
SOLVING THE OPTIMIZATION CONTROL PROBLEM FOR LUNAR SOFT LANDING

USING MINIMIZATION TECHNIQUE

by

LIZETH PATRICIA OCAMPO

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

MASTERS OF SCIENCE IN MATHEMATICS

THE UNIVERSITY OF TEXAS AT ARLINGTON

August 2013

ii

Copyright © by Lizeth Ocampo 2013

All Rights Reserved

iii

Acknowledgements

I would like to express my gratitude to my supervisor Dr. Benito Chen-

Charpentier for the supervision, useful observations and engagement through the

learning process of this master thesis; I would not have been able to complete this thesis

without his guidance. Furthermore I would like to thank my committee members Dr.

Hristo Kojouharov, and Dr. Christopher Zaleta for their time in reviewing my thesis.

Finally I would like to thank my loved ones, my husband Justin for his support and

encouragement, my parents Helman and Rosalba for teaching me perseverance, my

sister Deysi and my brother in-law Brandon for helping me when I first came to the U.S.A

to pursue higher education. Each one of them has played a role in my education, and I

thank God for giving me such a supportive family.

July 22, 2013

iv

Abstract

SOLVING THE OPTIMIZATION CONTROL PROBLEM FOR LUNAR SOFT LANDING

USING MINIMIZATION TECHNIQUE

Lizeth Patricia Ocampo, M.S.

The University of Texas at Arlington, 2013

Supervising Professor: Benito Chen-Charpentier

Minimizing fuel consumption in lunar missions has been a well studied and

documented optimization problem. In this paper two cases of the lunar lander are

studied. The first case is the one dimensional problem where the objective is to make a

vertical soft landing using the minimum amount of fuel. The second case has the same

objective but an initial tangential velocity greater than zero is given making it a two

dimensional problem.

The first case is solved using Newton’s shooting method, finite difference method

(using MATLAB’s embedded function bvp4c), and solving it explicitly. For the second

case, a minimization technique is proposed for cases where the above methods fail to

provide a solution.

v

Table of Contents

Acknowledgements ... iii

Abstract ... iv

List of Illustrations .. vii

List of Tables ... viii

Chapter 1 Introduction ... 1

Chapter 2 Optimization and Control Theory .. 3

Chapter 3 Lunar Lander: Soft Vertical Landing ... 7

Problem Setup .. 7

Numerical Analysis ... 10

Method One: Solving the System Explicitly .. 11

Implementation ... 11

Results ... 12

Method 2: Newton’s Shooting Method .. 16

Implementation ... 16

Results ... 19

Method 3: Finite Difference Method (MATLAB’s function bvp4c) 20

Implementation ... 21

Results ... 23

Chapter 4 Lunar Lander: Soft Landing with Initial Tangential Velocity 26

Problem Setup .. 26

Numerical Analysis ... 29

Method 4: Minimization Technique ... 30

Implementation ... 30

Results ... 33

vi

Chapter 5 Summary and Conclusion .. 39

References .. 41

Biographical Information ... 43

vii

List of Illustrations

Figure 1 Evolution of Velocity, Mass, and Altitude during Flight Time 14

Figure 2 Height vs. Velocity Trajectory ... 15

Figure 3 Height vs. Velocity Trajectory Using bvp4c Solver .. 24

Figure 4 Evolution of Velocity, Mass, and Altitude during Flight Time Using bvp4c Solver

 .. 25

Figure 5 Lunar Polar Coordinate System .. 27

Figure 6 Results Using Minimization Technique ... 36

Figure 7 Results with an Initial Altitude of 10000m.. 37

viii

List of Tables

Table 1 Constants and Initial Conditions ... 12

Table 2 Results Using Symbolic Toolbox .. 13

Table 3 Guesses Provided to bvp4c Solver .. 23

Table 4 Results Using bvp4c Solver ... 23

Table 5 Constants and Initial Conditions for 2-D Lander ... 33

Table 6 Terminal Conditions and Weights for 2-D Lander .. 33

Table 7 Initial Values Given to fminsearchbnd .. 33

Table 8 Results Attained Using Minimization Technique .. 34

Table 9 Values that Minimize the Objective Function .. 34

Table 10 Results Attained for Initial Altitude of 10000m .. 34

Table 11 Minimization Values for Initial Altitude of 10000m .. 34

1

Chapter 1

Introduction

There has never been more interest in landing on the moon than during the

development of the Apollo missions. Since then, a lot of the attention of manned

exploration has been turned to Mars and the possibility for deep space missions.

Although currently there is little interest in putting men back on the moon, there is great

interest in landing different probes on the lunar surface that would provide more

information on the interior structure and composition of the moon. Some examples of

these missions are the International Lunar Network that intends to set a series of stations

on the moon to study geophysical conditions [1], and the MoonLITE, a U.K. lead mission

whose goal is to land a set of robotic instruments on the moon that will study seismic

activities among other physical characteristics of the Moon [2]. In order to complete

these missions, it is necessary to ensure the soft landing of the vehicle carrying these

scientific instruments. In addition, people are continually looking for ways to reduce cost,

so minimizing fuel is an important parameter when planning a mission to the moon.

 This optimization problem has been approached in various ways by different

authors. Some have attempted to optimize not only the descent phase, but the de-orbit

phase as well [3]. Others have analyzed the optimal strategy for landing from lunar

parking orbit [4], and others have designed guidance laws to land on a target while still

minimizing fuel [5] to cite some examples. However, most articles do not explain the

numerical implementation of their optimization methods. Although in some situations

simple techniques as a shooting method provides a solution, it is not the case for more

complicated problems. As a result, there is the need to develop a technique that can deal

with more complex cases.

2

This paper solves two different cases of the fuel optimization problem of landing

on the moon. The first case is the 1-D moon lander where the purpose is to make a soft

vertical landing while controlling the thrust of the vehicle to minimize fuel consumption.

