 7
_|.+ patasensors .
—=— Huff Weighted Estimate
T T T T T T T
0o 5 10 15 20 25 30
X Values/m

Figure 4.19: GPS Sensors Observed and Estimated Stationary Locations UTM Y
Coordinates vs. X Coordinates using Huff Weighted Optimization.

Y Values/m

25

20

15

10

Location of Estimates Using Huber Weights for Only Sensorl and Sensor 5

Est.Sensor 8
» EstSensor1
= Est.Sensor 7
x EstSensor2
= Est.Sensor 6
Est.Sensor 3
Data Sensor 1
Data Sensor 2
Data Sensor 3 Est.Sensor 5
Data Sensor 5
Data Sensor 6
Data Sensor 7
|- Datasensors. . . :
—=— Huber Sensorl+5 Weighted Estimate
T T T T T T T
0o 5 10 15 20 25 30
X Values/m

Figure 4.20: GPS Sensors Observed and Estimated Stationary Locations UTM Y
Coordinates vs. X Coordinates using Huber Weighted Optimization with Observed
Data from Sensor 1 and Sensor 5 only.

62

Location of Estimates Using Huber Weights for Only Sensorl and Sensor 8

v
~
S
134
B Est.Sensor 8
= EstSensor1
wn _|
B
£
@
@
=
S Est.Sensor 7
= Est.Sensor 2 =
> =
o
=
Est.Sensor 6
» EstSensor3 =2
o -
Data Sensor 1
Data Sensor 2
Data Sensor 3
Data Sensor 5
Data Sensor 6 m EstSensor5
Data Sensor 7
o | i Daasensors . i
“=- Huber Sensorl1+8 Weighted Estimate
T T T T T T T
0o 5 10 15 20 25 30
X Values/m

Figure 4.21: GPS Sensors Observed and Estimated Stationary Locations UTM Y
Coordinates vs. X Coordinates using Huber Weighted Optimization with Observed
Data from Sensor 1 and Sensor 8 only.

Location of Estimates Using Combined Huff & Huber Weights

|
~
S
34
Est.Sensor 8
Est.:Sensor 1
wn |
=
£
@
£ Est.Sensor 7
<
= Est.Sensor 2
>
o
=
Est.Sensor 6
Est.Sensor 3
o -
Data Sensor 1
Data Sensor 2
Data Sensor 3 Est.Sensor 5
Data Sensor 5
Data Sensor 6
Data Sensor 7
o | i Daasensors .
Huff & Huber Weighted Estimate

T T T T T T T
0o 5 10 15 20 25 30

X Values/m

Figure 4.22: GPS Sensors Observed and Estimated Stationary Locations UTM Y
Coordinates vs. X Coordinates using Huff x Huber Weighted Optimization.

63

Location of Estimates Using Standardized Deleted Residuals

o
~
o |
«
= Est.Sensor 8
= Est.Sensor 1
|
—
£
3
= = Est.Sensor 7
s
> x Est.Sensor2
o |
=
x EstSensor6
x EstSensor3
w -
Data Sensor 1
Data Sensor 2
Data Sensor 3 Est.Sensor 5
Data Sensor 5 L
Data Sensor 6
Data Sensor 7
o | Daasensors. . .
—8— Deleted Residual Estimate
T T T T T T T
(o] 5 10 15 20 25 30
X Values/m

Figure 4.23: GPS Sensors Observed and Estimated Stationary Locations UTM Y
Coordinates vs. X Coordinates using Deleted Residuals Optimization.

64

Comparison of Location of Estimates using Different Weighting Schemes

Data Sensor 1
=" Data Sensor 2
Data Sensor 3
Data Sensor 5
Data Sensor 6
Data Sensér 7
Data Sensor 8

Y Values/m

—&— Huber Separate Weighted Estimate
¢ Huff & Huber Weighted Estimate

—&— No Weights :

—8&— Huber Weight :

—#— Huber Weight Sensors 1+5 Only

—&— Huff Weight :

o -_— . o L SRR eEEIRRR S RO
—8- Deleted Residuals : : : : : :
T T T T T T T
0 5 10 15 20 25 30
X Values/m

Figure 4.24: GPS Sensors Observed and Estimated Stationary Locations UTM Y
Coordinates vs. X Coordinates Summary of Weighted and Unweighted Optimization.

65

4.7 Unweighted Quadratic Optimization Estimates of Locations of GPS Sensors for

Stationary Platform using Sliding Windows

To calculate the estimates of locations of the GPS sensors for the stationary
platform, all of the stationary data was divided into iterative sections using sliding
windows, over which the estimates are produced. It follows that the number of es-
timates produced will be the total amount of data less the initial start- up sliding
window size. Figures 4.25 and 4.26 summarize the use of sliding windows in the sta-
tionary situation. Although the use of sliding windows when the platform is standing
still may not be useful at first glance, we may be able to ascertain their utility in
handling missing data by observing the spread of the cluster of estimates being pro-
duced for each sliding window.From the graph that depicts the comparisons between
different sliding windows in Figure 4.27, we can see a definite decrease in the spread
of the estimates of locations being produced for each of the sensors as the number of
data points in the sliding window increases. This behavior may be attributed to the

decrease in effect of missing data.

66

Location of Estimates using No Weights & Sliding Window = 1 Location of Estimates using No Weights & Sliding Window = 2

e e
E E
= =
s =
i i
o s 10 15 20 25 =0 o s 10 15 20 25 20
X Values/m X Values/m
Location of Estimates using No Weights & Window = 3 Location of Estimates using No Weights & Sliding Window = 4
e e B
| E] %-
= < e,
= <)
o s 10 15 20 25 30 ° s 10 15 20 25 30
X Values/m X Values/m
Location of Estimates using No Weights & Window = 5 Location of Estimates using No Weights & Sliding Window = 6
£ £ i
= B T g =
i i
o s 10 15 20 25 =0 o s 10 15 20 25 20
X Values/m X Values/m

(e) Sliding Window = 5. (f) Sliding Window = 6.

Figure 4.25: Estimates for Location of GPS Sensors UTM Y Coordinates vs. X Co-
ordinates for Stationary Platform with Different Sizes of Sliding Window.

67

Location of Estimates using No Weights & Sliding Window = 7 Location of Estimates using No Weights & Sliding Window = 8

= = 2 r@l.
EE g&. EE <§ ; =
.‘}
o o =
‘
X Values/m X Values/m
(a) Sliding Window = 7. (b) Sliding Window = 8.
Location of Estimates using No Weights & Sliding Window = 9 Location of Estimates using No Weights & Sliding Window = 10
E g" = E i
> o ; i} EE k=
=
% ? ;

o s 10 15 20 25 30 o s 10 15 20 25 30

X Values/m X Values/m

(c) Sliding Window = 9. (d) Sliding Window = 10.

Figure 4.26: Estimates for Location of GPS Sensors UTM Y Coordinates vs. X Co-
ordinates for Stationary Platform with Different Sizes of Sliding Window (contd.).

68

Location of Estimates using No Weights and
Sliding Window =1, 5 and 10

20
|

15

Y Values/m

Windowéz 1
o Window:=5

| | i i i i i
0 5 10 15 20 25 30

X Values/m

Figure 4.27: GPS Sensors Estimated Stationary Locations UTM Y Coordinates vs.
X Coordinates using Sliding Windows of Size = 1,5 and 10 Comparison.

69

4.8 Huff Weighted Quadratic Optimization Estimates of Locations of GPS Sensors

for Stationary Platform using Sliding Windows

To observe the effect of using a weight function on the estimates for locations of
the GPS sensors, we conducted tests using the Huff weighting function combined with
different sizes of sliding window. In the description of the Huff weighting algorithm
in Section 3.3, there is a threshold over which the error values are considered too
high to continue being considered as useful to the calculation of the weights and
subsequently estimates. To determine which value of threshold we should use, we
calculated estimates of location with respect to the threshold being not present and
the threshold being set to 3.5 units, so as to empirically determine the effectiveness

of the threshold value. The results are presented in the following sections.

4.8.1 Huff Weight Function With No Threshold

When the threshold is not set in the Huff algorithm, we obtain the results for
different sliding window sizes, as shown in Figure 4.28 and 4.29 with a comparison
showing the reduction in cluster of the estimates produced using larger sliding window

sizes shown in Figure 4.30.

70

Location of Estimates Huff Weights No Threshold + Sliding Window = 2 Location of Estimates Huff Weights No Threshold + Sliding Window = 3

E - E - o
g g i
| E ‘@-
> >)
- -
: :
B S—
(a) Sliding Window = 2. (b) Sliding Window = 3.
Location of Estimates Huff Weights No Threshold + Sliding Window = 4 Location of Estimates Huff Weights No Threshold + Sliding Window = 5
.
e " e i
g) % e
s A = ; 3
. s " s b e
N
‘ ‘
B -
(c) Sliding Window = 4. (d) Sliding Window = 5.
Location of Estimates Huff Weights No Threshold + Sliding Window = 6
g St ﬁ
i
E @A :
E 1 et
e
s "‘g
- . . "‘:(
:

o 5 10 15 20 25 30

X Values/m

(e) Sliding Window = 6.

Figure 4.28: Estimates for Location of GPS Sensors UTM Y Coordinates vs. X Co-
ordinates for Stationary Platform with Huff Weighting Function No Threshold and
Different Sizes of Sliding Window.

71

Location of Estimates Huff Weights No Threshold + Sliding Window = 7

: #

Y Valuesim

A, S

o s 10 15 20 25

X Values/m

(a) Sliding Window = 7.

Location of Estimates Huff Weights No Threshold + Sliding Window = 9

30

%%
%

o 5 10 15 20 25

X Values/m

(c) Sliding Window = 9.

30

Y Values/m

¥ Valuesim

Location of Estimates Huff Weights No Threshold + Sliding Window = 8

o 5 10 15 20 25 30

X Values/m

(b) Sliding Window = 8.

Location of Estimates Huff Weights No Threshold + Sliding Window = 10

17

A
-

o s 10 15 20 25 30

X Values/m

(d) Sliding Window = 10.

Figure 4.29: Estimates for Location of GPS Sensors UTM Y Coordinates vs. X Co-
ordinates for Stationary Platform with Huff Weighting Function No Threshold and
Different Sizes of Sliding Window (contd.).

72

Location of Estimates Huff Weights No Threshold

0 _|
~
o _|
5%
o _|
—
£
D
]
=]
g
>
o _
=
w -
Window = 1
o |.o.Window=5 |
o Window = 10
T T T T T T T
0 5 10 15 20 25 30

X Values/m

Figure 4.30: GPS Sensors Estimated Stationary Locations UTM Y Coordinates vs.
X Coordinates with Huff Weighting Function No Threshold using Sliding Windows
of Size = 1,5 and 10 Comparison.

73

4.8.2 Huff Weight Function With Threshold Value = 3.5

When the threshold is set to 3.5 in the Huff algorithm, we obtain the results for
different sliding window sizes, as shown in Figure 4.31 and 4.32 with a comparison
showing the reduction in cluster of the estimates produced using larger sliding window

sizes shown in Figure 4.33.

74

Location of Estimates Huff Weights Threshold = 3.5 + Sliding Window = 2 Location of Estimates Huff Weights Threshold = 3.5 + Sliding Window = 3

IS I3
E] E
] =
= =

w w© E

= e
= o
T T
o 5 10 15 20 25 30 o 5 10 15 20 25 30
X Values/m X Values/m
Location of Estimates Huff Weights Threshold = 3.5 + Sliding Window = 4 Location of Estimates Huff Weights Threshold = 3.5 + Sliding Window = 5

Y Valuesim
10
¥ Valuesim
10
o R
Ir e 3
;{ I

o 5 10 15 20 25 30 o 5 10 15 20 25 30

X Values/m X Values/m

(c) Sliding Window = 4. (d) Sliding Window = 5.

Location of Estimates Huff Weights Threshold = 3.5 + Sliding Window = 6

Y Values/m
10
e
%

o 5 10 15 20 25 30

X Values/m

(e) Sliding Window = 6.

Figure 4.31: Estimates for Location of GPS Sensors UTM Y Coordinates vs. X Coor-
dinates for Stationary Platform with Huff Weighting Function Threshold = 3.5 and
Different Sizes of Sliding Window.

5

Location of Estimates Huff Weights Threshold = 3.5 + Sliding Window = 7

Y Valuesim

o s 10 15 20 25 30

X Values/m

(a) Sliding Window = 7.

Location of Estimates Huff Weights Threshold = 3.5 + Sliding Window = 9

¥ %
4

o 5 10 15 20 25 30

X Values/m

(c) Sliding Window = 9.

Y Values/m

¥ Valuesim

Location of Estimates Huff Weights Threshold = 3.5 + Sliding Window = 8

15

X Values/m

20

T
25 30

(b) Sliding Window = 8.

Location of Estimates Huff Weights Threshold = 3.5 + Sliding Window = 10

=

E. 3

"-‘wg,z\

&

15

X Values/m

20

25 30

(d) Sliding Window = 10.

Figure 4.32: Estimates for Location of GPS Sensors UTM Y Coordinates vs. X Coor-
dinates for Stationary Platform with Huff Weighting Function Threshold = 3.5 and
Different Sizes of Sliding Window (contd.).

76

Location of Estimates Huff Weights Threshold = 3.5

20
|

Y Values/m
15

10

Window = 1

o |.o.Window=5 |
o Window = 10

T T T T T T T

0 5 10 15 20 25 30

X Values/m

Figure 4.33: GPS Sensors Estimated Stationary Locations UTM Y Coordinates vs.
X Coordinates with Huff Weighting Function Threshold = 3.5 using Sliding Windows
of Size = 1,5 and 10 Comparison.

7

4.9 Quadratic Optimization Estimates of Locations of GPS Sensors for Moving
Platform
Using the setup described in Section 4.1.2, the mobile platform traveled through
given paths that consist of four target points described by the following (z,y) coor-
dinates :
1. Path 1 : Starting at (0,0) — (100,0) — (100, 100) — (0,100) — (0, 0).
2. Path 2 : Starting at (0,0) — (200, 0) — (200,200) — (0,200) — (0, 0).
Due to the use of target areas of a certain diameter around the target points defined
above, the mobile platform does not necessarily move in a straight line to the target
points and may take a curved path as it attempts to reach the target point. Addi-
tionally, sliding windows are used to provide real-time estimates of the locations of
the sensors on the platform as opposed to the stationary case where since there was
no movement, there is no expectation of rapid change in the location of the platform.
As mentioned before in Chapter 3, the only method of weighting that is applicable
in the situation where the platform is moving is the Huff weighting function, which

is compared with random weighting and no weighting for performance.

4.10 Unweighted Quadratic Optimization Estimates of Locations of GPS Sensors
for Moving Platform using Sliding Windows
Using the schemes and methodologies established in Section 3.1.2, we can it-
eratively calculate the location estimates of the platform for different window sizes
as the vehicle moves along the pre-determined path. The following sections refer to

different paths, as described in Section 4.9.

78

4.10.1 Location Estimates Using Path 1

For Path 1, Figures 4.34, 4.35, 4.36, 4.37 for sliding window = 1; Figures 4.38,
4.39, 4.40, 4.41 for sliding window = 5; Figures 4.42, 4.43, 4.44, 4.45 for sliding window
= 10; Figures 4.46, 4.47, 4.48 and 4.49 for sliding window = 100 show the results of
calculating the location estimates for each of the sensors that reported values from
Sensor 1,2,3,5,6,7 and 8, along with sliding window values of 1, 5, 10 and 100. In
these figures, the red line represents the most accurate path that the platform can
take, with the blue line presenting the estimate of the sensor’s location, the purple is
the observed data generated by the simulation and finally, the green plot representing
the estimated center of gravity. On comparison between the red plot and the green
plot, we can notice a significant decrease in noise from the observed and estimated
data plot. Note that the sensor locations have a constant distance between the center

of gravity of the mobile platform and themselves.

79

Sensor 1 Movement and Estimates Y vs X Values

90 - ==

@
o
|

- Actual CG

- Estimated CG

- Estimated Value
- Input Data

Y Values Sensor 1/m

30 -

90

0 30 60
X Values Sensor 1/m

(a) Sensor 1.
Sensor 2 Movement and Estimates Y vs X Values

100 -

75 -

s © Actual CG
50 - | - Estimated CG
- Estimated Value

- Input Data

Y Values Sensor 2/m

25-

) |) |)
0 25 50 75 100
X Values Sensor 2/m

(b) Sensor 2.

Figure 4.34: Location Estimates Using Quadratic Optimization with No Weights
(+veX — North,+veY — East) Sliding Window = 1 For Sensors 1-8.

80

Sensor 3 Movement and Estimates Y vs X Values

100 -
75— -
£ 1
I I
2 “ - Actual CG o
8 - I - Estimated CG S
2 S:\ - Estimated Value 3
% { - Input Data A
£ /]
> I %
R Yo
Y ;\ i
g {¢ [
Li
0-
6 2‘5 56 7‘5 160
X Values Sensor 3/m
(a) Sensor 3.
Sensor 5 Movement and Estimates Y vs X Values
80 -
£ b
»
§ - Actual CG
o} - Estimated CG
2] i
] - Estimated Value)
= - Input Data
Sa0- !
> 3
i
i
§
,5;,’
- {
4
0-

) |
0 40 80
X Values Sensor 5/m

(b) Sensor 5.

Figure 4.35: Location Estimates Using Quadratic Optimization with No Weights
(+veX — North,+veY — East) Sliding Window = 1 For Sensors 1-8 (contd.).

81

Sensor 6 Movement and Estimates Y vs X Values

it AT ST e e g e o -
i o e o g et et B L

100 - F
1T
|
]
75~ i
4
‘ll i
£ ¢ i
=) 5 ¥
s) - Actual CG I8
é 50 - 3 - Estimated CG e
$ '} - Estimated Value 3
= - Input Data
g i iog
s pou
b b
i i
‘ {
3 ¥
25— J H
/ §
5 i
[!
[E ‘2
i i
B
~ 4
oA =
0 40 80
X Values Sensor 6/m
(a) Sensor 6.
Sensor 7 Movement and Estimates Y vs X Values
100 - B } —
|
75 - |}
{
i /
£ i
= "
§) ,(- Actual CG
§ 50 i - Estimated CG
e - Estimated Value
= - Input Data
s
>
25 -
0-

4
X Values Sensor 7/m

(b) Sensor 7.

Figure 4.36: Location Estimates Using Quadratic Optimization with No Weights
(+veX — North,+veY — East) Sliding Window = 1 For Sensors 1-8 (contd.).

82

Sensor 8 Movement and Estimates Y vs X Values

100 - -
|

e)
=

1
!
£ («'
F i
2 h - Actual CG
é 50+ 1 - Estimated CG
2 Estimated Value
g i
= - Input Data
g i
> |
25-
]J’
j l(]
H
1
Al
0- 4 e
1
Y

40
X Values Sensor 8/m

(a) Sensor 8.

Figure 4.37: Location Estimates Using Quadratic Optimization with No Weights
(+veX — North,+veY — East) Sliding Window = 1 For Sensors 1-8 (contd.).

83

Sensor 1 Movement and Estimates Y vs X Values

90 - 7 B
;

@
s}
|

- Actual CG
- Estimated CG
- Estimated Value

- Input Data j

Y Values Sensor 1/m

30 -

90

60
X Values Sensor 1/m

(a) Sensor 1.

Sensor 2 Movement and Estimates Y vs X Values

100 - =

75 -

- Actual CG ‘. 1
- Estimated CG /
- Estimated Value r

50 -

- Input Data

Y Values Sensor 2/m

25-

|
75 100

50
X Values Sensor 2/m

(b) Sensor 2.

Figure 4.38: Location Estimates Using Quadratic Optimization with No Weights
(+veX — North,+veY — East) Sliding Window = 5 For Sensors 1-8.

84

Sensor 3 Movement and Estimates Y vs X Values

100 =

75 -

+ Estimated CG
- Estimated Value

p - Actual CG
50 - i

It - Input Data

Y Values Sensor 3/m

25-

50
X Values Sensor 3/m

(a) Sensor 3.

Sensor 5 Movement and Estimates Y vs X Values

80 -

S

—

© Actual CG
- Estimated CG
- Estimated Value

© Input Data

Y Values Sensor 5/m

4
X Values Sensor 5/m

(b) Sensor 5.

Figure 4.39: Location Estimates Using Quadratic Optimization with No Weights
(+veX — North,+veY — East) Sliding Window = 5 For Sensors 1-8 (contd.).

85

Sensor 6 Movement and Estimates Y vs X Values

100 -
(
{
75~ |
|
£
©
s - Actual CG
é 50 - - Estimated CG
g - Estimated Value
=2 - Input Data
s
> 4
25— t
i
P
0- e 5
0 30 60 90
X Values Sensor 6/m
(a) Sensor 6.
Sensor 7 Movement and Estimates Y vs X Values
e —— e T
100 - { ‘
¢ \
} {‘)i
75 - \ S {
I
oo
{ |
£ J
=
2 - Actual CG
§ 50 - Estimated CG {
@ - Estimated Value /i
% - Input Data I
>
>
J
25 -
0-

X Values Sensor 7/m

(b) Sensor 7.

Figure 4.40: Location Estimates Using Quadratic Optimization with No Weights
(+veX — North,+veY — East) Sliding Window = 5 For Sensors 1-8 (contd.).

86

Sensor 8 Movement and Estimates Y vs X Values

»n,;,: E———— e J‘“““\g-—-‘w—._\. :
100 - i

75 -

© Actual CG

- Estimated CG
 Estimated Value
- Input Data

50 =

Y Values Sensor 8/m

25-

40
X Values Sensor 8/m

(a) Sensor 8.

Figure 4.41: Location Estimates Using Quadratic Optimization with No Weights
(+veX — North,+veY — East) Sliding Window = 5 For Sensors 1-8 (contd.).

87

Sensor 1 Movement and Estimates Y vs X Values

’ c 1
ool B el T LI }
904 S| | S, . (
f |
i
£
— 60 -
2 - Actual CG
é - Estimated CG
g - Estimated Value
=2 - Input Data '
2 |
> H
f
30-
i
1
1)
i
0- =
0 30 60 %0
X Values Sensor 1/m
(a) Sensor 1.
Sensor 2 Movement and Estimates Y vs X Values
100 -
1
75 - “
|
13 {
N {
2 © Actual CG Y
§ 50~ - Estimated CG /
7] - Estimated Value
S (¢
= - Input Data L
= .
>
>
25 -

50
X Values Sensor 2/m

(b) Sensor 2.

Figure 4.42: Location Estimates Using Quadratic Optimization with No Weights
(+veX — North,+veY — East) Sliding Window = 10 For Sensors 1-8.

88

Sensor 3 Movement and Estimates Y vs X Values

100 =

75 -

© Actual CG
+ Estimated CG
- Estimated Value

50 -

- Input Data

Y Values Sensor 3/m

25-

50
X Values Sensor 3/m

(a) Sensor 3.

Sensor 5 Movement and Estimates Y vs X Values

80 -

© Actual CG
- Estimated CG
- Estimated Value

© Input Data

Y Values Sensor 5/m

[rm——

40
X Values Sensor 5/m

(b) Sensor 5.

Figure 4.43: Location Estimates Using Quadratic Optimization with No Weights
(+veX — North,4+veY — East) Sliding Window = 10 For Sensors 1-8 (contd.).

89

Sensor 6 Movement and Estimates Y vs X Values

T ————— —

100 -
75 -
£
©
s - Actual CG
é 50— - Estimated CG
g - Estimated Value
=2 - Input Data
s
>
25—
1 H
J VI
0 1
0 30 60 90
X Values Sensor 6/m
(a) Sensor 6.
Sensor 7 Movement and Estimates Y vs X Values
100 -
{
J /
75 !J
S |
=
2 - Actual CG
§ 50 - Estimated CG
e - Estimated Value
= - Input Data
I}
>
> 3
\
\‘
Y/
25- /
/
,I
| |

40
X Values Sensor 7/m

(b) Sensor 7.

Figure 4.44: Location Estimates Using Quadratic Optimization with No Weights
(+veX — North,4+veY — East) Sliding Window = 10 For Sensors 1-8 (contd.).

90

Sensor 8 Movement and Estimates Y vs X Values

.‘17‘ —_— ...X_;:‘_?""—‘v\,_____ﬁv o* 1
100 - - -

E

)

2 < Actual CG
é 50 - - Estimated CG
2 Estimated Value
S

= - Input Data
]

>

>

25-

60
X Values Sensor 8/m

(a) Sensor 8.

Figure 4.45: Location Estimates Using Quadratic Optimization with No Weights
(+veX — North,+veY — FEast) Sliding Window = 10 For Sensors 1-8 (contd.).

91

Sensor 1 Movement and Estimates Y vs X Values

90 - { 1
'
£
— 60 -
2 - Actual CG
% - Estimated CG
2 - Estimated Value
>
= - Input Data i
]
s !
. i
30 -
|
|

60 %0
X Values Sensor 1/m

(a) Sensor 1.

Sensor 2 Movement and Estimates Y vs X Values

100 -
e .
= Y S
75 - :
j
b
£ / {
E e]
§ A, - Actual CG 4
% 50 - “i - Estimated CG f
o] - Estimated Value ,/
g (
% .| © Input Data i
= { p
g I
25 - d l
y !
(/
\ s
))
e
L —— == St . j/ o
o £ R _—
¥

)
50 75 100
X Values Sensor 2/m

(b) Sensor 2.
Figure 4.46: Location Estimates Using Quadratic Optimization with No Weights
(+veX — North,+veY — East) Sliding Window = 100 For Sensors 1-8.

92

Sensor 3 Movement and Estimates Y vs X Values

100 = k1
75 -
£
o
2 } - Actual CG
o} - Estimated CG
» 50- ..
7 N - Estimated Value
] {’1 Input D '
= { - Input Data 4
< A 1
> /] J
> H
] i
25 -
0-
0 25 50 75 100
X Values Sensor 3/m
(a) Sensor 3.
Sensor 5 Movement and Estimates Y vs X Values
T — .
V- - ~-_\’
/ \ | \
I
80 - ,{ ,/
]
S ‘,
5 .
= i
§ - Actual CG ‘]
% - Estimated CG i
e - Estimated Value
= - Input Data
S0-
>

40
X Values Sensor 5/m

(b) Sensor 5.

Figure 4.47: Location Estimates Using Quadratic Optimization with No Weights
(+veX — North,4+veY — East) Sliding Window = 100 For Sensors 1-8 (contd.).

93

Sensor 6 Movement and Estimates Y vs X Values

100 - - \
; / \ .
|
75 = '!
E :
=) i
3 - Actual CG |
é 50 - + Estimated CG
2 - Estimated Value
=} B
§ Input Data
>
25-
1
b
1
I

90

0 30 60
X Values Sensor 6/m

(a) Sensor 6.

Sensor 7 Movement and Estimates Y vs X Values

o / =
M

-

i
[i
/ |
{
E ' /
= / [
§ © Actual CG |
% 50 - - Estimated CG f
a - Estimated Value H
= - Input Data i
<
>
> A J
\ |
j
//
25-= ;
f
{

40
X Values Sensor 7/m

(b) Sensor 7.

Figure 4.48: Location Estimates Using Quadratic Optimization with No Weights
(+veX — North,4+veY — East) Sliding Window = 100 For Sensors 1-8 (contd.).

94

75 -

Y Values Sensor 8/m

25-

Sensor 8 Movement and Estimates Y vs X Values

50 -

© Actual CG

- Estimated CG
 Estimated Value
- Input Data

X Values Sensor 8/m

(a) Sensor 8.

Figure 4.49: Location Estimates Using Quadratic Optimization with No Weights
(+veX — North,+veY — East) Sliding Window = 100 For Sensors 1-8 (contd.).

95

From the plots, we can observe that as the sliding window size increases, the
variation from one estimate to the next is greatly reduced. However we cannot indis-
criminately increase the sliding window size as the lag effect becomes more pronounced
as seen for Sensor 1 in sliding windows 10 in Figures 4.50 4.51 and sliding window =
100 in Figures 4.52 and 4.53.1t is clear that the location estimates calculated through
quadratic optimization using the configuration of the sensors as constraints for a large
sliding window seem to fall behind and attempt to “catch up” to the true location

values.

96

Moving Estimate Sensor 1 v Time

% _ —— Estimated X .
— ~——— Input X value
—— Actual X value CG
~—— Estimated X value CG
o
-
—
£
[}
=
<
=
>
w
o
(&)
o]
[rel
o -

T T T T T
(o] 500 1000 1500 2000

Time/s

(a) Sensor 1.

120

120

100

100

GPS X Value/m

GPS X Value/m

80

80

60
60

250 300 350 400 450 500 700 750 800 850 900 950

Time/s Timels

(b) Sensor 1 Positive Slope Magnified. (c) Sensor 1 Negative Slope Magnified.

Figure 4.50: Location Estimates of Sensor 1 UTM X Coordinates vs. Time No Weights
Sliding Window = 10 (+veX — North, +veY — East) .

97

Moving Estimate Sensor 1 v Time

S —— Estimated Y . .
— ~——— Input Y value :
—— Actual Y value CG
~—— Estimated Y value CG
o
-
—
£
[}
=
<
=
>
w
o
(&)
o]
[rel
o -

T T T T T
(o] 500 1000 1500 2000

Time/s

(a) Sensor 1.