This first case lays down the ground work for understanding the difficulties than can be

encountered when actually implementing the optimization techniques in the code. The

vertical soft landing problem is solved by solving the system explicitly, and using two

common methods to solve two boundary value problems, Newton’s shooting method and

finite difference method. The later is implemented via MATLAB’s embedded two

boundary value solver bvp4c.

The second case is the 2-D moon lander. Here, the lander starts with tangential

velocity greater than zero and the fuel consumption is minimized by controlling the

attitude angle (the angle between the radial vector and the thrust direction). This problem

is more complicated and exposes how the methods used in the first case are ineffective

when faced with the challenges of a more complex problem. Thus, a minimization

technique is proposed to overcome the difficulties that the other methods posed when

solving for the optimization problem for the 2-D lander.

3

Chapter 2

Optimization and Control Theory

Two point boundary value problems such as the one studied in this paper; often

arise in optimal control theory. This chapter intends to provide a short background on

optimization control theory. Most of the information in this chapter can be found in [6] [7].

Assume that the dynamics of a system can be described by

0 0

() = (x())

() = x

t t

t

x f

x
 (1)

The initial point
0x n and the function : n nf are given. Next,

assume one wants to control the system described above, so that the outcome of the

system may be changed by changing a parameter(s) as the system evolves. Then, the

dynamical system above becomes

0 0

() = (x(), ())

() = x

t t t

t

x f u

x
 (2)

The function : ()t t A u u is known as the control, where [0,)t and A

is the set of all admissible controls. The function : n nA f now depends on the

control ()t Au , so that the solution () : nt x is predicated not only on 0x but on

()u as well. To determine the best control, it is necessary to establish a performance

criterion, as to quantify divergence from ideal behavior. This criterion is called the payoff

functional J , also known as the cost functional or the performance index.

f

0

t

t
J(()) = (), + L((), (),)dtf ft t t t t t u x x u (3)

4

The function : n is called the terminal payoff or terminal cost function,

and L: n A is called the intermediate cost function or the running payoff. In

general, an optimization problem will be stated in the following way: find the admissible

control ()tu that minimizes the cost functional from equation (3) subject to the

constraints from equation (2). This can also be expressed as find the curve
*()x that

minimizes (3) among all ()x satisfying the given initial conditions (or boundary

conditions depending on the problem). Recall that ()x depends on the control ()tu , so

that the optimal curve
*()x depends on ()tu as well. The optimal state

*()x is

characterized in optimization theory through the Pontryagin’s maximum principle.

The Pontryagin’s maximum principle states that “if
*()tu is an optimal control,

then there exists a function
*()tλ , called a costate, that satisfies a certain maximization

principle.” [6, p. 47] The costate function arises from the constraints that are imposed on

*()x by the system of ODEs. The costate function can also be seen as Lagrange

multipliers that contain important information about the cost of violating the constraints

that
*()x must satisfy. The relationship between the state equations, the cost functional,

and the costate function is given by the Hamiltonian which in control theory is described

in the following way

() := () + ()H x, ,u x,u x,u f (4)

Now, consider the following optimal control problem

0

J(()) = (), + L((), (),)
ft

f f
t

t t t t t dt u x x u (5)

given () mA u , find a control
*()u such that

*

()
J(()) max J(())

A

u
u u subject to

5

() = (x(), ())t t tx f u (6)

where () nt x , ()t Au , and the initial time
0t has been specified. In addition, some

q n conditions may be specified at the terminal time
ft

((),) 0 (1,2,...)q

f k f fx t t k q (7)

where subscript f is there to denote that the conditions must be satisfied at the

final time. Then If such optimal control
*()u exists and

*()x is its corresponding

trajectory, then by the Pontryagin’s maximum principle, there exists a costate function

*

0:[,] n

ft t λ such that

* * * *

* * * *

* * * * *

0 0

0 0

a) () ((), (), ())

b) () ((), (), ())

c) ((), (), ()) max ((), (), ())

d) () given or () 0 (1,...,)
() ()

e) ()

a A

l l f

l l

j f

t H t t t

t H t t t

H t t t H t t a t

t t l n
x t x t

t

λ

x

x x λ u

λ x λ u

x λ u x λ

x λ ν

x given or () 0 (1,...,)
() ()

j f f

j f j f

t j n
x t x t

λ ν

 (8)

 The second part of equations e) and f) are called transversality conditions and

q

f ν are the Lagrange multipliers that arise from the terminal constraints imposed by

equation (7). Transversality conditions are necessary conditions for optimality problems

with free boundary points. The solution of the 2n differential equations from the state

6

equations a) and the adjoint equations b) as well as the value of the q parameter
fν are

determined by the 2n+q boundary conditions from e) and f) and (7). The Hamiltonian

does not need to be differentiable with respect to the control; however, if the Hamiltonian

is differentiable with respect to the control ()u and the control variables are

unconstrained, i.e. () mt u instead of () mt A u where A is the set of

admissible controls, then condition c) can be replaced by / 0H u where the

minimum can be guaranteed by
2 2/H u being positive definite.

There are some additional conditions that must be satisfied depending on

whether or not the final time is given. If the final time is fixed and the Hamiltonian does

not depend explicitly on the time then for a given 0t and
ft

* * *

0,((), (), ()) for []fH t t t C t t t x λ u (9)

Also, if the final time is free and the Hamiltonian does not depend explicitly on the

time then for a given 0t

* * *

0,((), (), ()) 0 for []H t t t t t x λ u (10)

where denotes the first time when the terminal conditions are met. These last two

equations state that when the Hamiltonian is evaluated along the optimal trajectory it

must be equal to a constant if the final time is fixed and equal to zero if the final time is

free.