120

120

100

110

GPS Y Value/m
GPS Y Value/m
100

90

J
;

60

80

600 650 700 750 800 850 900 1100 1150 1200 1250

Time/s Timels

(b) Sensor 1 Positive Slope Magnified. (c) Sensor 1 Negative Slope Magnified.

Figure 4.51: Location Estimates of Sensor 1 UTM Y Coordinates vs. Time No Weights
Sliding Window = 10 (+veX — North, +veY — East).

98

Moving Estimate Sensor 1 v Time

S —— Estimated X .
— ~——— Input X value :
—— Actual X value CG
~—— Estimated X value CG
o
-
—
£
[}
=
<
=
>
w
o
(&)
o]
[rel
o -
T T T T
o 500 1000 1500 2000
Time/s
(a) Sensor 1.
o o
S S
o o
S S
£ £
| E
s s
x x
[[
o o
[CR=Y [CR=)
8 8
8 8
250 300 350 400 450 500 700 750 800 850 900

Time/s

(b) Sensor 1 Positive Slope Magnified.

Timels

950

(c) Sensor 1 Negative Slope Magnified.

Figure 4.52: Location Estimates of Sensor 1 UTM X Coordinates vs. Time No Weights

Sliding Window = 100 (+veX — North, +veY — Fast) .

99

Moving Estimate Sensor 1 v Time

100
|

GPS Y Value/m

50
|

Estimated Y . .
Input Y value
Actual Y value CG

Estimated Y value CG

o 500 1000 1500 2000
Time/s
(a) Sensor 1.
8
o
8 b=}
S
£ T (S S S £
E} g
E s g
> > = g
%) 0 ——
5 & T~

80
/]

60

80

600 650 700 750 800 850 900 1100

Time/s

(b) Sensor 1 Positive Slope Magnified.

1150

1200

Timels

1250

(c) Sensor 1 Negative Slope Magnified.

Figure 4.53: Location Estimates of Sensor 1 UTM Y Coordinates vs. Time No Weights

Sliding Window = 100 (+veX — North, +veY — East).

100

4.10.2 Location Estimates Using Path 2

For Path 2, Figures 4.54, 4.55, 4.56, 4.57 for sliding window = 1; Figures 4.58,
4.59, 4.60, 4.61 for sliding window = 5; Figures 4.62, 4.63, 4.64, 4.65 for sliding window
= 10; Figures 4.66, 4.67, 4.68 and 4.69 for sliding window = 100 show the results of
calculating the location estimates for each of the sensors that reported values from
Sensor 1,2,3,5,6,7 and 8, along with sliding window values of 1, 5, 10 and 100. In
these figures, the red line represents the most accurate path that the platform can
take, with the blue line presenting the estimate of the sensor’s location, the purple is
the observed data generated by the simulation and finally, the green plot representing
the estimated center of gravity. On comparison between the red plot and the green
plot, as with Path 1, we can notice a significant decrease in noise from the observed

data and location estimates plot.

101

Sensor 1 Movement and Estimates Y vs X Values

200 -
150 -
£
—
s | - Actual CG |
2 F !]
% 100 - - - Estimated CG
] [- Estimated Value
=2 - Input Data
s
: }
50 -
iy dens o
o4 e AR B R
0 50 100 150 200
X Values Sensor 1/m
(a) Sensor 1.
Sensor 2 Movement and Estimates Y vs X Values
200 - S
v e
il
150 - {
£ {
i‘i \
e I
S
2 s - Actual CG
§ 100 - - Estimated CG]
8 b J - Estimated Value
= - Input Data
I}
>
>
0~ % é
i
0- SN C I RN cad ot . H

| |
o 50 150 200

X Values é?eonsor 2/m
(b) Sensor 2.
Figure 4.54: Location Estimates Using Quadratic Optimization with No Weights
(+veX — North,+veY — East) Sliding Window = 1 For Sensors 1-8.

102

Sensor 3 Movement and Estimates Y vs X Values

4 2
200 AE

150 - !

£

&

2 H - Actual CG

< b i

% 100 - - Estimated CG

2 - Estimated Value

>

= - Input Data

]

>

>

50 =
A3
13
o S P B B v § =

100 150 200
X Values Sensor 3/m

(a) Sensor 3.

Sensor 5 Movement and Estimates Y vs X Values

200 -
|
150 -
£
0 ;
S e
§ © Actual CG
& 100~ - Estimated CG
8 1 - Estimated Value
S £)
§ & Input Data
- :
50 -
0- et .
T
)) | | ‘
0 50 150 200

100
X Values Sensor 5/m

(b) Sensor 5.

Figure 4.55: Location Estimates Using Quadratic Optimization with No Weights
(+veX — North,+veY — East) Sliding Window = 1 For Sensors 1-8 (contd.).

103

Sensor 6 Movement and Estimates Y vs X Values

200 - ;
il
{
150 - g
£
©
s - Actual CG
é 100 - + Estimated CG
g - Estimated Value
=2 - Input Data
s
>
50 -
0- {r ; e s : . !
o g R e AT i
0 50 100 150 200
X Values Sensor 6/m
(a) Sensor 6.
Sensor 7 Movement and Estimates Y vs X Values
200 - —
i
| &
150 - \t
£
=
2 s - Actual CG
2
@ 4 - Estimated CG]
& 100 -] ! l)
2 [- Estimated Value
= v - Input Data
]
>
>
/
50 - <¥
11
0- E

)
100 150 200
X Values Sensor 7/m

(b) Sensor 7.

Figure 4.56: Location Estimates Using Quadratic Optimization with No Weights
(+veX — North,+veY — East) Sliding Window = 1 For Sensors 1-8 (contd.).

104

Sensor 8 Movement and Estimates Y vs X Values

200 -

150 =

© Actual CG
100 - - Estimated CG
 Estimated Value

- Input Data

Y Values Sensor 8/m

50 =

e

==

i i
0 50 100 150 200
X Values Sensor 8/m

(a) Sensor 8.

Figure 4.57: Location Estimates Using Quadratic Optimization with No Weights
(+veX — North,+veY — East) Sliding Window = 1 For Sensors 1-8 (contd.).

105

Sensor 1 Movement and Estimates Y vs X Values

200 -

150 -

© Actual CG
+ Estimated CG
- Estimated Value

100 -

- Input Data

Y Values Sensor 1/m

50 -

100 150 200
X Values Sensor 1/m

(a) Sensor 1.

Sensor 2 Movement and Estimates Y vs X Values

200 - - - 4

150 =

© Actual CG

100 - - Estimated CG
- Estimated Value }
- Input Data

Y Values Sensor 2/m

50 - \?

))
100 150 200
X Values Sensor 2/m

(b) Sensor 2.
Figure 4.58: Location Estimates Using Quadratic Optimization with No Weights
(+veX — North,+veY — East) Sliding Window = 5 For Sensors 1-8.

106

Sensor 3 Movement and Estimates Y vs X Values

.. i
200 i i
150 -
£
o
2 - Actual CG
i= .
% 100 - - Estimated CG
g - Estimated Value (
=]
= - Input Data
<
>
>
50 =
o .f.]&:_,-__. +
R
0 50 100 150 200
X Values Sensor 3/m
(a) Sensor 3.
Sensor 5 Movement and Estimates Y vs X Values
.
200 - -
150 -
£
w
2 - Actual CG
2 .
% 100 - - Estimated CG
e ! - Estimated Value
= ; - Input Data
g {
>
50 -
3
a— |
AR R i A AT e T e s - \
)) |))
0 50 150 200

100
X Values Sensor 5/m

(b) Sensor 5.

Figure 4.59: Location Estimates Using Quadratic Optimization with No Weights
(+veX — North,+veY — East) Sliding Window = 5 For Sensors 1-8 (contd.).

107

Sensor 6 Movement and Estimates Y vs X Values

200 -

150 -

© Actual CG
+ Estimated CG
- Estimated Value

100 -

- Input Data

Y Values Sensor 6/m

50 -

100 150 200
X Values Sensor 6/m

(a) Sensor 6.

Sensor 7 Movement and Estimates Y vs X Values

200 -

150 -

© Actual CG
- Estimated CG)
- Estimated Value

100 -

- Input Data

Y Values Sensor 7/m

50 -

—

)))))
100 150 200
X Values Sensor 7/m

(b) Sensor 7.

Figure 4.60: Location Estimates Using Quadratic Optimization with No Weights
(+veX — North,+veY — East) Sliding Window = 5 For Sensors 1-8 (contd.).

108

Sensor 8 Movement and Estimates Y vs X Values

200 -

150 =

© Actual CG

100 - - Estimated CG
 Estimated Value
- Input Data

Y Values Sensor 8/m

50 =

01 { ~ e A _,-Wa——-.:'
LE AR ;
= ——

) i i |)
0 50 100 150 200
X Values Sensor 8/m

(a) Sensor 8.

Figure 4.61: Location Estimates Using Quadratic Optimization with No Weights
(+veX — North,+veY — East) Sliding Window = 5 For Sensors 1-8 (contd.).

109

Sensor 1 Movement and Estimates Y vs X Values

200 -

150 -

© Actual CG
+ Estimated CG
- Estimated Value

100 -

- Input Data

Y Values Sensor 1/m

50 -

100 150 200
X Values Sensor 1/m

(a) Sensor 1.

Sensor 2 Movement and Estimates Y vs X Values

200 -

150 -

=

© Actual CG

100 - - Estimated CG

- Estimated Value
- Input Data

Y Values Sensor 2/m

50 - W

)))))
100 150 200
X Values Sensor 2/m

(b) Sensor 2.
Figure 4.62: Location Estimates Using Quadratic Optimization with No Weights
(+veX — North,+veY — East) Sliding Window = 10 For Sensors 1-8.

110

Sensor 3 Movement and Estimates Y vs X Values

i i
200 7 -
150 -
£
&
2 - Actual CG
% 100 - - Estimated CG
g - Estimated Value (
>
= - Input Data
]
>
>
50 =
0-

100 150 200
X Values Sensor 3/m

(a) Sensor 3.

Sensor 5 Movement and Estimates Y vs X Values

200 -

150 -

| © Actual CG
- Estimated CG
i - Estimated Value

100 -

- Input Data

Y Values Sensor 5/m

50 -

)
100 150 200
X Values Sensor 5/m

(b) Sensor 5.

Figure 4.63: Location Estimates Using Quadratic Optimization with No Weights
(+veX — North,4+veY — East) Sliding Window = 10 For Sensors 1-8 (contd.).

111

Sensor 6 Movement and Estimates Y vs X Values

200 -

150 -

© Actual CG
+ Estimated CG
- Estimated Value

100 -

- Input Data

Y Values Sensor 6/m

50 -

100 150 200
X Values Sensor 6/m

(a) Sensor 6.

Sensor 7 Movement and Estimates Y vs X Values

200 -
|’
150 - \
£
~
§ © Actual CG
% 100 - - Estimated CG)
e { - Estimated Value
= - Input Data
<
>
>
Y
50 -
|
0- =

)))))
0 50 100 150 200
X Values Sensor 7/m

(b) Sensor 7.

Figure 4.64: Location Estimates Using Quadratic Optimization with No Weights
(+veX — North,4+veY — East) Sliding Window = 10 For Sensors 1-8 (contd.).

112

Sensor 8 Movement and Estimates Y vs X Values

200 -

150 =

© Actual CG

100 - - Estimated CG
 Estimated Value
- Input Data

Y Values Sensor 8/m

50 =

|)
0 50 100 150 200
X Values Sensor 8/m

(a) Sensor 8.

Figure 4.65: Location Estimates Using Quadratic Optimization with No Weights
(+veX — North,+veY — FEast) Sliding Window = 10 For Sensors 1-8 (contd.).

113

Y Values Sensor 1/m

Y Values Sensor 2/m

200 -

150 =

100 -

50 -

200 -

150 -

100 -

50 -

Sensor 1 Movement and Estimates Y vs X Values

gl

© Actual CG
+ Estimated CG
- Estimated Value

- Input Data

100 150
X Values Sensor 1/m

(a) Sensor 1.

Sensor 2 Movement and Estimates Y vs X Values

© Actual CG

- Estimated CG
- Estimated Value)
- Input Data

0

%:,_,v — - _

)) |)
50 100 150 200
X Values Sensor 2/m

(b) Sensor 2.

Figure 4.66: Location Estimates Using Quadratic Optimization with No Weights
(+veX — North,+veY — East) Sliding Window = 100 For Sensors 1-8.

114

Sensor 3 Movement and Estimates Y vs X Values

i il
200 1(%‘T
150 -
£
&
2 - Actual CG
% 100 - - Estimated CG
g - Estimated Value (
=} B
§ Input Data
>
50 =
2'4
= el
0- 2}

100 150 200
X Values Sensor 3/m

(a) Sensor 3.

Sensor 5 Movement and Estimates Y vs X Values
200 - /\ ﬁ .
| W

150 -

: © Actual CG
- Estimated CG
- Estimated Value

100 -

H - Input Data

Y Values Sensor 5/m

50 -

i
o 50 150 200

100
X Values Sensor 5/m

(b) Sensor 5.

Figure 4.67: Location Estimates Using Quadratic Optimization with No Weights
(+veX — North,4+veY — East) Sliding Window = 100 For Sensors 1-8 (contd.).

115

Sensor 6 Movement and Estimates Y vs X Values

200 - 5 w

150 -

© Actual CG
+ Estimated CG
- Estimated Value

100 -

- Input Data

Y Values Sensor 6/m

50 =

100 150 200
X Values Sensor 6/m

(a) Sensor 6.

Sensor 7 Movement and Estimates Y vs X Values

200 - . w
|
o
150 \
£
~
§ © Actual CG
% 100 - - Estimated CG)
e { - Estimated Value
= - Input Data
<
>
>
y
50 -
0- L y—= /
) !)) |
0 50 150 200

100
X Values Sensor 7/m

(b) Sensor 7.

Figure 4.68: Location Estimates Using Quadratic Optimization with No Weights
(+veX — North,4+veY — East) Sliding Window = 100 For Sensors 1-8 (contd.).

116

Sensor 8 Movement and Estimates Y vs X Values

A T

150 =

© Actual CG

100 - - Estimated CG
 Estimated Value
- Input Data

Y Values Sensor 8/m

50 =

) | i
0 50 100 150 200
X Values Sensor 8/m

(a) Sensor 8.

Figure 4.69: Location Estimates Using Quadratic Optimization with No Weights
(+veX — North,+veY — East) Sliding Window = 100 For Sensors 1-8 (contd.).

117

From the plots, we can observe that as the sliding window size increases, the
variation from one estimate to the next is greatly reduced. However we cannot indis-
criminately increase the sliding window size as the lag effect becomes more pronounced
as seen for Sensor 1 in sliding windows 10 in Figures 4.70, 4.71 and sliding window =
100 in Figures 4.72 and 4.73. As in the situation with Path 1, for Path 2, it is clear
that the location estimates calculated through quadratic optimization using the con-
figuration of the sensors as constraints for a large sliding window seem to fall behind
and attempt to “catch up” to the true location values. These results are similar to

those calculated in Path 1 except that the lag effects are more pronounced.

118

Moving Estimate Sensor 1 v Time

— Estimated X
— Input X value
—— Actual X value CG
o —— Estimated X value CG
S — - - —
N
o
B8
£
(<5
=
=
> s
wn —
o
O]
o
Lo
o -
T T T T
o 1000 2000 3000
Time/s
(a) Sensor 1.
Q S \/-\}\
§ s [
s E SN
x x NN
g, 8)
/
500 600 700 800 900 1000 1500 1600 1700 1800 1900 2000
Time/s Time/s
(b) Sensor 1 Positive Slope Magnified. (c) Sensor 1 Negative Slope Magnified.

Figure 4.70: Location Estimates of Sensor 1 UTM X Coordinates vs. Time No Weights
Sliding Window = 10 (+veX — North, +veY — East) .

119

Moving Estimate Sensor 1 v Time

— Estimated Y
— Input Y value
— Actual Y value CG
o — Estimated Y value CG
S — - - —
N
o
o
£
[}
=
= o
o 8 7
o
(&)
o
rel
o -
T T T T
o 1000 2000 3000
Time/s
(a) Sensor 1.
g g — g
£ \L] £
> / > \
4 / 0 \
& g |/ & g \
- |/ =1 \
4 N\
L
N\
\\
1500 1600 1700 1800 1900 2000 2300 2400 2500 2600 2700
Time/s Time/s
(b) Sensor 1 Positive Slope Magnified. (c) Sensor 1 Negative Slope Magnified.

Figure 4.71: Location Estimates of Sensor 1 UTM Y Coordinates vs. Time No Weights
Sliding Window = 10 (+veX — North, +veY — East).

120

Moving Estimate Sensor 1 v Time

— Estimated X
— Input X value
— Actual X value CG
o — Estimated X value CG
S s g g e
N
o
B -
-
1=
=
[}
=
<
= o
> S -
w —
o
(&)
o _|
rel
o
T T T T
o 1000 2000 3000
Time/s
(a) Sensor 1.
o o
1 I
N BN
o o
& & T
// A\ ,
£ — E I g \
D / 5] N,
- AV 2 NN
z 7 s > N
x 4 7 x \ 8
9 y, / 0 U .
/ \
6 g Ve 6 g N
= v 7 = NN
J ’/ Ay 5
/) | . “
4 AN AN N,
/‘/ N, A\, ™,
S/ / W N
s NN |
5y N\
o A / =3 \.‘ | \,
& 7 / 3 R
i / W \,
A N
y / / ‘.\ \
s s,
/ / AN
bl /’ Vi N ™
500 600 700 800 900 1000 1500 1600 1700 1800 1900 2000
Time/s Time/s

(b) Sensor 1 Positive Slope Magnified.

(c) Sensor 1 Negative Slope Magnified.

Figure 4.72: Location Estimates of Sensor 1 UTM X Coordinates vs. Time No Weights

Sliding Window = 100 (+veX — North, +veY — Fast) .

121

Moving Estimate Sensor 1 v Time

— Estimated Y
— Input Y value
—— Actual Y value CG
o —— Estimated Y value CG
s — - - —
N
o
B8
£
(<5
=
=
> s
wn —
o
(G}
o]
Lo
o -
T T T T
o 1000 2000 3000
Time/s
(a) Sensor 1.
o /] R
< ‘ <
£ 7 £ "
g "/ 5 \
> / > \
g / [\,
& gt/ & g)
- / =1 X
/ \
\
\
\\
1500 1600 1700 1800 1900 2000 2300 2400 2500 2600 2700
Time/s Time/s
(b) Sensor 1 Positive Slope Magnified. (c) Sensor 1 Negative Slope Magnified.

Figure 4.73: Location Estimates of Sensor 1 UTM Y Coordinates vs. Time No Weights
Sliding Window = 100 (+veX — North, +veY — Fast) .

122

4.11 Weighted Quadratic Optimization Estimates of Locations of GPS Sensors for

Moving Platform using Sliding Windows

As discussed in prior sections, the use of weighting functions is for the purpose
of reducing the effect of missing and unreliable observed data. To calculate the
estimates of the locations of the sensors when the platform is in motion along with
outlier analysis and use of a weighting function, we performed tests using the Huff
weighting function. The Huff weighting function describes a method of calculating
weights depending on the presence of the data point in that particular time step and
deviation from the theoretical distances between the sensors in Section 3.3.3. We
have investigated the effect of Huff weighting on obtaining estimates of GPS sensor

location using Path 1 and Path 2 (in Section 4.9).

4.11.1 Location Estimates Using Path 1

For Path 1, Figures 4.74, 4.75, 4.76,4.77 for sliding window = 1; Figures 4.78,
4.79, 4.80, 4.81 for sliding window = 5; Figures 4.82, 4.83, 4.84, 4.85 for sliding window
= 10; and Figures 4.86, 4.87, 4.88, 4.89 for sliding window = 100 show the results of
calculating the location estimates for each of the sensors that reported values from
Sensor 1,2,3,5,6,7 and 8 along with the combination of sliding window values of 1,5,10
and 100. As in the unweighted cases in the previous sections, the red line represents
the actual center of gravity which is the most accurate path that the platform can
take, with the blue line presenting the estimate of the sensor’s location, the purple
line is observed data generated by the simulation and finally, the green plot, which
represents the estimated center of gravity derived from the location estimates through
quadratic optimization. As with the unweighted cases of obtaining location estimates,
the red and green plots seem to coincide very closely with one another, and as the

sliding window size increases, a smoothing effect takes place reducing the magnitude

123

of noise. Even with the utilization of the Huff weight function, the issue of lag for
the higher sliding window sizes still exists and will be accounted for in future sections

as seen for sliding window = 10 in Figures 4.90 , 4.91 compared to sliding window =

100 in Figures 4.92,4.93.

124

Sensor 1 Movement and Estimates Y vs X Values

90 - - \‘,-"
;
£
— 60 -
2 - Actual CG
% - Estimated CG
2 - Estimated Value
=2 - Input Data
s
>
30 -
0-
0 36 60 9‘0
X Values Sensor 1/m
(a) Sensor 1.
Sensor 2 Movement and Estimates Y vs X Values
100 =
d
75 - |
. }g
£
S <
§ © Actual CG
% 50 - - Estimated CG
e - Estimated Value
= - Input Data
]
>
>
25-

i
25 75 100

50
X Values Sensor 2/m

(b) Sensor 2.

Figure 4.74: Location Estimates Using Quadratic Optimization with Huff Weights
(+veX — North,+veY — East) Sliding Window = 1 For Sensors 1-8.

125

Sensor 3 Movement and Estimates Y vs X Values

100 -
75—
£
o
2 “ - Actual CG o
8 so- 4 - Estimated CG t‘(
0 I - Estimated Value i
g b I
% { - Input Data &
> /] (I
> 14 i .I
R
| ol
/ bk
{g
J it
7 f 0
i
vt
I
i
0-
0 2‘5 5‘0 7‘5 160
X Values Sensor 3/m
(a) Sensor 3.
Sensor 5 Movement and Estimates Y vs X Values
80 -
£ A
»
§ - Actual CG
% - Estimated CG !
] - Estimated Value i
= - Input Data 7
Sa0- . I
- 1
)
/ r
§
%,’
|
o= .
0- 5§
b

0 40 80
X Values Sensor 5/m

(b) Sensor 5.

Figure 4.75: Location Estimates Using Quadratic Optimization with Huff Weights
(+veX — North,+veY — East) Sliding Window = 1 For Sensors 1-8 (contd.).

126

Sensor 6 Movement and Estimates Y vs X Values

a e e et SN P
3 | N
80 - {
{
§
i
i
£ ¢
I} 5 I
s) - Actual CG g
5 - Estimated CG §
0] L. |
] } - Estimated Value 1
=2 - Input Data 1
S40-
>
0-
0 40 80
X Values Sensor 6/m
(a) Sensor 6.
Sensor 7 Movement and Estimates Y vs X Values
. "_”:::—"“"" R A g
100 - . } == . e
/ /]
{
S
|
i
£ |
g II
8 .{{ - - Actual CG
§ 50 i - Estimated CG
e - Estimated Value
= - Input Data
I}
= h
> \ '
\ i
25- i
L
- b
. IV {1{:

4
X Values Sensor 7/m

(b) Sensor 7.

Figure 4.76: Location Estimates Using Quadratic Optimization with Huff Weights
(+veX — North,+veY — East) Sliding Window = 1 For Sensors 1-8 (contd.).

127

Sensor 8 Movement and Estimates Y vs X Values

100 - -
|

e
=

1
!
£ («'
F i
2) < Actual CG
é 50+ 1 - Estimated CG
2 Estimated Value
S
= - Input Data
g i
> |
25-
]J’
j I(]
H
1
ek
0- 4
1
.

o-

40
X Values Sensor 8/m

(a) Sensor 8.

Figure 4.77: Location Estimates Using Quadratic Optimization with Huff Weights
(+veX — North,+veY — East) Sliding Window = 1 For Sensors 1-8 (contd.).

128

Sensor 1 Movement and Estimates Y vs X Values

]
) N
5 . e S - CIRE T g
. Seg T T
90 - N/ P |
bl
A
!
A
I
T
{
1
7
f
£
— 60 -
8 - Actual CG
é - Estimated CG
g - Estimated Value i
= - Input Data "
2 !
> i
i
30-
>
0-
0 30 60 %0
X Values Sensor 1/m
(a) Sensor 1.
Sensor 2 Movement and Estimates Y vs X Values
100 -
S ; L
/ vl
/ PaN
o | i
\l i
T
\1 0ol
| oo
J /1
£) 5
N 'l { 3
2 S - Actual CG i "
§ 50 - - - Estimated CG / [
]
g " i - Estimated Value / “(|
o (
§ ! - Input Data '.\v\7 \
z ! I
I { Ll
il g
| I
25— i 1
E 14 }
/ /’ ;

|
75 100

50
X Values Sensor 2/m

(b) Sensor 2.

Figure 4.78: Location Estimates Using Quadratic Optimization with Huff Weights
(+veX — North,+veY — East) Sliding Window = 5 For Sensors 1-8.

129

Sensor

100 - e ==

3 Movement and Estimates Y vs X Values

75 -

Y Values Sensor 3/m

© Actual CG

+ Estimated CG

- Estimated Value
- Input Data

25—
0-
0 25 50 75 100
X Values Sensor 3/m
(a) Sensor 3.
Sensor 5 Movement and Estimates Y vs X Values
r.".
80 - 4 (
i
o)
i
£
A
% : 1 {
0 i
2 - Actual CG i
§ - Estimated CG /
e - Estimated Value |
= | - Input Data
S0- !
> I
}
i
o ¥

Figure 4.79: Location Estimates

40
X Values Sensor 5/m

(b) Sensor 5.

Using Quadratic Optimization with Huff Weights

(+veX — North,+veY — East) Sliding Window = 5 For Sensors 1-8 (contd.).

130

Sensor 6 Movement and Estimates Y vs X Values

100 - ? — .ﬂ
| |
l 1
» ;
75- {\ <
A H
; i
; ;i
£ ot
s)
s ’ - Actual CG /
% 50 - - Estimated CG | [‘.
g ,] - Estimated Value | \3
§ I - Input Data ;;
z {]
) b
] A
;'E |
25 - ,: { é
] } i
14 [y
| i
(g
i |
4}. \ I
] Pl
ot he =
0 30 60 90
X Values Sensor 6/m
(a) Sensor 6.
Sensor 7 Movement and Estimates Y vs X Values
S e SR
100 - o ‘
3 {
/ {]
J |
/ {
7 f i i
‘[[
[
I oy
£
s Il [
3 ” © Actual CG ‘\ ;
§ 50 | - Estimated CG] J.'
] - Estimated Value ‘l :
= - Input Data iz
s ! ;
> \)
J \\‘ '{
} |
25 - / /'/ 4
/ |
/ P
| |
4‘1 \ -
t =
ol i 2
0- 3 e >
T L —
0 ‘ 80

40
X Values Sensor 7/m

(b) Sensor 7.

Figure 4.80: Location Estimates Using Quadratic Optimization with Huff Weights
(+veX — North,+veY — East) Sliding Window = 5 For Sensors 1-8 (contd.).

131

Sensor 8 Movement and Estimates Y vs X Values

o S N i i ‘
100 - : ‘
i
. i
7 12
Y b
£)2
[K
/ I
75- S
| *;
/ !
| ‘-
£ {
3
2] < Actual CG ,2
S 50- - Estimated CG) 4
) I3l
g - Estimated Value \4
% - Input Data H
> ¢l
> 1
!
1
25- B
| i
u ol
;f ('\
i
o | ke
\
e

60
X Values Sensor 8/m

(a) Sensor 8.

Figure 4.81: Location Estimates Using Quadratic Optimization with Huff Weights
(+veX — North,+veY — East) Sliding Window = 5 For Sensors 1-8 (contd.).

132

Sensor 1 Movement and Estimates Y vs X Values

) it
- == |
90 N | b
o
i\
i
i
/ i
i
/
£
— 60 -
2 - Actual CG
% - Estimated CG
2 - Estimated Value
>
= - Input Data]
2 !
> H
{
30 - &

60 %0
X Values Sensor 1/m

(a) Sensor 1.

Sensor 2 Movement and Estimates Y vs X Values

100 -
75 -
E . 0
N ¢ I
2 . - Actual CG i
§ 50 - \ - Estimated CG / I
o j - Estimated Value
S (
= - Input Data
= \
g 3 f
) *
25- 1 j
/1
L
1]
i
0-

50
X Values Sensor 2/m

(b) Sensor 2.

Figure 4.82: Location Estimates Using Quadratic Optimization with Huff Weights
(+veX — North,+veY — East) Sliding Window = 10 For Sensors 1-8.

133

Sensor 3 Movement and Estimates Y vs X Values

100 -
75 -
£
N s
2 } - Actual CG
o} - Estimated CG
» 50- .
7 N - Estimated Value
Ef ¢ Input D
= { - Input Data
s
>
25—
0-
0 2‘5 56 75 160
X Values Sensor 3/m
(a) Sensor 3.
Sensor 5 Movement and Estimates Y vs X Values
) |
1--"'.
|2
(
89 i
A0
\
1
]
f 1
£ 1)
0 i
§ - Actual CG }
% - Estimated CG
e - Estimated Value i
= - Input Data
S0-
> ,
{
|
-
I

40
X Values Sensor 5/m

(b) Sensor 5.