7

Chapter 3

Lunar Lander: Soft Vertical Landing

Problem Setup

The problem will be set up as described in [6, pp. 55-59]. The objective is to

minimize fuel consumption during a vertical landing on the moon, so that the remaining

fuel at landing ()m is maximized, where denotes the first time the height and velocity

is zero, so () () 0h v . Since the change in mass is directly proportional to the

thrust applied to the engine, the problem is equal to minimizing the total thrust ()u t

applied. Then the optimal control problem can be stated as

0

min (()) ()J u u t dt

 (11)

subject to the dynamical system

() ()

()
()

()

() ()

h t v t

u t
v t g

m t

m t ku t

 (12)

with initial conditions

0

0

0

(0)

(0)

(0)

h h

v v

m m

 (13)

and () [0,1]u t A , so that the thrust is constrained to 0 () 1u t . In addition

() 0h t and () 0m t . Also, 0m denotes the total mass of the spacecraft, and the

8

constant k is the mass flow rate given by the total mass of the fuel
fuelm divided by the

maximum burn time of the fuel.

The Hamiltonian of the system is

(, ,)

()
() () ()

()
h v v m

H x u L

u t
v t g ku t u t

m t

f

 (14)

Note that Equation (8.a) is equivalent to the state equations from (12). The

adjoint equations from (8.b) are

2

0

()

()

h

v h

m v

H

h

H

v

H u t

m m t

 (15)

and the maximization condition from c) is

0 1

0 1

((), (), ()) max ((), (),)

1
() () () max () () 1

()

1 1
() () (t)+ () () 1 if () () 1 0

() ()

() () (t)

a

h v v m
a

h v v m v m

h v

H t t t H t t a

v t t g t a t k t
m t

v t t g t k t t k t
m t m t

v t t g

x λ u x λ

1
 if () () 1 0

()
v mt k t

m t

(16)

so the optimal control is

1
1 if () () 1 0

()
()

1
0 if () () 1 0

()

v m

v m

t k t
m t

u t

t k t
m t

 (17)

9

Since all initial conditions are given, (0)h , (0)v , and (0)m cannot be

determined by the adjoint equation from (8.e). In the same way, since it is known that the

desired state at is () () 0h v the adjoint equation from (8.f) cannot be used to

find ()h and ()v . However, ()m is a free variable, so that by the adjoint equation

of (8.f) () 0m .

From equation (17) it can be deduced that the there is a switching time in which

the control value changes from 0 to 1 (since these are the values provided by the

optimality conditions). Denote the switching time st and st . Assume that the rocket

engine is off at 0 0t and that at st the engine is turn on at full power where 0u and

1u are the thrust values for the off and full power engine respectively. To prove this

claim, it is necessary to solve the adjoint equations from (15). Given that the optimal

control problem in case one is a well documented problem, the proof for the above claim

will be omitted but refer to [6, p. 59] [8] for details. For the purpose of this paper, it will be

accepted that the above assumption satisfies the Pontryagin’s maximum principle.

Therefore,

0 if 0 t t
()

 1 if t t

s

s

u t

 (18)

The problem is then divided in two parts, a free fall trajectory and a powered

trajectory. The free fall trajectory, () 0u t , becomes an initial value problem with state

equations

() ()

()

() 0

h t v t

v t g

m t

 (19)

10

initial conditions from (13), and unknown final time
st . The powered trajectory, () 1u t ,

becomes a two boundary value problem with state equations

() ()

1
()

()

()

h t v t

v t g
m t

m t k

 (20)

and boundary conditions

0

() 0

() 0

()s

h

v

m t m

 (21)

where the initial time st is the same as the final time from the free fall trajectory and

unknown final time corresponds to the first time when () 0h and () 0v .

Numerical Analysis

MATLAB was used to implement all the routines for the solution of the fuel

optimization problem for the moon lander. The vertical lunar landing optimization problem

was solved with three different approaches: solving the system explicitly, using Newton’s

shooting method, and finite difference method via MATLAB embedded function for two

boundary value problems bvp4c.

11

Method One: Solving the System Explicitly

Implementation

The optimization problem described in the previous section is one of those rare

cases for which an explicit solution is available. The solution of system (19) subject to

initial conditions given in (13) is

2

0 0

0

0

1
()

2

()

()

free

free

free

h t gt tv h

v t gt v

m t m

 (22)

and the solution of the state equations from (20) subject to boundary conditions given in

(21) is

2 20
02

0

0

0

0

()1 1 1
() log (())

2 () 2

()1
() () log

()

() ()

s
powered s

s

s
powered

s

powered s

m k tt
h t gt gt m k t t g

k k m k t t

m k t
v t g t

k m k t t

m t m k t t

 (23)

Both trajectories, free fall and powered descend, must intersect at the time when

the engine is turned on at full power, i.e. the solution of the state equations for both

trajectories are equal at st . Then, the solutions (22) and (23) can be used to solve for the

switching time st and final time . Since 0() (0)sm t m m , ()h t and ()v t are the

only solutions of interest.

Substitute t with st in equations (22) and (23),

12

2

0 0

0

2 0 0

2

0

0

0

1
()

2

()

()1
() () log

2

()1
() () log

s s s

s s

s s
s s

s
s s

h t gt t v h

v t gt v

t m m k t
h t g t

k k m

m k t
v t g t

k m

 (24)

which provides a system of four equations and four unknowns. The values of
st , ,

()sh t , and ()sv t can now be substituted into the solutions (22) and (23) and be solved

for the intervals 0, st t and ,st t respectively. The amount of fuel that was

burned during descend can be solved as well with 0() ()sm m k t .

Results

MATLAB’s symbolic toolbox has embedded functions that can be used to provide

explicit formulae for the solution of ordinary differential equations and systems of

equations such as the one from (24). However, using the symbolic toolbox can be

computationally expensive, in particular when the number of steps for the simplification

has to be increased to allow the solver to find an explicit solution. On the other hand, it is

perhaps the easiest and most intuitive way to solve the optimization problem in case one.