Figure 4.83: Location Estimates Using Quadratic Optimization with Huff Weights
(+veX — North,4+veY — East) Sliding Window = 10 For Sensors 1-8 (contd.).

134

Sensor 6 Movement and Estimates Y vs X Values

et —)

100 -

j !
4 a,
§
?/
-
75~ l o)
"l |
| /)
£ / 4
I g }
5 l - Actual CG f
é 50 - { - Estimated CG \‘_
g , - Estimated Value }
=2 4 - Input Data i
g |
>
i |
25 - i
i ;
ﬁ ‘;
<f |
! {
- P
0- S
0 30 60 90
X Values Sensor 6/m
(a) Sensor 6.
Sensor 7 Movement and Estimates Y vs X Values
100 - —~ 1 ‘
(] |
| I
| H
/ { }
75- f} : {
| I
/ I
/]
£ f / J
g i, i f
§) ‘ - Actual CG 1]
§ 50 e - Estimated CG)]'
] - Estimated Value f' H
= - Input Data { ;
s \
> \ {
)
25— / /’
};
."} |
ol
0- i
TS

4
X Values Sensor 7/m

(b) Sensor 7.

Figure 4.84: Location Estimates Using Quadratic Optimization with Huff Weights
(+veX — North,4+veY — East) Sliding Window = 10 For Sensors 1-8 (contd.).

135

Sensor 8 Movement and Estimates Y vs X Values

= = S e

100 -

{
i
i

=

75~ \
:’ i
J j
| [}
£ {
)
2] © Actual CG i
3 50 - - Estimated CG }
» Estimated Value \\v
g I
= - Input Data
g I
> I
HH
/
25 L
/i
;. A
/ {
| o
\ i
{ 1
\

60
X Values Sensor 8/m

(a) Sensor 8.

Figure 4.85: Location Estimates Using Quadratic Optimization with Huff Weights
(+veX — North,+veY — East) Sliding Window = 10 For Sensors 1-8 (contd.)

136

Sensor 1 Movement and Estimates Y vs X Values

= = e /{'/:‘_\\
90 - 1
A
A
y
£
~ 60 -
2 - Actual CG
é - Estimated CG
g - Estimated Value
=2 - Input Data
s
>
30-
|
- 7
0 30 60 %0
X Values Sensor 1/m
(a) Sensor 1.
Sensor 2 Movement and Estimates Y vs X Values
100 -
= =S
— ‘N
!
|
il
75— ;)
il
4 ‘,
E v :’ |
N i 4
S - Actual CG 4
]
§ 50 - \'i - Estimated CG /
@] - Estimated Value 7
=} | - Input Data L
3 i P! \
= | \
> [
/|
/]
25- | |
{ /
N .
sz T = : -
. b=ty o

)
50 75 100
X Values Sensor 2/m

(b) Sensor 2.

Figure 4.86: Location Estimates Using Quadratic Optimization with Huff Weights
(+veX — North,+veY — East) Sliding Window = 100 For Sensors 1-8.

137

Sensor 3 Movement and Estimates Y vs X Values

100 =
. |.“(‘<—(%N“m — T =
H
I
t
|
!
|
75 =
£
£ i
2 xz - Actual CG 'r‘
g + Estimated CG X
v 50~ *)
g \ - Estimated Value b
> i)
E Input Data i
3 J
>
§
;
25- !
¢
0-

50
X Values Sensor 3/m

(a) Sensor 3.

Sensor 5 Movement and Estimates Y vs X Values

o

£

ra)

§ -+ Actual CG ‘I
% - Estimated CG i
e - Estimated Value {
= - Input Data ‘
Sa0-

i !

40
X Values Sensor 5/m

(b) Sensor 5.

Figure 4.87: Location Estimates Using Quadratic Optimization with Huff Weights
(+veX — North,4+veY — East) Sliding Window = 100 For Sensors 1-8 (contd.).

138

Sensor 6 Movement and Estimates Y vs X Values

100 -
i
75 - i}
£ |
© 1
s - Actual CG i
é 50 - Estimated CG K
g - Estimated Value
= - Input Data
s
>
25—
i
04 =
0 30 60 90
X Values Sensor 6/m
(a) Sensor 6.
Sensor 7 Movement and Estimates Y vs X Values
— e T .
100 - A / ,I
7] \ \
1
|1
L
L
75+ o
i
i
} !
[1
£ J
=
2 - Actual CG
§ 504 - Estimated CG !.'
a - Estimated Value :
= - Input Data 1
S |
g |
|
25—
/i
{
0-

40
X Values Sensor 7/m

(b) Sensor 7.

Figure 4.88: Location Estimates Using Quadratic Optimization with Huff Weights
(+veX — North,4+veY — East) Sliding Window = 100 For Sensors 1-8 (contd.).

139

Sensor 8 Movement and Estimates Y vs X Values

100 -

)
|
75 - I}
f
:’
£ | 1
[==] i \
2 { - Actual CG {
g 50 - \ - Estimated CG H
2 - Estimated Value \‘
% \ - Input Data];
> { |
> ! E
J
|
|
25-

i i i i
0 30 60 90
X Values Sensor 8/m

(a) Sensor 8.

Figure 4.89: Location Estimates Using Quadratic Optimization with Huff Weights
(+veX — North,+veY — East) Sliding Window = 100 For Sensors 1-8 (contd.).

140

Moving Estimate Sensor 1 v Time

% _ —— Estimated X .
— ~——— Input X value :
—— Actual X value CG
~—— Estimated X value CG
o
-
—
£
[}
=
<
=
>
w
o
(&)
o]
[rel
o -

T T T T T
(o] 500 1000 1500 2000

Time/s

(a) Sensor 1.

120

120

100

100

GPS X Value/m

GPS X Value/m

80

80

60
60

250 300 350 400 450 500 700 750 800 850 900 950

Time/s Timels

(b) Sensor 1 Positive Slope Magnified. (c) Sensor 1 Negative Slope Magnified.

Figure 4.90: Location Estimates of Sensor 1 UTM X Coordinates vs. Time Huff
Weights Sliding Window = 10 (+veX — North,+veY — East).

141

Moving Estimate Sensor 1 v Time

S —— Estimated Y . .
— ~——— Input Y value
—— Actual Y value CG
~—— Estimated Y value CG
o
-
—
£
[}
=
<
=
>
w
o
(&)
o]
[rel
o -

T T T T T
(o] 500 1000 1500 2000

Time/s

(a) Sensor 1.

120

120

110

100

100

!
\1

)

ll
GPS Y Value/m

GPS Y Value/m

80

90

60

80

600 650 700 750 800 850 900 1100 1150 1200 1250

Time/s Timels

(b) Sensor 1 Positive Slope Magnified. (c) Sensor 1 Negative Slope Magnified.

Figure 4.91: Location Estimates of Sensor 1 UTM Y Coordinates vs. Time Huff
Weights Sliding Window = 10 (+veX — North,+veY — East) .

142

Moving Estimate Sensor 1 v Time

% _ —— Estimated X .
— ~——— Input X value :
—— Actual X value CG
—— Estimated X value CG
o
S 4
—
£
(<5
=
=
>
wn
o
(&)
o
Lo
I
o -
T T T T T
o 500 1000 1500 2000
Time/s
(a) Sensor 1.
£ £
x x
4 2
[C} 2 (0] 2
250 300 350 400 450 500 700 750 800 850 900 950
Time/s Time/s
(b) Sensor 1 Positive Slope Magnified. (c) Sensor 1 Negative Slope Magnified.

Figure 4.92: Location Estimates of Sensor 1 UTM X Coordinates vs. Time Huff
Weights Sliding Window = 100 (+veX — North,+veY — East).

143

Moving Estimate Sensor 1 v Time

S —— Estimated Y . .
— ~——— Input Y value :
—— Actual Y value CG
~—— Estimated Y value CG
o
-
—
£
[}
=
<
=
>
w
o
(&)
o]
[rel
o -

T T T T T
(o] 500 1000 1500 2000

Time/s

(a) Sensor 1.

120

120

110

100

GPS Y Value/m
100

|
|
|
/
|
]

60

80

600 650 700 750 800 850 900 1100 1150 1200 1250

Time/s Timels

(b) Sensor 1 Positive Slope Magnified. (c) Sensor 1 Negative Slope Magnified.

Figure 4.93: Location Estimates of Sensor 1 UTM Y Coordinates vs. Time Huff
Weights Sliding Window = 100 (+veX — North,4+veY — East) .

144

4.11.2 Location Estimates Using Path 2

As with Path 1, Path 2 shows similar results for the location estimates, with
a smoothing possibly due to the larger scale of the plots of paths that the platform
follows on. Figures 4.94, 4.95, 4.96, 4.97 for sliding window = 1; Figures 4.98, 4.99,
4.100, 4.101 for sliding window = 5; Figures 4.102, 4.103, 4.104, 4.105 for sliding
window = 10; and Figures 4.106, 4.107, 4.108, 4.109 for sliding window = 100 show
the results of calculating the location estimates for each of the sensors that reported
values from Sensor 1,2,3,5,6,7 and 8 along with the combination of sliding window
values of 1,5,10 and 100. As seen with the results for Path 1, the red and green
plots seem to coincide very closely with one another, and as the sliding window size
increases, a smoothing effect takes place reducing the magnitude of noise. The red plot
represents the actual center of gravity of the platform and the green plot represents
the estimated center of gravity derived from the location estimates obtained from the

quadratic optimization using the sensor configuration.

145

Sensor 1 Movement and Estimates Y vs X Values

200 -

150 -

© Actual CG
+ Estimated CG
- Estimated Value

100 -

TR

- Input Data

Y Values Sensor 1/m

50 =

100 150 200
X Values Sensor 1/m

(a) Sensor 1.

Sensor 2 Movement and Estimates Y vs X Values

200 -

=

!i

© Actual CG
- Estimated CG]
- Estimated Value

100 -

- Input Data

Y Values Sensor 2/m

50 =

|)
100 150 200
X Values Sensor 2/m

(b) Sensor 2.
Figure 4.94: Location Estimates Using Quadratic Optimization with Huff Weights
(+veX — North,+veY — East) Sliding Window = 1 For Sensors 1-8.

146

Sensor 3 Movement and Estimates Y vs X Values

200 - i =
BN B

150 - !
£ i
) ¢ i
2 H - Actual CG
c 1 "
% 100 - 5 Y - Estimated CG
2 i - Estimated Value
>
= - Input Data
]
>
>

50 =

100 150 200
X Values Sensor 3/m

(a) Sensor 3.

Sensor 5 Movement and Estimates Y vs X Values

150 -

© Actual CG
100 - - Estimated CG
- Estimated Value

- Input Data

Y Values Sensor 5/m

50 -

)
100 150 200
X Values Sensor 5/m

(b) Sensor 5.

Figure 4.95: Location Estimates Using Quadratic Optimization with Huff Weights
(+veX — North,+veY — East) Sliding Window = 1 For Sensors 1-8 (contd.).

147

Sensor 6 Movement and Estimates Y vs X Values

200 - ‘}
g
§
150 -
£
©
2 3 - Actual CG
S100- Bk - Estimated CG
4 . - Estimated Value
s - Input Data
s
>
50 -
o ¥ L i g
s N 1 i
o 50 100 150 200
X Values Sensor 6/m
(a) Sensor 6.
Sensor 7 Movement and Estimates Y vs X Values
200 - o
lj.
I
150 - \L
£
=
§ 3 - Actual CG
& 100- E R - Estimated CG)
4 ? - Estimated Value
2 | Input Dat
< nput Data
I}
>
>
50 - <’
!
0- - -

)
100 150 200
X Values Sensor 7/m

(b) Sensor 7.

Figure 4.96: Location Estimates Using Quadratic Optimization with Huff Weights
(+veX — North,+veY — East) Sliding Window = 1 For Sensors 1-8 (contd.).

148

Sensor 8 Movement and Estimates Y vs X Values

200 -

150 =

‘ L - Actual CG

100 - 5 - Estimated CG
 Estimated Value
- Input Data

Y Values Sensor 8/m

50 =

i i
0 50 100 150 200
X Values Sensor 8/m

(a) Sensor 8.

Figure 4.97: Location Estimates Using Quadratic Optimization with Huff Weights
(+veX — North,+veY — East) Sliding Window = 1 For Sensors 1-8 (contd.).

149

Sensor 1 Movement and Estimates Y vs X Values

200 -

150 -

© Actual CG
+ Estimated CG
- Estimated Value

100 -

- Input Data

Y Values Sensor 1/m

50 =

100 150 200
X Values Sensor 1/m

(a) Sensor 1.

Sensor 2 Movement and Estimates Y vs X Values

200 -

150 -

© Actual CG

100 - - Estimated CG

- Estimated Value
- Input Data

Y Values Sensor 2/m

50 - \?

))) |)
100 150 200
X Values Sensor 2/m

(b) Sensor 2.
Figure 4.98: Location Estimates Using Quadratic Optimization with Huff Weights
(+veX — North,+veY — East) Sliding Window = 5 For Sensors 1-8.

150

Sensor 3 Movement and Estimates Y vs X Values

i kY
200 X1 .
150 -
£
&
2 - Actual CG
é 100 - - Estimated CG
g - Estimated Value (
>
= - Input Data
]
>
>
50 =
0-

100 150 200
X Values Sensor 3/m

(a) Sensor 3.

Sensor 5 Movement and Estimates Y vs X Values

200 -)

150 =
£
ra)
§ & © Actual CG
% 100 - I - Estimated CG
4 i - Estimated Value
% -" - Input Data
z '.
> |

50 -

B PPN
B Ak i

)
100 150 200
X Values Sensor 5/m

(b) Sensor 5.

Figure 4.99: Location Estimates Using Quadratic Optimization with Huff Weights
(+veX — North,+veY — East) Sliding Window = 5 For Sensors 1-8 (contd.).

151

Sensor 6 Movement and Estimates Y vs X Values

200 -) ~
1
150 -
£
©
s - Actual CG
é 100 - - Estimated CG
g - Estimated Value
=2 - Input Data
<
>
>
50 =
oA & 4
B b s
0 50 100 150 200
X Values Sensor 6/m
(a) Sensor 6.
Sensor 7 Movement and Estimates Y vs X Values
200 -
150 -
£
=
2 - Actual CG
§ 1004 { - Estimated CG)
@ { I - Estimated Value
% - Input Data
>
>
y
50 -
|
0-

)
0 50 100 150 200
X Values Sensor 7/m

(b) Sensor 7.

Figure 4.100: Location Estimates Using Quadratic Optimization with Huff Weights
(+veX — North,+veY — East) Sliding Window = 5 For Sensors 1-8 (contd.).

152

Sensor 8 Movement and Estimates Y vs X Values

200 -

150 =

© Actual CG

100 - - Estimated CG
 Estimated Value
- Input Data

Y Values Sensor 8/m

50 =

i)
0 50 100 150 200
X Values Sensor 8/m

(a) Sensor 8.

Figure 4.101: Location Estimates Using Quadratic Optimization with Huff Weights
(+veX — North,+veY — East) Sliding Window = 5 For Sensors 1-8 (contd.).

153

Sensor 1 Movement and Estimates Y vs X Values

200 -

150 -

© Actual CG
+ Estimated CG
- Estimated Value

100 -

- Input Data

Y Values Sensor 1/m

50 =

100 150 200
X Values Sensor 1/m

(a) Sensor 1.

Sensor 2 Movement and Estimates Y vs X Values

200 -

150 -

=

© Actual CG

100 - - Estimated CG
- Estimated Value }
- Input Data

Y Values Sensor 2/m

50 - 7

)))))
100 150 200
X Values Sensor 2/m

(b) Sensor 2.
Figure 4.102: Location Estimates Using Quadratic Optimization with Huff Weights
(+veX — North,+veY — East) Sliding Window = 10 For Sensors 1-8.

154

Sensor 3 Movement and Estimates Y vs X Values

.. i
200 el
150 -
£
o
2 - Actual CG
é 100 - - Estimated CG
g - Estimated Value
=2 - Input Data
<
>
>
50 =
*‘&::z: = F e
0 3
0 50 100 150 200
X Values Sensor 3/m
(a) Sensor 3.
Sensor 5 Movement and Estimates Y vs X Values
200 -
150 -
£
»
2 - Actual CG
§ 1004 - Estimated CG
e - Estimated Value
= - Input Data
I}
>
>
50 -
0-

)
50 100 150 200
X Values Sensor 5/m

(b) Sensor 5.

Figure 4.103: Location Estimates Using Quadratic Optimization with Huff Weights
(+veX — North,4+veY — East) Sliding Window = 10 For Sensors 1-8 (contd.).

155

Sensor 6 Movement and Estimates Y vs X Values

200 -

150 -

© Actual CG
+ Estimated CG
- Estimated Value

100 -

- Input Data

Y Values Sensor 6/m

50 =

100 150 200
X Values Sensor 6/m

(a) Sensor 6.

Sensor 7 Movement and Estimates Y vs X Values

200 -

150 =

© Actual CG
- Estimated CG)
- Estimated Value

100 -

- Input Data

Y Values Sensor 7/m

50 -

)))))
0 50 100 150 200
X Values Sensor 7/m

(b) Sensor 7.

Figure 4.104: Location Estimates Using Quadratic Optimization with Huff Weights
(+veX — North,4+veY — East) Sliding Window = 10 For Sensors 1-8 (contd.).

156

Sensor 8 Movement and Estimates Y vs X Values

200 -

150 =

© Actual CG

100 - - Estimated CG
 Estimated Value
- Input Data

Y Values Sensor 8/m

50 =

°7) \\'MWW——‘-—
. e e

)) i | i
0 50 100 150 200
X Values Sensor 8/m

(a) Sensor 8.

Figure 4.105: Location Estimates Using Quadratic Optimization with Huff Weights
(+veX — North,+veY — FEast) Sliding Window = 10 For Sensors 1-8 (contd.).

157

Sensor 1 Movement and Estimates Y vs X Values

200 -

150 =

© Actual CG
+ Estimated CG
- Estimated Value

100 -

- Input Data

Y Values Sensor 1/m

50 -

100 150 200
X Values Sensor 1/m

(a) Sensor 1.

Sensor 2 Movement and Estimates Y vs X Values

150 =
{
§ Z
N
2 © Actual CG
§ 100 - - Estimated CG
e - Estimated Value }
= - Input Data
<
>
>
50 - j
|
i
L - =
) l) |)
0 50 150 200

100
X Values Sensor 2/m

(b) Sensor 2.

Figure 4.106: Location Estimates Using Quadratic Optimization with Huff Weights
(+veX — North,+veY — East) Sliding Window = 100 For Sensors 1-8.

158

Sensor 3 Movement and Estimates Y vs X Values

200 - .
(| W
150 -
£
&
2 - Actual CG
é 100 - - Estimated CG
g - Estimated Value (
>
= - Input Data
]
>
>
50 =
2 Ly
= - ——

100 150 200
X Values Sensor 3/m

(a) Sensor 3.

Sensor 5 Movement and Estimates Y vs X Values

150 -

] © Actual CG
- Estimated CG
- Estimated Value

100 -

- Input Data

Y Values Sensor 5/m

50 -

)
0 50 100 150 200
X Values Sensor 5/m

(b) Sensor 5.

Figure 4.107: Location Estimates Using Quadratic Optimization with Huff Weights
(+veX — North,4+veY — East) Sliding Window = 100 For Sensors 1-8 (contd.).

159

Sensor 6 Movement and Estimates Y vs X Values

200 - 5 -/ w_ .

150 =

© Actual CG
+ Estimated CG
- Estimated Value

100 -

- Input Data

Y Values Sensor 6/m

50 -

100 150 200
X Values Sensor 6/m

(a) Sensor 6.

Sensor 7 Movement and Estimates Y vs X Values

200 - - K w
[
o
150 \
£
~
§ © Actual CG
% 100 - - Estimated CG)
e { - Estimated Value
= - Input Data
<
>
>
y
50 -
0- K A—= /
) !)) |
0 50 150 200

100
X Values Sensor 7/m

(b) Sensor 7.

Figure 4.108: Location Estimates Using Quadratic Optimization with Huff Weights
(+veX — North,4+veY — East) Sliding Window = 100 For Sensors 1-8 (contd.).

160

Sensor 8 Movement and Estimates Y vs X Values

150 =

© Actual CG

100 - - Estimated CG
 Estimated Value
- Input Data

Y Values Sensor 8/m

50 =

;& S =~ T~

) i) | i
0 50 100 150 200
X Values Sensor 8/m

(a) Sensor 8.

Figure 4.109: Location Estimates Using Quadratic Optimization with Huff Weights
(+veX — North,+veY — East) Sliding Window = 100 For Sensors 1-8 (contd.).

161

Using a longer path with Huff weighting still does not and will not be able to
solve the issue of lag for higher sliding window values shown in Figures 4.110, 4.111 vs.
4.112, 4.113 for sliding window = 10 and sliding window = 100 respectively. As seen
in the previous sections, the estimates for center of gravity and actual center of gravity
adhere very close to one another for a myriad of sliding window sizes and weighting
schemes. The next section introduces the methodology to choose the optimum size
value for sliding windows and weighting empirically through the use of performance

metrics.

162

Moving Estimate Sensor 1 v Time

— Estimated X
— Input X value
— Actual X value CG
o — Estimated X value CG
S — - - —
N
o
B -
-
£
[}
=
<
=
> s
wn —
o
(&)
o
rel
o -
T T T T
o 1000 2000 3000
Time/s
(a) Sensor 1.
o o
1 I
N BN
,""
o o
38 3
« N N
AN
3 3 TN
E 2 W
2 E
x < s \
4 9 \, AN
[CR=1 [CI=1 N
3 2
1= 1=
2 2
3 3
N
500 600 700 800 900 1000 1500 1600 1700 1800 1900 2000

Time/s

(b) Sensor 1 Positive Slope Magnified.

Timels

(c) Sensor 1 Negative Slope Magnified.

Figure 4.110: Location Estimates of Sensor 1 UTM X Coordinates vs. Time Huff
Weights Sliding Window = 10 (+veX — North,+veY — East).

163

Moving Estimate Sensor 1 v Time

— Estimated Y
— Input Y value
— Actual Y value CG
o — Estimated Y value CG
S — - - —
N
o
B -
-
£
[}
=
<
=
> s
wn —
o
(&)
o
rel
o -
T T T T
o 1000 2000 3000
Time/s
(a) Sensor 1.
o o
1 I
N BN
° a | o
38 3
& &
\
£ \- = £
o /4 N o
3 / E
s / s \
> / > \
2 / 2
o Q / o Q
SV 3 \
N\
N\
\\
\.
N\
1= 1=
£ 3 \
\
\,
1500 1600 1700 1800 1900 2000 2300 2400 2500 2600 2700

Time/s

(b) Sensor 1 Positive Slope Magnified.

Timels

(c) Sensor 1 Negative Slope Magnified.

Figure 4.111: Location Estimates of Sensor 1 UTM Y Coordinates vs. Time Huff
Weights Sliding Window = 10 (+veX — North,+veY — East).

164

Moving Estimate Sensor 1 v Time

— Estimated X
— Input X value
— Actual X value CG
— Estimated X value CG
o
S 4 — - - —
N
o
3
£
(<5
=
<
> s
w —
o
(&)
[
Lo
o -
T T T T
o 1000 2000 3000
Time/s
(a) Sensor 1.
g Y. g
£ | YA £
§ _/'/ ‘: /// é
x VAR & / x
n I yd i %]
¢ g S 6 g
g Vi g
I
i ./’
//;. /Ij
o ’ : yd =3
g S g
A
7 /’, /
VA
500 600 700 800 900 1000 1500 1600 1700 1800 1900 2000
Time/s Time/s
(b) Sensor 1 Positive Slope Magnified. (c) Sensor 1 Negative Slope Magnified.

Figure 4.112: Location Estimates of Sensor 1 UTM X Coordinates vs. Time Huff
Weights Sliding Window = 100 (+veX — North,+veY — East).

165

Moving Estimate Sensor 1 v Time

— Estimated Y
— Input Y value
—— Actual Y value CG
o —— Estimated Y value CG
s — - - —
N
o
B8
£
(<5
=
=
> s
wn —
o
(G}
o]
Lo
o -
T T T T
o 1000 2000 3000
Time/s
(a) Sensor 1.
o /] R
< ‘ <
£ 7 T = £ "
g / 5 \
> / > \
g / [\,
& g [/ & g)
- / =1 X
/ \
\
\
\\
1500 1600 1700 1800 1900 2000 2300 2400 2500 2600 2700
Time/s Time/s
(b) Sensor 1 Positive Slope Magnified. (c) Sensor 1 Negative Slope Magnified.

Figure 4.113: Location Estimates of Sensor 1 UTM Y Coordinates vs. Time Huff
Weights Sliding Window = 100 (+veX — North,+veY — East).

166

4.12 Performance

To be able to accurately choose which of the sliding window sizes is the most
suitable for the application to a mobile robot platform during motion, an objective
measure can be used to differentiate between their performance. Here, performance
is defined by how accurate the estimated center of gravity of the platform is when
compared to the actual center of gravity. The estimated center of gravity is derived
from using the sensor location estimates using Equation 3.8 while the actual center
of gravity is provided by the SimuLink@® mobile platform simulation described in
Section 4.1.2. The performance metric used is the absolute difference between the
estimated center of gravity and the actual center of gravity represented as (q:tCG, ny),
which is shown in Equation 4.1, with error,; for measuring the performance on z-

coordinates and error,, to measure the performance on y-coordinates of the locations

of the sensors.

errory = |26 — :ptCG‘
_ |;ca_ . cc
errory, = |y;” — Yy ’ (4.1)

For Path 1, the performance metrics in Figure 4.114 and 4.115 show that on
using a smaller sliding window size or no sliding window at all, there would be a large
number of outliers or the location estimations are highly inaccurate, while as the we
scale up to using a larger sliding window, the outliers seem to all but disappear, as
seen in the case of using a sliding window of size 10, without a large change in the
value of the median error. Moreover, the effect of using a sliding window of a large

size may not be very useful due to the previously discussed lag effect.

167

X Coordinates Absolute Error of
CG for different Sliding Window Sizes

pr ittt
ES=l=f=t=l=] | | |

vyl
EEs0E

-~

ot 1
. |
o omonmt -~
o oot 1
e |

i
=

r 00TUMS
r 00T MS
r 00THMS
r 0TUMS
r 0TMS
F OTHMS
r 6UMS
- 6MS
- 6HMS
r 8UMS
- 8MS
- 8HMS
F LMS
F LIS
4
F LHM§
F om;mm.
3 :am
3 gzw
8 mm;m.m
0]
F §MS
F GHMS
r PaMS
F 7 MS
- PHHMS
r EUMS
- EMS
F EHHMS
- CiMS
rMS
F ZHHMS
- THMS
r TMS
r TH+MS

WwaNeA X 013 ainjosay

(a) Comparison of performance for UTM X Coordinates for Sliding Window Size 1-100 with

No Weights, Huff Weights and Random Weights.

X Coordinates Absolute Error of
CG for different Sliding Window Sizes

L onaws
L orws
L orHes
L s
L s
o
b sus
L s
L s
L s
L iws
b s
- ouns,
1)
- onss
r @I%m
- suns
Lensg
3
b @
b s
L ons
L bhes
b s
Lens
L e
b ams
Lms
s
b s
L s
L e

WaNeA X 043 ainjosay

(b) Comparison of performance for UTM X Coordinates for Sliding Window Size 1-10 with

No Weights, Huff Weights and Random Weights.

Figure 4.114: Comparison of Performance for Path 1 w.r.t Sliding Windows and

Weights for UTM X Coordinates.

168

X Coordinates Absolute Error of
CG for different Sliding Window Sizes

pr ittt
ES=l=f=t=l=] | | |

vyl
EEs0E

-~

ot 1
. |
o omonmt -~
o oot 1
e |

i
=

r 00TUMS
r 00T MS
r 00THMS
r 0TUMS
r 0TMS
F OTHMS
r 6UMS
- 6MS
- 6HMS
r 8UMS
- 8MS
- 8HMS
F LMS
F LIS
4
F LHM§
F om;mm.
3 :am
3 gzw
8 mm;m.m
0]
F §MS
F GHMS
r PaMS
F 7 MS
- PHHMS
r EUMS
- EMS
F EHHMS
- CiMS
rMS
F ZHHMS
- THMS
r TMS
r TH+MS

WwaNeA X 013 ainjosay

(a) Comparison of performance for UTM Y Coordinates for Sliding Window Size 1-100 with

No Weights, Huff Weights and Random Weights.

X Coordinates Absolute Error of
CG for different Sliding Window Sizes

L onaws
L orws
L orHes
L s
L s
o
b sus
L s
L s
L s
L iws
b s
- ouns,
1)
- onss
r @I%m
- suns
Lensg
3
b @
b s
L ons
L bhes
b s
Lens
L e
b ams
Lms
s
b s
L s
L e

WaNeA X 043 ainjosay

(b) Comparison of performance for UTM Y Coordinates for Sliding Window Size 1-10 with

No Weights, Huff Weights and Random Weights.