The results below were obtained with the inputs from the following table

Table 1 Constants and Initial Conditions

maxu 0m fuelm k
0v 0h moong

400N 224kg 204kg 2.833x10
-3

kg/s 100m/s 100000m 1.622m/s
2

13

Recall () 0,1u t A , so that the values from Table 1 must be rescaled when

entering them into the code. In Figure 1, the red line denotes a non-optimal case where

at the switching time, the engine was turned on at half power 0.5u , as opposed to full

power 1u as the optimization analysis suggested. In both Figure 1 and 2 the freefall

trajectory is denoted by the solid blue line, and the powered descend trajectory by the

dotted blue line. Table 2 summarizes the results for the optimal solution.

Table 2 Results Using Symbolic Toolbox

st ()sh t ()sv t _burned fuelm

312.859s 481.849s 51904.471m -407.458m/s 191.522 kg

As an interesting remark, the burned fuel when the engine has turned on at half

thrust was 200.46 kg, about 9 kg more than the optimal solution. Although this particular

case can be solved explicitly, the other methods used in this paper serve as an example

for cases for which the explicit solution is not found.

1
4

Figure 1 Evolution of Velocity, Mass, and Altitude during Flight Time

1
5

Figure 2 Height vs. Velocity Trajectory

16

Method 2: Newton’s Shooting Method

Implementation

The shooting method converts a two boundary value problem into an initial value

problem. The values that are not given at the initial time are guessed and corrections are

made so that when the ODE system is integrated using the initial conditions it reaches

the terminal conditions that were set by the two boundary value problem [9]. Since the

free fall trajectory is an initial value problem, the shooting method will be used only on

solving the powered trajectory. However, the equations for the free fall trajectory will be

used to constrain the guesses for the two boundary value problem.

As before the free fall trajectory state equations from (19) are solved with initial

conditions from (13) so that the same result as in (22) is obtained. The powered descent

state equations are now solved with initial conditions. Given a system of ODE from (20)

with boundary conditions (21), replace terminal conditions with (guessed) initial

conditions

0

()

()

()

s s

s s

s

h t h

v t v

m t m

 (25)

and initial guesses sh and sv , so that when solving the state equations from (20) along

with the initial conditions from (25) satisfies the terminal conditions given in (21). Then,

the solution to the powered descend trajectory is

17

2 20 0

2

0

0

() 1
() () log ()

2

()1
() () log 1

s s s
powered s s s s s

s
powered s s

m k t t m t t t t
h t h v t t g t t gtt

m k k k

k t t
v t v g t t

k m

 (26)

To assess how far off the evaluated terminal conditions are from the desired

values of the terminal conditions from (21), it is necessary to evaluate the discrepancy

function
1 2[]TL L L

1

2 20 0

2

0

2

0

(,) ()

() 1
() log () 0

2

(,) ()

()1
() log 1 0

s

s s s
s s s s s

s

s
s s

L h h h

m k t m t t
h v t g t g t

m k k k

L v v v

k t
v g t

k m

 (27)

where (,)sh h and (,)sv v are equations (26) evaluated at the time where the

boundary conditions are met. Note that sh and sv have been included as variables of

()h ()v to denote their dependence on the guessed initial conditions. Now it is

necessary to find a correction that will improve the guessed values for sh and sv . Let J

denote the Jacobian of the discrepancy functions

1 1

1 1

s s

s s

L L

h v
J

L L

h v

 (28)

so that by Newton’s method, the correction of sh and sv is given by J X L

where
1 2[]TL L L and []T

s sX h v . Then the correction matrix is

18

1X J L (29)

and the new improved guess is given by adding the correction to the old guessed value

new oldX X X (30)

There are some important remarks that need to be made in regard to the specific

two boundary value problem in question. First, the powered descend trajectory is

constrained by the free fall trajectory meaning that these two curves must intersect at
st

as mentioned in the previous section. So far, nothing that has been done provides this

constraint to the solution. Second, the initial time for the powered descend trajectory st is

unknown as well, moreover, the discrepancy functions are dependent on the terminal

time which is also unknown. Consequently, st and need to be guessed (and

corrected) along with sh and sv to satisfy the terminal conditions from the two boundary

value problem.

Newton’s method is not globally convergent meaning that the initial guesses

must be somewhat close to the solution to get convergence, so adding two variables

more that need to satisfy some terminal conditions poses a problem. To improve the

likelihood of making initial guesses that will converge start by guessing a value for st

 Given some value for st , sh and sv can be evaluated using the free fall

trajectory equations so

_s s guesst t (31)

2

_ _ _ _ 0 0

1
() ()

2
free s s guess s guess s guess s guessh t h t gt t v h (32)

_ _ _ 0() ()free s s guess s guess s guessv t v t gt v (33)

19

which not only improve the probability of making a good guess, but it constrains the

powered descend curve to being equal to the free fall descend curve at
st . Now the

guess for can be evaluated from either
1L or

2L . For simplicity,
2L equation is used

_

_ _

0

()1
() log 1 0

s guess

s guess s guess

k t
v g t

k m

 (34)

Now that all the necessary guesses have been made, Newton’s method can be

applied. Since from the correction of one guessed variable the other variables can be

determined, use the correction for
_ _s guess s oldh h to improve on the other guesses, so

_ _s new s old sh h h (35)

solving for
_s guesst in equation (32) and substituting the improve height value (35)

2

0 _ 0

_ 0

2 ()
 and 0

s new

s new s

v g h h
t v t

g

 (36)

then

_ _ 0s new s newv gt v (37)

and new is attained by solving for in 2L and substituting the new values. If the

tolerance is not met then make the old values the new ones and continue the iteration

until convergence is achieved to the given tolerance.

Results

The results were attained using the same initial conditions and constants in Table

1, the initial guess
_ 100s guesst s , and a tolerance of 10

-6
. After 60 iterations Newton’s

method converges to the same answers as with the explicit solutions up to the 4
th

20

decimal place for ()sh t and
_burned fuelm , and up to the 7

th
 decimal place for

st , , and

()sv t . Refer to Table 2 for these values.

In this case, the Newton’s shooting method is more difficult and less intuitive to

implement. In addition, it is less time efficient that than the explicit solution that can be

obtained using MATLAB’s symbolic toolbox alone. Moreover, for the specific values

provided in Table 1 the problem provided a way to estimate good guesses that allow for

convergence, but it is important to note that equation (36) can give an imaginary number

depending on the initial values because of the square root term. If instead equation (33)

is used to solve for
_s newt , then 1L instead of 2L must be used to solve for

guess (as

well as new), but the possibility of an imaginary number is again encountered when

solving for in 1L . In conclusion, using Newton’s shooting method is not the most

efficient method for the optimization problem in case one not only because it is more

computationally expensive, but also because of the difficulties met when attempting to

find suitable initial guesses that will lead to convergence.

Method 3: Finite Difference Method (MATLAB’s function bvp4c)

MATLAB’s two boundary value solver bvp4c is a “Residual control based,

adaptive mesh solver” [10] that uses a three point Lobatto method of order 4 called the

Simpson formula because it reduces to the Simpson’s quadrature rule. The function

computes a cubic spline on each subinterval of a mesh by requiring it to be continuous, to

satisfy the boundary conditions, and satisfy the ODEs at the endpoints and at the

midpoint of each subinterval [11].

21

Implementation

Only the powered descent trajectory is solved using the solver bvp4c because

the free fall trajectory is setup as an initial value problem and not as a boundary value

problem. The information gathered from bvp4c, however, is essential for solving the free

fall trajectory in the appropriate time interval. The syntax of the bvp4c function is:

solinit = bvpinit(t, xinit, params)

sol = bvp4c(odefun,bcfun,solinit,options)

“Solinit” is a structure that contains the initial guesses for the solution. It is built

with the help of the function bvpinit with the following fields: “t” which represents the

points at which the boundary conditions are imposed, “xinit” which provides the initial

guesses to the solver, and finally “params” which gives an initial guess for unknown

parameters [12].

In this case the points at which the boundary conditions are met are the initial

time st and the terminal time . The problem is that both times are unknown. To get

around this problem the terminal time is normalized and a linear space is created so that

 t = linspace(0, 1)

A similar approached to the one in the shooting method is taken when deciding

on the guesses for the bvp4c solver. Provided a guess for st , equations (32) and (33)

can be used as guesses for the height and velocity solutions. Note that it is also

necessary to provide a guess for the solution of mass. In addition, because it is a free

terminal time problem, there is an additional parameter that needs to be determined

which is the final time . The code for the structure of guesses would look something

like

t_s = t_guess;

22

t = linspace(0, 1);

yinit = [h_free(t_s); v_free(t_s); m_guess];

solinit = bvpinit(t, xinit, T_guess);

where the values of h_free(t_s) and v_free(t_s) are evaluated from (32) and (33) using

t_guess.

The solver first needs a function (odefun) that provides the system of ordinary

differential equations from equation (20). Remember that the time has been normalized,

so if nt is the normalized time such that
n

tt

 then the ODE,

 n

d d d

tdt dtd

x x x

 (38)

Second, the solver needs a function (bcfun) that provides the boundary

conditions from (21). As mentioned before, because it is a free terminal time problem and

the terminal time needs to be found, a fourth boundary condition must be added. Also, in

the previous section it was mentioned that the powered descent trajectory had to be

constrained to the free fall equation so that they intersect at the switching time. The fourth

boundary condition addresses this constraint by using the free fall equations, so from (22)

0

2

0 0

0 0

1
 () (, ())

2

s

s

s s

s s s

v v t
t

g

v v t v v t
h t h t v t g v h

g g

 (39)

then the equations for bcfun are

23

0

2

0 0

0 0

() 0

() 0

()

1
()

2

s

s s

s

h

v

m t m

v v t v v t
h t g v h

g g

 (40)

Finally, the solver needs some initial guesses that are provided by “solinit” as it

has already been explained. MATLAB offers a list of options such as error tolerance and

mesh size that can be supply to the solver using bvpset. For more details refer to [13].

With the solutions from bvp4c the switching time can be solved using equation

(39). Then, given the interval 0, st the solution for the free fall trajectory can be easily

solved using an ODE solver such as ode45.

Results

The inputs for the initial conditions and constants used are the same ones given

on Table 1. The guesses provided to the solver were

Table 3 Guesses Provided to bvp4c Solver

101890sh m =-62.2m/ssv 204m kg 400

Equation (32)
evaluated at

_ 100s guesst s

Equation (33)
evaluated at

_ 100s guesst s

fuelm Reasonable
guess

Table 4 Results Using bvp4c Solver

st ()sh t ()sv t _burned fuelm

312.834s 481.894s 51915.058m -407.417m/s 191.601 kg

24

With the exception of ()sh t , all results in Table 4 do not differ by more than 10
-1

from the results given in Table 1. There is a difference of about 10.5 m between the

results for ()sh t which results from the small difference in the found times that creates a

large change in the height at high velocities. In this case using the bvp4c solver is the

most efficient way to solve the optimization problem considering it was possible to find

guesses that provided convergence. In addition, MATLAB’s two boundary value solver

was able to calculate and display the results in about 1/3 of the time that it took when

solving the system explicitly.