Comparison of Performance for Path 1 w.r.t Sliding Windows and

Weights for UTM Y Coordinates.

Figure 4.115:

169

Additionally, we see that in all cases, the use of Huff weights provides an equal
or better performance than using no weights at all or using random weights. These

results are reflected similarly for Path 2, as seen in Figures 4.116 and 4.117.

170

X Coordinates Absolute Error of
CG for different Sliding Window Sizes

- 00T4MS
r 00T MS
- Q0THMS
- 0T4mS
g
- OTHEMS
- 6uMS
r6Mms
- BHMS
- 8uMs
r8Mms
- 8HMS
- LS
LIS
g
F LHM§
F @;&
3 :am
3 @I;\w
8 mw_;m.m
[
- §Ms
- SHiMS
- Tams
F 7S
- PHNS
- €M
rEms
- EHeMS
- CaMs
rims
- THMS
- Tums
rIms
- THMS

1)

or

WwaNeA X 013 ainjosay

(a) Comparison of performance for UTM X Coordinates for Sliding Window Size 1-100 with

No Weights, Huff Weights and Random Weights.

X Coordinates Absolute Error of
CG for different Sliding Window Sizes

r 0TdMS
+ 0TMS
- OTHMS
- 6UMS
F 6MS
- 6HHMS
- 84MS
8 Ms
- BHEMS
- LUMS
rLMS
F LHHMS
I~ 9IS,
Q
F9MS
r @I%m
b Qs
- SMS 2
- mxg\m
- 7UMS
7 MS
- THMS
- E4MS
- EMS
- EHEMS
- TMS
- TMS
- CHMS
- TMS
- TMS
- THEMS

W/ANeA X 1043 3njosqy

(b) Comparison of performance for UTM X Coordinates for Sliding Window Size 1-10 with

No Weights, Huff Weights and Random Weights.

Figure 4.116: Comparison of Performance for Path 2 w.r.t Sliding Windows and

Weights for UTM X Coordinates.

171

X Coordinates Absolute Error of
CG for different Sliding Window Sizes

- 00T4MS
r 00T MS
- Q0THMS
- 0T4mS
g
- OTHEMS
- 6uMS
r6Mms
- BHMS
- 8uMs
r8Mms
- 8HMS
- LS
LIS
g
F LHM§
F @;&
3 :am
3 @I;\w
8 mw_;m.m
[
- §Ms
- SHiMS
- Tams
F 7S
- PHNS
- €M
rEms
- EHeMS
- CaMs
rims
- THMS
- Tums
rIms
- THMS

1)

or

WwaNeA X 013 ainjosay

(a) Comparison of performance for UTM Y Coordinates for Sliding Window Size 1-100 with

No Weights, Huff Weights and Random Weights.

X Coordinates Absolute Error of
CG for different Sliding Window Sizes

r 0TdMS
+ 0TMS
- OTHMS
- 6UMS
F 6MS
- 6HHMS
- 84MS
8 Ms
- BHEMS
- LUMS
rLMS
F LHHMS
I~ 9IS,
Q
F9MS
r @I%m
b Qs
- SMS 2
- mxg\m
- 7UMS
7 MS
- THMS
- E4MS
- EMS
- EHEMS
- TMS
- TMS
- CHMS
- TMS
- TMS
- THEMS

W/ANeA X 1043 3njosqy

(b) Comparison of performance for UTM Y Coordinates for Sliding Window Size 1-10 with

No Weights, Huff Weights and Random Weights.

Figure 4.117: Comparison of Performance for Path 2 w.r.t Sliding Windows and

Weights for UTM Y Coordinates.

172

4.12.1 Deriving Orientation from Quadratic Optimization Estimates of Locations
of GPS Sensors For A Moving Platform

Using the methodology described in Section 3.2, the estimates for orientation
of the platform were obtained for Path 1, as shown in Figure 4.118. From this
graph, we can see that there are some negative values of orientation. This is due
to the fact that in polar coordinates, negative angles of orientation are the same as
subtracting the magnitude of the angle in radians from 27. Overall, the orientation
matches the actual heading of the vehicle calculated by the simulation. To compare
performance, we calculate the absolute error of orientation per time-step e’r’rorf , as
shown in Equation 4.2 as the absolute difference between the heading denoted by 6,

and the estimated orientation calculated from the location estimates obtained from

quadratic optimization denoted as é\t

Path 1 Orientation and Sliding Windows

o
S —
™ .
F N ————
T e A
» .
<5} :
L o .
[=2] o — :
) 39 H .
o o —
R
=~ P
oy -
i) :
g
= o
[o
= —
O
.. —— Actual Heading
o — W.““’h T ~——...Sliding- Window-=-1
AR Sliding Window = 5
—— Sliding Window = 10
Sliding Window = 100

T T T T
500 1000 1500

o

Time

Figure 4.118: Path 1 Orientation of Platform vs. Time for Various Sliding Windows
= 1,5,10,100.

173

~

0r — O

errorf =

Orientation Absolute Performance Comparinson

8 H
o
o
° 8
£ 51 S
j=2] o
S 8
S ° s °
I?‘d 3 1 o °©
g o 3
o
[%2]
o
<< ° 8
R - i 4 .
: =—=N =
—— ! : [
' l e
o — —_— ' —_—
T T T T
SW1 SW5 SW10 SW100

Figure 4.119: Box Plot Comparison Path 1 Orientation Error w.r.t Sliding Windows
= 1,5,10,100.

The comparison on the basis of sliding window size to orientation is shown in
Figure 4.119. From the box plot of absolute errors, we can note the large number of
outliers when the sliding window = 100 although the median error is even lower than
that of sliding window = 1. Therefore, if we can use separate sliding window sizes for
estimating orientation and for estimating location, there is a possibility of being able
to harness the best performance from both worlds. This is in part, the motivation for
correction of lag faced in sliding window = 100, which will further reduce the number

and magnitude of the outliers.

174

4.12.2 Performance Using Correction For Lag

Using the algorithm outlined in Section 3.4.2 to correct for the lagging behavior
for estimates produced using large window sizes, we obtained the performance metrics
compared in Figures 4.120 for x-coordinates and 4.121 for y coordinates Box Plot.
These plots were calculated using the performance metrics defined in Equation 4.1.
Figure 4.120(a) shows the performance when the entire path of the platform is con-
sidered while Figure 4.120(b) considers the path where the platform is not turning.
Since it is expected in a fully-developed environment that the control information
will be provided regarding whether the platform is turning or not, we simulate that
by manually selecting sections of time-steps around which turning occurs. More pre-
cise results may be obtained through the collection of data from a more independent
mobile platform application environment.

The performance metric the platform using lag correction is compared with
performance using sliding windows and no lag correction at all. Additionally, the
comparisons are not made with respect to sliding window = 1 since prediction and
lag correction in that case is unnecessary. We can observe a significant decrease in
the median error values for all large window sizes. The number of outliers for the
case where the full path is considered is much higher than that for the no-turns
path due to the fact that the correction algorithm is still using the large window
size estimates that contain outdated observed values. To alleviate those errors, the

adaptive/dynamic sliding window size technique has been used in Section 4.12.3.

175

Absolute Error X Value/m

15

10

UTM X Coordinates Absolute Error of
CG for different Sliding Window Sizes Compared with Lag Corrected Estimates Full Path

| —

B — i
I I I I I [
SW5 LAG SW 5 SW 10 LAG SW 10 SW 100 LAG SW 100

(a) Comparison of performance for UTM X Coordinates for Sliding Window Size 5-100 with
Full Path Using Lag Correction.

Absolute Error X Value/m

15

10

UTM X Coordinates Absolute Error of

CG for different Sliding Window Sizes Compared with Lag Corrected Estimates No Turning

[})
= = ‘
I I I I I [
SW5 LAG SW 5 SW 10 LAG SW 10 SW 100 LAG SW 100

(b) Comparison of performance for UTM X Coordinates for Sliding Window Size 5-100 with
No Turns On Path.

Figure 4.120: Comparison of Performance for Path 1 w.r.t Lag Correction for Full
Path and No Turning Path Using Lag Correction for X-Coordinates.

176

UTM Y Coordinates Absolute Error of
CG for different Sliding Window Sizes Compared with Lag Corrected Estimates Full Path

0 _| R °
— 8
o (-]
—_— o
: 8
o
E ° i
S ° °
>
5 o > <
‘Llj o
2 ° o
=] o o
3 _|
g v 1 ° . g
< ,) , E _ 8§
‘ ‘
| [[[[|
SW5 LAG SW 5 SW 10 LAG SW 10 SW 100 LAG SW 100

(a) Comparison of performance for UTM Y Coordinates for Sliding Window Size 5-100 with
Full Path Using Lag Correction.

UTM Y Coordinates Absolute Error of
CG for different Sliding Window Sizes Compared with Lag Corrected Estimates No Turning

15

:
8
E 8
S 94 5
g 8
> 8
5 P B
o 8
= 8
=
[=) —
g " € —t— : g
: o 1 g
3 . : i g
B e — —
| — T T
. ‘ ‘
| [[[[|
SW5 LAG SW 5 SW 10 LAG SW 10 SW 100 LAG SW 100

(b) Comparison of performance for UTM Y Coordinates for Sliding Window Size 5-100 with
No Turns On Path.

Figure 4.121: Comparison of Performance for Path 1 w.r.t Lag Correction for Full
Path and No Turning Path Using Lag Correction for Y-Coordinates.

177

4.12.3 Performance Using Dynamic Sliding Window Size

Figure 4.122 compares the use of dynamic sliding window size with no correction
for lag and where the platform uses large sliding window sizes when the path is
straight and a sliding window of size 1 when the platform is turning. As described in
Section 3.4.2.1, the use of the smaller sliding window size when the platform is turning
or changing orientation is because the observed data needs to updated quickly and
maintaining historical information is not needed.

The box-plots of the errors compare the performance of the estimates using
dynamic sliding windows size vs. static sliding windows sizes for Huff weighted esti-
mates, and there is not much difference in the median values of the sliding window
sizes b and 10 but there is a significant drop in the median when using sliding window
= 100. This implies that there may be a significant decrease in error based perfor-
mance metric if both dynamic sliding window sizes are combined with correction for

lag, which is discussed in Section 4.12.4

178

UTM X Coordinates Absolute Error of
CG for Dynamic Sliding Window Sizes+Huff Weights

15
1

10
1

Absolute Error X Value/m

° —_— e —
- — : :
: E——— —] —
T T T T T T
SW5 Dyn SW 5 SW 10 Dyn SW 10 SW 100 Dyn SW 100

(a) Comparison of performance for UTM X Coordinates for Sliding Window Size 5-100
using Huff Weights and Dynamic Sliding Window Size.

UTM Y Coordinates Absolute Error of
CG for Dynamic Sliding Window Sizes+Huff Weights

15

Absolute Error Y Value/m

R — .
T T T T T T
SW5 Dyn SW 5 SW 10 Dyn SW 10 SW 100 Dyn SW 100

(b) Comparison of performance for UTM Y Coordinates for Sliding Window Size 5-100
using Huff Weights and Dynamic Sliding Window Size.

Figure 4.122: Comparison of Performance for Path 1 w.r.t Huff Weights and Dynamic
Sliding Window Size.

179

4.12.4 Performance Using Correction For Lag Combined with Dynamic Sliding Win-
dow Size

The performance metrics for estimating the location of the center of gravity
of the platform by combining the correction for lag and dynamic sliding window
size for the full path is demonstrated in Figure 4.123(a) for the z-coordinates and
Figure 4.123(b) for the y-coordinates. The box-plots show an increase in the number
of outliers from the previous box plots. This is due to the fact that the location
estimates over the entire path are being taken into consideration, and the outliers
can be traced back to the use of sliding window = 1 during the turning sections.
However, on comparison with lag correction without dynamic sliding window sizes,
there is a significant decrease in the number of outliers. Therefore, we can conclude
that both the correction for lag and the dynamic sliding window size techniques will
be instrumental in producing more accurate estimates for the locations of the sensors

and platforms.

180

Absolute Error X Value/m

15

10

UTM X Coordinates Absolute Error of
CG for different Dynamic Sliding Window Sizes and Lag Correction

[° > <
: . : .
T T T T T 1
SW5 Dyn+LagSW 5 SW 10 Dyn+LagSW 10 SW 100 Dyn+LagSW 100

(a) Comparison of performance for UTM X Coordinates for Sliding Window Size 5-100
using Lag Correction and Dynamic Sliding Window Size.

Absolute Error Y Value/m

15

10

UTM Y Coordinates Absolute Error of

CG for different Dynamic Sliding Window Sizes and Lag Correction

ﬂ{m €00 C00 O 000 GO AV O @ @ GO ® O

| 8 8
! ? — SE
T
SW5 Dyn+LagCorr+SW 5 SW 10 Dyn+LagCorr+SW 10 SW 100 Dyn+LagCorr+SW 100

(b) Comparison of performance for UTM Y Coordinates for Sliding Window Size 5-100
using Lag Correction and Dynamic Sliding Window Size.

Figure 4.123: Comparison of Performance for Path 1 w.r.t Huff Weighted Dynamic
Sliding Window Size.

181

4.12.5 Summary of Performance Metrics for Lag Correction and Dynamic Sliding
Window Size

The following set of tables summarize the improvements in performance de-
scribed in the previous sections using correction for lag, dynamic sliding window sizes
and their combinations in comparison to not using any enhancements, as described in
Sections 4.12.2, 4.12.3 and 4.12.4. Table 4.1 shows a summary of the mean, median
and the standard deviation of absolute error computed using Equation 4.1 for the
UTM z-coordinates, while Table 4.2 shows the same for y-coordinates. In Tables
4.1 and 4.2, “LC” stands for correction for lag, “Dyn SW” stands for using dynamic

sliding window sizes only, and “LC + Dyn SW” stands for using both techniques

together.
Window | Technique Mean Median Standard
Size Deviation
5 None 1.095 0.950 0.795
5 LC Full Path 0.629 0.471 0.723
5 LC No Turns 0.568 0.453 0.505
5 Dyn SW 0.510 0.472 0.337
5 LC 4+ Dyn SW | 0.630 0.476 0.588
10 None 1.064 1.028 0.562
10 LC Full Path 0.62 0.458 0.781
10 LC No Turns 0.541 0.428 0.447
10 Dyn SW 0.768 0.659 0.503
10 LC 4 Dyn SW | 0.606 0.451 0.546
100 None 5.564 4.16 4.691
100 LC Full Path 1.454 0.9 2.052
100 LC No Turns 0.879 0.785 0.971
100 Dyn SW 5.691 0.941 5.818
100 LC+ Dyn SW | 0.923 0.879 0.731

Table 4.1: Summary of Performance Metrics for UTM X-Coordinates Comparing
Mean, Median And Standard Deviation of the Absolute Error of Location Estimates
for Center of Gravity for Mobile Platform.

182

Window | Technique Mean Median Standard
Size Deviation
5 None 1.639 0.81 1.768

5 LC Full Path 0.939 0.773 0.85

5 LC No Turns 0.895 0.772 0.63

5 Dyn SW 0.674 0.631 0.395

5 LC 4 Dyn SW | 0.982 0.797 0.811

10 None 1.419 0.620 1.562

10 LC Full Path 0.969 0.785 1.07

10 LC No Turns 0.874 0.773 0.596

10 Dyn SW 0.926 0.852 0.626

10 LC + Dyn SW || 0.963 0.798 0.791

100 None 5.126 5.889 4.355

100 LC Full Path 1.811 1.224 2.287

100 LC No Turns 1.232 1.044 1.342

100 Dyn SW 5.939 1.117 5.981

100 LC+ Dyn SW | 1.325 1.066 1.410

Table 4.2: Summary of Performance Metrics for UTM Y-coordinates Comparing
Mean, Median And Standard Deviation of the Absolute Error of Location Estimates
for Center of Gravity for Mobile Platform.

From Tables 4.1 and 4.2, we can surmise any method of correction for lag or
dynamic sliding window sizes has a lower mean error, median error and standard
deviation of error than not using any method at all. All of these values also agree
with the findings discussed in the previous sections. For sliding windows of size 10
and 100, using correction for lag on the entire path has a higher error mean, median
and standard deviation than using correction for lag with dynamic sliding window
over the entire path. Furthermore , the mean, median and standard deviation of
absolute error show that use of dynamic sliding window sizes solely does not scale
well as the size of window increases. Overall, the use of both correction for lag and
dynamic sliding window size shows the most promise for reducing the absolute error

in the location of the center of gravity of the platform.

183

CHAPTER 5
CONCLUSIONS AND FUTURE WORK

5.1 Concluding Remarks

To summarize the results from the previous chapters, we formulated a quadratic
optimization based solution to estimate the location of multiple sensors arranged in
a particular configuration and the center of gravity of the mobile platform. The
quadratic optimization was performed by minimizing the cost of the squared errors
between the observed data and the estimated locations and constraining the results to
the configuration or the distances and orientations between the sensors (also our prior
knowledge). Through the results shown in Chapter 4, we have shown the success of
this formulation when the platform is stationary or when the platform is in motion,
thus adding to the generality of our solution. The results in Chapter 4 demonstrate
the low error of the quadratic optimization results with respect to the calculations of
center of gravity of the platform when the platform is in motion.

We recognized the need for outlier analysis by noting that the observed val-
ues contain a high degree of noise (high bias and high variance), which cannot fully
be counteracted by the use of quadratic optimization. In that regard, two statisti-
cal methods of weight functions were introduced, the Huber Weight Function and
the Standardized Deleted Residuals for outlier analysis that were tested for station-
ary cases while the Huff Weight Function was developed to handle both stationary
and non-stationary cases. In the case of the Huber weight function and the stan-
dardized deleted residuals, the metrics used to assign differing weights, consider the

x-coordinates and y-coordinates per sensor separately. The residuals in both these

184

methods and therefore, their weights are calculated separately for x-coordinates and
y-coordinates. This runs counter to the intuition of the application environment
where distance is the paramount metric. The Huff weight function metrics utilize
a distance based residual, combining the x-coordinates and the y-coordinates to one
value through calculating the Euclidean distance for the purposes of assigning weight.
Additionally, the use of Huff weights over sliding windows showed a marked improve-
ment in performance over using no weights or random weights. We can conclude that
the use of Huff weights can be beneficial to producing more accurate estimates.

We also introduced the concept of sliding windows to be able to obtain real-time
results when the platform is in motion. Through our performance analysis, sliding
windows were deemed as a worthy option in dealing with missing data and a sound
tool in producing better location estimates that have real-time constraints, which
given that the application space contains possibly cheap and unreliable sensors. As
shown in Chapter 4, the balance between retaining a large amount of history and
maintaining the value of the most recently observed data point can be done through
changing the size of the sliding window. With large sliding window sizes, we observed
the lag effect and successfully calculated the change in orientation of the platform
from a reference position, thus allowing us to correct for the lag. We also investigated
correction for the lag and the use of dynamic sliding windows sizes together and can
conclude through implementation of both concepts on the application environment,
that there is a significant decrease in the median error, either when using large or
small window sizes, compared to using no correction or dynamic sliding window.

All of the previously discussed methodologies are tools essential to formulating
the best estimates of locations of the sensors but there remains other options that

require further investigation, discussed in Section 5.2.

185

5.2 Future Work

As discussed in Chapter 3 and 4, we implemented a prototype system to esti-
mate the location of a mobile platform using quadratic optimization and by improving
the estimates through the application of weights. Also, the simulation is capable of
handling the production of estimates when the platform is in motion. We observed
the lag effect for large sizes of sliding window which can be corrected to obtain more
current location estimates. To test the true effectiveness of the system, the next phase
of implementation will involve applying the principles of the prototype in a real-world
environment.

The purpose of these methodologies was also to formulate a general solution
for calculating estimates of different types of sensors. Although in this dissertation,
the focus has been on position and orientation information, we are keen on future
applications of this framework to sensors that measure velocity or altitude etc. This
will possibly involve the introduction of multiple features besides position to the
framework and also increasing the number of constraints to describe the configuration
of sensors. We are also interested in looking at different sensor configurations and
would like to investigate the effect of more complex shapes on the complexity of the
quadratic optimization problem. The issue of altitude will expand the current 2-D
framework to a 3-D space. Moreover, the additional issues of rotation on multiple
axis will append more dimensions to the current problem space.

This framework can be further expanded to account for tracking of locations
of large vehicles such as trains, airplanes or boats and other forms of transportation,
and may be successfully tested in the presence of tracking data being collected from
these application spaces. Moreover with trains, the constraints could contain the
configuration of the network of train tracks, thus adding to the dimensionality of our

basic optimization framework solution.

186

During the process of investigating solutions for the problem statement, we en-
countered the use of the extended Kalman Filter algorithm for the process of filtering
noisy data from the observed data from GPS sensors. We intend to implement a sys-
tem that takes advantage of extended Kalman Filter and the quadratic optimization
framework using sensor configuration knowledge to result in a system that can define
approaches on both sides of the problem statement : the filtering of the data AND

the sensor configuration knowledge.

187

1]

REFERENCES

R. Freund. (2004) Nonlinear programming. [Online].
Available: http://ocw.mit.edu/courses/sloan-school-of-management /
15-084j-nonlinear-programming-spring-2004 /lecture-notes/

MATLAB. (2012) Constrained nonlinear optimization. [On-
line]. Available: http://www.mathworks.com /help /optim/ug/
constrained-nonlinear-optimization-algorithms.html

F.-T. Y. Katta G. Murty, Linear Complementarity, Linear and Nonlinear Pro-
gramming. University of Michigan, Ann Arbor, 1997.

R. H. Shumway and D. S. Stoffer, Time Series Analysis and Its Application with
R FEzxzamples, 2nd ed. Springer-Verlag, 2006.

T. P. S. University. (2012) Stat 510 - applied time series analysis. [Online].
Available: https://onlinecourses.science.psu.edu/stat510/?q=node/33

G. Box, G. M. Jenkins, and G. C. Reinsel, Time Series Analysis : Forecasting
and Control, 4th ed. Wiley Series in Probability and Statistics, 2008.

A. C. Acock, “Working with missing values,” Journal of Marriage and Family,
vol. 67, pp. 1012-1028, Nov. 2005.

A. Donders, G. van der Heijden, T. Stijnen, and K. G. Moons, “Review : A gentle
introduction to imputation of missing values,” Journal of Clinical Epidemiology,
vol. 65, pp. 1087-1091, Jan. 2006.

D. C. Montgomery, Statistical Quality Control : A Modern Introduction, 6th ed.
John Wiley and Sons, 2011.

188

http://ocw.mit.edu/courses/sloan-school-of-management/15-084j-nonlinear-programming-spring-2004/lecture-notes/
http://ocw.mit.edu/courses/sloan-school-of-management/15-084j-nonlinear-programming-spring-2004/lecture-notes/
http://www.mathworks.com/help/optim/ug/constrained-nonlinear-optimization-algorithms.html
http://www.mathworks.com/help/optim/ug/constrained-nonlinear-optimization-algorithms.html
https://onlinecourses.science.psu.edu/stat510/?q=node/33

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[18]

NIST and SEMATECH. (2012) Univariate and multivariate control charts.
[Online]. Available: http://www.itl.nist.gov/div898 /handbook /pmc/section3/
pmc3.htm

R. L. Mason, N. D. Tracy, and J. C. Young, “A practical approach for interpreting
multivariate t* control chart signals,” Journal of Quality Technology, vol. 29, pp.
369-501, Oct. 1997.

M. G. de la Parra and P. Rodriguez-Loaiza, “Application of the multivariate >
control chart and mason-tracy-young decomposition procedure to the study of
the consistency of impurity profiles of drug substances,” Quality Engineering,
pp. 127-142, Aug. 2003.

D. Koks and S. Challa, “An introduction to bayesian and dempster-shafer data
fusion,” Australian Government Department of Defence : Defence Science and
Technology Organisation, Australia, Tech. Rep. AR-012-775, Nov. 2005.

Z.Yi, H. Y. Khing, C. C. Seng, and Z. X. Wei, “Multi-ultrasonic sensor fusion
for mobile robots,” IEEFE Intelligent Vehicles Symposium, Oct. 2000.

M.-A. Simard, E. Lefebvre, and C. Helleur, “Multisource information fusion
applied to ship identification for the recognised maritime picture,” Sensor Fusion
: Architectures, Algorithms, and Application IV, vol. 4051, Nov. 2000.

F. Cremer, J. Schavemaker, E. den Breejen, and K. Schutte, “Detection of anti-
personnel land-mines using sensor fusion techniques,” FEuroFusion, vol. 4051,
Oct. 1999.

G. Box and D. A. Pierce, “Distribution of residual autocorrelations in
autoregressive- integrated moving average time series models,” Journal of the
American Statistical Association, vol. 65, pp. 1509-1526, Dec. 1970.

ROS. (2012) Ros documentation. [Online|. Available: http://www.ros.org/wiki/

189

http://www.itl.nist.gov/div898/handbook/pmc/section3/pmc3.htm
http://www.itl.nist.gov/div898/handbook/pmc/section3/pmc3.htm
http://www.ros.org/wiki/

[19] —— (2012) Ros documentation for gps common. [Online]. Available:
http://www.ros.org/doc/api/gps_common/html/msg/GPSFix.html
[20] G. Baddeley. (2001) Gps - nmea sentence information. [Online]. Available:

http://aprs.gids.nl/nmea/

190

http://www.ros.org/doc/api/gps_common/html/msg/GPSFix.html
http://aprs.gids.nl/nmea/

BIOGRAPHICAL STATEMENT

Roochi Mishra was born in Algiers, Algeria and raised in India, Malaysia,
Uzbekistan and Switzerland. She received her B.S degree in Computer Science and
Engineering from University of Texas at Arlington, Texas, in 2004, her M.S degree
in Computer Science from University of Pittsburgh, Pennsylvania , in 2006, and is
currently working on obtaining her Ph.D. degree in Industrial Engineering from Uni-
versity of Texas at Arlington, Texas in 2013. In 2003, she interned at Sprint Inc. as a
system administrative intern and in 2010, she worked as Research and Development
Software Testing Engineer for Firmware and Software in Boston Scientific Neuromod-
ulation. Her current research interests are in Predictive Analytics in Big Data, Data

Science and Linguistics.

191

	ACKNOWLEDGEMENTS
	ABSTRACT
	LIST OF ILLUSTRATIONS
	LIST OF TABLES
	INTRODUCTION
	Sensor Devices and Data
	Data Fusion
	Motivating Examples
	Monitoring Robot Location
	Monitoring Movement of Forest Line of Fire

	Problem Statement
	Outline of the Dissertation

	LITERATURE REVIEW
	Quadratic Programming in MATLAB®
	Time Series Analysis
	Handling Missing Values
	Statistical Process Control
	Multivariate SPC Charts : Hotelling T2

	Data Fusion

	METHODOLOGY
	 Obtaining An Estimate Using Quadratic Optimization and Known Sensor Configuration
	 Case A: Mobile platform is stationary
	 Case B: Mobile platform is in motion

	 Position and Orientation Estimation
	 Outlier Analysis and Weighting
	 Huber Weight Function in Robust Regression
	 Standardized Deleted Residuals
	 Huff Weight Function

	 Sliding Windows and Correction for Lag
	 Sliding Window
	 Correction For Lag

	 RESULTS
	 Experimental Set-Up
	 Stationary Experimental Set-Up
	 Movement Experimental Set-Up
	 Quadratic Optimization Set-Up

	 Graphical Analysis
	 Time Series Analysis
	 Obtaining An Estimate Using Quadratic Optimization and Known Sensor Configuration
	 Unweighted Quadratic Optimization Estimates of Locations of GPS Sensors for Stationary Platform
	 Weighted Quadratic Optimization Estimates of Locations of GPS Sensors for Stationary Platforms
	 Unweighted Quadratic Optimization Estimates of Locations of GPS Sensors for Stationary Platform using Sliding Windows
	 Huff Weighted Quadratic Optimization Estimates of Locations of GPS Sensors for Stationary Platform using Sliding Windows
	 Huff Weight Function With No Threshold
	 Huff Weight Function With Threshold Value = 3.5

	 Quadratic Optimization Estimates of Locations of GPS Sensors for Moving Platform
	 Unweighted Quadratic Optimization Estimates of Locations of GPS Sensors for Moving Platform using Sliding Windows
	 Location Estimates Using Path 1
	 Location Estimates Using Path 2

	 Weighted Quadratic Optimization Estimates of Locations of GPS Sensors for Moving Platform using Sliding Windows
	 Location Estimates Using Path 1
	 Location Estimates Using Path 2

	 Performance
	 Deriving Orientation from Quadratic Optimization Estimates of Locations of GPS Sensors For A Moving Platform
	Performance Using Correction For Lag
	Performance Using Dynamic Sliding Window Size
	Performance Using Correction For Lag Combined with Dynamic Sliding Window Size
	Summary of Performance Metrics for Lag Correction and Dynamic Sliding Window Size

	 CONCLUSIONS AND FUTURE WORK
	 Concluding Remarks
	 Future Work

	REFERENCES
	BIOGRAPHICAL STATEMENT