Figure 3 Height vs. Velocity Trajectory Using bvp4c Solver

25

Figure 4 Evolution of Velocity, Mass, and Altitude during Flight Time Using bvp4c Solver

26

Chapter 4

Lunar Lander: Soft Landing with Initial Tangential Velocity

Problem Setup

The problem will be set up as described in [5, p. 5]. Given the coordinate system

from Figure 5 where O is the lunar center, L is the position of the lander, s is the

surface of the moon, and given the notation

 r = radial distance

 = position angle

 = control angle (angle measured from the radial vector to the thrust vector)

T = thrust

u = tangential velocity

v = radial velocity

m = mass of the lander

 = moon’s gravitational constant

1

earth

c
g I

 and I = specific impulse

the equations governing the motion of the lunar lander are

2

2

sin

cos

r v

u

r

T uv
u

m r

T u
v

m r r

m cT

 (41)

27

Figure 5 Lunar Polar Coordinate System

The objective is to minimize fuel consumption during soft landing by controlling

the direction of the thrust ()t . The problem ignores the de-orbit phase, and minimizes

the fuel consumption during the powered descent phase only. The problem is simplified

by assuming that during the descent phase the engine is turned on at full power. Note

that optimizing the control ()t is equivalent to optimizing the distance of travel, i.e. the

time the engine is on. The cost function must depend on the control, and since only the

velocities depend on the direction of the thrust, the optimal control problem is stated as

2 2min (()) (()) (())f f f fJ u t u v t v (42)

Subject to the state equations given in (41) with boundary conditions

28

0

0

0

0

0

(0)

(0)

(0)

(0)

(0)

()

() 0

() 0

moon

f moon

f

f

r y r

u u

v v

m m

r t r

u t

v t

 (43)

where
0y denotes the altitude of the lander at initial time. The values

fu and
fv in

(42) are the target values at landing; that is, they are the boundary values at
ft given in

(43). Then, the Hamiltonian of the system is

2

2

(, ,)

() () ()
() sin

() ()

()
cos

() ()

r u

v m

H x u L

u t T u t v t
v t

r t m r t

T u t
cT

m r t r t

f

 (44)

Equation (8.a) is satisfied by the state equations from (41). The costate

equations from (8.b) are

2

2 2 2 2

2 2

2

0

1
2

sin cos

r u v v

u u v

v r u

m u v

H u uv u

r r r r r

H

H v u

u r r r

H u

v r

H T T

m m m

 (45)

29

and the condition (8.c) can be reduced to

0
H

 (46)

since there are no constraints imposed on the control ()t . Then the optimal control is

1() tan u

v

t

 (47)

Since all initial conditions are given, (0)r , (0) , (0)u , (0)v , and (0)m

cannot be determined by the adjoint equation from (8.e). In the same way, the adjoint

equation from (8.f) cannot be used for ()r ft , ()u ft , and ()v ft . However, ()ft and

()fm t are free variables, so that by the adjoint equation of (8.f) () () 0f m ft t .

Hence the optimization analysis results in a two boundary value problem with 10

equations, 5 state equations (41) and 5 costate equations (45), and 10 boundary

conditions, 8 given by equation (43) and 2 resulting from the adjoint equations.

Numerical Analysis

It is easy to see that the system of equations given by (41) and (45) cannot be

solved in the same explicit way as the equations from the vertical landing, so that Method

1 from the previous section will not work in this problem, as it is expected in most cases.

Several complications arise from trying to use Newton’s shooting method or MATLAB’s

function bvp4c as discussed in the following paragraphs.

As mentioned before, Newton’s method requires initial guesses that are not too

far off from the solution to allow for convergence. In the previous case the state equations

30

did not depend on the costate equations. In this case, on the other hand, the radial and

tangential velocity depend on the costate equations due to optimization of the control .

Making guesses for the adjoint equations is not easy because they do not provide the

physical intuition that can be derived when making an initial guess for some of the

variables in the state equations. The shooting method could be used with a globally

convergent method, but these are harder to implement and as mentioned in [5, p. 8] there

may not exist an exact solution to the problem with the given boundary conditions.

It is important to remember that this is a free terminal time problem, which is

more difficult to implement. For example to be able to solve it using bvp4c, the solver

needs and extra boundary condition to solve for
ft . In the previous section it was

necessary to constrain the descent curve to the powered descent curve so that the extra

condition rose up naturally. In this case, however, there is no extra condition that can be

imposed on the problem and still make physical sense. In addition, bvp4c requires

guesses that capture the general behavior of the solution. Although the solver adapts the

mesh after obtaining convergence on a given mesh, making guesses about the behavior

of adjoint equations is extremely difficult.

The proposed solution to these problems is to reformulate the two boundary

value problem as a minimization problem with the intention of satisfying the boundary

conditions as well as possible.

Method 4: Minimization Technique

Implementation

Augment the cost functional as a sum of squares of the terminal conditions so

that the objective function to be minimized is

31

2 2 2(()) (()) (())f f f f f fF u t u v t v r t r (48)

and u , v , r are solved by using the system of equations provided by (41) and (45)

and optimal control (47). Since F is being minimized by using the equations that give

the optimal control, its solution provides an optimal landing curve that guarantees that the

final conditions are met.

The evaluation of F , and therefore its minimization, requires the solution of (41)

and (45) where the initial conditions for all the state equations are known, but none of the

initial conditions for the costate equations are. Recall that this is a free terminal time

problem, so the objective of the optimization problem can be restated as find some

0

0

0

0

0

(0)

(0)

(0)

(0)

(0)

r r

u u

v v

m m

 (49)

and
ft that minimizes F where

fu ,
fv , and

fr are the conditions imposed at
ft in

equation (43).

 The routine used to solve this minimization problem is given in [14] which

attempts to find a minimum of a function of several variables. It works in the same way

that fminsearch from MATLAB does, using a Nelder-Mead optimizer [14] along with a

derivate-free method [15], with the difference that bounds are applied internally using a

transformation of the variables so that the initial guesses can be constrained to an

interval. The syntax of the function is

x = fminsearchbnd(minfun,xg,lbdd,ubdd)

where “minfun” is the function to be minimized, “xg” is some starting estimate, and as

explained before “lbdd” and “ubdd” are upper and lower constraints imposed on the

32

variables that are trying to minimize F . These constraints limit the areas where the

minimizing function looks to obtain a minimum, not only increasing the possibility of

finding an adequate answer, but also reducing the computational cost.

Given equations (41) and (45), initial conditions

0 0

0

0

0

0

(0)

(0)

(0)

(0)

(0)

moonr r y r

u u

v v

m m

 (50)

and guesses
, 0 0 0 0 0[, , , ,]g f r u v mx t , the ODEs can be solved using a standard

ode solver and from them attain the necessary information to evaluate F . The idea is

that when fminsearchbnd calls the “minfun” function, it will evaluate the ODEs that F

needs. So the code for “minfun” looks something like

function F = minfun(xg)

x0 = [r0, theta0, u0, v0, m0, xg(2:end)];

time = [0, xg(1)];

G = odesolver(@odefun, time, x0);

F = ((G(end,1)-rf)a)^2 + ((G(end,3)-uf)b)^2 + ((G(end,4)-vf)c)^2 +…

(min(G(:,1))<1)*1e7

The last term of F prevents the lander from crashing into the ground by

imposing a high cost penalty in the minimization if at any time the radius is less than the

radius of the moon. The constants a, b, and c are weights that aid in prioritizing how the

minimization function alters the variables to reach the desired terminal state. Using the

found initial conditions of the costate equations and the
ft that minimize F , the two

boundary value problem can be solved as an initial value problem using a standard ode

solver routine.

33

Results

The results in Figure 6 were attained by scaling equations (41) and (45), and by

accordingly scaling the values from the Tables below.

Table 5 Constants and Initial Conditions for 2-D Lander

maxT I
moonr 0y 0 0u 0v 0m

500N 224s 1737.4x10
3
m 20000m π/2 100m/s -100m/s 224kg

Table 6 Terminal Conditions and Weights for 2-D Lander

fr
fu

fv a b c

moonr 0m/s 0m/s 10
3

1 1

Table 7 Initial Values Given to fminsearchbnd

ft
0r 0 0u 0v 0m

500s .02 .8 .01 -1.2 -3

It was assumed that the value of the initial costate equations are small, so the

boundary constraints applied to all initial guesses was the interval [5,5] and [100,800]

for the time. It was also assumed that the gravitational force is constant equal to moon’s

gravity. The differential equations were solved using ode23s. Figure 4 shows the

evolution of the velocities, the control angle, mass, and altitude through time, and Table 8

and 9 summarize the results obtained using the values above.

34

Table 8 Results Attained Using Minimization Technique

fr
f

fu
fv

fm

1737.4x10
3
m 1.581rad 1.51x10

-3
m/s 1.850x10

-3
m/s 172.71kg

Table 9 Values that Minimize the Objective Function

ft
0r

0
0u

0v
0m

225.41s 2.203x10
-2

2.443 6.134x10
-1

9.620x10
-1

 -1.709

The results in Figure 7 were attained with the same values from Table 6 and 7

with the difference that the altitude was reduced to 0 10000y m . The results are

summarized in the following tables.

Table 10 Results Attained for Initial Altitude of 10000m

fr
f

fu
fv

fm

1737.4x10
3
m 1.574rad 2.125 x10

-8
m/s 5.123x10

-8
m/s 188.642kg

Table 11 Minimization Values for Initial Altitude of 10000m

ft
0r 0 0u 0v 0m

155.394s 6x10
-2

1.714 9.064x10
-1

-2.124x10
-1

 -2.2843

Notice in Figure 6 that the direction of the angle changes rapidly at about 40

seconds. As the denominator in the arctangent approaches zero the angle changes from

pi/2 to –pi/2. The tangential velocity increases in the first 40 seconds, then the angle of

35

the engine changes to start breaking. Recall that the engine is turned on at full power, so

if the direction of the angle was such that the lander started decelerating at
0t it would

reach the target velocity before reaching the target altitude. It could be said that the

engine was turned on too early, so that the optimizer finds the best route that satisfies the

terminal conditions with the starting altitude. Notice in figure 7 where the initial altitude

was decreased that the angle of the thrust direction does not change suddenly as when

the initial altitude was higher. In this case, the direction of the thrust is such that the

lander starts decelerating when the engine is turn on, so that it was able to find a landing

curve that satisfied all terminal conditions without having to accelerate at the beginning.

3
6

Figure 6 Results Using Minimization Technique

3
7

Figure 7 Results with an Initial Altitude of 10000m

38

Note from Table 8 that the results are very close to the desired terminal states,

with a difference of 10
-3

 for the velocities, and 10
-6

 for the radius. In first trials ode45 was

used to solve the system of ODEs, but after noticing some stiff behavior, as shown in

Figure 6 in the Velocity and Control Angle graphs, it was decided to use a stiff solver

(ode23s) to better capture the behavior in the areas where rapid changes occurred. Also,

it is important to note the relevance of scaling the equations due to the large difference

among the values that the function is trying to minimized, the radius is in the order of 10
6

while the velocities are in the order of 10
2
. Another important remark is that although

some guesses had to be made; convergence was achieved with different guesses

attaining acceptable results, meaning reaching the desired radius (moonr) with velocities

<2 m/s [5, p. 9], showing that this method allows more flexibility than Newton’s shooting

method or the two boundary value solver bvp4c when it comes to making those initial

guesses. It is worth noting that other minimization methods such as simulated annealing

and swarm type global methods also failed to provide convergence to a satisfactory

answer.

39

Chapter 5

Summary and Conclusion

The simple case of the vertical soft landing on the moon was solved with

common methods for solving two boundary value problems; however, in a more

complicated case when the tangential velocity is greater than zero, the methods used for

the vertical landing case proved insufficient. A minimization technique was proposed in

which the two boundary value problem resulting from the optimization and control

analysis was reformulated as a minimization problem. The cost function was augmented

to include all terminal conditions, so that the objective function was the sum of squares of

the evaluated and desired terminal states. The two boundary value problem was treated

as an initial value problem where the variables that minimized the objective function (the

augmented cost functional) were the unknown initial values and the final time. Most

papers do not make it clear that it is likely that the two boundary value problem will not

have an exact solution and thus should be considered as a minimization problem. Some

authors such as [5] used a similar approach to the one proposed in this paper but

minimizing the final position alone and subjecting it to velocity constrains of <2m/s,

however, to formulate the problem in this way and obtain a solution, the author had to

approximate the solution of the state equations as a first order Taylor series. Another

author [4] uses controlled random search to minimize an objective function such as the

cost function (42), arriving to successful results when the vertical velocity constraint is

relaxed to a target velocity of 5m/s. Thus, it has been shown that reformulating the

objective function as in (48) and implementing it to a Nelder-Mead optimizer with

unknown initial conditions bounded is a successful new approach to solving the problem

40

in case two. It is important to note that minimization problems are hard to solve and may

fail depending on the initial guesses, and it is essential to understand the limitations of

the routine used. An important limitation of the function used to find the unknown initial

values is that it might only give local solutions. Another limitation is that the solution

varies depending on the given starting point (in this case the initial unknown values), on

the other hand, it converges to adequate solutions given different initial values which

shows that it is more advantageous than Newton’s shooting method or bvp4c when

making initial guesses that will lead to convergence. In conclusion, in spite of the

limitations the results from Table 8 show that reformulating the two boundary value

problem as a minimization problem as described in (48) is an effective technique for

solving the optimization problem described in chapter 4.

41

References

[1] NASA, "International Lunar Network," [Online]. Available:

http://iln.arc.nasa.gov/welcome. [Accessed 23 6 2013].

[2] Y. Gao, A. Phipps, M. Taylor, J. Clemmet, D. Parker, C. Ian, B. Andrew, W.

Lionel, d. S. C. Alex, P. Davies, M. Sweeting and A. Baker, "UK Lunar

Science Missions: MoonLITE and Moonraker," in DGLR International

Symposium "To Moon and Beyond", Bremen, 2007.

[3] B. Jeong, D. Lee and H. Bang, "Optimal Perilune Altitude of Lunar

Trajectory," International Journal of Aeronautical and Space Sciences, vol.

10, no. 1, pp. 67-74, 2009.

[4] R. V. Ramanan and M. Lal, "Analysis of optimal strategies for soft landing

on the Moon from lunar parking orbits," Journal of Eath System Science, vol.

114, no. 6, pp. 807-813, 2005.

[5] J. Guo and C. Han, "Design of Guidance Laws for Lunar Pinpoint Soft

Landing," Advances in the Astronautical Sciences, vol. 135, no. 9, pp. 2133-

2145, 2009.

[6] L. C. Evans, "An Introduction to Mathematical Optimal Control Theory.

Version 0.2," [Online]. Available:

http://math.berkeley.edu/~evans/control.course.pdf. [Accessed 23 6 2013].

[7] A. E. Bryson and Y.-C. Ho, Applied Optimal Control: Optimization,

Estimation and Control, Washington D.C.: Hemisphere, 1975.

[8] J. Meditch, "On the problem of optimal thrust programming for a lunar soft

landing," Automatic Control, IEEE Transactions, vol. 9, no. 4, pp. 477-484,

1964.

[9] W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery, "Two

Boundary Value Problem," in Numerical Recepies in C, Cambridge,

Cambridge University Press, 1992, p. 754.

[10] J. Shampine and L. Kierzenka, "A Sixth-Order Extension to the MATLAB

bvp4c," Deparment of Mathematics. Imperial College London, London,

2006.

[11] L. F. Shanpine, I. Gladwell and S. Thompson, in Solving ODEs with

MATLAB, Cambridge, Cambridge University Press, 2003, pp. 161-164.

[12] The MathWorks Inc., "bvp4c," 1994-2013. [Online]. Available:

http://www.mathworks.com/help/matlab/ref/bvp4c.html. [Accessed 15 07

2013].

42

[13] The MathWorks Inc., "bvset," 1994-2013. [Online]. Available:
http://www.mathworks.com/help/matlab/ref/bvpset.html. [Accessed 15 07

2013].

[14] J. D'Errico, "MATLAB CENTRAL: File Exchange. fminsearchbnd,

fminsearchcon," The MathWorks Inc, 06 02 2012. [Online]. Available:

http://www.mathworks.com/matlabcentral/fileexchange/8277-

fminsearchbnd. [Accessed 17 07 2013].

[15] MathWorks Inc, "fminsearch," 1994-2013. [Online]. Available:

http://www.mathworks.com/help/matlab/ref/fminsearch.html. [Accessed 17

07 2013].

[16] M. Manoranjan, J. D. Turner and J. L. Junkins, "Solution of Two-Point

Boundary-Value Problems Using Lagrange Implicit Function," Journal of

Guidance, Control and Dynamics, vol. 32, no. 5, pp. 1684-1687, 2009.

43

Biographical Information

Lizeth Ocampo graduated from Embry Riddle Aeronautical University in Fall

2010 with a B.S. in Engineering Physics. In Fall 2011 she started her graduate studies in

University of Texas at Arlington to pursue a degree in M.S. in Mathematics.

Lizeth plans to pursue a career in the field of engineering and mathematics.

